WO2023101303A1 - 무선 통신 시스템에서 통신을 수행하는 방법 및 장치 - Google Patents
무선 통신 시스템에서 통신을 수행하는 방법 및 장치 Download PDFInfo
- Publication number
- WO2023101303A1 WO2023101303A1 PCT/KR2022/018615 KR2022018615W WO2023101303A1 WO 2023101303 A1 WO2023101303 A1 WO 2023101303A1 KR 2022018615 W KR2022018615 W KR 2022018615W WO 2023101303 A1 WO2023101303 A1 WO 2023101303A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- model
- information
- information block
- model group
- system information
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims abstract description 95
- 238000013473 artificial intelligence Methods 0.000 claims description 421
- 238000010801 machine learning Methods 0.000 claims description 399
- 230000015654 memory Effects 0.000 claims description 49
- 230000005540 biological transmission Effects 0.000 claims description 46
- 238000011156 evaluation Methods 0.000 claims description 6
- 238000013139 quantization Methods 0.000 claims description 5
- 238000011017 operating method Methods 0.000 claims 3
- 238000012549 training Methods 0.000 description 54
- 238000010586 diagram Methods 0.000 description 35
- 230000006870 function Effects 0.000 description 22
- 238000013528 artificial neural network Methods 0.000 description 20
- 239000010410 layer Substances 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 16
- 238000005259 measurement Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 10
- 238000013135 deep learning Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000013480 data collection Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 241000760358 Enodes Species 0.000 description 1
- 101150069124 RAN1 gene Proteins 0.000 description 1
- 101150014328 RAN2 gene Proteins 0.000 description 1
- 101150096310 SIB1 gene Proteins 0.000 description 1
- 101100355633 Salmo salar ran gene Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000009087 cell motility Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
- H04W72/231—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
- H04W72/232—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
Definitions
- the following description relates to a wireless communication system, and relates to a method and apparatus for performing communication in the wireless communication system. In particular, it relates to a method and apparatus for sharing artificial intelligence (AI)/machine learning (ML) models.
- AI artificial intelligence
- ML machine learning
- a wireless access system is widely deployed to provide various types of communication services such as voice and data.
- a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
- Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) system.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- eMBB enhanced mobile broadband
- RAT radio access technology
- MTC massive Machine Type Communications
- the present disclosure relates to a method and apparatus for performing communication in a wireless communication system.
- the present disclosure relates to a method and apparatus for sharing an AI/ML model in a wireless communication system.
- the present disclosure relates to a method and apparatus for sharing artificial intelligence (AI)/machine learning (ML) model information and update information from a base station to a terminal in a wireless communication system.
- AI artificial intelligence
- ML machine learning
- the present disclosure relates to a method and apparatus for configuring a hierarchical message to indicate AI/ML model information in a wireless communication system.
- the present disclosure relates to a method and apparatus for providing AI/ML model information based on an AI/ML model group in a wireless communication system.
- the terminal receiving a master information block (MIB) from a base station, obtaining a first system information block based on the received MIB, Acquiring a second system information block based on the system information block and performing communication with the base station based on the second system information block.
- the second system information block includes artificial intelligence (AI)/machine learning (ML) model group information and message information related to the AI/ML model group.
- the base station transmits a master information block (MIB), transmits a first system information block based on the MIB, and first system information It may include transmitting a second system information block based on the block and performing communication with the terminal based on the second system information block.
- the second system information block may include artificial intelligence (AI)/machine learning (ML) model group information and message information related to the AI/ML model group.
- the processor receives a master information block (MIB) from a base station using the transceiver, and the received MIB Acquiring a first system information block using the transceiver based on , obtaining a second system information block using the transceiver based on the first system information block, and establishing communication with the base station based on the second system information block.
- MIB master information block
- the second system information block may include artificial intelligence (AI)/machine learning (ML) model group information and message information related to the AI/ML model group.
- a base station of a wireless communication system includes a transceiver and a processor connected to the transceiver, the processor transmits a master information block (MIB) using the transceiver, and based on the MIB
- MIB master information block
- One system information block may be transmitted using the transceiver, based on the first system information block, a second system information block may be transmitted using the transceiver, and communication with the terminal may be performed based on the second system information block.
- the second system information block may include artificial intelligence (AI)/machine learning (ML) model group information and message information related to the AI/ML model group.
- AI artificial intelligence
- ML machine learning
- the at least one processor is capable of providing master information (MIB) from a base station. block), control the device to obtain a first system information block based on the received MIB, and control the device to obtain a second system information block based on the first system information block; and control the device to communicate with the base station based on the second system information block.
- the second system information block may include artificial intelligence (AI)/machine learning (ML) model group information and message information related to the AI/ML model group.
- At least one executable by a processor includes instructions of, wherein at least one instruction controls to receive a master information block (MIB) from the base station, controls to obtain a first system information block based on the received MIB, and controls to obtain a first system information block based on the first system information block control to acquire a second system information block, and control to perform communication with a base station based on the second system information block, wherein the second system information block is AI (artificial intelligence) / ML (machine learning) model group information and message information related to AI/ML model groups.
- MIB master information block
- AI artificial intelligence
- ML machine learning
- the AI/ML model group information included in the second system information block includes information on the number of AI/ML model groups, index information for each AI/ML model group, update instruction information for each AI/ML model group, AI / It may include at least one of effective region information for each ML model group and resource scheduling information for a message related to AI/ML model group.
- the number of AI/ML model groups is equal to the number of messages related to AI/ML model groups, and update instruction information for each AI/ML model group is 1 for each AI/ML model group.
- Bits can be set to bits corresponding to the number of AI/ML model groups.
- valid area information for each AI/ML model group may be indicated based on at least one of a Public Land Mobile Network (PLMN), a cell group area, and a cell.
- PLMN Public Land Mobile Network
- the terminal determines an effective region for each AI/ML model group, and at least one AI/ML model group among each AI/ML model group When out of the valid area, the terminal may update only one or more AI/ML model groups outside the valid area.
- the resource scheduling information for a message related to the AI / ML model group includes at least one of transmission window information and transmission time information in which a message related to the AI / ML model group is transmitted, but transmission The size of the transmission window may be indicated based on window information, and the transmission period and transmission offset value may be indicated based on transmission time information.
- the terminal receives a message related to at least one AI / ML model group based on message information related to the AI / ML model group, but the message related to the AI / ML model group is AI / ML It may include at least one of the number of AI/ML models in the model group, an index for each AI/ML model in the AI/ML model group, and feedback information related to AI/ML model performance.
- each AI/ML model and a radio resource control (RRC) information element (RE) may be connected based on an index for each AI/ML model in an AI/ML model group.
- RRC radio resource control
- the AI/ML model group includes at least one of performance evaluation data, AI/ML model type, AI/ML model quantization level coefficient, AI/ML model procedure, AI/ML capability, and AI/ML version. Can be grouped based on either.
- the UE when the UE performs initial access to a cell, the UE acquires the MIB and the first system information block, and when the second system information block is broadcast, the UE acquires the first system information The second system information block is acquired based on the block, and when the second system information block is not broadcast, the terminal may acquire the second system information block based on an on-demand request.
- the terminal when the terminal receives at least one of a short message and downlink control information (DCI) after the terminal receives AI / ML model information, the second system information block
- the short message and DCI may include information indicating AI/ML model update.
- information indicating AI/ML model update may be set for each AI/ML model group.
- a method for sharing an AI/ML model may be provided.
- a base station may provide a method for sharing artificial intelligence (AI)/machine learning (ML) model information and update information with a terminal.
- AI artificial intelligence
- ML machine learning
- a hierarchical message may be configured to indicate AI/ML model information.
- AI/ML model information may be provided based on AI/ML model groups.
- FIG. 1 is a diagram illustrating an exemplary communication system according to an embodiment of the present disclosure.
- FIG. 2 is a diagram showing an example of a wireless device according to an embodiment of the present disclosure.
- FIG. 3 is a diagram illustrating another example of a wireless device according to an embodiment of the present disclosure.
- AI Artificial Intelligence
- FIG. 5 is a diagram illustrating a functional framework according to an embodiment of the present disclosure.
- FIG. 6 is a diagram illustrating a method of generating an AI/ML-based model inference output according to an embodiment of the present disclosure.
- FIG. 7 is a diagram illustrating a method of generating an AI/ML-based model inference output according to an embodiment of the present disclosure.
- FIG. 8 is a diagram illustrating a case in which both model training and model inference exist in the RAN according to an embodiment of the present disclosure.
- FIG. 9 is a diagram illustrating a method in which AI/ML-based model training is performed in a network and model inference is performed in a terminal according to an embodiment of the present disclosure.
- FIG. 10 is a diagram illustrating a method in which AI/ML-based model training is performed in a network and model inference is performed in a network and a terminal according to an embodiment of the present disclosure.
- FIG. 11 is a diagram illustrating a first message transmission method according to an embodiment of the present disclosure.
- FIG. 12 is a diagram illustrating a method of transmitting an AI/ML model group based message according to an embodiment of the present disclosure.
- FIG. 13 is a diagram illustrating a method of acquiring AI/ML model information when a terminal initially enters a cell according to an embodiment of the present disclosure.
- FIG. 14 is a diagram illustrating an operation of receiving updated AI/ML model information by a terminal that has once received AI/ML model information according to an embodiment of the present disclosure.
- 15 is a diagram illustrating operation of a terminal according to an embodiment of the present disclosure.
- 16 is a diagram illustrating an operation of a base station according to an embodiment of the present disclosure.
- each component or feature may be considered optional unless explicitly stated otherwise.
- Each component or feature may be implemented in a form not combined with other components or features.
- an embodiment of the present disclosure may be configured by combining some elements and/or features. The order of operations described in the embodiments of the present disclosure may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
- a base station has meaning as a terminal node of a network that directly communicates with a mobile station.
- a specific operation described as being performed by a base station in this document may be performed by an upper node of the base station in some cases.
- the 'base station' is a term such as a fixed station, Node B, eNode B, gNode B, ng-eNB, advanced base station (ABS), or access point. can be replaced by
- a terminal includes a user equipment (UE), a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), It may be replaced with terms such as mobile terminal or advanced mobile station (AMS).
- UE user equipment
- MS mobile station
- SS subscriber station
- MSS mobile subscriber station
- AMS advanced mobile station
- the transmitting end refers to a fixed and/or mobile node providing data service or voice service
- the receiving end refers to a fixed and/or mobile node receiving data service or voice service. Therefore, in the case of uplink, the mobile station can be a transmitter and the base station can be a receiver. Similarly, in the case of downlink, the mobile station may be a receiving end and the base station may be a transmitting end.
- Embodiments of the present disclosure are wireless access systems, such as an IEEE 802.xx system, a 3rd Generation Partnership Project (3GPP) system, a 3GPP Long Term Evolution (LTE) system, a 3GPP 5G (5th generation) NR (New Radio) system, and a 3GPP2 system. It may be supported by at least one disclosed standard document, and in particular, the embodiments of the present disclosure are supported by 3GPP technical specification (TS) 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents It can be.
- 3GPP technical specification TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents It can be.
- embodiments of the present disclosure may be applied to other wireless access systems, and are not limited to the above-described systems.
- it may also be applicable to a system applied after the 3GPP 5G NR system, and is not limited to a specific system.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- LTE is 3GPP TS 36.xxx Release 8 or later
- LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A
- xxx Release 13 may be referred to as LTE-A pro.
- 3GPP NR may mean technology after TS 38.xxx Release 15.
- 3GPP 6G may mean technology after TS Release 17 and/or Release 18.
- "xxx" means a standard document detail number.
- LTE/NR/6G may be collectively referred to as a 3GPP system.
- FIG. 1 is a diagram illustrating an example of a communication system applied to the present disclosure.
- a communication system 100 applied to the present disclosure includes a wireless device, a base station, and a network.
- the wireless device means a device that performs communication using a radio access technology (eg, 5G NR, LTE), and may be referred to as a communication/wireless/5G device.
- the wireless device includes a robot 100a, a vehicle 100b-1 and 100b-2, an extended reality (XR) device 100c, a hand-held device 100d, and a home appliance. appliance) 100e, Internet of Thing (IoT) device 100f, and artificial intelligence (AI) device/server 100g.
- a radio access technology eg, 5G NR, LTE
- XR extended reality
- IoT Internet of Thing
- AI artificial intelligence
- the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
- the vehicles 100b-1 and 100b-2 may include an unmanned aerial vehicle (UAV) (eg, a drone).
- UAV unmanned aerial vehicle
- the XR device 100c includes augmented reality (AR)/virtual reality (VR)/mixed reality (MR) devices, and includes a head-mounted device (HMD), a head-up display (HUD) installed in a vehicle, a television, It may be implemented in the form of smart phones, computers, wearable devices, home appliances, digital signage, vehicles, robots, and the like.
- the mobile device 100d may include a smart phone, a smart pad, a wearable device (eg, a smart watch, a smart glass), a computer (eg, a laptop computer), and the like.
- the home appliance 100e may include a TV, a refrigerator, a washing machine, and the like.
- the IoT device 100f may include a sensor, a smart meter, and the like.
- the base station 120 and the network 130 may also be implemented as a wireless device, and a specific wireless device 120a may operate as a base station/network node to other wireless devices.
- the wireless devices 100a to 100f may be connected to the network 130 through the base station 120 .
- AI technology may be applied to the wireless devices 100a to 100f, and the wireless devices 100a to 100f may be connected to the AI server 100g through the network 130.
- the network 130 may be configured using a 3G network, a 4G (eg LTE) network, or a 5G (eg NR) network.
- the wireless devices 100a to 100f may communicate with each other through the base station 120/network 130, but communicate directly without going through the base station 120/network 130 (e.g., sidelink communication). You may.
- the vehicles 100b-1 and 100b-2 may perform direct communication (eg, vehicle to vehicle (V2V)/vehicle to everything (V2X) communication).
- the IoT device 100f eg, sensor
- the IoT device 100f may directly communicate with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
- FIG. 2 is a diagram illustrating an example of a wireless device applicable to the present disclosure.
- a first wireless device 200a and a second wireless device 200b may transmit and receive radio signals through various wireless access technologies (eg, LTE and NR).
- ⁇ the first wireless device 200a, the second wireless device 200b ⁇ denotes the ⁇ wireless device 100x and the base station 120 ⁇ of FIG. 1 and/or the ⁇ wireless device 100x and the wireless device 100x.
- ⁇ can correspond.
- the first wireless device 200a includes one or more processors 202a and one or more memories 204a, and may further include one or more transceivers 206a and/or one or more antennas 208a.
- the processor 202a controls the memory 204a and/or the transceiver 206a and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed herein.
- the processor 202a may process information in the memory 204a to generate first information/signal, and transmit a radio signal including the first information/signal through the transceiver 206a.
- the processor 202a may receive a radio signal including the second information/signal through the transceiver 206a and store information obtained from signal processing of the second information/signal in the memory 204a.
- the memory 204a may be connected to the processor 202a and may store various information related to the operation of the processor 202a.
- memory 204a may perform some or all of the processes controlled by processor 202a, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein. It may store software codes including them.
- the processor 202a and the memory 204a may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
- the transceiver 206a may be coupled to the processor 202a and may transmit and/or receive wireless signals through one or more antennas 208a.
- the transceiver 206a may include a transmitter and/or a receiver.
- the transceiver 206a may be used interchangeably with a radio frequency (RF) unit.
- RF radio frequency
- a wireless device may mean a communication modem/circuit/chip.
- the second wireless device 200b includes one or more processors 202b, one or more memories 204b, and may further include one or more transceivers 206b and/or one or more antennas 208b.
- the processor 202b controls the memory 204b and/or the transceiver 206b and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed herein.
- the processor 202b may process information in the memory 204b to generate third information/signal, and transmit a radio signal including the third information/signal through the transceiver 206b.
- the processor 202b may receive a radio signal including the fourth information/signal through the transceiver 206b and store information obtained from signal processing of the fourth information/signal in the memory 204b.
- the memory 204b may be connected to the processor 202b and may store various information related to the operation of the processor 202b.
- the memory 204b may perform some or all of the processes controlled by the processor 202b, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein. It may store software codes including them.
- the processor 202b and the memory 204b may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
- the transceiver 206b may be coupled to the processor 202b and may transmit and/or receive wireless signals through one or more antennas 208b.
- the transceiver 206b may include a transmitter and/or a receiver.
- the transceiver 206b may be used interchangeably with an RF unit.
- a wireless device may mean a communication modem/circuit/chip.
- one or more protocol layers may be implemented by one or more processors 202a, 202b.
- the one or more processors 202a and 202b may include one or more layers (eg, PHY (physical), MAC (media access control), RLC (radio link control), PDCP (packet data convergence protocol), RRC (radio resource) control) and functional layers such as service data adaptation protocol (SDAP).
- One or more processors 202a, 202b may generate one or more protocol data units (PDUs) and/or one or more service data units (SDUs) according to the descriptions, functions, procedures, proposals, methods, and/or operational flow charts disclosed herein.
- PDUs protocol data units
- SDUs service data units
- processors 202a, 202b may generate messages, control information, data or information according to the descriptions, functions, procedures, proposals, methods and/or operational flow diagrams disclosed herein.
- One or more processors 202a, 202b generate PDUs, SDUs, messages, control information, data or signals (eg, baseband signals) containing information according to the functions, procedures, proposals and/or methods disclosed herein , may be provided to one or more transceivers 206a and 206b.
- One or more processors 202a, 202b may receive signals (eg, baseband signals) from one or more transceivers 206a, 206b, and descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein PDUs, SDUs, messages, control information, data or information can be obtained according to these.
- signals eg, baseband signals
- One or more processors 202a, 202b may be referred to as a controller, microcontroller, microprocessor or microcomputer.
- One or more processors 202a, 202b may be implemented by hardware, firmware, software, or a combination thereof.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- firmware or software may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
- Firmware or software configured to perform the descriptions, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document may be included in one or more processors 202a or 202b or stored in one or more memories 204a or 204b. It can be driven by the above processors 202a and 202b.
- the descriptions, functions, procedures, suggestions, methods and/or operational flow charts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
- One or more memories 204a, 204b may be coupled to one or more processors 202a, 202b and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
- One or more memories 204a, 204b may include read only memory (ROM), random access memory (RAM), erasable programmable read only memory (EPROM), flash memory, hard drive, registers, cache memory, computer readable storage media, and/or It may consist of a combination of these.
- One or more memories 204a, 204b may be located internally and/or externally to one or more processors 202a, 202b.
- one or more memories 204a, 204b may be connected to one or more processors 202a, 202b through various technologies such as wired or wireless connections.
- One or more transceivers 206a, 206b may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flow charts of this document to one or more other devices.
- One or more transceivers 206a, 206b may receive user data, control information, radio signals/channels, etc. referred to in descriptions, functions, procedures, proposals, methods and/or operational flow charts, etc. disclosed herein from one or more other devices. there is.
- one or more transceivers 206a and 206b may be connected to one or more processors 202a and 202b and transmit and receive radio signals.
- one or more processors 202a, 202b may control one or more transceivers 206a, 206b to transmit user data, control information, or radio signals to one or more other devices.
- one or more processors 202a, 202b may control one or more transceivers 206a, 206b to receive user data, control information, or radio signals from one or more other devices.
- one or more transceivers 206a, 206b may be coupled to one or more antennas 208a, 208b, and one or more transceivers 206a, 206b may be connected to one or more antennas 208a, 208b to achieve the descriptions, functions disclosed in this document.
- one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
- One or more transceivers (206a, 206b) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (202a, 202b), the received radio signal / channel, etc. in the RF band signal It can be converted into a baseband signal.
