WO2023102787A1 - 通信方法、装置、设备及可读存储介质 - Google Patents

通信方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2023102787A1
WO2023102787A1 PCT/CN2021/136574 CN2021136574W WO2023102787A1 WO 2023102787 A1 WO2023102787 A1 WO 2023102787A1 CN 2021136574 W CN2021136574 W CN 2021136574W WO 2023102787 A1 WO2023102787 A1 WO 2023102787A1
Authority
WO
WIPO (PCT)
Prior art keywords
lbt
channel monitoring
sensing
timer
monitoring result
Prior art date
Application number
PCT/CN2021/136574
Other languages
English (en)
French (fr)
Inventor
江小威
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/136574 priority Critical patent/WO2023102787A1/zh
Priority to CN202180004497.2A priority patent/CN114391238A/zh
Publication of WO2023102787A1 publication Critical patent/WO2023102787A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to the communication field, and in particular to a communication method, device, equipment and readable storage medium.
  • the 3rd Generation Partnership Project (3GPP) defines three major directions of 5G application scenarios: mobile broadband enhancement (Enhance Mobile Broadband, eMBB), massive Internet of Things (Massive Machine Type of Communication, mMTC), ultra- Ultra Reliable & Low Latency Communication (URLLC).
  • eMBB enhanced Mobile Broadband
  • mMTC massive Internet of Things
  • URLLC ultra- Ultra Reliable & Low Latency Communication
  • the terminal When the terminal sends the HARQ-ACK message on the unlicensed frequency band, it first needs to perform the HARQ-ACK on the frequency band of the Physical Uplink Control Channel (PUCCH) to which the Listen Before Talk (LBT) belongs. Channel monitoring.
  • PUCCH Physical Uplink Control Channel
  • LBT Listen Before Talk
  • Embodiments of the present application provide a communication method, device, device, and readable storage medium. Described technical scheme is as follows:
  • a communication method which is applied to a terminal, and the method includes:
  • a communication device comprising:
  • the processing module is configured to determine the channel monitoring result of the listen-before-talk LBT; and update the LBT counter or timer according to the channel monitoring result and the corresponding sensing beam ID or beam set ID.
  • a terminal comprising:
  • transceiver connected to the processor
  • the processor is configured to load and execute executable instructions to implement the communication method described in the above-mentioned embodiments of the present application.
  • a computer-readable storage medium In another aspect, a computer-readable storage medium is provided. At least one instruction, at least one program, code set or instruction set is stored in the computer-readable storage medium. The at least one instruction, at least one program, code set or instruction set The set is loaded and executed by the processor to implement the communication method described in the above-mentioned embodiments of the present application.
  • Fig. 1 is a block diagram of a communication system provided by an exemplary embodiment of the present disclosure
  • Fig. 2 is a flowchart of a communication method provided by an exemplary embodiment of the present disclosure
  • Fig. 3 is a flowchart of a communication method provided by another exemplary embodiment of the present disclosure.
  • Fig. 4 is a flowchart of a communication method provided by another exemplary embodiment of the present disclosure.
  • Fig. 5 is a structural block diagram of a communication device provided by an exemplary embodiment of the present disclosure.
  • Fig. 6 is a block diagram of a terminal provided by an exemplary embodiment of the present disclosure.
  • Fig. 7 is a block diagram of an access network device provided by an exemplary embodiment of the present disclosure.
  • Fig. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure, and the communication system may include: a core network 11, an access network 12, and a terminal 13.
  • the core network 11 includes several core network devices 110 .
  • the core network device 110 includes access and mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF) and user plane management function (User Plane Function, UPF) and other equipment, wherein, AMF uses For functions such as controlling terminal access rights and switching, SMF is used to provide server continuity and uninterrupted user experience of the server, such as: IP address and anchor point changes, etc.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • the access network 12 includes several access network devices 120 .
  • the access network device 120 may be a base station, and a base station is a device deployed in an access network to provide a terminal with a wireless communication function.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points and so on.
  • the names of devices with base station functions may be different, for example, in a long-term evolution (Long Term Evolution, LTE) system, it is called eNodeB or eNB; in 5G new air interface ( In the New Radio (NR) system, it is called gNode B or gNB.
  • LTE Long Term Evolution
  • NR New Radio
  • the name "base station” may describe and change.
  • the foregoing apparatuses for providing wireless communication functions for terminals are collectively referred to as access network equipment.
  • Terminal 13 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of terminals (User Equipment, UE), mobile stations (Mobile Station, MS), terminal (terminal device) and so on. For convenience of description, the devices mentioned above are collectively referred to as terminals.
  • the access network device 120 and the terminal 13 communicate with each other through a certain air interface technology, such as a Uu interface.
  • wireless communication may be performed through a licensed frequency band, or wireless communication may be performed through an unlicensed frequency band.
  • wireless communication between the terminal 13 and the access network device 120 through an unlicensed frequency band is taken as an example for illustration.
  • the 52.6GHz-71GHz frequency range includes the 60GHz unlicensed frequency band.
  • This frequency band will adopt NR-U (NR-Unlicensed) technology.
  • LBT Listen-before-talk
  • the sender usually needs to monitor the channel before sending the communication message. Only after the channel monitoring is successful, that is, after confirming that the monitored channel is not occupied by other senders, can the communication message be sent on the channel, which is the channel occupation mechanism of LBT.
  • the transmitting end uses an LBT frequency band (bandwidth) as a frequency unit to perform channel monitoring.
  • an LBT frequency band is 20MHz
  • the uplink resource configured by the base station for the UE, that is, the uplink bandwidth part (BandWith Part, BWP) may include one or Multiple LBT bands.
  • the UE When the UE fails to monitor LBT, it monitors at the granularity of BWP. If continuous LBT failure is detected on a BWP of a serving cell (Serving Cell), that is, the result of LBT channel monitoring continues to be the result of monitoring failure, the UE will switch to another serving cell configured with a physical random access channel (Physical Random Access Channel) Random access is initiated on the BWP of the Random Access Channel (PRACH) resource. At the same time, if the UE has available uplink carrier resources, a LBT failure Media Access Control (MAC) CE (Control Element) is generated, and the MAC CE will indicate all Serving Cell identities where LBT failure occurs.
  • MAC Media Access Control
  • the UE MAC layer indicates LBT failure to the Radio Resource Control (RRC) layer
  • the UE indicates the radio link failure (Radio Link Failure, RLF) of the master cell group (Master Cell Group, MCG)/secondary cell group (Secondary Cell Group, SCG).
  • RRC Radio Resource Control
  • the LBT counter (LBT_COUNTER) is incremented by 1, and the timer lbt-FailureDetectionTimer is restarted (representing the duration of not receiving the LBT failure instance) .
  • LBT_COUNTER When LBT_COUNTER ⁇ lbt-FailureInstanceMaxCount (maximum count threshold), the continuous LBT failure of the current active BWP is triggered.
  • the UE changes the BWP it will set LBT_COUNTER to 0 and stop lbt-FailureDetectionTimer. lbt-FailureDetectionTimer times out, indicating that no LBT failure instance has been received for a period of time, then the channel is considered to be better, and LBT_COUNTER is cleared.
  • a very narrow beam can be used for communication and transmission, and the LBT in the direction of the beam will not affect the transmission, so there is no need for omnidirectional LBT monitoring .
  • a sending beam corresponds to a sensing beam or a beam set
  • a sensing beam corresponds to a sending beam or a beam set.
  • the beam width of the sensing beam or the beam set mapped by the sending beam needs to at least cover the beam width of the sending beam.
  • judging continuous LBT failure is judged within a BWP, and all beam directions are taken into consideration.
  • directional LBT it is not appropriate to judge continuous LBT failure based on omnidirectional LBT failure.
  • the physical layer detects LBT failure in a beam direction, it indicates the LBT failure instance to the MAC layer, and the MAC layer will add 1 to the LBT_COUNTER count; then, when the physical layer changes the beam monitoring direction, it happens again LBT failure, indicating the LBT failure instance to the MAC layer, and the MAC layer will add 1 to the LBT_COUNTER count.
  • the two LBT failure instances come from two different LBT monitoring directions. It is obviously impossible to correctly judge which LBT monitoring direction actually has a continuous LBT failure if the number of LBT times in multiple directions is superimposed and counted.
  • the LBT counter or timer is updated according to the sensing beam or beam set corresponding to the sending beam.
  • FIG. 2 is a flow chart of a communication method provided by an exemplary embodiment of the present disclosure. The method is applied to the terminal shown in FIG. 1 as an example for illustration. As shown in FIG. 2 , the method includes:
  • Step 201 determine the channel monitoring result of the listen-before-talk LBT.
  • the channel monitoring result of the LBT includes channel monitoring success, or channel monitoring failure.
  • the channel monitoring success is used to indicate that the channel monitored by the LBT is idle and communication transmission can be performed;
  • the channel monitoring failure is used to indicate that the channel monitored by the LBT is busy and communication transmission cannot be performed.
  • the physical layer monitors the LBT channel in one beam direction, and indicates the LBT channel monitoring result to the MAC layer.
  • Step 202 update the LBT counter according to the channel monitoring result and the corresponding sensing beam ID or beam set ID.
  • the LBT counter is updated according to the channel monitoring result and the corresponding sensing beam identifier, when a transmitting When the beam corresponds to a beam set, the LBT counter is updated according to the channel monitoring result and the corresponding beam set identifier.
  • Step 203 update the timer according to the channel monitoring result and the corresponding sensing beam ID or beam set ID.
  • the timer is updated according to the channel monitoring result and the corresponding sensing beam identifier, when a transmitting When the beam corresponds to a beam set, the timer is updated according to the channel monitoring result and the corresponding beam set identifier.
  • the LBT counter and/or timer are correspondingly updated.
  • the MAC layer updates the LBT counter and/or timer according to the channel monitoring result and the corresponding sensing beam ID or beam set ID.
  • the embodiment of the present application synchronously determines the sensing (sensing) beam or beam set corresponding to the LBT channel monitoring result during the process of LBT channel monitoring results, thereby judging whether the beam corresponding to the channel monitoring result changes , to avoid the problem that different beams are counted or timed on the same counter/timer, resulting in low LBT accuracy, and solve the counting/timer of directional LBT.
