WO2023101338A1 - Method for preparing vanadium electrolyte solution - Google Patents

Method for preparing vanadium electrolyte solution Download PDF

Info

Publication number
WO2023101338A1
WO2023101338A1 PCT/KR2022/018915 KR2022018915W WO2023101338A1 WO 2023101338 A1 WO2023101338 A1 WO 2023101338A1 KR 2022018915 W KR2022018915 W KR 2022018915W WO 2023101338 A1 WO2023101338 A1 WO 2023101338A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
anode
cathode
reactor
electrolyte
Prior art date
Application number
PCT/KR2022/018915
Other languages
French (fr)
Korean (ko)
Inventor
이원효
이재혁
배수연
김대식
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2023101338A1 publication Critical patent/WO2023101338A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for preparing a vanadium electrolyte solution.
  • the present invention relates to a method for preparing a vanadium electrolyte using a reactor of a different type from the conventional one.
  • a vanadium redox flow battery (VRFB) using this principle can store electricity in an electrolyte, unlike a general secondary battery that stores electricity in an electrode.
  • VRFB is attracting attention as a high-safety large-capacity energy storage device because it is free to design the output and energy capacity of the battery and there is no risk of fire due to the generation of solids such as dendrites.
  • a normal VRFB consists of a graphite current collector, a graphite felt electrode, an ion exchange membrane, and an electrolyte solution.
  • the electrolyte has the highest cost ratio.
  • the electrolyte is prepared in a 3.5 form (V(III/IV)) in which trivalent vanadium ions (V(III)) and tetravalent vanadium ions (V(IV)) are mixed in a volume ratio of about 1:1.
  • the 3.5-valent electrolyte is oxidized to pentavalent at the anode and reduced to divalent at the cathode through a pre-charging process in the battery, and has an electromotive force of 1.25 V.
  • a solution in which a trivalent vanadium compound (V(III)) and a tetravalent vanadium compound (V(IV)) are mixed in a volume ratio of about 1:1 is referred to as a vanadium electrolyte.
  • vanadium pentoxide (V 2 O 5 ) powder having a pentavalent oxidation number during ionization and vanadium trioxide (V 2 O 3 ) powder having a trivalent value are mixed in an appropriate ratio and then dissolved in an aqueous sulfuric acid solution to obtain a 3.5 valent electrolyte.
  • a method of producing a 4-valent electrolyte solution by reacting vanadium pentoxide (V 2 O 5 ) powder with a reducing agent in an aqueous sulfuric acid solution, and then preparing a 3.5-valent electrolyte solution through an additional electrochemical reaction.
  • the former can easily produce a 3.5 valent electrolyte without a separate electrochemical reaction, but the latter is mainly used because of the high cost of raw materials.
  • Vanadium pentoxide (V 2 O 5 ) powder is reduced to tetravalent ions by reacting with a reducing agent in aqueous sulfuric acid solution, and reduction to a lower oxidation number does not occur. need this Various techniques are known for obtaining a 3.5 valent vanadium electrolyte solution using an electrochemical reaction.
  • Non-Patent Document 1 there is a method of supplying a slurry obtained by mixing vanadium pentoxide powder and an aqueous sulfuric acid solution to the cathode of an electrochemical reactor, and supplying the aqueous sulfuric acid solution to a noble metal-plated anode to cause a water electrolysis reaction.
  • This method is eco-friendly because water is decomposed at the anode and only oxygen is generated, so the above-mentioned reuse process can be omitted and a reducing agent is not applied.
  • An object of the present invention is to provide a method for preparing a vanadium electrolyte capable of preventing crossover of vanadium ions.
  • the present invention is to provide a method for preparing a vanadium electrolyte solution capable of shortening the reaction time.
  • the present invention is intended to provide a method for preparing a vanadium electrolyte solution capable of producing a vanadium electrolyte solution at low cost.
  • the method for producing a vanadium electrolyte of the present invention is a method for producing a vanadium electrolyte using a reactor including a membrane electrode assembly having a cathode, an ion exchange membrane, an anode catalyst, and an anode in the above order, and a cathode containing a tetravalent vanadium compound A reactant is supplied to the cathode of the reactor, an anode reactant containing an aqueous solvent is supplied to the anode of the reactor, and then an electric charge is applied to the reactor to form a tetravalent vanadium compound (V(IV)) and a trivalent vanadium compound (V(IV)) at the cathode.
  • the present invention can prevent crossover of vanadium ions.
  • the present invention can shorten the reaction time.
  • the present invention can lower the production cost of the vanadium electrolyte.
  • FIG. 4 is a schematic diagram of an apparatus for producing a vanadium electrolyte in the present invention.
  • the present invention relates to a method for preparing a vanadium electrolyte solution.
  • the “vanadium electrolyte” referred to in the present invention includes a trivalent vanadium compound (V(III)) and a tetravalent vanadium compound (V(IV)), and a trivalent vanadium compound (V(III)) and a tetravalent vanadium compound (V(IV)) in a volume ratio of about 1:1.
  • the above mixing ratio may be appropriately extended in consideration of errors and the like.
  • the volume ratio (V(IV):V(III)) of the tetravalent vanadium compound (V(IV)) and the trivalent vanadium compound (V(III)) in the vanadium electrolyte is 4:6 to It can be within the 6:4 range.
  • the ratio (V(III):V(IV)) may be 4:6 to 6:4, 4.5:5.5 to 5.5:4.5, 4.9:5.1 to 5.1:4.9, or about 1:1.
  • a solution in which a trivalent vanadium compound (V(III)) and a tetravalent vanadium compound (V(IV)) are mixed at a volume ratio (V(III):V(IV)) within the range of 4:6 to 6:4 is called a vanadium electrolyte.
  • a vanadium electrolyte is prepared by using an electrochemical reactor having a specific structure and selecting an appropriate raw material for the reactor.
  • the main reaction performed in the present invention is a reaction of partially reducing a tetravalent vanadium compound to produce a vanadium electrolyte solution that is a mixture of a tetravalent vanadium compound and a trivalent vanadium compound in an appropriate ratio. Therefore, in the present invention, it proceeds through a process of preparing a specific reactor and a reactant of a specific composition, and reacting the reactant in the reactor to obtain a product of the reaction.
  • the present invention can prevent the crossover of vanadium ions, shorten the reaction time for generating a vanadium electrolyte, and operate at low cost by using a method described later.
  • a vanadium electrolyte is prepared using a reactor including a membrane electrode assembly (see FIG. 4).
  • the membrane electrode assembly (MEA) includes a cathode, an ion exchange membrane, an anode catalyst, and an anode in the above order. That is, the membrane electrode assembly includes a cathode, an ion exchange membrane on the cathode, an anode catalyst on the ion exchange membrane, and an anode on the anode catalyst.
  • the membrane electrode assembly has a structure in which elements constituting a battery having a very thin thickness, such as a membrane, are laminated or compressed.
  • the membrane electrode assembly applied in the present invention does not include a cathode catalyst.
  • the anode catalyst since the anode catalyst is not applied, the generation of hydrogen gas due to the reduction reaction occurring at the cathode can be prevented.
  • the negative electrode is an electrode in which a reduction reaction occurs when a battery composed of the membrane electrode assembly is charged.
  • the anode is an electrode where an oxidation reaction occurs when a battery composed of the membrane electrode assembly is charged.
  • the ion exchange membrane is a membrane that serves to pass only ions (cations or anions).
  • the catalyst of the positive electrode serves to promote the reaction at the positive electrode where an oxidation reaction occurs when the battery composed of the membrane electrode assembly is charged.
  • each of the cathode and anode applied to the membrane electrode assembly may be a porous electrode.
  • each of the cathode and anode applied to the membrane electrode assembly may be a titanium-based porous electrode. Since the meaning of a porous electrode or a titanium-based porous electrode itself is known, a description thereof will be omitted. Titanium-based porous electrodes have strong durability and excellent acid resistance under high voltage or high current conditions. Therefore, using it, the reaction voltage can be increased up to 3 V, and strong acid solutions can be applied.
  • the type of the ion exchange membrane is not particularly limited as long as it has a function of exchanging cations or anions.
  • the ion exchange membrane may include a sulfonated tetrafluoroethylene-based copolymer.
  • the copolymer may be a product known in the market as Nafion.
  • the copolymer has excellent thermal stability, excellent chemical resistance, and cationic conductivity.
  • the thickness of the ion exchange membrane may also be appropriately adjusted. If the ion exchange membrane is too thin, the concentration of the final electrolyte may decrease due to crossover of the anode reactants to the cathode. In addition, if the ion exchange membrane is too thick, the reaction voltage becomes high, so the current density required for driving the reactor cannot be improved. In one embodiment, the thickness of the ion exchange membrane may be in the range of 100 ⁇ m to 200 ⁇ m. It is possible to drive the reactor at a sufficiently high current density within the above range, and at the same time, it is possible to prevent crossover of the anode reactant.
  • Components used as the anode catalyst are not particularly limited. This is because the oxidation reaction occurring at the anode is not related to the reduction reaction at the cathode of vanadium, which is the object of the present invention. Therefore, various types of anode catalysts can be used. In particular, as will be described later, since an aqueous solvent is used as a reactant of the anode catalyst in the present invention, known anode catalysts used for electrolysis of water may be used without limitation.
  • the anode catalyst may include platinum, iridium, palladium, gold, an oxide thereof, or a mixture of two or more thereof.
  • the anode catalyst may be attached to the anode or ion exchange membrane by means such as a polymer binder. Since the anode catalyst appropriately reduces the reaction voltage and prevents decomposition of the electrode, it must be used in the present invention.
  • a membrane electrode assembly including a cathode catalyst is not used. That is, in one embodiment, the cathode and the ion exchange membrane in the membrane electrode assembly may be in direct contact. Direct contact between the cathode and the ion exchange membrane means that no other member exists between the cathode and the ion exchange membrane.
  • a cathode catalyst is used, hydrogen generation by a reduction reaction occurring at the cathode can be promoted.
  • a membrane electrode assembly is used, and the membrane electrode assembly is integrally composed of an electrode, an electrode catalyst, and an ion exchange membrane.
  • the membrane electrode assembly is integrally composed of an electrode, an electrode catalyst, and an ion exchange membrane.
  • a cathode, an ion exchange membrane present on the cathode, an anode catalyst present on the ion exchange membrane, and an anode present on the anode catalyst a high temperature and A membrane electrode assembly can be obtained by pressing under high-pressure conditions.
  • the reaction voltage can be lowered and the maximum current density that can be driven can be increased.
  • the reactor used in the present invention is one battery, it may further include other elements constituting the battery in addition to the membrane electrode assembly.
  • the reactor may further include a current collector.
  • the current collector is an element capable of delivering electrons to the battery.
  • the current collector may be located on both outermost surfaces of the membrane electrode assembly, for example.
  • the reactor may further include a separator plate (or bipolar plate).
  • the separator is an element capable of supplying a reactant such as an electrolyte solution to the membrane electrode assembly.
  • the separator may be positioned on both outermost surfaces of the membrane electrode assembly to which the current collector is added.
  • the reactor may further include a metal mesh.
  • a metal mesh may be positioned between the membrane electrode assembly inside the reactor and the aforementioned current collector.
  • the material of the metal mesh may be a material of the same series as the anode and cathode. Therefore, when the anode and the cathode are porous titanium-based electrodes, the metal mesh may be a titanium mesh. This is because it cannot be decomposed even at high voltage and cannot be dissolved in an acidic solution if a mesh of the same type as the electrode is used.
  • the material of the separator and the current collector may be the same material as that of the positive electrode and the negative electrode. Accordingly, when the positive electrode and the negative electrode are porous titanium-based electrodes, each material of the separator and the current collector may be a titanium-based material. In this way, oxidation of the cell (reactor) due to the flow of the electrolyte solution can be prevented.
  • a cathode reactant containing a tetravalent vanadium compound is supplied to the cathode of the reactor, and an anode reactant containing an aqueous solvent is supplied to the anode of the reactor, and then charges are applied to the reactor.
  • a charge is applied to the reactor, a reaction occurs at the electrode. Specifically, an oxidation reaction of an anode reactant occurs in the anode.
  • a reduction reaction of the cathode reactant occurs.
  • a tetravalent vanadium compound (V(IV)) and a trivalent vanadium compound (V(III)) are mixed at a volume ratio of 4:6 to 6:4 (V(IV):V(III)) to obtain a product containing
  • the desired product of the present invention is the product of the above cathode.
  • a vanadium electrolyte is prepared using a water decomposition reaction.
  • an aqueous solvent means a solvent containing water as a main component.
  • including water as a main component may mean that the content of water (H 2 O) is mostly, for example, 95% by weight or more, 99% by weight or more, or about 100% by weight.
  • the aqueous solvent may be distilled water.
  • an aqueous solution of a strong acid such as an aqueous solution of sulfuric acid was applied to the anode, but in this case, there was a problem in that crossover of vanadium ions from the cathode to the anode was promoted. The vanadium crossover is the cause of the decrease in the vanadium reduction efficiency of the anode.
  • the activity of the anode catalyst may be reduced due to side reactions.
  • Crossover of vanadium from cathode to anode can be prevented if the anode reactant includes an aqueous solvent.
  • a reduction reaction of a tetravalent vanadium compound occurs at the cathode of the reactor of the present invention.
  • the reduction reaction of the tetravalent vanadium compound can proceed in the presence of an acidic substance.
  • the anode reactant may further include a strong acid material.
  • the cathode reactant may further include an aqueous solution of sulfuric acid.
  • the reaction time of the electrochemical reaction occurring in the method of the present invention can be determined by the current density of the applied current and the composition of the reactants. That is, the composition of the components constituting the anode reactant may be appropriately adjusted in consideration of the reaction rate. Specifically, the number of moles of the tetravalent vanadium compound in the anode reactant may be appropriately adjusted.
  • the negative electrode reactant may include the tetravalent vanadium compound in a mole number in the range of 1.5 M to 2.0 M.
  • the concentration of the tetravalent vanadium compound may be in the range of 1.75 M to 1.85 M. In this case, partial reduction of the tetravalent vanadium compound (V(IV)) to the trivalent vanadium compound (V(III)), which is the desired reaction, can be rapidly performed under current density conditions described later.
  • the production of the product can proceed within a short time.
  • the current is higher than the conventional current density, for example, 100 mA / cm 2 to 1,000 mA / cm 2
  • the method of the present invention The reactor applied in can receive such a high current density charge.
  • the current density of the charge applied to the reactor may be in the range of 100 mA/cm 2 to 1,000 mA/cm 2 .
  • the range of the current density in another example, may be 150 mA / cm 2 or more, 200 mA / cm 2 or more, 250 mA / cm 2 or more, or 300 mA / cm 2 or more, 950 mA / cm 2 or less, 800 mA /cm 2 or less, 850 mA/cm 2 or less, 800 mA/cm 2 or less, 750 mA/cm 2 or less, or 700 mA/cm 2 or less.
  • a glass reactor having an agitator and capable of temperature control was prepared.
  • a 4.1 M aqueous solution of sulfuric acid was introduced into the reactor.
  • vanadium pentoxide powder was added in an amount such that the vanadium atom concentration was 1.78 M in the sulfuric acid aqueous solution.
  • the rotational speed of the stirrer While maintaining the rotational speed of the stirrer at 300 rpm, 0.5 times the number of moles of oxalic acid was added to the number of moles of vanadium atoms.
  • the temperature of the reactor was increased to 80 °C and reacted for 3 hours.
  • Both the cathode and anode are composed of a graphite plate current collector and a graphite felt electrode (thickness: 2 T), a Nafion membrane (Chemours) is used as an ion exchange membrane, and an electrochemical reactor having an electrode area of 5 cm * 5 cm is manufactured. did.
  • each of the vanadium electrolyte prepared in Preparation Example was put into each of two 100 mL beakers.
  • the electrolyte solution in the two beakers was injected into the cathode and anode of the electrochemical reactor at the same speed (85 rpm). After maintaining the circulation for about 1 minute, a charge of 1.19 Ah was applied by setting the current density of the electrochemical reactor to 20 mA/cm 2 .
  • Both the cathode and anode are composed of a graphite plate current collector and a graphite felt electrode (thickness: 2 T), a Nafion membrane (Chemours) is used as an ion exchange membrane, and an electrochemical reactor having an electrode area of 5 cm * 5 cm is manufactured. did.
  • anode reactant 50 mL of a 1 M hydrogen peroxide aqueous solution dissolved in a 4.1 M sulfuric acid aqueous solution was prepared. 50 mL of the vanadium electrolyte prepared in Preparation Example and 50 mL of the anode reactant were put into each of two 100 mL beakers. The vanadium electrolyte was supplied to the cathode of the electrochemical reactor using a master flex pump, and the anode reactant was supplied to the anode, and each supply speed was the same at 85 rpm. After maintaining the circulation for about 1 minute, a charge of 1.19 Ah was applied by setting the current density of the electrochemical reactor to 20 mA/cm 2 .
  • An iridium-coated titanium fiber felt was used as an anode and an uncoated titanium fiber felt was used as a cathode, and Chemours Nafion 117 cation exchange membrane was placed between the two electrodes.
  • the thus-arranged structure was placed in a hot press and treated at 130 DEG C and 100 atm for about 2 minutes to obtain a membrane electrode assembly.
  • the membrane electrode assembly was fastened to an electrochemical reactor composed of a titanium mesh and a titanium precursor (see FIG. 4).
  • Two 100 mL beakers were prepared, and 50 mL of the vanadium electrolyte of Preparation Example was placed in one beaker as a cathode reactant, and 50 mL of 4.1 M sulfuric acid aqueous solution was placed in the other beaker as a cathode reactant.
  • the vanadium electrolyte was supplied to the cathode of the electrochemical reactor using a master flex pump, and the anode reactant was supplied to the anode, and each supply speed was the same at 85 rpm. After maintaining the circulation for about 1 minute, a charge of 1.19 Ah was applied by setting the current density of the electrochemical reactor to 20 mA/cm 2 .
  • the vanadium concentration at the anode was measured using an inductively coupled plasma emission spectrometer from PerkinElmer.
  • the concentration of the 3.5-valent vanadium electrolyte was measured using a Titrando automatic potentiometer from Metrohm. Specifically, by oxidizing 1 mL of vanadium electrolyte with 0.2 M KMnO 4 solution, the potential of the reference electrode changes rapidly, and the amount of KMnO 4 solution injected at the point where the second derivative of the potential and the amount of KMnO 4 becomes zero is the concentration of vanadium ions. was measured with Here, the vanadium concentration in the initial vanadium electrolyte and the input amount of KMnO 4 have a relationship as shown in Equation 4 below:
  • Comparative Example 1 uses a tetravalent vanadium electrolyte as an anode reactant. In this case, vanadium crossover occurred between cathode and anode, and it was difficult to control the oxidation number. Also, since a 5-valent vanadium electrolyte was generated at the anode, a separate reuse process was required. In addition, since graphite was used as the electrode, the maximum operating voltage was limited to 1.6 V, so the current density could not be increased.
  • Comparative Example 2 did not require a reuse process because hydrogen peroxide was used as an anode reactant. However, in Comparative Example 2, a portion of hydrogen peroxide was crossover to the anode through the ion exchange membrane to oxidize vanadium ions in the anode, so the ratio of trivalent vanadium ions was relatively low.
  • Comparative Example 3 used an aqueous solution of sulfuric acid as a cathode reactant, and as a result of crossover of vanadium ions from the cathode to the anode, loss of vanadium ions occurred.
  • Example 1 the reaction time was greatly reduced, and the ratio of the trivalent vanadium compound to the tetravalent vanadium compound in the negative electrode product was close to 1:1.
  • Example 2 the reaction time was shortened by about 35 times compared to the comparative example, and the ratio of trivalent vanadium cations to tetravalent vanadium cations in the anode product was closer to 1:1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention relates to a method for preparing a vanadium electrolyte solution. The present invention may prevent crossover of vanadium ions. The present invention may shorten a reaction time. The present invention may lower the production cost of a vanadium electrolyte solution.

