WO2023101102A1 - 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재 - Google Patents

낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재 Download PDF

Info

Publication number
WO2023101102A1
WO2023101102A1 PCT/KR2022/002751 KR2022002751W WO2023101102A1 WO 2023101102 A1 WO2023101102 A1 WO 2023101102A1 KR 2022002751 W KR2022002751 W KR 2022002751W WO 2023101102 A1 WO2023101102 A1 WO 2023101102A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
electromagnetic wave
lightning protection
aircraft
sandwich composite
Prior art date
Application number
PCT/KR2022/002751
Other languages
English (en)
French (fr)
Inventor
남영우
권진회
명노신
최원호
송운형
신준형
김민준
김윤곤
황반토
Original Assignee
경상국립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상국립대학교 산학협력단 filed Critical 경상국립대학교 산학협력단
Publication of WO2023101102A1 publication Critical patent/WO2023101102A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/046Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/007Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with means for controlling the absorption
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft

Definitions

  • the present invention relates to an electromagnetic wave absorbing foam-based sandwich composite for aircraft in which a lightning protection metal layer is inserted and a method for manufacturing the same, and in particular, an electromagnetic wave absorbing foam capable of exhibiting electromagnetic wave absorbing performance and maintaining stealth performance by protecting a structure under the metal layer even after being struck by lightning It relates to a based sandwich composite.
  • Lightning that occurs when an aircraft is operating directly or indirectly affects the aircraft by causing high-temperature thermal energy and a strong electromagnetic field. Since lightning is a very dangerous factor in terms of aircraft operation, a lightning protection system is essential. To prepare for this, aircraft companies are applying lightning protection systems such as CM (Copper mesh) and EMF (Expanded metal foil) to aircraft. Lightning is largely divided into direct and indirect effects, and direct impact causes permanent damage such as melting, damage, and perforation to aircraft skin, windshield, and radome due to thermal energy and electrical shock caused by high currents of up to 200 kA, resulting in safety. have a great influence on
  • composite structures are widely used to reduce weight and increase fuel efficiency.
  • composite materials are more vulnerable to lightning strikes than metals because of their low electrical conductivity.
  • the high electrical resistance of the composite absorbs more electrical energy which is instantly converted to thermal energy (Joule heating).
  • extreme lightning currents are prevented from conducting quickly, resulting in arc sparks, Joule heating, magnetic force or dielectric breakdown.
  • the resin matrix constituting the composite material deteriorates, cracks, or burns in lightning-resistant heat or sparks because of its low thermal stability. Therefore, as the proportion of composite materials increases, designing a high-efficiency lightning protection system for aircraft safety must be considered.
  • a method of laminating a thin metal layer on the outside of the composite structure is generally used.
  • the lightning current flows along the metal layer with relatively high electrical conductivity, so damage to the composite structure and its interior can be prevented.
  • Korean Patent Publication No. 10-2016-0110648 discloses a composite material including a metal wire mesh and a long fiber reinforced thermoplastic sheet.
  • the present invention is an electromagnetic wave absorbing foam-based sandwich composite for aircraft with a lightning protection metal layer capable of maintaining load bearing and electromagnetic wave absorption performance even after being struck by lightning through a lightning protection system using a metal layer with excellent electromagnetic wave absorption performance and high electrical conductivity. is intended to provide
  • a dielectric fiber comprising at least one of glass fiber, aramid fiber or Kevlar fiber; Plated dielectric fibers treated with metal electroless plating to implement electromagnetic loss or electromagnetic wave absorption on the surface of the dielectric fibers; a foam core laminated under the dielectric fiber and the plated dielectric fiber; And an electromagnetic wave absorbing foam-based sandwich composite for aircraft in which a lightning protection metal layer including a metal layer laminated on the lower portion of the foam core and having a periodic circular pattern applied thereto to reduce a radar cross section (RCS) and protect lightning strikes is inserted. to provide.
  • RCS radar cross section
  • the composite material may be formed by stacking the dielectric fiber, the plated dielectric fiber, the foam core, and the metal layer in that order, and further plating the dielectric fiber, the dielectric fiber, and the foam core under the metal layer.
  • a circular pattern having a predetermined diameter may be disposed at predetermined intervals inside a predetermined square.
  • one side of the square is 11.67 mm
  • the circular pattern is formed to have a diameter of 10.67 mm
  • the interval may be formed to 1 mm or less.
  • the metal layer may be formed to a thickness of 0.102 mm and have an electrical conductivity of 1.25 ⁇ 10 6 S/m.
  • the metal layer may have an electromagnetic wave absorption performance of -10 Db or less in a frequency band of 8.2 GHz to 12.4 GHz.
  • the lower portion of the metal layer of the composite material may be protected when lightning strikes.
  • FIG. 1 shows an electromagnetic wave absorbing foam-based sandwich composite
  • FIG. 1(a) shows a conventional composite
  • FIG. 1(b) shows a composite of the present invention.
  • FIG. 3 shows SEM images, EDS, and XPS of nickel electroless plated dielectric fibers according to an embodiment of the present invention.
  • FIG. 4 is a thin metal layer to which a circular pattern is applied according to an embodiment of the present invention.
  • FIG. 5 shows electromagnetic wave absorption performance design results according to the presence or absence of a lightning protection metal layer according to an embodiment of the present invention.
  • FIG. 6 shows a manufacturing process of a composite material according to an embodiment of the present invention.
  • FIG. 7 is a view of performing return loss and 1D scan using free space measuring equipment to evaluate the electromagnetic wave absorption performance of a composite material according to an embodiment of the present invention.
  • FIG. 9 shows electromagnetic wave absorbing performance of a sandwich composite structure based on electromagnetic wave absorbing foam in which a metal layer is inserted according to an embodiment of the present invention.
  • FIG. 10 shows an impulse current generator and a lightning test set-up according to an embodiment of the present invention.
  • FIG. 11 shows a lightning test current waveform according to an embodiment of the present invention.
  • 15 is a comparison of electromagnetic wave absorbing performance after a lightning test of an electromagnetic wave absorbing foam-based sandwich composite structure in which a metal layer is inserted according to an embodiment of the present invention.
  • a dielectric fiber comprising at least one of glass fiber, aramid fiber or Kevlar fiber; Plated dielectric fibers treated with metal electroless plating to implement electromagnetic loss or electromagnetic wave absorption on the surface of the dielectric fibers; a foam core laminated under the dielectric fiber and the plated dielectric fiber; And an electromagnetic wave absorbing foam-based sandwich composite for aircraft in which a lightning protection metal layer including a metal layer laminated on the lower portion of the foam core and having a periodic circular pattern applied thereto to reduce a radar cross section (RCS) and protect lightning strikes is inserted. to provide.
  • RCS radar cross section
  • the composite material may be formed by stacking the dielectric fiber, the plated dielectric fiber, the foam core, and the metal layer in that order, and further plating the dielectric fiber, the dielectric fiber, and the foam core under the metal layer.
  • a circular pattern having a predetermined diameter may be disposed at predetermined intervals inside a predetermined square.
  • one side of the square is 11.67 mm
  • the circular pattern is formed to have a diameter of 10.67 mm
  • the interval may be formed to 1 mm or less.
  • the metal layer may be formed to a thickness of 0.102 mm and have an electrical conductivity of 1.25 ⁇ 10 6 S/m.
  • the metal layer may have an electromagnetic wave absorption performance of -10 Db or less in a frequency band of 8.2 GHz to 12.4 GHz.
  • the lower portion of the metal layer of the composite material may be protected when lightning strikes.
  • the present invention relates to an electromagnetic wave absorbing sandwich composite for aircraft including a lightning protection metal layer, and includes a dielectric fiber, a plated dielectric fiber, a foam core, and a metal layer.
  • lightning protection performance by applying a metallic layer with high electrical conductivity to the electromagnetic wave absorber designed to show RCS reduction effect in the X band (8.2-12.4 GHz) by utilizing metal electroless plating technique to impart electromagnetic loss. It also includes those related to aircraft sandwich structures that are also exhibited.
  • FIG. 1 shows an electromagnetic wave absorbing foam-based sandwich composite
  • FIG. 1(a) shows a conventional composite
  • FIG. 1(b) shows a composite of the present invention.
  • the composite material of the present invention is a dielectric fiber including at least one of glass fiber, aramid fiber or Kevlar fiber; Plated dielectric fibers treated with metal electroless plating to implement electromagnetic loss or electromagnetic wave absorption on the surface of the dielectric fibers; a foam core laminated under the dielectric fiber and the plated dielectric fiber; And a metal layer laminated on the lower portion of the foam core and having a periodic circular pattern applied thereto to reduce a Radar Cross Section (RCS) and to protect against lightning strikes.
  • RCS Radar Cross Section
  • the present invention is a foam-based sandwich plate-type structure for aircraft in which a lightning protection metal layer is inserted while exhibiting incident electromagnetic wave absorption performance.
  • the lightning protection metal layer is a thin metal film to which a periodic circular pattern is applied, which does not affect the electromagnetic wave absorption performance. It also serves to protect composite structures from lightning strikes.
  • the composite material may be formed by stacking dielectric fibers, plated dielectric fibers, a foam core, and a metal layer in this order, and further plated dielectric fibers, dielectric fibers, and a foam core are laminated under the metal layer.
  • a foam-based sandwich structure with a lightning protection metal layer that effectively absorbs electromagnetic waves is designed through an analysis program (CST Studio), and it is designed to show more than 90% of electromagnetic wave absorption performance in the X-band (8.2-12.4 GHz) band. produced.
  • the absorber for which the return loss measurement is completed evaluates the lightning protection performance through the lightning test.
  • the composite structure of the present invention is implemented as a Dallenbach layer and designed and manufactured as a 7-layer composite structure. It is composed of glass fiber/epoxy, metal electroless plated glass fiber/epoxy, and a thin metal film etched with a circular pattern, and the thickness and shape of the pattern that produces impedance matching and has optimal electromagnetic wave absorption performance are designed.
  • it may be composed of Layers 1 to 7 as shown in Table 1 below.
  • the complex permittivity was measured at 10 GHz according to an embodiment of the present invention, and the chemical crystal analysis of the dielectric fiber and the nickel electroless plated dielectric fiber show differences.
  • the complex permittivity of the dielectric fiber was 4.57-j0.05, and the complex permittivity of the nickel electroless-plated dielectric fiber was 5.77-j6.60.
  • FIG. 3 shows SEM images, EDS, and XPS of nickel electroless plated dielectric fibers according to an embodiment of the present invention.
  • SEM image scanning electron microscope
  • EDS energy-dispersive X-ray spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • Ni component peak at 856.1 eV was confirmed through XPS measurement, which is consistent with the value of nickel binding energy ranging from 855.6 eV to 857.9 eV, maintaining the divalent oxidation state.
  • FIG. 4 is a thin metal layer to which a circular pattern is applied according to an embodiment of the present invention.
  • circular patterns having a predetermined diameter are arranged at predetermined intervals within a predetermined square.
  • a side of a square is 11.67 mm
  • a circular pattern is formed with a diameter of 10.67 mm, and an interval of 1 mm or less may be formed.
  • the electrical conductivity of the metal layer for lightning protection designed by applying a circular pattern may be measured as 1.25 ⁇ 10 6 S/m.
  • FIG. 5 shows electromagnetic wave absorption performance design results according to the presence or absence of a lightning protection metal layer according to an embodiment of the present invention.
  • the composite structure showed an absorption performance of less than -10dB (over 90% absorption performance) in the 8.2-12.4 GHz band.
  • FIG. 6 shows a manufacturing process of a composite material according to an embodiment of the present invention
  • FIG. 7 shows a return loss and a 1D scan process.
  • the manufacturing process of the composite material consists of (a) lay up, (b) curing accessories (c) vacuum bagging (d) curing & curing cycle (e) specimen process, and referring to FIG. 7, the present invention It can be seen that return loss and 1D scan are performed using free space measuring equipment to evaluate the electromagnetic wave absorption performance of the composite material according to the embodiment of.
  • Return loss and 1D scan were performed using free space measurement equipment to evaluate the electromagnetic wave absorption performance of the fabricated composite structure.
  • the composite structure in which the metal layer was inserted was measured at a target frequency of 10 GHz, and the composite structure in which the metal layer was not inserted was measured at a target frequency of 7.5 GHz.
  • FIG. 8 shows the electromagnetic wave absorbing performance of the electromagnetic wave absorbing foam-based sandwich composite structure in which no metal layer is inserted
  • FIG. 9 shows the electromagnetic wave absorbing performance of the electromagnetic wave absorbing foam-based sandwich composite structure in which the metal layer is inserted according to an embodiment of the present invention.
  • electromagnetic wave absorption performance according to the presence or absence of the metal layer can be known.
  • the electromagnetic wave absorption performance of the electromagnetic wave absorbing foam-based sandwich composite structure with a metal layer inserted and the electromagnetic wave absorbing foam-based sandwich composite structure without a metal layer was measured using free space measurement equipment,
  • the electromagnetic wave absorbing foam-based sandwich composite structure with a metal layer inserted showed an absorption performance of less than -10dB (more than 90% absorption) in the 8.2 ⁇ 12.4 GHz band, and an absorption performance of less than -40dB at the resonance frequency (10.5 GHz). showed up
  • the 1D scan results also showed a reflection magnitude of less than 5% in the entire area of the composite structure at the target frequency of 10 GHz.
  • the absorption performance was below -10 dB in the 5.8 to 12.0 GHz band, and the maximum absorption performance was below -30 dB at the resonant frequency (7.5 GHz).
  • the reflection magnitude was less than 5% in the entire area of the composite structure at the target frequency of 7.5 GHz.
  • FIG. 10 shows an impulse current generator and a lightning test set-up according to an embodiment of the present invention
  • FIG. 11 shows a lightning test current waveform according to an embodiment of the present invention.
  • the lightning test of FIG. 10 was set up by applying the same current waveform as in FIG. 11 .
  • a lightning test was performed by applying a current waveform of 8/40 ⁇ s and a current of 50 kA using an impulse current generator.
  • 12 and 13 are (a) damage photographs and (b) of an electromagnetic wave absorbing foam-based sandwich composite structure without a metal layer inserted and an electromagnetic wave absorbing foam-based sandwich composite structure with a metal layer inserted after a lightning test, respectively, according to an embodiment of the present invention. Damaged area obtained by image processing, (c) 3D X-ray CT measurement results (specimen section) are shown.
  • results of image processing and 3D X-ray CT imaging can be seen to evaluate the degree of damage caused by lightning.
  • the damage area was evaluated using a binary evolution method using the reflectance of light on the surface of the structure damaged by lightning, and 3D X-ray CT was taken to measure the degree of damage in the thickness direction.
  • the composite structure of the present invention can protect the lower part of the metal layer in the event of lightning.
  • FIG. 14 is electromagnetic wave absorbing performance after a lightning test of an electromagnetic wave absorbing foam-based sandwich composite structure without inserting a metal layer according to an embodiment of the present invention
  • FIG. 15 is an electromagnetic wave absorbing performance after a lightning test of an electromagnetic wave absorbing foam-based sandwich composite structure with a metal layer inserted. This is a comparison of absorption performance.
  • the return loss measurement results and 1D scan results show that the absorption performance changes significantly after lightning damage and partially fails to exhibit the electromagnetic wave absorption performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

본 발명은, 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재 및 이의 제조방법에 관한 것으로서, 특히 전자기파 흡수 성능을 발휘하고 낙뢰 피격 후에도 금속층 아래 구조물을 보호하는 복합재에 관한 것이다. 본 발명은 유리 섬유, aramid 섬유 또는 케블라 섬유 중 적어도 어느 하나를 포함하는 유전체 섬유; 상기 유전체 섬유의 표면에 전자기적 손실 또는 전자파 흡수를 구현하기 위해 금속 무전해(無電解) 도금 처리한 도금 유전체 섬유; 상기 유전체 섬유 및 상기 도금 유전체 섬유의 하부에 적층되는 폼코어; 및 상기 폼코어의 하부에 적층되며 레이더포착면적(RCS, Radar Cross Section) 감소 및 낙뢰보호를 위해 주기적인 원형 패턴이 적용된 금속층을 포함하는 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재를 제공한다.

Description

낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재
본 발명은 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재 및 이의 제조방법에 관한 것으로서, 특히 전자기파 흡수 성능을 발휘하고 낙뢰 피격 후에도 금속층 아래 구조물을 보호하여 스텔스 성능을 유지할 수 있는 전자기파 흡수 폼 기반 샌드위치 복합재에 관한 것이다.
항공기가 운항할 때 발생하는 낙뢰는 고온의 열에너지, 강한 전자기장을 유발하여 항공기에 직, 간접적으로 영향을 미친다. 항공기 운항 관점에서 낙뢰는 매우 위험한 요소이기 때문에 낙뢰 보호 시스템은 필수적으로 요구된다. 이를 대비하기 위해 항공기 기업들은 CM (Copper mesh), EMF (Expanded metal foil)과 같은 낙뢰 보호 시스템을 항공기에 적용하고 있다. 낙뢰는 크게 직접 영향과 간접 영향으로 구분되며, 직접 영향은 최대 200 kA에 이르는 고전류에 의한 열에너지와 전기적 충격에 의해 항공기 스킨, 윈드실드, 레이돔 등에 용융, 파손, 천공 등과 같은 영구적 손상을 발생시켜 안전성에 큰 영향을 미친다.
최근의 항공기 구조는 경량화 및 연료 효율을 높이기 위해 복합재 구조가 많이 사용되고 있는데 특히 복합재는 전기 전도도가 낮기 때문에 금속보다 낙뢰에 더 취약하다. 복합재의 높은 전기 저항은 순간적으로 열에너지(Joule 가열)로 변환되는 더 많은 전기 에너지를 흡수한다. 결과적으로 극도의 낙뢰 전류가 빠르게 전도되는 것을 방해하여, 아크 스파크, Joule 가열, 자기력 또는 절연 파괴를 초래한다. 또한 복합재를 구성하는 수지 매트릭스는 낮은 열 안정성 때문에 낙뢰 저항 열 또는 스파크에서 열화, 균열 또는 연소된다. 따라서 복합재 사용 비중이 증가함에 따라 항공기의 안전을 위해 고효율 낙뢰 보호시스템을 설계하는 것은 반드시 고려되어야 한다.
복합재 항공기 구조에서 낙뢰 보호 시스템을 적용하기 위해서는 일반적으로 두께가 얇은 금속층을 복합재 구조 외부에 적층하는 방법을 사용한다. 낙뢰가 복합재 구조물에 피격되었을 때 낙뢰 전류가 상대적으로 전기전도도가 높은 금속층을 따라 흘러나가게 되므로 복합재 구조물과 내부의 파손을 방지할 수 있다.
이와 관련, 종래의 한국공개특허 제10-2016-0110648호는 메탈 와이어 메쉬 및 장섬유 보강 열가소성 플라스틱 시트를 포함하는 복합재를 개시한다.
하지만, 메탈 메쉬(Metal mesh)를 전자기파 흡수 구조에 적용할 경우, 낙뢰 피격으로 인한 구조적인 손상은 예방할 수 있으나 복합재 구조 외부에 위치한 메탈 메쉬로 인해 입사된 전자기파를 대부분 반사 시키기 때문에 전자기파 흡수 구조의 역할을 제대로 수행할 수 없는 문제점이 있다.
본 발명은 우수한 전자파 흡수성능을 발휘하고, 전기전도도가 높은 금속층을 적용한 낙뢰보호 시스템을 통해 낙뢰 피격 후에도 하중지지 및 전자기파 흡수성능을 유지할 수 있는 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명은, 유리 섬유, aramid 섬유 또는 케블라 섬유 중 적어도 어느 하나를 포함하는 유전체 섬유; 상기 유전체 섬유의 표면에 전자기적 손실 또는 전자파 흡수를 구현하기 위해 금속 무전해(無電解) 도금 처리한 도금 유전체 섬유; 상기 유전체 섬유 및 상기 도금 유전체 섬유의 하부에 적층되는 폼코어; 및 상기 폼코어의 하부에 적층되며 레이더포착면적(RCS, Radar Cross Section) 감소 및 낙뢰보호를 위해 주기적인 원형 패턴이 적용된 금속층을 포함하는 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재를 제공한다.
실시 예에 따라, 상기 복합재는, 상기 유전체 섬유, 도금 유전체 섬유, 폼코어, 금속층 순으로 적층되고, 상기 금속층 하부에 추가적인 도금 유전체 섬유, 유전체 섬유, 폼코어가 적층되어 형성될 수 있다.
실시 예에 따라, 상기 금속층은, 기 설정된 정사각형 내부에 소정의 지름을 갖는 원형 패턴이 소정의 간격으로 배치될 수 있다.
실시 예에 따라, 상기 금속층은, 상기 정사각형의 한 변이 11.67mm이고, 상기 원형 패턴은 지름이 10.67mm로 형성되며, 상기 간격은 1mm 이하로 형성될 수 있다.
실시 예에 따라, 상기 금속층은, 0.102mm의 두께로 형성되며 전기 전도도는 1.25×106 S/m 일 수 있다.
실시 예에 따라, 상기 금속층은, 8.2GHz 내지 12.4GHz의 주파수 대역에서 -10Db 이하의 전자기파 흡수 성능이 구현될 수 있다.
실시 예에 따라, 상기 복합재는 낙뢰 발생시 상기 금속층 하부는 보호될 수 있다.
전술한 바와 같은 구성을 갖는 본 발명에 따르면, 특정 주파수 대역 전자기파를 흡수하고, 낙뢰 발생 시 복합재 구조물과 내부의 파손을 줄여주는 이점이 있다.
도 1은 전자기파 흡수 폼 기반 샌드위치 복합재를 나타내며, 도1(a)는 종래의 복합재, 도1(b)는 본 발명의 복합재를 나타낸다.
도 2는 유전체 섬유와 니켈 무전해 도금된 유전체 섬유의 복소 유전율을 나타낸다.
도 3은 본 발명의 실시 예에 따라 니켈 무전해 도금된 도금 유전체 섬유의 SEM image, EDS, XPS를 나타낸다.
도 4는 본 발명의 실시 예에 따른 원형 패턴이 적용된 얇은 금속층이다.
도 5는 본 발명의 실시 예에 따라 낙뢰 보호 금속층 유무에 따른 전자기파 흡수 성능 설계 결과를 나타낸다.
도 6은 본 발명의 실시 예에 따른 복합재의 제작 과정을 나타낸다.
도 7은 본 발명의 실시 예에 따른 복합재의 전자기파 흡수성능을 평가하기 위해 자유공간 측정장비를 이용하여 Return loss 및 1D scan을 수행하는 모습이다.
도 8은 금속층이 삽입되지 않은 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 전자기파 흡수성능을 나타낸다.
도 9는 본 발명의 실시 예에 따라 금속층이 삽입된 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 전자기파 흡수성능을 나타낸다.
도 10은 본 발명의 실시 예에 따라 Impulse current generator 및 낙뢰시험 set-up을 나타낸다.
도 11은 본 발명의 실시 예에 따른 낙뢰 시험 전류 파형을 나타낸다.
도 12는 본 발명의 실시 예에 따른 낙뢰 시험 후 금속층이 삽입되지 않은 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 (a) 파손 사진, (b) 이미지 프로세싱으로 얻은 손상 영역, (c) 3D X-ray CT 측정 결과(시편 단면)
도 13은 본 발명의 실시 예에 따른 낙뢰 시험 후 금속층이 삽입된 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 (a) 파손 사진, (b) 이미지 프로세싱으로 얻은 손상 영역, (c) 3D X-ray CT 측정 결과(시편 단면)
도 14는 본 발명의 실시 예에 따른 금속층이 삽입되지 않은 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 낙뢰 시험 후 전자기파 흡수 성능을 비교한 모습이다.
도 15는 본 발명의 실시 예에 따른 금속층이 삽입된 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 낙뢰 시험 후 전자기파 흡수 성능을 비교한 모습이다.
상기 목적을 달성하기 위하여 본 발명은, 유리 섬유, aramid 섬유 또는 케블라 섬유 중 적어도 어느 하나를 포함하는 유전체 섬유; 상기 유전체 섬유의 표면에 전자기적 손실 또는 전자파 흡수를 구현하기 위해 금속 무전해(無電解) 도금 처리한 도금 유전체 섬유; 상기 유전체 섬유 및 상기 도금 유전체 섬유의 하부에 적층되는 폼코어; 및 상기 폼코어의 하부에 적층되며 레이더포착면적(RCS, Radar Cross Section) 감소 및 낙뢰보호를 위해 주기적인 원형 패턴이 적용된 금속층을 포함하는 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재를 제공한다.
실시 예에 따라, 상기 복합재는, 상기 유전체 섬유, 도금 유전체 섬유, 폼코어, 금속층 순으로 적층되고, 상기 금속층 하부에 추가적인 도금 유전체 섬유, 유전체 섬유, 폼코어가 적층되어 형성될 수 있다.
실시 예에 따라, 상기 금속층은, 기 설정된 정사각형 내부에 소정의 지름을 갖는 원형 패턴이 소정의 간격으로 배치될 수 있다.
실시 예에 따라, 상기 금속층은, 상기 정사각형의 한 변이 11.67mm이고, 상기 원형 패턴은 지름이 10.67mm로 형성되며, 상기 간격은 1mm 이하로 형성될 수 있다.
실시 예에 따라, 상기 금속층은, 0.102mm의 두께로 형성되며 전기 전도도는 1.25×106 S/m 일 수 있다.
실시 예에 따라, 상기 금속층은, 8.2GHz 내지 12.4GHz의 주파수 대역에서 -10Db 이하의 전자기파 흡수 성능이 구현될 수 있다.
실시 예에 따라, 상기 복합재는 낙뢰 발생시 상기 금속층 하부는 보호될 수 있다.
이하, 본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명을 실시하기 위한 구체적인 내용으로서 본 발명의 바람직한 실시 예의 구성과 작용에 대해 구체적으로 설명하기로 한다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에 기재된 "~부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다. 또한, 명세서 전체에서 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, "그 중간에 다른 구성을 사이에 두고" 연결되어 있는 경우도 포함한다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 발명은 낙뢰 보호 금속층이 포함된 항공기용 전자기파 흡수 샌드위치 복합재에 관한 것으로, 유전체 섬유, 도금 유전체 섬유, 폼코어 및 금속층을 포함한다. 특히 전자기적 손실을 부여하기 위해 금속 무전해 도금 기법을 활용하여 X 밴드(8.2-12.4 GHz)에서 RCS 감소 효과를 보이도록 설계된 전자기파 흡수체에 전기전도도가 높은 금속층(Metallic layer)을 적용시켜 낙뢰 보호 성능도 발휘되는 항공기용 샌드위치 구조물에 관한 것을 포함한다.
도 1은 전자기파 흡수 폼 기반 샌드위치 복합재를 나타내며, 도1(a)는 종래의 복합재, 도1(b)는 본 발명의 복합재를 나타낸다.
도 1(b)를 참고하면, 본 발명의 복합재는 유리 섬유, aramid 섬유 또는 케블라 섬유 중 적어도 어느 하나를 포함하는 유전체 섬유; 상기 유전체 섬유의 표면에 전자기적 손실 또는 전자파 흡수를 구현하기 위해 금속 무전해(無電解) 도금 처리한 도금 유전체 섬유; 상기 유전체 섬유 및 상기 도금 유전체 섬유의 하부에 적층되는 폼코어; 및 상기 폼코어의 하부에 적층되며 레이더포착면적(RCS, Radar Cross Section) 감소 및 낙뢰보호를 위해 주기적인 원형 패턴이 적용된 금속층을 포함한다.