  • FIG. 3 is a flow chart of a communication method provided by an exemplary embodiment of the present application. The method is applied to the terminal shown in FIG. 1 as an example for illustration. As shown in FIG. 3 , the method includes:
  • Step 301 determine the channel monitoring result of the listen-before-talk LBT.
  • the channel monitoring result of the LBT includes channel monitoring success, or channel monitoring failure.
  • the channel monitoring success is used to indicate that the channel monitored by the LBT is idle and communication transmission can be performed;
  • the channel monitoring failure is used to indicate that the channel monitored by the LBT is busy and communication transmission cannot be performed.
  • Step 302 In response to a change in the sensing beam ID or beam set ID corresponding to the channel monitoring result, set the LBT counter to zero.
  • Step 303 in response to a change in the sensing beam ID or beam set ID corresponding to the channel monitoring result, stop the timer.
  • the change of the sensing beam or beam set means that the sensing beam ID or beam set ID targeted by the LBT channel monitoring is different from the sensing beam ID or beam set ID corresponding to the channel monitoring result, and it is determined that the sensing beam or beam set has changed .
  • the sensing beam or beam set can be determined according to the sensing beam ID or beam set ID corresponding to the received channel monitoring result Is there a change.
  • judging that the perception beam or the beam set changes may be judged by at least one of the following situations:
  • the sensing beam or beam set corresponding to the first beam is different from the sensing beam or beam set corresponding to the second beam, determine the sensing beam or beam set set changes.
  • the transmitting beam of the UE is switched from beam 1 to beam 2, and the sensing beam (sensing beam) or beam set (beam set) corresponding to beam 2 is different from the sensing beam or beam set corresponding to beam 1.
  • sensing beam or beam set corresponding to the LBT transmission beam is switched from the first sensing beam or beam set to the second sensing beam or beam set, it is determined that the sensing beam ID or beam set ID changes.
  • the sending beam of the UE remains unchanged, but the sensing beam or beam set corresponding to the sending beam is switched to a new sensing beam or beam set.
  • the channel monitoring result of each LBT includes the corresponding sensing beam ID or beam set ID;
  • the sensing beam ID or beam set ID determines whether the sensing beam or beam set targeted by current channel monitoring changes, and updates the LBT counter and/or timer according to the change of the sensing beam or beam set.
  • updating the LBT counter and/or timer according to the change of the sensing beam or the beam set includes at least one of the following situations:
  • the channel monitoring is successful, and the sensing beam ID or beam set ID has not changed;
  • the LBT counter does not need to be increased and/or the timer continues to count.
  • the physical layer does not need to indicate the sensing beam ID or beam set ID to the MAC layer; or, the channel monitoring is successful and the sensing beam ID or beam set ID
  • the physical layer indicates the sensing beam ID or beam set ID to the MAC layer, but the MAC layer recognizes that the sensing beam or beam set has not changed, and controls the LBT counter without increasing and/or the timer keeps counting.
  • the timer is set to zero, indicating that the channel monitoring result corresponding to the current LBT channel monitoring does not fail to monitor the channel within the timing threshold, that is, the channel monitored by the LBT The quality is better, and the LBT timer is cleared at the same time.
  • the second type is that the channel monitoring is successful, and the sensing beam ID or beam set ID changes;
  • the channel monitoring is successful, but due to the change of the sensing beam ID or beam set ID, that is, the sensing beam or beam set targeted by the current LBT channel monitoring is different from the sensing beam or beam set for which the channel monitoring is successful Different, so zero the LBT counter and/or stop the timer.
  • the physical layer indicates the perceived beam identity or beam set identity to the MAC layer, and the MAC layer recognizes that the perceived beam or beam set changes, and controls the LBT Set the counter to zero and/or stop the timer.
  • the MAC layer updates and replaces the sensing beam or beam set targeted by the current LBT channel monitoring with the sensing beam or beam set corresponding to the latest channel monitoring result.
  • the third type is that the channel monitoring fails, and the sensing beam ID or beam set ID does not change;
  • the LBT counter counts and adds 1 according to the LBT failure instance indicated by the channel monitoring failure. Or the timer restarts the timing process.
  • the physical layer does not need to indicate the perceived beam identity or beam set identity to the MAC layer, but only indicates the LBT failure instance to the MAC layer; or, channel monitoring When the failure occurs and the sensing beam ID or beam set ID has not changed, the physical layer indicates the LBT failure instance and the sensing beam ID or beam set ID to the MAC layer, but the MAC layer recognizes that the sensing beam or beam set has not changed, and according to the LBT The failure instance controls the LBT counter to count up by 1 and/or the timer restarts the timing process.
  • the fourth type is that the channel monitoring fails, and the identification of the sensing beam or the identification of the beam set changes.
  • channel monitoring fails on the LBT monitoring channel
  • the channel monitored by LBT cannot perform communication transmission
  • the sensing beam or beam set changes that is, the sensing beam or beam set targeted by the current LBT channel monitoring is different from the channel monitoring failure.
  • the sensing beam or set of beams is different, so the LBT counter is zeroed and/or the timer is stopped.
  • the physical layer indicates the LBT failure instance and the sensing beam ID or beam set ID to the MAC layer, and the MAC layer recognizes that the sensing beam or beam set ID changes , and control the LBT counter to zero and/or stop the timer.
  • the MAC layer updates and replaces the sensing beam or beam set targeted by the current LBT channel monitoring with the sensing beam or beam set corresponding to the latest channel monitoring result.
  • a random access procedure is triggered.
  • the UE when it is determined that the continuous LBT of the current sensing beam or beam set fails, the UE generates LBT failure indication information, such as: MAC CE, and the indication information is used to indicate the sensing beam or beam set where the LBT failure occurs.
  • LBT failure indication information such as: MAC CE
  • the indication information includes the identity of the sensing beam or the beam set where the LBT failure occurs, and optionally, the indication information also includes the identity of the current active BWP and/or the identity of the serving cell.
  • the timer is set to zero, indicating that the channel monitoring result corresponding to the current LBT channel monitoring does not fail to monitor the channel within the timing threshold, that is, the quality of the channel monitored by the LBT is better.
  • the LBT timer is cleared.
  • the channel monitoring result of LBT In response to the channel monitoring result of LBT, it is used to indicate the failure of channel monitoring, and the channel monitoring of LBT The result corresponds to a perception beam ID or a beam set ID.
  • the MAC layer is indicated to the MAC layer with the sensing beam ID or beam set ID corresponding to the channel monitoring failure, so that the MAC layer corresponds to the channel monitoring failure.
  • updating the LBT counter and/or timer according to the change of the sensing beam or the beam set includes at least one of the following situations:
  • the first type is that the perception beam ID or beam set ID has not changed
  • the LBT counter counts and adds 1 according to the LBT failure instance indicated by the channel monitoring failure. Or the timer restarts the timing process.
  • the second type is that the identity of the sensing beam or the identity of the beam set changes.
  • channel monitoring fails on the LBT monitoring channel
  • the channel monitored by LBT cannot perform communication transmission
  • the sensing beam or beam set changes that is, the sensing beam or beam set targeted by the current LBT channel monitoring is different from the latest channel monitoring
  • the sensing beam or set of beams upon failure is different, so zero the LBT counter and/or stop the timer.
  • the MAC layer updates and replaces the sensing beam or beam set targeted by the current LBT channel monitoring with the sensing beam or beam set corresponding to the latest channel monitoring result.
  • a random access procedure is triggered.
  • the UE when it is determined that the continuous LBT of the current sensing beam or beam set fails, the UE generates LBT failure indication information, such as: MAC CE, and the indication information is used to indicate the sensing beam or beam set where the LBT failure occurs.
  • LBT failure indication information such as: MAC CE
  • the indication information includes the identity of the sensing beam or the beam set where the LBT failure occurs, and optionally, the indication information also includes the identity of the current active BWP and/or the identity of the serving cell.
  • the timer When the timing duration of the timer's continuous timing reaches the timing threshold, the timer is set to zero, indicating that the channel monitoring result corresponding to the current LBT channel monitoring does not fail to monitor the channel within the timing threshold, that is, the quality of the channel monitored by the LBT is better. At the same time, set the LBT counter to zero.
  • the LBT counter includes the physical uplink A first LBT counter corresponding to a link control channel (Physical Uplink Control Channel, PUCCH), and a second LBT counter corresponding to a physical uplink shared channel (Physical Uplink Share Channel, PUSCH); wherein, the first LBT counter and the second The two LBT counters count respectively for the PUCCH and the PUSCH.
  • the PUCCH and the PUSCH correspond to respective sensing beams or beam sets.
  • the first LBT counter corresponding to the PUCCH is set to zero; when receiving The received channel monitoring result is the channel failure result corresponding to the PUCCH, and the sensing beam identifier or beam set identifier corresponding to the PUCCH has not changed, then count and add 1 to the first LBT counter corresponding to the PUCCH; when the received channel The monitoring result is a channel failure result corresponding to the PUSCH, and the sensing beam identifier or beam set identifier corresponding to the PUSCH changes, then the second LBT counter corresponding to the PUSCH is set to zero; when the received channel monitoring result is corresponding to the PUSCH If there is a channel failure result, and the sensing beam ID or beam set ID of the PUSCH does not change, the second LBT counter corresponding to the PUSCH is counted and 1 is added.
  • the timer For the timer: Optionally, in the above scheme of resetting the counter and/or stopping the timer, only one timer is used at a time, that is, the timer for the current sensing beam or beam set; or, the timer includes the timer associated with the PUCCH A corresponding first timer, and a second timer corresponding to the PUSCH; wherein, the first timer and the second timer correspond to the PUCCH and the PUSCH respectively.
  • the PUCCH and the PUSCH correspond to respective sensing beams or beam sets.
  • the first timer corresponding to the PUCCH is stopped; when receiving If the received channel monitoring result is a channel failure result corresponding to the PUCCH, and the sensing beam ID or beam set ID corresponding to the PUCCH has not changed, restart the first timer corresponding to the PUCCH; when the received channel monitoring The result is a channel failure result corresponding to the PUSCH, and the sensing beam identifier or beam set identifier corresponding to the PUSCH changes, then the second timer corresponding to the PUSCH is stopped; when the received channel monitoring result is corresponding to the PUSCH As a result of the channel failure, and the sensing beam identifier or beam set identifier corresponding to the PUSCH has not changed, the second timer corresponding to the PUSCH is restarted.