Description

바나듐 전해액의 제조 방법Manufacturing method of vanadium electrolyte solution
본 발명은 바나듐 전해액의 제조 방법에 관한다.The present invention relates to a method for preparing a vanadium electrolyte solution.
본 발명은 기존과는 다른 형태의 반응기를 사용하는 바나듐 전해액의 제조 방법에 관한다. The present invention relates to a method for preparing a vanadium electrolyte using a reactor of a different type from the conventional one.
바나듐은 전자를 최소 2개, 최대 5개까지 잃을 수 있으므로, 수용액에서도 상변화 없이 산화 및 환원 반응을 할 수 있다. 이 원리를 이용한 바나듐 레독스 흐름 전지(VRFB)는 전기를 전극에 저장하는 일반적 2차 전지와 다르게 전기를 전해질에 저장할 수 있다. 이로써 VRFB는 전지의 출력과 에너지 용량 설계가 자유롭고, 덴드라이트 등의 고체 생성으로 인한 화재 위험이 없기에 고-안전성 대용량 에너지 저장 장치로 주목받고 있다.Since vanadium can lose at least 2 electrons and up to 5 electrons, it can undergo oxidation and reduction reactions without phase change even in aqueous solutions. A vanadium redox flow battery (VRFB) using this principle can store electricity in an electrolyte, unlike a general secondary battery that stores electricity in an electrode. As a result, VRFB is attracting attention as a high-safety large-capacity energy storage device because it is free to design the output and energy capacity of the battery and there is no risk of fire due to the generation of solids such as dendrites.
보통의 VRFB는 흑연 집전체와 흑연 펠트 전극, 이온 교환막 및 전해액으로 구성된다. 여기서 전해액이 가장 높은 원가 비중을 갖는다. 전해액은 3 가 바나듐 이온(V(III)) 및 4 가 바나듐 이온(V(IV))이 약 1:1의 부피 비율로 혼합된 3.5 가 형태(V(III/IV))로 제조된다. 3.5 가 전해액은 배터리 내에서 예비-충전 과정을 거쳐 양극에서는 5 가로 산화되고, 음극에서는 2가로 환원되어 1.25 V의 기전력을 가진다. 이하, 3 가 바나듐 화합물(V(III))과 4 가 바나듐 화합물(V(IV))이 약 1:1의 부피비로 혼합된 용액을 바나듐 전해액이라고 한다.A normal VRFB consists of a graphite current collector, a graphite felt electrode, an ion exchange membrane, and an electrolyte solution. Here, the electrolyte has the highest cost ratio. The electrolyte is prepared in a 3.5 form (V(III/IV)) in which trivalent vanadium ions (V(III)) and tetravalent vanadium ions (V(IV)) are mixed in a volume ratio of about 1:1. The 3.5-valent electrolyte is oxidized to pentavalent at the anode and reduced to divalent at the cathode through a pre-charging process in the battery, and has an electromotive force of 1.25 V. Hereinafter, a solution in which a trivalent vanadium compound (V(III)) and a tetravalent vanadium compound (V(IV)) are mixed in a volume ratio of about 1:1 is referred to as a vanadium electrolyte.
바나듐 전해액을 제조하는 방법으로는 이온화 시 5 가의 산화수를 갖는 오산화 바나듐(V2O5) 분말과 3 가인 삼산화 바나듐(V2O3) 분말을 적정 비율로 혼합한 후 황산 수용액에 녹여 3.5 가 전해액을 제조하는 방법, 오산화 바나듐(V2O5) 분말을 황산 수용액 내에서 환원제와 반응시켜서 4 가 전해액을 제조한 다음, 추가적인 전기 화학 반응을 통해 3.5 가 전해액으로 제조하는 방법이 있다. 전자는 별도의 전기 화학 반응 없이 3.5 가 전해액을 쉽게 제조할 수 있지만, 원재료의 가격이 높아서 후자를 주로 사용한다. 오산화 바나듐(V2O5) 분말은 황산 수용액에서 환원제와 반응하여 4 가 이온으로 환원되며, 이보다 낮은 산화수로의 환원은 일어나지 않기에, 3.5 가 전해액을 제조하기 위해서는 전기 화학 반응기에 의한 추가 환원 반응이 필요하다. 전기 화학 반응을 이용하여 3.5 가 바나듐 전해액을 얻는 기술은 여러가지가 알려져 있다. As a method for preparing a vanadium electrolyte, vanadium pentoxide (V 2 O 5 ) powder having a pentavalent oxidation number during ionization and vanadium trioxide (V 2 O 3 ) powder having a trivalent value are mixed in an appropriate ratio and then dissolved in an aqueous sulfuric acid solution to obtain a 3.5 valent electrolyte. There is a method of producing a 4-valent electrolyte solution by reacting vanadium pentoxide (V 2 O 5 ) powder with a reducing agent in an aqueous sulfuric acid solution, and then preparing a 3.5-valent electrolyte solution through an additional electrochemical reaction. The former can easily produce a 3.5 valent electrolyte without a separate electrochemical reaction, but the latter is mainly used because of the high cost of raw materials. Vanadium pentoxide (V 2 O 5 ) powder is reduced to tetravalent ions by reacting with a reducing agent in aqueous sulfuric acid solution, and reduction to a lower oxidation number does not occur. need this Various techniques are known for obtaining a 3.5 valent vanadium electrolyte solution using an electrochemical reaction.
첫째, 오산화 바나듐 분말을 황산 수용액에서 옥살산 등의 유기계 환원제와 반응시켜서 4 가 바나듐 이온으로 제조한 다음, 이를 전기 화학 반응기의 양극 및 음극에 투입하여 음극에서 3.5 가 전해액을 제조하는 방법이 있다(특허문헌 1 참조). 해당 방식은 전기 화학 반응이 1.4 V 내지 1.6 V 사이의 비교적 낮은 전압에서 진행되어 전극으로 저렴한 흑연을 사용할 수 있다. 그러나 전류 밀도를 100 mA/㎝2 이상으로 높이면, 전압이 1.6 V을 넘어가기 때문에 흑연 전극이 분해되는 문제가 있다. 또한 해당 방법은 전기 화학 반응기의 양극에서 5 가 바나듐 이온을 생성하기 때문에, 바나듐을 재사용하기 위해 양극의 생성물을 환원제와 반응 시켜 4 가 바나듐 이온으로 환원시키는 재사용 공정이 필요하다. 따라서 본 방식의 경우 전해액의 생산 속도가 느리고 많은 양의 환원제가 필요하며 공정이 복잡한 문제가 있다. 도 1은 바나듐 전해액을 제조하는 종래 기술의 P&ID이다.First, there is a method of preparing 4-valent vanadium ions by reacting vanadium pentoxide powder with an organic reducing agent such as oxalic acid in an aqueous solution of sulfuric acid, and then injecting this into the anode and cathode of an electrochemical reactor to prepare a 3.5-valent electrolyte at the cathode (patent see Literature 1). In this method, since the electrochemical reaction proceeds at a relatively low voltage between 1.4 V and 1.6 V, inexpensive graphite can be used as an electrode. However, when the current density is increased to 100 mA/cm 2 or more, the voltage exceeds 1.6 V, so there is a problem in that the graphite electrode is decomposed. In addition, since the method generates pentavalent vanadium ions at the anode of the electrochemical reactor, a reuse process of reducing the anode product to tetravalent vanadium ions by reacting the anode product with a reducing agent is required to reuse vanadium. Therefore, in the case of this method, the production rate of the electrolyte solution is slow, a large amount of reducing agent is required, and the process is complicated. 1 is a P&ID of the prior art for producing a vanadium electrolyte.
둘째, 오산화 바나듐 분말과 황산 수용액을 혼합한 슬러리를 전기 화학 반응기의 음극에 공급하고, 황산 수용액을 귀금속이 도금된 양극에 공급하여 수전해 반응을 일으키는 방법이 있다(비특허문헌 1 참조). 본 방식은 물이 양극에서 분해되어 산소만 발생하므로 위에서 말한 재사용 공정을 생략할 수 있고, 환원제를 적용하지 않으므로 친환경적이다. 그러나 음극에 슬러리 상태의 오산화 바나듐을 직접 투입하기 때문에 반응 속도가 매우 느리고, 상기 슬러리가 전기 화학 반응기의 유로 등을 막을 수 있기 때문에, 셀 간격이 좁은 다층 스택(multiple layer stack) 구조의 전기 화학 반응기를 적용할 수 없다. 또한 본 방식은 양극 반응물로 황산 수용액을 사용하기 때문에 음극에서 바나듐의 크로스오버(crossover)에 의한 손실이 발생할 수 있다. 도 2는 바나듐 전해액을 제조하는 종래 기술의 P&ID이다. Second, there is a method of supplying a slurry obtained by mixing vanadium pentoxide powder and an aqueous sulfuric acid solution to the cathode of an electrochemical reactor, and supplying the aqueous sulfuric acid solution to a noble metal-plated anode to cause a water electrolysis reaction (see Non-Patent Document 1). This method is eco-friendly because water is decomposed at the anode and only oxygen is generated, so the above-mentioned reuse process can be omitted and a reducing agent is not applied. However, since the reaction rate is very slow because vanadium pentoxide in a slurry state is directly injected into the cathode, and the slurry can block the flow path of the electrochemical reactor, a multiple layer stack structure with a narrow cell gap is used. cannot be applied In addition, since this method uses an aqueous solution of sulfuric acid as an anode reactant, loss due to crossover of vanadium may occur at the cathode. 2 is a P&ID of the prior art for preparing a vanadium electrolyte.
셋째, 과산화 수소의 분해 반응을 양극에 사용하는 기술이 있다(특허문헌 2 참조). 본 방식은 5 가 전해액을 재사용하는 공정을 필요로 하지 않고, 저렴한 흑연 전극을 사용할 수 있다. 그러나 본 방식은 반응 중 과산화수소가 음극으로 크로스오버 되어 바나듐 이온을 산화시킬 수 있다. 또한 본 방식은 양극 반응물로 황산 수용액 기반의 과산화수소 혼합물을 사용하기 때문에, 음극에서 바나듐의 크로스오버에 의한 손실이 발생할 수 있다. 그리고 본 방식은 흑연 전극을 사용하기 때문에 반응 시간이 길다. 도 3은 바나듐 전해액을 제조하는 종래 기술의 P&ID이다. Third, there is a technique of using the decomposition reaction of hydrogen peroxide as an anode (see Patent Document 2). This method does not require a step of reusing the pentavalent electrolyte and can use an inexpensive graphite electrode. However, in this method, hydrogen peroxide may cross over to the cathode during the reaction to oxidize vanadium ions. In addition, since this method uses a sulfuric acid aqueous solution-based hydrogen peroxide mixture as an anode reactant, loss due to crossover of vanadium may occur at the cathode. And since this method uses a graphite electrode, the reaction time is long. 3 is a P&ID of the prior art for producing a vanadium electrolyte.
따라서 위에서 열거한 문제를 해결할 수 있는 바나듐 전해액의 제조 방법의 연구가 필요하다. Therefore, it is necessary to study a method for preparing a vanadium electrolyte that can solve the problems listed above.
본 발명은 바나듐 이온의 크로스오버를 방지할 수 있는 바나듐 전해액의 제조 방법을 제공하고자 한다.An object of the present invention is to provide a method for preparing a vanadium electrolyte capable of preventing crossover of vanadium ions.
본 발명은 반응 시간을 단축시킬 수 있는 바나듐 전해액의 제조 방법을 제공하고자 한다.The present invention is to provide a method for preparing a vanadium electrolyte solution capable of shortening the reaction time.
본 발명은 저비용으로 바나듐 전해액을 제조할 수 있는 바나듐 전해액의 제조 방법을 제공하고자 한다.The present invention is intended to provide a method for preparing a vanadium electrolyte solution capable of producing a vanadium electrolyte solution at low cost.
본 발명의 바나듐 전해액의 제조 방법은, 음극, 이온 교환막, 양극 촉매 및 양극을 상기 순서로 갖는 막 전극 조립체를 포함하는 반응기를 이용하여 바나듐 전해액을 제조하는 방법이고, 4 가 바나듐 화합물을 포함하는 음극 반응물을 상기 반응기의 음극에 공급하고, 수성 용매를 포함하는 양극 반응물을 상기 반응기의 양극에 공급한 후, 상기 반응기에 전하를 인가하여 상기 음극에서 4 가 바나듐 화합물(V(IV)) 및 3 가 바나듐 화합물(V(III))을 4:6 내지 6:4(V(IV):V(III))의 부피 비율로 포함하는 생성물을 얻는 단계;를 포함한다. The method for producing a vanadium electrolyte of the present invention is a method for producing a vanadium electrolyte using a reactor including a membrane electrode assembly having a cathode, an ion exchange membrane, an anode catalyst, and an anode in the above order, and a cathode containing a tetravalent vanadium compound A reactant is supplied to the cathode of the reactor, an anode reactant containing an aqueous solvent is supplied to the anode of the reactor, and then an electric charge is applied to the reactor to form a tetravalent vanadium compound (V(IV)) and a trivalent vanadium compound (V(IV)) at the cathode. obtaining a product comprising a vanadium compound (V(III)) in a volume ratio of 4:6 to 6:4 (V(IV):V(III));
본 발명은 바나듐 이온의 크로스오버를 방지할 수 있다.The present invention can prevent crossover of vanadium ions.
본 발명은 반응 시간을 단축시킬 수 있다.The present invention can shorten the reaction time.
본 발명은 바나듐 전해액 생산 비용을 낮출 수 있다. The present invention can lower the production cost of the vanadium electrolyte.
도 1내지 도 3은 바나듐 전해액을 제조하는 종래 기술의 P&ID이다.1 to 3 are P&IDs of the prior art for preparing a vanadium electrolyte.
도 4는 본 발명에서 바나듐 전해액을 제조하는 장치의 모식도다. 4 is a schematic diagram of an apparatus for producing a vanadium electrolyte in the present invention.
이하 본 출원의 내용에 대해서 보다 상세하게 설명한다. Hereinafter, the contents of the present application will be described in more detail.
본 발명은 바나듐 전해액의 제조 방법에 관한다. 전술한 것처럼, 본 발명에서 언급하는 “바나듐 전해액”은, 3 가 바나듐 화합물(V(III))과 4 가 바나듐 화합물(V(IV))을 포함하면서, 3 가 바나듐 화합물(V(III))과 4 가 바나듐 화합물(V(IV))이 약 1:1의 부피 비로 혼합된 용액을 의미한다. 다만, 상기의 혼합 비율은 오차 등을 고려하여 적절히 확장될 수 있다. 예를 들어, 상기 바나듐 전해액에서 상기 4 가 바나듐 화합물(V(IV))과 상기 3 가 바나듐 화합물(V(III))의 부피 비율(V(IV):V(III))은 4:6 내지 6:4 범위 내일 수 있다. 상기 비율(V(III):V(IV))은 4:6 내지 6:4, 4.5:5.5 내지 5.5:4.5, 4.9:5.1 내지 5.1:4.9 또는 약 1:1일 수 있다. 이하, 3 가 바나듐 화합물(V(III))과 4 가 바나듐 화합물(V(IV))이 4:6 내지 6:4 범위 내의 부피 비(V(III):V(IV))로 혼합된 용액을 바나듐 전해액이라고 한다. The present invention relates to a method for preparing a vanadium electrolyte solution. As described above, the “vanadium electrolyte” referred to in the present invention includes a trivalent vanadium compound (V(III)) and a tetravalent vanadium compound (V(IV)), and a trivalent vanadium compound (V(III)) and a tetravalent vanadium compound (V(IV)) in a volume ratio of about 1:1. However, the above mixing ratio may be appropriately extended in consideration of errors and the like. For example, the volume ratio (V(IV):V(III)) of the tetravalent vanadium compound (V(IV)) and the trivalent vanadium compound (V(III)) in the vanadium electrolyte is 4:6 to It can be within the 6:4 range. The ratio (V(III):V(IV)) may be 4:6 to 6:4, 4.5:5.5 to 5.5:4.5, 4.9:5.1 to 5.1:4.9, or about 1:1. Hereinafter, a solution in which a trivalent vanadium compound (V(III)) and a tetravalent vanadium compound (V(IV)) are mixed at a volume ratio (V(III):V(IV)) within the range of 4:6 to 6:4 is called a vanadium electrolyte.
본 발명에서는 특정 구조를 가지는 전기 화학 반응기를 사용하고, 그 반응기의 원료로 적절한 것을 선택하여 바나듐 전해액을 제조한다. 또한, 본 발명에서 진행하는 주요 반응은 4 가 바나듐 화합물을 부분적으로 환원시켜 4 가 바나듐 화합물과 3 가 바나듐 화합물의 적정 비 혼합물인 바나듐 전해액을 생성하는 반응이다. 따라서, 본 발명에서는 특정 반응기와 특정 조성의 반응물을 준비하고, 상기 반응물을 상기 반응기에서 반응시켜서 그 반응의 생성물을 얻는 과정을 통해 진행된다. 본 발명은 후술하는 방식을 사용함으로써 바나듐 이온의 크로스오버를 방지할 수 있고, 바나듐 전해액 생성 반응 시간을 단축시킬 수 있으며, 저비용으로 구동 가능하다. In the present invention, a vanadium electrolyte is prepared by using an electrochemical reactor having a specific structure and selecting an appropriate raw material for the reactor. In addition, the main reaction performed in the present invention is a reaction of partially reducing a tetravalent vanadium compound to produce a vanadium electrolyte solution that is a mixture of a tetravalent vanadium compound and a trivalent vanadium compound in an appropriate ratio. Therefore, in the present invention, it proceeds through a process of preparing a specific reactor and a reactant of a specific composition, and reacting the reactant in the reactor to obtain a product of the reaction. The present invention can prevent the crossover of vanadium ions, shorten the reaction time for generating a vanadium electrolyte, and operate at low cost by using a method described later.
본 발명의 방법은, 막 전극 조립체를 포함하는 반응기(도 4 참조)를 이용하여 바나듐 전해액을 제조한다. 상기 막 전극 조립체(MEA)는 음극, 이온 교환막, 양극 촉매 및 양극을 상기 순서로 포함한다. 즉 상기 막 전극 조립체는 음극, 상기 음극 상에 존재하는 이온 교환막, 상기 이온교환막 상에 존재하는 양극 촉매 및 상기 양극 촉매 상에 존재하는 양극을 포함한다. 막 전극 조립체는 막과 같이 매우 얇은 두께를 가지는 전지를 구성하는 요소가 적층 내지 압착된 구조를 가지는 것이다.In the method of the present invention, a vanadium electrolyte is prepared using a reactor including a membrane electrode assembly (see FIG. 4). The membrane electrode assembly (MEA) includes a cathode, an ion exchange membrane, an anode catalyst, and an anode in the above order. That is, the membrane electrode assembly includes a cathode, an ion exchange membrane on the cathode, an anode catalyst on the ion exchange membrane, and an anode on the anode catalyst. The membrane electrode assembly has a structure in which elements constituting a battery having a very thin thickness, such as a membrane, are laminated or compressed.
후술하겠지만, 본 발명에서 적용하는 막 전극 조립체는 음극 촉매를 포함하지 않는다. 본 발명에서는 음극 촉매를 적용하지 않음에 따라 음극에서 일어나는 환원 반응에 의한 수소 기체의 발생을 예방할 수 있다. As will be described later, the membrane electrode assembly applied in the present invention does not include a cathode catalyst. In the present invention, since the anode catalyst is not applied, the generation of hydrogen gas due to the reduction reaction occurring at the cathode can be prevented.
상기 막 전극 조립체에서 음극은 상기 막 전극 조립체로 구성한 전지가 충전할 때, 환원 반응이 일어나는 전극이다. 상기 막 전극 조립체에서 양극은 상기 막 전극 조립체로 구성한 전지가 충전할 때, 산화 반응이 일어나는 전극이다. 상기 이온 교환막은 이온(양이온 또는 음이온) 만을 통과시키는 역할을 하는 막이다. 상기 양극의 촉매는 상기 막 전극 조립체로 구성한 전지가 충전할 때, 산화 반응이 일어나는 양극에서 그 반응을 촉진시키는 역할을 한다. In the membrane electrode assembly, the negative electrode is an electrode in which a reduction reaction occurs when a battery composed of the membrane electrode assembly is charged. In the membrane electrode assembly, the anode is an electrode where an oxidation reaction occurs when a battery composed of the membrane electrode assembly is charged. The ion exchange membrane is a membrane that serves to pass only ions (cations or anions). The catalyst of the positive electrode serves to promote the reaction at the positive electrode where an oxidation reaction occurs when the battery composed of the membrane electrode assembly is charged.
일 구현예에서, 상기 막 전극 조립체에 적용하는 음극 및 양극 각각은 다공성 전극일 수 있다. 구체적으로, 상기 막 전극 조립체에 적용하는 음극 및 양극 각각은 티타늄계 다공성 전극일 수 있다. 다공성 전극 또는 티타늄계 다공성 전극 자체의 의미는 공지이므로, 이에 대한 설명은 생략한다. 티타늄계 다공성 전극은 고전압 또는 고전류 조건에서 내구성이 강하고, 내산성이 우수하다. 따라서 이를 사용하면 반응 전압을 최대 3 V까지 높일 수 있고, 강산 용액도 적용할 수 있다. In one embodiment, each of the cathode and anode applied to the membrane electrode assembly may be a porous electrode. Specifically, each of the cathode and anode applied to the membrane electrode assembly may be a titanium-based porous electrode. Since the meaning of a porous electrode or a titanium-based porous electrode itself is known, a description thereof will be omitted. Titanium-based porous electrodes have strong durability and excellent acid resistance under high voltage or high current conditions. Therefore, using it, the reaction voltage can be increased up to 3 V, and strong acid solutions can be applied.
상기 이온 교환막은 양이온 또는 음이온을 교환시킬 수 있는 기능을 가지는 막이라면 그 종류는 특별히 제한하지 않는다. 일 구현예에서, 상기 이온 교환막은 술폰화된 테트라플루오로에틸렌계 공중합체를 포함할 수 있다. 해당 공중합체는 시장에서는 나피온으로 알려진 제품일 수 있다. 해당 공중합체는 열적 안정성이 우수하고, 내약품성이 우수하며, 양이온 전도성이 있다. The type of the ion exchange membrane is not particularly limited as long as it has a function of exchanging cations or anions. In one embodiment, the ion exchange membrane may include a sulfonated tetrafluoroethylene-based copolymer. The copolymer may be a product known in the market as Nafion. The copolymer has excellent thermal stability, excellent chemical resistance, and cationic conductivity.
상기 이온 교환막의 두께 또한 적절히 조절될 수 있다. 이온 교환막이 너무 얇으면 양극 반응물이 음극으로 크로스오버되어 최종 전해액의 농도가 감소할 수 있다. 또한 이온 교환막이 너무 두꺼우면 반응 전압이 높아져서 반응기 구동에 필요한 전류 밀도를 향상시킬 수 없다. 일 구현예에서, 상기 이온 교환막의 두께는 100 ㎛ 내지 200 ㎛ 범위 내일 수 있다. 상기 범위 내에서 충분히 높은 전류 밀도로 반응기를 구동할 수 있으며, 동시에 양극 반응물의 크로스오버를 방지할 수 있다. The thickness of the ion exchange membrane may also be appropriately adjusted. If the ion exchange membrane is too thin, the concentration of the final electrolyte may decrease due to crossover of the anode reactants to the cathode. In addition, if the ion exchange membrane is too thick, the reaction voltage becomes high, so the current density required for driving the reactor cannot be improved. In one embodiment, the thickness of the ion exchange membrane may be in the range of 100 μm to 200 μm. It is possible to drive the reactor at a sufficiently high current density within the above range, and at the same time, it is possible to prevent crossover of the anode reactant.
상기 양극 촉매로 적용한 성분은 특별히 제한되지 않는다. 양극에서 일어나는 산화 반응은 본 발명에서 목적으로 하는 바나듐의 음극에서의 환원 반응과 관련이 없기 때문이다. 따라서 다양한 종류의 양극 촉매를 사용할 수 있다. 특히 후술하는 것처럼 본 발명에서는 양극 촉매의 반응물로 수성 용매를 사용하므로, 물의 전기 분해에 사용되는 양극 촉매로 알려진 것을 제한 없이 사용할 수 있다. Components used as the anode catalyst are not particularly limited. This is because the oxidation reaction occurring at the anode is not related to the reduction reaction at the cathode of vanadium, which is the object of the present invention. Therefore, various types of anode catalysts can be used. In particular, as will be described later, since an aqueous solvent is used as a reactant of the anode catalyst in the present invention, known anode catalysts used for electrolysis of water may be used without limitation.
일 구현예에서, 상기 양극 촉매는, 백금, 이리듐, 팔라듐, 금, 이들의 산화물 또는 이들 중 둘 이상의 혼합물을 포함할 수 있다. 양극 촉매는 고분자 바인더 등의 수단으로 상기 양극 또는 이온 교환막에 부착될 수 있다. 양극 촉매는 반응 전압을 적절히 감소시키며, 전극의 분해를 방지할 수 있으므로 본 발명에서는 반드시 사용해야 한다. In one embodiment, the anode catalyst may include platinum, iridium, palladium, gold, an oxide thereof, or a mixture of two or more thereof. The anode catalyst may be attached to the anode or ion exchange membrane by means such as a polymer binder. Since the anode catalyst appropriately reduces the reaction voltage and prevents decomposition of the electrode, it must be used in the present invention.
위에서 말한 것처럼, 본 발명에서는 음극 촉매를 포함하는 막 전극 조립체는 사용하지 않는다. 즉, 일 구현예에서, 상기 막 전극 조립체에서 상기 음극과 상기 이온 교환막은 직접 접촉하는 것일 수 있다. 상기 음극과 상기 이온 교환막이 직접 접촉한다는 것은 상기 음극과 상기 이온 교환막 사이에 다른 부재가 존재하지 않은 것을 의미한다. 음극 촉매를 사용하게 되면 음극에서 일어나는 환원 반응에 의한 수소 발생이 촉진될 수 있다. As mentioned above, in the present invention, a membrane electrode assembly including a cathode catalyst is not used. That is, in one embodiment, the cathode and the ion exchange membrane in the membrane electrode assembly may be in direct contact. Direct contact between the cathode and the ion exchange membrane means that no other member exists between the cathode and the ion exchange membrane. When a cathode catalyst is used, hydrogen generation by a reduction reaction occurring at the cathode can be promoted.
위에서 말한 것처럼, 본 발명에서는 막 전극 조립체를 사용하고, 막 전극 조립체는 전극, 전극 촉매 및 이온 교환막이 일체형으로 구성돼 있다. 예를 들어, 전술한 순서, 구체적으로, 음극, 상기 음극 상에 존재하는 이온 교환막, 상기 이온교환막 상에 존재하는 양극 촉매 및 상기 양극 촉매 상에 존재하는 양극을 갖는 적층체를 준비한 후, 고온 및 고압 조건에서 압착하면 막 전극 조립체를 얻을 수 있다. 본 발명에서는 전기 화학 반응기로서 막 전극 조립체를 포함하는 것을 적용하였기에, 반응 전압을 낮출 수 있어서 구동 가능한 최대 전류 밀도를 증가시킬 수 있다. As mentioned above, in the present invention, a membrane electrode assembly is used, and the membrane electrode assembly is integrally composed of an electrode, an electrode catalyst, and an ion exchange membrane. For example, after preparing a laminate having the above-described sequence, specifically, a cathode, an ion exchange membrane present on the cathode, an anode catalyst present on the ion exchange membrane, and an anode present on the anode catalyst, a high temperature and A membrane electrode assembly can be obtained by pressing under high-pressure conditions. In the present invention, since the electrochemical reactor including the membrane electrode assembly is applied, the reaction voltage can be lowered and the maximum current density that can be driven can be increased.
본 발명에서 적용하는 반응기는, 하나의 전지이므로, 상기 막 전극 조립체 외에도 전지를 구성하는 기타 요소를 더 포함할 수 있다. Since the reactor used in the present invention is one battery, it may further include other elements constituting the battery in addition to the membrane electrode assembly.
일 구현예에서, 상기 반응기는 집전체를 더 포함할 수 있다. 집전체는 용어 그대로 전지에 전자를 전달할 수 있는 요소다. 집전체는 예를 들어, 상기 막 전극 조립체의 최외각 양면에 위치할 수 있다. In one embodiment, the reactor may further include a current collector. As the term implies, the current collector is an element capable of delivering electrons to the battery. The current collector may be located on both outermost surfaces of the membrane electrode assembly, for example.
일 구현예에서, 상기 반응기는 분리판(또는 바이폴라 플레이트)을 더 포함할 수 있다. 분리판은 전해액 등의 반응물을 상기 막 전극 조립체로 공급할 수 있는 요소다. 상기 분리판은 상기 집전체가 추가된 막 전극 조립체의 최외각 양면에 위치할 수 있다. In one embodiment, the reactor may further include a separator plate (or bipolar plate). The separator is an element capable of supplying a reactant such as an electrolyte solution to the membrane electrode assembly. The separator may be positioned on both outermost surfaces of the membrane electrode assembly to which the current collector is added.
일 구현예에서, 상기 반응기는 금속 메쉬(mesh)를 더 포함할 수 있다. 금속 메쉬는 반응기 내부 막 전극 조립체와 전술한 집전체 사이에 위치할 수 있다. 금속 메쉬를 적용함으로써 전해액이 유동할 수 있는 충분한 공간을 확보할 수 있고, 그 결과 전지(반응기) 내의 저항을 최소화할 수 있다. 메쉬를 적용하지 않으면 전지 내부 저항이 높아서 전류 밀도를 높이는데 한계가 발생할 수 있다. In one embodiment, the reactor may further include a metal mesh. A metal mesh may be positioned between the membrane electrode assembly inside the reactor and the aforementioned current collector. By applying the metal mesh, a sufficient space through which the electrolyte can flow can be secured, and as a result, resistance within the cell (reactor) can be minimized. If the mesh is not applied, a limitation may occur in increasing the current density due to high internal resistance of the battery.
일 구현예에서, 상기 금속 메쉬의 소재는 상기 양극 및 음극과 같은 계열의 소재일 수 있다. 따라서 상기 양극 및 음극이 다공성 티타늄계 전극인 경우, 상기 금속 메쉬는 티타늄 메쉬일 수 있다. 전극과 같은 계열의 메쉬를 사용해야 고전압에서도 분해되지 않고, 산성 용액에 녹지 않을 수 있기 때문이다. In one embodiment, the material of the metal mesh may be a material of the same series as the anode and cathode. Therefore, when the anode and the cathode are porous titanium-based electrodes, the metal mesh may be a titanium mesh. This is because it cannot be decomposed even at high voltage and cannot be dissolved in an acidic solution if a mesh of the same type as the electrode is used.
일 구현예에서, 상기 분리판 및 집전체의 소재는 상기 양극 및 음극과 같은 계열의 소재일 수 있다. 따라서 상기 양극 및 음극이 다공성 티타늄계 전극인 경우, 상기 분리판 및 집전체 각각의 소재는 티타늄계 소재일 수 있다. 이로써 전해액 유동에 따른 전지(반응기)의 산화를 예방할 수 있다. In one embodiment, the material of the separator and the current collector may be the same material as that of the positive electrode and the negative electrode. Accordingly, when the positive electrode and the negative electrode are porous titanium-based electrodes, each material of the separator and the current collector may be a titanium-based material. In this way, oxidation of the cell (reactor) due to the flow of the electrolyte solution can be prevented.
본 발명의 방법은, 4 가 바나듐 화합물을 포함하는 음극 반응물을 상기 반응기의 음극에 공급하고, 수성 용매를 포함하는 양극 반응물을 상기 반응기의 양극에 공급한 후, 상기 반응기에 전하를 인가한다. 상기 반응기에 전하를 인가하면, 상기 전극에서 반응이 일어난다. 구체적으로, 상기 양극에서는 양극 반응물의 산화 반응이 일어난다. 상기 음극에서는 음극 반응물의 환원 반응이 일어난다. 그 결과, 상기 음극에서 4 가 바나듐 화합물(V(IV)) 및 3 가 바나듐 화합물(V(III))을 4:6 내지 6:4(V(IV):V(III))의 부피 비율로 포함하는 생성물을 얻는다. 본 발명의 목적 생성물은 상기 음극의 생성물이다.In the method of the present invention, a cathode reactant containing a tetravalent vanadium compound is supplied to the cathode of the reactor, and an anode reactant containing an aqueous solvent is supplied to the anode of the reactor, and then charges are applied to the reactor. When a charge is applied to the reactor, a reaction occurs at the electrode. Specifically, an oxidation reaction of an anode reactant occurs in the anode. At the cathode, a reduction reaction of the cathode reactant occurs. As a result, in the negative electrode, a tetravalent vanadium compound (V(IV)) and a trivalent vanadium compound (V(III)) are mixed at a volume ratio of 4:6 to 6:4 (V(IV):V(III)) to obtain a product containing The desired product of the present invention is the product of the above cathode.
즉, 본 발명에서는 물분해 반응을 사용하여 바나듐 전해액을 제조한다. That is, in the present invention, a vanadium electrolyte is prepared using a water decomposition reaction.
본 발명에서, 수성 용매는, 물을 주성분으로 포함하는 용매를 의미한다. 여기서 물을 주성분으로 포함한다는 것은 물(H2O)의 함량이 대부분, 예를 들어, 95 중량% 이상, 99 % 중량% 이상, 또는 약 100 중량%인 것을 의미할 수 있다. 일 구현예에서 상기 수성 용매는 증류수(distilled water)일 수 있다. 기존의 방식은 양극에 황산 수용액 등의 강산 수용액을 적용했는데, 이 경우 음극에서 양극으로 바나듐 이온의 크로스오버가 촉진되는 문제가 있었다. 바나듐의 크로스오버는 음극의 바나듐 환원 효율 저하의 원인이다. 또한, 양극에 물 외의 다른 양이온성 물질이 있다면 부반응 때문에 양극 촉매의 활성이 저하될 수 있다. 양극 반응물이 수성 용매를 포함하면, 음극에서 양극으로의 바나듐의 크로스오버를 예방할 수 있다. In the present invention, an aqueous solvent means a solvent containing water as a main component. Here, including water as a main component may mean that the content of water (H 2 O) is mostly, for example, 95% by weight or more, 99% by weight or more, or about 100% by weight. In one embodiment, the aqueous solvent may be distilled water. In the conventional method, an aqueous solution of a strong acid such as an aqueous solution of sulfuric acid was applied to the anode, but in this case, there was a problem in that crossover of vanadium ions from the cathode to the anode was promoted. The vanadium crossover is the cause of the decrease in the vanadium reduction efficiency of the anode. In addition, if cationic materials other than water are present at the anode, the activity of the anode catalyst may be reduced due to side reactions. Crossover of vanadium from cathode to anode can be prevented if the anode reactant includes an aqueous solvent.
일 구현예에서, 후술하는 것처럼 본 발명의 반응기의 음극에서는 4 가 바나듐 화합물(V(IV))의 환원 반응이 일어난다. 4 가 바나듐 화합물의 환원 반응은 산성 물질의 존재 하에 진행될 수 있다. In one embodiment, as described below, a reduction reaction of a tetravalent vanadium compound (V(IV)) occurs at the cathode of the reactor of the present invention. The reduction reaction of the tetravalent vanadium compound can proceed in the presence of an acidic substance.
따라서, 일 구현예에서, 상기 음극 반응물은 강산성 물질을 더 포함할 수 있다. 구체적으로, 상기 음극 반응물은 황산 수용액을 더 포함할 수 있다. Accordingly, in one embodiment, the anode reactant may further include a strong acid material. Specifically, the cathode reactant may further include an aqueous solution of sulfuric acid.
후술하겠지만, 본 발명의 방법에서 일어나는 전기 화학 반응의 반응 시간은 인가되는 전류의 전류 밀도와 반응물의 조성으로 결정될 수 있다. 즉 반응 속도를 고려하여 상기 음극 반응물을 구성하는 성분의 조성도 적절히 조절될 수 있다. 구체적으로, 상기 음극 반응물에서 4 가 바나듐 화합물의 몰 수가 적절히 조절될 수 있다. 일 구현예에서, 상기 음극 반응물은 상기 4 가 바나듐 화합물을 1.5 M 내지 2.0 M 범위 내의 몰 수로 포함하는 것일 수 있다. 다른 구현예에서, 상기 4가 바나듐 화합물의 농도는 1.75 M 내지 1.85 M 범위 내일 수 있다. 이 경우 후술하는 전류 밀도 조건 하에서 목적하는 반응인 4 가 바나듐 화합물(V(IV))의 3 가 바나듐 화합물(V(III))으로의 부분적 환원을 빠르게 진행할 수 있다. As will be described later, the reaction time of the electrochemical reaction occurring in the method of the present invention can be determined by the current density of the applied current and the composition of the reactants. That is, the composition of the components constituting the anode reactant may be appropriately adjusted in consideration of the reaction rate. Specifically, the number of moles of the tetravalent vanadium compound in the anode reactant may be appropriately adjusted. In one embodiment, the negative electrode reactant may include the tetravalent vanadium compound in a mole number in the range of 1.5 M to 2.0 M. In another embodiment, the concentration of the tetravalent vanadium compound may be in the range of 1.75 M to 1.85 M. In this case, partial reduction of the tetravalent vanadium compound (V(IV)) to the trivalent vanadium compound (V(III)), which is the desired reaction, can be rapidly performed under current density conditions described later.
본 발명에서 상기 생성물의 제조는 빠른 시간 안에 진행 가능하다. 이를 위해서는 공급 전하량이 일정한 경우일 때 상기 전류가 기존 대비 높은 전류 밀도, 예를 들어, 100 mA/㎝2 내지 1,000 mA/㎝2 범위 내의 전류 밀도의 전하를 인가할 수 있어야 하는데, 본 발명의 방법에서 적용하는 반응기는 이처럼 높은 전류 밀도의 전하를 받을 수 있다. 일 구현예에서, 상기 반응기에 인가하는 전하의 전류 밀도는 100 mA/㎝2 내지 1,000 mA/㎝2 범위 내일 수 있다. 상기 전류 밀도의 범위는, 다른 예시에서, 150 mA/㎝2 이상, 200 mA/㎝2 이상, 250 mA/㎝2 이상 또는 300 mA/㎝2 이상일 수 있고, 950 mA/㎝2 이하, 800 mA/㎝2 이하, 850 mA/㎝2 이하, 800 mA/㎝2 이하, 750 mA/㎝2 이하 또는 700 mA/㎝2 이하일 수 있다. In the present invention, the production of the product can proceed within a short time. To this end, when the amount of supplied charge is constant, the current is higher than the conventional current density, for example, 100 mA / cm 2 to 1,000 mA / cm 2 It is necessary to be able to apply charges of a current density within the range, the method of the present invention The reactor applied in can receive such a high current density charge. In one embodiment, the current density of the charge applied to the reactor may be in the range of 100 mA/cm 2 to 1,000 mA/cm 2 . The range of the current density, in another example, may be 150 mA / cm 2 or more, 200 mA / cm 2 or more, 250 mA / cm 2 or more, or 300 mA / cm 2 or more, 950 mA / cm 2 or less, 800 mA /cm 2 or less, 850 mA/cm 2 or less, 800 mA/cm 2 or less, 750 mA/cm 2 or less, or 700 mA/cm 2 or less.
위에서 언급한 내용으로 바나듐 전해액을 제조하는 경우, 바나듐 이온의 크로스오버를 방지할 수 있고, 반응 시간을 단축시킬 수 있으며, 저비용으로 구동 가능하다.When the vanadium electrolyte is prepared as described above, crossover of vanadium ions can be prevented, reaction time can be shortened, and operation can be performed at low cost.
또한 본 발명은 전술한 내용 외에도 바나듐 전해액을 얻는데 필요한 것으로 알려진 기타 공정을 추가로 진행할 수 있다. In addition, in addition to the above, other processes known to be necessary for obtaining a vanadium electrolyte may be additionally performed in the present invention.
이하, 실시예로 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예로 본 발명을 제한하는 것은 아니다. Hereinafter, the present invention will be described in more detail with examples. However, the present invention is not limited to the following examples.
[제조예] - 4 가 바나듐 전해액[Production Example] - Tetravalent Vanadium Electrolyte
교반기를 갖고, 온도 조절이 가능한 유리 반응기를 준비했다. 상기 반응기에 4.1 M의 황산 수용액을 투입했다. 그 다음 상기 황산 수용액에서 바나듐 원자 농도가 1.78 M이 되도록 하는 함량의 오산화 바나듐 분말을 투입했다. 교반기의 회전 속도를 300 rpm으로 유지하면서, 투입된 바나듐 원자의 몰 수 대비 0.5 배 몰 수의 옥살산을 투입했다. 이어서 반응기의 온도를 80 ℃까지 증가시키고, 3 시간 동안 반응시켰다. 반응이 완료되면 반응기 온도를 상온으로 낮춘 후, 5 ㎛ 내지 10 ㎛의 기공 크기를 갖는 필터로 여과하여 미반응 오산화 바나듐을 제거했다. 1.78 M의 4 가 바나듐 화합물과 4.1 M의 황산 이온을 포함하는 4 가 바나듐 전해액을 얻었다. A glass reactor having an agitator and capable of temperature control was prepared. A 4.1 M aqueous solution of sulfuric acid was introduced into the reactor. Then, vanadium pentoxide powder was added in an amount such that the vanadium atom concentration was 1.78 M in the sulfuric acid aqueous solution. While maintaining the rotational speed of the stirrer at 300 rpm, 0.5 times the number of moles of oxalic acid was added to the number of moles of vanadium atoms. Then, the temperature of the reactor was increased to 80 °C and reacted for 3 hours. When the reaction was completed, the temperature of the reactor was lowered to room temperature, and unreacted vanadium pentoxide was removed by filtering with a filter having a pore size of 5 μm to 10 μm. A tetravalent vanadium electrolyte containing 1.78 M of a tetravalent vanadium compound and 4.1 M of sulfate ions was obtained.
[비교예 1] - 3.5 가 바나듐 전해액[Comparative Example 1] - 3.5 valent vanadium electrolyte
음극과 양극 모두가 그래파이트 플레이트 집전체와, 그래파이트 펠트 전극(두께: 2 T)으로 구성되고, Nafion 막(Chemours사)을 이온 교환막으로 하며, 전극 면적이 5 ㎝*5 ㎝인 전기 화학 반응기를 제조했다. Both the cathode and anode are composed of a graphite plate current collector and a graphite felt electrode (thickness: 2 T), a Nafion membrane (Chemours) is used as an ion exchange membrane, and an electrochemical reactor having an electrode area of 5 cm * 5 cm is manufactured. did.
100 mL 비커 2개 각각에 제조예에서 준비한 바나듐 전해액을 50 mL씩 넣었다. Master flex pump를 이용하여, 상기 비커 2개에 넣은 전해액을 전기 화학 반응기의 음극 및 양극에 같은 속도(85 rpm)으로 주입했다. 약 1분 동안 순환을 유지한 다음, 전기 화학 반응기의 전류 밀도를 20 mA/㎝2로 설정하여 1.19 Ah의 전하를 인가했다. 50 mL each of the vanadium electrolyte prepared in Preparation Example was put into each of two 100 mL beakers. Using a master flex pump, the electrolyte solution in the two beakers was injected into the cathode and anode of the electrochemical reactor at the same speed (85 rpm). After maintaining the circulation for about 1 minute, a charge of 1.19 Ah was applied by setting the current density of the electrochemical reactor to 20 mA/cm 2 .
[비교예 2] - 3.5 가 바나듐 전해액[Comparative Example 2] - 3.5 valent vanadium electrolyte
음극과 양극 모두가 그래파이트 플레이트 집전체와, 그래파이트 펠트 전극(두께: 2 T)으로 구성되고, Nafion 막(Chemours사)을 이온 교환막으로 하며, 전극 면적이 5 ㎝*5 ㎝인 전기 화학 반응기를 제조했다. Both the cathode and anode are composed of a graphite plate current collector and a graphite felt electrode (thickness: 2 T), a Nafion membrane (Chemours) is used as an ion exchange membrane, and an electrochemical reactor having an electrode area of 5 cm * 5 cm is manufactured. did.
양극 반응물로 4.1 M의 황산 수용액에 용해된 1 M 과산화 수소수 용액 50 mL를 제조했다. 100 mL 비커 2 개 각각에 제조예에서 준비한 바나듐 전해액 50 mL과 양극 반응물 50 mL를 넣었다. Master flex pump를 이용하여 전기 화학 반응기의 음극에는 상기 바나듐 전해액을 공급하고, 양극에는 상기 양극 반응물을 공급했으며, 각 공급 속도는 85 rpm으로 같았다. 약 1분 동안 순환을 유지한 다음, 전기 화학 반응기의 전류 밀도를 20 mA/㎝2로 설정하여 1.19 Ah의 전하를 인가했다. As an anode reactant, 50 mL of a 1 M hydrogen peroxide aqueous solution dissolved in a 4.1 M sulfuric acid aqueous solution was prepared. 50 mL of the vanadium electrolyte prepared in Preparation Example and 50 mL of the anode reactant were put into each of two 100 mL beakers. The vanadium electrolyte was supplied to the cathode of the electrochemical reactor using a master flex pump, and the anode reactant was supplied to the anode, and each supply speed was the same at 85 rpm. After maintaining the circulation for about 1 minute, a charge of 1.19 Ah was applied by setting the current density of the electrochemical reactor to 20 mA/cm 2 .
[비교예 3] - 3.5 가 바나듐 전해액[Comparative Example 3] - 3.5 valent vanadium electrolyte
Merck사의 Iridium black powder를 Chemours사의 Nafion 용액에 분산시켜서, Nafion의 함량이 10 중량%가 되는 슬러리를 제조했다. 해당 슬러리를 5 ㎝*5 ㎝ 크기의 다공성 티타늄 섬유 펠트(두께: 0.35 T)에 스프레이 방식으로 도포하여, 2 mg/㎝2의 이리듐을 코팅했다. Merck's Iridium black powder was dispersed in Chemours' Nafion solution to prepare a slurry having a Nafion content of 10% by weight. The slurry was applied to a porous titanium fiber felt (thickness: 0.35 T) having a size of 5 cm*5 cm by spraying, and coated with 2 mg/cm 2 of iridium.
이리듐으로 코팅한 티타늄 섬유 펠트를 양극으로, 코팅 처리 하지 않은 티타늄 섬유 펠트를 음극으로 하고, 양 전극 사이에 Chemours사의 Nafion 117 양이온 교환막을 배치시켰다. 이렇게 배치시킨 구조체를 핫 프레스에 넣고, 130 ℃ 및 100 atm에서 약 2분 동안 처리해서 막 전극 조립체를 얻었다. 상기 막 전극 조립체를 티타늄 메쉬와 티타늄 전구체로 구성된 전기 화학 반응기에 체결했다 (도 4 참조). An iridium-coated titanium fiber felt was used as an anode and an uncoated titanium fiber felt was used as a cathode, and Chemours Nafion 117 cation exchange membrane was placed between the two electrodes. The thus-arranged structure was placed in a hot press and treated at 130 DEG C and 100 atm for about 2 minutes to obtain a membrane electrode assembly. The membrane electrode assembly was fastened to an electrochemical reactor composed of a titanium mesh and a titanium precursor (see FIG. 4).
100 mL 비이커 2개를 준비하고 한 비이커에는 음극 반응물로 제조예의 바나듐 전해액 50 mL를 넣고, 다른 한 비이커에는 양극 반응물로 4.1 M 황산 수용액 50 mL를 넣었다. Two 100 mL beakers were prepared, and 50 mL of the vanadium electrolyte of Preparation Example was placed in one beaker as a cathode reactant, and 50 mL of 4.1 M sulfuric acid aqueous solution was placed in the other beaker as a cathode reactant.
Master flex pump를 이용하여 전기 화학 반응기의 음극에는 상기 바나듐 전해액을 공급하고, 양극에는 상기 양극 반응물을 공급했으며, 각 공급 속도는 85 rpm으로 같았다. 약 1분 동안 순환을 유지한 다음, 전기 화학 반응기의 전류 밀도를 20 mA/㎝2로 설정하여 1.19 Ah의 전하를 인가했다.The vanadium electrolyte was supplied to the cathode of the electrochemical reactor using a master flex pump, and the anode reactant was supplied to the anode, and each supply speed was the same at 85 rpm. After maintaining the circulation for about 1 minute, a charge of 1.19 Ah was applied by setting the current density of the electrochemical reactor to 20 mA/cm 2 .
[실시예 1] - 3.5 가 바나듐 전해액[Example 1] - 3.5 valent vanadium electrolyte
양극 반응물로 증류수 50mL를 100 mL 비이커에 넣고, 전기 화학 반응기의 전류 밀도를 300 mA/㎝2로 설정하여 1.19 Ah의 전하를 인가한 것을 제외하고는 비교예 3과 같은 과정을 진행했다. The same process as in Comparative Example 3 was performed except that 50 mL of distilled water as an anode reactant was put in a 100 mL beaker, and the current density of the electrochemical reactor was set to 300 mA/cm 2 to apply an electric charge of 1.19 Ah.
[실시예 2] - 3.5 가 바나듐 전해액[Example 2] - 3.5 valent vanadium electrolyte
양극 반응물로 증류수 50mL를 100 mL 비이커에 넣고, 전기 화학 반응기의 전류 밀도를 700 mA/㎝2로 설정하여 1.19 Ah의 전하를 인가한 것을 제외하고는 비교예 3과 같은 과정을 진행했다. The same process as in Comparative Example 3 was performed, except that 50 mL of distilled water as an anode reactant was put in a 100 mL beaker, and the current density of the electrochemical reactor was set to 700 mA/cm 2 to apply an electric charge of 1.19 Ah.
[실험예 1] - 전하량 계산[Experimental Example 1] - Charge calculation
4 가 바나듐 전해액의 환원 반응에 필요한 전하량은 하기 식 1에 따라 계산했다:The amount of charge required for the reduction reaction of the tetravalent vanadium electrolyte was calculated according to Equation 1 below:
[식 1][Equation 1]
Figure PCTKR2022018915-appb-img-000001
Figure PCTKR2022018915-appb-img-000001
[실험예 2] - 반응 소요 시간[Experimental Example 2] - Reaction Time
4 가 바나듐 전해액의 환원 반응에 필요한 시간은 인가 전하량과 전류 밀도에 따라 아래와 같이 계산했다:The time required for the reduction reaction of the tetravalent vanadium electrolyte was calculated as follows according to the applied charge and current density:
[식 2][Equation 2]
Figure PCTKR2022018915-appb-img-000002
Figure PCTKR2022018915-appb-img-000002
[실험예 3] - 양극 바나듐 크로스오버 측정[Experimental Example 3] - Anode vanadium crossover measurement
전기 화학 반응 후 양극에서의 바나듐 농도는 PerkinElmer 사의 유도 결합 플라즈마 방출 분광기를 이용하여 측정했다.After the electrochemical reaction, the vanadium concentration at the anode was measured using an inductively coupled plasma emission spectrometer from PerkinElmer.
[실험예 4] - 음극 바나듐 농도 측정[Experimental Example 4] - Measurement of negative vanadium concentration
전기 화학 반응 후 3.5 가 바나듐 전해액의 농도는 Metrohm 사의 Titrando 자동 전위차 적정 장치를 사용하여 측정했다. 구체적으로 0.2 M의 KMnO4 용액으로 1 mL의 바나듐 전해액을 산화시켜서 기준 전극의 전위가 급변하여 전위와 KMnO4 투입량의 2차 미분 값이 0이 되는 지점의 KMnO4의 용액 투입량을 바나듐 이온의 농도로 측정했다. 여기서 초기 바나듐 전해액 내 바나듐 농도와 KMnO4의 투입량은 하기 식 4와 같은 관계를 갖는다:After the electrochemical reaction, the concentration of the 3.5-valent vanadium electrolyte was measured using a Titrando automatic potentiometer from Metrohm. Specifically, by oxidizing 1 mL of vanadium electrolyte with 0.2 M KMnO 4 solution, the potential of the reference electrode changes rapidly, and the amount of KMnO 4 solution injected at the point where the second derivative of the potential and the amount of KMnO 4 becomes zero is the concentration of vanadium ions. was measured with Here, the vanadium concentration in the initial vanadium electrolyte and the input amount of KMnO 4 have a relationship as shown in Equation 4 below:
[식 4][Equation 4]
Figure PCTKR2022018915-appb-img-000003
Figure PCTKR2022018915-appb-img-000003
또한 3.5 가 바나듐 전해액에서 3 가 및 4 가 바나듐 (양이온)의 농도는 하기 식 5 및 식 6과 같은 관계를 갖는다:In addition, the concentrations of trivalent and tetravalent vanadium (positive ions) in the 3.5 valent vanadium electrolyte have the following relationships as shown in Equations 5 and 6:
[식 5][Equation 5]
Figure PCTKR2022018915-appb-img-000004
Figure PCTKR2022018915-appb-img-000004
[식 6][Equation 6]
Figure PCTKR2022018915-appb-img-000005
Figure PCTKR2022018915-appb-img-000005
상기 실시예 및 비교예에서의 반응 조건 및 결과를 하기 표 1에 기재했다.The reaction conditions and results in the above Examples and Comparative Examples are shown in Table 1 below.
구분division 비교예
1
comparative example
One
비교예
2
comparative example
2
비교예
3
comparative example
3
실시예
1
Example
One
실시예
2
Example
2
조건condition 전극 소재electrode material 흑연계graphite 흑연계graphite Ti계Ti-based Ti계Ti-based Ti계Ti-based
Cell 방식Cell method Non-MEANon-MEA Non-MEANon-MEA MEAMEA MEAMEA MEAMEA
음극 반응물cathode reactant 1.78M V4++
4.1M H2SO4
1.78M V4++
4.1MH 2 SO 4
1.78M V4+
+
4.1M H2SO4
1.78M V4+
+
4.1MH 2 SO 4
1.78M V4+
+
4.1M H2SO4
1.78M V4+
+
4.1MH 2 SO 4
1.78M V4+
+
4.1M H2SO4
1.78M V4+
+
4.1MH 2 SO 4
1.78M V4+
+
4.1M H2SO4
1.78M V4+
+
4.1MH 2 SO 4
양극 반응물anode reactant 1.78M V4+
+
4.1M H2SO4
1.78M V4+
+
4.1MH 2 SO 4
1M H2O2
+
4.1M H2SO4
1 M H 2 O 2
+
4.1MH 2 SO 4
4.1M H2SO4 4.1MH 2 SO 4 H2OH 2 O H2OH 2 O
전류 밀도
(mA/cm2)
current density
(mA/cm 2 )
2020 2020 2020 300300 700700
공급 전하량(Ah)Charge amount supplied (Ah) 1.191.19 1.191.19 1.191.19 1.191.19 1.191.19
결과result 평균 전압
(V)
average voltage
(V)
1.451.45 1.411.41 1.851.85 2.212.21 2.572.57
반응 소요 시간
(분)
reaction time
(minute)
142142 142142 142142 9.59.5 44
음극 V농도
(M)
Cathode V concentration
(M)
1.741.74 1.711.71 1.731.73 1.691.69 1.711.71
양극 V농도(ppm)Anode V concentration (ppm) -- 120120 9292 00 00
음극V3+비율(%)Cathode V 3+ ratio (%) 51.051.0 38.138.1 50.150.1 50.250.2 50.150.1
음극V4+비율(%)Cathode V 4+ ratio (%) 49.049.0 61.961.9 49.949.9 49.849.8 49.949.9
양극 생성물anode product V5+V5+ 산소Oxygen 산소Oxygen 산소Oxygen 산소Oxygen
Re-use 공정Re-use process 필요necessary 불필요Unnecessary 불필요Unnecessary 불필요Unnecessary 불필요Unnecessary
[평가 및 결론][Evaluation and Conclusion]
비교예 1은 양극 반응물로 4 가 바나듐 전해액을 사용한 것이다. 여기서는 음극-양극 사이의 바나듐 크로스오버가 발생했으며, 산화수 제어가 어려웠다. 또한 여기서 양극에 5 가 바나듐 전해액이 생성되어 재사용 공정이 별도로 요구됐다. 또한 전극으로 그래파이트가 사용됐으므로 최대 사용 전압이 1.6 V로 제한돼 전류 밀도를 높일 수 없었다.Comparative Example 1 uses a tetravalent vanadium electrolyte as an anode reactant. In this case, vanadium crossover occurred between cathode and anode, and it was difficult to control the oxidation number. Also, since a 5-valent vanadium electrolyte was generated at the anode, a separate reuse process was required. In addition, since graphite was used as the electrode, the maximum operating voltage was limited to 1.6 V, so the current density could not be increased.
비교예 2는 양극 반응물로 과산화수소를 사용해서 재사용 공정이 필요하지 않았다. 그러나, 비교예 2는 과산화수소의 일부가 이온교환막을 통해 음극으로 크로스오버돼 음극의 바나듐 이온을 산화시켜서 3 가 바나듐 이온의 비율이 상대적으로 낮았다. Comparative Example 2 did not require a reuse process because hydrogen peroxide was used as an anode reactant. However, in Comparative Example 2, a portion of hydrogen peroxide was crossover to the anode through the ion exchange membrane to oxidize vanadium ions in the anode, so the ratio of trivalent vanadium ions was relatively low.
비교예 3은 양극 반응물로 황산 수용액을 사용해서, 음극에서 양극으로 바나듐 이온이 크로스오버 결과, 바나듐 이온의 손실이 발생했다. Comparative Example 3 used an aqueous solution of sulfuric acid as a cathode reactant, and as a result of crossover of vanadium ions from the cathode to the anode, loss of vanadium ions occurred.
실시예 1은 반응 시간이 크게 감소했고, 음극 생성물에서의 3 가 바나듐 화합물과 4 가 바나듐 화합물의 비가 1:1에 가까웠다.In Example 1, the reaction time was greatly reduced, and the ratio of the trivalent vanadium compound to the tetravalent vanadium compound in the negative electrode product was close to 1:1.
실시예 2는 반응 시간이 비교예 대비 약 35배 단축됐고, 음극 생성물에서의 3 가 바나듐 양이온과 4 가 바나듐 양이온의 비가 더욱 1:1에 가까웠다.In Example 2, the reaction time was shortened by about 35 times compared to the comparative example, and the ratio of trivalent vanadium cations to tetravalent vanadium cations in the anode product was closer to 1:1.

Claims (4)

  1. 음극, 이온 교환막, 양극 촉매 및 양극을 상기 순서로 갖는 막 전극 조립체를 포함하는 반응기를 이용하여 바나듐 전해액을 제조하는 방법이고, A method for producing a vanadium electrolyte using a reactor comprising a membrane electrode assembly having a cathode, an ion exchange membrane, an anode catalyst, and an anode in the above order,
    4 가 바나듐 화합물을 포함하는 음극 반응물을 상기 반응기의 음극에 공급하고, 수성 용매를 포함하는 양극 반응물을 상기 반응기의 양극에 공급한 후, 상기 반응기에 전하를 인가하여 상기 음극에서 4 가 바나듐 화합물(V(IV)) 및 3 가 바나듐 화합물(V(III))을 4:6 내지 6:4(V(IV):V(III))의 부피 비율로 포함하는 생성물을 얻는 단계;를 포함하는, A cathode reactant containing a tetravalent vanadium compound is supplied to the cathode of the reactor, and a cathode reactant containing an aqueous solvent is supplied to the anode of the reactor, and then electric charge is applied to the reactor to generate a tetravalent vanadium compound ( obtaining a product comprising V(IV)) and a trivalent vanadium compound (V(III)) in a volume ratio of 4:6 to 6:4 (V(IV):V(III));
    바나듐 전해액의 제조 방법. A method for preparing a vanadium electrolyte.
  2. 제1 항에 있어서, According to claim 1,
    상기 막 전극 조립체에서 상기 음극과 상기 이온 교환막은 직접 접촉하는 것인, In the membrane electrode assembly, the cathode and the ion exchange membrane are in direct contact,
    바나듐 전해액의 제조 방법. A method for preparing a vanadium electrolyte.
  3. 제1 항에 있어서, According to claim 1,
    상기 수성 용매는 증류수인 것인, The aqueous solvent is distilled water,
    바나듐 전해액의 제조 방법. A method for preparing a vanadium electrolyte.
  4. 제1 항에 있어서, According to claim 1,
    상기 반응기에 인가하는 전하의 전류 밀도는 100 mA/㎝2 내지 1,000 mA/㎝2 범위 내인 것인, The current density of the charge applied to the reactor is in the range of 100 mA/cm 2 to 1,000 mA/cm 2 ,
    바나듐 전해액의 제조 방법.A method for preparing a vanadium electrolyte.
PCT/KR2022/018915 2021-11-30 2022-11-28 Method for preparing vanadium electrolyte solution WO2023101338A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0169168 2021-11-30
KR1020210169168A KR20230081268A (en) 2021-11-30 2021-11-30 Manufacturing method for vanadium electrolyte

Publications (1)

Publication Number Publication Date
WO2023101338A1 true WO2023101338A1 (en) 2023-06-08

Family

ID=86612588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018915 WO2023101338A1 (en) 2021-11-30 2022-11-28 Method for preparing vanadium electrolyte solution

Country Status (2)

Country Link
KR (1) KR20230081268A (en)
WO (1) WO2023101338A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003021A (en) * 2012-06-18 2014-01-09 Pangans Group Panzhihua Iron & Steel Research Institute Co Ltd Trivalent vanadium ion electrolyte, manufacturing method thereof and vanadium battery
KR20140026265A (en) * 2012-08-24 2014-03-05 현대중공업 주식회사 Method of manufacturing electrolyte for vanadium secondary battery and apparatus thereof
JP2016162524A (en) * 2015-02-27 2016-09-05 祐吉 濱村 Manufacturing method for electrolyte, electrolyte and manufacturing apparatus for electrolyte
JP2020126773A (en) * 2019-02-05 2020-08-20 Leシステム株式会社 Electrolytic solution manufacturing apparatus and electrolytic solution manufacturing method
KR102235379B1 (en) * 2020-08-28 2021-04-02 한국지질자원연구원 Method for manufacturing vanadium electrolyte, the vanadium electrolyte manufactured by the same and cell using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003021A (en) * 2012-06-18 2014-01-09 Pangans Group Panzhihua Iron & Steel Research Institute Co Ltd Trivalent vanadium ion electrolyte, manufacturing method thereof and vanadium battery
KR20140026265A (en) * 2012-08-24 2014-03-05 현대중공업 주식회사 Method of manufacturing electrolyte for vanadium secondary battery and apparatus thereof
JP2016162524A (en) * 2015-02-27 2016-09-05 祐吉 濱村 Manufacturing method for electrolyte, electrolyte and manufacturing apparatus for electrolyte
JP2020126773A (en) * 2019-02-05 2020-08-20 Leシステム株式会社 Electrolytic solution manufacturing apparatus and electrolytic solution manufacturing method
KR102235379B1 (en) * 2020-08-28 2021-04-02 한국지질자원연구원 Method for manufacturing vanadium electrolyte, the vanadium electrolyte manufactured by the same and cell using the same

Also Published As

Publication number Publication date
KR20230081268A (en) 2023-06-07

Similar Documents

Publication Publication Date Title
JP3514462B2 (en) Method of producing electrical energy in a fuel cell powered by biofuel
TW513824B (en) Bipolar plate for fuel cells
WO2017010814A1 (en) Method and apparatus for preparing reduced product of carbon dioxide by electrically reducing carbon dioxide
WO2019164356A1 (en) Method of preparing high-purity electrolyte solution for vanadium redox flow battery using catalytic reaction
CN1694292A (en) Proton conductor
DE102007060692B4 (en) Sulfonyl-grafted heterocycle materials for proton-conducting electrolytes
WO2023101338A1 (en) Method for preparing vanadium electrolyte solution
JP3262408B2 (en) Gas electrode manufacturing method
JP3035079B2 (en) Solid polymer electrolyte fuel cell
LU501769B1 (en) Carbon-based nitrogen doped mixed crystal catalytic electrode and preparation method thereof
JP3070769B2 (en) Method for activating fuel electrode of methanol fuel cell
US7977008B2 (en) High temperature proton exchange membrane using ionomer/solid proton conductor, preparation method thereof and fuel cell containing the same
WO2004063438A1 (en) Method for producing carbon fiber, catalyst structure and membrane electrode junction body for solid polymer fuel cell
WO2019135451A1 (en) Electrochemical hydrogenation reactor and method for producing hydride by using same
US3261716A (en) Method of operating a fuel cell containing a sulfuric-nitric acid electrolyte
WO2019227847A1 (en) Chitosan-based ionic conductive material containing purine structure and preparation method thereof
WO2019013373A1 (en) Radical scavenger composition for pemfc, radical scavenger for pemfc, and preparation method therefor
WO2015156525A1 (en) Solid oxide electrolysis cell for producing carbon monoxide, and manufacturing method therefor
WO2019206121A1 (en) Manufacturing method and device of flow battery electrolyte
WO2023101354A1 (en) Reactor for preparation of vanadium electrolyte
WO2022181875A1 (en) Water management apparatus in hydrogen production system using water electrolysis
WO2024025323A1 (en) Method for preparing vanadium-based electrolyte solution
WO2011068272A1 (en) Method for manufacturing a fuel cell
JP5105928B2 (en) FUEL CELL ELECTRODE, METHOD FOR PRODUCING FUEL CELL ELECTRODE, AND FUEL CELL
WO2018236094A1 (en) Polymer electrolyte membrane, electrochemical cell and flow cell each comprising same, composition for polymer electrolyte membrane, and method for preparing polymer electrolyte membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901696

Country of ref document: EP

Kind code of ref document: A1