- One or more transceivers 206a and 206b may convert user data, control information, and radio signals/channels processed by one or more processors 202a and 202b from baseband signals to RF band signals.
- one or more transceivers 206a, 206b may include (analog) oscillators and/or filters.
- FIG. 3 is a diagram illustrating another example of a wireless device applied to the present disclosure.
- a wireless device 300 corresponds to the wireless devices 200a and 200b of FIG. 2, and includes various elements, components, units/units, and/or modules. ) can be configured.
- the wireless device 300 may include a communication unit 310, a control unit 320, a memory unit 330, and an additional element 340.
- the communication unit may include communication circuitry 312 and transceiver(s) 314 .
- communication circuitry 312 may include one or more processors 202a, 202b of FIG. 2 and/or one or more memories 204a, 204b.
- transceiver(s) 314 may include one or more transceivers 206a, 206b of FIG.
- the control unit 320 is electrically connected to the communication unit 310, the memory unit 330, and the additional element 340 and controls overall operations of the wireless device. For example, the control unit 320 may control electrical/mechanical operations of the wireless device based on programs/codes/commands/information stored in the memory unit 330. In addition, the control unit 320 transmits the information stored in the memory unit 330 to the outside (eg, another communication device) through the communication unit 310 through a wireless/wired interface, or transmits the information stored in the memory unit 330 to the outside (eg, another communication device) through the communication unit 310. Information received through a wireless/wired interface from other communication devices) may be stored in the memory unit 330 .
- the additional element 340 may be configured in various ways according to the type of wireless device.
- the additional element 340 may include at least one of a power unit/battery, an input/output unit, a driving unit, and a computing unit.
- the wireless device 300 may be a robot (FIG. 1, 100a), a vehicle (FIG. 1, 100b-1, 100b-2), an XR device (FIG. 1, 100c), a mobile device (FIG. 1, 100d) ), home appliances (FIG. 1, 100e), IoT devices (FIG.
- Wireless devices can be mobile or used in a fixed location depending on the use-case/service.
- various elements, components, units/units, and/or modules in the wireless device 300 may be entirely interconnected through a wired interface or at least partially connected wirelessly through the communication unit 310 .
- the control unit 320 and the communication unit 310 are connected by wire, and the control unit 320 and the first units (eg, 130 and 140) are connected wirelessly through the communication unit 310.
- each element, component, unit/unit, and/or module within wireless device 300 may further include one or more elements.
- the control unit 320 may be composed of one or more processor sets.
- control unit 320 may include a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like.
- memory unit 330 may include RAM, dynamic RAM (DRAM), ROM, flash memory, volatile memory, non-volatile memory, and/or combinations thereof. can be configured.
- AI devices include TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, vehicles, etc. It may be implemented as a device or a movable device.
- the AI device 600 includes a communication unit 610, a control unit 620, a memory unit 630, an input/output unit 640a/640b, a running processor unit 640c, and a sensor unit 640d.
- a communication unit 610 can include a communication unit 610, a control unit 620, a memory unit 630, an input/output unit 640a/640b, a running processor unit 640c, and a sensor unit 640d.
- Blocks 910 to 930/940a to 940d may respectively correspond to blocks 310 to 330/340 of FIG. 3 .
- the communication unit 610 communicates wired and wireless signals (eg, sensor information, user data) with external devices such as other AI devices (eg, FIG. 1, 100x, 120, and 140) or AI servers (Fig. input, learning model, control signal, etc.) can be transmitted and received. To this end, the communication unit 610 may transmit information in the memory unit 630 to an external device or transmit a signal received from the external device to the memory unit 630 .
- external devices eg, sensor information, user data
- AI devices eg, FIG. 1, 100x, 120, and 140
- AI servers Fig. input, learning model, control signal, etc.
- the controller 620 may determine at least one executable operation of the AI device 600 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. And, the controller 620 may perform the determined operation by controlling components of the AI device 600 . For example, the control unit 620 may request, retrieve, receive, or utilize data from the learning processor unit 640c or the memory unit 630, and may perform a predicted operation among at least one feasible operation or one determined to be desirable. Components of the AI device 600 may be controlled to execute an operation. In addition, the control unit 920 collects history information including user feedback on the operation contents or operation of the AI device 600 and stores it in the memory unit 630 or the running processor unit 640c, or the AI server ( 1, 140) can be transmitted to an external device. The collected history information can be used to update the learning model.
- the memory unit 630 may store data supporting various functions of the AI device 600 .
- the memory unit 630 may store data obtained from the input unit 640a, data obtained from the communication unit 610, output data of the learning processor unit 640c, and data obtained from the sensing unit 640.
- the memory unit 930 may store control information and/or software codes required for operation/execution of the control unit 620 .
- the input unit 640a may obtain various types of data from the outside of the AI device 600.
- the input unit 620 may obtain learning data for model learning and input data to which the learning model is to be applied.
- the input unit 640a may include a camera, a microphone, and/or a user input unit.
- the output unit 640b may generate an output related to sight, hearing, or touch.
- the output unit 640b may include a display unit, a speaker, and/or a haptic module.
- the sensing unit 640 may obtain at least one of internal information of the AI device 600, surrounding environment information of the AI device 600, and user information by using various sensors.
- the sensing unit 640 may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. there is.
- the learning processor unit 640c may learn a model composed of an artificial neural network using learning data.
- the running processor unit 640c may perform AI processing together with the running processor unit of the AI server (FIG. 1, 140).
- the learning processor unit 640c may process information received from an external device through the communication unit 610 and/or information stored in the memory unit 630 .
- the output value of the learning processor unit 940c may be transmitted to an external device through the communication unit 610 and/or stored in the memory unit 630.
- 6G (radio communications) systems are characterized by (i) very high data rates per device, (ii) very large number of connected devices, (iii) global connectivity, (iv) very low latency, (v) battery- It aims to lower energy consumption of battery-free IoT devices, (vi) ultra-reliable connectivity, and (vii) connected intelligence with machine learning capabilities.
- the vision of the 6G system can be four aspects such as “intelligent connectivity”, “deep connectivity”, “holographic connectivity”, and “ubiquitous connectivity”, and the 6G system can satisfy the requirements shown in Table 1 below. That is, Table 1 is a table showing the requirements of the 6G system.
- the 6G system is enhanced mobile broadband (eMBB), ultra-reliable low latency communications (URLLC), mMTC (massive machine type communications), AI integrated communication, tactile Internet (tactile internet), high throughput, high network capacity, high energy efficiency, low backhaul and access network congestion and improved data security ( can have key factors such as enhanced data security.
- eMBB enhanced mobile broadband
- URLLC ultra-reliable low latency communications
- mMTC massive machine type communications
- AI integrated communication e.g., AI integrated communication
- tactile Internet tactile internet
- high throughput high network capacity
- high energy efficiency high backhaul and access network congestion
- improved data security can have key factors such as enhanced data security.
- AI The most important and newly introduced technology for the 6G system is AI.
- AI was not involved in the 4G system.
- 5G systems will support partial or very limited AI.
- the 6G system will be AI-enabled for full automation.
- Advances in machine learning will create more intelligent networks for real-time communication in 6G.
- Introducing AI in communications can simplify and enhance real-time data transmission.
- AI can use a plethora of analytics to determine how complex target tasks are performed. In other words, AI can increase efficiency and reduce processing delays.
- AI can also play an important role in M2M, machine-to-human and human-to-machine communications.
- AI can be a rapid communication in the brain computer interface (BCI).
- BCI brain computer interface
- AI-based communication systems can be supported by metamaterials, intelligent structures, intelligent networks, intelligent devices, intelligent cognitive radios, self-sustaining wireless networks, and machine learning.
- AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in fundamental signal processing and communication mechanisms. For example, deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based multiple input multiple output (MIMO) mechanism, It may include AI-based resource scheduling and allocation.
- MIMO multiple input multiple output
- machine learning may be used for channel estimation and channel tracking, and may be used for power allocation, interference cancellation, and the like in a downlink (DL) physical layer.
- Machine learning can also be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
- AI algorithms based on deep learning require a lot of training data to optimize training parameters.
- a lot of training data is used offline. This is because static training on training data in a specific channel environment may cause a contradiction between dynamic characteristics and diversity of a radio channel.
- Machine learning refers to a set of actions that train a machine to create a machine that can do tasks that humans can or cannot do.
- Machine learning requires data and a running model.
- data learning methods can be largely classified into three types: supervised learning, unsupervised learning, and reinforcement learning.
- Neural network training is aimed at minimizing errors in the output.
- Neural network learning repeatedly inputs training data to the neural network, calculates the output of the neural network for the training data and the error of the target, and backpropagates the error of the neural network from the output layer of the neural network to the input layer in a direction to reduce the error. ) to update the weight of each node in the neural network.
- Supervised learning uses training data in which correct answers are labeled in the learning data, and unsupervised learning may not have correct answers labeled in the learning data. That is, for example, learning data in the case of supervised learning related to data classification may be data in which each learning data is labeled with a category. Labeled training data is input to the neural network, and an error may be calculated by comparing the output (category) of the neural network and the label of the training data. The calculated error is back-propagated in a reverse direction (ie, from the output layer to the input layer) in the neural network, and the connection weight of each node of each layer of the neural network may be updated according to the back-propagation.
- a reverse direction ie, from the output layer to the input layer
- the amount of change in the connection weight of each updated node may be determined according to a learning rate.
- the neural network's computation of input data and backpropagation of errors can constitute a learning cycle (epoch).
- the learning rate may be applied differently according to the number of iterations of the learning cycle of the neural network. For example, a high learning rate is used in the early stages of neural network learning to increase efficiency by allowing the neural network to quickly achieve a certain level of performance, and a low learning rate can be used in the late stage to increase accuracy.
- the learning method may vary depending on the characteristics of the data. For example, in a case where the purpose of the receiver is to accurately predict data transmitted by the transmitter in a communication system, it is preferable to perform learning using supervised learning rather than unsupervised learning or reinforcement learning.
- the learning model corresponds to the human brain, and the most basic linear model can be considered. ) is called
- the neural network cord used as a learning method is largely divided into deep neural networks (DNN), convolutional deep neural networks (CNN), and recurrent boltzmann machine (RNN). and this learning model can be applied.
- DNN deep neural networks
- CNN convolutional deep neural networks
- RNN recurrent boltzmann machine
- FIG. 5 is a diagram illustrating a functional framework. Communication may be performed based on AI/ML enabled RAN intelligence.
- AI/ML algorithms may be configured in various forms.
- an AI/ML-based operation may be performed according to an AI/ML functional configuration and corresponding inputs and outputs based on an AI/ML model pre-configured according to an AI/ML algorithm.
- the data collection entity 510 may provide input data to a model training entity 540 and a model inference entity 520 .
- the input data may include at least one of a measurement value by another network entity, a feedback value by terminals, and a feedback value for an output of the AI/ML model.
- the training data provided by the data collection entity 510 to the model training entity 540 may be data provided for an AI/ML model training function.
- inference data provided by the data collection entity 510 to the model inference entity 520 may be data provided for an AI/ML model inference function.
- the model training entity 540 may be an entity that performs training, validation, and testing of AI/ML models.
- the model training entity 540 may provide and update AI/ML models to the model inference entity 520 . Additionally, the model inference entity 520 may provide model performance feedback to the model training entity 540 . That is, the model training entity 540 performs training on the AI/ML model through the feedback of the model inference entity 520, and provides the updated AI/ML model back to the model inference entity 520. can do. In addition, the model inference entity 520 may receive inference data from the data collection entity 510 . Here, the model inference entity 520 may generate an output through the provided AI/ML model and provide it to the actor entity 530.
- the actor entity 530 may be a subject that performs an operation according to an output, and the operation performed by the actor entity 530 may be fed back to the data collection entity 510 . Additionally, the fed back information may be provided back to the model training entity 540 as training data.
- data for AI/ML model training is provided so that the AI/ML model is learned and built, and inference data is provided and output to the built AI/ML model so that AI/ML model-based operations can be performed.
- FIG. 6 is a diagram illustrating a method of generating an AI/ML-based model inference output applicable to the present disclosure.
- an NG-RAN node (NG-RAN node 1, 620) may have an AI/ML model.
- the model inference of FIG. 5 may exist in NG-RAN node 1 620, and training may be performed in OAM 640. That is, training for the AI/ML model may not be performed at the RAN node, and the RAN node may have only model inference.
- NG-RAN node 1 620 may receive data for AI/ML model inference based on network energy saving as required input data from another NG-RAN node 2 630.
- NG-RAN node 2 630 may also have a model inference for an AI/ML model, and may not be essential.
- the NG-RAN node 1 620 may obtain measurement information from the terminal 610.
- NG-RAN node 1 620 may generate an output for model inference based on measurement data obtained from terminal 610 and data obtained from NG-RAN node 2 630 .
- the output for the model inference may be an energy saving strategy or a handover strategy. That is, NG-RAN node 1 620 may perform handover or other operations for the terminal based on the model inference output, and is not limited to a specific embodiment.
- at least one of NG-RAN node 1 620 and NG-RAN node 2 630 may transmit feedback to OAM 640, and training may be performed based on the feedback in OAM 640 there is.
- NG-RAN node 1 720 may directly perform model training. Specifically, NG-RAN node 1 720 may receive data for AI/ML model inference based on network energy saving as required input data from another NG-RAN node 2 730. For example, NG-RAN node 2 730 may also have a model inference for an AI/ML model, and may not be essential. After that, the NG-RAN node 1 720 may obtain measurement information from the terminal 710.
- NG-RAN node 1 720 may generate an output for model inference based on measurement data obtained from terminal 710 and data obtained from NG-RAN node 2 730 .
- the output for the model inference may be an energy saving strategy or a handover strategy. That is, NG-RAN node 1 7620 may perform handover or other operations for the UE based on model inference out, and is not limited to a specific embodiment.
- NG-RAN node 1 720 since NG-RAN node 1 720 has model training, it can directly perform training. To this end, NG-RAN node 1 720 may obtain feedback information from NG-RAN node 2 730, and through this, training may be performed directly.
- the NG-RAN may require input data for AI/ML-based network energy saving.
- the input data may include at least one of current or expected resource states of cells and adjacent nodes, current or predicted energy information of cells and adjacent nodes, and UE measurement reports (e.g. UE RSRP, RSRQ, SINR measurement, etc.) there is.
- UE measurement reports e.g. UE RSRP, RSRQ, SINR measurement, etc.
- the RAN may reuse the existing framework (including MDT and RRM measurement), and is not limited to a specific embodiment.
- the output information for AI / ML-based network energy saving may include at least one of an energy saving strategy, a handover strategy including a recommended candidate cell for traffic handover, and expected energy information, but is limited to it may not be
- the performance of the model may be optimized for AI/ML-based network energy saving.
- the RAN node may acquire at least one of load measurement information and energy information as feedback information, but may not be limited thereto.
- an AI/ML model may be considered for load balancing.
- traffic distribution may not be easy due to the rapid increase in traffic used in commercial networks and multiple frequency bands, and an AI/ML model may be considered for load balancing.
- Load balancing can be to evenly distribute the load between cells and between cell areas, or to transfer a portion of the traffic or offload the load in a congested cell or congested area of a cell.
- load balancing may be performed through optimization of handover parameters and handover operation.
- the traffic load and resource conditions of the network may cause degradation of service quality when a plurality of terminals with high mobility are connected. Therefore, it may be difficult to guarantee overall network and service performance when performing load balancing, and for this purpose, AI/ML models may be applied.
- model training may be located in OAM and model inference may exist in a base station.
- both model training and model inference may exist in the base station.
- model training may exist in OAM and model inference may exist in gNB-CU.
- model training and model inference may exist in the gNB-CU.
- model training and model inference may exist in various locations and are not limited to a specific embodiment.
- a gNB may request a load estimate from a neighboring node. If existing UE measurement is required at the gNB for AI/ML-based load balancing, the RAN may reuse the existing framework (including MDT and RRM measurement), but may not be limited thereto.
- existing framework including MDT and RRM measurement
- an AI/ML model may be considered for mobility optimization.
- Mobility management may be a method of ensuring service continuity during mobility by minimizing call drop, radio link failure (RLF), unnecessary handover, and ping-pong.
- RLF radio link failure
- the handover frequency between nodes of a terminal may increase.
- the handover frequency of terminals with high mobility may further increase.
- QoE is sensitive to handover performance, so mobility management needs to avoid failed handovers and reduce latency during handover procedures.
- AI/ML models can be considered.
- the unintended event probability reduction, terminal location/mobility/performance prediction, and traffic steering may be performed using AI/ML.
- the unintended event may be too late handover, too early handover, and handover operation to another cell of the UE in the intra system, but may not be limited thereto.
- the location/mobility/performance prediction of the terminal may be performed by determining the best mobility target for maximizing efficiency and performance.
- Traffic steering may mean adjusting a handover trigger point based on efficient resource processing and selecting an optimal cell combination to serve a user.
- an AI/ML model may be required in consideration of the above-described operation.
- model training based on the AI/ML model is deployed in OAM and model inference exists in RAN may be considered, which may be the same as in FIG. 6 described above.
- both model training and model inference based on the AI/ML model may exist in the RAN, which may be as shown in FIG. 7 .
- model training may be located in CU-CP or OAM, and model inference may be located in CU-CP, but may not be limited thereto.
- FIG. 8 is a diagram illustrating a case in which both model training and model inference applicable to the present disclosure exist in the RAN.
- NG-RAN node 1 820 may have both model training and model inference.
- the NG-RAN node 1 820 provides measurement configuration information to the terminal 810, and based on this, the terminal 810 may perform measurement and deliver a measurement report to the NG-RAN node 1 820. . Then, NG-RAN node 1 820 may perform model training.
- NG-RAN node 1 820 may derive an output by performing model inference based on the measurement report received from the terminal 810.
- the output may be an operation for load balancing or mobility optimization as described above.
- NG-RAN node 1 820 may request handover to NG-RAN node 2 830 or perform other operations, but is not limited to a specific embodiment. don't
- an AI/ML-based operation can be performed in a new communication system (e.g. 6G).
- AI/ML technology includes not only network technology, but also CSI feedback enhancement, beam management, positioning, RS overhead reduction, and RRM mobility enhancement (RRM). mobility enhancement), but may not be limited to a specific field.
- RRM mobility enhancement
- AI/ML can be applied to improve the technical fields of the PHY layer and the MAC/RRC layer between the terminal and the base station, and methods for this will be described below.
- a scenario for improvement in an air interface such as RAN1/RAN2 through an AI/ML model may be shown in Table 2 below.
- a scenario in which performance is improved by implementing an AI/ML model in at least one of a network and a terminal (case 1), an AI/ML model independently implemented in at least one of a network and a terminal and input/output (input/output) /output) to improve performance (case 2) and a scenario (case 3) to improve performance through sharing of AI/ML models implemented in networks or terminals.
- case 3 a method of performing model training and model inference based on a scenario in which performance is improved through sharing of an AI/ML model implemented in a network or a terminal will be described. More specifically, model training may be performed in a network, and model inference may be a terminal or a scenario simultaneously performed in a terminal and a network, but may not be limited thereto.
- FIG. 9 is a diagram illustrating a method in which AI/ML-based model training applicable to the present disclosure is performed in a network and model inference is performed in a terminal.
- 10 is a diagram illustrating a method in which AI/ML-based model training applicable to the present disclosure is performed in a network and model inference is performed in a network and a terminal.
- the network can collect various information from terminals.
- the network may deploy a model that has been primarily trained, validated, and tested through offline learning based on information collected from terminals.
- the network needs to share the built AI/ML model to terminals in the cell.
- the network may share a shared model to terminals through synchronization, and based on this, may operate through the same model.