  • FIG. 4 is a flow chart of a communication method provided by an exemplary embodiment of the present application. The method is applied to the terminal shown in FIG. 1 as an example. As shown in FIG. 4, the method includes:
  • Step 401 determine the channel monitoring result of the listen-before-talk LBT.
  • the channel monitoring result of the LBT includes channel monitoring success, or channel monitoring failure.
  • the channel monitoring success is used to indicate that the channel monitored by the LBT is idle and communication transmission can be performed;
  • the channel monitoring failure is used to indicate that the channel monitored by the LBT is busy and communication transmission cannot be performed.
  • Step 402 Update the LBT counter corresponding to at least one sensing beam ID or beam set ID according to the channel monitoring result.
  • the LBT counter corresponding to at least one perceptual beam ID or beam set ID is updated, wherein different perceptual beam IDs or beam set IDs correspond to different LBT counters.
  • the LBT counter corresponding to the sensing beam identifier or the beam set identifier corresponding to the channel monitoring result is updated. That is to say, the channel monitoring result corresponds to the perceptual beam identifier or the beam set identifier, and there is also a corresponding relationship between the perceptual beam identifier or the beam set identifier and the LBT counter. According to the correspondence between the perceptual beam identifier or the beam set identifier and the LBT counter Relationship, update the counting process of the corresponding LBT counter.
  • the UE includes a list of LBT counters corresponding to the sensing beam identifier or the beam set identifier respectively, such as:
  • Sensing beam1/beam set1 corresponds to LBT_COUNTERa
  • Sensing beam2/beam set2 corresponds to LBT_COUNTERb
  • Sensing beam3/beam set3 corresponds to LBT_COUNTERc
  • the LBT counter corresponding to the sensing beam ID or the beam set ID is updated.
  • the LBT counter corresponding to the cognitive beam identifier or the beam set identifier is counted and 1 is added.
  • a random access procedure is triggered.
  • the UE when it is determined that the continuous LBT of the sensing beam or beam set fails, the UE generates LBT failure indication information, such as: MAC CE, and the indication information is used to indicate the sensing beam or beam set where the LBT failure occurs.
  • the UE reports indication information through uplink resources.
  • the indication information includes the identity of the sensing beam or the beam set where the LBT failure occurs.
  • the indication information also includes the identity of the current active BWP and/or the identity of the serving cell.
  • the indication information is reported through the uplink resources, such as: the uplink resources can accommodate the MAC CE and the MAC CE subheader.
  • the indication information further includes a monitoring channel corresponding to continuous LBT failure, and the monitoring channel includes PUCCH or PUSCH.
  • the indication information includes or does not include the monitoring channel corresponding to the persistent LBT failure.
  • Sensing beam1/beam set1 corresponds to LBT_COUNTERa
  • Sensing beam2/beam set2 corresponds to LBT_COUNTERb
  • Sensing beam3/beam set3 corresponds to LBT_COUNTERc
  • sensing beam1/beam set1 is the sensing beam ID or beam set ID corresponding to PUCCH
  • sensing beam2/beam set2 and sensing beam3/beam set3 are the sensing beam ID or beam set ID corresponding to PUSCH
  • the indication information includes the sensing beam ID or beam set ID, the channel type where continuous LBT failure occurs can be obtained.
  • a random access process is triggered, and the LBT failure MAC CE is reported, and the LBT failure MAC CE also indicates whether it is a PUCCH LBT failure or a PUSCH LBT failure.
  • Step 403 Update a timer corresponding to at least one sensing beam ID or beam set ID according to the channel monitoring result.
  • the timer corresponding to at least one sensing beam ID or beam set ID is updated, wherein different sensing beam IDs or beam set IDs correspond to different timers.
  • the timer corresponding to the sensing beam ID or beam set ID corresponding to the channel monitoring result is updated. That is to say, the channel monitoring result corresponds to the perceptual beam identifier or the beam set identifier, and there is also a corresponding relationship between the perceptual beam identifier or the beam set identifier and the timer. According to the correspondence between the perceptual beam identifier or the beam set identifier and the timer Relationship, update the timing process of the corresponding timer.
  • the UE includes a timer list corresponding to the sensing beam ID or the beam set ID, such as:
  • Sensing beam1/beam set1 corresponds to lbt-FailureDetectionTimer_a
  • Sensing beam2/beam set2 corresponds to lbt-FailureDetectionTimer_b
  • Sensing beam3/beam set3 corresponds to lbt-FailureDetectionTimer_c
  • the timer corresponding to the sensing beam ID or the beam set ID is updated.
  • the timer corresponding to the sensing beam ID or the beam set ID is restarted, that is, the timer is restarted from 0 or from a specified starting time point timing.
  • the counter corresponding to the sensing beam ID or beam set ID is set to zero, indicating that the channel monitoring result corresponding to the current LBT channel monitoring is within the timing threshold No channel monitoring failure occurs, that is, the quality of the channel monitored by the LBT is relatively good.
  • the MAC layer receives the LBT failure instance indicated by the physical layer, and simultaneously receives the sensing beam/beam set identifier corresponding to the LBT failure instance;
  • the physical layer does not notify the sensing beam/beam set at the moment of LBT failure, but notifies the MAC layer when determining or updating the currently used sensing beam/beam set.
  • judging that the perception beam or the beam set changes may be judged by at least one of the following situations:
  • the sensing beam or beam set corresponding to the first beam is different from the sensing beam or beam set corresponding to the second beam, determine the sensing beam or beam set set changes.
  • the transmitting beam of the UE is switched from beam 1 to beam 2, and the sensing beam (sensing beam) or beam set (beam set) corresponding to beam 2 is different from the sensing beam or beam set corresponding to beam 1.
  • sensing beam or beam set corresponding to the LBT transmission beam is switched from the first sensing beam or beam set to the second sensing beam or beam set, it is determined that the sensing beam ID or beam set ID changes.
  • the sending beam of the UE remains unchanged, but the sensing beam or beam set corresponding to the sending beam is switched to a new sensing beam or beam set.
  • the embodiment of the present application synchronously determines the sensing (sensing) beam or beam set corresponding to the LBT channel monitoring result during the process of LBT channel monitoring results, thereby judging whether the beam corresponding to the channel monitoring result changes , to avoid the problem that different beams are counted or timed on the same counter/timer, resulting in low LBT accuracy, and solve the counting/timer of directional LBT.
  • Fig. 5 is a structural block diagram of a communication device provided by an exemplary embodiment of the present application. As shown in Fig. 5, the device includes:
  • the processing module 510 is configured to determine the channel monitoring result of the LBT listening before talking; and update the LBT counter or timer according to the channel monitoring result and the corresponding sensing beam ID or beam set ID.
  • the processing module 510 is further configured to reset the LBT counter to zero in response to a change in the sensing beam identifier or beam set identifier corresponding to the channel monitoring result;
  • the processing module 510 is further configured to stop the timer in response to a change in the sensing beam ID or beam set ID corresponding to the channel monitoring result.
  • the channel monitoring result of each LBT includes a corresponding sensing beam identifier or a beam set identifier
  • the channel monitoring result in response to the LBT is used to indicate that the channel monitoring fails, and the channel monitoring result of the LBT corresponds to a sensing beam identifier or a beam set identifier.
  • the processing module 510 is further configured to: when the perceptual beam identifier or beam set identifier targeted by the LBT channel monitoring corresponds to the perceptual beam identifier or beam set corresponding to the channel monitoring result The identifiers are different, and it is determined that the sensing beam identifier or the beam set identifier changes.
  • the processing module 510 is further configured to, when the transmitting beam of the LBT is switched from the first beam to the second beam, and the sensing beam or beam set corresponding to the first beam is the same as The sensing beam or beam set corresponding to the second beam is different, and it is determined that the sensing beam identifier or beam set identifier changes;
  • the processing module 510 is further configured to determine the perceptual beam identifier or Beamset ID changed.
  • the processing module 510 is further configured to update the sensing beam identifier or beam set identifier corresponding to the channel monitoring result to the current LBT channel monitoring target Cognitive beam ID or beam set ID.
  • the LBT counter includes a first LBT counter corresponding to a physical uplink control channel PUCCH, and a second LBT counter corresponding to a physical uplink shared channel PUSCH;
  • the first counter and the second counter respectively count corresponding to the PUCCH and the PUSCH.
  • the timer includes a first timer corresponding to PUCCH, and a second timer corresponding to PUSCH;
  • the first timer and the second timer are respectively timed corresponding to the PUCCH and the PUSCH.
  • the processing module 510 is further configured to update an LBT counter or timer corresponding to at least one sensing beam ID or beam set ID according to the channel monitoring result.
  • the processing module 510 is further configured to, in the case that the channel monitoring result indicates that the channel monitoring fails, perform Count up by 1.
  • the processing module 510 is further configured to, when the count of the LBT counter corresponding to the perceptual beam identifier or the beam set identifier reaches a count threshold, determine the value of the perceptual beam identifier or the beam set identifier Sustained LBT failure.
  • the processing module 510 is further configured to trigger a random access procedure when it is determined that the continuous LBT of the sensing beam ID or beam set ID fails.
  • processing module 510 is further configured to generate indication information for indicating continuous LBT failure
  • the device also includes:
  • the sending module 520 is configured to report the indication information through uplink resources, where the indication information includes the sensing beam identifier or beam set identifier.
  • the indication information further includes a monitoring channel corresponding to continuous LBT failure, and the monitoring channel includes PUCCH or PUSCH.
  • the processing module 510 is further configured to trigger the continuous LBT failure of the current BWP if the perceived beam ID or the beam set ID on the BWP of the current bandwidth part triggers the continuous LBT failure.
  • the processing module 510 is further configured to, in the case that the channel monitoring result indicates that the channel monitoring fails, perform a timer corresponding to the sensing beam ID or beam set ID reboot.
  • the processing module 510 is further configured to: when the timer corresponding to the perceptual beam identifier or the beam set identifier reaches the timing threshold, set the The counter is reset to zero.