본 발명은 입사된 전자기파 흡수 성능을 나타냄과 동시에 낙뢰 보호 금속층이 삽입된 항공기용 폼 기반 샌드위치 평판형 구조로, 낙뢰 보호 금속층은 주기 원형 패턴이 적용된 얇은 금속 막이며, 이는 전자기파 흡수 성능에 영향을 미치지 않고, 낙뢰로부터 복합재 구조물을 보호하는 역할을 한다.
상기 복합재는, 유전체 섬유, 도금 유전체 섬유, 폼코어, 금속층 순으로 적층되고, 금속층 하부에 추가적인 도금 유전체 섬유, 유전체 섬유, 폼코어가 적층되어 형성될 수 있다.
전자기파를 효과적으로 흡수하는 낙뢰 보호 금속층이 삽입된 폼 기반 샌드위치 구조를 해석프로그램(CST Studio)를 통해 설계하고, X-band(8.2-12.4 GHz) 대역에서 90% 이상의 전자기파 흡수 성능을 나타낼 수 있도록 설계 및 제작하였다.
반사 손실(Return loss)을 측정하여, 전자기파 흡수체의 성능을 검증하도록 설계되고, 반사 손실(Return loss)은 다음과 같이 나타낼 수 있다.
반사 손실(Return loss) =
Figure PCTKR2022002751-appb-img-000001
(여기서,
Figure PCTKR2022002751-appb-img-000002
: 반사손실계수,
Figure PCTKR2022002751-appb-img-000003
: 입사 임피던스,
Figure PCTKR2022002751-appb-img-000004
: 자유공간 임피던스 = 377Ω)
다층형 Dallenbach absorber의 입사 임피던스 =
Figure PCTKR2022002751-appb-img-000005
(여기서,
Figure PCTKR2022002751-appb-img-000006
: i번째 층의 특성 임피던스(
Figure PCTKR2022002751-appb-img-000007
),
Figure PCTKR2022002751-appb-img-000008
: i번째 층의 전파정수(
Figure PCTKR2022002751-appb-img-000009
),
Figure PCTKR2022002751-appb-img-000010
: i번째 층의 두께
Return loss 측정이 완료된 흡수체는 낙뢰 시험을 통하여 낙뢰 보호 성능을 평가한다. 본 발명의 복합재 구조는 Dallenbach layer로 구현되어 7층형 복합재 구조로 설계 및 제작되었다. 유리섬유/에폭시와 금속 무전해 도금된 유리섬유/에폭시, 원형 패턴이 에칭된 얇은 금속 막으로 구성되어 있고, 임피던스 정합을 일으키며 최적의 전자기파 흡수 성능을 갖는 두께 및 패턴의 형상을 설계하였다.
본 발명의 실시 예에 따라, 아래 표 1과 같이 Layer 1 내지 7로 구성될 수 있다.
Layer 1 0.250 mm (유리섬유/에폭시)
Layer 2 0.500 mm (금속 무전해 도금된 유리섬유/에폭시)
Layer 3 2.000 mm (Foam core)
Layer 4 0.102 mm (얇은 금속층)
Layer 5 0.750 mm (금속 무전해 도금된 유리섬유/에폭시)
Layer 6 0.250 mm (유리섬유/에폭시)
Layer 7 3.000 mm (Foam core)
도 2는 유전체 섬유와 니켈 무전해 도금된 유전체 섬유의 복소 유전율을 나타낸다.
도 2를 참조하면, 본 발명의 실시 예에 따라 10 GHz 에서 복소 유전율이 측정되었으며, 유전체 섬유와 니켈 무전해 도금된 유전체 섬유의 화학적 결정 분석이 상이한 점을 보여준다.
10 GHz에서 유전체 섬유의 복소 유전율은 4.57-j0.05이고, 니켈 무전해 도금된 유전체 섬유의 복소 유전율은 5.77-j6.60로 나타났다.
도 3은 본 발명의 실시 예에 따라 니켈 무전해 도금된 도금 유전체 섬유의 SEM image, EDS, XPS를 나타낸다.
도 3을 참조하면, 니켈 무전해 도금된 유전체 섬유의 화학적 결정 분석을 위해 SEM image(scanning electron microscope), EDS (energy-dispersive X-ray spectroscopy) 성분 분석, XPS(X-ray photoelectron spectroscopy)를 수행하였다.
SEM image를 통해 유전체 섬유 표면에 니켈이 균일하게 코팅된 것을 확인하였고, EDS 성분분석을 통해 섬유 표면의 Ni 성분 함량이 증가된 것을 확인하였다. XPS 측정을 통해 856.1 eV에서 Ni 성분 피크가 확인되었으며, 이는 855.6eV에서 857.9eV에 이르는 니켈 결합 에너지의 값과 일치하며, 2가 산화 상태를 유지한다.
도 4는 본 발명의 실시 예에 따른 원형 패턴이 적용된 얇은 금속층이다.
도 4를 참조하면, 금속층은 기 설정된 정사각형 내부에 소정의 지름을 갖는 원형 패턴이 소정의 간격으로 배치되어 있다.
본 발명의 실시 예에 따라, 정사각형의 한 변이 11.67mm이고, 원형 패턴은 지름이 10.67mm로 형성되며, 간격은 1mm 이하로 형성될 수 있다. 이 경우, 원형 패턴을 적용하여 설계된 낙뢰 보호 기능의 금속층의 전기 전도도는 1.25 × 106 S/m 로 측정될 수 있다.
도 5는 본 발명의 실시 예에 따라 낙뢰 보호 금속층 유무에 따른 전자기파 흡수 성능 설계 결과를 나타낸다.
도 5를 참조하면, 복합재 구조의 낙뢰 보호 금속층의 유무에 따른 전자기파 흡수 성능을 알 수 있다.
전자기파 흡수 폼 기반 샌드위치 복합재 구조의 전자기파 흡수성능을 평가하기 위해 CST Studio 프로그램을 통해 설계하고 해석을 진행하였다. 복합재 구조는 8.2-12.4 GHz 대역에서 -10dB 이하의 흡수 성능(90% 이상의 흡수성능)을 보였다.
도 6은 본 발명의 실시 예에 따른 복합재의 제작 과정을 나타내며, 도 7은 반사 손실(Return loss)과 1D scan 과정을 보여준다.
도 6을 참조하면, 복합재의 제작 과정은 (a) lay up, (b) curing accessories (c)vacuum bagging (d)curing & curing cycle (e)specimen 과정으로 이루어져 있고, 도 7을 참조하면 본 발명의 실시 예에 따른 복합재의 전자기파 흡수성능을 평가하기 위해 자유공간 측정장비를 이용하여 Return loss 및 1D scan을 수행하는 모습을 알 수 있다.
제작된 복합재 구조의 전자기파 흡수성능을 평가하기 위해 자유공간 측정장비를 이용한 Return loss 및 1D scan을 수행하였으며, 다. 금속층이 삽입된 복합재 구조는 10 GHz의 목표 주파수에서 측정하였고, 금속층이 삽입되지 않은 복합재 구조는 7.5 GHz의 목표 주파수에서 측정하였다.
도 8은 금속층이 삽입되지 않은 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 전자기파 흡수성능을 나타내고, 도 9는 본 발명의 실시 예에 따라 금속층이 삽입된 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 전자기파 흡수성능을 나타낸다.
도 8 및 도 9를 참조하면, 금속층의 유무에 따른 전자기파 흡수 성능을 알 수 있다. 이 경우, 금속층이 삽입된 전자기파 흡수 폼 기반 샌드위치 복합재 구조와 금속층이 삽입되지 않은 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 전자기파 흡수 성능을 자유공간측정장비를 이용하여 측정하였으며,
금속층이 삽입된 전자기파 흡수 폼 기반 샌드위치 복합재 구조는 8.2~12.4 GHz 대역에서 -10dB 이하(90% 이상 흡수)의 흡수성능을 보였으며, 공진 주파수(10.5 GHz)에서 최대 -40 dB 이하의 흡수성능을 나타내었다. 1D scan 결과 역시, 10 GHz의 목표 주파수에서 복합재 구조 전영역에서 5% 미만의 reflection magnitude를 나타내었다.
금속층이 삽입되지 않은 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 경우, 5.8~12.0 GHz 대역에서 -10dB 이하의 흡수성능을 보였으며, 공진 주파수(7.5 GHz)에서 최대 -30 dB 이하의 흡수성능을 나타내었다. 1D scan 결과 7.5 GHz의 목표 주파수에서 복합재 구조 전영역에서 5% 미만의 reflection magnitude를 나타내었다.
도 10은 본 발명의 실시 예에 따라 Impulse current generator 및 낙뢰시험 set-up을 나타내고, 도 11은 본 발명의 실시 예에 따른 낙뢰 시험 전류 파형을 나타낸다.
도 11과 같은 전류 파형을 적용하여 도 10의 낙뢰시험을 셋업하였다. 도 10과 같은 실험 과정에서 Impulse current generator를 이용하여8/40 ㎲ 의 전류 파형과 50 kA 수준의 전류를 인가하여 낙뢰 시험을 수행하였다.
도 12 및 도 13은 본 발명의 실시 예에 따라 각각 낙뢰 시험 후 금속층이 삽입되지 않은 전자기파 흡수 폼 기반 샌드위치 복합재 및 금속층이 삽입된 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 (a) 파손 사진, (b) 이미지 프로세싱으로 얻은 손상 영역, (c) 3D X-ray CT 측정 결과(시편 단면)을 나타낸다.
도 12 및 도 13을 참조하면, 낙뢰에 의한 손상 정도를 평가하기 위해 이미지 프로세싱과 3D X-ray CT 촬영을 수행 결과를 알 수 있다.
이미지 프로세싱은 낙뢰로 인해 손상이 발생한 구조의 표면에 대해 빛의 반사율을 이용한 2진화 기법으로 손상 면적을 평가하였으며, 두께 방향으로의 손상 정도를 측정하기 위해 3D X-ray CT 촬영을 진행하였다.
금속층이 삽입되지 않은 전자기파 흡수 폼 기반 샌드위치 복합재 구조는 상부층에서부터 하부층까지 전체적인 파손이 일어남을 확인하였다. 반면에 금속층이 삽입된 전자기파 흡수 폼기반 샌드위치 복합재 구조의 경우 금속층 아래로 파손이 일어나지 않음을 확인할 수 있었다.
실험 과정을 통해, 본 발명의 복합재 구조물은 낙뢰 발생시 금속층 하부는 보호될 수 있음을 확인하였다.
도 14는 본 발명의 실시 예에 따른 금속층이 삽입되지 않은 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 낙뢰 시험 후 전자기파 흡수 성능이고, 도 15는 금속층이 삽입된 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 낙뢰 시험 후 전자기파 흡수 성능을 비교한 모습이다.
도 14 및 도 15를 참조하면, 낙뢰 시험을 수행한 후 손상을 입은 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 return loss와 1D scanning 결과를 알 수 있다.
금속층이 삽입되지 않은 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 경우 return loss 측정 결과와 1D scan 결과에서 낙뢰에 의한 손상 후에 흡수 성능의 변화가 크고, 부분적으로 전자기파 흡수 성능을 발휘하지 못하는 것으로 나타났다.
반면에 금속층이 삽입된 전자기파 흡수 폼 기반 샌드위치 복합재 구조의 경우, return loss 결과를 통해 낙뢰 손상 후에도 8.2~12.4 GHz 대역에서 -10dB 이하의 흡수 성능을 나타내는 것을 확인하였고, 1D scan 결과에서도 전체 영역이 5% 이하의 return loss의 변화를 나타내었다.
3D X-ray CT 통해 전자기파 흡수 폼 기반 샌드위치 복합재 구조에서 금속층 아래로 파손이 발생하지 않았음을 확인하였고, 낙뢰로 인한 파손 후에도 전자기파 흡수 성능을 유지하였다. 이를 통해 낙뢰 보호 금속층이 전자기파 흡수 폼 기반 샌드위치 복합재 구조에서 기계적 및 전자기적 손상 방지에 유효하다는 것을 확인하였다.
이상에서 대표적인 실시예를 통하여 본 발명을 상세하게 설명하였으나, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리 범위는 설명한 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태에 의하여 정해져야 한다.

Claims (7)

  1. 유리 섬유, aramid 섬유 또는 케블라 섬유 중 적어도 어느 하나를 포함하는 유전체 섬유;
    상기 유전체 섬유의 표면에 전자기적 손실 또는 전자파 흡수를 구현하기 위해 금속 무전해(無電解) 도금 처리한 도금 유전체 섬유;
    상기 유전체 섬유 및 상기 도금 유전체 섬유의 하부에 적층되는 폼코어; 및
    상기 폼코어의 하부에 적층되며 레이더포착면적(RCS, Radar Cross Section) 감소 및 낙뢰보호를 위해 주기적인 원형 패턴이 적용된 금속층을 포함하는 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재.
  2. 제 1 항에 있어서,
    상기 복합재는,
    상기 유전체 섬유, 도금 유전체 섬유, 폼코어, 금속층 순으로 적층되고,
    상기 금속층 하부에 추가적인 도금 유전체 섬유, 유전체 섬유, 폼코어가 적층되어 형성되는 것을 특징으로 하는 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재.
  3. 제 1 항에 있어서,
    상기 금속층은,
    기 설정된 정사각형 내부에 소정의 지름을 갖는 원형 패턴이 소정의 간격으로 배치된 것을 특징으로 하는 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재.
  4. 제 3 항에 있어서,
    상기 금속층은,
    상기 정사각형의 한 변이 11.67mm이고,
    상기 원형 패턴은 지름이 10.67mm로 형성되며,
    상기 간격은 1mm 이하로 형성되는 것을 특징으로 하는 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재.
  5. 제 3 항에 있어서,
    상기 금속층은,
    0.102mm의 두께로 형성되며 전기 전도도는 1.25×106 S/m 인 것을 특징으로 하는 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재.
  6. 제 1 항에 있어서,
    상기 금속층은,
    8.2GHz 내지 12.4GHz의 주파수 대역에서 -10Db 이하의 전자기파 흡수 성능이 구현되는 것을 특징으로 하는 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재.
  7. 제 1 항에 있어서,
    상기 복합재는 낙뢰 발생시 상기 금속층 하부는 보호되는 것을 특징으로 하는 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재.
PCT/KR2022/002751 2021-12-01 2022-02-25 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재 WO2023101102A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0170066 2021-12-01
KR1020210170066A KR102635644B1 (ko) 2021-12-01 2021-12-01 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재

Publications (1)

Publication Number Publication Date
WO2023101102A1 true WO2023101102A1 (ko) 2023-06-08

Family

ID=86612517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002751 WO2023101102A1 (ko) 2021-12-01 2022-02-25 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재

Country Status (2)

Country Link
KR (1) KR102635644B1 (ko)
WO (1) WO2023101102A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502452B1 (ko) * 2014-08-26 2015-03-13 국방과학연구소 구조물 내부에 적용 가능한 전파흡수체
KR20180100348A (ko) * 2015-12-30 2018-09-10 사이텍 인더스트리스 인코포레이티드 용락 저항성이 있는 다기능성 표면 재료
KR101901094B1 (ko) * 2018-03-02 2018-09-20 국방과학연구소 초고온용 전파흡수 복합시트 및 이를 포함하는 제품
KR20200059363A (ko) * 2018-11-20 2020-05-29 국방과학연구소 복합재 레이어와 이를 포함하는 구조 일체형 연료 탱크 및 항공기
KR102232193B1 (ko) * 2020-01-15 2021-03-26 경상국립대학교 산학협력단 낙뢰 보호 성능을 갖는 전자기파 흡수체 및 이의 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940927B1 (fr) * 2009-01-09 2013-01-04 Eads Europ Aeronautic Defence Structure en materiau composite protegee des effets de la foudre
KR102019444B1 (ko) 2015-03-10 2019-09-09 (주)엘지하우시스 복합재 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502452B1 (ko) * 2014-08-26 2015-03-13 국방과학연구소 구조물 내부에 적용 가능한 전파흡수체
KR20180100348A (ko) * 2015-12-30 2018-09-10 사이텍 인더스트리스 인코포레이티드 용락 저항성이 있는 다기능성 표면 재료
KR101901094B1 (ko) * 2018-03-02 2018-09-20 국방과학연구소 초고온용 전파흡수 복합시트 및 이를 포함하는 제품
KR20200059363A (ko) * 2018-11-20 2020-05-29 국방과학연구소 복합재 레이어와 이를 포함하는 구조 일체형 연료 탱크 및 항공기
KR102232193B1 (ko) * 2020-01-15 2021-03-26 경상국립대학교 산학협력단 낙뢰 보호 성능을 갖는 전자기파 흡수체 및 이의 제조 방법

Also Published As

Publication number Publication date
KR102635644B1 (ko) 2024-02-14
KR20230082285A (ko) 2023-06-08

Similar Documents

Publication Publication Date Title
Chung Materials for electromagnetic interference shielding
JP4895415B2 (ja) 複合航空機構造
US7750861B2 (en) Hybrid antenna including spiral antenna and periodic array, and associated methods
KR20190104131A (ko) 전자 차폐 필름 및 그 제조방법
US8803107B2 (en) Material absorbing electromagnetic waves
CN109862769A (zh) 一种超薄超宽谱的吸波材料及其制备方法
US9055667B2 (en) Noise dampening energy efficient tape and gasket material
WO2016117718A1 (en) Electromagnetic wave shielding and absorbing sheet and manufacturing method of the same
US20100103072A1 (en) Honey Comb-Backed Armored Radome
WO2021107339A1 (ko) 허니컴 샌드위치 구조의 전자기파 흡수체 및 이를 적용한 스텔스 구조물
GB2471186A (en) Avionics chassis
CN103943968A (zh) 利用次波长谐振单元及有源电路构成的完美匹配吸波层
CN102752995A (zh) 宽频带吸波超材料
KR20000064305A (ko) 자성 수지침투 가공재와 그 제조방법 및 그를 이용한 프린트배선기판
EP0877394A1 (en) Composite magnetic tape
WO2023101102A1 (ko) 낙뢰 보호 금속층이 삽입된 항공기용 전자기파 흡수 폼 기반 샌드위치 복합재
JP2008130630A (ja) 電磁波シールドシート
WO2016200061A1 (ko) 광대역 전자기파 흡수체의 단위셀
CN112928481B (zh) 一种工作在c波段的耐高温宽带rcs减缩超表面结构
CN201576464U (zh) 环保型天线微结构电磁波隔离材料
CN104332220A (zh) 一种柔软性抗核电磁脉冲智慧信息系统用电缆
WO2021015327A1 (ko) 투명 스텔스 구조체
CN113581497B (zh) 具有强电磁环境防护能力的星表膜结构的安装方法
CN214400359U (zh) 一种一体化的复合结构增强型吸波材料
KR102272327B1 (ko) 낙뢰방지 및 안테나 간 전자파 간섭 방지 기능을 갖춘 통합마스트용 메타물질 흡수체 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901465

Country of ref document: EP

Kind code of ref document: A1