- model update is required through model performance feedback or additional information (e.g., UE behavior such as RLF, BFR..)
- the network refreshes the updated AI/ML model to the terminals after model update.
- model update may also include online learning on the network side.
- a terminal having AI/ML capabilities within a cell may perform communication based on the received AI/ML model, and through this, improved communication may be performed.
- the base station 920 may share AI/ML model information built based on model training with the terminal 910.
- the terminal 910 may derive an output through model inference of the shared AI/ML model and perform an action corresponding thereto, as described above. Thereafter, the terminal 910 provides feedback on model performance to the base station 920, and the base station 920 performs model training based on the feedback information and then shares the updated AI/ML model with the terminal 910.
- the base station 1020 may share AI/ML model information built based on model training with the terminal 1010.
- the terminal 1010 may derive output through model inference of the shared AI/ML model.
- the base station 1020 may also derive output through model inference of the same AI/ML model.
- the terminal 1010 and the base station 1020 may perform an action based on the output of the model inference, as described above.
- the terminal 1010 provides feedback on model performance to the base station 1020, and the base station 1020 performs model training based on the feedback information and then shares the updated AI/ML model with the terminal 1010. can
- the terminal needs to receive AI/ML model information.
- the terminal needs to acquire cell-specific AI/ML model information from the network, and may need a method for acquiring this information.
- the terminal may obtain AI/ML model information through a system information block (SIB) broadcast by the base station.
- SIB system information block
- AI / ML model information is broadcast through the SIB, there is a need to include all AI / ML model information in the broadcast message. Therefore, as the number of AI/ML model information to be transmitted increases, the reception load of the terminal may increase.
- the base station may provide AI/ML model information to the terminal through a unicast message to the terminal requesting the AI/ML model information.
- AI/ML models are shared using unicast messages
- the number of unicast messages may increase as the number of terminals increases. Accordingly, signaling overhead and resource consumption may increase. Therefore, a method for the base station to efficiently share AI/ML model information with the terminal may be required, which will be described below.
- the network may group AI/ML models.
- the network may perform grouping of AI/ML models based on a policy determined by the network, which may be shown in Table 3 below. More specifically, AI/ML model grouping may be grouped based on models having the same at least one of data or performance evaluation values that affect the performance evaluation of the AI/ML model. As another example, AI/ML models may be grouped according to model type (e.g. DNN, RNN, etc.).
- AI/ML models may be grouped according to quantization level coefficients (e.g. 8bit, 16bit) of the AI/ML model.
- AI/ML models may be grouped based on at least one of models for the same use case, procedure, and processing block.
- AI/ML models may be grouped according to AI/ML related capabilities/versions.
- AI/ML models may be grouped based on a combination of the above-described grouping methods, and are not limited to specific embodiments.
- AI/ML models included in the same group based on Table 3 described above may be transmitted from the base station to the terminal through one message.
- the base station may also indicate whether or not to update for each AI/ML model group.
- An AI/ML model group may refer to a set of one or more AI/ML models that interface with one or more different outputs.
- a message sharing AI/ML model information based on an AI/ML model group may be configured based on two hierarchical structures. More specifically, a message for sharing AI/ML model information based on an AI/ML model group may consist of a first message and a second message, and the above message may not be limited to a specific name.
- the first message may include AI/ML model group information and scheduling information through which the second message for each group is transmitted.
- the first message may be set to any one of the SIBs or a new broadcast message, and is not limited to a specific embodiment.
- the new broadcast message may be in the form of a new message having a new Radio Network Temporary Identifier (RNTI) for transmitting AI/ML related information.
- the first message may be an RRC message, and may be repeatedly transmitted based on a preset period or transmitted by a terminal request.
- RNTI Radio Network Temporary Identifier
- FIG. 11 is a diagram illustrating a first message transmission method applicable to the present disclosure.
- the terminal may receive a first message including AI/ML model group information and second message information related to the AI/ML model group from the base station (S1110).
- the terminal receives a second message. It may be determined whether reception is required.
- the terminal may selectively receive one or more second messages including AI/ML model information.
- the terminal may not use the information included in the first message.
- the first message may include at least one of the information in Table 4 below.
- the first message may include the number of groups and index information for each group.
- the number of groups may be equal to the number of second messages.
- the first message may include information indicating whether to update for each group.
- the information indicating whether to update by group may be version information for AI/ML model groups or 1-bit change indication information for each group. That is, for N groups, 1-bit change indication information for each group may be set to N bits.
- the first message may include effective region information for each group.
- the effective area may be a Public Land Mobile Network (PLMN), a cell group area, and a specific cell area, and may not be limited to a specific embodiment.
- the first message may include resource scheduling information for a second message transmitted for each AI/ML model group.
- the resource scheduling information for the second message may include at least one of transmission window information and transmission timing information.
- the transmission window information may be transmission window size information.
- information on transmission time may include at least one of transmission period and offset information, and is not limited to a specific embodiment.
- the second message may mean information on a specific AI/ML model group and may include at least one of the information in Table 5 below.
- the second message may include information on the number of AI/ML models included in the AI/ML model group.
- the second message may include index information for each AI/ML model.
- an AI/ML model may be applied for a specific procedure or function.
- it may be linked with a specific RRC IE (information element) based on the index information for the AI / ML model. That is, the definition of a function or procedure in which the AI / ML model is replaced or used can be expressed as an AI / ML model index in the RRC IE.
- the second message may include feedback information related to model performance.
- the terminal may acquire AI/ML model information by receiving the first message and the second message based on AI/ML model grouping.
- the grouping methods may be used in a hierarchical structure. Specifically, after the first message is transmitted, a message for each group according to AI/ML related capabilities and versions may be transmitted as a second message. After that, an additional third message according to additional grouping information may be transmitted. That is, messages can be separated and transmitted, through which a hierarchical structured message can be configured, and model information exchange techniques based on a hierarchical grouping method can be used in various combinations.
- FIG. 12 is a diagram illustrating a method of transmitting an AI/ML model group-based message applicable to the present disclosure.
- a terminal 1210 may request transmission of a first message to the network 1220 .
- the first message may be transmitted without a request as a broadcast message as described above, and is not limited to a specific embodiment.
- the network 1220 may transmit a first message for transmitting AI/ML model information to the terminal 1210.
- the first message may include one or more model group information and scheduling information for the second message, and may be as shown in Table 4 described above.
- the network 1220 may transmit a second message corresponding to each AI/ML model group to the terminal 1210 based on the information on the second message included in the first message, and the second message is may be equal to 5.
- FIG. 13 is a diagram illustrating a method of acquiring AI/ML model information when a terminal applicable to the present disclosure initially enters a cell.
- the first message is set to one of the SIBs for convenience of description, but may not be limited thereto.
- the terminal 1310 may receive basic system information (master information block (MIB), SIB1) broadcast from a network 1320 .
- MIB master information block
- SIB1 basic system information
- the terminal 1310 supporting AI/ML may recognize that the base station 1320 supports AI/ML through system information, and may request AI/ML model information transmission based on this.
- the terminal 1310 may be able to determine whether it is a base station transmitting SIB-x (first message) including AI/ML model information. After that, UE 1310 may receive SIB-x.
- the terminal 1310 may receive SIB-x in a broadcast manner based on scheduling information for the corresponding SIB based on the policy of the network 1320 .
- the terminal 1310 may receive the SIB-x through an on-demand request, and in the above case, the SIB-x may not be broadcast.
- the terminal 1310 may recognize information about each AI/ML model group through SIB-x.
- the terminal 1310 obtains AI/ML model group information and scheduling information for one or more AI group information blocks in order to receive all AI/ML model information. can do.
- the AI group information block may be the aforementioned second message.
- Terminal 1310 may receive all of one or more AI group information blocks based on the obtained scheduling information for AI group information blocks.
- FIG. 14 is a diagram illustrating an operation of receiving updated AI/ML model information by a terminal that has once received AI/ML model information applicable to the present disclosure.
- the first message is set to one of the SIBs for convenience of description, but may not be limited thereto.
- the terminal 1410 may check whether the SIB has changed through receiving a short message from the network 1420 .
- the short message may be a SIB change indication message.
- the terminal 1410 can check whether SIB-x has been updated through SIB 1.
- the terminal 1410 may check whether SIB-x is updated through a value tag.
- the terminal 1410 may receive SIB-x.
- the terminal 1410 may receive SIB-x in a broadcast manner based on scheduling information for a corresponding SIB based on a policy of the network 1420 .
- the terminal 1410 may receive the SIB-x through an on-demand request, and in the above case, the SIB-x may not be broadcast.
- the terminal 1410 may recognize information about each AI/ML model group through SIB-x.
- the terminal 1410 may obtain updated model group information through update information for each model group.
- the terminal 1410 may obtain scheduling information of AI group information blocks (second message) for a model group corresponding to the updated model group information. Thereafter, the terminal 1410 may selectively receive one or more AI group information blocks based on scheduling information for AI group information blocks determined to need to be updated or newly received.
- information on the AI/ML model may be defined as a new type of message other than the SIB.
- the information on the AI/ML model group may be defined in a first message as a new message other than the SIB.
- whether information of the first message is changed or whether information of one or more second messages is changed may be included in a short message or new downlink control information (DCI), but is not limited to a specific embodiment.
- DCI downlink control information
- the terminal that has received the AI/ML model information once can check whether or not it is updated through an update indicator field for the first message or the second message in the short message or new DCI. That is, unlike the above-described SIB procedure, the terminal can check the update of the AI / ML model through a short message or a new DCI.
- a 1-bit AI/ML model information update indicator may be set.
- the terminal may recognize that the AI/ML model has been updated and attempt to receive the first message.
- the terminal may receive update information for each AI/ML model group through the first message and receive only the updated second message.
- an update indicator having a size of N bits may be used for N AI/ML models.
- the terminal may recognize an update to the AI/ML model and selectively attempt to receive the second message(s) for the corresponding AI/ML model group. That is, the terminal can directly check the AI/ML model update information through a short message or a new DCI, and the terminal can use the scheduling information for the first message and the second message stored at the initial reception as it is.
- the AI/ML model may include valid region information for each group.
- effective region information for each group may be transmitted within the first message. That is, effective region information for AI/ML models may be defined for each group.
- a terminal receiving the first message including valid area information for each group may determine whether or not a specific group is valid for each cell movement. If the terminal determines that it is out of the effective area for a specific AI/ML model group, the terminal may newly update only the corresponding AI/ML model.
- the above-described operation may be performed by the terminal without an instruction from the base station. That is, the terminal can selectively receive only information about a group that needs to be newly received based on previously received area information.
- the terminal can efficiently receive the AI/ML model from the network in a wireless communication environment in which a plurality of AI/ML models are shared.
- the terminal can reduce the reception burden of the terminal by selectively receiving only the updated AI / ML models.
- the terminal may receive MIB and first system information from the base station (S1510).
- the first system information may be SIB 1, but is not limited to a specific embodiment.
- the terminal may receive second system information including AI/ML model group information and message information related to the AI/ML model group (S1520).
- the second system information is the first message described above.
- the second system information may be the aforementioned SIB-x, but is not limited to a specific embodiment.
- a message related to the AI/ML model group may be a second message. That is, the terminal may determine whether to receive a message related to the AI/ML model group for each AI/ML model group based on the second system information. After that, the terminal may perform communication with the base station based on the AI/ML model. (S1530)
- the AI/ML model group information included in the second system information block includes information on the number of AI/ML model groups, index information for each AI/ML model group, update instruction information for each AI/ML model group, and AI/ML model group information. It may include at least one of valid region information for each model group and resource scheduling information for a message related to the AI/ML model group. That is, the AI/ML model group information included in the second system information block may be the same as Table 4 described above. It may not be limited to this.
- the number of AI/ML model groups may be equal to the number of messages related to AI/ML model groups. That is, as many second messages as the number of AI/ML model groups may be set.
- update instruction information for each AI/ML model group may be set to 1 bit for each AI/ML model group and set to bits corresponding to the number of AI/ML model groups. That is, if the number of AI/ML model groups is N, N-bit indication information may be set.
- effective region information for each AI/ML model group may be indicated based on at least one of a PLMN cell group region and a cell. For example, when the terminal moves from cell to cell, the terminal may determine an effective region for each AI/ML model group. At this time, the terminal may perform AI/ML model group update only for the AI/ML model group outside the effective area, as described above.
- resource scheduling information for a message related to the AI/ML model group may include at least one of transmission window information and transmission time information in which a message related to the AI/ML model group is transmitted. That is, resource scheduling information related to transmission of the second message may be included.
- the size of the transmission window may be indicated based on the transmission window information, and the transmission period and transmission offset value may be indicated based on the transmission time information, as described above.
- the terminal may receive a message related to at least one AI/ML model group based on message information related to the AI/ML model group. That is, the terminal may determine whether to receive the second message for each AI/ML model group, and receive the second message with a resource set for the AI/ML model group requiring reception of the second message.
- the message (second message) related to the AI/ML model group includes the number of AI/ML models in the AI/ML model group, indexes for each AI/ML model in the AI/ML model group, and feedback information related to AI/ML model performance. At least one may be included.
- each AI/ML model and a radio resource control (RRC) information element (RE) may be connected based on an index for each AI/ML model in the AI/ML model group.
- RRC radio resource control
- the AI/ML model group is based on at least one of performance evaluation data, AI/ML model type, AI/ML model quantization level coefficient, AI/ML model procedure, AI/ML capability, and AI/ML version. may be grouped, which may be the same as Table 3 described above.
- the UE When the UE performs initial access to the cell, the UE acquires the MIB and the first system information block, and when the second system information block is broadcast, the UE acquires the second system information block based on the first system information block. , and if the second system information block is not broadcast, the terminal may acquire the second system information block based on an on-demand request.
- the terminal receives at least one of a short message and downlink control information (DCI) after receiving the AI/ML model information
- the terminal may receive a second system information block.
- the short message and DCI may include information indicating AI/ML model update.
- information indicating AI/ML model update may be set for each AI/ML model group.
- the base station may transmit MIB and first system information (S1610).
- the first system information may be SIB 1, but is not limited to a specific embodiment.
- the base station may transmit second system information including AI/ML model group information and message information related to the AI/ML model group (S1620).
- the second system information may be the above-described first message. there is.
- the second system information may be the aforementioned SIB-x, but is not limited to a specific embodiment.
- a message related to the AI/ML model group may be a second message.
- the terminal can determine whether to receive a message related to the AI/ML model group for each AI/ML model group based on the second system information. After that, the base station and the terminal may perform communication based on the AI/ML model. (S1630)
- the AI/ML model group information included in the second system information block includes information on the number of AI/ML model groups, index information for each AI/ML model group, update instruction information for each AI/ML model group, and AI/ML model group information. It may include at least one of valid region information for each model group and resource scheduling information for a message related to the AI/ML model group. That is, the AI/ML model group information included in the second system information block may be the same as Table 4 described above. It may not be limited to this.
- the number of AI/ML model groups may be equal to the number of messages related to AI/ML model groups. That is, as many second messages as the number of AI/ML model groups may be set.
- update instruction information for each AI/ML model group may be set to 1 bit for each AI/ML model group and set to bits corresponding to the number of AI/ML model groups. That is, if the number of AI/ML model groups is N, N-bit indication information may be set.
- effective region information for each AI/ML model group may be indicated based on at least one of a PLMN cell group region and a cell. For example, when the terminal moves from cell to cell, the terminal may determine an effective region for each AI/ML model group. At this time, the terminal may perform AI/ML model group update only for the AI/ML model group outside the effective area, as described above.
- resource scheduling information for a message related to the AI/ML model group may include at least one of transmission window information and transmission time information in which a message related to the AI/ML model group is transmitted. That is, resource scheduling information related to transmission of the second message may be included.
- the size of the transmission window may be indicated based on the transmission window information, and the transmission period and transmission offset value may be indicated based on the transmission time information, as described above.
- the terminal may receive a message related to at least one AI/ML model group based on message information related to the AI/ML model group. That is, the terminal may determine whether to receive the second message for each AI/ML model group, and receive the second message with a resource set for the AI/ML model group requiring reception of the second message.
- the message (second message) related to the AI/ML model group includes the number of AI/ML models in the AI/ML model group, indexes for each AI/ML model in the AI/ML model group, and feedback information related to AI/ML model performance. At least one may be included.
- each AI/ML model and a radio resource control (RRC) information element (RE) may be connected based on an index for each AI/ML model in the AI/ML model group.
- RRC radio resource control
- the AI/ML model group is based on at least one of performance evaluation data, AI/ML model type, AI/ML model quantization level coefficient, AI/ML model procedure, AI/ML capability, and AI/ML version. may be grouped, which may be the same as Table 3 described above.
- the UE When the UE performs initial access to the cell, the UE acquires the MIB and the first system information block, and when the second system information block is broadcast, the UE acquires the second system information block based on the first system information block. , and if the second system information block is not broadcast, the terminal may acquire the second system information block based on an on-demand request.
- the terminal receives at least one of a short message and downlink control information (DCI) after receiving the AI/ML model information
- the terminal may receive a second system information block.
- the short message and DCI may include information indicating AI/ML model update.
- information indicating AI/ML model update may be set for each AI/ML model group.
- Embodiments of the present disclosure may be applied to various wireless access systems.
- various wireless access systems there is a 3rd Generation Partnership Project (3GPP) or 3GPP2 system.
- 3GPP 3rd Generation Partnership Project
- 3GPP2 3rd Generation Partnership Project2
- Embodiments of the present disclosure may be applied not only to the various wireless access systems, but also to all technical fields to which the various wireless access systems are applied. Furthermore, the proposed method can be applied to mmWave and THz communication systems using ultra-high frequency bands.
- embodiments of the present disclosure may be applied to various applications such as free-running vehicles and drones.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 개시에서는 무선 통신 시스템에서 단말 동작 방법에 있어서, 단말이 기지국으로부터 MIB을 수신하는 단계, 수신한 MIB에 기초하여 제1 시스템 정보 블록을 획득하는 단계, 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 획득하는 단계 및 제2 시스템 정보 블록에 기초하여 상기 기지국과 통신을 수행하는 단계를 포함할 수 있다. 여기서, 제2 시스템 정보 블록은 AI/ML 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함할 수 있다.
Description
이하의 설명은 무선 통신 시스템에 대한 것으로, 무선 통신 시스템에서 통신을 수행하는 방법 및 장치에 대한 것이다. 특히, AI(artificial intelligence)/ML(machine learning) 모델을 공유하는 방법 및 장치에 대한 것이다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
특히, 많은 통신 기기들이 큰 통신 용량을 요구하게 됨에 따라 기존 RAT (radio access technology)에 비해 향상된 모바일 브로드밴드(enhanced mobile broadband, eMBB) 통신 기술이 제안되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 민감한 서비스/UE를 고려한 통신 시스템이 제안되고 있다. 이를 위한 다양한 기술 구성들이 제안되고 있다.
본 개시는 무선 통신 시스템에서 통신을 수행하는 방법 및 장치에 대한 것이다.
본 개시는 무선 통신 시스템에서 AI/ML 모델을 공유하는 방법 및 장치에 대한 것이다.
본 개시는 무선 통신 시스템에서 기지국이 단말로 AI(artificial intelligence)/ML(machine learning) 모델 정보 및 업데이트 정보를 공유하는 방법 및 장치에 대한 것이다.
본 개시는 무선 통신 시스템에서 AI/ML 모델 정보를 지시하지 위해 계층 구조의 메시지를 구성하는 방법 및 장치에 대한 것이다.
본 개시는 무선 통신 시스템에서 AI/ML 모델 그룹에 기초하여 AI/ML 모델 정보를 제공하는 방법 및 장치에 대한 것이다.