  • the embodiment of the present application synchronously determines the sensing (sensing) beam or beam set corresponding to the LBT channel monitoring result during the process of LBT channel monitoring results, thereby judging whether the beam corresponding to the channel monitoring result changes , to avoid the problem that different beams are counted or timed on the same counter/timer, resulting in low LBT accuracy, and solve the counting/timer of directional LBT.
  • the communication device provided by the above-mentioned embodiments is only illustrated by the division of the above-mentioned functional modules.
  • the above-mentioned function allocation can be completed by different functional modules according to needs, that is, the internal structure of the device is divided into into different functional modules to complete all or part of the functions described above.
  • the communication device and the communication method embodiments provided in the above embodiments belong to the same idea, and the specific implementation process thereof is detailed in the method embodiments, and will not be repeated here.
  • FIG. 6 shows a schematic structural diagram of a terminal provided by an exemplary embodiment of the present disclosure, where the terminal includes: a processor 601 , a receiver 602 , a transmitter 603 , a memory 604 and a bus 605 .
  • the processor 601 includes one or more processing cores, and the processor 601 executes various functional applications and information processing by running software programs and modules.
  • the receiver 602 and the transmitter 603 can be realized as a communication component, and the communication component can be a communication chip.
  • the memory 604 is connected to the processor 601 through a bus 605 .
  • the memory 604 may be used to store at least one instruction, and the processor 601 may be used to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • volatile or non-volatile storage devices include but not limited to: magnetic disk or optical disk, electrically erasable and programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Anytime Access Memory (SRAM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Programmable Read Only Memory (PROM) .
  • EEPROM electrically erasable and programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Anytime Access Memory
  • ROM Read Only Memory
  • Magnetic Memory Magnetic Memory
  • Flash Memory Programmable Read Only Memory
  • a non-transitory computer-readable storage medium including instructions such as a memory including instructions, the instructions can be executed by a processor of the terminal to complete the method performed by the terminal side in the above communication method .
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • a non-transitory computer-readable storage medium when the instructions in the non-transitory computer storage medium are executed by the processor of the terminal, the terminal can execute the above communication method.
  • Fig. 7 is a block diagram showing an access network device 1100 according to an exemplary embodiment.
  • the access network device 1100 may be a base station.
  • the access network device 1100 may include: a processor 1101 , a receiver 1102 , a transmitter 1103 and a memory 1104 .
  • the receiver 1102, the transmitter 1103 and the memory 1104 are respectively connected to the processor 1101 through a bus.
  • the processor 1101 includes one or more processing cores, and the processor 1101 executes the method performed by the access network device in the communication method provided by the embodiment of the present disclosure by running software programs and modules.
  • the memory 1104 can be used to store software programs as well as modules. Specifically, the memory 1104 may store an operating system 1141 and an application program module 1142 required by at least one function.
  • the receiver 1102 is used to receive communication data sent by other devices, and the transmitter 1103 is used to send communication data to other devices.
  • An exemplary embodiment of the present disclosure also provides a communication system, the system includes: a terminal and an access network device;
  • the terminal includes the communication device provided in the embodiment shown in FIG. 5; or, the terminal includes the terminal provided in the embodiment shown in FIG. 6;
  • the access network device includes the access network device provided in the embodiment shown in FIG. 7 .
  • An exemplary embodiment of the present disclosure also provides a communication system, where the communication system includes: a terminal and an access network device;
  • the terminal includes the terminal provided in the embodiment shown in FIG. 6;
  • the access network device includes the access network device provided in the embodiment shown in FIG. 7 .
  • An exemplary embodiment of the present disclosure also provides a computer-readable storage medium, the computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, the at least one instruction, the At least one program, the code set or the instruction set is loaded and executed by the processor to implement the steps performed by the terminal or the access network device in the communication method provided by the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种通信方法、装置、设备及可读存储介质,涉及通信领域。该方法包括:确定先听后说LBT的信道监听结果;根据信道监听结果和对应的感知波束标识或波束集标识,更新LBT计数器或计时器。通过在LBT信道监听结果的过程中,同步确定该LBT信道监听结果对应的感知波束或波束集,从而判断该信道监听结果所对应的波束是否发生变化,避免不同的波束对应计数或计时在同一个计数器/计时器上,导致LBT准确率较低的问题,解决了定向LBT的计数/计时。

Description

通信方法、装置、设备及可读存储介质 技术领域
本申请涉及通信领域,特别涉及一种通信方法、装置、设备及可读存储介质。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)定义了5G应用场景的三大方向:移动宽带增强(Enhance Mobile Broadband,eMBB)、大规模物联网(Massive Machine Type of Communication,mMTC)、超高可靠超低时延通信(Ultra Reliable&Low Latency Communication,URLLC)。
终端在非授权频段上发送混合自动重传应答请求HARQ-ACK信息时,首先需要在物理上行控制信道(Physical Uplink Control Channel,PUCCH)所属的先听后说(Listen Before Talk,LBT)频带上进行信道监听。
发明内容
本申请实施例提供了一种通信方法、装置、设备及可读存储介质。所述技术方案如下:
一方面,提供了一种通信方法,应用于终端中,所述方法包括:
确定先听后说LBT的信道监听结果;
根据所述信道监听结果和对应的感知波束标识或波束集标识,更新LBT计数器或计时器。
另一方面,提供了一种通信装置,所述装置包括:
处理模块,被配置为确定先听后说LBT的信道监听结果;根据所述信道监听结果和对应的感知波束标识或波束集标识,更新LBT计数器或计时器。
另一方面,提供了一种终端,该终端包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上述本申请实施例 所述的通信方法。
另一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,上述至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上述本申请实施例所述的通信方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
通过在LBT信道监听结果的过程中,同步确定该LBT信道监听结果对应的感知(sensing)波束或波束集,从而判断该信道监听结果所对应的波束是否发生变化,避免不同的波束对应计数或计时在同一个计数器/计时器上,导致LBT准确率较低的问题,解决了定向LBT的计数/计时。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个示例性实施例提供的通信系统的框图;
图2是本公开一个示例性实施例提供的通信方法的流程图;
图3是本公开另一个示例性实施例提供的通信方法的流程图;
图4是本公开另一个示例性实施例提供的通信方法的流程图;
图5是本公开一个示例性实施例提供的通信装置的结构框图;
图6是本公开一个示例性实施例提供的终端的框图;
图7是本公开一个示例性实施例提供的接入网设备的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1示出了本公开一个示意性实施例提供的通信系统的框图,该通信系统 可以包括:核心网11、接入网12和终端13。
核心网11中包括若干个核心网设备110。核心网设备110包括接入和移动管理功能(Access and Mobility Management Function,AMF),会话管理功能(Session Management Function,SMF)以及用户面管理功能(User Plane Function,UPF)等设备,其中,AMF用于控制终端的接入权限以及切换等功能,SMF用于提供服务器连续性、服务器的不间断用户体验,如:IP地址和锚点变化等。
接入网12中包括若干个接入网设备120。接入网设备120可以是基站,基站是一种部署在接入网中用以为终端提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在长期演进(Long Term Evolution,LTE)系统中,称为eNodeB或者eNB;在5G新空口(New Radio,NR)系统中,称为gNode B或者gNB。随着通信技术的演进,“基站”这一名称可能描述,会变化。为方便本公开实施例中,上述为终端提供无线通信功能的装置统称为接入网设备。
终端13可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的终端(User Equipment,UE),移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为终端。接入网设备120与终端13之间通过某种空口技术互相通信,例如Uu接口。
可选地,以上述终端13和接入网设备120之间进行无线通信的过程中,可以通过授权频段进行无线通信,也可以通过非授权频段进行无线通信。可选地,本公开实施例中,针对终端13和接入网设备120之间通过非授权频段进行无线通信为例进行说明。
当前,3GPP正在讨论支持扩展NR支持频率从最高52.6GHz到最高71GHz。52.6GHz-71GHz的频率范围内包括了60GHz的非授权频段。该频段将采用NR-U(NR-Unlicensed)技术,其主要特点是UE和gNB在发送之前需要先进行LBT(Listen-before-talk),检测信道空闲后,才能发送数据。发送端在发送通信消息之前一般需要经过信道监听,只有在信道监听成功,也即确定被监听的信道没 有被其他发送端占用后,才能在该信道发送通信消息,也即LBT的信道占用机制。
发送端以一个LBT频带(bandwidth)为频率单位进行信道监听,示意性的,一个LBT频带是20MHz,基站为UE配置的上行资源,也即上行带宽部分(BandWith Part,BWP)中可以包括一个或者多个LBT频带。
UE在监测LBT失败时是以BWP为粒度进行监测的。如果在一个服务小区(Serving Cell)的一个BWP上检测到持续LBT failure,即LBT信道监听的结果连续为监听失败结果,UE会切换到该Serving Cell的另外一个配置有物理随机接入信道(Physical Random Access Channel,PRACH)资源的BWP上发起随机接入。同时,如果UE有可用的上行载波资源,生成一个LBT failure媒体接入控制(Media Access Control,MAC)CE(Control Element),该MAC CE会指示发生LBT failure的所有的Serving Cell标识。如果UE尝试了该Serving Cell的所有BWP后均发生持续LBT failure,且如果该Serving Cell为特殊小区(Special Cell,SpCell),UE MAC层向无线资源控制(Radio Resource Control,RRC)层指示LBT failure,UE指示主小区组(Master Cell Group,MCG)/辅小区组(Secondary Cell Group,SCG)无线链路失败(Radio Link Failure,RLF)。
其中,持续LBT failure的判断方式如下:
UE MAC层在每次收到物理层(Physical layer,PHY)指示的LBT failure instance后,LBT计数器(LBT_COUNTER)加1,且重启计时器lbt-FailureDetectionTimer(代表持续未收到LBT failure instance的时长)。
当LBT_COUNTER≥lbt-FailureInstanceMaxCount(最大计数阈值)后触发当前active BWP的持续LBT failure。UE更换BWP时,会将LBT_COUNTER置0,停止lbt-FailureDetectionTimer。lbt-FailureDetectionTimer超时,表示一段时间内都没收到LBT failure instance,则认为信道变好,清空LBT_COUNTER。
对于非授权频段,也即60GHz高频段而言,能够采用非常窄的波束(beam)进行通信收发,而不再传输beam方向上的LBT情况对传输并没有影响,故,无需进行全向LBT监听。
为此,3GPP正在讨论引入定向(directional)LBT,也即LBT不是全向监测,而仅在特定方向上进行监测。UE发送波束跟监听LBT的感知(sensing) 波束之前包括如下关系中的至少一种:1、一个发送波束对应一个sensing波束或波束集;2、一个sensing波束对应一个发送波束或波束集。其中,发送波束映射的sensing波束或波束集的波束宽度需要至少覆盖发送波束的波束宽度。
相关技术中,判断持续LBT失败是在一个BWP内判断,并将所有波束方向都考虑在内。显然,引入directional LBT后,这种基于全向LBT失败情况判断持续LBT失败并不合适。如:按照相关协议,当物理层在一个波束方向上监测到LBT failure后,指示LBT failure instance给MAC层,MAC层会将LBT_COUNTER计数加1;那么,当物理层改变波束监测方向后,再次发生LBT failure,指示LBT failure instance给MAC层,MAC层又会将LBT_COUNTER计数加1。但两次LBT failure instance来自于两个不同的LBT监听方向,将多个方向上LBT次数进行叠加计数,显然无法正确判断哪个LBT监听方向真正发生持续LBT failure。
本申请实施例中,根据发送波束对应的感知波束或波束集更新LBT计数器或者计时器。
图2是本公开一个示例性实施例提供的通信方法的流程图,以该方法应用于如图1所示的终端中为例进行说明,如图2所示,该方法包括:
步骤201,确定先听后说LBT的信道监听结果。
可选地,LBT的信道监听结果包括信道监听成功,或者信道监听失败。其中,信道监听成功用于指示LBT所监听的信道空闲,能够进行通信传输;信道监听失败用于指示LBT所监听的信道繁忙,无法进行通信传输。
可选地,物理层在一个波束方向上对LBT信道进行监听,并将LBT的信道监听结果指示至MAC层。
步骤202,根据信道监听结果和对应的感知波束标识或波束集标识,更新LBT计数器。
可选地,由于一个发送波束对应一个感知波束或一个发送波束对应一个波束集,故,当一个发送波束对应一个感知波束时,根据信道监听结果和对应的感知波束标识更新LBT计数器,当一个发送波束对应一个波束集时,根据信道监听结果和对应的波束集标识更新LBT计数器。
步骤203,根据信道监听结果和对应的感知波束标识或波束集标识,更新计时器。
可选地,由于一个发送波束对应一个感知波束或一个发送波束对应一个波束集,故,当一个发送波束对应一个感知波束时,根据信道监听结果和对应的感知波束标识更新计时器,当一个发送波束对应一个波束集时,根据信道监听结果和对应的波束集标识更新计时器。
本申请实施例中,以一个发送波束对应一个感知波束或波束集为例进行说明。
可选地,根据信道监听结果以及对该信道监听结果对应的感知波束或波束集情况,对应更新LBT计数器和/或计时器。
可选地,MAC层在接收到物理层指示的信道监听结果后,根据信道监听结果和对应的感知波束标识或波束集标识,更新LBT计数器和/或计时器。
综上所述,本申请实施例通过在LBT信道监听结果的过程中,同步确定该LBT信道监听结果对应的感知(sensing)波束或波束集,从而判断该信道监听结果所对应的波束是否发生变化,避免不同的波束对应计数或计时在同一个计数器/计时器上,导致LBT准确率较低的问题,解决了定向LBT的计数/计时。
本申请实施例中,针对根据信道监听结果和对应的感知波束标识或波束集标识更新计数器/计时器的方案分别进行说明。
1、重置计数器和/或停止计时器方案
图3是本申请一个示例性实施例提供的通信方法的流程图,以该方法应用于如图1所示的终端中为例进行说明,如图3所示,该方法包括:
步骤301,确定先听后说LBT的信道监听结果。
可选地,LBT的信道监听结果包括信道监听成功,或者信道监听失败。其中,信道监听成功用于指示LBT所监听的信道空闲,能够进行通信传输;信道监听失败用于指示LBT所监听的信道繁忙,无法进行通信传输。
步骤302,响应于信道监听结果对应的感知波束标识或波束集标识发生变化,对LBT计数器置零。
即,若感知波束或波束集发生变化,设置LBT_COUNTER=0。
步骤303,响应于信道监听结果对应的感知波束标识或波束集标识发生变 化,停止计时器。
即,若感知波束或波束集发生变化,则停止lbt-FailureDetectionTimer。
其中,上述设置LBT_COUNTER=0和停止lbt-FailureDetectionTimer可以择一实现,也可以同时实现,也即,上述步骤302和步骤303,可以仅执行步骤302,也可以仅执行步骤303,还可以同时执行步骤302和步骤303,本实施例对此不加以限定。也即,若感知波束或波束集发生变化,则执行如下操作中的一个或者多个:1.设置LBT_COUNTER=0;2.停止lbt-FailureDetectionTimer。
其中,感知波束或波束集发生变化是指,LBT信道监听所针对的感知波束标识或波束集标识,与该信道监听结果对应的感知波束标识或波束集标识不同,确定感知波束或波束集发生变化。
也即,在LBT信道监听过程中,存在当前所针对的感知波束或波束集的标识指示,从而根据接收到的信道监听结果对应的感知波束标识或波束集标识,即能够确定感知波束或波束集是否发生变化。
可选地,判断感知波束或波束集发生变化可以通过如下情况中的至少一种进行判断:
第一,当先听后说LBT的发送波束从第一波束切换至第二波束,且第一波束对应的感知波束或波束集与第二波束对应的感知波束或波束集不同,确定感知波束或波束集发生变化。
即,UE的发送beam从beam 1切换到beam 2,而beam 2对应的感知波束(sensing beam)或波束集(beam set)与beam 1对应的sensing beam或beam set不同。
第二,当先听后说LBT的发送波束对应的感知波束或波束集从的第一感知波束或波束集切换至第二感知波束或波束集,确定感知波束标识或波束集标识发生变化。
即,UE的发送beam未变,但与该发送beam对应的sensing beam或beam set切换到新的sensing beam或beam set。
可选地,在重置计数器和/或停止计时器方案中,包括如下实现方式中的至少一种:
1.1每次LBT的信道监听结果包括对应的感知波束标识或波束集标识;
也即,无论物理层在波束方向上监听到的信道监听结果是信道监听成功还是信道监听失败,都会向MAC层指示信道监听结果对应的感知波束标识或波束集标识,从而MAC层根据信道监听结果对应的感知波束标识或波束集标识确定当前信道监听所针对的感知波束或波束集是否发生变化,并根据感知波束或波束集的变化情况更新LBT计数器和/或计时器。
其中,根据感知波束或波束集的变化情况更新LBT计数器和/或计时器包括如下情况中的至少一种:
第一种,信道监听成功,感知波束标识或波束集标识未发生变化;
也即,在LBT监听信道上,信道监听成功,能够进行通信传输,且感知波束或波束集未发生变化,则LBT计数器无需增加和/或计时器持续计时。
可选地,当信道监听成功且感知波束标识或波束集标识未发生变化时,物理层无需向MAC层指示该感知波束标识或波束集标识;或者,信道监听成功且感知波束标识或波束集标识未发生变化时,物理层向MAC层指示该感知波束标识或波束集标识,但MAC层识别该感知波束或波束集未发生变化,并控制LBT计数器无需增加和/或计时器持续计时。
可选地,当计时器持续计时的计时时长达到计时阈值时,将该计时器置零,表示当前LBT信道监听对应的信道监听结果在计时阈值内未发生信道监听失败,即LBT所监听的信道质量较好,同时对LBT计时器清零。
第二种,信道监听成功,感知波束标识或波束集标识发生变化;
也即,在LBT监听信道上,信道监听成功,但由于感知波束标识或波束集标识发生变化,也即,当前LBT信道监听所针对的感知波束或波束集与信道监听成功的感知波束或波束集不同,故,对LBT计数器置零和/或停止计时器。
可选地,当信道监听成功且感知波束标识或波束集标识发生变化时,物理层向MAC层指示该感知波束标识或波束集标识,MAC层识别该感知波束或波束集发生变化,并控制LBT计数器置零和/或停止计时器。
可选地,由于感知波束或波束集发生变化,故,MAC层将当前LBT信道监听所针对的感知波束或波束集,更新替换为最近一次信道监听结果对应的感知波束或波束集。
第三种,信道监听失败,感知波束标识或波束集标识未发生变化;
也即,在LBT监听信道上信道监听失败,LBT监听的信道无法进行通信传 输,而感知波束或波束集未发生变化,则LBT计数器根据信道监听失败所指示的LBT failure instance进行计数加1和/或计时器重启计时过程。
可选地,当信道监听失败且感知波束标识或波束集标识未发生变化时,物理层无需向MAC层指示该感知波束标识或波束集标识,仅向MAC层指示LBT failure instance;或者,信道监听失败且感知波束标识或波束集标识未发生变化时,物理层向MAC层指示LBT failure instance以及该感知波束标识或波束集标识,但MAC层识别该感知波束或波束集未发生变化,并根据LBT failure instance控制LBT计数器进行计数加1和/或计时器重启计时过程。
第四种,信道监听失败,感知波束标识或波束集标识发生变化。
也即,在LBT监听信道上信道监听失败,LBT监听的信道无法进行通信传输,而感知波束或波束集发生变化,也即,当前LBT信道监听所针对的感知波束或波束集与信道监听失败的感知波束或波束集不同,故,对LBT计数器置零和/或停止计时器。
可选地,当信道监听失败且感知波束标识或波束集标识发生变化时,物理层向MAC层指示该LBT failure instance以及感知波束标识或波束集标识,MAC层识别该感知波束或波束集发生变化,并控制LBT计数器置零和/或停止计时器。
可选地,由于感知波束或波束集发生变化,故,MAC层将当前LBT信道监听所针对的感知波束或波束集,更新替换为最近一次信道监听结果对应的感知波束或波束集。
其中,当LBT计数器计数达到计数阈值时,则确定当前LBT信道监听所针对的感知波束或波束集的持续LBT失败。
可选地,若当前active BWP上的所有候选感知波束或波束集都触发了持续LBT失败,触发当前BWP持续LBT失败,并更换BWP进行LBT信道监听。
可选地,当确定当前感知波束或波束集的持续LBT失败,触发随机接入流程。
可选地,当确定当前感知波束或波束集的持续LBT失败,UE生成LBT failure指示信息,如:MAC CE,该指示信息用于指示发生LBT失败的感知波束或波束集。示意性的,该指示信息中包括发生LBT失败的感知波束标识或波束集标识,可选地,该指示信息中还包括当前active BWP标识和/或服务小区标识。
当计时器持续计时的计时时长达到计时阈值时,将该计时器置零,表示当前LBT信道监听对应的信道监听结果在计时阈值内未发生信道监听失败,即LBT所监听的信道质量较好,同时对LBT计时器清零。
1.2响应于LBT的信道监听结果用于指示信道监听失败,LBT的信道监听 结果对应有感知波束标识或波束集标识。
也即,仅当物理层在波束方向上监听到的信道监听结果是信道监听失败时,向MAC层指示与该信道监听失败对应的感知波束标识或波束集标识,从而MAC层根据信道监听失败对应的感知波束标识或波束集标识,确定当前LBT计数器/计时器的统计所针对的感知波束或波束集是否发生变化,并根据感知波束或波束集的变化情况更新LBT计数器和/或计时器。
其中,根据感知波束或波束集的变化情况更新LBT计数器和/或计时器包括如下情况中的至少一种:
第一种,感知波束标识或波束集标识未发生变化;
也即,在LBT监听信道上信道监听失败,LBT监听的信道无法进行通信传输,而感知波束或波束集未发生变化,则LBT计数器根据信道监听失败所指示的LBT failure instance进行计数加1和/或计时器重启计时过程。
第二种,感知波束标识或波束集标识发生变化。
也即,在LBT监听信道上信道监听失败,LBT监听的信道无法进行通信传输,而感知波束或波束集发生变化,也即,当前LBT信道监听所针对的感知波束或波束集与最近一次信道监听失败时的感知波束或波束集不同,故,对LBT计数器置零和/或停止计时器。
可选地,由于感知波束或波束集发生变化,故,MAC层将当前LBT信道监听所针对的感知波束或波束集,更新替换为最近一次信道监听结果对应的感知波束或波束集。
其中,当LBT计数器计数达到计数阈值时,则确定当前LBT信道监听所针对的感知波束或波束集的持续LBT失败。
可选地,若当前active BWP上的所有候选感知波束或波束集都触发了持续LBT失败,触发当前BWP持续LBT失败,并更换BWP进行LBT信道监听。
可选地,当确定当前感知波束或波束集的持续LBT失败,触发随机接入流 程。
可选地,当确定当前感知波束或波束集的持续LBT失败,UE生成LBT failure指示信息,如:MAC CE,该指示信息用于指示发生LBT失败的感知波束或波束集。示意性的,该指示信息中包括发生LBT失败的感知波束标识或波束集标识,可选地,该指示信息中还包括当前active BWP标识和/或服务小区标识。
当计时器持续计时的计时时长达到计时阈值时,将该计时器置零,表示当前LBT信道监听对应的信道监听结果在计时阈值内未发生信道监听失败,即LBT所监听的信道质量较好,同时对LBT计数器置零。
针对计数器:可选地,上述重置计数器和/或停止计时器方案中,单次仅使用一个LBT计数器,也即,针对当前感知波束或波束集的LBT计数器;或者,LBT计数器包括与物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)对应的第一LBT计数器,以及与物理上行链路共享信道(Physical Uplink Share Channel,PUSCH)对应的第二LBT计数器;其中,第一LBT计数器和第二LBT计数器对应PUCCH和PUSCH分别计数。可选地,PUCCH和PUSCH分别对应有各自的感知波束或波束集。
示意性的,当接收到的信道监听结果是与PUCCH对应的信道失败结果,且对应该PUCCH的感知波束标识或波束集标识发生变化,则对该PUCCH对应的第一LBT计数器置零;当接收到的信道监听结果是与PUCCH对应的信道失败结果,且对应该PUCCH的感知波束标识或波束集标识未发生变化,则对该PUCCH对应的第一LBT计数器进行计数加1;当接收到的信道监听结果是与PUSCH对应的信道失败结果,且对应该PUSCH的感知波束标识或波束集标识发生变化,则对该PUSCH对应的第二LBT计数器置零;当接收到的信道监听结果是与PUSCH对应的信道失败结果,且对应该PUSCH的感知波束标识或波束集标识未发生变化,则对该PUSCH对应的第二LBT计数器进行计数加1。
针对计时器:可选地,上述重置计数器和/或停止计时器方案中,单次仅使用一个计时器,也即,针对当前感知波束或波束集的计时器;或者,计时器包括与PUCCH对应的第一计时器,以及与PUSCH对应的第二计时器;其中,第 一计时器和第二计时器对应PUCCH和PUSCH分别计时。可选地,PUCCH和PUSCH分别对应有各自的感知波束或波束集。
示意性的,当接收到的信道监听结果是与PUCCH对应的信道失败结果,且对应该PUCCH的感知波束标识或波束集标识发生变化,则对该PUCCH对应的第一计时器停止计时;当接收到的信道监听结果是与PUCCH对应的信道失败结果,且对应该PUCCH的感知波束标识或波束集标识未发生变化,则对该PUCCH对应的第一计时器进行重启计时;当接收到的信道监听结果是与PUSCH对应的信道失败结果,且对应该PUSCH的感知波束标识或波束集标识发生变化,则对该PUSCH对应的第二计时器停止计时;当接收到的信道监听结果是与PUSCH对应的信道失败结果,且对应该PUSCH的感知波束标识或波束集标识未发生变化,则对该PUSCH对应的第二计时器进行重启计时。
2、配置多个计时器和/或计数器
图4是本申请一个示例性实施例提供的通信方法的流程图,以该方法应用于如图1所示的终端中为例进行说明,如图4所示,该方法包括:
步骤401,确定先听后说LBT的信道监听结果。
可选地,LBT的信道监听结果包括信道监听成功,或者信道监听失败。其中,信道监听成功用于指示LBT所监听的信道空闲,能够进行通信传输;信道监听失败用于指示LBT所监听的信道繁忙,无法进行通信传输。
步骤402,根据信道监听结果,更新至少一个感知波束标识或波束集标识对应的LBT计数器。
也即,根据信道监听结果,更新至少一个感知波束标识或波束集标识分别对应的LBT计数器,其中,不同的感知波束标识或波束集标识对应不同的LBT计数器。
在一些实施例中,更新该信道监听结果对应的感知波束标识或波束集标识所对应的LBT计数器。也即,信道监听结果对应有感知波束标识或波束集标识,而感知波束标识或波束集标识与LBT计数器之间也存在对应关系,根据该感知波束标识或波束集标识与LBT计数器之间的对应关系,更新对应的LBT计数器的计数过程。
可选地,UE中包括感知波束标识或波束集标识分别对应的LBT计数器列 表,如:
sensing beam1/beam set1对应LBT_COUNTERa
sensing beam2/beam set2对应LBT_COUNTERb
sensing beam3/beam set3对应LBT_COUNTERc
则根据信道监听结果,以及该信道监听结果对应的感知波束标识或波束集标识,对该感知波束标识或波束集标识对应的LBT计数器进行更新。
在一些实施例中,在信道监听结果用于指示信道监听失败的情况下,对感知波束标识或波束集标识对应的LBT计数器进行计数加1。
其中,当存在感知波束标识或波束集标识对应的LBT计数器计数达到计数阈值时,则确定该感知波束标识或波束集标识的持续LBT失败。
可选地,若当前active BWP上的所有候选感知波束或波束集都触发了持续LBT失败,触发当前BWP持续LBT失败,并更换BWP进行LBT信道监听。
可选地,当确定感知波束或波束集的持续LBT失败时,触发随机接入流程。
可选地,当确定感知波束或波束集的持续LBT失败时,UE生成LBT failure指示信息,如:MAC CE,该指示信息用于指示发生LBT失败的感知波束或波束集。UE通过上行资源上报指示信息,示意性的,该指示信息中包括发生LBT失败的感知波束标识或波束集标识,可选地,该指示信息中还包括当前active BWP标识和/或服务小区标识。
可选地,当UE当前存在可用的上行资源,且该上行资源能够容纳指示信息时,通过上行资源上报指示信息,如:该上行资源能够容纳该MAC CE及MAC CE子头。
在一些实施例中,指示信息中还包括持续LBT失败对应的监听信道,该监听信道包括PUCCH或者PUSCH。
可选地,当PUCCH和PUSCH信道对应的sensing beam/beam set标识不同时,则指示信息中包括或者不包括持续LBT失败对应的监听信道。示意性的:
sensing beam1/beam set1对应LBT_COUNTERa
sensing beam2/beam set2对应LBT_COUNTERb
sensing beam3/beam set3对应LBT_COUNTERc
其中,sensing beam1/beam set1为PUCCH对应的感知波束标识或波束集标识,sensing beam2/beam set2和sensing beam3/beam set3为PUSCH对应的感知波 束标识或波束集标识,则在指示信息中包括感知波束标识或波束集标识,即可得到发生持续LBT失败的信道类型。
可选地,在sensing beam/beam set发生持续LBT失败后,触发随机接入流程,以及LBT failure MAC CE的上报,LBT failure MAC CE中也指示是PUCCH LBT failure还是PUSCH LBT failure。在PUCCH所有的sensing beam/beam set均持续LBT失败后触发BWP持续LBT失败;和/或,在PUSCH所有的sensing beam均持续LBT失败后也触发BWP持续LBT失败。
步骤403,根据信道监听结果,更新至少一个感知波束标识或波束集标识对应的计时器。
也即,根据信道监听结果,更新至少一个感知波束标识或波束集标识分别对应的计时器,其中,不同的感知波束标识或波束集标识对应不同的计时器。
在一些实施例中,更新该信道监听结果对应的感知波束标识或波束集标识所对应的计时器。也即,信道监听结果对应有感知波束标识或波束集标识,而感知波束标识或波束集标识与计时器之间也存在对应关系,根据该感知波束标识或波束集标识与计时器之间的对应关系,更新对应的计时器的计时过程。
可选地,UE中包括感知波束标识或波束集标识分别对应的计时器列表,如:
sensing beam1/beam set1对应lbt-FailureDetectionTimer_a
sensing beam2/beam set2对应lbt-FailureDetectionTimer_b
sensing beam3/beam set3对应lbt-FailureDetectionTimer_c
则根据信道监听结果,以及该信道监听结果对应的感知波束标识或波束集标识,对该感知波束标识或波束集标识对应的计时器进行更新。
在一些实施例中,在信道监听结果用于指示信道监听失败的情况下,对感知波束标识或波束集标识对应的计时器进行重启,也即重新从0开始计时或者从指定起始时间点开始计时。
可选地,当感知波束标识或波束集标识对应的计时器达到计时阈值时,将该感知波束标识或波束集标识对应的计数器置零,表示当前LBT信道监听对应的信道监听结果在计时阈值内未发生信道监听失败,即LBT所监听的信道质量较好。
可选地,MAC层接收物理层指示的LBT failure instance,同时接收LBT failure instance对应的sensing beam/beam set标识;
或者,物理层不在LBT failure时刻告知sensing beam/beam set,而是在确定或更新当前使用的sensing beam/beam set时告知给MAC层。
可选地,判断感知波束或波束集发生变化可以通过如下情况中的至少一种进行判断:
第一,当先听后说LBT的发送波束从第一波束切换至第二波束,且第一波束对应的感知波束或波束集与第二波束对应的感知波束或波束集不同,确定感知波束或波束集发生变化。
即,UE的发送beam从beam 1切换到beam 2,而beam 2对应的感知波束(sensing beam)或波束集(beam set)与beam 1对应的sensing beam或beam set不同。
第二,当先听后说LBT的发送波束对应的感知波束或波束集从的第一感知波束或波束集切换至第二感知波束或波束集,确定感知波束标识或波束集标识发生生变化。
即,UE的发送beam未变,但与该发送beam对应的sensing beam或beam set切换到新的sensing beam或beam set。
综上所述,本申请实施例通过在LBT信道监听结果的过程中,同步确定该LBT信道监听结果对应的感知(sensing)波束或波束集,从而判断该信道监听结果所对应的波束是否发生变化,避免不同的波束对应计数或计时在同一个计数器/计时器上,导致LBT准确率较低的问题,解决了定向LBT的计数/计时。
图5是本申请一个示例性实施例提供的通信装置的结构框图,如图5所示,该装置包括:
处理模块510,被配置为确定先听后说LBT的信道监听结果;根据所述信道监听结果和对应的感知波束标识或波束集标识,更新LBT计数器或计时器。
在一个可选的实施例中,所述处理模块510,还被配置为响应于所述信道监听结果对应的感知波束标识或波束集标识发生变化,对所述LBT计数器置零;
或者,
所述处理模块510,还被配置为响应于所述信道监听结果对应的感知波束标识或波束集标识发生变化,停止所述计时器。
在一个可选的实施例中,每次LBT的信道监听结果包括对应的感知波束标 识或波束集标识;
或者,
响应于LBT的信道监听结果用于指示信道监听失败,所述LBT的信道监听结果对应有感知波束标识或波束集标识。
在一个可选的实施例中,所述处理模块510,还被配置为当所述LBT的信道监听所针对的感知波束标识或波束集标识与所述信道监听结果对应的感知波束标识或波束集标识不同,确定所述感知波束标识或波束集标识发生变化。
在一个可选的实施例中,所述处理模块510,还被配置为当所述LBT的发送波束从第一波束切换至第二波束,且所述第一波束对应的感知波束或波束集与所述第二波束对应的感知波束或波束集不同,确定所述感知波束标识或波束集标识发生变化;
或者,
所述处理模块510,还被配置为当先听后说LBT的发送波束对应的感知波束或波束集从第一感知波束或波束集切换至第二感知波束或波束集,确定所述感知波束标识或波束集标识发生变化。
在一个可选的实施例中,所述处理模块510,还被配置为将所述信道监听结果对应的所述感知波束标识或波束集标识,更新为当前先听后说LBT信道监听所针对的感知波束标识或波束集标识。
在一个可选的实施例中,所述LBT计数器包括与物理上行链路控制信道PUCCH对应的第一LBT计数器,和与物理上行链路共享信道PUSCH对应的第二LBT计数器;
所述第一计数器和所述第二计数器对应所述PUCCH和所述PUSCH分别计数。
在一个可选的实施例中,所述计时器包括与PUCCH对应的第一计时器,和与PUSCH对应的第二计时器;
所述第一计时器和所述第二计时器对应所述PUCCH和所述PUSCH分别计时。
在一个可选的实施例中,所述处理模块510,还被配置为根据所述信道监听结果,更新至少一个感知波束标识或波束集标识对应的LBT计数器或计时器。
在一个可选的实施例中,所述处理模块510,还被配置为在所述信道监听结 果用于指示信道监听失败的情况下,对所述感知波束标识或波束集标识对应的LBT计数器进行计数加1。
在一个可选的实施例中,所述处理模块510,还被配置为当所述感知波束标识或波束集标识对应的LBT计数器计数达到计数阈值时,确定所述感知波束标识或波束集标识的持续LBT失败。
在一个可选的实施例中,所述处理模块510,还被配置为确定所述感知波束标识或波束集标识的持续LBT失败时,触发随机接入流程。
在一个可选的实施例中,所述处理模块510,还被配置为生成用于指示持续LBT失败的指示信息;
所述装置还包括:
发送模块520,用于通过上行资源上报所述指示信息,所述指示信息中包括所述感知波束标识或波束集标识。
在一个可选的实施例中,所述指示信息中还包括持续LBT失败对应的监听信道,所述监听信道包括PUCCH或PUSCH。
在一个可选的实施例中,所述处理模块510,还被配置为若当前带宽部分BWP上的感知波束标识或波束集标识都触发持续LBT失败,触发所述当前BWP的持续LBT失败。
在一个可选的实施例中,所述处理模块510,还被配置为在所述信道监听结果用于指示信道监听失败的情况下,对所述感知波束标识或波束集标识对应的计时器进行重启。
在一个可选的实施例中,所述处理模块510,还被配置为当所述感知波束标识或波束集标识对应的计时器达到计时阈值时,将所述感知波束标识或波束集标识对应的计数器置零。
综上所述,本申请实施例通过在LBT信道监听结果的过程中,同步确定该LBT信道监听结果对应的感知(sensing)波束或波束集,从而判断该信道监听结果所对应的波束是否发生变化,避免不同的波束对应计数或计时在同一个计数器/计时器上,导致LBT准确率较低的问题,解决了定向LBT的计数/计时。
需要说明的是:上述实施例提供的通信装置,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模 块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的通信装置与通信方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图6示出了本公开一个示例性实施例提供的终端的结构示意图,该终端包括:处理器601、接收器602、发射器603、存储器604和总线605。
处理器601包括一个或者一个以上处理核心,处理器601通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器602和发射器603可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器604通过总线605与处理器601相连。
存储器604可用于存储至少一个指令,处理器601用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由终端的处理器执行以完成上述通信方法中由终端侧执行的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述非临时性计算机存储介质中的指令由终端的处理器执行时,使得终端能够执行上述通信方法。
图7是根据一示例性实施例示出的一种接入网设备1100的框图。该接入网设备1100可以是基站。
接入网设备1100可以包括:处理器1101、接收机1102、发射机1103和存储器1104。接收机1102、发射机1103和存储器1104分别通过总线与处理器1101连接。
其中,处理器1101包括一个或者一个以上处理核心,处理器1101通过运行软件程序以及模块以执行本公开实施例提供的通信方法中接入网设备所执行的方法。存储器1104可用于存储软件程序以及模块。具体的,存储器1104可存储操作系统1141、至少一个功能所需的应用程序模块1142。接收机1102用于接收其他设备发送的通信数据,发射机1103用于向其他设备发送通信数据。
本公开一示例性实施例还提供了一种通信系统,所述系统包括:终端和接入网设备;
所述终端包括如图5所示实施例提供的通信装置;或者,终端包括如图6所示实施例提供的终端;
所述接入网设备包括如图7所示实施例提供的接入网设备。
本公开一示例性实施例还提供了一种通信系统,所述通信系统包括:终端和接入网设备;
所述终端包括如图6所示实施例提供的终端;
所述接入网设备包括如图7所示实施例提供的接入网设备。
本公开一示例性实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的通信方法中由终端或者接入网设备执行的步骤。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结 构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种通信方法,其特征在于,应用于终端中,所述方法包括:
    确定先听后说LBT的信道监听结果;
    根据所述信道监听结果和对应的感知波束标识或波束集标识,更新LBT计数器或计时器。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述信道监听结果和对应的感知波束或波束集标识,更新LBT计数器或计时器,包括:
    响应于所述信道监听结果对应的感知波束标识或波束集标识发生变化,对所述LBT计数器置零;
    或者,
    响应于所述信道监听结果对应的感知波束标识或波束集标识发生变化,停止所述计时器。
  3. 根据权利要求2所述的方法,其特征在于,
    所述LBT的信道监听结果包括对应的感知波束标识或波束集标识;
    或者,
    响应于所述LBT的信道监听结果指示信道监听失败,所述LBT的信道监听结果对应有感知波束标识或波束集标识。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    将所述信道监听结果对应的所述感知波束标识或波束集标识,更新为当前LBT信道监听所针对的感知波束标识或波束集标识。
  5. 根据权利要求2所述的方法,其特征在于,
    所述LBT计数器包括与物理上行链路控制信道PUCCH对应的第一LBT计数器,和与物理上行链路共享信道PUSCH对应的第二LBT计数器;
    所述第一计数器和所述第二计数器对应所述PUCCH和所述PUSCH分别计数。
  6. 根据权利要求2所述的方法,其特征在于,
    所述计时器包括与PUCCH对应的第一计时器,和与PUSCH对应的第二计时器;
    所述第一计时器和所述第二计时器对应所述PUCCH和所述PUSCH分别计时。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述信道监听结果和对应的感知波束标识或波束集标识,更新LBT计数器或计时器,包括:
    根据所述信道监听结果,更新至少一个感知波束标识或波束集标识对应的LBT计数器或计时器。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述信道监听结果,更新至少一个感知波束标识或波束集标识对应的LBT计数器或计时器,包括:
    在所述信道监听结果用于指示信道监听失败的情况下,对所述感知波束标识或波束集标识对应的LBT计数器进行计数加1。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    当所述感知波束标识或波束集标识对应的LBT计数器计数达到计数阈值时,确定所述感知波束标识或波束集标识的持续LBT失败。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    确定所述感知波束标识或波束集标识的持续LBT失败时,触发随机接入流程。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    生成用于指示持续LBT失败的指示信息;
    通过上行资源上报所述指示信息,所述指示信息中包括所述感知波束标识或波束集标识。
  12. 根据权利11所述的方法,其特征在于,
    所述指示信息中还包括持续LBT失败对应的监听信道,所述监听信道包括PUCCH或PUSCH。
  13. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    若当前带宽部分BWP上的感知波束标识或波束集标识都触发持续LBT失败,触发所述当前BWP的持续LBT失败。
  14. 根据权利要求7所述的方法,其特征在于,所述根据所述信道监听结果,更新至少一个感知波束标识或波束集标识对应的LBT计数器或计时器,包括:
    在所述信道监听结果用于指示信道监听失败的情况下,对所述感知波束标识或波束集标识对应的计时器进行重启。
  15. 根据权利要求1至7任一所述的方法,其特征在于,所述方法还包括:
    当所述感知波束标识或波束集标识对应的计时器达到计时阈值时,将所述感知波束标识或波束集标识对应的计数器置零。
  16. 一种通信装置,其特征在于,所述装置包括:
    处理模块,被配置为确定先听后说LBT的信道监听结果;根据所述信道监听结果和对应的感知波束标识或波束集标识,更新LBT计数器或计时器。
  17. 根据权利要求16所述的装置,其特征在于,所述处理模块,还被配置为响应于所述信道监听结果对应的感知波束标识或波束集标识发生变化,对所述LBT计数器置零;
    或者,
    所述处理模块,还被配置为响应于所述信道监听结果对应的感知波束标识或波束集标识发生变化,停止所述计时器。
  18. 根据权利要求17所述的装置,其特征在于,
    所述LBT的信道监听结果包括对应的感知波束标识或波束集标识;
    或者,
    响应于所述LBT的信道监听结果指示信道监听失败,所述LBT的信道监听结果对应有感知波束标识或波束集标识。
  19. 根据权利要求17所述的装置,其特征在于,所述处理模块,还被配置为将所述信道监听结果对应的所述感知波束标识或波束集标识,更新为当前LBT信道监听所针对的感知波束标识或波束集标识。
  20. 根据权利要求17所述的装置,其特征在于,
    所述LBT计数器包括与物理上行链路控制信道PUCCH对应的第一LBT计数器,和与物理上行链路共享信道PUSCH对应的第二LBT计数器;
    所述第一计数器和所述第二计数器对应所述PUCCH和所述PUSCH分别计数。
  21. 根据权利要求17所述的装置,其特征在于,
    所述计时器包括与PUCCH对应的第一计时器,和与PUSCH对应的第二计时器;
    所述第一计时器和所述第二计时器对应所述PUCCH和所述PUSCH分别计时。
  22. 根据权利要求16所述的装置,其特征在于,所述处理模块,还被配置为根据所述信道监听结果,更新至少一个感知波束标识或波束集标识对应的LBT计数器或计时器。
  23. 根据权利要求22所述的装置,其特征在于,所述处理模块,还被配置为在所述信道监听结果用于指示信道监听失败的情况下,对所述感知波束标识或波束集标识对应的LBT计数器进行计数加1。
  24. 根据权利要求23所述的装置,其特征在于,所述处理模块,还被配置为当所述感知波束标识或波束集标识对应的LBT计数器计数达到计数阈值时,确定所述感知波束标识或波束集标识的持续LBT失败。
  25. 根据权利要求24所述的装置,其特征在于,所述处理模块,还被配置为确定所述感知波束标识或波束集标识的持续LBT失败时,触发随机接入流程。
  26. 根据权利要求25所述的装置,其特征在于,所述处理模块,还被配置为生成用于指示持续LBT失败的指示信息;
    所述装置还包括:
    发送模块,用于通过上行资源上报所述指示信息,所述指示信息中包括所述感知波束标识或波束集标识。
  27. 根据权利要求26所述的装置,其特征在于,
    所述指示信息中还包括持续LBT失败对应的监听信道,所述监听信道包括PUCCH或PUSCH。
  28. 根据权利要求24所述的装置,其特征在于,所述处理模块,还被配置为若当前带宽部分BWP上的感知波束标识或波束集标识都触发持续LBT失败,触发所述当前BWP的持续LBT失败。
  29. 根据权利要求22所述的装置,其特征在于,所述处理模块,还被配置为在所述信道监听结果用于指示信道监听失败的情况下,对所述感知波束标识或波束集标识对应的计时器进行重启。
  30. 根据权利要求16至22任一所述的装置,其特征在于,所述处理模块,还被配置为当所述感知波束标识或波束集标识对应的计时器达到计时阈值时,将所述感知波束标识或波束集标识对应的计数器置零。
  31. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至 15任一所述的通信方法。
  32. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或所述指令集由处理器加载并执行以实现如权利要求1至15任一所述的通信方法。
PCT/CN2021/136574 2021-12-08 2021-12-08 通信方法、装置、设备及可读存储介质 WO2023102787A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/136574 WO2023102787A1 (zh) 2021-12-08 2021-12-08 通信方法、装置、设备及可读存储介质
CN202180004497.2A CN114391238A (zh) 2021-12-08 2021-12-08 通信方法、装置、设备及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/136574 WO2023102787A1 (zh) 2021-12-08 2021-12-08 通信方法、装置、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2023102787A1 true WO2023102787A1 (zh) 2023-06-15

Family

ID=81200055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136574 WO2023102787A1 (zh) 2021-12-08 2021-12-08 通信方法、装置、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN114391238A (zh)
WO (1) WO2023102787A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170231011A1 (en) * 2016-02-04 2017-08-10 Samsung Electronics Co., Ltd. Method and apparatus for ue signal transmission in 5g cellular communications
US20170237477A1 (en) * 2014-11-27 2017-08-17 Fujitsu Limited Base station, communication system, and reference signal transmission method
CN110167187A (zh) * 2018-02-13 2019-08-23 展讯通信(上海)有限公司 未授权频谱中lbt策略的配置方法、设备及可读介质
CN110351059A (zh) * 2018-04-04 2019-10-18 展讯通信(上海)有限公司 用户设备及其对下行信号的处理方法及装置
WO2021108817A2 (en) * 2020-05-22 2021-06-03 Futurewei Technologies, Inc. Methods and apparatus for channel sensing for beamformed transmissions
CN113366911A (zh) * 2019-01-31 2021-09-07 高通股份有限公司 用于定向通信的先听后说方案
CN113766552A (zh) * 2020-06-04 2021-12-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581754B (zh) * 2018-06-11 2021-05-11 电信科学技术研究院有限公司 一种请求信号的发送、接收方法及设备、装置
EP3820232A1 (en) * 2019-11-07 2021-05-12 Panasonic Intellectual Property Corporation of America User equipment and scheduling node

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170237477A1 (en) * 2014-11-27 2017-08-17 Fujitsu Limited Base station, communication system, and reference signal transmission method
US20170231011A1 (en) * 2016-02-04 2017-08-10 Samsung Electronics Co., Ltd. Method and apparatus for ue signal transmission in 5g cellular communications
CN110167187A (zh) * 2018-02-13 2019-08-23 展讯通信(上海)有限公司 未授权频谱中lbt策略的配置方法、设备及可读介质
CN110351059A (zh) * 2018-04-04 2019-10-18 展讯通信(上海)有限公司 用户设备及其对下行信号的处理方法及装置
CN113366911A (zh) * 2019-01-31 2021-09-07 高通股份有限公司 用于定向通信的先听后说方案
WO2021108817A2 (en) * 2020-05-22 2021-06-03 Futurewei Technologies, Inc. Methods and apparatus for channel sensing for beamformed transmissions
CN113766552A (zh) * 2020-06-04 2021-12-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN114391238A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
US20230345312A1 (en) User mobility method and device
US20220007303A1 (en) Method for modifying parameter values for long range extension and corresponding node
JP7559850B2 (ja) Lbt監視失敗の処理方法、装置及びシステム
US10743225B2 (en) Scheduling method and base station
US8750225B2 (en) Processing method and terminal for random access
US11622406B2 (en) Dual connectivity method and access network device
CN111314974B (zh) 主辅小区更新的处理方法、装置、基站及存储介质
WO2017148231A1 (zh) 一种配置上行半持续调度的方法、终端及网络侧设备
JP2020500472A (ja) 無線リンク監視のための方法およびデバイス
US20220394763A1 (en) Methods and apparatus for indicating a failure event
CN108418661B (zh) 数据传输方法及装置
CN114175726B (zh) 用于移动性控制的无线通信方法
CN110463280B (zh) 信道接入配置方法、装置、设备及存储介质
WO2018184571A1 (zh) 反馈信息的发送、接收方法及相关装置和存储介质
US10285099B2 (en) Communication method, base station, and user equipment
CN115918131A (zh) 针对体验质量的优先级设置
WO2023102787A1 (zh) 通信方法、装置、设备及可读存储介质
CN116918439A (zh) 无线网络中小数据传输的方法、设备和系统
CN108200661B (zh) Rrc连接释放方法、终端、接入网设备及存储介质
US20080311921A1 (en) Communication resource signaling
CN108064088B (zh) Rrc连接释放方法、终端、接入网设备及存储介质
WO2021007705A1 (zh) 资源配置方法、装置、计算机设备和存储介质
JP7380907B2 (ja) Lbt失敗を指示する方法及び装置
WO2022022504A1 (zh) 资源的分配方法及装置、网络侧设备和可读存储介质
WO2019191870A1 (zh) 业务质量监测方法、配置方法、装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE