WO2023101034A1 - 3d printed structure for implantation in human body and method for preparing same - Google Patents

3d printed structure for implantation in human body and method for preparing same Download PDF

Info

Publication number
WO2023101034A1
WO2023101034A1 PCT/KR2021/017815 KR2021017815W WO2023101034A1 WO 2023101034 A1 WO2023101034 A1 WO 2023101034A1 KR 2021017815 W KR2021017815 W KR 2021017815W WO 2023101034 A1 WO2023101034 A1 WO 2023101034A1
Authority
WO
WIPO (PCT)
Prior art keywords
biopolymer
biodegradable polymer
line
ink
implantation
Prior art date
Application number
PCT/KR2021/017815
Other languages
French (fr)
Korean (ko)
Inventor
김준규
이기원
김형구
이환철
Original Assignee
주식회사 엘앤씨바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘앤씨바이오 filed Critical 주식회사 엘앤씨바이오
Publication of WO2023101034A1 publication Critical patent/WO2023101034A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3633Extracellular matrix [ECM]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to a 3D printed structure for implantation in the human body and a method for manufacturing the same, and to a 3D printed structure for implantation in the human body and a method for manufacturing the same, which have mechanical strength and elasticity suitable for the transplanted tissue and biological characteristics suitable for the surrounding environment of the tissue. it's about
  • the 3D printing structure and method for manufacturing the same of the present invention is a technology for manufacturing a 3D printing structure having various physical properties by adjusting the spacing and nozzle thickness of a plurality of inks.
  • the printing method is used, and biopolymer ink, which is a mixture of human and animal tissue-derived extracellular matrix and biocompatible polymer, is sprayed after selecting a nozzle suitable for the size of the gap created with the biodegradable polymer ink, and then a transplant structure suitable for the tissue or organ. will manufacture
  • the 3D printing structure and its manufacturing method of the present invention through the above process, 1) physical properties such as mechanical strength and elasticity of the 3D printing structure can be changed, and 2) a line in which the biopolymer ink is made of biodegradable polymer ink After setting it to pass over the gap, replacing the nozzle with a nozzle suitable for the size of the gap so that the biopolymer ink can fill the gap and spraying it, 3) Filling the structure with biodegradable polymer ink and biopolymer ink, The content of the biopolymer ink can be increased without changing the size.
  • 3D printing technology is drawing attention as a technology that can bring innovation to the future manufacturing industry as a technology that builds up materials layer by layer as if printing according to a 3D blueprint to create a product in a desired 3D shape.
  • it has been recognized for its potential for use in terms of its ability to produce personalized manufacturing, and in the fields of tissue engineering and regenerative medicine, it is used for implant production, scaffold production, and cell printing for artificial organ development.
  • 3D printing which is used in tissue engineering and regenerative medicine, structures are manufactured using various materials such as ceramics, metals, and polyethylene (PE). Depending on the characteristics of the material, the manufactured structure has different physical properties such as mechanical strength, and as a result, the fields in which it can be used are different.
  • polylactic acid (PLA) and polyglycolic acid (PGA) which are synthetic polymers with biodegradability, are used as polymers used for human tissue and organ production through the development of 3D bioprinting technology. and its copolymer (PLGA), polycarprolactone (PCL), etc. are mainly used.
  • PCL is a material with elasticity and rigidity, and is used as a material for medical devices to be implanted into the human body.
  • constructs made only from PCL perform shape-maintaining functions such as physical properties and support, but have disadvantages in that the function of cell attachment, proliferation, and differentiation in tissues after transplantation is poor.
  • biopolymers such as human and animal tissue-derived extracellular matrices and hydrogels are used as inks and used together with PCL are increasing. Attempts to manufacture a 3D printing structure that improves biofunctionality while having physical properties, support, and shape retention suitable for a living environment by using the two materials together as ink have been actively attempted.
  • Tissues and organs in the human body have various physical properties, and the physical environment in the body is different depending on the tissue and organ, so a method of transplanting a structure suitable for the environment is required.
  • a method of transplanting a structure suitable for the environment is required.
  • Registered Patent No. 10-1067827 suggests a method of making a lattice shape by alternately stacking two layers using a biodegradable synthetic polymer and a hydrogel.
  • this method is a printing method that leaves voids without filling the gaps while maintaining the line gap size of the biodegradable synthetic polymer ink that functions to maintain the shape, there are limitations in changing the physical properties of the structure.
  • a 3D printing structure for human body implantation is manufactured using both biodegradable polymer ink and biopolymer ink, but 3D printing structure having various physical properties by adjusting the spacing and nozzle thickness of lines made of the two inks, and We would like to present the manufacturing method.
  • An object of the present invention is to manufacture a structure by using a plurality of inks, that is, biodegradable polymer ink and biopolymer ink together, and to provide a 3D printing structure having various physical properties by adjusting the thickness of the nozzle and the spacing between lines made of the inks, and It is to provide a manufacturing method.
  • Another object of the present invention is to provide a printing method that can be filled with biopolymer ink by selecting and replacing nozzles with a thickness suitable for the line gap size generated by the biodegradable polymer ink during the 3D printing process and spraying the biopolymer ink. It is an object of the present invention to provide a structure capable of increasing the content of biopolymer ink without changing the size of the structure and a method for manufacturing the same.
  • the 3D printed structure for transplantation into the human body and the method of manufacturing the same according to the present invention can have biological properties suitable for the surrounding environment, such as mechanical strength and elasticity suitable for the tissue and organ to be transplanted, and tissue.
  • biological properties suitable for the surrounding environment such as mechanical strength and elasticity suitable for the tissue and organ to be transplanted, and tissue.
  • the size of the line spacing of biodegradable polymer ink is adjusted, and the characteristics suitable for transplanted tissues and organs are obtained by changing the nozzle thickness of biopolymer ink in which human and animal tissue-derived extracellular matrices and biocompatible polymers are mixed.
  • the 3D printing structure for human body implantation of the present invention as described above includes two or more biodegradable polymer lines comprising a biodegradable polymer; and a biopolymer line formed of biopolymer ink in a space between the biodegradable polymer lines.
  • polylactic acid PLA
  • polyglycolic acid PGA
  • copolymers thereof PLGA
  • PCL polycaprolactone
  • the biopolymer may include a human or animal-derived extracellular matrix and a hydrogel.
  • the 3D printing structure for human body implantation includes, for example, two or more unit layers formed of the biodegradable polymer line formed in one direction and the biopolymer line formed between the biodegradable polymer lines, and the unit layers adjacent to each other.
  • the biodegradable polymer line and the biopolymer line may be formed while crossing each other. Through this, it is possible to maintain the overall mechanical balance while forming a structure for larger tissue production.
  • the 3D printed structure for transplantation into the human body may be used as an implant, a support, or an artificial organ.
  • the width of the biodegradable polymer line is preferably 100 to 1000 ⁇ m, and the width of the biopolymer line is preferably 100 to 4000 ⁇ m.
  • the ratio of the width of the biopolymer line to the width of the biodegradable polymer line may be 1:1 to 1:4.
  • Widths of the biodegradable polymer line and the biopolymer line may be adjusted according to required properties.
  • the manufacturing method of the 3D printing structure for human body implantation of the present invention forming two or more biodegradable polymer lines with a distance from each other with a biodegradable polymer (S1); and forming a biopolymer line with biopolymer ink in a space formed between the biodegradable polymer lines (S2).
  • polylactic acid PLA
  • polyglycolic acid PGA
  • copolymers thereof PLGA
  • PCL polycaprolactone
  • the biopolymer may include a human or animal tissue-derived extracellular matrix and a hydrogel.
  • the step S1 and the step S2 are performed one or more times on the unit layer formed through the steps S1 and S2 so that two or more unit layers are stacked, but the unit layers adjacent to each other are the biodegradable polymer line. And the biopolymer lines may be formed while crossing each other.
  • the 3D printed structure manufactured through the manufacturing method may be used as an implant, a support, or an artificial organ.
  • the width of the biodegradable polymer line is preferably 100 to 1000 ⁇ m, and the width of the biopolymer line is preferably 100 to 4000 ⁇ m.
  • the ratio of the width of the biopolymer line to the width of the biodegradable polymer line may be 1:1 to 1:4.
  • the biopolymer line may be formed by spraying the biopolymer ink while adjusting the thickness of the nozzle according to the interval between the biodegradable polymer lines.
  • a structure having various physical properties can be manufactured without changing the size of the entire structure by adjusting the size of the line spacing of the biodegradable polymer ink and filling the space formed by the spacing with the biopolymer ink to prepare a structure for transplantation.
  • the structure prepared in this way may have physical properties such as mechanical strength, elasticity, and biological properties suitable for the physical environment of the body tissue to be implanted.
  • the present invention utilizes a method of changing the size of line gaps and filling them with biopolymer ink, so that cells in the tissue after transplantation do not change the overall size of the structure. It is possible to increase the content of the biopolymer ink providing an environment capable of attaching, proliferating and differentiating.
  • FIG. 1 is a side cross-sectional view of a unit layer of a 3D printed structure for human body implantation according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a unit layer of a 3D printed structure for human body implantation according to an embodiment of the present invention.
  • FIG. 3 is a photograph of a structure manufactured with single ink (biodegradable polymer ink) and multiple inks (biodegradable polymer ink + biopolymer ink) according to a 3D printing method according to an embodiment of the present invention (from the left, biodegradable polymer ink).
  • This is an example of a structure prepared by changing the ratio of line width to line spacing of ink to 1:1, 1:2, 1:3, and 1:4).
  • FIG. 4 is a diagram showing a comparison of infill and line spacing size ratios in 3D printing and showing size changes in structure spacing units according to line spacing size ratios.
  • 5 and 6 are pictures showing a method of stacking biodegradable polymer ink and biocompatible polymer ink during the manufacturing process of a 3D printed structure for human body implantation according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing the nozzle thickness of the biopolymer ink selected according to the size of the line spacing generated by the biodegradable polymer ink.
  • Example 8 is a view for explaining a manufacturing process of the 3D printed structure of Example 1, and is a diagram illustrating a process of manufacturing first and second unit layers.
  • FIG. 9 is a graph showing a change in ink content used for manufacturing each line according to a ratio of a biodegradable polymer line and a biopolymer line of a 3D printed structure for human body implantation according to an embodiment of the present invention.
  • 10 and 11 are graphs showing the tensile strength and Young's modulus of the structure according to the change in the line spacing size ratio of the structure manufactured according to Example 1, respectively.
  • a structure is manufactured using a plurality of inks, that is, biodegradable polymer ink and biopolymer ink together, but the structure is to be implanted by adjusting the spacing and nozzle thickness of the plurality of inks. It can have physical properties such as mechanical strength, elasticity, and bio-characteristics suitable for the physical environment of internal tissues.
  • a structure having various physical properties can be manufactured without changing the size of the entire structure by manufacturing a structure for implantation by filling the space formed by the line spacing of the biodegradable polymer ink without empty space.
  • 1 and 2 are a cross-sectional side view and a plan view of a unit layer of a 3D printed structure for human body implantation according to an embodiment of the present invention.
  • the 3D printing structure for human body implantation is a biodegradable polymer line (gray) formed of a biodegradable polymer and a biodegradable polymer line in the space between the lines. It includes biopolymer lines (yellow) formed by filling polymer ink.
  • the biodegradable polymer forming the biodegradable polymer line is, for example, polylactic acid (PLA), polyglycolic acid (PGA) and its copolymer (PLGA), polycaprolactone (Polycarprolactone, PCL) etc. can be used. However, it is not limited thereto.
  • PLA polylactic acid
  • PGA polyglycolic acid
  • PLGA polycaprolactone
  • PCL polycaprolactone
  • biopolymer ink may be prepared using a human or animal tissue-derived extracellular matrix and a hydrogel, and the extracellular matrix may be prepared using various human or animal tissues according to the required characteristics of the structure to be manufactured. there is.
  • the biodegradable polymer line may be formed in one direction as shown in FIGS. 1 and 2, and the biopolymer line may be formed in one direction in the space formed by the gap between the biodegradable polymer lines, but is not necessarily limited thereto. It can be formed in various ways according to the required characteristics of.
  • the width of the biodegradable polymer line is 100 to 1000 ⁇ m
  • the biopolymer line may be formed to be 100 to 4000 ⁇ m
  • the ratio of the biodegradable polymer line to the biopolymer line is in the range of 1:1 to 1:4. It may be, but is not limited thereto.
  • the present embodiment shows an example in which the biodegradable polymer line and the biopolymer line are formed in one layer, that is, a unit layer, it is not limited thereto and may be manufactured in multiple layers according to the tissue to be manufactured.
  • the unit layers adjacent to each other may be formed while the biodegradable polymer line and the biopolymer line cross each other, but are not limited thereto.
  • the meaning of mutually intersecting does not necessarily mean that they are formed in a vertical direction.
  • FIG. 3 is a photograph of a structure manufactured with single ink (biodegradable polymer ink) and multiple inks (biodegradable polymer ink + biopolymer ink) according to a 3D printing method according to an embodiment of the present invention (from the left, biodegradable polymer ink).
  • This is an example of a structure manufactured by changing the ratio of line width to line spacing of ink to 1:1, 1:2, 1:3, and 1:4)
  • Figure 4 shows the ratio of filling and line spacing in 3D printing It is a figure showing the size change of the structure spacing unit according to the line spacing size ratio.
  • the biopolymer ink is filled in the space between the biodegradable polymer lines formed with the biodegradable polymer ink, and as the interval between the biodegradable polymer lines increases, the empty space increases, and the biopolymer ink
  • the volume of the biopolymer line to be formed increases.
  • the characteristics of the structure can be controlled by adjusting the volume of the biodegradable polymer line and the biopolymer line.
  • 5 and 6 are pictures showing a method of stacking biodegradable polymer ink and biocompatible polymer ink during the manufacturing process of a 3D printed structure for human body implantation according to an embodiment of the present invention.
  • FIG 5 shows a process of forming a unit layer of a structure by forming biopolymer lines (yellow) with biopolymer ink in the space between the biodegradable polymer lines (gray).
  • biodegradable polymer line (gray) formed by preparing a first layer with a biodegradable polymer and then a second layer with a biodegradable polymer thereon, and biopolymer ink in the space formed between the biodegradable polymer lines. It is a figure showing an example of forming a biopolymer line (yellow) with .
  • the reason why the biodegradable polymer line is formed by stacking the biodegradable polymer in two layers is because, due to the nature of the biodegradable polymer, if the biodegradable polymer line cannot be formed at the required height, the biodegradable polymer line must be formed in multiple layers of two or more layers. Because.
  • FIG. 7 is a diagram showing the nozzle thickness of the biopolymer ink selected according to the size of the line spacing generated by the biodegradable polymer ink.
  • the thickness of the nozzle spraying the biopolymer ink can be adjusted according to the distance between the biodegradable polymer lines, that is, the width of the biopolymer line, so that the biopolymer ink can be completely filled without empty spaces.
  • PCL (Evonik, Essen, Germany) was placed in a 3D printed custom syringe with thermal conductivity and mounted on Head 1, and the temperature was set to 90° C. to 120° C. through the system.
  • the dissolved PCL was sprayed through a precision nozzle with a pressure of 100 to 700 kPa and an inner diameter of 100 to 500 ⁇ m.
  • the spacing of the lines generated by the spraying PCL was adjusted to 1000, 1500, 2000, and 2500 ⁇ m through 3D printer settings and g code.
  • the process of determining the size of the line spacing generated according to the adjusted line spacing and the method of calculating the filling according to the distance ratio are shown in FIG. 4 . After completing the spraying of the first layer to have a height of 100 to 300 ⁇ m according to the ratio of the set distance, the second layer was completed so that the height of the line was 200 to 600 ⁇ m by spraying in the same direction and manner.
  • IPA isopropyl alcohol
  • NaOH sodium hydroxide
  • Freeze-dried decellularized human-derived tissue was pulverized using a freeze grinder. After the grinding, tissue powder having a diameter of 500 ⁇ m or less was obtained by passing through a sieve having a diameter of 100 to 500 ⁇ m.
  • Hyaluronic acid (HA) and carboxymethyl cellulose (CMC) were mixed at a predetermined ratio, 1,4-butanediial diglycidyl ether (BDDE) as a cross-linking agent was added, NaOH was added, mixed, and cross-linking was performed. After cross-linking, HA-CMC was washed using a dialysis membrane. The washed HA-CMC was freeze-dried to remove moisture. The freeze-dried HA-CMC was pulverized, mixed with sterile physiological saline in proportion, and then prepared as HA-CMC gel.
  • BDDE 1,4-butanediial diglycidyl ether
  • Biopolymer ink was prepared by mixing micronized human tissue and HA-CMC gel in proportion. Thereafter, the biopolymer ink was put into a syringe and centrifuged to ensure that it was constantly discharged during 3D printing.
  • a first unit layer was formed by filling a two-layer height gap made of biodegradable polymer ink with biopolymer ink, and a second unit layer was prepared by crossing the first unit layer thereon in the same manner.
  • 8 is a diagram schematically illustrating a process of manufacturing up to a second unit layer in this embodiment. Thereafter, the structure of this embodiment was manufactured by stacking up to the eighth unit layer.
  • the 3D printing method in Example 1 uses a single biodegradable polymer ink and a biodegradable polymer ink + multiple biopolymer inks, and has a size of width X length X height (20 X 20 X 3 mm) and a line spacing size ratio (1 :1, 1:2, 1:3, 1:4) were prepared for different structures.
  • the shape of the fabricated structure is shown in FIG. 3 .
  • the contents of the biodegradable polymer ink and biopolymer ink included in the fabricated structure were calculated and shown in a graph in FIG. 9, and the contents of the biodegradable polymer ink and biopolymer ink in FIG. 9 are shown in Table 2 below.
  • the content of each ink used varies according to the ratio between the width of the biodegradable polymer line and the width of the biopolymer line, and accordingly, the physical properties of the structure may be changed.
  • the content of the biopolymer can be increased while increasing the distance between the biodegradable polymer lines without changing the size of the 3D printed structure.
  • Example 1 In order to confirm the mechanical strength of the structure prepared in Example 1, a tensile strength test was performed using a measuring device (EZ Test, Shimadzu Corporation, Kyoto, Japan) that performs tension at a rate of 8 mm/min.
  • the specimen used in the test (manufactured according to ASTM D 638 No. 4 standard, manufactured in dog bone form) was manufactured according to the line spacing size ratio by 3D printing.
  • Table 3 shows the results of decreasing tensile strength and Young's modulus (modulus of elasticity) as the line spacing size ratio increases.
  • 10 and 11 are graphs showing the tensile strength and Young's modulus of the structure according to the change in the line spacing size ratio of the structure manufactured according to Example 1, respectively. 10 and 11, it can be confirmed that as the line spacing size ratio increases, the rigidity of the structure decreases, but the ductility at which deformation occurs until failure increases.

Abstract

The present invention relates to a 3D printed structure for implantation in a human body and a method for preparing same. According to the present invention, a structure is prepared using both biodegradable polymer ink and biopolymer ink, and thus the structure can be prepared into a 3D printed structure having various physical properties by adjusting the thickness of a nozzle and a spacing between lines formed of the ink. In addition, a structure for implantation is prepared by adjusting the size of a spacing between lines formed of the biodegradable polymer ink and by filling a space formed by the spacing with the biopolymer ink without any empty space, whereby the structure can be manufactured into a structure having various physical properties without a change in the size of the entire structure. The structure prepared in the method described above can have physical properties, such as mechanical strength, elasticity, biological properties, and the like, suitable for the physical environment of a body tissue into which the structure is to be implanted.

Description

인체 이식을 위한 3D 프린팅 구조체 및 그 제조방법3D printed structure for human body implantation and its manufacturing method
본 발명은 인체 이식을 위한 3D 프린팅 구조체 및 그 제조방법에 관한 것으로, 이식되는 조직에 맞는 기계적 강도와 탄성 및 조직 주변 환경에 적합한 생체 특성을 갖도록 하는 인체 이식을 위한 3D 프린팅 구조체 및 그 제조방법에 관한 것이다.The present invention relates to a 3D printed structure for implantation in the human body and a method for manufacturing the same, and to a 3D printed structure for implantation in the human body and a method for manufacturing the same, which have mechanical strength and elasticity suitable for the transplanted tissue and biological characteristics suitable for the surrounding environment of the tissue. it's about
본 발명의 3D 프린팅 구조체 및 그 제조방법은, 복수 잉크의 간격 및 노즐 굵기 조절을 통해 다양한 물성을 가지는 3D 프린팅 구조체를 제조하는 기술로서, 상세하게는 생분해성 고분자 잉크의 라인 간격 크기를 조절하는 3D 프린팅 방식을 이용하며, 사람 및 동물 조직 유래 세포외기질과 생체적합성 고분자를 혼합한 생체고분자 잉크를 생분해성 고분자 잉크로 생성된 간격 크기에 적합한 노즐을 선정한 후 분사하여 해당 조직 또는 장기 등에 적합한 이식 구조체를 제조하게 된다.The 3D printing structure and method for manufacturing the same of the present invention is a technology for manufacturing a 3D printing structure having various physical properties by adjusting the spacing and nozzle thickness of a plurality of inks. The printing method is used, and biopolymer ink, which is a mixture of human and animal tissue-derived extracellular matrix and biocompatible polymer, is sprayed after selecting a nozzle suitable for the size of the gap created with the biodegradable polymer ink, and then a transplant structure suitable for the tissue or organ. will manufacture
본 발명의 3D 프린팅 구조체 및 그 제조방법에 따르면, 상기 공정을 통해 1) 3D 프린팅 구조체의 기계적 강도 및 탄성과 같은 물성을 변화시킬 수 있고, 2) 생체고분자 잉크가 생분해성 고분자 잉크로 생성된 라인 간격 위를 지나도록 설정한 후, 생체고분자 잉크가 해당 간격을 채울 수 있도록 간격 크기에 맞는 노즐로 교체하여 분사함으로써, 3) 생분해성 고분자 잉크와 생체고분자 잉크로 구조체를 빈틈없이 채우면서, 전체적인 구조체 크기의 변화는 없이 생체고분자 잉크의 함량을 증가시킬 수 있다.According to the 3D printing structure and its manufacturing method of the present invention, through the above process, 1) physical properties such as mechanical strength and elasticity of the 3D printing structure can be changed, and 2) a line in which the biopolymer ink is made of biodegradable polymer ink After setting it to pass over the gap, replacing the nozzle with a nozzle suitable for the size of the gap so that the biopolymer ink can fill the gap and spraying it, 3) Filling the structure with biodegradable polymer ink and biopolymer ink, The content of the biopolymer ink can be increased without changing the size.
3D 프린팅 기술은 3차원의 설계도에 따라 인쇄하듯이 한 층씩 소재를 쌓아 올려 원하는 3차원 형태의 제품을 만드는 기술로 미래 제조업의 혁신을 가져올 수 있는 기술로 주목 받고 있다. 특히, 개인 맞춤형 제조 생산이 가능하다는 측면에서 활용 가능성을 인정받고 있으며, 조직공학 및 재생의학 분야에서는 임플란트 제작, 지지체 제작 및 인공장기 개발을 위한 세포 프린팅 등에 활용되고 있다.3D printing technology is drawing attention as a technology that can bring innovation to the future manufacturing industry as a technology that builds up materials layer by layer as if printing according to a 3D blueprint to create a product in a desired 3D shape. In particular, it has been recognized for its potential for use in terms of its ability to produce personalized manufacturing, and in the fields of tissue engineering and regenerative medicine, it is used for implant production, scaffold production, and cell printing for artificial organ development.
조직공학 및 재생의학 분야에 사용되는 3D 프린팅에서는 세라믹, 금속, 폴리에틸렌(Polyethylene, PE) 등의 다양한 소재를 이용하여 구조체를 제작하고 있다. 소재의 특성에 따라 제조된 구조체는 기계적 강도와 같은 물성이 달라지며 그 결과로 사용할 수 있는 분야가 달라진다. 특히, 조직공학 분야에서 3D 바이오 프린팅 기술의 개발을 통한 인체 조직 및 장기 제작에 사용하는 고분자로는 생분해성을 가지는 합성고분자인 폴리락트산(Polylactic acid, PLA), 폴리글리콜산(Polyglycolic acid, PGA) 및 그 공중합체(PLGA), 폴리카프로락톤(Polycarprolactone, PCL) 등이 주로 사용된다.In 3D printing, which is used in tissue engineering and regenerative medicine, structures are manufactured using various materials such as ceramics, metals, and polyethylene (PE). Depending on the characteristics of the material, the manufactured structure has different physical properties such as mechanical strength, and as a result, the fields in which it can be used are different. In particular, in the field of tissue engineering, polylactic acid (PLA) and polyglycolic acid (PGA), which are synthetic polymers with biodegradability, are used as polymers used for human tissue and organ production through the development of 3D bioprinting technology. and its copolymer (PLGA), polycarprolactone (PCL), etc. are mainly used.
사용되는 합성고분자 중에 PCL은 탄성 및 강성이 있는 소재로, 인체 내에 이식하기 위한 의료기기의 재료로 활용되고 있다. 하지만, PCL로만 제조한 구조체는 물성, 지지와 같은 형태 유지 기능을 하지만 이식 후 조직에서 세포 부착, 증식 및 분화의 기능이 떨어지는 단점이 있다. 이와 같은 단점을 보완하기 위하여 사람 및 동물 조직 유래 세포외기질 및 하이드로겔(hydrogel)과 같은 생체고분자를 잉크로 활용하여 PCL과 함께 사용하는 사례가 증가하고 있다. 두 가지 물질을 잉크로 병용하여 생체 환경에 적합한 물성, 지지 및 형태 유지성을 가지면서 생체기능성을 향상시키는 3D 프린팅 구조체를 제조하려는 시도가 활발하게 이루어지고 있다.Among the synthetic polymers used, PCL is a material with elasticity and rigidity, and is used as a material for medical devices to be implanted into the human body. However, constructs made only from PCL perform shape-maintaining functions such as physical properties and support, but have disadvantages in that the function of cell attachment, proliferation, and differentiation in tissues after transplantation is poor. In order to compensate for these disadvantages, cases in which biopolymers such as human and animal tissue-derived extracellular matrices and hydrogels are used as inks and used together with PCL are increasing. Attempts to manufacture a 3D printing structure that improves biofunctionality while having physical properties, support, and shape retention suitable for a living environment by using the two materials together as ink have been actively attempted.
인체내 조직 및 기관은 다양한 물성을 가지고 있고, 체내 물리적 환경도 조직 및 기관에 따라 다르기 때문에 해당 환경에 맞춘 구조체를 이식하는 방법이 필요한데, 이와 같은 체내의 다양한 조직 및 기관의 물리적 환경에 적합한 구조체를 3D 프린팅으로 제조하기 위해서는 복수의 잉크를 사용함과 동시에 두 잉크의 분사 방식을 변화시키는 것 또한 필요하다.Tissues and organs in the human body have various physical properties, and the physical environment in the body is different depending on the tissue and organ, so a method of transplanting a structure suitable for the environment is required. In order to manufacture with 3D printing, it is also necessary to use a plurality of inks and change the spraying method of the two inks at the same time.
등록특허 10-1067827에서는 생분해성 합성 고분자와 하이드로겔을 사용하여 두 층을 교대로 적층하여 격자 형태를 만드는 방법을 제시하고 있다. 그러나, 이 방법은 형태를 유지하는 기능을 하는 생분해성 합성 고분자 잉크의 라인 간격 크기를 유지한 상태로 간격을 채우지 않고 공극을 남기는 프린팅 방법이기 때문에 구조체의 물성을 변화시키는데 제약이 있다. 또한, 하이드로겔을 고정된 단일 노즐을 사용하여 분사함으로써 다양한 조직에 적용하기 위한 하이드로겔 잉크의 양을 변화시킬 수 없는 단점이 있다.Registered Patent No. 10-1067827 suggests a method of making a lattice shape by alternately stacking two layers using a biodegradable synthetic polymer and a hydrogel. However, since this method is a printing method that leaves voids without filling the gaps while maintaining the line gap size of the biodegradable synthetic polymer ink that functions to maintain the shape, there are limitations in changing the physical properties of the structure. In addition, there is a disadvantage in that the amount of hydrogel ink for application to various tissues cannot be changed by spraying the hydrogel using a single fixed nozzle.
이에, 본 발명에서는 생분해성 고분자 잉크 및 생체고분자 잉크를 함께 이용하여 인체 이식을 위한 3D 프린팅 구조체를 제조하되, 두 잉크로 만들어지는 라인의 간격 및 노즐 굵기 조절을 통해 다양한 물성을 가지는 3D 프린팅 구조체 및 그 제조방법을 제시하고자 한다. Therefore, in the present invention, a 3D printing structure for human body implantation is manufactured using both biodegradable polymer ink and biopolymer ink, but 3D printing structure having various physical properties by adjusting the spacing and nozzle thickness of lines made of the two inks, and We would like to present the manufacturing method.
복수의 잉크를 사용한 3D 프린팅 분사 방식을 통해 생분해성 고분자 잉크의 라인 간격 크기를 조절하여 다양한 물성을 가지는 구조체를 제조할 수 있고, 생체고분자 잉크를 형성된 라인 간격 크기에 적합한 노즐을 선정 및 교체하여 분사함으로써 구조체의 크기 변화 없이 생체고분자 잉크의 함량을 증가시킬 수 있는 구조체 및 그 제조방법을 제시하고자 한다.Through the 3D printing jetting method using multiple inks, it is possible to manufacture a structure with various physical properties by adjusting the size of the line gap of the biodegradable polymer ink, and select and replace a nozzle suitable for the size of the line gap formed with the biopolymer ink to spray Accordingly, a structure capable of increasing the content of biopolymer ink without changing the size of the structure and a manufacturing method thereof are proposed.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
한국등록특허 제10-1067827호Korean Patent Registration No. 10-1067827
[비특허문헌][Non-Patent Literature]
Griffin M et al. J Vis Exp. 118 , 54872 (2016)Griffin M et al. J Vis Exp. 118, 54872 (2016)
본 발명의 목적은 복수의 잉크 즉, 생분해성 고분자 잉크 및 생체고분자 잉크를 함께 이용하여 구조체를 제조하되, 상기 잉크들로 이루어진 라인 사이의 간격 및 노즐 굵기 조절을 통해 다양한 물성을 가지는 3D 프린팅 구조체 및 그 제조방법을 제공하는 것이다. An object of the present invention is to manufacture a structure by using a plurality of inks, that is, biodegradable polymer ink and biopolymer ink together, and to provide a 3D printing structure having various physical properties by adjusting the thickness of the nozzle and the spacing between lines made of the inks, and It is to provide a manufacturing method.
본 발명의 또 다른 목적은 3D 프린팅 과정 중 생분해성 고분자 잉크로 인하여 생성된 라인 간격 크기에 생체고분자 잉크를 적합한 굵기의 노즐을 선정 및 교체하여 분사함으로써 생체고분자 잉크로 모두 채워 넣을 수 있는 프린팅 방법을 통해 구조체의 크기의 변화 없이 생체고분자 잉크의 함량을 증가시킬 수 있는 구조체 및 그 제조방법을 제공하는 것이다.Another object of the present invention is to provide a printing method that can be filled with biopolymer ink by selecting and replacing nozzles with a thickness suitable for the line gap size generated by the biodegradable polymer ink during the 3D printing process and spraying the biopolymer ink. It is an object of the present invention to provide a structure capable of increasing the content of biopolymer ink without changing the size of the structure and a method for manufacturing the same.
본 발명의 인체 이식을 위한 3D 프린팅 구조체 및 그 제조방법은, 이식되는 조직 및 장기에 맞는 기계적 강도와 탄성 및 조직 등 주변 환경에 적합한 생체 특성을 갖도록 할 수 있다. 본 발명에 따르면, 생분해성 고분자 잉크의 라인 간격 크기를 조절하고, 사람 및 동물 조직 유래 세포외기질과 생체적합성 고분자가 혼합된 생체고분자 잉크의 노즐 굵기 변화를 통해 이식되는 조직 및 장기에 맞는 특성을 부여하게 된다.The 3D printed structure for transplantation into the human body and the method of manufacturing the same according to the present invention can have biological properties suitable for the surrounding environment, such as mechanical strength and elasticity suitable for the tissue and organ to be transplanted, and tissue. According to the present invention, the size of the line spacing of biodegradable polymer ink is adjusted, and the characteristics suitable for transplanted tissues and organs are obtained by changing the nozzle thickness of biopolymer ink in which human and animal tissue-derived extracellular matrices and biocompatible polymers are mixed. will be granted
이와 같은 본 발명의 인체 이식을 위한 3D 프린팅 구조체는, 생분해성 고분자를 포함하여 이루어지는 2 이상의 생분해성 고분자 라인; 및 상기 생분해성 고분자 라인 사이의 공간에 생체고분자 잉크로 형성된 생체고분자 라인을 포함한다.The 3D printing structure for human body implantation of the present invention as described above includes two or more biodegradable polymer lines comprising a biodegradable polymer; and a biopolymer line formed of biopolymer ink in a space between the biodegradable polymer lines.
상기 생분해성 고분자는 폴리락트산(Polylatic acid, PLA), 폴리글리콜산(Polyglycolic acid, PGA) 및 그 공중합체(PLGA), 폴리카프로락톤(Polycarprolactone, PCL) 등이 바람직하게 사용될 수 있다.As the biodegradable polymer, polylactic acid (PLA), polyglycolic acid (PGA) and copolymers thereof (PLGA), and polycaprolactone (PCL) may be preferably used.
상기 생체고분자는 사람 또는 동물 유래 세포외기질 및 하이드로겔을 포함하여 이루어질 수 있다.The biopolymer may include a human or animal-derived extracellular matrix and a hydrogel.
상기 인체 이식을 위한 3D 프린팅 구조체는, 예를 들어 일방향으로 형성된 상기 생분해성 고분자 라인과 상기 생분해성 고분자 라인 사이에 형성된 생체고분자 라인으로 형성되는 단위층을 2 이상 포함하며, 상하 인접한 상기 단위층들은 상기 생분해성 고분자 라인 및 상기 생체고분자 라인이 상호 교차하면서 형성될 수 있다. 이를 통해 보다 큰 조직 제조를 위한 구조체를 형성하면서도 전체의 기계적 균형을 유지할 수 있다. The 3D printing structure for human body implantation includes, for example, two or more unit layers formed of the biodegradable polymer line formed in one direction and the biopolymer line formed between the biodegradable polymer lines, and the unit layers adjacent to each other The biodegradable polymer line and the biopolymer line may be formed while crossing each other. Through this, it is possible to maintain the overall mechanical balance while forming a structure for larger tissue production.
상기 인체 이식을 위한 3D 프린팅 구조체는 임플란트, 지지체 또는 인공장기 등으로 활용될 수 있다.The 3D printed structure for transplantation into the human body may be used as an implant, a support, or an artificial organ.
상기 생분해성 고분자 라인의 폭은 100 내지 1000 μm이 바람직하며, 상기 생체고분자 라인의 폭은 100 내지 4000 μm이 바람직하다. 여기서 생체고분자 라인의 폭 대 생분해성 고분자 라인의 폭의 비율은 1:1~1:4로 형성될 수 있다.The width of the biodegradable polymer line is preferably 100 to 1000 μm, and the width of the biopolymer line is preferably 100 to 4000 μm. Here, the ratio of the width of the biopolymer line to the width of the biodegradable polymer line may be 1:1 to 1:4.
상기 생분해성 고분자 라인 및 생체고분자 라인의 폭은 요구되는 특성에 따라 조절될 수 있다.Widths of the biodegradable polymer line and the biopolymer line may be adjusted according to required properties.
또한, 본 발명의 인체 이식을 위한 3D 프린팅 구조체의 제조방법은, 생분해성 고분자로 2 이상의 생분해성 고분자 라인을 서로 간격을 두면서 형성하는 단계(S1); 및 상기 생분해성 고분자 라인들 사이에 형성된 공간에 생체고분자 잉크로 생체고분자 라인을 형성하는 단계(S2);를 포함한다.In addition, the manufacturing method of the 3D printing structure for human body implantation of the present invention, forming two or more biodegradable polymer lines with a distance from each other with a biodegradable polymer (S1); and forming a biopolymer line with biopolymer ink in a space formed between the biodegradable polymer lines (S2).
상기 생분해성 고분자는 폴리락트산(Polylatic acid, PLA), 폴리글리콜산(Polyglycolic acid, PGA) 및 그 공중합체(PLGA), 폴리카프로락톤(Polycarprolactone, PCL) 등이 바람직하게 사용될 수 있다.As the biodegradable polymer, polylactic acid (PLA), polyglycolic acid (PGA) and copolymers thereof (PLGA), and polycaprolactone (PCL) may be preferably used.
상기 생체고분자는 사람 또는 동물 조직 유래 세포외기질 및 하이드로겔을 포함하여 이루어질 수 있다.The biopolymer may include a human or animal tissue-derived extracellular matrix and a hydrogel.
상기 제조방법은, 상기 S1 단계 및 S2 단계를 통해 형성된 단위층 위에 상기 S1 단계 및 S2 단계를 1회 이상 수행하여 2 이상의 상기 단위층이 적층되도록 하되, 상하 인접한 상기 단위층들은 상기 생분해성 고분자 라인 및 상기 생체고분자 라인이 상호 교차하면서 형성되도록 할 수 있다. In the manufacturing method, the step S1 and the step S2 are performed one or more times on the unit layer formed through the steps S1 and S2 so that two or more unit layers are stacked, but the unit layers adjacent to each other are the biodegradable polymer line. And the biopolymer lines may be formed while crossing each other.
상기 제조방법을 통해 제조된 3D 프린팅 구조체는, 임플란트, 지지체 또는 인공장기 등으로 사용될 수 있다.The 3D printed structure manufactured through the manufacturing method may be used as an implant, a support, or an artificial organ.
상기 생분해성 고분자 라인의 폭은 100 내지 1000 μm이 바람직하며, 상기 생체고분자 라인의 폭은 100 내지 4000 μm이 바람직하다. 여기서 생체고분자 라인의 폭 대 생분해성 고분자 라인의 폭의 비율은 1:1~1:4로 형성될 수 있다.The width of the biodegradable polymer line is preferably 100 to 1000 μm, and the width of the biopolymer line is preferably 100 to 4000 μm. Here, the ratio of the width of the biopolymer line to the width of the biodegradable polymer line may be 1:1 to 1:4.
상기 S2 단계에서 상기 생분해성 고분자 라인 사이의 간격에 따라 노즐의 굵기를 조절하면서 생체고분자 잉크를 분사하여 생체고분자 라인을 형성할 수 있다.In the step S2, the biopolymer line may be formed by spraying the biopolymer ink while adjusting the thickness of the nozzle according to the interval between the biodegradable polymer lines.
본 발명에서는 생분해성 고분자 잉크의 라인 간격 크기를 조절하고 그 간격으로 형성된 공간에 생체고분자 잉크를 빈 공간 없이 채워 넣어 이식용 구조체를 제조함으로써, 전체적인 구조체의 크기 변화없이 다양한 물성을 가진 구조체를 제작할 수 있다. 이러한 방식으로 제조한 구조체는 이식하고자 하는 체내 조직의 물리적 환경에 적합하게 기계적 강도, 탄성 및 생체 특성 등의 물성을 가질 수 있다.In the present invention, a structure having various physical properties can be manufactured without changing the size of the entire structure by adjusting the size of the line spacing of the biodegradable polymer ink and filling the space formed by the spacing with the biopolymer ink to prepare a structure for transplantation. there is. The structure prepared in this way may have physical properties such as mechanical strength, elasticity, and biological properties suitable for the physical environment of the body tissue to be implanted.
기존 복수의 잉크를 활용하면서 라인 간격을 남기는 3D 프린팅 방법과는 달리 생체고분자 잉크로 간격을 모두 채우는 방법을 사용하여 구조체의 생체적합성 잉크의 함량을 높임으로써 이식하는 조직 유래 세포외기질에 의한 세포 부착, 증식 및 분화를 촉진함으로써 활용 분야를 넓힐 수 있다. 기존 방법에서 간격을 의도적으로 남겨 세포의 유입을 유도하려는 시도와 달리, 본 발명에서는 라인 간격 크기의 변화와 이를 생체고분자 잉크로 모두 채우는 방식을 활용하여 구조체의 전체적인 크기 변화 없이 이식 후 조직에서 세포가 부착, 증식 및 분화할 수 있는 환경을 제공하는 생체고분자 잉크의 함량을 증가시킬 수 있다.Unlike conventional 3D printing methods that utilize multiple inks and leave line gaps, cell adhesion by tissue-derived extracellular matrix to be implanted by increasing the content of biocompatible ink in the structure by using a method of filling all gaps with biopolymer ink However, the field of application can be expanded by promoting proliferation and differentiation. Unlike attempts to induce cell inflow by intentionally leaving gaps in existing methods, the present invention utilizes a method of changing the size of line gaps and filling them with biopolymer ink, so that cells in the tissue after transplantation do not change the overall size of the structure. It is possible to increase the content of the biopolymer ink providing an environment capable of attaching, proliferating and differentiating.
도 1은 본 발명의 일 실시예에 따른 인체 이식을 위한 3D 프린팅 구조체의 단위층의 측단면도이다.1 is a side cross-sectional view of a unit layer of a 3D printed structure for human body implantation according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 인체 이식을 위한 3D 프린팅 구조체의 단위층의 평면도이다.2 is a plan view of a unit layer of a 3D printed structure for human body implantation according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 3D 프린팅 방식에 따라서 단일 잉크(생분해성 고분자 잉크) 및 복수 잉크(생분해성 고분자 잉크+생체고분자 잉크)로 제조한 구조체의 사진이다(좌측에서부터 생분해성 고분자 잉크의 라인 폭 대 라인 간격의 비율을 1:1, 1:2, 1:3, 1:4로 변화시키면서 제조한 구조체의 예이다).3 is a photograph of a structure manufactured with single ink (biodegradable polymer ink) and multiple inks (biodegradable polymer ink + biopolymer ink) according to a 3D printing method according to an embodiment of the present invention (from the left, biodegradable polymer ink). This is an example of a structure prepared by changing the ratio of line width to line spacing of ink to 1:1, 1:2, 1:3, and 1:4).
도 4는 3D 프린팅에서의 채움(Infill)과 라인 간격 크기 비율을 비교하여 나타내고 라인 간격 크기 비율에 따른 구조체 간격 단위의 크기 변화를 보여주는 그림이다.4 is a diagram showing a comparison of infill and line spacing size ratios in 3D printing and showing size changes in structure spacing units according to line spacing size ratios.
도 5 및 도 6은 본 발명의 일 실시예에 따른 인체 이식을 위한 3D 프린팅 구조체의 제조 과정 중 생분해성 고분자 잉크와 생체적합성 고분자 잉크의 적층 방법을 보여주는 그림이다.5 and 6 are pictures showing a method of stacking biodegradable polymer ink and biocompatible polymer ink during the manufacturing process of a 3D printed structure for human body implantation according to an embodiment of the present invention.
도 7은 생분해성 고분자 잉크로 생성된 라인 간격 크기에 따라 선정한 생체고분자 잉크의 노즐 굵기를 보여주는 그림이다.7 is a diagram showing the nozzle thickness of the biopolymer ink selected according to the size of the line spacing generated by the biodegradable polymer ink.
도 8은 실시예 1의 3D 프린팅 구조체 제조과정을 설명하기 위한 도면으로, 제1 및 제2 단위층을 제조하는 과정을 도식화한 도면이다.8 is a view for explaining a manufacturing process of the 3D printed structure of Example 1, and is a diagram illustrating a process of manufacturing first and second unit layers.
도 9은 본 발명의 일 실시예에 따른 인체 이식을 위한 3D 프린팅 구조체의 생분해성 고분자 라인과 생체고분자 라인의 비율에 따른 각각의 라인 제조에 사용된 잉크 함량의 변화를 보여주는 그래프이다.9 is a graph showing a change in ink content used for manufacturing each line according to a ratio of a biodegradable polymer line and a biopolymer line of a 3D printed structure for human body implantation according to an embodiment of the present invention.
도 10 및 도 11은 각각 실시예 1에 따라 제조한 구조체의 라인 간격 크기 비율 변화에 따른 구조체의 인장강도 및 영률을 나타내는 그래프이다.10 and 11 are graphs showing the tensile strength and Young's modulus of the structure according to the change in the line spacing size ratio of the structure manufactured according to Example 1, respectively.
이하 실시예에 대하여 도면을 통해 본 발명을 더욱 상세히 설명하고자 한다. 단, 하기 실시예는 본 발명을 구체적으로 예시하는 것일 뿐, 본 발명의 범위가 하기 실시예에 의해 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following embodiments with reference to the drawings. However, the following examples are only intended to specifically illustrate the present invention, and the scope of the present invention is not limited by the following examples.
본 발명의 3D 프린팅 구조체 및 그 제조방법에 따르면, 복수의 잉크 즉, 생분해성 고분자 잉크 및 생체고분자 잉크를 함께 이용하여 구조체를 제조하되, 복수 잉크의 간격 및 노즐 굵기 조절을 통해 구조체가 이식하고자 하는 체내 조직의 물리적 환경에 적합하게 기계적 강도, 탄성 및 생체 특성 등의 물성을 갖도록 할 수 있다.According to the 3D printing structure and its manufacturing method of the present invention, a structure is manufactured using a plurality of inks, that is, biodegradable polymer ink and biopolymer ink together, but the structure is to be implanted by adjusting the spacing and nozzle thickness of the plurality of inks. It can have physical properties such as mechanical strength, elasticity, and bio-characteristics suitable for the physical environment of internal tissues.
아울러, 본 발명에서는 생분해성 고분자 잉크의 라인 간격으로 형성된 공간에 생체고분자 잉크를 빈 공간 없이 채워 넣어 이식용 구조체를 제조함으로써, 전체적인 구조체의 크기 변화없이 다양한 물성을 가진 구조체를 제작할 수 있다. In addition, in the present invention, a structure having various physical properties can be manufactured without changing the size of the entire structure by manufacturing a structure for implantation by filling the space formed by the line spacing of the biodegradable polymer ink without empty space.
도 1 및 도 2는 본 발명의 일 실시예에 따른 인체 이식을 위한 3D 프린팅 구조체의 단위층의 측단면도 및 평면도이다.1 and 2 are a cross-sectional side view and a plan view of a unit layer of a 3D printed structure for human body implantation according to an embodiment of the present invention.
도 1 및 도 2에 도시된 바와 같이 본 발명의 일 실시예에 따른 인체 이식을 위한 3D 프린팅 구조체는 생분해성 고분자로 형성되는 생분해성 고분자 라인(회색)과 상기 생분해성 고분자 라인 사이의 공간에 생체고분자 잉크를 채워서 형성되는 생체고분자 라인(노란색)을 포함한다.As shown in Figures 1 and 2, the 3D printing structure for human body implantation according to an embodiment of the present invention is a biodegradable polymer line (gray) formed of a biodegradable polymer and a biodegradable polymer line in the space between the lines. It includes biopolymer lines (yellow) formed by filling polymer ink.
여기서, 생분해성 고분자 라인을 형성하는 생분해성 고분자는 예를 들어 폴리락트산(Polylatic acid, PLA), 폴리글리콜산(Polyglycolic acid, PGA) 및 그 공중합체(PLGA), 폴리카프로락톤(Polycarprolactone, PCL) 등이 사용될 수 있다. 다만, 이에 한정되는 것은 아니다.Here, the biodegradable polymer forming the biodegradable polymer line is, for example, polylactic acid (PLA), polyglycolic acid (PGA) and its copolymer (PLGA), polycaprolactone (Polycarprolactone, PCL) etc. can be used. However, it is not limited thereto.
또한, 생체고분자 잉크는 사람 또는 동물 조직 유래 세포외기질, 그리고 하이드로겔을 이용하여 제조될 수 있으며, 세포외기질은 제조하려는 구조체의 필요 특성에 맞게 사람 또는 동물의 다양한 조직들을 이용하여 제조될 수 있다.In addition, the biopolymer ink may be prepared using a human or animal tissue-derived extracellular matrix and a hydrogel, and the extracellular matrix may be prepared using various human or animal tissues according to the required characteristics of the structure to be manufactured. there is.
생분해성 고분자 라인은 도 1 및 도 2에 도시한 바와 같이 일방향으로 형성하고, 생체고분자 라인은 생분해성 고분자 라인들 사이의 간격에 의해 형성된 공간에 일방향으로 형성될 수 있으나, 반드시 이에 한정되지 않고 구조체의 요구되는 특성에 따라 다양하게 형성될 수 있다.The biodegradable polymer line may be formed in one direction as shown in FIGS. 1 and 2, and the biopolymer line may be formed in one direction in the space formed by the gap between the biodegradable polymer lines, but is not necessarily limited thereto. It can be formed in various ways according to the required characteristics of.
바람직하게는, 생분해성 고분자 라인의 폭은 100 내지 1000μm, 생체고분자 라인은 100 내지 4000μm로 형성될 수 있으며, 생분해성 고분자 라인 대 생체고분자 라인의 비율은 1:1~1:4의 범위로 형성될 수 있으나, 여기에 한정되는 것은 아니다.Preferably, the width of the biodegradable polymer line is 100 to 1000 μm, the biopolymer line may be formed to be 100 to 4000 μm, and the ratio of the biodegradable polymer line to the biopolymer line is in the range of 1:1 to 1:4. It may be, but is not limited thereto.
본 실시예에서는 생분해성 고분자 라인과 생체고분자 라인이 하나의 층, 즉 단위층으로 형성된 예를 보여주고 있으나, 여기에 한정되는 것은 아니며 제조하려는 조직에 맞게 다층으로 제조될 수 있다. Although the present embodiment shows an example in which the biodegradable polymer line and the biopolymer line are formed in one layer, that is, a unit layer, it is not limited thereto and may be manufactured in multiple layers according to the tissue to be manufactured.
단위층이 적층된 다층으로 구조체를 제조하는 경우, 상하 인접한 상기 단위층들은 상기 생분해성 고분자 라인 및 상기 생체고분자 라인이 상호 교차하면서 형성될 수 있으나 여기에 한정되는 것은 아니다. 그리고, 상호 교차한다는 뜻은 반드시 수직 방향으로 형성됨을 의미하는 것은 아니다.In the case of manufacturing a structure with multilayers in which unit layers are stacked, the unit layers adjacent to each other may be formed while the biodegradable polymer line and the biopolymer line cross each other, but are not limited thereto. In addition, the meaning of mutually intersecting does not necessarily mean that they are formed in a vertical direction.
도 3은 본 발명의 일 실시예에 따른 3D 프린팅 방식에 따라서 단일 잉크(생분해성 고분자 잉크) 및 복수 잉크(생분해성 고분자 잉크+생체고분자 잉크)로 제조한 구조체의 사진이고(좌측에서부터 생분해성 고분자 잉크의 라인 폭 대 라인 간격의 비율을 1:1, 1:2, 1:3, 1:4로 변화시키면서 제조한 구조체의 예이다), 도 4는 3D 프린팅에서의 채움과 라인 간격 크기 비율을 비교하여 나타내고 라인 간격 크기 비율에 따른 구조체 간격 단위의 크기 변화를 보여주는 그림이다.3 is a photograph of a structure manufactured with single ink (biodegradable polymer ink) and multiple inks (biodegradable polymer ink + biopolymer ink) according to a 3D printing method according to an embodiment of the present invention (from the left, biodegradable polymer ink). This is an example of a structure manufactured by changing the ratio of line width to line spacing of ink to 1:1, 1:2, 1:3, and 1:4), Figure 4 shows the ratio of filling and line spacing in 3D printing It is a figure showing the size change of the structure spacing unit according to the line spacing size ratio.
도 3 및 도 4에 도시된 바와 같이 생분해성 고분자 잉크로 형성된 생분해성 고분자 라인 사이의 공간에 생체고분자 잉크가 채워지며, 생분해성 고분자 라인 사이의 간격이 커질수록 빈 공간이 커지면서 생체고분자 잉크에 의해 형성되는 생체고분자 라인의 부피가 커지게 된다. 이처럼 생분해성 고분자 라인과 생체고분자 라인의 부피를 조절함에 따라 구조체의 특성을 조절할 수 있다. As shown in FIGS. 3 and 4, the biopolymer ink is filled in the space between the biodegradable polymer lines formed with the biodegradable polymer ink, and as the interval between the biodegradable polymer lines increases, the empty space increases, and the biopolymer ink The volume of the biopolymer line to be formed increases. As such, the characteristics of the structure can be controlled by adjusting the volume of the biodegradable polymer line and the biopolymer line.
도 5 및 도 6은 본 발명의 일 실시예에 따른 인체 이식을 위한 3D 프린팅 구조체의 제조 과정 중 생분해성 고분자 잉크와 생체적합성 고분자 잉크의 적층 방법을 보여주는 그림이다.5 and 6 are pictures showing a method of stacking biodegradable polymer ink and biocompatible polymer ink during the manufacturing process of a 3D printed structure for human body implantation according to an embodiment of the present invention.
도 5는 생분해성 고분자 라인(회색)을 형성한 후 그 사이의 공간에 생체고분자 잉크로 생체고분자 라인(노란색)을 형성하여 구조체의 단위층을 형성하는 과정을 보여준다.5 shows a process of forming a unit layer of a structure by forming biopolymer lines (yellow) with biopolymer ink in the space between the biodegradable polymer lines (gray).
또한, 도 6은 생분해성 고분자로 1층을 제조한 후 그 위에 생분해성 고분자로 2층을 제조하여 생분해성 고분자 라인(회색)을 형성하고, 생분해성 고분자 라인들 사이에 형성된 공간에 생체고분자 잉크로 생체고분자 라인(노란색)을 형성하는 예를 보여주는 그림이다. 이와 같이 생분해성 고분자를 2층으로 적층하여 생분해성 고분자 라인을 형성하는 이유는 생분해성 고분자의 특성상 필요한 높이로 생분해성 고분자 라인을 형성하지 못할 경우 2층 이상의 다층으로 생분해성 고분자 라인을 형성해야 하기 때문이다.6 is a biodegradable polymer line (gray) formed by preparing a first layer with a biodegradable polymer and then a second layer with a biodegradable polymer thereon, and biopolymer ink in the space formed between the biodegradable polymer lines. It is a figure showing an example of forming a biopolymer line (yellow) with . The reason why the biodegradable polymer line is formed by stacking the biodegradable polymer in two layers is because, due to the nature of the biodegradable polymer, if the biodegradable polymer line cannot be formed at the required height, the biodegradable polymer line must be formed in multiple layers of two or more layers. Because.
도 7은 생분해성 고분자 잉크로 생성된 라인 간격 크기에 따라 선정한 생체고분자 잉크의 노즐 굵기를 보여주는 그림이다.7 is a diagram showing the nozzle thickness of the biopolymer ink selected according to the size of the line spacing generated by the biodegradable polymer ink.
도 7에 도시한 바와 같이 생분해성 고분자 라인 사이의 간격 즉, 생체고분자 라인의 폭에 따라 생체고분자 잉크를 분사하는 노즐의 굵기를 조절함으로써 생체고분자 잉크가 빈 공간 없이 완전히 채워지도록 할 수 있다.As shown in FIG. 7 , the thickness of the nozzle spraying the biopolymer ink can be adjusted according to the distance between the biodegradable polymer lines, that is, the width of the biopolymer line, so that the biopolymer ink can be completely filled without empty spaces.
아래에서는 본 발명의 일 실시예에 따라 생분해성 고분자 라인을 형성한 후 생체고분자 라인을 형성하여 구조체를 제조하고, 제조된 구조체의 기계적 물성을 평가한 과정을 설명한다.Hereinafter, a process of preparing a structure by forming a biodegradable polymer line and then forming a biopolymer line according to an embodiment of the present invention, and evaluating the mechanical properties of the prepared structure will be described.
실시예 1. 구조체 제조방법Example 1. Structure manufacturing method
1.1 3D 프린팅 기술을 이용한 생분해성 고분자 잉크 분사1.1 Spraying biodegradable polymer ink using 3D printing technology
PCL(Evonik, Essen, Germany)을 열 전도성을 가진 3D 프린팅 맞춤 주사기에 담고 헤드1에 장착한 후, 시스템을 통해 온도를 90℃ 내지 120℃로 설정하였다. 용해된 PCL을 100 내지 700 kPa의 압력과 100 내지 500 μm의 내경을 가지는 정밀 노즐을 통해 분사하였다. 분사하는 PCL로 생성되는 라인의 간격을 3D 프린터 설정 및 g code를 통해 1000, 1500, 2000 및 2500 μm로 조절하였다. 조절된 라인의 간격에 따라 생성되는 라인 간격의 크기가 결정되는 과정과 거리의 비율에 따라 채움을 계산하는 방법은 도 4와 같다. 설정된 거리의 비율에 맞춰 100 내지 300 μm의 높이를 가지도록 1층의 분사를 완료한 후, 같은 방향 및 방식으로 분사하여 라인의 높이가 200 내지 600 μm가 되도록 2층을 완성하였다.PCL (Evonik, Essen, Germany) was placed in a 3D printed custom syringe with thermal conductivity and mounted on Head 1, and the temperature was set to 90° C. to 120° C. through the system. The dissolved PCL was sprayed through a precision nozzle with a pressure of 100 to 700 kPa and an inner diameter of 100 to 500 μm. The spacing of the lines generated by the spraying PCL was adjusted to 1000, 1500, 2000, and 2500 μm through 3D printer settings and g code. The process of determining the size of the line spacing generated according to the adjusted line spacing and the method of calculating the filling according to the distance ratio are shown in FIG. 4 . After completing the spraying of the first layer to have a height of 100 to 300 μm according to the ratio of the set distance, the second layer was completed so that the height of the line was 200 to 600 μm by spraying in the same direction and manner.
1.2 생체고분자 잉크의 제조1.2 Preparation of biopolymer ink
(1) 미세입자화된 인체유래조직 제조(1) Manufacture of micronized human tissue
사람유래 조직을 손질한 뒤, 이소프로필 알코올(Isopropyl alcohol, IPA)과 헥산(Hexane)을 이용하여 지방을 제거하였다. 그 후, 수산화나트륨(Sodium hydroxide, NaOH)을 이용하여 세포를 제거하고, 알코올과 증류수를 이용하여 세척하였다. 이후, 동결 건조를 진행하여 수분을 제거하였다. 동결 건조를 진행한 탈세포화된 인체유래 조직을 동결분쇄기를 이용하여 분쇄하였다. 상기 분쇄 이후 100내지 500 μm 구경의 체(sieve)를 통과시켜 500 μm 이하의 조직 분말을 얻었다.After trimming the human-derived tissue, fat was removed using isopropyl alcohol (IPA) and hexane. After that, the cells were removed using sodium hydroxide (NaOH) and washed with alcohol and distilled water. Thereafter, water was removed by freeze-drying. Freeze-dried decellularized human-derived tissue was pulverized using a freeze grinder. After the grinding, tissue powder having a diameter of 500 μm or less was obtained by passing through a sieve having a diameter of 100 to 500 μm.
(2) 가교 히알루론산(HA)-카르복시메틸셀룰로오스(CMC) 담체(carrier) 제조(2) Preparation of cross-linked hyaluronic acid (HA)-carboxymethylcellulose (CMC) carrier
히알루론산(Hyaluronic acid, HA)와 카르복시메틸셀룰로오스(Carboxymethyl cellulose, CMC)를 정해진 비율로 혼합하고 가교제인 1,4-Butanedial diglycidyl ether(BDDE)를 넣은 후, NaOH를 넣고 혼합하고 가교를 진행하였다. 가교가 끝난 후, 투석막을 이용하여 HA-CMC를 세척하였다. 세척이 완료된 HA-CMC는 동결 건조를 진행하여 수분을 제거하였다. 동결 건조를 진행한 HA-CMC는 분쇄한 후 멸균생리식염수와 비율에 맞춰 혼합한 뒤 HA-CMC 겔로 제조하였다.Hyaluronic acid (HA) and carboxymethyl cellulose (CMC) were mixed at a predetermined ratio, 1,4-butanediial diglycidyl ether (BDDE) as a cross-linking agent was added, NaOH was added, mixed, and cross-linking was performed. After cross-linking, HA-CMC was washed using a dialysis membrane. The washed HA-CMC was freeze-dried to remove moisture. The freeze-dried HA-CMC was pulverized, mixed with sterile physiological saline in proportion, and then prepared as HA-CMC gel.
(3) 생체고분자 잉크 제조(3) Manufacture of biopolymer ink
미세입자화된 인체유래조직과 HA-CMC 겔을 비율에 맞춰 혼합하여 생체고분자 잉크를 제조하였다. 이후 생체고분자 잉크를 주사기에 담은 후 원심분리를 진행하여 3D 프린팅 진행 시 일정하게 토출되도록 하였다.Biopolymer ink was prepared by mixing micronized human tissue and HA-CMC gel in proportion. Thereafter, the biopolymer ink was put into a syringe and centrifuged to ensure that it was constantly discharged during 3D printing.
1.3 생체고분자 잉크의 분사1.3 Jetting of biopolymer ink
상기 1.2에 기재한 방법으로 제조한 생체고분자 잉크를 주사기에 담고 생분해성 고분자 잉크로 인하여 형성된 라인의 간격에 따라 설정한 라인 간격 크기 비율에 의하여 22, 18, 16 및 14G 크기의 노즐을 선정한 후, 주사기에 결합시켰다. 라인 간격 크기 비율과 해당 비율에 따른 생체고분자 잉크의 노즐 선정은 아래 표 1에 나타내었다. 생분해성 고분자 잉크로 인하여 생성된 간격을 지나가면서 생체고분자 잉크를 분사할 수 있도록 3D 프린팅 설정 및 g code를 작성하였다. 주사기를 헤드2에 장착한 뒤 100 내지 200 kPa의 압력을 주며 설정에 맞춰 생체고분자 잉크를 분사하였다. 생분해성 고분자 잉크로 만든 2층 높이의 간격을 생체고분자 잉크로 채워 제1 단위층을 형성하고, 그 위에 동일한 방식으로 제1 단위층과 교차시켜 제2 단위층을 제조하였다. 도 8은 본 실시예에서 제2 단위층까지 제조하는 과정을 도식화한 도면이다. 이후, 제8 단위층까지 적층하여 본 실시예의 구조체를 제조하였다.After putting the biopolymer ink prepared by the method described in 1.2 above into a syringe and selecting nozzles of 22, 18, 16, and 14G sizes according to the line spacing size ratio set according to the line spacing formed by the biodegradable polymer ink, attached to the syringe. The line spacing size ratio and nozzle selection of the biopolymer ink according to the ratio are shown in Table 1 below. 3D printing settings and g code were written so that the biopolymer ink can be sprayed while passing through the gap created by the biodegradable polymer ink. After mounting the syringe on Head 2, biopolymer ink was sprayed according to the setting while applying a pressure of 100 to 200 kPa. A first unit layer was formed by filling a two-layer height gap made of biodegradable polymer ink with biopolymer ink, and a second unit layer was prepared by crossing the first unit layer thereon in the same manner. 8 is a diagram schematically illustrating a process of manufacturing up to a second unit layer in this embodiment. Thereafter, the structure of this embodiment was manufactured by stacking up to the eighth unit layer.
Figure PCTKR2021017815-appb-img-000001
Figure PCTKR2021017815-appb-img-000001
실시예 2. 구조체 형태 및 물성 차이 확인Example 2. Confirmation of structure shape and difference in physical properties
2.1 구조체 형태 확인2.1 Check the shape of the structure
실시예 1을 통한 3D 프린팅 방식으로 생분해성 고분자 단일 잉크 및 생분해성 고분자 잉크+생체고분자 복수 잉크를 이용하여 가로 X 세로 X 높이(20 X 20 X 3 mm)의 크기를 가지며 라인 간격 크기 비율(1:1, 1:2, 1:3, 1:4)이 다른 구조체를 제조하였다. 제조한 구조체의 형태는 도 3에 나타내었다. 또한, 제조한 구조체에 포함된 생분해성 고분자 잉크와 생체고분자 잉크의 함량을 계산하여 도 9에 그래프로 나타내었으며, 도 9의 생분해성 고분자 잉크 및 생체고분자 잉크의 함량은 아래 표 2와 같다.The 3D printing method in Example 1 uses a single biodegradable polymer ink and a biodegradable polymer ink + multiple biopolymer inks, and has a size of width X length X height (20 X 20 X 3 mm) and a line spacing size ratio (1 :1, 1:2, 1:3, 1:4) were prepared for different structures. The shape of the fabricated structure is shown in FIG. 3 . In addition, the contents of the biodegradable polymer ink and biopolymer ink included in the fabricated structure were calculated and shown in a graph in FIG. 9, and the contents of the biodegradable polymer ink and biopolymer ink in FIG. 9 are shown in Table 2 below.
[규칙 제91조에 의한 정정 20.12.2021] 
Figure WO-DOC-TABLE-2
[Correction under Rule 91 20.12.2021]
Figure WO-DOC-TABLE-2
도 9 및 표 2와 같이 생분해성 고분자 라인의 폭 및 생체고분자 라인의 폭 사이의 비율에 따라 각각에 사용되는 잉크의 함량이 달라지고, 그에 따라 구조체의 물성에 변화를 줄 수 있다. 아울러, 3D 프린팅 구조체 크기의 변화 없이 생분해성 고분자 라인 사이의 간격을 크게 하면서 생체고분자의 함량을 증가시킬 수 있음을 알 수 있다.As shown in FIG. 9 and Table 2, the content of each ink used varies according to the ratio between the width of the biodegradable polymer line and the width of the biopolymer line, and accordingly, the physical properties of the structure may be changed. In addition, it can be seen that the content of the biopolymer can be increased while increasing the distance between the biodegradable polymer lines without changing the size of the 3D printed structure.
2.2 구조체 물성 차이 확인2.2 Confirmation of differences in structural properties
상기 실시예 1을 통해 제조한 구조체의 기계적 강도를 확인하기 위해, 8 mm/min의 속도로 인장을 진행하는 측정장치(EZ Test, Shimadzu Corporation, Kyoto, Japan)를 통하여 인장 강도 시험을 수행하였다. 시험에 사용한 시편(ASTM D 638 4호 규격으로 제작, Dog bone 형태로 제조)은 3D 프린팅으로 라인 간격 크기 비율에 맞춰 제조하였다. 라인 간격 크기 비율이 증가함에 따라서 인장강도와 영률(탄성률)이 감소하는 결과를 아래 표 3에 나타내었다.In order to confirm the mechanical strength of the structure prepared in Example 1, a tensile strength test was performed using a measuring device (EZ Test, Shimadzu Corporation, Kyoto, Japan) that performs tension at a rate of 8 mm/min. The specimen used in the test (manufactured according to ASTM D 638 No. 4 standard, manufactured in dog bone form) was manufactured according to the line spacing size ratio by 3D printing. Table 3 shows the results of decreasing tensile strength and Young's modulus (modulus of elasticity) as the line spacing size ratio increases.
Figure PCTKR2021017815-appb-img-000003
Figure PCTKR2021017815-appb-img-000003
도 10 및 도 11은 각각 실시예 1에 따라 제조한 구조체의 라인 간격 크기 비율 변화에 따른 구조체의 인장강도 및 영률을 나타내는 그래프이다. 도 10 및 도 11을 통해 라인 간격 크기 비율이 증가함에 따라 구조체의 강성은 감소하지만 파괴될 때까지 변형이 일어나는 연성은 증가한다는 확인할 수 있다.10 and 11 are graphs showing the tensile strength and Young's modulus of the structure according to the change in the line spacing size ratio of the structure manufactured according to Example 1, respectively. 10 and 11, it can be confirmed that as the line spacing size ratio increases, the rigidity of the structure decreases, but the ductility at which deformation occurs until failure increases.

Claims (16)

  1. 생분해성 고분자를 포함하여 이루어지는 2 이상의 생분해성 고분자 라인; 및 Two or more biodegradable polymer lines comprising a biodegradable polymer; and
    상기 생분해성 고분자 라인 사이의 공간에 생체고분자 잉크로 형성된 생체고분자 라인을 포함하는 인체 이식을 위한 3D 프린팅 구조체.A 3D printing structure for human body implantation comprising a biopolymer line formed of biopolymer ink in a space between the biodegradable polymer lines.
  2. 제1항에 있어서,According to claim 1,
    상기 생분해성 고분자는 폴리락트산(Polylatic acid, PLA), 폴리글리콜산(Polyglycolic acid, PGA) 및 그 공중합체(PLGA), 폴리카프로락톤(Polycarprolactone, PCL) 중 1개 이상 선택되는 것을 특징으로 하는 인체 이식을 위한 3D 프린팅 구조체.The biodegradable polymer is a human body, characterized in that at least one selected from polylactic acid (PLA), polyglycolic acid (PGA) and its copolymer (PLGA), polycarprolactone (PCL) 3D printed structures for implantation.
  3. 제1항에 있어서,According to claim 1,
    상기 생체고분자는 사람 또는 동물 조직 유래 세포외기질 및 하이드로겔을 포함하여 이루어지는 것을 특징으로 하는 인체 이식을 위한 3D 프린팅 구조체.The biopolymer is a 3D printing structure for human transplantation, characterized in that consisting of a human or animal tissue-derived extracellular matrix and a hydrogel.
  4. 제1항에 있어서,According to claim 1,
    일방향으로 형성된 상기 생분해성 고분자 라인과 일방향으로 형성된 생체고분자 라인으로 형성되는 단위층을 2 이상 포함하며,At least two unit layers formed of the biodegradable polymer line formed in one direction and the biopolymer line formed in one direction,
    인접한 상기 단위층들은 상기 생분해성 고분자 라인 및 상기 생체고분자 라인이 상호 교차하면서 형성되는 것을 특징으로 하는 인체 이식을 위한 3D 프린팅 구조체.The adjacent unit layers are 3D printed structures for human implantation, characterized in that formed while the biodegradable polymer line and the biopolymer line cross each other.
  5. 제1항에 있어서, According to claim 1,
    임플란트, 지지체 또는 인공장기로 사용되는 것을 특징으로 하는 인체 이식을 위한 3D 프린팅 구조체.A 3D printed structure for implantation in the human body, characterized in that it is used as an implant, support or artificial organ.
  6. 제1항에 있어서,According to claim 1,
    상기 생분해성 고분자 라인의 폭은 100 내지 1000 μm인 것을 특징으로 하는 인체 이식을 위한 3D 프린팅 구조체.3D printing structure for human body implantation, characterized in that the width of the biodegradable polymer line is 100 to 1000 μm.
  7. 제1항에 있어서,According to claim 1,
    상기 생체고분자 라인의 폭은 100 내지 4000 μm인 것을 특징으로 하는 인체 이식을 위한 3D 프린팅 구조체.3D printing structure for human body implantation, characterized in that the width of the biopolymer line is 100 to 4000 μm.
  8. 제1항에 있어서,According to claim 1,
    상기 생분해성 고분자 라인 및 생체고분자 라인의 폭은 요구되는 특성에 따라 조절될 수 있는 것을 특징으로 하는 인체 이식을 위한 3D 프린팅 구조체.3D printing structure for human body implantation, characterized in that the width of the biodegradable polymer line and the biopolymer line can be adjusted according to the required characteristics.
  9. 생분해성 고분자로 2 이상의 생분해성 고분자 라인을 서로 간격을 두면서 형성하는 단계(S1); 및Forming two or more biodegradable polymer lines with a biodegradable polymer line apart from each other (S1); and
    상기 생분해성 고분자 라인들 사이에 형성된 공간에 생체고분자 잉크로 생체고분자 라인을 형성하는 단계(S2);를 포함하는 인체 이식을 위한 3D 프린팅 구조체의 제조방법.A method of manufacturing a 3D printing structure for implantation into a human body, comprising: forming a biopolymer line with biopolymer ink in a space formed between the biodegradable polymer lines (S2).
  10. 제9항에 있어서,According to claim 9,
    상기 생분해성 고분자는 폴리락트산(Polylatic acid, PLA), 폴리글리콜산(Polyglycolic acid, PGA) 및 그 공중합체(PLGA), 폴리카프로락톤(Polycarprolactone, PCL) 중 1개 이상 선택되는 것을 특징으로 하는 인체 이식을 위한 3D 프린팅 구조체의 제조방법.The biodegradable polymer is a human body, characterized in that at least one selected from polylactic acid (PLA), polyglycolic acid (PGA) and its copolymer (PLGA), polycarprolactone (PCL) A method of manufacturing a 3D printed structure for implantation.
  11. 9항에 있어서,According to claim 9,
    상기 생체고분자는 사람 또는 동물 유래 세포외기질 및 하이드로겔을 포함하여 이루어지는 것을 특징으로 하는 인체 이식을 위한 3D 프린팅 구조체의 제조방법.The biopolymer is a method of manufacturing a 3D printing structure for human implantation, characterized in that comprising a human or animal-derived extracellular matrix and a hydrogel.
  12. 제9항에 있어서,According to claim 9,
    상기 S1 단계 및 S2 단계를 통해 형성된 단위층 위에 상기 S1 단계 및 S2 단계를 1회 이상 수행하여 2 이상의 상기 단위층이 적층되도록 하되,Steps S1 and S2 are performed one or more times on the unit layer formed through steps S1 and S2 so that two or more unit layers are laminated,
    인접한 상기 단위층들은 상기 생분해성 고분자 라인 및 상기 생체고분자 라인이 상호 교차하면서 형성되도록 하는 것을 특징으로 하는 인체 이식을 위한 3D 프린팅 구조체의 제조방법.The adjacent unit layers are a method of manufacturing a 3D printing structure for human body implantation, characterized in that the biodegradable polymer line and the biopolymer line are formed while crossing each other.
  13. 제9항에 있어서, According to claim 9,
    임플란트, 지지체 또는 인공장기로 사용되는 것을 특징으로 하는 인체 이식을 위한 3D 프린팅 구조체의 제조방법.A method of manufacturing a 3D printed structure for human implantation, characterized in that it is used as an implant, support or artificial organ.
  14. 상기 생분해성 고분자 라인의 폭은 100 내지 1000μm인 것을 특징으로 하는 인체 이식을 위한 3D 프린팅 구조체의 제조방법.The method of manufacturing a 3D printing structure for human body implantation, characterized in that the width of the biodegradable polymer line is 100 to 1000μm.
  15. 제1항에 있어서,According to claim 1,
    상기 생체고분자 라인의 폭은 100 내지 4000μm인 것을 특징으로 하는 인체 이식을 위한 3D 프린팅 구조체의 제조방법.The method of manufacturing a 3D printing structure for human body implantation, characterized in that the width of the biopolymer line is 100 to 4000μm.
  16. 제1항에 있어서,According to claim 1,
    상기 S2 단계에서 상기 생분해성 고분자 라인 사이의 간격에 따라 노즐의 굵기를 조절하면서 생체고분자 잉크를 분사하여 생체고분자 라인을 형성하는 것을 특징으로 하는 인체 이식을 위한 3D 구조체 제조방법.In the step S2, the biopolymer ink is sprayed while adjusting the thickness of the nozzle according to the interval between the biodegradable polymer lines to form the biopolymer line.
PCT/KR2021/017815 2021-11-30 2021-11-30 3d printed structure for implantation in human body and method for preparing same WO2023101034A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210167968A KR20230080621A (en) 2021-11-30 2021-11-30 3d printing sturcture for human implantation and method of making the same
KR10-2021-0167968 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023101034A1 true WO2023101034A1 (en) 2023-06-08

Family

ID=86612469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017815 WO2023101034A1 (en) 2021-11-30 2021-11-30 3d printed structure for implantation in human body and method for preparing same

Country Status (2)

Country Link
KR (1) KR20230080621A (en)
WO (1) WO2023101034A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101067827B1 (en) * 2010-03-19 2011-09-27 포항공과대학교 산학협력단 Three-dimensional scaffold and fabrication method for the same
KR20170022173A (en) * 2015-08-19 2017-03-02 한국과학기술연구원 Microfiber scaffold coated with extracellular matrix and method for preparing the same
KR20180047423A (en) * 2016-10-31 2018-05-10 한국과학기술연구원 Organic·inorganic hybrid-biodegradable porous polymer scaffolds and preparation method thereof
KR20210010178A (en) * 2019-07-19 2021-01-27 한국과학기술연구원 Biodegradable polymeric film comprising an extracellular matrix and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101067827B1 (en) * 2010-03-19 2011-09-27 포항공과대학교 산학협력단 Three-dimensional scaffold and fabrication method for the same
KR20170022173A (en) * 2015-08-19 2017-03-02 한국과학기술연구원 Microfiber scaffold coated with extracellular matrix and method for preparing the same
KR20180047423A (en) * 2016-10-31 2018-05-10 한국과학기술연구원 Organic·inorganic hybrid-biodegradable porous polymer scaffolds and preparation method thereof
KR20210010178A (en) * 2019-07-19 2021-01-27 한국과학기술연구원 Biodegradable polymeric film comprising an extracellular matrix and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FALGUNI PATI, JANG JINAH, HA DONG-HEON, WON KIM SUNG, RHIE JONG-WON, SHIM JIN-HYUNG, KIM DEOK-HO, CHO DONG-WOO: "Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink", NATURE COMMUNICATIONS, vol. 5, 2 June 2014 (2014-06-02), XP055317797, DOI: 10.1038/ncomms4935 *

Also Published As

Publication number Publication date
KR20230080621A (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2014058100A1 (en) Cell-containing, biocompatible polymer-natural biocompatible material hybrid scaffold and fabrication method therefor
Cui et al. Evaluation of electrospun fibrous scaffolds of poly (dl-lactide) and poly (ethylene glycol) for skin tissue engineering
Xu et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
WO2020262817A1 (en) Temperature-sensitive chitosan hydrogel composition and bioink composition comprising same
Bat et al. Biodegradable elastomers for biomedical applications and regenerative medicine
KR101685248B1 (en) Multi-layered electrospun fiber incorporated hydrogel
WO2016153179A1 (en) Composition for three-dimensional printing, method for preparing same, and method for manufacturing three-dimensional structure using same
WO2009154344A1 (en) Preparation method for natural porous hyaluronic acid-collagen polymer support for tissue repair
WO2020204230A1 (en) Composite of nanofiber and hydrogel, and scaffold for tissue regeneration comprising same
WO2012134059A2 (en) Complex support body for regenerating bones and cartilage, method for manufacturing complex support body, and composition for treating bones and cartilage containing same as active ingredient
Luo et al. 3D bioprinting of hydrogel‐based biomimetic microenvironments
WO2021125529A1 (en) Cell culture scaffold and preparation method therefor
WO2017209521A1 (en) Scaffold for cell culture or tissue engineering
US9956711B2 (en) Facile methods for fabricating a uniformly patterned and porous nanofibrous scaffold
KR101694625B1 (en) 3d scaffold for tissue regeneration and manufacturing method thereof
Chen et al. Bioadhesive anisotropic nanogrooved microfibers directing three-dimensional neurite extension
WO2015008877A1 (en) Method for preparing bilayer scaffold through single process and method for regenerating tissue using bilayer scaffold obtained by preparing method
WO2023101034A1 (en) 3d printed structure for implantation in human body and method for preparing same
WO2020027575A1 (en) Method for manufacturing multilayered cell sheet, and multilayered cell sheet manufactured using same
WO2012086988A9 (en) Artificial silk membrane having excellent flexibility and suturing ability and method of manufacturing the same
WO2016036061A1 (en) Temperature-sensitive biodegradable hydrogel
WO2021215789A1 (en) Membrane for cell culture and method for manufacturing same
WO2018021754A1 (en) Method for manufacturing three-dimensional cell culture support having double crosslink, and casting tray for manufacturing three-dimensional cell culture support
WO2019107737A2 (en) Dry-type scaffold and method for manufacturing dry-type scaffold
WO2012046957A2 (en) Preparation method of biopolymer having nanofiber structure using phase separation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966460

Country of ref document: EP

Kind code of ref document: A1