본 개시에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 실시 예들로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 개시의 일 예로서, 무선 통신 시스템에서 단말 동작 방법에 있어서, 단말이 기지국으로부터 MIB(master information block)을 수신하는 단계, 수신한 MIB에 기초하여 제1 시스템 정보 블록을 획득하는 단계, 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 획득하는 단계 및 제2 시스템 정보 블록에 기초하여 기지국과 통신을 수행하는 단계를 포함할 수 있다. 여기서, 제2 시스템 정보 블록은 AI(artificial intelligence)/ML(machine learning) 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함하는, 단말 동작 방법.
또한, 본 개시의 일 예로서, 무선 통신 시스템에서 기지국 동작 방법에 있어서, 기지국이 MIB(master information block)를 전송하는 단계, MIB에 기초하여 제1 시스템 정보 블록을 전송하는 단계, 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 전송하는 단계 및 제2 시스템 정보 블록에 기초하여 단말과 통신을 수행하는 단계를 포함할 수 있다. 여기서, 제2 시스템 정보 블록은 AI(artificial intelligence)/ML(machine learning) 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함할 수 있다.
또한, 본 개시의 일 예로서, 무선 통신 시스템의 단말에 있어서, 송수신기, 및 송수신기와 연결된 프로세서를 포함하고, 프로세서는, 기지국으로부터 MIB(master information block)을 송수신기를 이용하여 수신하고, 수신한 MIB에 기초하여 제1 시스템 정보 블록을 송수신기를 이용하여 획득하고, 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 송수신기를 이용하여 획득하고, 및 제2 시스템 정보 블록에 기초하여 기지국과 통신을 수행할 수 있다. 여기서, 제2 시스템 정보 블록은 AI(artificial intelligence)/ML(machine learning) 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함할 수 있다.
또한, 본 개시의 일 예로서, 무선 통신 시스템의 기지국에 있어서, 송수신기, 및 송수신기와 연결된 프로세서를 포함하고, 프로세서는, MIB(master information block)를 송수신기를 이용하여 전송하고, MIB에 기초하여 제1 시스템 정보 블록을 송수신기를 이용하여 전송하고, 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 송수신기를 이용하여 전송하고, 및 제2 시스템 정보 블록에 기초하여 단말과 통신을 수행할 수 있다. 여기서, 제2 시스템 정보 블록은 AI(artificial intelligence)/ML(machine learning) 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함할 수 있다.
또한, 본 개시의 일 예로서, 적어도 하나의 메모리 및 적어도 하나의 메모리들과 기능적으로 연결되어 있는 적어도 하나의 프로세서를 포함하는 장치에 있어서, 적어도 하나의 프로세서는 장치가, 기지국으로부터 MIB(master information block)을 수신하도록 장치를 제어하고, 수신한 MIB에 기초하여 제1 시스템 정보 블록을 획득하도록 장치를 제어하고, 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 획득하도록 장치를 제어하고, 및 제2 시스템 정보 블록에 기초하여 기지국과 통신을 수행하도록 장치를 제어할 수 있다. 여기서, 제2 시스템 정보 블록은 AI(artificial intelligence)/ML(machine learning) 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함할 수 있다.
또한, 본 개시의 일 예로서, 적어도 하나의 명령어(instructions)을 저장하는 비-일시적인(non-transitory) 컴퓨터 판독 가능 매체(computer-readable medium)에 있어서, 프로세서에 의해 실행 가능한(executable) 적어도 하나의 명령어를 포함하며, 적어도 하나의 명령어는, 기지국으로부터 MIB(master information block)을 수신하도록 제어하고, 수신한 MIB에 기초하여 제1 시스템 정보 블록을 획득하도록 제어하고, 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 획득하도록 제어하고, 및 제2 시스템 정보 블록에 기초하여 기지국과 통신을 수행하도록 제어하되, 상기 제2 시스템 정보 블록은 AI(artificial intelligence)/ML(machine learning) 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함할 수 있다.
또한, 다음의 사항들은 공통으로 적용될 수 있다.
본 개시의 일 예로서, 제2 시스템 정보 블록에 포함된 AI/ML 모델 그룹 정보는 AI/ML 모델 그룹 개수 정보, AI/ML 모델 그룹별 인덱스 정보, AI/ML 모델 그룹별 업데이트 지시 정보, AI/ML 모델 그룹별 유효 영역 정보 및 AI/ML 모델 그룹과 관련된 메시지에 대한 자원 스케줄링 정보 중 적어도 어느 하나를 포함할 수 있다.
또한, 본 개시의 일 예로서, AI/ML 모델 그룹 개수는 AI/ML 모델 그룹과 관련된 메시지의 개수와 동일하고, AI/ML 모델 그룹별 업데이트 지시 정보는 각각의 AI/ML 모델 그룹에 대해 1비트로 설정되어 AI/ML 모델 그룹 개수에 대응되는 비트로 설정될 수 있다.
또한, 본 개시의 일 예로서, AI/ML 모델 그룹별 유효 영역 정보는 PLMN(Public Land Mobile Network), 셀 그룹 영역 및 셀 중 적어도 어느 하나에 기초하여 지시될 수 있다.
또한, 본 개시의 일 예로서, 단말이 셀을 이동하는 경우, 단말은 AI/ML 모델 그룹 각각에 대한 유효 영역을 판단하고, 각각의 AI/ML 모델 그룹 중 적어도 하나 이상의 AI/ML 모델 그룹이 유효 영역을 벗어난 경우, 단말은 유효 영역을 벗어난 적어도 하나 이상의 AI/ML 모델 그룹만을 업데이트할 수 있다.
또한, 본 개시의 일 예로서, AI/ML 모델 그룹과 관련된 메시지에 대한 자원 스케줄링 정보는 AI/ML 모델 그룹과 관련된 메시지가 전송되는 전송 윈도우 정보 및 전송 시점 정보 중 적어도 어느 하나를 포함하되, 전송 윈도우 정보에 기초하여 전송 윈도우의 크기가 지시되고, 전송 시점 정보에 기초하여 전송 주기 및 전송 오프셋 값이 지시될 수 있다.
또한, 본 개시의 일 예로서, 단말은 AI/ML 모델 그룹과 관련된 메시지 정보에 기초하여 적어도 하나 이상의 AI/ML 모델 그룹과 관련된 메시지를 수신하되, AI/ML 모델 그룹과 관련된 메시지는 AI/ML 모델 그룹 내의 AI/ML 모델 수, AI/ML 모델 그룹 내의 AI/ML 모델별 인덱스 및 AI/ML 모델 성능 관련 피드백 정보 중 적어도 어느 하나를 포함할 수 있다.
또한, 본 개시의 일 예로서, AI/ML 모델 그룹 내의 AI/ML 모델별 인덱스에 기초하여 각각의 AI/ML 모델과 RRC(radio resource control) 정보 요소(information element, RE)가 연결될 수 있다.
또한, 본 개시의 일 예로서, AI/ML 모델 그룹은 성능 평가 데이터, AI/ML 모델 타입, AI/ML 모델 양자화 레벨 계수, AI/ML 모델 절차 및 AI/ML 능력 및 AI/ML 버전 중 적어도 어느 하나에 기초하여 그룹핑될 수 있다.
또한, 본 개시의 일 예로서, 단말이 셀에 초기 접속을 수행하는 경우, 단말은 MIB 및 제1 시스템 정보 블록을 획득하고, 제2 시스템 정보 블록이 브로드캐스트되는 경우, 단말은 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 획득하고, 제2 시스템 정보 블록이 브로드캐스트되지 않는 경우, 단말은 온-디맨드(on-demand) 요청에 기초하여 제2 시스템 정보 블록을 획득할 수 있다.
또한, 본 개시의 일 예로서, 단말이 AI/ML 모델 정보를 수신 후 단말이 숏 메시지 및 다운링크 제어 정보(downlink control information, DCI) 중 적어도 어느 하나를 수신하는 경우, 제2 시스템 정보 블록을 수신하되, 숏 메시지 및 DCI는 AI/ML 모델 업데이트를 지시하는 정보를 포함할 수 있다.
또한, 본 개시의 일 예로서, AI/ML 모델 업데이트를 지시하는 정보는 각각의 AI/ML 모델 그룹별로 설정될 수 있다.
본 개시에 기초한 실시예들에 의해 하기와 같은 효과가 있을 수 있다.
본 개시에 기초한 실시예들에서 AI/ML 모델을 공유하는 방법을 제공할 수 있다.
본 개시에 기초한 실시예들에서 기지국이 단말로 AI(artificial intelligence)/ML(machine learning) 모델 정보 및 업데이트 정보를 공유하는 방법을 제공할 수 있다.
본 개시에 기초한 실시예들에서 AI/ML 모델 정보를 지시하지 위해 계층 구조의 메시지를 구성할 수 있다.
본 개시에 기초한 실시예들에서 AI/ML 모델 그룹에 기초하여 AI/ML 모델 정보를 제공할 수 있다.
본 개시의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 개시의 실시 예들에 대한 기재로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다.
즉, 본 개시에서 서술하는 구성을 실시함에 따른 의도하지 않은 효과들 역시 본 개시의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 개시에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시에 대한 실시 예들을 제공할 수 있다. 다만, 본 개시의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미할 수 있다.
도 1은 본 개시의 일 실시예에 따라 통신 시스템 예시를 나타낸 도면이다.
도 2는 본 개시의 일 실시예에 따라 무선 기기의 예시를 나타낸 도면이다.
도 3은 본 개시의 일 실시예에 따라 무선 기기의 다른 예시를 나타낸 도면이다.
도 4는 본 개시의 일 실시예에 따라 AI(Artificial Intelligence)의 예시를 나타낸 도면이다.
도 5는 본 개시의 일 실시예에 따라 기능적 프레임 워크를 나타낸 도면이다.
도 6은 본 개시의 일 실시예에 따라 AI/ML 기반 모델 인퍼런스 아웃풋을 생성하는 방법을 나타낸 도면이다.
도 7은 본 개시의 일 실시예에 따라 AI/ML 기반 모델 인퍼런스 아웃풋을 생성하는 방법을 나타낸 도면이다.
도 8은 본 개시의 일 실시예에 따라 모델 트레이닝 및 모델 인퍼런스가 모두 RAN에 존재하는 경우를 나타낸 도면이다.
도 9는 본 개시의 일 실시예에 따라 AI/ML 기반 모델 트레이닝이 네트워크에서 수행되고, 모델 인퍼런스가 단말에서 수행되는 방법을 나타낸 도면이다.
도 10은 본 개시의 일 실시예에 따라 AI/ML 기반 모델 트레이닝이 네트워크에서 수행되고, 모델 인퍼런스가 네트워크 및 단말에서 수행되는 방법을 나타낸 도면이다.
도 11은 본 개시의 일 실시예에 따라 제1 메시지 전송 방법을 나타낸 도면이다.
도 12는 본 개시의 일 실시예에 따라 AI/ML 모델 그룹 기반 메시지를 전송하는 방법을 나타낸 도면이다.
도 13은 본 개시의 일 실시예에 따라 단말이 셀에 초기 진입한 경우에 AI/ML 모델 정보를 획득하는 방안을 나타낸 도면이다.
도 14는 본 개시의 일 실시예에 따라 AI/ML 모델 정보를 한번 수신한 적이 있는 단말이 업데이트된 AI/ML 모델 정보를 수신하는 동작을 나타낸 도면이다.
도 15는 본 개시의 일 실시예에 따라 단말 동작을 나타낸 도면이다.
도 16은 본 개시의 일 실시예에 따라 기지국 동작을 나타낸 도면이다.
이하의 실시 예들은 본 개시의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시 예를 구성할 수도 있다. 본 개시의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 개시의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 개시를 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 개시의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNB(eNode B), gNB(gNode B), ng-eNB, 발전된 기지국(advanced base station, ABS) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 개시의 실시 예들에서 단말(terminal)은 사용자 기기(user equipment, UE), 이동국(mobile station, MS), 가입자국(subscriber station, SS), 이동 가입자 단말(mobile subscriber station, MSS), 이동 단말(mobile terminal) 또는 발전된 이동 단말(advanced mobile station, AMS) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크의 경우, 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크의 경우, 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 개시의 실시 예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE(Long Term Evolution) 시스템, 3GPP 5G(5th generation) NR(New Radio) 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 개시의 실시 예들은 3GPP TS(technical specification) 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다.
또한, 본 개시의 실시 예들은 다른 무선 접속 시스템에도 적용될 수 있으며, 상술한 시스템으로 한정되는 것은 아니다. 일 예로, 3GPP 5G NR 시스템 이후에 적용되는 시스템에 대해서도 적용 가능할 수 있으며, 특정 시스템에 한정되지 않는다.
즉, 본 개시의 실시 예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 개시에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 예시적인 실시 형태를 설명하고자 하는 것이며, 본 개시의 기술 구성이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 개시의 실시 예들에서 사용되는 특정 용어들은 본 개시의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 개시의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
하기에서는 이하 설명을 명확하게 하기 위해, 3GPP 통신 시스템(e.g.(예, LTE, NR 등)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미할 수 있다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭될 수 있다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미할 수 있다. 3GPP 6G는 TS Release 17 및/또는 Release 18 이후의 기술을 의미할 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR/6G는 3GPP 시스템으로 통칭될 수 있다.
본 개시에 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 일 예로, 36.xxx 및 38.xxx 표준 문서를 참조할 수 있다.
본 개시에 적용 가능한 통신 시스템
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들 간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 1은 본 개시에 적용되는 통신 시스템 예시를 도시한 도면이다.
도 1을 참조하면, 본 개시에 적용되는 통신 시스템(100)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR, LTE)을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(extended reality) 기기(100c), 휴대 기기(hand-held device)(100d), 가전(home appliance)(100e), IoT(Internet of Thing) 기기(100f), AI(artificial intelligence) 기기/서버(100g)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량(100b-1, 100b-2)은 UAV(unmanned aerial vehicle)(예, 드론)를 포함할 수 있다. XR 기기(100c)는 AR(augmented reality)/VR(virtual reality)/MR(mixed reality) 기기를 포함하며, HMD(head-mounted device), 차량에 구비된 HUD(head-up display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기(100d)는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전(100e)은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기(100f)는 센서, 스마트 미터 등을 포함할 수 있다. 예를 들어, 기지국(120), 네트워크(130)는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(120a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(120)을 통해 네트워크(130)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(130)를 통해 AI 서버(100g)와 연결될 수 있다. 네트워크(130)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(120)/네트워크(130)를 통해 서로 통신할 수도 있지만, 기지국(120)/네트워크(130)를 통하지 않고 직접 통신(예, 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(예, V2V(vehicle to vehicle)/V2X(vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(100f)(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
본 개시에 적용 가능한 통신 시스템
도 2는 본 개시에 적용될 수 있는 무선 기기의 예시를 도시한 도면이다.
도 2를 참조하면, 제1 무선 기기(200a)와 제2 무선 기기(200b)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(200a), 제2 무선 기기(200b)}은 도 1의 {무선 기기(100x), 기지국(120)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(200a)는 하나 이상의 프로세서(202a) 및 하나 이상의 메모리(204a)를 포함하며, 추가적으로 하나 이상의 송수신기(206a) 및/또는 하나 이상의 안테나(208a)을 더 포함할 수 있다. 프로세서(202a)는 메모리(204a) 및/또는 송수신기(206a)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202a)는 메모리(204a) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(206a)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202a)는 송수신기(206a)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204a)에 저장할 수 있다. 메모리(204a)는 프로세서(202a)와 연결될 수 있고, 프로세서(202a)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204a)는 프로세서(202a)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202a)와 메모리(204a)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206a)는 프로세서(202a)와 연결될 수 있고, 하나 이상의 안테나(208a)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206a)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(206a)는 RF(radio frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200b)는 하나 이상의 프로세서(202b), 하나 이상의 메모리(204b)를 포함하며, 추가적으로 하나 이상의 송수신기(206b) 및/또는 하나 이상의 안테나(208b)를 더 포함할 수 있다. 프로세서(202b)는 메모리(204b) 및/또는 송수신기(206b)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202b)는 메모리(204b) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206b)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202b)는 송수신기(206b)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204b)에 저장할 수 있다. 메모리(204b)는 프로세서(202b)와 연결될 수 있고, 프로세서(202b)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204b)는 프로세서(202b)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202b)와 메모리(204b)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206b)는 프로세서(202b)와 연결될 수 있고, 하나 이상의 안테나(208b)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206b)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206b)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(200a, 200b)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(202a, 202b)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(202a, 202b)는 하나 이상의 계층(예, PHY(physical), MAC(media access control), RLC(radio link control), PDCP(packet data convergence protocol), RRC(radio resource control), SDAP(service data adaptation protocol)와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(service data unit)를 생성할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(206a, 206b)에게 제공할 수 있다. 하나 이상의 프로세서(202a, 202b)는 하나 이상의 송수신기(206a, 206b)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(202a, 202b)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(202a, 202b)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(application specific integrated circuit), 하나 이상의 DSP(digital signal processor), 하나 이상의 DSPD(digital signal processing device), 하나 이상의 PLD(programmable logic device) 또는 하나 이상의 FPGA(field programmable gate arrays)가 하나 이상의 프로세서(202a, 202b)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(202a, 202b)에 포함되거나, 하나 이상의 메모리(204a, 204b)에 저장되어 하나 이상의 프로세서(202a, 202b)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(204a, 204b)는 하나 이상의 프로세서(202a, 202b)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(204a, 204b)는 ROM(read only memory), RAM(random access memory), EPROM(erasable programmable read only memory), 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(204a, 204b)는 하나 이상의 프로세서(202a, 202b)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(204a, 204b)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(202a, 202b)와 연결될 수 있다.
하나 이상의 송수신기(206a, 206b)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(206a, 206b)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(206a, 206b)는 하나 이상의 프로세서(202a, 202b)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(202a, 202b)는 하나 이상의 송수신기(206a, 206b)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(202a, 202b)는 하나 이상의 송수신기(206a, 206b)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(206a, 206b)는 하나 이상의 안테나(208a, 208b)와 연결될 수 있고, 하나 이상의 송수신기(206a, 206b)는 하나 이상의 안테나(208a, 208b)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(206a, 206b)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(202a, 202b)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(206a, 206b)는 하나 이상의 프로세서(202a, 202b)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(206a, 206b)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
본 개시에 적용 가능한 무선 기기 구조
도 3은 본 개시에 적용되는 무선 기기의 다른 예시를 도시한 도면이다.
도 3을 참조하면, 무선 기기(300)는 도 2의 무선 기기(200a, 200b)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(300)는 통신부(310), 제어부(320), 메모리부(330) 및 추가 요소(340)를 포함할 수 있다. 통신부는 통신 회로(312) 및 송수신기(들)(314)을 포함할 수 있다. 예를 들어, 통신 회로(312)는 도 2의 하나 이상의 프로세서(202a, 202b) 및/또는 하나 이상의 메모리(204a, 204b)를 포함할 수 있다. 예를 들어, 송수신기(들)(314)는 도 2의 하나 이상의 송수신기(206a, 206b) 및/또는 하나 이상의 안테나(208a, 208b)을 포함할 수 있다. 제어부(320)는 통신부(310), 메모리부(330) 및 추가 요소(340)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(320)는 메모리부(330)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(320)는 메모리부(330)에 저장된 정보를 통신부(310)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(310)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(330)에 저장할 수 있다.
추가 요소(340)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(340)는 파워 유닛/배터리, 입출력부(input/output unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기(300)는 로봇(도 1, 100a), 차량(도 1, 100b-1, 100b-2), XR 기기(도 1, 100c), 휴대 기기(도 1, 100d), 가전(도 1, 100e), IoT 기기(도 1, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 1, 140), 기지국(도 1, 120), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 3에서 무선 기기(300) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(310)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(300) 내에서 제어부(320)와 통신부(310)는 유선으로 연결되며, 제어부(320)와 제1 유닛(예, 130, 140)은 통신부(310)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(300) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(320)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(320)는 통신 제어 프로세서, 어플리케이션 프로세서(application processor), ECU(electronic control unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(330)는 RAM, DRAM(dynamic RAM), ROM, 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 4는 본 개시에 적용되는 AI 기기의 예시를 도시한 도면이다. 일 예로, AI 기기는 TV, 프로젝터, 스마트폰, PC, 노트북, 디지털방송용 단말기, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), 라디오, 세탁기, 냉장고, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.
도 4를 참조하면, AI 기기(600)는 통신부(610), 제어부(620), 메모리부(630), 입/출력부(640a/640b), 러닝 프로세서부(640c) 및 센서부(640d)를 포함할 수 있다. 블록 910~930/940a~940d는 각각 도 3의 블록 310~330/340에 대응할 수 있다.
통신부(610)는 유무선 통신 기술을 이용하여 다른 AI 기기(예, 도 1, 100x, 120, 140)나 AI 서버(도 1, 140) 등의 외부 기기들과 유무선 신호(예, 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등)를 송수신할 수 있다. 이를 위해, 통신부(610)는 메모리부(630) 내의 정보를 외부 기기로 전송하거나, 외부 기기로부터 수신된 신호를 메모리부(630)로 전달할 수 있다.
제어부(620)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 기기(600)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 제어부(620)는 AI 기기(600)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다. 예를 들어, 제어부(620)는 러닝 프로세서부(640c) 또는 메모리부(630)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 기기(600)의 구성 요소들을 제어할 수 있다. 또한, 제어부(920)는 AI 장치(600)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리부(630) 또는 러닝 프로세서부(640c)에 저장하거나, AI 서버(도 1, 140) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.
메모리부(630)는 AI 기기(600)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예를 들어, 메모리부(630)는 입력부(640a)로부터 얻은 데이터, 통신부(610)로부터 얻은 데이터, 러닝 프로세서부(640c)의 출력 데이터, 및 센싱부(640)로부터 얻은 데이터를 저장할 수 있다. 또한, 메모리부(930)는 제어부(620)의 동작/실행에 필요한 제어 정보 및/또는 소프트웨어 코드를 저장할 수 있다.
입력부(640a)는 AI 기기(600)의 외부로부터 다양한 종류의 데이터를 획득할 수 있다. 예를 들어, 입력부(620)는 모델 학습을 위한 학습 데이터, 및 학습 모델이 적용될 입력 데이터 등을 획득할 수 있다. 입력부(640a)는 카메라, 마이크로폰 및/또는 사용자 입력부 등을 포함할 수 있다. 출력부(640b)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다. 출력부(640b)는 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센싱부(640)는 다양한 센서들을 이용하여 AI 기기(600)의 내부 정보, AI 기기(600)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 얻을 수 있다. 센싱부(640)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다.
러닝 프로세서부(640c)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 러닝 프로세서부(640c)는 AI 서버(도 1, 140)의 러닝 프로세서부와 함께 AI 프로세싱을 수행할 수 있다. 러닝 프로세서부(640c)는 통신부(610)를 통해 외부 기기로부터 수신된 정보, 및/또는 메모리부(630)에 저장된 정보를 처리할 수 있다. 또한, 러닝 프로세서부(940c)의 출력 값은 통신부(610)를 통해 외부 기기로 전송되거나/되고, 메모리부(630)에 저장될 수 있다.
6G 통신 시스템
6G (무선통신) 시스템은 (i) 디바이스 당 매우 높은 데이터 속도, (ii) 매우 많은 수의 연결된 디바이스들, (iii) 글로벌 연결성(global connectivity), (iv) 매우 낮은 지연, (v) 배터리-프리(battery-free) IoT 디바이스들의 에너지 소비를 낮추고, (vi) 초고신뢰성 연결, (vii) 머신 러닝 능력을 가지는 연결된 지능 등에 목적이 있다. 6G 시스템의 비젼은 “intelligent connectivity”, “deep connectivity”, “holographic connectivity”, “ubiquitous connectivity”와 같은 4가지 측면일 수 있으며, 6G 시스템은 하기 표 1과 같은 요구 사항을 만족시킬 수 있다. 즉, 표 1은 6G 시스템의 요구 사항을 나타낸 표이다.
이때, 6G 시스템은 향상된 모바일 브로드밴드(enhanced mobile broadband, eMBB), 초-저지연 통신(ultra-reliable low latency communications, URLLC), mMTC (massive machine type communications), AI 통합 통신(AI integrated communication), 촉각 인터넷(tactile internet), 높은 스루풋(high throughput), 높은 네트워크 능력(high network capacity), 높은 에너지 효율(high energy efficiency), 낮은 백홀 및 접근 네트워크 혼잡(low backhaul and access network congestion) 및 향상된 데이터 보안(enhanced data security)과 같은 핵심 요소(key factor)들을 가질 수 있다.
인공 지능(artificial Intelligence, AI)
6G 시스템에 가장 중요하며, 새로 도입될 기술은 AI이다. 4G 시스템에는 AI가 관여하지 않았다. 5G 시스템은 부분 또는 매우 제한된 AI를 지원할 것이다. 그러나, 6G 시스템은 완전히 자동화를 위해 AI가 지원될 것이다. 머신 러닝의 발전은 6G에서 실시간 통신을 위해 보다 지능적인 네트워크를 만들 것이다. 통신에 AI를 도입하면 실시간 데이터 전송이 간소화되고 향상될 수 있다. AI는 수많은 분석을 사용하여 복잡한 대상 작업이 수행되는 방식을 결정할 수 있다. 즉, AI는 효율성을 높이고 처리 지연을 줄일 수 있다.
핸드 오버, 네트워크 선택, 자원 스케줄링과 같은 시간 소모적인 작업은 AI를 사용함으로써 즉시 수행될 수 있다. AI는 M2M, 기계-대-인간 및 인간-대-기계 통신에서도 중요한 역할을 할 수 있다. 또한, AI는 BCI(brain computer interface)에서 신속한 통신이 될 수 있다. AI 기반 통신 시스템은 메타 물질, 지능형 구조, 지능형 네트워크, 지능형 장치, 지능형 인지 라디오(radio), 자체 유지 무선 네트워크 및 머신 러닝에 의해 지원될 수 있다.
최근 AI를 무선 통신 시스템과 통합하려고 하는 시도들이 나타나고 있으나, 이는 어플리케이션 계층(application layer), 네트워크 계층(network layer) 특히, 딥 러닝은 무선 자원 관리 및 할당(wireless resource management and allocation) 분야에 집중되어 왔다. 그러나, 이러한 연구는 점점 MAC 계층 및 물리 계층으로 발전하고 있으며, 특히 물리계층에서 딥 러닝을 무선 전송(wireless transmission)과 결합하고자 하는 시도들이 나타나고 있다. AI 기반의 물리계층 전송은, 근본적인 신호 처리 및 통신 메커니즘에 있어서, 전통적인 통신 프레임워크가 아니라 AI 드라이버에 기초한 신호 처리 및 통신 메커니즘을 적용하는 것을 의미한다. 예를 들어, 딥러닝 기반의 채널 코딩 및 디코딩(channel coding and decoding), 딥러닝 기반의 신호 추정(estimation) 및 검출(detection), 딥러닝 기반의 MIMO(multiple input multiple output) 매커니즘(mechanism), AI 기반의 자원 스케줄링(scheduling) 및 할당(allocation) 등을 포함할 수 있다.
또한, 머신 러닝은 채널 추정 및 채널 트래킹을 위해 사용될 수 있으며, DL(downlink)의 물리 계층(physical layer)에서 전력 할당(power allocation), 간섭 제거(interference cancellation) 등에 사용될 수 있다. 또한, 머신 러닝은 MIMO 시스템에서 안테나 선택, 전력 제어(power control), 심볼 검출(symbol detection) 등에도 사용될 수 있다.
그러나 물리계층에서의 전송을 위한 DNN의 적용은 아래와 같은 문제점이 있을 수 있다.
딥러닝 기반의 AI 알고리즘은 훈련 파라미터를 최적화하기 위해 수많은 훈련 데이터가 필요하다. 그러나 특정 채널 환경에서의 데이터를 훈련 데이터로 획득하는데 있어서의 한계로 인해, 오프라인 상에서 많은 훈련 데이터를 사용한다. 이는 특정 채널 환경에서 훈련 데이터에 대한 정적 훈련(static training)은, 무선 채널의 동적 특성 및 다이버시티(diversity) 사이에 모순(contradiction)이 생길 수 있다.
또한, 현재 딥 러닝은 주로 실제 신호(real signal)을 대상으로 한다. 그러나, 무선 통신의 물리 계층의 신호들은 복소 신호(complex signal)이다. 무선 통신 신호의 특성을 매칭시키기 위해 복소(complex) 도메인 신호의 검출하는 신경망(neural network)에 대한 연구가 더 필요하다.
이하, 머신 러닝에 대해 보다 구체적으로 살펴본다.
머신 러닝은 사람이 할 수 있거나 혹은 하기 어려운 작업을 대신해낼 수 있는 기계를 만들어 내기 위해 기계를 학습시키는 일련의 동작을 의미한다. 머신 러닝을 위해서는 데이터와 러닝 모델이 필요하다. 머신 러닝에서 데이터의 학습 방법은 크게 3가지 즉, 지도 학습(supervised learning), 비지도 학습(unsupervised learning) 그리고 강화 학습(reinforcement learning)으로 구분될 수 있다.
신경망 학습은 출력의 오류를 최소화하기 위한 것이다. 신경망 학습은 반복적으로 학습 데이터를 신경망에 입력시키고 학습 데이터에 대한 신경망의 출력과 타겟의 에러를 계산하고, 에러를 줄이기 위한 방향으로 신경망의 에러를 신경망의 출력 레이어에서부터 입력 레이어 방향으로 역전파(backpropagation) 하여 신경망의 각 노드의 가중치를 업데이트하는 과정이다.
지도 학습은 학습 데이터에 정답이 라벨링된 학습 데이터를 사용하며 비지도 학습은 학습 데이터에 정답이 라벨링되어 있지 않을 수 있다. 즉, 예를 들어 데이터 분류에 관한 지도 학습의 경우의 학습 데이터는 학습 데이터 각각에 카테고리가 라벨링된 데이터 일 수 있다. 라벨링된 학습 데이터가 신경망에 입력되고 신경망의 출력(카테고리)과 학습 데이터의 라벨을 비교하여 오차(error)가 계산될 수 있다. 계산된 오차는 신경망에서 역방향(즉, 출력 레이어에서 입력 레이어 방향)으로 역전파 되며, 역전파에 따라 신경망의 각 레이어의 각 노드들의 연결 가중치가 업데이트 될 수 있다. 업데이트 되는 각 노드의 연결 가중치는 학습률(learning rate)에 따라 변화량이 결정될 수 있다. 입력 데이터에 대한 신경망의 계산과 에러의 역전파는 학습 사이클(epoch)을 구성할 수 있다. 학습률은 신경망의 학습 사이클의 반복 횟수에 따라 상이하게 적용될 수 있다. 예를 들어, 신경망의 학습 초기에는 높은 학습률을 사용하여 신경망이 빠르게 일정 수준의 성능을 확보하도록 하여 효율성을 높이고, 학습 후기에는 낮은 학습률을 사용하여 정확도를 높일 수 있다
데이터의 특징에 따라 학습 방법은 달라질 수 있다. 예를 들어, 통신 시스템 상에서 송신단에서 전송한 데이터를 수신단에서 정확하게 예측하는 것을 목적으로 하는 경우, 비지도 학습 또는 강화 학습 보다는 지도 학습을 이용하여 학습을 수행하는 것이 바람직하다.
러닝 모델은 인간의 뇌에 해당하는 것으로서, 가장 기본적인 선형 모델을 생각할 수 있으나, 인공 신경망(artificial neural networks)와 같은 복잡성이 높은 신경망 구조를 러닝 모델로 사용하는 머신 러닝의 패러다임을 딥러닝(deep learning)이라 한다.
학습(learning) 방식으로 사용하는 신경망 코어(neural network cord)는 크게 심층 신경망(deep neural networks, DNN), 합성곱 신경망(convolutional deep neural networks, CNN), 순환 신경망(recurrent boltzmann machine, RNN) 방식이 있으며, 이러한 러닝 모델이 적용될 수 있다.
이하 , AI/ML 모델에 기초하여 기능적 프레임 워크를 구성하는 방법에 대해 서술한다.
도 5는 기능적 프레임 워크를 나타낸 도면이다. 통신은 AI/ML가 인에이블된 RAN 인텔리전스(RAN intelligence)에 기초하여 수행될 수 있다. 일 예로, AI/ML 알고리즘은 다양한 형태로 구성될 수 있다. 도 5를 참조하면, AI/ML 알고리즘에 따라 기 구성된 AI/ML 모델을 기반으로 AI/ML 기능적 구성(functionality) 및 이에 대응되는 입력과 출력에 따라 AI/ML 기반 동작이 수행될 수 있다.
보다 상세하게는, 데이터 수집 엔티티(data collection, 510)는 모델 트레이닝 엔티티(model training, 540) 및 모델 인퍼런스 엔티티(model inference, 520)에 입력 데이터를 제공할 수 있다.
입력 데이터는 다른 네트워크 엔티티에 의한 측정 값, 단말들에 의한 피드백 값 및 AI/ML 모델의 출력에 대한 피드백 값 중 적어도 어느 하나를 포함할 수 있다. 데이터 수집 엔티티(510)가 모델 트레이닝 엔티티(540)에 제공하는 트레이닝 데이터(training data)는 AI/ML 모델 트레이닝 기능을 위해 제공되는 데이터일 수 있다. 또한, 데이터 수집 엔티티(510)가 모델 인퍼런스 엔티티(520)에 제공하는 인퍼런스 데이터는 AI/ML 모델 인퍼런스 기능을 위해 제공되는 데이터일 수 있다. 여기서, 모델 트레이닝 엔티티(540)는 AI/ML 모델의 트레이닝, 검증(validation) 및 테스트를 수행하는 엔티티일 수 있다.
모델 트레이닝 엔티티(540)는 모델 인퍼런스 엔티티(520)로 AI/ML 모델을 제공하고 업데이트할 수 있다. 또한, 모델 인퍼런스 엔티티(520)는 모델 트레이닝 엔티티(540)로 모델 성능 피드백을 제공할 수 있다. 즉, 모델 트레이닝 엔티티(540)는 모델 인퍼런스 엔티티(520)의 피드백을 통해 AI/ML 모델에 대한 트레이닝을 수행하고, 업데이트된 AI/ML 모델을 모델 인퍼런스엔티티(520)로 다시 제공할 수 있다. 또한, 모델 인퍼런스 엔티티(520)는 데이터 수집 엔티티(510)로부터 인퍼런스 데이터를 제공받을 수 있다. 여기서, 모델 인퍼런스 엔티티(520)는 제공받은 AI/ML 모델을 통해 출력(output)을 생성하여 액터 엔티티(actor, 530)에게 제공할 수 있다. 여기서, 액터 엔티티(530)는 출력에 따라 동작을 수행하는 주체일 수 있으며, 액터 엔티티(530)에 의해 수행되는 동작은 다시 데이터 수집 엔티티(510)로 피드백될 수 있다. 또한, 피드백된 정보는 다시 트레이닝 데이터로 모델 트레이닝 엔티티(540)에 제공될 수 있다.
즉, AI/ML 모델의 트레이닝을 위한 데이터가 제공되어 AI/ML 모델이 학습되어 구축되고, 구축된 AI/ML 모델에 인퍼런스 데이터가 제공되어 출력됨으로써 AI/ML 모델 기반 동작이 수행할 수 있다
구체적인 일 예로, 도 6은 본 개시에 적용 가능한 AI/ML 기반 모델 인퍼런스 아웃풋을 생성하는 방법을 나타낸 도면이다. 도 6을 참조하면, NG-RAN 노드(NG-RAN node 1, 620)는 AI/ML 모델을 구비할 수 있다. 여기서, NG-RAN 노드 1(620)에는 도 5의 모델 인퍼런스가 존재할 수 있으며, 트레이닝은 OAM(640)에서 수행될 수 있다. 즉, AI/ML 모델에 대한 트레이닝은 RAN 노드에서 수행되지 않을 수 있고, RAN 노드는 모델 인퍼런스만 구비할 수 있다. 여기서, NG-RAN 노드 1(620)은 다른 NG-RAN 노드 2(630)로부터 요구되는 입력 데이터로 네트워크 에너지 세이빙에 기초하여 AI/ML 모델 인퍼런스를 위한 데이터를 수신할 수 있다. 일 예로, NG-RAN 노드 2(630)도 AI/ML 모델에 대한 모델 인퍼런스를 구비할 수 있으며, 필수적이지 않을 수 있다. 그 후, NG-RAN 노드 1(620)은 단말(610)로부터 측정 정보를 획득할 수 있다. NG-RAN 노드 1(620)은 단말(610)로부터 획득한 측정 데이터 및 NG-RAN 노드 2(630)로부터 획득한 데이터에 기초하여 모델 인퍼런스에 대한 아웃풋을 생성할 수 있다. 일 예로, 모델 인퍼런스에 대한 아웃풋은 에너지 세이빙 전략 또는 핸드오버 전략일 수 있다. 즉, NG-RAN 노드 1(620)은 모델 인퍼런스 아웃풋에 기초하여 단말에 대한 핸드오버 또는 그 밖의 동작을 수행할 수 있으며, 특정 실시예로 한정되지 않는다. 그 후, NG-RAN 노드 1(620) 및 NG-RAN 노드 2(630) 중 적어도 어느 하나는 OAM(640)으로 피드백을 전달할 수 있으며, OAM(640)에서 피드백에 기초하여 트레이닝이 수행될 수 있다.
또한, 도 7은 본 개시에 적용 가능한 AI/ML 기반 모델 인퍼런스 아웃풋을 생성하는 방법을 나타낸 도면이다. 도 7을 참조하면, 도 6과 상이하게 NG-RAN 노드 1(720)은 모델 트레이닝을 직접 수행할 수 있다. 구체적으로, NG-RAN 노드 1(720)은 다른 NG-RAN 노드 2(730)로부터 요구되는 입력 데이터로 네트워크 에너지 세이빙에 기초하여 AI/ML 모델 인퍼런스를 위한 데이터를 수신할 수 있다. 일 예로, NG-RAN 노드 2(730)도 AI/ML 모델에 대한 모델 인퍼런스를 구비할 수 있으며, 필수적이지 않을 수 있다. 그 후, NG-RAN 노드 1(720)은 단말(710)로부터 측정 정보를 획득할 수 있다. NG-RAN 노드 1(720)은 단말(710)로부터 획득한 측정 데이터 및 NG-RAN 노드 2(730)로부터 획득한 데이터에 기초하여 모델 인퍼런스에 대한 아웃풋을 생성할 수 있다. 일 예로, 모델 인퍼런스에 대한 아웃풋은 에너지 세이빙 전략 또는 핸드오버 전략일 수 있다. 즉, NG-RAN 노드 1(7620)은 모델 인퍼런스 아웃에 기초하여 단말에 대한 핸드오버 또는 그 밖의 동작을 수행할 수 있으며, 특정 실시예로 한정되지 않는다. 그 후, NG-RAN 노드 1(720)은 모델 트레이닝을 구비하고 있으므로 직접 트레이닝을 수행할 수 있다. 이를 위해 NG-RAN 노드 1(720)은 NG-RAN 노드 2(730)로부터 피드백 정보를 획득할 수 있으며, 이를 통해 트레이닝을 직접 수행할 수 있다.
여기서, 일 예로, AI/ML 기반 최적화된 네트워크 에너지 세이빙을 위해 NG-RAN은 AI/ML 기반 네트워크 에너지 세이빙에 대한 입력 데이터가 필요할 수 있다. 일 예로, 입력 데이터는 셀 및 인접 노드의 현재 또는 예상 자원 상태, 셀 및 인접 노드의 현재 또는 예상 에너지 정보 및 단말 측정 보고 (e.g. UE RSRP, RSRQ, SINR 측정 등) 중 적어도 어느 하나를 포함할 수 있다.
또한, AI/ML 기반 네트워크 에너지 세이빙을 위해 gNB에서 기존 단말 측정이 필요한 경우, RAN은 기존 프레임 워크(MDT 및 RRM 측정 포함)를 재사용할 수 있으며, 특정 실시예로 한정되지 않는다.
또한, 일 예로, AI/ML 기반 네트워크 에너지 세이빙을 위한 출력 정보는 에너지 세이빙 전략, 트래픽 인계를 위한 추천 후보 셀을 포함한 핸드오버 전략 및 예상 에너지 정보 중 적어도 어느 하나를 포함할 수 있으나, 이에 한정되는 것은 아닐 수 있다.
또한, 일 예로, AI/ML 기반 네트워크 에너지 세이빙을 위해 모델의 성능을 최적화할 수 있다. 이를 위해, RAN 노드는 부하 측정 정보 및 에너지 정보 중 적어도 어느 하나를 피드백 정보로 획득할 수 있으나, 이에 한정되는 것은 아닐 수 있다.
또한, 일 예로, 로드 밸런싱(load balancing)을 위해 AI/ML 모델이 고려될 수 있다. 구체적으로, 상업용 네트워크에서 사용되는 트래픽의 급격한 증가와 다중 주파수 대역으로 인해 트래픽 분배가 용이하지 않을 수 있으며, 로드 밸런싱을 위해 AI/ML 모델이 고려될 수 있다. 로드 밸런싱은 셀 사이 및 셀 영역 간에 로드를 고르게 분산하거나 혼잡한 셀 또는 셀의 혼잡한 영역에서 트래픽의 일부를 전송하거나 부하를 오프 로드하는 것일 수 있다.
여기서, 로드 밸런싱은 핸드오버 매개변수 및 핸드오버 동작의 최적화를 통해 수행될 수 있다. 다만, 네트워크의 트래픽 부하 및 리소스 상태는 이동성이 높은 복수의 단말이 연결된 경우에 서비스 품질 저하를 발생시킬 수 있다. 따라서, 로드 밸런싱을 수행할 때 전체 네트워크 및 서비스 성능을 보장하기 어려울 수 있으며, 이를 위해 AI/ML 모델 적용을 고려할 수 있다.
일 예로, AI/ML 기반 로드 밸런싱을 지원하는 경우, 모델 트레이닝은 OAM에 위치하고, 모델 인퍼런스는 기지국에 존재할 수 있다. 또 다른 일 예로, 모델 트레이닝 및 모델 인퍼런스 모두 기지국에 존재할 수 있다. 여기서, 일 예로, CU(central unit)-DU(distributed unit) 구조에 기초한 기지국의 경우, 모델 트레이닝은 OAM에 존재하고, 모델 인퍼런스는 gNB-CU에 존재할 수 있다. 또 다른 일 예로, 모델 트레이닝 및 모델 인퍼런스 모두 gNB-CU에 존재할 수 있다. 또 다른 일 예로, 모델 트레이닝 및 모델 인퍼런스는 다양한 위치에 존재할 수 있으며, 특정 실시예로 한정되지 않는다.
일 예로, gNB(gNB-CU)에서 로드 밸런싱 결정을 개선하기 위해 gNB는 이웃 노드로부터 로드 예측을 요청할 수 있다. AI/ML 기반 로드 밸런싱을 위해 gNB에서 기존 단말 측정이 필요한 경우, RAN은 기존 프레임워크(MDT 및 RRM 측정 포함)를 재사용할 수 있으나, 이에 한정되는 것은 아닐 수 있다.
또 다른 일 예로, 이동성(mobility) 최적화를 위해 AI/ML 모델을 고려할 수 있다. 이동성 관리는 통화 끊김, RLF(radio link failure), 불필요한 핸드오버 및 핑퐁을 최소화하여 이동성 동안 서비스 연속성을 보장하는 방식일 수 있다. 고주파 네트워크의 경우, 단일 노드의 커버리지가 감소함에 따라 단말의 노드 간 핸드오버 빈도가 높아질 수 있다. 특히, 이동성이 높은 단말의 핸드오버 빈도가 더 증가할 수 있다. 여기서, 신뢰성, 대기 시간 등과 같은 엄격한 QoS 요구 사항을 특징으로 하는 애플리케이션의 경우, QoE는 핸드오버 성능에 민감하므로 이동성 관리는 실패한 핸드오버를 피하고 핸드오버 절차 중 대기 시간을 줄일 필요성이 있으며, 이를 위해 AI/ML 모델을 고려할 수 있다. 일 예로, AI/ML을 사용하여 의도하지 않은 사건의 확률 감소, 단말 위치/이동성/성능 예측 및 트래픽 스티어링 중 적어도 어느 하나가 수행될 수 있다. 이때, 일 예로, 의도하지 않은 사건은 인트라 시스템에서 단말의 너무 늦은 핸드오버, 너무 이른 핸드오버 및 다른 셀로의 핸드오버 동작일 수 있으나, 이에 한정되는 것은 아닐 수 있다.
또한, 일 예로, 단말의 위치/이동성/성능 예측은 효율성과 성능을 최대화하기 위한 최상의 이동성 대상을 결정하여 수행될 수 있다. 트래픽 스티어링은 효율적인 자원 처리에 기초하여 핸드오버 트리거 포인트를 조정하고, 사용자에게 서비스할 최적의 셀 조합을 선택하는 것을 의미할 수 있다.
즉, 상술한 동작을 고려하여 AI/ML 모델이 필요할 수 있다. 여기서, AI/ML 모델에 기초하여 모델 트레이닝은 OAM에 배치되고 모델 인퍼런스는 RAN에 존재하는 경우를 고려할 수 있으며, 이는 상술한 도 6과 같을 수 있다. 또한, 일 예로, AI/ML 모델에 기초하여 모델 트레이닝 및 모델 인퍼런스 모두 RAN에 존재할 수 있으며, 이는 도 7과 같을 수 있다. 또 다른 일 예로, CU-DU 분할 시나리오의 경우, 모델 트레이닝은 CU-CP 또는 OAM에 위치하고, 모델 인퍼런스는 CU-CP에 위치할 수 있으나, 이에 한정되는 것은 아닐 수 있다.
또한, 일 예로, 도 8은 본 개시에 적용 가능한 모델 트레이닝 및 모델 인퍼런스가 모두 RAN에 존재하는 경우를 나타낸 도면이다. 도 8을 참조하면, NG-RAN 노드 1(820)은 모델 트레이닝 및 모델 인퍼런스를 모두 구비할 수 있다. 여기서, NG-RAN 노드 1(820)은 단말(810)로 측정 구성 정보를 제공하고, 이에 기초하여 단말(810)은 측정을 수행하여 측정 보고를 NG-RAN 노드 1(820)으로 전달할 수 있다. 그 후, NG-RAN 노드 1(820)은 모델 트레이닝을 수행할 수 있다. 또 다른 일 예로, NG-RAN 노드 1(820)은 단말(810)로부터 수신한 측정 보고에 기초하여 모델 인퍼런스를 수행하여 아웃풋을 도출할 수 있다. 여기서, 아웃풋은 상술한 바와 같이 로드 밸런싱이나 이동성 최적화를 위한 동작일 수 있다. 일 예로, 모델 인퍼런스 아웃풋에 기초하여 NG-RAN 노드 1(820)은 NG-RAN 노드 2(830)로 핸드오버를 요청하거나 그 밖의 동작을 수행하도록 할 수 있으며, 특정 실시예로 한정되지 않는다.
상술한 바에 기초하여 새로운 통신 시스템(e.g. 6G)에서 AI/ML 기반의 동작이 수행될 수 있다. 일 예로, AI/ML 기술은 네트워크 기술뿐만 아니라, CSI 피드백 강화(CSI feedback enhancement), 빔 관리(beam management), 포지셔닝(positioning), 참조신호 오버헤드 감소(RS overhead reduction) 및 RRM 이동성 강화(RRM Mobility enhancement)에 적용될 수 있으나, 특정 분야로 한정되는 것은 아닐 수 있다. 일 예로, AI/ML은 단말과 기지국 사이의 PHY 레이어 및 MAC/RRC 레이어에 대한 기술 분야의 개선을 위해 적용될 수 있으며, 하기에서는 이를 위한 방안에 대해 서술한다.
여기서, 일 예로, AI/ML 모델을 통해 RAN1/RAN2와 같은 에어 인터페이스(air interface)에서의 개선을 위한 시나리오는 하기 표 2와 같을 수 있다. 구체적으로, 네트워크와 단말 중 적어도 어느 하나에서 AI/ML 모델을 구현하여 성능을 개선하는 시나리오(case 1), 네트워크와 단말 중 적어도 어느 하나에서 독립적으로 AI/ML 모델을 구현하고 입력/출력(input/output)을 정의하여 성능을 개선하는 시나리오(case 2) 및 네트워크 또는 단말에서 구현된 AI/ML 모델에 대한 공유를 통해 성능을 개선하는 시나리오(case 3)를 고려할 수 있다. 여기서, 일 예로, 하기에서는 case 3으로 네트워크 또는 단말에서 구현된 AI/ML 모델에 대한 공유를 통해 성능을 개선하는 시나리오에 기초하여 모델 트레이닝 및 모델 인퍼런스를 수행하는 방법에 대해 서술한다. 보다 상세하게는 모델 트레이닝은 네트워크에서 수행되고, 모델 인퍼런스는 단말 또는 단말과 네트워크에서 동시에 수행되는 시나리오일 수 있으나, 이에 한정되는 것은 아닐 수 있다.
여기서, 도 9는 본 개시에 적용 가능한 AI/ML 기반 모델 트레이닝이 네트워크에서 수행되고, 모델 인퍼런스가 단말에서 수행되는 방법을 나타낸 도면이다. 또한, 도 10은 본 개시에 적용 가능한 AI/ML 기반 모델 트레이닝이 네트워크에서 수행되고, 모델 인퍼런스가 네트워크 및 단말에서 수행되는 방법을 나타낸 도면이다.
도 9를 참조하면, 셀 정보를 통해 학습될 수 있는 AI/ML 모델을 이용하기 위해 네트워크는 단말들로부터 다양한 정보를 수집할 수 있다. 네트워크는 단말들로부터 수집한 정보에 기초하여 오프라인 러닝(offline learning)을 통해 1차적으로 트레이닝(training), 밸리데이션(validation) 및 테스팅(testing)을 마친 모델을 구축(deploy)할 수 있다. 네트워크는 구축된 AI/ML 모델을 셀 내의 단말들에게 공유할 필요성이 있다. 일 예로, 네트워크는 동기화를 통해 공유된 모델을 단말들에게 공유할 수 있으며, 이에 기초하여 동일한 모델을 통해 동작하도록 할 수 있다. 이때, 모델 성능 피드백(model performance feedback) 또는 추가적인 정보(e.g., UE behaviour such as RLF, BFR..)를 통해 모델 업데이트가 필요한 경우, 네트워크는 모델 업데이트 후 업데이트된 AI/ML 모델을 단말들에게 새롭게 공유할 수 있다. 일 예로, 모델 업데이트는 네트워크 측에서 온라인 러닝(online learning)도 포함될 수 있다. 셀 내의 AI/ML에 대한 능력(capability)을 구비한 단말은 수신한 AI/ML 모델에 기초하여 통신을 수행할 수 있으며, 이를 통해 개선된 통신을 수행할 수 있다.
도 9를 참조하면, 기지국(920)은 모델 트레이닝에 기초하여 구축된 AI/ML 모델 정보를 단말(910)에게 공유할 수 있다. 여기서, 단말(910)은 공유받은 AI/ML 모델의 모델 인퍼런스를 통해 아웃풋을 도출하고, 이에 대응되는 액션을 수행할 수 있으며, 이는 상술한 바와 같다. 그 후, 단말(910)은 모델 성능에 대한 피드백을 기지국(920)으로 제공하고, 기지국(920)은 피드백 정보에 기초하여 모델 트레이닝 수행 후 업데이트된 AI/ML 모델을 단말(910)로 공유할 수 있다.
또한, 도 10을 참조하면, 기지국(1020)은 모델 트레이닝에 기초하여 구축된 AI/ML 모델 정보를 단말(1010)에게 공유할 수 있다. 여기서, 단말(1010)은 공유받은 AI/ML 모델의 모델 인퍼런스를 통해 아웃풋을 도출할 수 있다. 또한, 기지국(1020)도 동일한 AI/ML 모델의 모델 인퍼런스를 통해 아웃풋을 도출할 수 있다. 이후, 단말(1010)과 기지국(1020)은 모델 인퍼런스에 대한 아웃풋에 기초하여 액션을 수행할 수 있으며, 이는 상술한 바와 같다. 그 후, 단말(1010)은 모델 성능에 대한 피드백을 기지국(1020)으로 제공하고, 기지국(1020)은 피드백 정보에 기초하여 모델 트레이닝 수행 후 업데이트된 AI/ML 모델을 단말(1010)로 공유할 수 있다.
상술한 도 9 및 도 10을 참조하면, 단말은 AI/ML 모델 정보를 수신할 필요성이 있다. 단말은 셀 특정 AI/ML 모델(cell-specific AI/ML model) 정보를 네트워크로부터 획득할 필요성이 있으며, 이를 획득하는 방법이 필요할 수 있다. 여기서, 단말은 기지국이 브로드캐스트하는 시스템 정보 블록(system information block, SIB)을 통해 AI/ML 모델 정보를 획득할 수 있다. 다만, AI/ML 모델 정보가 SIB를 통해 브로드캐스트되는 경우, 브로드캐스트되는 메시지에 모든 AI/ML 모델 정보가 포함될 필요성이 있다. 따라서, 전송될 AI/ML 모델 정보의 수가 많아질수록 단말의 수신 부담이 증가될 수 있다.
또 다른 일 예로, 기지국은 AI/ML 모델 정보를 요청하는 단말에게 유니캐스트 메시지를 통해 AI/ML 모델 정보를 단말에게 제공할 수 있다. 유니캐스트 메시지를 이용하여 AI/ML 모델을 공유하는 경우, 유니캐스트 메시지 수는 단말 수가 증가할수록 증가할 수 있다. 따라서, 시그널링 오버헤드 및 자원 소모가 증가할 수 있다. 따라서, 기지국이 효율적으로 AI/ML 모델 정보를 단말로 공유하기 위한 방법이 필요할 수 있으며, 하기에서는 이에 대해 서술한다.
다수의 AI/ML 모델이 네트워크 측에서 학습되고, 네트워크에서 학습된 AI/ML 모델을 이용하여 단말 측에서 모델 인퍼런스를 수행하는 경우, 단말은 네트워크에서 학습된 AI/ML 모델 정보를 효율적으로 수신할 필요성이 있다. 여기서, 네트워크는 AI/ML 모델을 그룹핑(grouping)할 수 있다. 일 예로, 네트워크는 네트워크에서 결정된 정책에 기초하여 AI/ML 모델의 그룹핑을 수행할 수 있으며, 이는 하기 표 3과 같을 수 있다. 보다 상세하게는, AI/ML 모델의 그룹핑은 AI/ML 모델의 성능 평가에 영향을 주는 데이터 또는 성능평가 값 중 적어도 하나가 동일한 모델들에 기초하여 그룹핑될 수 있다. 또다른 일 예로, AI/ML 모델은 모델 타입(e.g. DNN, RNN 등)에 따라 그룹핑될 수 있다. 또 다른 일 예로, AI/ML 모델은 AI/ML 모델의 양자화 레벨 계수(coefficient quantization level) (e.g. 8bit, 16bit)에 따라 그룹핑될 수 있다. 또 다른 일 예로, AI/ML 모델은 동일 유스 케이스(use case), 절차(procedure) 및 프로세싱 블록(processing block)에 대한 모델들 중 적어도 어느 하나에 기초하여 그룹핑될 수 있다. 또 다른 일 예로, AI/ML 모델은 AI/ML 관련 능력/버전(capability/version)에 따라 그룹핑될 수 있다. 또한, 상술한 그룹핑 방법에 대한 조합에 기초하여 AI/ML 모델이 그룹핑될 수 있으며, 특정 실시예로 한정되지 않는다. 그 후, 네트워크는 동일한 그룹에 포함된 AI/ML 모델들을 하나의 메시지를 통해 단말로 전송할 수 있다.
상술한 표 3에 기초하여 동일 그룹에 포함되는 AI/ML 모델들은 하나의 메시지를 통해 기지국에서 단말로 전송될 수 있다. 여기서, 기지국은 업데이트 여부도 AI/ML 모델 그룹별로 지시할 수 있다. AI/ML 모델 그룹은 하나 이상의 서로 다른 아웃풋을 인퍼런스하는 하나 이상의 AI/ML 모델들의 집합을 의미할 수 있다.
AI/ML 모델 그룹 기반으로 AI/ML 모델 정보를 공유하는 메시지는 2개의 계층 구조에 기초하여 구성될 수 있다. 보다 상세하게는, AI/ML 모델 그룹 기반으로 AI/ML 모델 정보를 공유하는 메시지는 제1 메시지 및 제2 메시지로 구성될 수 있으며, 상술한 메시지는 특정 명칭으로 한정되는 것은 아닐 수 있다. 제1 메시지는 AI/ML 모델 그룹 정보 및 그룹별 제2 메시지가 전송되는 스케줄링 정보를 포함할 수 있다. 일 예로, 제1 메시지는 SIB 중 어느 하나로 설정되거나 새로운 브로드캐스트 메시지로 설정될 수 있으며, 특정 실시예로 한정되지 않는다. 새로운 브로드캐스트 메시지는 AI/ML 관련 정보를 전송하기 위한 새로운 RNTI(Radio Network Temporary Identifier)를 갖는 새로운 메시지 형태일 수 있다. 일 예로, 제1 메시지는 RRC 메시지일 수 있으며, 기 설정된 주기에 기초하여 반복 전송되거나 단말 요청에 의해 전송될 수 있다.
구체적인 일 예로, 도 11은 본 개시에 적용 가능한 제1 메시지 전송 방법을 나타낸 도면이다. 도 11을 참조하면, 단말은 AI/ML 모델 그룹 정보와 AI/ML 모델 그룹과 관련된 제2 메시지 정보를 포함하는 제1 메시지를 기지국으로부터 수신할 수 있다.(S1110) 여기서, 단말은 제2 메시지 수신이 필요한지 여부를 판단할 수 있다.(S1120) 일 예로, 단말이 제2 메시지 수신이 필요한 경우, 단말은 AI/ML 모델 정보를 포함하는 하나 이상의 제2 메시지를 선택적으로 수신할 수 있다.(S1130) 반면, 단말이 제2 메시지 수신이 필요하지 않은 경우, 단말은 제1 메시지에 포함된 정보를 사용하지 않을 수 있다. 여기서, 제1 메시지는 하기 표 4의 정보 중 적어도 어느 하나를 포함할 수 있다. 보다 상세하게는, 제1 메시지는 그룹 개수와 그룹별 인덱스 정보를 포함할 수 있다. 여기서, 그룹 개수는 제2 메시지 개수와 동일할 수 있다. 또한, 일 예로, 제1 메시지는 그룹별 업데이트 여부를 지시하는 정보를 포함할 수 있다. 여기서, 그룹별 업데이트 여부를 지시하는 정보는 AI/ML 모델 그룹에 대한 버전 정보 또는 그룹별 1비트 변경 지시 정보일 수 있다. 즉, N개의 그룹에 대해서 그룹별 1비트 변경 지시 정보는 N비트로 설정될 수 있다. 또한, 제1 메시지는 그룹별 유효 영역 정보를 포함할 수 있다. 여기서, 유효 영역은 PLMN(Public Land Mobile Network), 셀 그룹 영역 및 셀 특정 영역일 수 있으며, 특정 실시예로 한정되는 것은 아닐 수 있다. 또한, 제1 메시지는 AI/ML 모델 그룹 별 전송되는 제2 메시지에 대한 자원 스케줄링 정보를 포함할 수 있다. 구체적인 일 예로, 제2 메시지에 대한 자원 스케줄링 정보는 전송 윈도우 정보 및 전송 시점을 알 수 있는 정보 중 적어도 어느 하나를 포함할 수 있다. 일 예로, 전송 윈도우 정보는 전송 윈도우 크기 정보일 수 있다. 또한, 전송 시점에 대한 정보는 전송 주기 및 오프셋 정보 중 적어도 어느 하나를 포함할 수 있으며, 특정 실시예로 한정되지 않는다.
또한, 일 예로, 제2 메시지는 특정 AI/ML 모델 그룹에 대한 정보를 의미할 수 있으며, 하기 표 5의 정보 중 적어도 어느 하나를 포함할 수 있다. 구체적으로, 제2 메시지는 AI/ML 모델 그룹에 포함된 AI/ML 모델의 개수 정보를 포함할 수 있다. 또한, 제2 메시지는 AI/ML 모델별 인덱스 정보를 포함할 수 있다. 일 예로, AI/ML 모델은 특정 프로시저 또는 기능에 대해 적용될 수 있다. 여기서, AI/ML 모델에 대한 인덱스 정보에 기초하여 특정 RRC IE(information element)와 링크될 수 있다. 즉, AI/ML 모델이 대체되거나 이용되는 기능이나 절차에 대한 정의를 RRC IE 내의 AI/ML 모델 인덱스로 나타낼 수 있다. 또한, 제2 메시지는 모델 성능과 관련된 피드백 정보를 포함할 수 있다.
즉, 단말은 AI/ML 모델 그룹핑에 기초하여 제1 메시지 및 제2 메시지를 수신하여 AI/ML 모델 정보를 획득할 수 있다. 여기서, AI/ML 관련 능력 및 버전(AI/ML capability/version)에 따른 그룹핑이 다른 그룹핑 방식과 함께 사용되는 경우, 그룹핑 방식은 계층적 구조로 사용될 수도 있다. 구체적으로, 제1 메시지 전송 후 AI/ML 관련 능력 및 버전에 따른 그룹별 메시지가 제2 메시지로 전송될 수 있다. 그 후, 추가적인 그룹핑 정보에 따른 추가적 제3 메시지가 전송될 수 있다. 즉, 메시지가 분리되어 전송될 수 있으며, 이를 통해 계층적 구조의 메시지가 구성될 수 있으며, 계층적 구조의 그룹핑 방법에 의한 모델 정보 교환 기법이 다양한 조합으로 사용될 수 있다.
일 예로, 도 12는 본 개시에 적용 가능한 AI/ML 모델 그룹 기반 메시지를 전송하는 방법을 나타낸 도면이다. 도 12를 참조하면, 단말(1210)은 네트워크(1220)로 제1 메시지 전송을 요청할 수 있다. 일 예로, 제1 메시지는 상술한 바와 같이 브로드캐스트 메시지로 요청없이 전송되는 것도 가능할 수 있으며, 특정 실시예로 한정되지 않는다. 그 후, 네트워크(1220)는 AI/ML 모델 정보 전송을 위한 제1 메시지를 단말(1210)로 전송할 수 있다. 여기서, 제1 메시지는 하나 이상의 모델 그룹 정보 및 제2 메시지에 대한 스케줄링 정보를 포함할 수 있으며, 상술한 표 4와 같을 수 있다. 그 후, 네트워크(1220)는 제1 메시지에 포함된 제2 메시지에 대한 정보에 기초하여 각 AI/ML 모델 그룹에 대응되는 제2 메시지를 단말(1210)로 전송할 수 있으며, 제2 메시지는 표 5와 같을 수 있다.
또 다른 일 예로, 도 13은 본 개시에 적용 가능한 단말이 셀에 초기 진입한 경우에 AI/ML 모델 정보를 획득하는 방안을 나타낸 도면이다. 일 예로, 도 13에서 설명의 편의를 위해 제1 메시지를 SIB 중 하나로 설정하였으나, 이에 한정되는 것은 아닐 수 있다. 도 13을 참조하면, 단말(1310)이 셀에 초기 진입한 경우, 단말(1310)은 네트워크(1320)으로부터 브로드캐스팅되는 기본 시스템 정보(MIB(master information block), SIB1)을 수신할 수 있다. 일 예로, AI/ML을 지원하는 단말(1310)은 시스템 정보를 통해 기지국(1320)이 AI/ML을 지원함을 인지할 수 있으며, 이에 기초하여 AI/ML 모델 정보 전송을 요청할 수 있다. 여기서, 단말(1310)은 AI/ML 모델 정보를 포함하는 SIB-x(제1 메시지)를 전송하는 기지국인지를 통해 판단 가능할 수 있다. 그 후, 단말(1310)은 SIB-x를 수신할 수 있다. 여기서, 단말(1310)은 네트워크(1320)의 정책에 기초하여 해당 SIB에 대한 스케줄링 정보를 기반으로 브로드캐스트 방식으로 SIB-x를 수신할 수 있다. 또 다른 일 예로, 단말(1310)은 온-디맨드 요청을 통해 SIB-x를 수신할 수 있으며, 상술한 경우에 SIB-x는 브로드캐스트되지 않을 수 있다. 단말(1310)은 SIB-x를 통해 각 AI/ML 모델 그룹에 대한 정보를 인지할 수 있다. 초기 진입한 단말(1310)의 경우, 단말(1310)은 모든 AI/ML 모델 정보를 수신하기 위해 AI/ML 모델 그룹 정보와 하나 이상의 AI 그룹 정보 블록(AI Group Information Blocks)에 대한 스케줄링 정보를 획득할 수 있다. 일 예로, AI 그룹 정보 블록은 상술한 제2 메시지일 수 있다. 단말(1310)은 획득된 AI 그룹 정보 블록들에 대한 스케줄링 정보를 기반으로 하나 이상의 AI 그룹 정보 블록들 모두를 수신할 수 있다.
또 다른 일 예로, 도 14는 본 개시에 적용 가능한 AI/ML 모델 정보를 한번 수신한 적이 있는 단말이 업데이트된 AI/ML 모델 정보를 수신하는 동작을 나타낸 도면이다. 일 예로, 도 14에서 설명의 편의를 위해 제1 메시지를 SIB 중 하나로 설정하였으나, 이에 한정되는 것은 아닐 수 있다. 도 14를 참조하면, 단말(1410)은 네트워크(1420)로부터 숏 메시지(short message) 수신을 통해 SIB 변경 여부를 확인할 수 있다. 여기서, 숏 메시지는 SIB 변경 지시 메시지일 수 있다. 일 예로, SI 변경(SI modification)이 제1 값으로 변경됨을 지시한 경우, 단말(1410)은 SIB 1을 통해 SIB-x 업데이트 여부를 확인할 수 있다. 일 예로, 단말(1410)은 value tag를 통해 SIB-x 업데이트 여부를 확인할 수 있다. 여기서, SIB-x가 업데이트된 경우, 단말(1410)은 SIB-x를 수신할 수 있다. 단말(1410)은 네트워크(1420)의 정책에 기초하여 해당 SIB에 대한 스케줄링 정보를 기반으로 브로드캐스트 방식으로 SIB-x를 수신할 수 있다. 또 다른 일 예로, 단말(1410)은 온-디맨드 요청을 통해 SIB-x를 수신할 수 있으며, 상술한 경우에 SIB-x는 브로드캐스트되지 않을 수 있다. 단말(1410)은 SIB-x를 통해 각 AI/ML 모델 그룹에 대한 정보를 인지할 수 있다. 한 번 AI/ML 모델 정보를 수신한 단말(1410)의 경우, 단말(1410)은 모델 그룹별 업데이트 정보를 통해 업데이트된 모델 그룹 정보를 획득할 수 있다. 또한, 단말(1410)은 업데이트된 모델 그룹 정보에 대응되는 모델 그룹에 대한 AI 그룹 정보 블록들(제2 메시지)의 스케줄링 정보를 획득할 수 있다. 그 후, 단말(1410)은 업데이트 또는 새롭게 수신할 필요가 있다고 판단된 AI 그룹 정보 블록들에 대한 스케줄링 정보를 기반으로 하나 이상의 AI 그룹 정보 블록들을 선택적으로 수신할 수 있다.
또 다른 일 예로, AI/ML 모델에 대한 정보는 SIB가 아닌 새로운 형태의 메시지로 정의될 수 있다. 일 예로, AI/ML 모델 그룹에 대한 정보는 SIB가 아닌 새로운 메시지로 제1 메시지가 정의될 수 있다. 여기서, 제1 메시지의 정보 변경 여부 또는 하나 이상의 제2 메시지에 대한 정보 변경 여부가 숏 메시지 또는 새로운 DCI(downlink control information) 내에 포함될 수 있으나, 특정 실시예로 한정되지 않는다. 여기서, AI/ML 모델 정보를 한 번 수신한 단말은 숏 메시지 또는 새로운 DCI 내의 제1 메시지 또는 제2 메시지에 대한 업데이트 지시자 필드를 통해 업데이트 여부를 확인할 수 있다. 즉, 상술한 SIB 프로시저와 상이하게 단말은 숏 메시지나 새로운 DCI를 통해 AI/ML 모델에 대한 업데이트를 확인할 수 있다. 여기서, 숏 메시지 또는 새로운 DCI 내에서 제1 메시지 업데이트 여부를 알리는 경우, 1비트 AI/ML 모델 정보 업데이트 지시자(1 bit AI/ML model information update indicator)가 설정될 수 있다. 여기서, 1비트 AI/ML 모델 정보 업데이트 지시자가 제1 값인 경우, 단말은 AI/ML 모델에 대한 업데이트가 되었음을 인지하고, 제1 메시지 수신을 시도할 수 있다. 단말은 제1 메시지를 통해 AI/ML 모델 그룹별 업데이트 정보를 수신하고, 업데이트된 제2 메시지만을 수신할 수 있다.
또 다른 일 예로, 숏 메시지 또는 새로운 DCI 내에서 하나 이상의 제2 메시지들에 대한 업데이트 여부를 각각 알리는 경우, N개의 AI/ML 모델에 대해 N비트 크기의 업데이트 지시자(update indicator)가 사용될 수 있다. 단말은 해당 값이 제1 값인 경우, AI/ML 모델에 대한 업데이트를 인지하고, 해당 AI/ML 모델 그룹에 대한 제2 메시지(들)의 선택적 수신을 시도할 수 있다. 즉, 단말은 숏 메시지 또는 새로운 DCI를 통해 AI/ML 모델 업데이트 정보를 직접 확인할 수 있으며, 단말은 최초 수신에서 저장했던 제1 메시지 및 제2 메시지에 대한 스케줄링 정보를 그대로 이용할 수 있다.
또 다른 일 예로, 상술한 바에서 AI/ML 모델은 그룹별 유효 영역 정보를 포함할 수 있다. AI/ML 모델은 그룹별 유효 영역 정보는 제1 메시지 내에서 전송될 수 있다. 즉, AI/ML 모델에 대한 유효 영역 정보가 그룹별로 정의될 수 있다. 일 예로, AI/ML 모델은 그룹별 유효 영역 정보가 포함된 제1 메시지를 수신한 단말은 특정 그룹에 대한 유효 지역 여부를 셀 이동마다 판단할 수 있다. 단말은 특정 AI/ML 모델 그룹에 대한 유효 영역을 벗어났다고 판단한 경우, 단말은 해당 AI/ML 모델만을 새롭게 업데이트 할 수 있다. 여기서, 상술한 동작은 기지국 지시 없이 단말에 의해 수행될 수 있다. 즉, 단말은 기존에 수신한 지역 정보를 바탕으로 새롭게 수신이 필요한 그룹에 대한 정보만을 선택적으로 수신할 수 있다.
상술한 바를 통해, 다수의 AI/ML 모델을 공유하는 무선 통신 환경에서 단말이 네트워크로부터 효율적으로 AI/ML 모델을 수신할 수 있다. 특히, 업데이트되는 AI/ML 모델이 존재하는 경우, 단말은 업데이트되는 AI/ML 모델들만 선택적으로 수신할 수 있도록 함으로써 단말의 수신 부담을 줄일 수 있다.
도 15는 본 개시에 적용 가능한 단말 동작을 나타낸 도면이다. 도 15를 참조하면, 단말은 기지국으로부터 MIB 및 제1 시스템 정보일 수 있다.(S1510) 여기서, 제1 시스템 정보는 SIB 1일 수 있으나, 특정 실시예로 한정되지 않는다. 그 후, 단말은 AI/ML 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함하는 제2 시스템 정보를 수신할 수 있다.(S1520) 여기서, 제2 시스템 정보는 상술한 제1 메시지일 수 있다. 또 다른 일 예로, 제2 시스템 정보는 상술한 SIB-x일 수 있으나, 특정 실시예로 한정되지 않는다. 또한, AI/ML 모델 그룹과 관련된 메시지는 제2 메시지일 수 있다. 즉, 단말은 제2 시스템 정보에 기초하여 AI/ML 모델 그룹 각각에 대한 AI/ML 모델 그룹과 관련된 메시지의 수신 여부를 결정할 수 있다. 그 후, 단말은 AI/ML 모델에 기초하여 기지국과 통신을 수행할 수 있다.(S1530)
여기서, 일 예로, 제2 시스템 정보 블록에 포함된 AI/ML 모델 그룹 정보는 AI/ML 모델 그룹 개수 정보, AI/ML 모델 그룹별 인덱스 정보, AI/ML 모델 그룹별 업데이트 지시 정보, AI/ML 모델 그룹별 유효 영역 정보 및 AI/ML 모델 그룹과 관련된 메시지에 대한 자원 스케줄링 정보 중 적어도 어느 하나를 포함할 수 있다. 즉, 제2 시스템 정보 블록에 포함된 AI/ML 모델 그룹 정보는 상술한 표 4와 같을 수 있으나. 이에 한정되는 것은 아닐 수 있다. 여기서, AI/ML 모델 그룹 개수는 AI/ML 모델 그룹과 관련된 메시지의 개수와 동일할 수 있다. 즉, AI/ML 모델 그룹 개수만큼 제2 메시지가 설정될 수 있다. 또한, AI/ML 모델 그룹별 업데이트 지시 정보는 각각의 AI/ML 모델 그룹에 대해 1비트로 설정되어 AI/ML 모델 그룹 개수에 대응되는 비트로 설정될 수 있다. 즉, AI/ML 모델 그룹 개수가 N개이면 N비트의 지시 정보가 설정될 수 있다. 또한, AI/ML 모델 그룹별 유효 영역 정보는 PLMN 셀 그룹 영역 및 셀 중 적어도 어느 하나에 기초하여 지시될 수 있다. 일 예로, 단말이 셀을 이동하는 경우, 단말은 AI/ML 모델 그룹 각각에 대한 유효 영역을 판단할 수 있다. 이때, 단말은 유효 영역을 벗어난 AI/ML 모델 그룹에 대해서만 AI/ML 모델 그룹 업데이트를 수행할 수 있으며, 이는 상술한 바와 같다.
또한, AI/ML 모델 그룹과 관련된 메시지에 대한 자원 스케줄링 정보는 AI/ML 모델 그룹과 관련된 메시지가 전송되는 전송 윈도우 정보 및 전송 시점 정보 중 적어도 어느 하나를 포함할 수 있다. 즉, 제2 메시지 전송과 관련된 자원 스케줄링 정보가 포함될 수 있다. 여기서, 전송 윈도우 정보에 기초하여 전송 윈도우의 크기가 지시되고, 전송 시점 정보에 기초하여 전송 주기 및 전송 오프셋 값이 지시될 수 있으며, 이는 상술한 바와 같다.
또한, 단말은 AI/ML 모델 그룹과 관련된 메시지 정보에 기초하여 적어도 하나 이상의 AI/ML 모델 그룹과 관련된 메시지를 수신할 수 있다. 즉, 단말은 AI/ML 모델 그룹 각각에 대해서 제2 메시지 수신 여부를 결정하고, 제2 메시지 수신이 필요한 AI/ML 모델 그룹에 대해서 설정된 자원으로 제2 메시지를 수신할 수 있다. 여기서, AI/ML 모델 그룹과 관련된 메시지(제2 메시지)는 AI/ML 모델 그룹 내의 AI/ML 모델 수, AI/ML 모델 그룹 내의 AI/ML 모델별 인덱스 및 AI/ML 모델 성능 관련 피드백 정보 중 적어도 어느 하나를 포함할 수 있다. 여기서, AI/ML 모델 그룹 내의 AI/ML 모델별 인덱스에 기초하여 각각의 AI/ML 모델과 RRC(radio resource control) 정보 요소(information element, RE)가 연결될 수 있다.
또한, 일 예로, AI/ML 모델 그룹은 성능 평가 데이터, AI/ML 모델 타입, AI/ML 모델 양자화 레벨 계수, AI/ML 모델 절차 및 AI/ML 능력 및 AI/ML 버전 중 적어도 어느 하나에 기초하여 그룹핑될 수 있으며, 이는 상술한 표 3과 같을 수 있다.
단말이 셀에 초기 접속을 수행하는 경우, 단말은 MIB 및 제1 시스템 정보 블록을 획득하고, 제2 시스템 정보 블록이 브로드캐스트되는 경우, 단말은 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 획득하고, 제2 시스템 정보 블록이 브로드캐스트되지 않는 경우, 단말은 온-디맨드(on-demand) 요청에 기초하여 제2 시스템 정보 블록을 획득할 수 있다. 또한, 단말이 AI/ML 모델 정보를 수신 후 단말이 숏 메시지 및 다운링크 제어 정보(downlink control information, DCI) 중 적어도 어느 하나를 수신하는 경우, 제2 시스템 정보 블록을 수신할 수 있다. 여기서, 숏 메시지 및 DCI는 AI/ML 모델 업데이트를 지시하는 정보를 포함할 수 있다. 여기서, AI/ML 모델 업데이트를 지시하는 정보는 각각의 AI/ML 모델 그룹별로 설정될 수 있다.
도 16은 본 개시에 적용 가능한 기지국 동작을 나타낸 도면이다. 도 16을 참조하면, 기지국은 MIB 및 제1 시스템 정보를 전송할 수 있다.(S1610) 여기서, 제1 시스템 정보는 SIB 1일 수 있으나, 특정 실시예로 한정되지 않는다. 그 후, 기지국은 AI/ML 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함하는 제2 시스템 정보를 전송할 수 있다.(S1620) 여기서, 제2 시스템 정보는 상술한 제1 메시지일 수 있다. 또 다른 일 예로, 제2 시스템 정보는 상술한 SIB-x일 수 있으나, 특정 실시예로 한정되지 않는다. 또한, AI/ML 모델 그룹과 관련된 메시지는 제2 메시지일 수 있다. 이를 통해 단말은 제2 시스템 정보에 기초하여 AI/ML 모델 그룹 각각에 대한 AI/ML 모델 그룹과 관련된 메시지의 수신 여부를 결정할 수 있다. 그 후, 기지국과 단말은 AI/ML 모델에 기초하여 통신을 수행할 수 있다.(S1630)
여기서, 일 예로, 제2 시스템 정보 블록에 포함된 AI/ML 모델 그룹 정보는 AI/ML 모델 그룹 개수 정보, AI/ML 모델 그룹별 인덱스 정보, AI/ML 모델 그룹별 업데이트 지시 정보, AI/ML 모델 그룹별 유효 영역 정보 및 AI/ML 모델 그룹과 관련된 메시지에 대한 자원 스케줄링 정보 중 적어도 어느 하나를 포함할 수 있다. 즉, 제2 시스템 정보 블록에 포함된 AI/ML 모델 그룹 정보는 상술한 표 4와 같을 수 있으나. 이에 한정되는 것은 아닐 수 있다. 여기서, AI/ML 모델 그룹 개수는 AI/ML 모델 그룹과 관련된 메시지의 개수와 동일할 수 있다. 즉, AI/ML 모델 그룹 개수만큼 제2 메시지가 설정될 수 있다. 또한, AI/ML 모델 그룹별 업데이트 지시 정보는 각각의 AI/ML 모델 그룹에 대해 1비트로 설정되어 AI/ML 모델 그룹 개수에 대응되는 비트로 설정될 수 있다. 즉, AI/ML 모델 그룹 개수가 N개이면 N비트의 지시 정보가 설정될 수 있다. 또한, AI/ML 모델 그룹별 유효 영역 정보는 PLMN 셀 그룹 영역 및 셀 중 적어도 어느 하나에 기초하여 지시될 수 있다. 일 예로, 단말이 셀을 이동하는 경우, 단말은 AI/ML 모델 그룹 각각에 대한 유효 영역을 판단할 수 있다. 이때, 단말은 유효 영역을 벗어난 AI/ML 모델 그룹에 대해서만 AI/ML 모델 그룹 업데이트를 수행할 수 있으며, 이는 상술한 바와 같다.
또한, AI/ML 모델 그룹과 관련된 메시지에 대한 자원 스케줄링 정보는 AI/ML 모델 그룹과 관련된 메시지가 전송되는 전송 윈도우 정보 및 전송 시점 정보 중 적어도 어느 하나를 포함할 수 있다. 즉, 제2 메시지 전송과 관련된 자원 스케줄링 정보가 포함될 수 있다. 여기서, 전송 윈도우 정보에 기초하여 전송 윈도우의 크기가 지시되고, 전송 시점 정보에 기초하여 전송 주기 및 전송 오프셋 값이 지시될 수 있으며, 이는 상술한 바와 같다.
또한, 단말은 AI/ML 모델 그룹과 관련된 메시지 정보에 기초하여 적어도 하나 이상의 AI/ML 모델 그룹과 관련된 메시지를 수신할 수 있다. 즉, 단말은 AI/ML 모델 그룹 각각에 대해서 제2 메시지 수신 여부를 결정하고, 제2 메시지 수신이 필요한 AI/ML 모델 그룹에 대해서 설정된 자원으로 제2 메시지를 수신할 수 있다. 여기서, AI/ML 모델 그룹과 관련된 메시지(제2 메시지)는 AI/ML 모델 그룹 내의 AI/ML 모델 수, AI/ML 모델 그룹 내의 AI/ML 모델별 인덱스 및 AI/ML 모델 성능 관련 피드백 정보 중 적어도 어느 하나를 포함할 수 있다. 여기서, AI/ML 모델 그룹 내의 AI/ML 모델별 인덱스에 기초하여 각각의 AI/ML 모델과 RRC(radio resource control) 정보 요소(information element, RE)가 연결될 수 있다.
또한, 일 예로, AI/ML 모델 그룹은 성능 평가 데이터, AI/ML 모델 타입, AI/ML 모델 양자화 레벨 계수, AI/ML 모델 절차 및 AI/ML 능력 및 AI/ML 버전 중 적어도 어느 하나에 기초하여 그룹핑될 수 있으며, 이는 상술한 표 3과 같을 수 있다.
단말이 셀에 초기 접속을 수행하는 경우, 단말은 MIB 및 제1 시스템 정보 블록을 획득하고, 제2 시스템 정보 블록이 브로드캐스트되는 경우, 단말은 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 획득하고, 제2 시스템 정보 블록이 브로드캐스트되지 않는 경우, 단말은 온-디맨드(on-demand) 요청에 기초하여 제2 시스템 정보 블록을 획득할 수 있다. 또한, 단말이 AI/ML 모델 정보를 수신 후 단말이 숏 메시지 및 다운링크 제어 정보(downlink control information, DCI) 중 적어도 어느 하나를 수신하는 경우, 제2 시스템 정보 블록을 수신할 수 있다. 여기서, 숏 메시지 및 DCI는 AI/ML 모델 업데이트를 지시하는 정보를 포함할 수 있다. 여기서, AI/ML 모델 업데이트를 지시하는 정보는 각각의 AI/ML 모델 그룹별로 설정될 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
본 개시는 본 개시에서 서술하는 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 개시의 실시 예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다.
본 개시의 실시 예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave, THz 통신 시스템에도 적용될 수 있다.
추가적으로, 본 개시의 실시예들은 자유 주행 차량, 드론 등 다양한 애플리케이션에도 적용될 수 있다.
Claims (17)
- 무선 통신 시스템에서 단말 동작 방법에 있어서,상기 단말이 기지국으로부터 MIB(master information block)을 수신하는 단계;상기 수신한 MIB에 기초하여 제1 시스템 정보 블록을 획득하는 단계;상기 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 획득하는 단계; 및상기 제2 시스템 정보 블록에 기초하여 상기 기지국과 통신을 수행하는 단계를 포함하되,상기 제2 시스템 정보 블록은 AI(artificial intelligence)/ML(machine learning) 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함하는, 단말 동작 방법.
- 제1 항에 있어서,상기 제2 시스템 정보 블록에 포함된 상기 AI/ML 모델 그룹 정보는 AI/ML 모델 그룹 개수 정보, AI/ML 모델 그룹별 인덱스 정보, AI/ML 모델 그룹별 업데이트 지시 정보, AI/ML 모델 그룹별 유효 영역 정보 및 상기 AI/ML 모델 그룹과 관련된 메시지에 대한 자원 스케줄링 정보 중 적어도 어느 하나를 포함하는, 단말 동작 방법.
- 제2 항에 있어서,AI/ML 모델 그룹 개수는 상기 AI/ML 모델 그룹과 관련된 메시지의 개수와 동일하고,상기 AI/ML 모델 그룹별 업데이트 지시 정보는 각각의 AI/ML 모델 그룹에 대해 1비트로 설정되어 상기 AI/ML 모델 그룹 개수에 대응되는 비트로 설정되는, 단말 동작 방법.
- 제2 항에 있어서,상기 AI/ML 모델 그룹별 유효 영역 정보는 PLMN(Public Land Mobile Network), 셀 그룹 영역 및 셀 중 적어도 어느 하나에 기초하여 지시되는, 단말 동작 방법.
- 제4 항에 있어서,상기 단말이 셀을 이동하는 경우, 상기 단말은 상기 AI/ML 모델 그룹 각각에 대한 유효 영역을 판단하고,상기 각각의 AI/ML 모델 그룹 중 적어도 하나 이상의 AI/ML 모델 그룹이 유효 영역을 벗어난 경우, 상기 단말은 유효 영역을 벗어난 상기 적어도 하나 이상의 AI/ML 모델 그룹만을 업데이트하는, 단말 동작 방법.
- 제2 항에 있어서,상기 AI/ML 모델 그룹과 관련된 메시지에 대한 자원 스케줄링 정보는 상기 AI/ML 모델 그룹과 관련된 메시지가 전송되는 전송 윈도우 정보 및 전송 시점 정보 중 적어도 어느 하나를 포함하되,상기 전송 윈도우 정보에 기초하여 전송 윈도우의 크기가 지시되고,상기 전송 시점 정보에 기초하여 전송 주기 및 전송 오프셋 값이 지시되는, 단말 동작 방법.
- 제1 항에 있어서,상기 단말은 상기 AI/ML 모델 그룹과 관련된 메시지 정보에 기초하여 적어도 하나 이상의 AI/ML 모델 그룹과 관련된 메시지를 수신하되,상기 AI/ML 모델 그룹과 관련된 메시지는 AI/ML 모델 그룹 내의 AI/ML 모델 수, 상기 AI/ML 모델 그룹 내의 AI/ML 모델별 인덱스 및 AI/ML 모델 성능 관련 피드백 정보 중 적어도 어느 하나를 포함하는, 단말 동작 방법.
- 제7 항에 있어서,상기 AI/ML 모델 그룹 내의 상기 AI/ML 모델별 인덱스에 기초하여 상기 각각의 AI/ML 모델과 RRC(radio resource control) 정보 요소(information element, RE)가 연결되는, 단말 동작 방법.
- 제1 항에 있어서,AI/ML 모델 그룹은 성능 평가 데이터, AI/ML 모델 타입, AI/ML 모델 양자화 레벨 계수, AI/ML 모델 절차 및 AI/ML 능력 및 AI/ML 버전 중 적어도 어느 하나에 기초하여 그룹핑되는, 단말 동작 방법.
- 제1 항에 있어서,상기 단말이 셀에 초기 접속을 수행하는 경우, 상기 단말은 상기 MIB 및 상기 제1 시스템 정보 블록을 획득하고,상기 제2 시스템 정보 블록이 브로드캐스트되는 경우, 상기 단말은 상기 제1 시스템 정보 블록에 기초하여 상기 제2 시스템 정보 블록을 획득하고,상기 제2 시스템 정보 블록이 브로드캐스트되지 않는 경우, 상기 단말은 온-디맨드(on-demand) 요청에 기초하여 상기 제2 시스템 정보 블록을 획득하는, 단말 동작 방법.
- 제1 항에 있어서,상기 단말이 AI/ML 모델 정보를 수신 후 상기 단말이 숏 메시지 및 다운링크 제어 정보(downlink control information, DCI) 중 적어도 어느 하나를 수신하는 경우, 상기 제2 시스템 정보 블록을 수신하되, 상기 숏 메시지 및 상기 DCI는 상기 AI/ML 모델 업데이트를 지시하는 정보를 포함하는, 단말 동작 방법.
- 제11 항에 있어서,상기 AI/ML 모델 업데이트를 지시하는 정보는 각각의 AI/ML 모델 그룹별로 설정되는, 단말 동작 방법.
- 무선 통신 시스템에서 기지국 동작 방법에 있어서,상기 기지국이 MIB(master information block)를 전송하는 단계;상기 MIB에 기초하여 제1 시스템 정보 블록을 전송하는 단계;상기 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 전송하는 단계; 및상기 제2 시스템 정보 블록에 기초하여 단말과 통신을 수행하는 단계를 포함하되,상기 제2 시스템 정보 블록은 AI(artificial intelligence)/ML(machine learning) 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함하는, 기지국 동작 방법.
- 무선 통신 시스템의 단말에 있어서,송수신기; 및상기 송수신기와 연결된 프로세서를 포함하고,상기 프로세서는,기지국으로부터 MIB(master information block)을 상기 송수신기를 이용하여 수신하고,상기 수신한 MIB에 기초하여 제1 시스템 정보 블록을 상기 송수신기를 이용하여 획득하고,상기 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 상기 송수신기를 이용하여 획득하고, 및상기 제2 시스템 정보 블록에 기초하여 상기 기지국과 통신을 수행하되,상기 제2 시스템 정보 블록은 AI(artificial intelligence)/ML(machine learning) 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함하는, 단말.
- 무선 통신 시스템의 기지국에 있어서,송수신기; 및상기 송수신기와 연결된 프로세서를 포함하고,상기 프로세서는,MIB(master information block)를 상기 송수신기를 이용하여 전송하고,상기 MIB에 기초하여 제1 시스템 정보 블록을 상기 송수신기를 이용하여 전송하고,상기 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 상기 송수신기를 이용하여 전송하고, 및상기 제2 시스템 정보 블록에 기초하여 단말과 통신을 수행하되,상기 제2 시스템 정보 블록은 AI(artificial intelligence)/ML(machine learning) 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함하는, 기지국.
- 적어도 하나의 메모리 및 상기 적어도 하나의 메모리들과 기능적으로 연결되어 있는 적어도 하나의 프로세서를 포함하는 장치에 있어서,상기 적어도 하나의 프로세서는 상기 장치가,기지국으로부터 MIB(master information block)을 수신하도록 상기 장치를 제어하고,상기 수신한 MIB에 기초하여 제1 시스템 정보 블록을 획득하도록 상기 장치를 제어하고,상기 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 획득하도록 상기 장치를 제어하고, 및상기 제2 시스템 정보 블록에 기초하여 상기 기지국과 통신을 수행하도록 상기 장치를 제어하되,상기 제2 시스템 정보 블록은 AI(artificial intelligence)/ML(machine learning) 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함하는, 장치.
- 적어도 하나의 명령어(instructions)을 저장하는 비-일시적인(non-transitory) 컴퓨터 판독 가능 매체(computer-readable medium)에 있어서,프로세서에 의해 실행 가능한(executable) 상기 적어도 하나의 명령어를 포함하며,상기 적어도 하나의 명령어는,기지국으로부터 MIB(master information block)을 수신하도록 제어하고,상기 수신한 MIB에 기초하여 제1 시스템 정보 블록을 획득하도록 제어하고,상기 제1 시스템 정보 블록에 기초하여 제2 시스템 정보 블록을 획득하도록 제어하고, 및상기 제2 시스템 정보 블록에 기초하여 상기 기지국과 통신을 수행하도록 제어하되,상기 제2 시스템 정보 블록은 AI(artificial intelligence)/ML(machine learning) 모델 그룹 정보 및 AI/ML 모델 그룹과 관련된 메시지 정보를 포함하는, 컴퓨터 판독 가능 매체.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247010150A KR20240113453A (ko) | 2021-11-30 | 2022-11-23 | 무선 통신 시스템에서 통신을 수행하는 방법 및 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20210169015 | 2021-11-30 | ||
KR10-2021-0169015 | 2021-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023101303A1 true WO2023101303A1 (ko) | 2023-06-08 |
Family
ID=86612717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/018615 WO2023101303A1 (ko) | 2021-11-30 | 2022-11-23 | 무선 통신 시스템에서 통신을 수행하는 방법 및 장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20240113453A (ko) |
WO (1) | WO2023101303A1 (ko) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017196056A2 (ko) * | 2016-05-10 | 2017-11-16 | 엘지전자 주식회사 | 무선 통신 시스템에서 sib을 요청하는 방법 및 장치 |
-
2022
- 2022-11-23 KR KR1020247010150A patent/KR20240113453A/ko unknown
- 2022-11-23 WO PCT/KR2022/018615 patent/WO2023101303A1/ko unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017196056A2 (ko) * | 2016-05-10 | 2017-11-16 | 엘지전자 주식회사 | 무선 통신 시스템에서 sib을 요청하는 방법 및 장치 |
Non-Patent Citations (4)
Title |
---|
ANONYMOUS: "O-RAN: Towards an Open and Smart RAN", O-RAN ALLIANCE WHITE PAPER, 1 October 2018 (2018-10-01), pages 1 - 19, XP055773799, Retrieved from the Internet <URL:https://static1.squarespace.com/static/5ad774cce74940d7115044b0/t/5bc79b371905f4197055e8c6/1539808057078/O-RAN+WP+FInal+181017.pdf> * |
BEKELE YARED ZERIHUN, CHOI YOUNG-JUNE: "Random Access Using Deep Reinforcement Learning in Dense Mobile Networks", SENSORS, vol. 21, no. 9, pages 3210, XP093070207, DOI: 10.3390/s21093210 * |
LEE JIHOON; LEE GYUHONG; LEE JINSUNG; IM YOUNGBIN; HOLLINGSWORTH MAX; WUSTROW ERIC; GRUNWALD DIRK; HA SANGTAE: "Securing the wireless emergency alerts system", COMMUNICATIONS OF THE ACM, ASSOCIATION FOR COMPUTING MACHINERY, INC, UNITED STATES, vol. 64, no. 10, 22 September 2021 (2021-09-22), United States , pages 85 - 93, XP058621944, ISSN: 0001-0782, DOI: 10.1145/3481042 * |
MASUR PAUL H., REED H.: "Artificial Intelligence in Open Radio Access Network", 27 April 2021 (2021-04-27), pages 1 - 9, XP093070216, Retrieved from the Internet <URL:arXiv:2104.09445v2 > * |
Also Published As
Publication number | Publication date |
---|---|
KR20240113453A (ko) | 2024-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020149650A1 (en) | Method and apparatus for mobility management in wireless communication system | |
WO2019245329A1 (en) | Method and apparatus for performing conditional cell change in wireless communication system | |
WO2020139015A1 (en) | Method and apparatus for mobility management in wireless communication system | |
WO2019245304A1 (en) | Method and apparatus for performing conditional cell change based on channel occupancy in wireless communication system | |
WO2022080702A1 (ko) | 무선통신시스템에서 사이드링크 릴레이 및 rlf에 관련된 ue의 동작 방법 | |
WO2020222592A1 (en) | Method and apparatus for direct link management in wireless communication system | |
WO2020067756A1 (en) | A cell reselection by adjusting cell reselection parameter | |
WO2020166819A1 (en) | Fast cell setup for dual connectivity | |
WO2019221530A1 (en) | Method and apparatus for discarding data among associated transmission buffers in wireless communication system | |
WO2019240527A1 (en) | Method and apparatus for handling frequency priorities inherited from other radio access technologies in wireless communication system | |
WO2020197125A1 (en) | Method and apparatus for performing measurement in wireless communication system | |
WO2020197249A1 (en) | Source cell communication control for dual protocol stack mobility | |
WO2020091303A1 (en) | Method and apparatus for resource allocation in wireless communication system | |
US20240073732A1 (en) | Method and device for adjusting split point in wireless communication system | |
WO2023101304A1 (ko) | 무선 통신 시스템에서 통신을 수행하는 방법 및 장치 | |
WO2021091338A1 (en) | Method and apparatus for handling timer related to radio link failure in wireless communication system | |
WO2021153954A1 (en) | Method and apparatus for performing measurement in wireless communication system | |
WO2021029647A1 (en) | Method and apparatus for measurement in wireless communication system | |
WO2019225914A1 (en) | Method and apparatus for handling strongest cell not supporting selected core network in wireless communication system | |
WO2020004923A1 (en) | Method for performing measurement and device supporting the same | |
WO2024048816A1 (ko) | 무선 통신 시스템에서 신호를 송수신하기 위한 장치 및 방법 | |
WO2023101303A1 (ko) | 무선 통신 시스템에서 통신을 수행하는 방법 및 장치 | |
WO2022235087A1 (ko) | 무선통신시스템에서 사이드링크에서 sd-rsrp와 sl-rsrp에 기초한 측정 및 릴레이 재선택에 관련된 ue의 동작 방법 및 장치 | |
WO2023017881A1 (ko) | 무선 통신 시스템에서 측정 갭을 이용한 측정 결과에 기반하여 핸드오버를 수행하기 위한 장치 및 방법 | |
WO2022177391A1 (en) | Method and apparatus for cell reselection in wireless communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22901661 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |