WO2023101007A1 - Antigen-protein expression vector and utilization thereof - Google Patents

Antigen-protein expression vector and utilization thereof Download PDF

Info

Publication number
WO2023101007A1
WO2023101007A1 PCT/JP2022/044526 JP2022044526W WO2023101007A1 WO 2023101007 A1 WO2023101007 A1 WO 2023101007A1 JP 2022044526 W JP2022044526 W JP 2022044526W WO 2023101007 A1 WO2023101007 A1 WO 2023101007A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen
protein
vector
foldon
vaccine
Prior art date
Application number
PCT/JP2022/044526
Other languages
French (fr)
Japanese (ja)
Inventor
真之助 鈴木
賢太郎 鷲澤
薫 瀧澤
教暢 町田
好司 草野
竜太郎 島崎
豊隆 森
Original Assignee
株式会社 アイロムグループ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アイロムグループ filed Critical 株式会社 アイロムグループ
Publication of WO2023101007A1 publication Critical patent/WO2023101007A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/155Paramyxoviridae, e.g. parainfluenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors

Definitions

  • the present invention relates to antigen protein expression vectors. Specifically, the present invention relates to, but is not limited to, vectors capable of strong expression, intracellular persistence, extramembrane secretion and release of protein factors that induce vaccine effects, and their use. In addition, the present invention is not limited thereto, but for example, for the purpose of inducing strong humoral and cell-mediated immunity as an infectious disease vaccine, the vaccine antigen protein is expressed intracellularly after inoculation, The present invention relates to a vaccine vector technology, etc., in which a portion of the vaccine is left inside the cell and a portion is secreted and released outside the cell.
  • Attenuated vaccines live vaccines
  • inactivated vaccines are known as techniques for inducing immunogenicity (Crott S. et al., The Journal of Immunology 171: 4969-4973, 2003 doi: 10.4049/jimmunol .171.10.4969; Bandyopadhyay A. S. et al., Clinical Infectious Diseases 67(S1): S35-S41, 2018 doi.org/10.1093/cid/ciy633).
  • NBD amino-terminal N-terminal domain
  • these vaccines enter cells at the injection site and express spike protein antigens.
  • a secretory signal is located at the amino terminus of the spike protein antigen, followed by the S1 region containing the RBD, flanked by a cleavage motif followed by the S2 region, and at the carboxy terminus by the transmembrane domain.
  • the spike protein antigens expressed are anchored on the cell membrane of the cells into which they have been introduced and protrude outward (Watanabe, Y. et al., ACS Cent. Sci. 7: 594-602, 2021 doi.org/10.1021 /acscentsci.1c00080; Corbett K. S.
  • Each mRNA is introduced into the cell by the lipid bilayer capsule, then the vaccine antigen is expressed, and secreted and released outside the cell. It is thought that the amount of free vaccine antigen is small, it cannot spread sufficiently, phagocytosis by antigen-presenting cells becomes insufficient, and as a result, the lifespan of immunity does not extend.
  • the extracellular diffusion of vaccine antigens which leads to phagocytosis by antigen-presenting cells sufficient to extend immune longevity, is thought to require the coupling of strong expression of vaccine antigens and subsequent liberation of extracellular secretion (Fig. 5-1 (see right), but there is no technology that can meet that requirement.
  • Somatic mutations are induced in antibody gene variable regions in B cells that have undergone proliferation stimulation, and through interactions with follicular dendritic cells derived from the same antigen molecule, B cells that possess high-affinity antibody genes are generated. They are selected to become long-lived plasma cells and memory B cells that produce a large amount of high-affinity antibodies, and the longevity of immunity is established. Therefore, 1) the non-diffusibility of the vaccine antigen is thought to reduce repeated interactions between antibody-producing B cells and follicular dendritic cells, both derived from the same antigen, occurring in the germinal center, and thus high affinity It is thought that selection of sexual B cells becomes insufficient.
  • Viral vector-type vaccines such as adenoviral vectors and Sendai virus vectors induce cell-infected virus vectors during booster vaccinations because antibodies and CTLs specific to the proteins of the viral vectors themselves are induced in the initial inoculation.
  • booster effect of vaccine antigens by booster vaccination will not be exerted because CTLs act to eliminate infected cells after infection.
  • immunity induced by similar viruses in the past may act on the proteins of the virus vector itself (cross-immunity), thereby suppressing the immunogenicity of vaccine antigens.
  • the social issue (1) is that the vaccine cannot be distributed worldwide due to the limited number of vaccine formulations.
  • September 2021 more than 50% of people in developed countries have been vaccinated twice, and a third dose is already being considered. WHO has requested that the third vaccination in developed countries be delayed until the end of the year in order to advance the number of people who have been vaccinated once in developing countries in September 2021 at about 10%. If the lifespan of immunity induced by vaccination can be extended, the number of vaccinations can be reduced, and limited vaccine preparations can be spread throughout the world.
  • the social issue (2) is that the country-by-country herd immunization, which was expected for vaccines, has not yet been achieved.
  • developed countries are currently trying to achieve collective immunization (non-spread of infection) through vaccination.
  • herd immunity threshold % (1-1/R 0 ) x 100 (R 0 : basic reproduction number) as a formula to predict the minimum proportion of immune carriers that a population is protected from infectious diseases, 1 If 1 infected person infects 3 people, R 0 is 3. In this case, if 67% of the population can acquire immunity, it is assumed that the infection will not spread.
  • Immunocompromised patients such as those treated with anticancer drugs, are not expected to induce immunity through vaccines, so they must avoid infection by restricting their behavior, but herd immunization is thought to protect such people. The following conditions are considered necessary to achieve herd immunization. Immunity acquired by vaccination has a long lifespan, and the infection ends during that time. However, even in developed countries where the vaccination rate has reached the majority, the spread of infection has not subsided. One possible reason for this is the short life span of acquired immunity, as described above. This is because, in secondary lymph nodes, presentation of vaccine antigens to CD4+ helper T (Th) cells occurs, which, after germinal center migration, stimulate proliferation of B cells derived from the same antigen.
  • Th helper T
  • Proliferation-stimulated B cells can inhibit infection, but they have a short lifespan. To prolong their lifespan, repeated interactions between antibody-producing B cells and follicular dendritic cells derived from the same antigen are required. is necessary, but the non-diffusibility of vaccine antigens may reduce interactions between immune cells derived from the same antigen.
  • intramuscular injection has been the route of choice for inactivated vaccines, spike-loaded adenovirus vaccines, and spike-loaded mRNA vaccines against SARS-CoV-2. Vaccination by injection cannot induce immunity in the mucosal region including the upper respiratory tract, so it acquires only the ability to prevent onset and exacerbation, but may not acquire the ability to prevent infection itself.
  • the social issue (3) is that excessive expectations are placed on vaccine passports.
  • spike proteins are tethered to the cell membrane after inoculation, which prevents the release of spike protein molecules, resulting in insufficient phagocytosis by antigen-presenting cells. From these vaccinations, it is considered difficult to achieve the medical problems of high neutralizing antibody ratio, avoidance of antibody-dependent enhancement of infection, and longevity of immunity.
  • vaccination against respiratory infections by injection cannot be expected to prevent infection, which is a medical problem. If the medical challenges of extending the lifespan of immunity and acquiring the ability to prevent infection are not achieved, it will be difficult to achieve the social challenges of expanding vaccination to the entire world and mass immunization. use can be dangerous.
  • An object of the present invention is to provide an antigen protein expression vector and its use.
  • the present invention is not limited thereto, in a preferred embodiment, for example, for the purpose of inducing high immunogenicity as an infectious disease vaccine, a vaccine antigen protein is expressed intracellularly after inoculation. , a vaccine vector technology, etc., in which a part of the vaccine remains in the cell and a part of it is secreted and released outside the cell.
  • the present inventors constructed an antigen protein expression vector using the RNA virus spike protein as an example.
  • Sendai virus that encodes a fusion protein (S1-foldon) in which the antigen is S1 (without transmembrane domain) containing the spike protein secretion signal to just before the cleavage motif, and foldon, a trimerization sequence, is added to it.
  • a fusion protein (S -RBD-foldon) was constructed.
  • a Sendai virus vector was also constructed that encodes a protein (S-RBD) in which a secretion signal is added to a fragment containing RBD in the same manner as the above S-RBD-foldon, but no foldon is added.
  • the fusion protein (S1-foldon) which was a fusion protein (S1-foldon) with a foldon added to the S1 protein
  • the fusion protein (S1-foldon) was compared with the fusion protein (S1-foldon), which was a foldon-added RBD with a secretion signal -RBD-foldon) was confirmed to increase the expression level from several times to about 10 times (Example 2b).
  • fusion protein in which a foldon was added to the RBD, most of the expressed fusion protein was secreted extracellularly, and specifically, the protein that was secreted and released extracellularly remained in the cell. It was found to be several to about 10-fold or more (3.8- to 19-fold) higher than protein (Example 2b). Combined with these characteristics, the fusion protein (S-RBD-foldon) with a foldon added to the RBD with a secretion signal is secreted extracellularly, compared to the fusion protein with a foldon added to the S1 protein (S1-foldon). It was found that the released protein increased at least several tens of times.
  • the expression level of the secreted RBD protein with foldon was 5-10 times higher than that of the RBD protein without foldon (S-RBD).
  • S-RBD-foldon the expression level of the secreted RBD protein with foldon
  • S-RBD-foldon the expression level of the secreted RBD protein with foldon
  • S-RBD the expression level of the secreted RBD protein without foldon
  • Example 2b the ratio of secreted and released proteins (secretion release rate) to the expressed proteins is as high as when foldon is added (S-RBD-foldon) and when foldon is not added (S-RBD) ( about 80% or more).
  • a fragment of an antigenic protein with a secretion signal and an appended trimerization sequence may be an antigenic protein comprising long polypeptides, such as the entire extracellular region of the antigen, or without the addition of the trimerization sequence. It was found that the expression level was remarkably increased when expressed from a vector, and a large amount of the expression product was secreted and released extracellularly compared to the antigen protein fragment.
  • Sendai virus vectors encoding a fusion protein (S-RBD-foldon) were intranasally inoculated into rats, and IgG antibodies in the induced serum were examined. 1/5, significantly higher IgG antibodies were induced in individuals inoculated with a vector encoding S-RBD-foldon than in individuals inoculated with a vector encoding S1-foldon.
  • Example 3c In addition, inoculation of vectors encoding S-RBD-foldon resulted in induced neutralizing antibody activity, despite the smaller amount of viral vector inoculated. , was confirmed to exhibit high neutralizing antibody activity (Example 3d).
  • This result indicates that inoculation of a vector encoding a secretory-free form of an antigenic protein fragment with a secretion signal and an added trimerization sequence yields a protein with an added trimerization sequence to an antigenic protein containing S1. It shows that significantly higher humoral immunity can be induced than when inoculating a vector encoding
  • S-RBD-foldon Sendai virus vector encoding a fusion protein
  • the amount of viral vector to be inoculated was smaller with the S-RBD-foldon-encoding vector than with the S1-foldon-encoding vector. Nevertheless, it was found that a significantly higher CTL stimulatory effect could be induced (Example 3e).
  • a vector having a secretion signal and encoding a secretory-release antigen protein fragment to which a trimerization sequence has been added has a high ability to express the antigen protein fragment and a high ability to release the antigen protein fragment from extracellular secretion. It was found to have an excellent ability to induce immune responses to both sexual immunity and cell-mediated immunity.
  • the vector of the present invention it is expected that both humoral immunity and cell-mediated immunity can be efficiently induced, and excellent protective immunity against infectious diseases and the like can be imparted.
  • the present invention relates to antigen protein expression vectors and the like useful as vaccine antigens that induce immunogenicity, and more specifically to the inventions described in the claims.
  • Inventions comprising any combination of two or more of the inventions recited in claims that cite the same claim are also inventions contemplated herein. That is, the present invention relates to the following inventions.
  • An antigen expression vector comprising a nucleic acid encoding an extramembrane-releasable fusion protein comprising a secretory signal, an antigenic protein fragment, and a trimerization domain.
  • the expression level of the expression product containing the antigen protein fragment is increased compared to a control antigen expression vector containing a nucleic acid encoding a protein that contains a secretory signal and an antigen protein fragment and does not contain a trimerization domain; [1 ] to [12].
  • a vaccine comprising the antigen-expressing vector of any one of [1] to [13].
  • the present invention also includes the following inventions.
  • An antigen expression vector comprising a nucleic acid encoding an extramembrane-releasable fusion protein comprising a secretory signal, an antigenic protein fragment, and a trimerization domain.
  • the antigen-expressing vector of [8] or [9], wherein the virus is an RNA virus; [11] the antigen-expressing vector of [9] or [10], wherein the RNA virus is a positive-strand RNA virus; [12] the antigen-expressing vector of [11], wherein the RNA virus is a positive-strand single-stranded RNA virus; [13] the antigen-expressing vector of any one of [9] to [12], wherein the RNA virus is a coronavirus; [14] the antigen expression vector of [13], wherein the coronavirus is SARS-CoV-2; [15] the antigen-expressing vector of any one of [1] to [14], wherein the antigen protein fragment is an extracellular region of a membrane protein or a fragment thereof; [16] the antigen expression vector of any one of [1] to [15], wherein the length of the antigen protein fragment is 500 amino acids or less; [17] the antigen expression vector of [16], wherein the length of the antigen protein protein
  • the antigenic protein fragment is the 319th to 545th amino acid sequence of SEQ ID NO: 2 (SEQ ID NO: 4), or within 5, preferably within 4, 3, 2, or 1 amino acid sequence therefrom;
  • the antigenic protein fragment is the 328th to 531st amino acid sequences of SEQ ID NO: 2 (SEQ ID NO: 6), or within 5, preferably within 4, 3, 2, or 1 amino acid sequence therefrom;
  • the antigen expression vector of any one of [1] to [24] which is an amino acid sequence with amino acid substitution, deletion and/or addition.
  • the expression product released outside the cell is 3-fold or more, 4-fold or more, 5-fold or more, 6-fold or more, 7-fold or more, 8-fold or more, or 9-fold or more than the expression product that remains in the cell;
  • the expression level of the expression product containing the antigen protein fragment is at least 1.5 times greater than that of a control antigen expression vector containing a nucleic acid encoding a protein containing a secretion signal and an antigen protein fragment but not containing a trimerization domain;
  • the antigen expression vector of [30] which is at least 3-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold.
  • the amount of an expression product containing an antigenic protein fragment is increased by the addition of a trimerization domain, and the expression product is distributed both intracellularly and extracellularly in vector-introduced cells [1] to [31] ].
  • the amount of an expression product containing an antigenic protein fragment is regulated by addition or deletion of a trimerization domain, and the expression product is distributed both intracellularly and extracellularly in vector-introduced cells [1] to [ 32], the antigen expression vector according to any one of the above.
  • the amount of the expression product containing the antigen protein fragment is regulated by the addition or deletion of the trimerization domain, so that the amount of the expression product distributed both intracellularly and extracellularly in the vector-introduced cell and vector production;
  • the amount of the expression product containing the antigen protein fragment is regulated by the size of the antigen protein fragment, and the expression product is distributed both intracellularly and extracellularly in vector-introduced cells, [1] to [34] ].
  • the amount of the expression product containing the antigen protein fragment is regulated by the size of the antigen protein fragment, so that the amount of the expression product distributed both intracellularly and extracellularly in the vector-introduced cell and the vector productivity; is regulated, the antigen expression vector of any one of [1] to [35].
  • trimerization domain is the trimerization domain (foldon) of T4 phage fibritin
  • a fusion protein comprising an antigen protein fragment and a trimerization domain expressed from the antigen expression vector of any one of [1] to [37].
  • a vaccine comprising the antigen-expressing vector of any one of [1] to [37].
  • a method for extracellularly releasing an antigen protein fragment which comprises the step of introducing the antigen-expressing vector of any one of [1] to [37] into a cell.
  • a method for inducing immunity which comprises the step of inoculating the antigen-expressing vector of any one of [1] to [37] or the vaccine of any one of [39] to [42].
  • Humoral immunity against the antigen cell-mediated Methods of induction of immunity, or both.
  • a vaccine antigen derived from the extramembrane domain of an infectious disease pathogen protein is strongly expressed, and while a part of the expressed antigen remains intracellularly, it is abundantly secreted and released outside the membrane. It has become possible to enhance immunogenicity by allowing The present invention is expected to find particular application in the field of infectious immunology.
  • cancer cell-specific antibodies and killer T cells are induced by strong expression, intracellular persistence, and extramembrane secretion release of the extramembrane domain of cancer cell-specific membrane proteins.
  • the neutralizing ability (anti-infection ability) of antibodies is essentially their ability to inhibit binding at the point of contact between viruses and cells, in order to avoid the risk of antibody-dependent enhancement of infection by non-neutralizing antibodies, virus It is useful to select only side binding sites as vaccine antigens.
  • the region is the reported RBD domain (319-545) (Yang, J. et al., Nature 586: 572-577, 2020 doi.org/10.1038/s41586 -020-2599-8) or, more preferably, RBD (328-531), which is a further narrowed version of this, can be used, and the use of such short antigen protein fragments enhances antibody-dependent infection. It is possible to minimize the possible induction of non-neutralizing antibodies.
  • the factors that prevent the extension of immune longevity are 1) the lack of production of antigen proteins after vaccination, the production of antigen proteins only for a short period of time, and the inability to efficiently secrete and release antigen proteins. 2) induction of non-neutralizing antibody-producing B cells.
  • 1) in a preferred embodiment, in order to overcome the non-diffusibility of vaccine antigens, it is necessary to leave secretory signals while deleting transmembrane domains to promote secretion and release of vaccine antigens from cells. Furthermore, it is conceivable to add a secretory signal to the further refined vaccine antigen fragment.
  • the vaccine antigen fragment is released outside the infected cells, and the opportunity for phagocytosis by antigen-presenting cells increases, leading to the induction of B cells and follicular dendritic cells derived from the same antigen, and the interaction between them. It is expected to frequently lead to the selection of high-affinity antibody-producing B cells.
  • a neutralizing antibody can be produced in a preferred embodiment, for example, in SARS-CoV-2, etc., by expressing only the ACE2 receptor-binding domain essential for binding to host cells as a vaccine antigen, a neutralizing antibody can be produced. Only B cells are stimulated to proliferate, and selection of antibody-producing B cells with high ability to block infection is achieved. By improving the problems 1) and 2), the selected B cells become long-lived plasma cells and memory B cells, and the longevity of immunity is established.
  • Example (4) Solving the unachieved problem of immune longevity (2) As shown in Example (4), the smaller the molecular weight, the larger the secreted release amount. Utilizing this rule, it becomes possible to regulate the ability to induce humoral immunity by regulating the amount of vaccine antigen secreted and released. Two types of vaccine antigen vectors with the same secretory signal and the same foldon sequence were prepared and compared in terms of their ability to induce humoral immunity. Do you get it. The following techniques are provided based on these verification results. That is, in a preferred embodiment, by minimizing the peptide length of the vaccine antigen, the amount of the vaccine antigen is increased in the cells after inoculation. Achieve longer life.
  • trimerization domain foldon is used to mimic the trimeric structure of pathogenic virus spikes (WO2011008974A2).
  • a vector expressing a fusion protein in which this trimerization factor foldon is added to the carboxy terminus of the vaccine antigen S-RBD is prepared, and the antigen protein is expressed and
  • the addition of foldon increased the amount of expressed vaccine antigen.
  • the addition of foldon to the vaccine antigen increases the amount of the vaccine antigen in the cells after inoculation, and in conjunction with this, increases the extracellular diffusivity, thereby increasing the immunity. Achieve longevity.
  • Example (4) it was found that a vector with a high secretory release amount resulted in reduced vector productivity during the production process. Shifting the mounting position of the vaccine antigen gene downstream has been known as a technique for suppressing the expression level, but in the present invention, as described in the above paragraph, the foldon sequence that increases the amount of the vaccine antigen is removed. We hypothesized that vector productivity could be improved if the amount of vaccine antigen in the producing cells could be reduced by this method. When the productivity of vaccine antigen vectors was compared, it was found that removal of the foldon increased the vector productivity. Based on these verification results, the following vector productivity control techniques are provided.
  • the amount of vaccine antigen is increased or decreased in production cells in the production culture process, and the amount of secretion and release is increased or decreased in conjunction with vector production.
  • vector productivity can be adjusted to the extent that it suppresses or enhances the immunogenicity and maintains high immunogenicity.
  • vaccine antigens capable of inducing neutralizing antibodies are narrowed down, and a secretion signal is added to them without adding a membrane permeation domain, for example, a vector having airway affinity (minus chain RNA virus vector, etc.) can induce strong expression in mucosal epithelial cells and release a large amount of neutralizing antibody-inducing antigen in the mucosal region.
  • a vector having airway affinity minus chain RNA virus vector, etc.
  • the present invention is considered to contribute to solving these social problems.
  • FIG. 2 shows the structure of a vaccine antigen vector that induces both humoral and cell-mediated immunity.
  • FIG. 2 shows an insertion sequence of an S1-foldon-carrying Sendai virus vector.
  • FIG. 2 shows an insertion sequence of an S-RBD-foldon-carrying Sendai virus vector.
  • FIG. 2 shows an insertion sequence of an S-RBD-loaded Sendai virus vector.
  • FIG. 3 shows the expression, intracellular persistence, and extramembrane secretory release of a vaccine antigen vector.
  • FIG. 3 shows the expression, intracellular persistence, and extramembrane secretory release of a vaccine antigen vector.
  • FIG. 2 shows humoral immunity induction by vaccine antigen vector technology.
  • FIG. 2 shows humoral immunity induction by vaccine antigen vector technology.
  • FIG. 2 shows humoral immunity induction by vaccine antigen vector technology.
  • FIG. 1 shows an insertion sequence of an S1-foldon-carrying Sendai virus vector.
  • FIG. 2 shows
  • FIG. 2 shows cell-mediated immunity induction by vaccine antigen vector technology.
  • FIG. 2 shows cell-mediated immunity induction by vaccine antigen vector technology.
  • Immunity induction method It is a figure which shows the problem of a conventional method, and the superiority of this invention. In the figure, dark triangles represent antigen proteins, and light triangles represent viral membrane proteins possessed by viral vectors. Antigen-presenting cells are represented in the form of major sectors of circles.
  • the antigen protein When the antigen protein (dark triangle) is expressed in a membrane-tethered form (left panel), the antigen protein is localized on the surface of vector-infected cells and released virus particles, whereas the antigen protein fragment In the vector of the present invention (right panel) in which a large amount of is secreted and released, the released antigen protein fragments diffuse far from the infected cells and are efficiently phagocytosed by the antigen-presenting cells, resulting in the induction of a high immune response. be.
  • the term "vaccine” refers to a composition for eliciting an immune response against a target antigen, for example, a composition used for prevention or treatment of infectious diseases, infectious diseases, cancer, and the like.
  • Vaccines contain or are capable of expressing a target antigen or fragment thereof, thereby having the ability to induce an immune response against the target antigen.
  • the vaccine composition of the present invention is formulated as a vaccine comprising a target antigen or fragment thereof, or a nucleic acid expressing the target antigen or fragment thereof. can be This vaccine can be used in any desired form.
  • the vaccine composition of the present invention is particularly useful for the prevention and/or treatment of infection by viruses such as coronaviruses or microorganisms, replication in the body, or diseases caused by them.
  • an "antigen” is a molecule containing one or more epitopes (parts of an antigen recognized by antibodies or immune cells) that can stimulate the host's immune system to induce an antigen-specific immune response.
  • the antigen used in the present invention is an antigen capable of inducing a humoral or cell-mediated immune response.
  • the antigen of the present invention is preferably an antigen capable of inducing at least humoral immune response, more preferably an antigen capable of inducing both humoral and cell-mediated immunity.
  • the antigen of the present invention is not particularly limited as long as it can induce an immune response, but usually one epitope in the protein is about 7 to about 15 amino acids, for example, at least 8, 9, 10, 12, or contains 14 amino acids.
  • the epitope includes not only an epitope formed from the primary structure but also an epitope dependent on the three-dimensional structure of the protein. Antigens capable of eliciting an immune response are also referred to as immunogens.
  • the present invention provides an antigen expression vector comprising a nucleic acid encoding a fusion protein capable of extramembrane releasability, comprising a secretory signal, an antigenic protein fragment, and a trimerization domain.
  • the fusion protein encoded by this vector is capable of extramembrane releasability and is secreted and released from the cell upon expression in the cell.
  • the secretory signal may be cleaved off during secretion.
  • the secreted fusion protein may be a fusion protein that lacks a secretory signal and contains an antigenic protein fragment and a trimerization domain.
  • An antigenic protein fragment refers to a portion of a protein that has antigenicity or immunogenicity, that is, a portion of a naturally occurring antigenic protein that is not the full length.
  • the length of the antigen protein fragment can be selected as appropriate, but is preferably 70% or less, such as 60% or less, 50% or less (half or less), 40% or less, 35% or less of the length of the naturally occurring antigen protein. % or less, 30% or less, 25% or less, 20% or less, 15% or less, or 10% or less.
  • a naturally occurring antigen protein is, for example, once produced as a proprotein (precursor) and exhibits its activity only after being cleaved
  • the protein after cleavage is regarded as a naturally occurring antigen protein
  • fragments with lengths in the above proportions For example, the spike protein (S) of a virus can be cleaved into S1 and S2.
  • S1 and S2 are the full-length naturally occurring antigen proteins, and fragments having the above proportions of the length. can be used.
  • Antigenic protein fragments are preferably 500 amino acids or less, such as 450 amino acids or less, 400 amino acids or less, 350 amino acids or less, 300 amino acids or less, 280 amino acids or less, 250 amino acids or less, or 230 amino acids or less. Particularly preferred are antigenic protein fragments of 220 amino acids or less, for example antigenic protein fragments of 215 amino acids or less, 210 amino acids or less, or 205 amino acids or less are particularly preferred.
  • the total length of the fusion protein which further comprises the secretory signal and the trimerization domain, is e.g. 550 amino acids or less, e.g. 280 amino acids or less. In particular, it is preferably 270 amino acids or less, and particularly preferably 265 amino acids or less, 260 amino acids or less, or 250 amino acids or less.
  • the length of the entire fusion protein excluding the secretory signal is, for example, 550 amino acids or less, such as 500 amino acids or less, 450 amino acids or less, 400 amino acids or less, 350 amino acids or less, 330 amino acids or less, 300 amino acids or less, or 280 amino acids or less. In particular, it is preferably 270 amino acids or less, and particularly preferably 265 amino acids or less, 260 amino acids or less, 255 amino acids or less, 250 amino acids or less, 245 amino acids or less, or 240 amino acids or less.
  • any desired protein to induce an immune response can be used.
  • proteins of infectious microorganisms including bacteria, fungi, viruses
  • cancer-specific proteins can be used as target proteins.
  • a protein of a pathogenic infectious microorganism as an antigen protein
  • a vaccine useful for prevention or treatment against the pathogenic microorganism can be produced.
  • a membrane protein is useful, and in particular, a membrane protein having an extracellular domain can be used as a suitable origin of the antigen protein fragment.
  • Membrane proteins include membrane proteins possessed by viruses, membrane proteins specifically expressed in cancer cells, and the like.
  • the antigen protein fragment When targeting the extracellular domain of a membrane protein, all or part of the extracellular domain, preferably part, is used as the antigen protein fragment.
  • the length of the antigen protein fragment can be selected as appropriate, but is preferably 70% or less, such as 60% or less, 50% or less (half or less), 40% or less, or 35% or less of the total extracellular domain length. , 30% or less, 25% or less, 20% or less, 15% or less, or 10% or less.
  • the fusion protein of the present invention is a protein that is secreted and can be released outside the membrane. It does not contain a domain or a membrane anchoring domain.
  • the antigen protein to be targeted is a membrane protein
  • it is preferable to use as the antigen protein fragment a fragment that does not contain a domain that retains the protein in a biological membrane, such as a transmembrane domain or a membrane anchoring domain.
  • Suitable antigen proteins in the present invention include proteins of enveloped viruses.
  • an enveloped virus refers to a virus having an envelope of a lipid bilayer membrane derived from a biological membrane.
  • viruses include RNA viruses, DNA viruses, retroviruses, etc.
  • RNA viruses include coronaviruses (coronaviridae viruses) including SARS virus and MERS (Middle East Respiratory Syndrome) virus, and influenza virus.
  • orthomyxovirus orthomyxoviridae virus
  • hepatitis C virus Japanese encephalitis virus
  • flavivirus flavivirus
  • flavivirus flavivirus
  • togavirus togaviridae virus
  • rubella virus measles virus
  • paramyxoviridae viruses including human respiratory syncytial virus
  • rhabdoviruses including rabies virus
  • bunyaviridae viruses including Crimean-Congo hemorrhagic fever virus
  • Ebola virus Ebola virus.
  • filoviruses filoviruses (Filoviridae viruses), including Marburg virus, hepatitis D virus, and the like.
  • DNA viruses include herpesviruses (herpesviridae viruses), including varicella-zoster virus, poxviruses (poxviridae viruses), including smallpox virus, and hepadnaviruses, including hepatitis B virus (hepadnavirus). viruses of the family Viridae). Retroviruses include retroviruses (Retroviridae viruses), including lentiviruses (viruses of the genus Lentivirus) such as human immunodeficiency virus and adult T leukemia virus.
  • virus-derived antigens include, for example, viral proteins of positive-strand RNA viruses and single-stranded RNA viruses, and in particular, viral proteins of single-stranded positive-strand RNA viruses can be preferably used.
  • viruses include coronavirus, enterovirus, rubella virus, Japanese encephalitis virus, dengue fever virus, hepatitis C virus, norovirus, and the like.
  • Most preferred viral antigens include coronaviruses (coronaviridae viruses), particularly betacoronaviruses, including SARS virus, including SARS-CoV-2, MERS virus.
  • SARS-CoV-2 may be a desired strain, such as, but not limited to, 2019-nCoV/Japan/TY/WK-521/2020 (accession number LC522975).
  • the antigen protein particularly includes the envelope virus spike protein, and as the antigen protein fragment, a fragment containing a part of the extracellular region of the spike protein can be preferably used.
  • the amino acid sequence of the coronavirus spike (S) protein includes the above SARS-CoV-2 strain S protein amino acid sequence (SEQ ID NO: 2), accession number BCA25674.1, and the coding sequence 21560th to 25378th base sequences of accession number LC522975 (SEQ ID NO: 1).
  • S protein and the nucleic acid encoding it in addition to the nucleotide sequences and amino acid sequences exemplified above, homologous genes and proteins of other strains and species, and variants thereof may be used.
  • homology refers to corresponding amino acid sequences of different viruses.
  • nucleic acids and proteins are, for example, one or more (for example, several, within 3, within 5, within 10, within 15, within 20) compared to the base sequences and amino acid sequences exemplified above.
  • bases and amino acids are included.
  • Such base sequences and amino acid sequences usually exhibit a high degree of identity with the base sequences and amino acid sequences exemplified above.
  • those having high identity with SEQ ID NOs: 1 and 2 can be preferably used.
  • a high identity is, for example, a sequence with 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 93% or more, 95% or more, or 96% or more identity.
  • the identity of nucleotide sequences and amino acid sequences can be determined using, for example, the BLASTN and BLASTP programs (Altschul, S. F. et al., J. Mol. Biol. 215: 403-410, 1990). For example, a search can be performed using the default parameters on the BLAST web page of the NCBI (National Center for Biochnology Information) (Altschul S.F. et al., Nature Genet. 3:266-272, 1993; Madden, T.L. et al.
  • blast2sequences program (Tatiana A et al., FEMS Microbiol Lett. 174:247-250, 1999), which compares two sequences, can be used to generate a two-sequence alignment and determine sequence identity.
  • a gap is treated in the same manner as a mismatch, and the identity value for the entire nucleotide sequence or amino acid sequence of the antigen gene or protein molecule is calculated.
  • the ratio of the number of matching amino acids to the total number of amino acids of a certain protein is calculated.
  • the ratio of the number of matching bases to the total number of bases of the base sequence encoding the protein is calculated.
  • a coronavirus antigen comprising an amino acid sequence highly identical to SEQ ID NO: 2, 4, 6, or 8, and a coronavirus antigen gene comprising a nucleotide sequence highly identical to SEQ ID NO: 1, 3, 5, or 7, It can be preferably used in the vaccine of the present invention.
  • the antigen protein of the present invention is a protein encoded by a nucleic acid that hybridizes under stringent conditions with a nucleic acid comprising a part or all of the nucleotide sequence of the coronavirus antigen gene exemplified above or a nucleic acid comprising a complementary sequence thereof.
  • Examples include proteins having antigenicity.
  • a probe is prepared from either a nucleic acid containing the coding region sequence of an antigen protein gene or its complementary sequence, or a nucleic acid to be hybridized, and whether it hybridizes to the other nucleic acid is examined. It can be identified by detection.
  • Stringent hybridization conditions are, for example, 5x SSC, 7% (W/V) SDS, 100 ⁇ g/ml denatured salmon sperm DNA, 5x Denhardt's solution (1x Denhardt's solution contains 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin, and (containing 0.2% Ficoll) at 50°C, preferably 55°C, more preferably 60°C, more preferably 65°C, followed by hybridization at the same temperature in 2xSSC, preferably in 1xSSC , more preferably in 0.5xSSC, more preferably in 0.1xSSC, with shaking for 2 hours.
  • antigenic proteins are useful as antigens of the present invention.
  • the antigen protein is preferably used as a short fragment containing the target site.
  • the antigen protein when used as a vaccine that is expected to have a neutralizing effect to prevent infection with viruses, it is necessary to induce antibodies with neutralizing activity and not induce other antibodies (non-neutralizing antibodies) as much as possible. It is desirable to use the shortest possible antigen fragment containing the target site.
  • fragments of extracellular regions containing host cell-binding domains are preferred. Fragments containing (RBD) can be used.
  • the ACE2-binding domain of the viral protein can be preferably used.
  • the RBD is present in the 319th to 545th amino acid sequences of the spike protein (eg, SEQ ID NO: 2). Therefore, a fragment consisting of this amino acid sequence, a spike protein fragment containing this amino acid sequence, a partial sequence of this amino acid sequence, a spike protein fragment containing this partial sequence, or the like can be used.
  • a fragment consisting of the 328th to 531st amino acid sequences produces a highly effective neutralizing antibody. Therefore, a fragment consisting of the 328th to 531st amino acid sequences, a spike protein fragment containing this amino acid sequence, a partial sequence of this amino acid sequence, a spike protein fragment containing this partial sequence, or the like can be preferably used.
  • the partial sequence is not limited as long as it can produce a neutralizing antibody, for example, 20% or more, 30% or more, 40% of the 319th to 545th amino acid sequence or the 328th to 531st amino acid sequence or more, 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more, such as 20 amino acids or more, 30 amino acids or more 40 amino acids or more, 50 amino acids or more, 60 amino acids or more, 70 amino acids or more, 80 amino acids or more, 90 amino acids or more, 100 amino acids or more, 120 amino acids or more, It may be 150 amino acids or more, 180 amino acids or more, or 200 amino acids or more.
  • SEQ ID NO:4 An example of the above amino acid sequence from 319th to 545th is shown in SEQ ID NO:4, and an example of its coding sequence is shown in SEQ ID NO:3.
  • SEQ ID NO:6 An example of the above amino acid sequence from 328th to 531st is shown in SEQ ID NO:6, and an example of its coding sequence is shown in SEQ ID NO:5.
  • the amino acid of the antigen protein fragment or its coding sequence may be appropriately mutated.
  • one or more e.g. several, preferably within 30, 20 sequences in which no more than 10, no more than 8, no more than 7, no more than 5, no more than 3, no more than 2, or 1 amino acid or base are added, deleted, substituted, and/or inserted can also be used.
  • Such amino acid sequences or base sequences usually have a high degree of identity (e.g., 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 93% or more, 95% or more) to the amino acid sequences or base sequences exemplified above. % or greater than 96% identity).
  • those having high identity with SEQ ID NOS: 1-6 can be preferably used. High identity can be determined as described above.
  • Such antigenic protein fragments are useful for eliciting immunity targeting SARS-CoV-2.
  • a desired peptide can be used as the secretion signal used in the present invention as long as it can extracellularly secrete the fusion protein of the present invention.
  • the antigen protein originally has a secretion signal, that secretion signal can be used.
  • the first 13 peptides correspond to the secretion signal.
  • an antigen protein fragment eg, the RBD domain or fragment thereof, or a polypeptide comprising the RBD domain or fragment thereof
  • the antigen protein fragment can be made secretable.
  • secretion signals for other desired secretory proteins may be used.
  • trimerization domain used in the present invention any desired domain can be used as long as it can trimerize the fusion protein of the present invention.
  • the trimerization domain (foldon) of the T4 phage fibritin is used.
  • Foldon for example, a polypeptide containing the amino acid sequence of SEQ ID NO: 10 or a partial sequence thereof and having trimerization activity can be used.
  • SEQ ID NO: 9 can be exemplified as a coding sequence, but it is not limited to this.
  • Foldon sequences are well known to those skilled in the art, and various variants have been made and used. These variants are also collectively referred to as foldon in the present invention.
  • Foldon sequences derived from other phages are easily identified by searching nucleotide and protein databases (eg, Enterobacteria phage phiC600P9, Escherichia phage vB_EcoM_FJ1, foldon sequences derived from these phages).
  • these trimerization domains can be used as appropriate.
  • GCN4 Leucine-zipper Harbury, P. B. et al., A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262 : 1401-1407, 1993
  • Lung surfactant protein-derived trimerization motif Hoppe, H.
  • trimerization motif derived from the Collagen superfamily (McAlinden, A. et al., Alpha-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily. J Biol Chem 278: 42200-42207, 2003). ing. In the present invention, trimerization domains other than Foldon, including these, can also be used as appropriate.
  • the trimerization domain may be added to the antigen protein fragment as appropriate, for example, to the N-terminus or C-terminus of the antigen protein fragment.
  • a trimerization domain may be added to the original protein on the membrane-proximal side.
  • a trimerization domain can be added to the C-terminus of the antigenic protein fragment.
  • a fusion protein of the invention preferably comprises, in that order, a secretory signal, an antigenic protein fragment, and a trimerization domain.
  • the fusion protein of the present invention containing an antigenic protein fragment can be expressed from a vector containing a nucleic acid encoding it.
  • Nucleic acid is not limited in its form, and may be DNA or RNA.
  • a vector in the present invention is a carrier that introduces a nucleic acid into a cell.
  • an expression vector is a carrier for introducing a nucleic acid into a cell, and is a vector capable of expressing a gene incorporated in the nucleic acid in the introduced cell.
  • an expression vector means a vector into which a new nucleic acid is produced in a cell into which it has been introduced.
  • the production of a new nucleic acid means synthesis (biosynthesis) of a new nucleic acid using the nucleic acid contained in the vector as a template in a cell into which the vector has been introduced.
  • an expression vector means that a nucleic acid contained in the vector is replicated and/or transcribed in a cell into which it has been introduced, or a functional RNA, mRNA, or the like is produced using the nucleic acid contained in the vector as a template. It is something to do.
  • Functional RNA or mRNA itself, or compositions containing them do not produce new nucleic acids in the cells into which they are introduced, and are not expression vectors in the present invention.
  • any desired vector such as a plasmid, viral vector, or non-viral vector (eg, self-amplifying RNA) can be used.
  • a DNA vector When expressed from a DNA vector, it can be expressed from any desired promoter.
  • promoters include, but are not limited to, CMV promoter, CAG promoter, SV40 promoter, RSV promoter, EF1 ⁇ promoter, and SR ⁇ promoter.
  • a viral vector is preferably used in the present invention.
  • a "viral vector” is a vector that has a genomic nucleic acid derived from the virus, and that can express the gene after the viral vector is introduced into a cell by, for example, integrating a transgene into the genomic nucleic acid.
  • Viral vectors include adenoviral vectors, adeno-associated viral vectors, HSV vectors, retroviral vectors (including lentiviral vectors), and negative-strand RNA viral vectors (including paramyxoviral vectors, particularly Sendai virus vectors). . In the present invention, it is most preferable to use a minus-strand RNA viral vector as the viral vector.
  • the viral vector may be a replication-incompetent vector, but preferably a replication-incompetent (replication-deficient) viral vector is used.
  • replication-incompetent or “replication-deficient” or “replication-deficient” refers to the inability to replicate infectious viral particles in cells infected with the viral vector, and the viral genome in the infected cells. Even if the virus replicates, it is judged to be replication-incompetent (replication-deficient) unless it can replicate infectious virus particles.
  • genes essential for the formation of infectious virus particles specifically proteins present on the surface of virus particles (for example, envelope proteins such as F and HN in the case of paramyxoviruses) are deleted or deleted from the virus genome. Thus, a replication-deficient virus can be obtained.
  • the minus-strand RNA viral vector to be used is not particularly limited, but for example, a paramyxovirus vector can be preferably used.
  • Paramyxovirus refers to viruses belonging to the family Paramyxoviridae or derivatives thereof.
  • the family Paramyxoviridae is a member of the Mononegavirus group with non-segmented negative-strand RNA in the genome, and belongs to the subfamily Paramyxovirinae (genus Respirovirus (also called genus Paramyxovirus), genus Rubulavirus).
  • Viruses included in Paramyxoviridae viruses include, specifically, Sendai virus, Newcastle disease virus, Mumps virus, Measles virus, Respiratory syncytial virus. virus), rinderpest virus, distemper virus, simian parainfluenza virus (SV5), human parainfluenza virus types 1, 2, and 3.
  • Sendai virus SeV
  • human parainfluenza virus-1 HPIV-1
  • human parainfluenza virus-3 HPIV-3
  • phocine distemper virus PDV
  • canine distemper virus CDV
  • dolphin molbillivirus DMV
  • peste-des-petits-ruminants virus PDPR
  • measles virus MeV
  • rinderpest virus RCV
  • Hendra virus Hendra
  • Nipah virus Nipah virus
  • human parainfluenza virus-2 HPIV-2
  • simian parainfluenza virus 5 SV5
  • human parainfluenza virus-4a HPIV-4a
  • human parainfluenza virus-4b HPIV-4b
  • mumps virus Mumps
  • Newcastle disease virus NDV
  • Rhabdoviruses include Vesicular stomatitis virus, Rabies virus, etc. of the Rhabdoviridae family.
  • the genomic RNA of minus-strand RNA viruses is the minus strand (negative strand), and proteins, etc. are encoded as antisense sequences on the genomic RNA.
  • such cases are also referred to as "encoding" the protein.
  • encoding the protein.
  • a protein is encoded as an antisense sequence in the minus-strand RNA genome, it is also said that the gene for the protein is incorporated in the genome.
  • Upstream of the genome (minus strand) of a negative-strand RNA virus refers to the 3' side of the genome, and “downstream” refers to the 5' side.
  • plus-strand (positive-strand) RNA genome also called antigenome
  • plus-strand RNA genome also called antigenome
  • transcription occurs using the minus-strand RNA genome as a template to generate sense-strand RNA.
  • the minus-strand RNA genome and the plus-strand RNA genome are sometimes collectively referred to as "genomes”.
  • a paramyxovirus vector is a chromosomal non-integrating virus vector, and since the vector is expressed in the cytoplasm, there is no risk of the transgene being integrated into the host's chromosome (nuclear-derived chromosome). Therefore, the safety is high, and the vector can be removed from infected cells.
  • paramyxovirus vectors include not only infectious viral particles, but also viral cores, complexes of viral genomes and viral proteins, complexes composed of non-infectious viral particles, etc., which are introduced into cells. Included are complexes that are capable of expressing genes carried by the .
  • the ribonucleoprotein (virus core portion), which consists of the paramyxovirus genome and the paramyxovirus proteins (NP, P, and L proteins) that bind to it, is introduced into the cell to produce a transgene within the cell. (WO00/70055). Introduction into cells may be performed using an appropriate transfection reagent or the like.
  • ribonucleoproteins RNPs
  • the paramyxovirus vector is preferably a particle in which the RNP described above is derived from the cell membrane and wrapped in a biomembrane.
  • paramyxovirus vector When a paramyxovirus vector is used as the expression vector of the present invention, particularly preferred paramyxoviruses are viruses belonging to the subfamily Paramyxovirinae (including the genera Respirovirus, Rubulavirus, and Mobilivirus). , more preferably a virus belonging to the genus Respirovirus (also referred to as the genus Paramyxovirus).
  • Respirovirus viruses to which the present invention can be applied include, for example, human parainfluenza virus type 1 (HPIV-1), human parainfluenza virus type 3 (HPIV-3), and bovine parainfluenza virus type 3 (BPIV-3).
  • Sendai virus also called murine parainfluenza virus type 1
  • measles virus measles virus
  • simian parainfluenza virus SV5
  • SPIV-10 simian parainfluenza virus type 10
  • the paramyxovirus is most preferably Sendai virus.
  • Paramyxoviruses generally contain a complex consisting of RNA and protein (ribonucleoprotein; RNP) inside the envelope.
  • the RNA contained in RNP is a single-stranded RNA of (-) strand (negative strand), which is the genome of Paramyxovirus, and this single-stranded RNA binds to NP protein, P protein, and L protein to forming
  • the RNA contained in this RNP serves as a template for transcription and replication of the viral genome (Lamb, R.A., and D. Kolakofsky, 1996, Paramyxoviridae: The viruses and their replication. pp.1177-1204. In Fields Virology, 3rd Fields, B. N., D. M. Knipe, and P. M. Howley et al. (ed.), Raven Press, New York, N. Y.).
  • NP, P, M, F, HN, and L genes of Paramyxovirus refer to the genes encoding the nucleocapsid, phospho, matrix, fusion, hemagglutinin-neuraminidase, and large proteins, respectively.
  • Nucleocapsid (NP) protein is a protein that binds to genomic RNA and is essential for genomic RNA to have template activity. In general, the NP gene is sometimes written as "N gene”.
  • Phospho (P) proteins are phosphorylated proteins that are the small subunits of RNA polymerase.
  • Matrix (M) proteins function to maintain the virus particle structure from the inside.
  • the fusion (F) protein is a membrane fusion protein involved in host cell entry, and the hemagglutinin-neuraminidase (HN) protein is involved in host cell binding.
  • the large (L) protein is the large subunit of RNA polymerase. Each gene described above has an individual transcription control unit, and a single mRNA is transcribed from each gene, and a protein is transcribed. From the P gene, in addition to the P protein, a nonstructural protein (C) that is translated using a different ORF and a protein (V) that is produced by RNA editing during reading of the P protein mRNA are translated.
  • each gene in each virus belonging to the subfamily Paramyxovirinae is generally represented in the order of encoding from the beginning (3') of the genome as follows.
  • accession number of the base sequence database for each gene of Sendai virus is M29343, M30202, M30203, M30204, M51331, M55565, M69046, X17218 for the N gene, and M30202, M30203, M30204, M55565 for the P gene.
  • viral genes encoded by other viruses for the N gene, CDV, AF014953; DMV, X75961; HPIV-1, D01070; HPIV-2, M55320; HPIV-3, D10025; NDV, AF064091; PDPR, X74443; PDV, X75717; RPV, X68311; SeV, X00087; SV5, M81442; 1869; DMV, Z47758; HPIV -l, M74081; HPIV-3, X04721; HPIV-4a, M55975; HPIV-4b, M55976; Mumps, D86173; 30202; SV5, AF052755 and Tupaia, AF079780, for the C gene CDV, AF014953; DMV, Z47758; HPIV-1, M74081; HPIV-3, D00047; MeV, ABO16162; 079780, about the M gene is CDV, M
  • the Sendai virus vector of the present invention has 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more identity with the coding sequence of any of the above viral genes.
  • the Sendai virus vector of the present invention for example, the amino acid sequence encoded by the coding sequence of any of the above viral genes, 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more, Alternatively, it may contain a nucleotide sequence encoding an amino acid sequence with 99% or more identity.
  • the Sendai virus vector has, for example, an amino acid sequence encoded by the coding sequence of any of the above-mentioned viral genes, having 10 amino acids or less, preferably 9 amino acids or less, 8 amino acids or less, 7 amino acids or less, 6 amino acids or less, It may include a nucleotide sequence encoding an amino acid sequence in which no more than 5, no more than 4, no more than 3, no more than 2, or one amino acid is substituted, inserted, deleted, and/or added.
  • sequences referred to by database accession numbers such as base sequences and amino acid sequences described in this specification refer, for example, to sequences as of the filing date and priority date of the present application. can be specified as the sequence at any point in time, preferably as the sequence as of the filing date of the present application. The sequence at each point in time can be identified by referencing the revision history of the database.
  • the minus-strand RNA virus used in the present invention may be a derivative, and the derivative includes a virus whose viral gene has been modified so as not to impair the ability of the virus to introduce genes, a virus that has been chemically modified, and the like. .
  • viruses used as viral vectors may be derived from natural strains, wild strains, mutant strains, laboratory passage strains, artificially constructed strains, and the like.
  • Sendai virus includes, but is not limited to, Z strain (Medical Journal of Osaka University Vol.6, No.1, March 1955 p1-15). That is, the virus may be a virus having a structure similar to that of a virus isolated from nature or a virus artificially modified by genetic recombination, as long as the virus particles of interest can be produced.
  • wild-type viruses may have mutations or deletions in any of their genes.
  • a virus having a deletion in at least one gene encoding a viral envelope protein or coat protein or a mutation such as a stop codon mutation that suppresses the expression thereof can be preferably used.
  • a virus that does not express such an envelope protein is, for example, a virus that can replicate its genome in infected cells but cannot form infectious virus particles.
  • Such transmissibility-deficient viruses are suitable as highly safe expression vectors.
  • viruses that do not encode either the F or HN envelope protein (spike protein) gene or the F and HN genes in their genomes can be used (WO00/70055 and WO00/70070; Li, H.-O. et al., J. Virol.
  • a virus can amplify its genome in an infected cell if its genomic RNA encodes at least the proteins required for genome replication (eg, the N, P, and L proteins).
  • the defective gene product or a protein capable of complementing it is exogenously supplied in virus-producing cells (WO00/70055 and WO00/ 70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000)).
  • non-infectious virus particles can be recovered by not complementing the defective viral proteins at all (WO00/70070).
  • a virus carrying a mutant viral protein gene may be used.
  • many mutations including attenuating mutations and temperature-sensitive mutations, are known in viral structural proteins (NP, M) and RNA synthetase (P, L).
  • Minus-strand RNA viruses having these mutant protein genes can be suitably used in the present invention, depending on the purpose.
  • viruses with reduced cytotoxicity may be used. Cytotoxicity can be measured, for example, by quantifying the release of lactate dehydrogenase (LDH) from cells.
  • LDH lactate dehydrogenase
  • the degree of attenuation of cytotoxicity can be evaluated, for example, by infecting human-derived HeLa cells (ATCC CCL-2) or monkey-derived CV-1 cells (ATCC CCL 70) at an MOI (infectious titer) of 3 and culturing for 3 days.
  • Viruses in which the amount of LDH released in the fluid is significantly reduced compared to the wild type for example, viruses in which the amount is reduced by 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 50% or more can be used.
  • Mutations that reduce cytotoxicity also include temperature sensitive mutations.
  • a temperature-sensitive mutation is one that has significantly reduced activity at the normal temperature of the virus host (e.g.
  • the growth rate or gene expression level is at least 1/2 or less, preferably at least 1/2 when infected at 32°C in cultured cells, when infected at 32°C.
  • One-third or less, more preferably 1/5 or less, more preferably 1/10 or less, more preferably 1/20 or less can be used.
  • NP, M viral structural proteins
  • P, L RNA synthetase
  • Viral vectors and the like having these mutated protein genes can be suitably used in the present invention depending on the purpose.
  • the M gene mutation is arbitrarily selected from the group consisting of positions 69 (G69), 116 (T116), and 183 (A183) in the M protein.
  • Site amino acid substitutions can be mentioned (Inoue, M. et al., J. Virol. 2003, 77: 3238-3246).
  • Viruses possessing the above are preferably used in the present invention depending on the purpose.
  • Amino acid mutations are preferably substitutions of other amino acids with different side chain chemistries, such as the BLOSUM62 matrix (Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919) is 3 or less, preferably 2 or less, more preferably 1 or less, more preferably 0.
  • G69, T116, and A183 of the Sendai virus M protein can be replaced with Glu (E), Ala (A), and Ser (S), respectively.
  • mutations that are homologous to the mutations in the M protein of the measles virus temperature-sensitive strain P253-505 (Morikawa, Y. et al., Kitasato Arch. Exp. Med. 1991: 64; 15-30). be. Mutations may be introduced according to known methods for introducing mutations, for example, using oligonucleotides and the like.
  • mutations in the HN gene include, for example, amino acid substitutions at positions arbitrarily selected from the group consisting of positions 262 (A262), 264 (G264), and 461 (K461) of the Sendai virus HN protein.
  • a virus having a genome encoding a mutant HN protein in which any one of the three sites, preferably a combination of any two sites, and more preferably all three sites have amino acids substituted with other amino acids is used in the present invention. It is preferably used depending on the purpose. As with the above, substitution of amino acids with other amino acids having different side chain chemical properties is preferred.
  • A262, G264, and K461 of the Sendai virus HN protein are replaced with Thr (T), Arg (R), and Gly (G), respectively.
  • T Thr
  • R Arg
  • G Gly
  • the 464th and 468th amino acids of the HN protein can be mutated (Wright, K. E. et al., Virus Res. 2000: 67 49-57).
  • the Sendai virus may also have mutations in the P gene and/or the L gene.
  • mutations include mutation of Glu (E86) at position 86 of SeV P protein and substitution of Leu (L511) at position 511 of SeV P protein with another amino acid.
  • substitution of amino acids with other amino acids having different side chain chemical properties is preferred.
  • substitution of the 86th amino acid with Lys, substitution of the 511th amino acid with Phe, and the like can be exemplified.
  • substitution of Asn (N1197) at position 1197 and/or Lys (K1795) at position 1795 of the SeV L protein with other amino acids can be mentioned. is preferably replaced with another amino acid of different chemical nature.
  • substitution of the 1197th amino acid with Ser substitution of the 1795th amino acid with Glu, and the like can be exemplified.
  • Mutations in the P gene and L gene can significantly enhance the effects of persistent infectivity, suppression of secondary particle release, or suppression of cytotoxicity. Furthermore, these effects can be dramatically increased by combining mutations and/or deletions of envelope protein genes.
  • the L gene includes substitution of Tyr (Y1214) at position 1214 and/or Met (M1602) at position 1602 of the SeV L protein with other amino acids. Substitutions with other amino acids with different chemical properties are included. Specifically, substitution of the 1214th amino acid with Phe, substitution of the 1602nd amino acid with Leu, and the like can be exemplified. The mutations exemplified above can be combined arbitrarily.
  • At least G at position 69, T at position 116, and A at position 183 of the SeV M protein; at least A at position 262, G at position 264, and K at position 461 of the SeV HN protein; L at position 1197 and K at position 1795 of the SeV L protein are substituted with other amino acids, respectively, and the F gene is deleted or deleted, and the cytotoxicity of these Sendai virus vectors and/or F gene-deficient or deleted Sendai virus vectors with similar or greater suppression of NTVLP formation at 37°C can be used in the present invention depending on the purpose.
  • the F gene is deleted, the G69E, T116A, and A183S mutations in the M protein, the A262T, G264R, and K461G mutations in the HN protein, the L511F mutation in the P protein, and the N1197S and N1197S in the L protein.
  • a Sendai virus vector containing the K1795E mutation in its genome can be used.
  • the combination of F gene deletion and these mutations is referred to as "TS ⁇ F".
  • the viral vector used in the present invention may encode, in its genome, foreign genes and regulatory factors that control viral properties, in addition to viral protein genes.
  • it may encode a degron sequence or miRNA target sequence to regulate the expression of viral proteins.
  • At least one envelope gene is deleted or mutated.
  • Such viruses include at least one envelope gene deleted, at least one envelope gene mutated, at least one envelope gene mutated and at least one envelope gene deleted.
  • At least one mutated or deleted envelope gene is preferably a gene encoding an envelope-constituting protein, such as the F gene and/or the HN gene in a paramyxovirus vector.
  • an envelope-constituting protein such as the F gene and/or the HN gene in a paramyxovirus vector.
  • the HN gene may be deleted, or the HN gene may encode a loss-of-function mutant HN protein.
  • minus-strand RNA viruses lacking the F gene and further lacking the HN gene or having mutations in the HN gene are preferably used in the present invention.
  • Minus-strand RNA viruses lacking the F gene and further lacking the HN gene, for example, are also preferably used in the present invention.
  • Such mutant viruses can be produced according to known methods.
  • the viral vector in a preferred embodiment, at least one of its own envelope protein genes (eg, F gene) is deleted from the genome, and its own N, P, and L genes are carried. Also, the viral vector preferably carries its own M gene on its genome.
  • its own envelope protein genes eg, F gene
  • the viral vector of the present invention expressably carries a nucleic acid encoding the fusion protein of the present invention, that is, a fusion protein that can be released outside the membrane, including a secretory signal, an antigenic protein fragment, and a trimerization domain.
  • a nucleic acid encoding the protein of interest can be inserted at the desired location in the genome of the viral vector. For example, in the case of minus-strand RNA viruses, the closer to the 3' end of the genome (minus strand), the higher the expression level can be expected.
  • a nucleotide sequence encoding the fusion protein can be inserted between the gene for the protein (usually N protein). Alternatively, between the genes for the first negative-strand RNA viral protein (usually the N protein) and the second negative-strand RNA viral protein (usually the P protein), the second and third (usually between the P and M), etc. good too.
  • the vector of the present invention may encode additional genes as long as it encodes the fusion protein of the present invention.
  • the vector may encode other antigen proteins or physiologically active proteins (cytokines, etc.). .
  • nucleic acid encoding these desired proteins When a nucleic acid encoding these desired proteins is loaded onto a vector, the position thereof may be determined as appropriate. When loaded, the nucleic acid encoding the fusion protein may be inserted upstream of the genome of the paramyxovirus vector (3' side of the viral genome) relative to nucleic acids encoding other antigens. Nucleic acids encoding these proteins can be inserted with their ends flanked by the S (start) sequence and E (end) sequence of the paramyxovirus as appropriate. In paramyxovirus vectors, the S sequence is a signal sequence that initiates transcription, and the E sequence terminates transcription. A region flanked by the S and E sequences constitutes one transcription unit. Between the E sequence of one gene and the S sequence of the next gene, an appropriate spacer sequence (intervening sequence; I) can be inserted (ie EIS sequence).
  • I intervening sequence
  • SEQ ID NO: 11 can.
  • 3'-UCCCAGUUUC-5' SEQ ID NO: 12
  • 3'-UCCCACUUAC-5' SEQ ID NO: 13
  • 3'-UCCCACUUUC-5' SEQ ID NO: 14.
  • These sequences are 5'-AGGGTCAAAG-3' (SEQ ID NO: 15), 5'-AGGGTGAATG-3' (SEQ ID NO: 16), and 5'-AGGGTGAAAG-, respectively, when represented by the DNA sequence encoding the plus strand.
  • the E sequence of the Sendai virus vector is preferably, for example, 3'-AUUCUUUU-5' (5'-TAAGAAAA-3' in DNA encoding the plus strand).
  • the I sequence may be, for example, any three bases, and specifically 3'-GAA-5' (5'-CTT-3' in plus strand DNA) may be used, but is limited to this. isn't it.
  • the fusion protein of the present invention targeting the spike protein of SRAS-CoV-2 includes a protein consisting of the amino acid sequence (S-RBD-foldon) of SEQ ID NO: 29 produced in the Examples, or a protein containing the sequence , one or more in the sequence (e.g.
  • a protein comprising a sequence in which amino acids of SEQ ID NO:29 are added, deleted, substituted, and/or inserted, with a high identity to the amino acid of SEQ ID NO:29 (e.g., 70% or greater, 75% or greater, 80% or greater, 85% or greater, 90% 93% or more, 95% or more, or 96% or more identity) can be preferably used, and a vector containing a nucleic acid encoding the protein is suitable in the present invention.
  • nucleotide sequence examples include, but are not limited to, the 15th to 758th base sequences of SEQ ID NO: 28 or the RNA sequences corresponding thereto, or their complementary sequences (for vectors having a minus strand in the genome, etc.). isn't it.
  • examples of the nucleotide sequence to be inserted include SEQ ID NO: 28 (as a positive strand DNA sequence). can be preferably used in the present invention.
  • the present invention is not limited thereto, and those skilled in the art can construct various antigen expression vectors that exhibit similarly excellent effects based on the description of this specification.
  • a vector-encoded fusion protein containing an antigen protein fragment By introducing the antigen expression vector of the present invention into cells, a vector-encoded fusion protein containing an antigen protein fragment can be expressed in cells. Although the expressed fusion protein is secreted and released outside the cell, some expression products may remain inside the cell. That is, the vector of the present invention may be an antigen-expressing vector in which an expression product containing an antigen protein fragment is distributed both intracellularly and extracellularly in a vector-introduced cell. In preferred embodiments, more expression product is released outside the cell than is retained in the cell.
  • the expression product refers to a translation product in the case of expression of a gene encoding a polypeptide, and in the case of the present invention specifically refers to a polypeptide containing an antigenic protein fragment.
  • the amount of expression products (polypeptides containing antigenic protein fragments) that are secreted and released outside the cells is three times or more, for example, about 3 to 20 times the amount of expression products that remain in cells.
  • the intracellular retention rate of the entire expression product including those released outside reached 25% or less, for example, 5-25%, and the extracellular secretory release rate reached 79-95%.
  • the expression product released outside the cell is, for example, 3 times or more, 4 times or more, 5 times or more, 6 times or more, 7 times or more, 8 times or more, 9 times the expression product that remains in the cell. It may be greater than, 10 times greater, or 15 times greater.
  • the percentage of polypeptides containing antigen protein fragments produced from the vector that are released outside the cells is, for example, 60% or more, 65% or more, 70% or more, 75% or more, or 80%. It may be greater than or equal to 85% or greater than or equal to 90%.
  • a secreted protein may be truncated for a secretory signal.
  • the fusion protein of the present invention when expressed from a vector, it has the same configuration (same secretion signal and The fusion protein of the present invention, which has a trimerization domain, is larger in molecular size than a control protein having an antigenic protein fragment (polypeptide having an antigenic protein fragment) expressed from the same vector.
  • a vector of the invention encoding a protein comprising a secretory signal, an antigenic protein fragment, and a trimerization domain, a control antigen encoding a protein comprising a secretory signal and an antigenic protein fragment, but no trimerization domain.
  • the expression level of the expression product containing the antigen protein fragment is, for example, 1.5-fold or more, 2-fold or more, 3-fold or more, 4-fold or more, 5-fold or more, 6-fold or more compared to the expression vector , 7x or more, 8x or more, 9x or more, or 10x or more.
  • Expression levels can be compared by, for example, constructing vectors with the same configuration except for the presence or absence of a trimerization domain, and using the same type of cells to determine the expression level (total sum of intracellular and extracellular secretion). expression level) can be measured.
  • Cells to be used can be appropriately selected, for example, LLCMK2 cells (ATCC-CCL-7) can be used, but are not limited thereto.
  • the present invention provides a method for producing the fusion protein of the present invention comprising a secretory signal, an antigenic protein fragment and a trimerization domain, comprising the step of introducing the antigen expression vector of the present invention into a cell.
  • the present invention also provides a method for producing an antigen protein fragment, comprising the step of introducing the antigen expression vector of the present invention into a cell.
  • the present invention also provides a method for producing extracellularly released antigen protein fragments, comprising the step of introducing the antigen-expressing vector of the present invention into cells. That is, the present invention provides a method for producing a fusion protein comprising an antigenic protein fragment and a trimerization domain, comprising the step of introducing an antigen expression vector of the present invention into a cell.
  • the present invention also provides a method for extracellular secretion and release of an antigen protein fragment, comprising the step of introducing the antigen expression vector of the present invention into a cell.
  • Each method may further comprise the steps of culturing the vector-introduced cells and recovering the produced or secreted expression products, including antigenic protein fragments.
  • the vectors of the present invention increase the amount of expression products containing antigen protein fragments by adding trimerization domains, and the expression products are distributed both intracellularly and extracellularly in vector-introduced cells. Therefore, the vectors of the present invention are useful for increasing the expression level of antigen protein fragments, and for distributing expression products both intracellularly and extracellularly in vector-introduced cells.
  • the present invention provides an antigen expression vector in which the amount of the expression product containing the antigen protein fragment is increased by the addition of a trimerization domain, and the expression product is distributed both intracellularly and extracellularly in vector-introduced cells. do.
  • the present invention also provides a method for constructing the antigen protein expression vector of the present invention and an antigen protein expression vector of the present invention for increasing the amount of an expression product containing an antigen protein fragment by adding a trimerization domain.
  • Provide usage and usage instructions The present invention also provides a method for producing the antigen protein expression vector of the present invention and the use of the antigen protein expression vector of the present invention for distributing the expression product from the vector both intracellularly and extracellularly in a vector-introduced cell. and provide usage instructions.
  • the present invention also relates to a method for increasing the expression level and/or the extracellular secretion release amount when the antigen protein or antigen protein fragment is expressed by adding a trimerization domain to the antigen protein or antigen protein fragment. .
  • the present invention also provides an antigen expression vector in which the amount of an expression product containing an antigen protein fragment is regulated by addition or deletion of a trimerization domain, and the expression product is distributed both intracellularly and extracellularly in a vector-introduced cell.
  • the invention also provides methods for modulating the amount of expression products, including antigenic protein fragments, by the presence or absence of a trimerization domain. If it is desired to increase the amount of expression product, a protein with a trimerization domain can be expressed, and if it is desired to decrease it, a protein without a trimerization domain can be expressed.
  • the method is also a method for distributing the expression product both intracellularly and extracellularly in vector-introduced cells.
  • the present invention also found that the amount of an expression product containing an antigenic protein fragment can be regulated by the size of the antigenic protein fragment.
  • the present invention also found that the intracellular and extracellular distribution of expression products in vector-introduced cells can be controlled by the size of the antigen protein fragment. That is, by shortening the antigen protein fragment, it is possible to increase the amount of expression from the vector and to increase the rate of extracellular secretion and release of the expression product. Conversely, by lengthening the antigen protein fragment, it is possible to suppress the expression level from the vector and to reduce the rate of secretion and release of the expression product to the outside of the cell (that is, increase the rate of retention in the cell). .
  • the length of the antigen protein fragment can be adjusted as appropriate to achieve the desired expression level and/or intracellular/extracellular distribution of the expression product.
  • the length of the antigen protein fragment is, for example, 500 amino acids or less, 350 amino acids or less, 300 amino acids or less, 280 amino acids or less, 250 amino acids or less, or 230 amino acids or less.
  • antigenic protein fragments of 220 amino acids or less for example antigenic protein fragments of 215 amino acids or less, 210 amino acids or less, or 205 amino acids or less are particularly preferred.
  • the total length of the fusion protein, including the secretory signal and the trimerization domain is e.g. 550 amino acids or less, e.g. Amino acids or less. In particular, it is preferably 270 amino acids or less, and particularly preferably 265 amino acids or less, 260 amino acids or less, or 250 amino acids or less.
  • the length of the entire fusion protein excluding the secretory signal is, for example, 550 amino acids or less, such as 500 amino acids or less, 450 amino acids or less, 400 amino acids or less, 350 amino acids or less, 330 amino acids or less, 300 amino acids or less, or 280 amino acids or less. In particular, it is preferably 270 amino acids or less, and particularly preferably 265 amino acids or less, 260 amino acids or less, 255 amino acids or less, 250 amino acids or less, 245 amino acids or less, or 240 amino acids or less.
  • the length of the antigen protein fragment may be increased, for example, longer than the above amino acids. can be done.
  • the present invention also provides a vector that expresses an antigen protein having a trimerization domain by removing the coding region of the trimerization domain from a vector that expresses an antigen protein that does not have a trimerization domain. It was found that the productivity of can be improved. Based on this knowledge, it becomes possible to regulate the productivity of vectors encoding antigen proteins. That is, the present invention provides a method for suppressing or improving vector productivity by adding or removing a trimerization domain-encoding sequence in the antigen protein coding sequence, respectively. By adding or removing the sequence encoding the trimerization domain in the coding sequence of the antigen protein, the expression level of the antigen protein is increased or decreased, respectively, in production cells during the culture process for manufacturing the vector.
  • the present invention also provides methods for increasing or decreasing the expression level of an antigen protein, for increasing or decreasing the secretory release amount of an expression product, or for suppressing or improving vector productivity. , relates to the use of vectors expressing antigen proteins with or without trimerization domains, and these vectors used in such applications.
  • the present invention provides an expression product containing an antigen protein fragment that is distributed both intracellularly and extracellularly in a vector-introduced cell by regulating the amount of the expression product by adding or removing a trimerization domain. It relates to vectors expressing antigenic proteins with or without trimerization domains, wherein vector productivity is modulated.
  • the present invention provides an expression product containing an antigen protein fragment that is distributed both intracellularly and extracellularly in a vector-introduced cell and a vector by regulating the amount of the expression product containing the antigen protein fragment according to the size of the antigenic protein fragment. It relates to vectors expressing antigenic proteins with trimerization domains or antigenic proteins without trimerization domains with modulated productivity.
  • the trimerization domain can be appropriately selected, but it is preferable to use, for example, the trimerization domain (foldon) of T4 phage fibritin.
  • the vector, vector-introduced cell, or vector expression product of the present invention can be appropriately made into a composition, for example, by combining it with a pharmaceutically acceptable carrier or medium.
  • the composition is, for example, a composition comprising a vector of the present invention, a vector-introduced cell, or an expression product thereof and a desired carrier or medium.
  • a pharmacologically acceptable carrier or medium is appropriately selected, and examples include water (e.g., sterile water), physiological saline (e.g., phosphate-buffered saline), buffer solution, culture medium, glycol, ethanol, glycerol, Lactose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, gelatin, dextran, agar, pectin, polyvinylpyrrolidone, cellulose, methylcellulose, methylmethylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, olive oil, Oils such as peanut oil, sesame oil, mineral oil, etc., and emulsifiers, suspending agents, surfactants, buffers, flavoring agents, diluents, preservatives, stabilizers, excipients, vehicles, preservatives, slowdown agents. Release agents and the like are also included (Remington: The Science
  • the vector of the present invention encoding a fusion protein with a secretory signal, an antigenic protein fragment, and a trimerization domain, in a preferred embodiment, upon inoculation into a subject showed excellent IgG antibody induction (Example 3c), For example, when a viral antigen is targeted, both single and repeated inoculations induce high levels of neutralizing antibodies having neutralizing activity against viral infection of the target virus (Example 3d).
  • the vectors, vector-introduced cells, or vector expression products of the present invention are useful for inducing an immunological response, particularly a humoral immune response, to a target antigen.
  • the vectors of the present invention can secrete and release antigen protein fragments extracellularly at high levels, so that the secreted and released antigen proteins do not remain in the cells into which the vectors have been introduced, but spread over a wide area around the cells. expected to do so.
  • the vectors of the present invention are also useful for inducing cell-mediated immune responses against target antigens. That is, the vector of the present invention has excellent properties for inducing both humoral and cell-mediated immunity.
  • the vectors of the present invention and the compositions of the present invention are particularly useful as vaccines.
  • the vaccine of the present invention can efficiently induce humoral and cellular immunity responses to antigen proteins, it is a vaccine for prophylaxis and treatment against, for example, pathogenic microorganisms and infectious microorganisms (including viruses).
  • the vaccine of the present invention is expected to be suitably used for immunotherapy against cancer and the like.
  • the vaccine formulation of the present invention is appropriately produced by combining pharmaceutically acceptable carriers or media such as water, physiological saline, buffers, buffers, salts, excipients, anticoagulants, or combinations thereof. can do.
  • the vaccine formulation of the present invention may further contain an adjuvant or an immunostimulant as appropriate.
  • Adjuvants include, for example, alum, aluminum phosphate, Freund's complete and incomplete adjuvants, virosomes, liposomes, lipopolysaccharides, oily or aqueous emulsion type adjuvants, adjuvants selected from these, or other adjuvants, or Any combination thereof may be included as appropriate.
  • the administration route can be appropriately selected, and can be administered orally or parenterally.
  • parenteral administration include nasal administration, suction, intranasal administration, intraperitoneal administration, intramuscular administration, transdermal administration, subcutaneous administration, intradermal administration, sublingual administration, intravenous administration, enteral administration, and transmucosal administration. administration and the like, but are not limited to them.
  • parenteral administration include nasal administration, suction, intranasal administration, intraperitoneal administration, intramuscular administration, transdermal administration, subcutaneous administration, intradermal administration, sublingual administration, intravenous administration, enteral administration, and transmucosal administration. administration and the like, but are not limited to them.
  • a carrier such as distilled water for injection.
  • Aqueous solutions for injection include aqueous solutions containing other ingredients such as saline, glucose, D-sorbitol, D-mannose, D-mannitol, sodium chloride and the like. It may also contain alcohol, propylene glycol, polyethylene glycol, nonionic surfactants, and the like.
  • the present invention provides an immunity induction method comprising the step of administering the antigen-expressing vector, composition, or vaccine of the present invention to a subject.
  • the present invention also provides a method of inducing humoral immunity, cell-mediated immunity, or both against an antigen, comprising the step of administering the antigen-expressing vector, composition, or vaccine of the present invention to a subject.
  • the present invention also provides use of the antigen-expressing vector of the present invention for inducing humoral immunity, cell-mediated immunity, or both against the antigen.
  • the present invention also provides use of the antigen-expressing vector of the present invention in the manufacture of a drug for inducing humoral immunity, cell-mediated immunity, or both against the antigen.
  • the present invention also provides use of the antigen-expressing vector of the present invention in the production of vaccines.
  • the present invention also provides prophylactic or therapeutic methods against infectious diseases or cancer using the antigen-expressing vectors, compositions, or vaccines of the present invention.
  • the present invention also provides antigen-expressing vectors, compositions, or vaccines of the invention for prophylactic or therapeutic use against infectious diseases or cancer.
  • the present invention also provides use of the antigen-expressing vector of the present invention in the production of a drug for use in preventing or treating infectious diseases or cancer.
  • an antigen derived from an infectious organism that is the cause of an infectious disease here, the infectious organism may be an infectious virus
  • cancer the cancer antigens are used.
  • the antigen-expressing vector, composition, or vaccine of the present invention can be administered, for example, by nasal administration, intranasal administration, or inhalation.
  • the vector of the present invention induces excellent immune responses against viral infections and the like by intranasal inoculation.
  • intranasal inoculation of the vaccine of the present invention enables highly efficient induction of humoral immunity against the target antigen.
  • humoral immunity not only humoral immunity but also cell-mediated immunity can be induced at a high level. That is, the present invention provides a method for preventing or treating infectious diseases, which comprises the step of nasally inoculating a subject with the vaccine of the present invention.
  • the present invention induces an immune response (humoral and/or cellular immune response) against an antigenic protein of an infectious organism (including a virus), which comprises the step of nasally inoculating a subject with the vaccine of the present invention.
  • an immune response humidity and/or cellular immune response
  • an antigenic protein of an infectious organism including a virus
  • the present invention provides a way.
  • a suitable form of vaccine may be selected as appropriate.
  • the vaccine of the present invention containing a minus-strand RNA viral vector is suitable because it can efficiently elicit an immune response by expressing the target antigen at the site of inoculation.
  • the present invention provides a method for preventing or treating infectious diseases, which comprises the step of intranasally inoculating a subject with the vaccine of the present invention containing a minus-strand RNA viral vector.
  • the present invention also provides immune response (humoral immunity and/or cellular provide a method of inducing an immune response).
  • Infectious organisms can be any desired pathogenic microorganism, but include, for example, viruses, particularly viruses and bacteria that can be transmitted through the respiratory tract, rhinoviruses, coronaviruses, respiratory syncytial viruses, parainfluenza viruses, adenoviruses. Viruses, influenza viruses, enteroviruses, etc., and in particular coronaviruses (including SRAS-CoV-2).
  • the form of administration of the antigen-expressing vector, composition, or vaccine of the present invention is not particularly limited, and can be used, for example, for single or multiple inoculations.
  • the vaccine of the present invention may be administered multiple times, or may be administered in combination with other vaccines.
  • inoculation may be performed using a non-viral vector vaccine, and in booster inoculation, a vaccine formulation containing a viral vector (preferably a negative-strand RNA viral vector) may be inoculated.
  • Negative-strand RNA viral vectors have no risk of integration into host chromosomes, so they are highly safe and can be administered multiple times (e.g., 2 or more, 3 or more, 4 or more, or 5 or more) It is also suitable for inoculation of
  • viral vector-type vaccines induce antibodies and CTLs specific to the protein of the viral vector itself, which limits the booster effect of vaccine antigens by booster vaccination and has been induced by similar viruses in the past.
  • immunogenicity of the vaccine antigen may be suppressed by acting on the proteins of the viral vector itself (cross-immunity).
  • cross-immunity As shown in the Examples, when repeated inoculations were performed using a viral vector expressing a fusion protein of a secretory signal, an antigenic protein fragment, and a trimerization domain, repeated inoculations exhibited a strong booster effect. was confirmed.
  • the strong immunity-inducing effect of the vaccine of the present invention using a viral vector is not hindered even if vaccination with a similar viral vector has been performed in the past or there is a history of infection with a similar virus.
  • the vaccine of the present invention using a viral vector exhibits excellent effects in multiple inoculations such as booster inoculations. That is, the vaccine of the present invention is useful for exerting a booster effect by multiple or repeated inoculations.
  • the vaccine composition of the present invention may also be a multivalent vaccine that contains multiple antigens or expresses multiple antigens.
  • the vaccination interval may be determined as appropriate. For example, intervals of 1 week or more, 10 days or more, 2 weeks or more, 20 days or more, 3 weeks or more, 4 weeks or more, or 5 weeks or more with intervals of 4 months or less, 3 months or less, 2 months or less, 9 weeks or less, 8 weeks or less, 7 weeks or less, 6 weeks or less can do. Specifically, it can be 1 to 6 weeks, 10 days to 5 weeks, 2 weeks to 5 weeks, 3 to 5 weeks, or 4 to 5 weeks, but is not limited thereto.
  • the vaccine of the present invention containing a negative-strand RNA viral vector can induce an immune response against the target antigen even with one inoculation, and induces a marked immune response against the target antigen with two inoculations.
  • the intervals should be, for example, 2-6 weeks, 3-6 weeks, 4-6 weeks, 3-5 weeks, or 4-5 weeks. can be done.
  • the intervals are, for example, 1 week to 6 weeks, 1 week to 5 weeks, 1 week to 4 weeks, 1 week to 3 weeks, 1 week to It can be 2 weeks.
  • a vaccine containing a DNA vector and a vaccine containing a negative-strand RNA viral vector are administered in combination, they can be administered in any desired order. may be inoculated, or a vaccine containing a DNA vector may be inoculated after inoculation with a vaccine containing a negative-strand RNA viral vector.
  • the antigenic protein fragment contained or expressed in the vaccine administered each time may be the same or different each time.
  • Combining vaccines containing or expressing different antigens can broaden the targeting of immune responses induced in vaccinated individuals.
  • booster vaccination is performed using the vaccine formulation of the present invention
  • using a vaccine formulation containing (or expressed) an antigen different from the antigen contained (or expressed) in the vaccine formulation used in primary vaccination good too.
  • a protein different from the antigen used in the primary inoculation may be used as the target antigen.
  • a protein (homologous protein, etc.) of a pathogen different from the pathogen to which the antigen used in the primary inoculation belongs can be used as an antigen.
  • a strain different from the pathogen from which the vaccine formulation used in the primary inoculation is derived can be used for the booster inoculation.
  • the dose varies depending on the disease, patient body weight, age, sex, symptoms, purpose of administration, form of administration composition, It can be determined as appropriate according to the administration method and the like.
  • the dosage may be appropriately adjusted according to the target animal, administration site, administration frequency, and the like. For example, depending on body weight, 1 ng/kg to 1000 mg/kg, 5 ng/kg to 800 mg/kg, 10 ng/kg to 500 mg/kg, 0.1 mg/kg to 400 mg/kg, 0.2 mg/kg to 300 mg/kg , 0.5 mg/kg to 200 mg/kg, or 1 mg/kg to 100 mg/kg.
  • RNA viral vector for example, 1x10 4 to 1x10 15 CIU/kg, 1x10 5 to 1x10 14 CIU/kg, 1x10 6 to 1x10 13 CIU/kg, 1x10 7 to 1x10 12 CIU/kg, 1x10 8 to 5x10 11 CIU/kg, 1x10 9 to 5x10 11 CIU/kg, or 1x10 10 to 1x10 11 CIU/kg, and 1x10 6 ⁇ 1x10 17 particles/kg, 1x10 7 ⁇ 1x10 16 particles/kg, 1x10 8 ⁇ 1x10 15 particles/kg, 1x10 9 ⁇ 1x10 14 particles/kg, 1x10 10 ⁇ 1x10 13 particles/kg, 1x10 11 ⁇ 5x10 12 particles/kg kg, or 5x10 11 to 5x10 12 particles/kg.
  • a person skilled in the art can appropriately determine an appropriate dose and administration method in consideration of the patient
  • the subject of administration of the antigen-expressing vector, composition, or vaccine of the present invention is preferably mammals (including humans and non-human mammals).
  • mammals including humans and non-human mammals.
  • non-human primates such as humans and monkeys, rodents such as mice, rats and guinea pigs, non-rodent animals such as rabbits, goats, sheep, pigs, cows, dogs and cats mammals
  • primates of interest eg, non-human primates such as monkeys, particularly macaques such as cynomolgus and rhesus monkeys, and humans.
  • Example 1a Construction of vaccine antigen S1-foldon-loaded Sendai virus vector
  • a Sendai virus vector carrying S1-foldon was constructed as follows ( Figure 1).
  • KMM-101 for PCR reaction (98°C-2 minutes ⁇ 98°C-10 seconds, 55°C-5 seconds, 68°C-10 seconds 40 cycles ⁇ 68 ° C.-30 seconds), and using the PCR product (1) of about 330 bases and the S1-foldon gene as a template, 5'-GTCTACTATCATAAGAACAACAAGAGCTGG-3' (S1-foldon_A441G_N (SEQ ID NO: 20) ) and 5'-ATATGCGGCCGCGTGGATGAACTTTCACCCTAAGTTTTTCTTACTACGGCTAACCCAGGAAGGTGGAGAGCAGC-3' (foldon_EIS_Not1_C (SEQ ID NO: 21)), KOD One TM PCR Master Mix-DNA polymerase (TOYOBO Co., Ltd.
  • PCR products (1) and (2) in which the S1-foldon sequence is divided into two are obtained.
  • a PCR product (3) spanning the entire length of the S1-foldon sequence was obtained and loaded into a Sendai virus vector.
  • the reason for dividing the S1-foldon sequence into two in the first and second PCRs is that there is one A rich sequence (5xA_N_2xA) in the S1-foldon sequence, but on the A rich sequence, This is to avoid errors caused by the RNA-dependent RNA polymerase of Sendai virus, which tend to occur during the production process of Sendai virus vectors.
  • PCR primers were set on the A rich sequence site, and each primer sequence was substituted from A/T to G/C under the restriction of synonymous codons.
  • NotI-digested and gel-extracted full-length S1-foldon fragment was digested with NotI and BAP-treated plasmid pSeV18+/ ⁇ F( ⁇ 5aa) DNA (F gene deleted and NotI site between leader sequence and N gene After ligation with Sendai virus vector (WO2003/025570, WO2010/008054, DNA encoding positive strand genome of Z strain) (Fig. 1A), confirming the base sequence of cloned S1-foldon, it is suitable for SeV.
  • a plasmid pSeV18+S1-foldon/ ⁇ F( ⁇ 5aa) carrying the modified full-length S1-foldon was obtained.
  • Sendai virus reconstruction was performed to obtain an S1-foldon-loaded Sendai virus vector SeV18+S1-foldon/ ⁇ F( ⁇ 5aa).
  • the inserted sequence (SEQ ID NO:22) is shown in FIG.
  • the inserted sequence consists of the NotI site (underlined), the Kozak sequence (double underlined), the sequence from the start codon to the stop codon of S1-foldon (secretory signal sequence S (uppercase dashed underlined); excluding the secretory signal (S) sequence S1 sequence (no uppercase underline); foldon sequence (uppercase single-dotted underline)), 34 bases (wavy underline) including EIS sequence (bold wavy underline), and NotI site (underlined).
  • the number of bases (NotI site + Kozak sequence + sequence from start codon to stop codon of S1-foldon + 34 bases including EIS sequence) is preferably a multiple of 6 (6n rule), so conform to the 6n rule.
  • the regulatory sequence cac was inserted immediately after the 34 bases containing the EIS sequence.
  • the coding sequence (CDS) of the insert sequence of S1-foldon (SEQ ID NO: 22) is 15 of SEQ ID NO: 22. -2144.
  • the encoded amino acid sequence is shown in SEQ ID NO: 23.
  • the 1-13th is the signal peptide (derived from the SARS-CoV-2 spike protein)
  • the 14th-679th is the S1 sequence
  • the 680- The 710th is the foldon array.
  • Example 1b Construction of Sendai virus vector carrying vaccine antigen S-RBD-foldon Secretion signal (S), receptor binding domain (RBD) of spike protein (S1) of SARS-CoV-2, and trimerization domain
  • S vaccine antigen S-RBD-foldon Secretion signal
  • RBD receptor binding domain
  • a Sendai virus vector carrying S-RBD-foldon as follows (Fig. 1). KOD One TM PCR Master Mix-DNA polymerase ( TOYOBO Co., Ltd. Code No.
  • KMM-101) for PCR reaction (98°C-2 minutes ⁇ 98°C-10 seconds, 55°C-5 seconds, 68°C-1 second 30 cycles ⁇ 68°C-30 seconds), and using the PCR product (2) of about 620 bases and the S1-foldon gene with a foldon tag at the C-terminus as a template, 5'-CCCCAAGAAGAGCACCCCCGGCTCCGGTTA-3' (RBD_foldon_N ( SEQ ID NO: 27)) and foldon_EIS_Not1_C (SEQ ID NO: 21), KOD One TM PCR Master Mix-DNA polymerase (TOYOBO Code No.
  • the NotI-digested and gel-extracted full-length S-RBD-foldon fragment was transformed into NotI-digested and BAP-treated plasmid pSeV18+/ ⁇ F( ⁇ 5aa) DNA (F gene deleted, NotI site between leader sequence and N gene).
  • DNA encoding the positive strand genome of Sendai virus vector (WO2003/025570, WO2010/008054, Z strain) (Fig. 1A) and confirming the nucleotide sequence of the cloned S-RBD-foldon. , resulting in the plasmid pSeV18+S-RBD-foldon/ ⁇ F( ⁇ 5aa) carrying the SeV-optimized full-length S-RBD-foldon.
  • Sendai virus reconstruction was performed to obtain an S-RBD-foldon-loaded Sendai virus vector SeV18+S-RBD-foldon/ ⁇ F( ⁇ 5aa).
  • the inserted sequence (SEQ ID NO:28) is shown in FIG.
  • the inserted sequence consists of the NotI site (underlined), the Kozak sequence (double underlined), the sequence from the start codon to the stop codon of S-RBD-foldon (secretory signal sequence S (uppercase dashed underline); RBD sequence (uppercase underlined) ); foldon sequence (one-dot dashed underline)), 34 bases (wavy underline) including EIS sequence (bold wavy underline), NotI site (underline)
  • Total number of bases inserted into Sendai virus vector is preferably a multiple of 6 (6n rule).
  • the regulatory sequence cac (bold) was inserted immediately after the 34 bases containing the sequence.
  • the coding sequence (CDS) of the inserted nucleotide sequence of S-RBD-foldon (SEQ ID NO:28) is 15-758 of SEQ ID NO:28.
  • the encoded amino acid sequence is shown in SEQ ID NO: 29.
  • the 1-13th is the signal peptide (derived from the SARS-CoV-2 spike protein)
  • the 14th-217th is the RBD
  • the 218th-248th is the RBD.
  • PCR product (1) of about 550 bases and RBD without foldon tag at C-terminus 5'-GCAACAACCTGGACAGCAAG-3' (RBD_F (SEQ ID NO: 32)) and 5'-GATAACAGCACCTCCTCCCGACT-3' (SeV_R199 (SEQ ID NO: 33)) were prepared using SeV18 + RBD/dF ( ⁇ 5aa) loaded with the gene as a template.
  • KOD One TM PCR Master Mix-DNA polymerase TOYOBO Co., Ltd.
  • PCR reaction (98°C-2 minutes ⁇ 98°C-10 seconds, 55°C-5 seconds, 68°C-10 seconds) 40 cycles ⁇ 68°C-30 seconds) to obtain a PCR product (2) of about 400 bases.
  • a PCR reaction ( 98°C-2 minutes ⁇ 40 cycles of 98°C-10 seconds, 55°C-5 seconds, 68°C-10 seconds ⁇ 68°C-30 seconds) to obtain a PCR product (3) of approximately 900 bases.
  • NucleoSpin TM Gel and PCR Clean-up (MACGEREY-NAGEL Catalog No. 740609.250/U0609C).
  • NotI-digested and gel-extracted full-length S-RBD fragment was digested with NotI and BAP-treated plasmid pSeV18+/ ⁇ F( ⁇ 5aa) DNA (F gene deleted and NotI site between leader sequence and N gene After ligation with Sendai virus vector (WO2003/025570, WO2010/008054, DNA encoding positive strand genome of Z strain) (Fig. 1A), confirming the base sequence of cloned S-RBD, it is suitable for SeV. A plasmid pSeV18+S-RBD/ ⁇ F( ⁇ 5aa) carrying the modified full-length S-RBD was obtained.
  • Sendai virus reconstruction was performed to obtain an S-RBD-loaded Sendai virus vector SeV18+S-RBD/ ⁇ F( ⁇ 5aa).
  • the inserted sequence (SEQ ID NO:34) is shown in FIG.
  • the inserted sequence consists of the NotI site (underlined), the Kozak sequence (double underlined), the sequence from the start codon to the stop codon of S-RBD ((secretory signal sequence S (uppercase dashed underline); RBD sequence (uppercase no underline)).
  • 34 bases (wavy underline) including EIS sequence (bold wavy underline), NotI site (underline) Total number of bases to be inserted into Sendai virus vector (NotI site + Kozak sequence + stop from start codon of S-RBD)
  • the sequence up to the codon + 34 bases including the EIS sequence is preferably a multiple of 6 (6n rule), so no adjustment sequence insertion is required to comply with the 6n rule.
  • the coding sequence (CDS) of the inserted base sequence (SEQ ID NO: 34) is 15 to 665 of SEQ ID NO: 34.
  • the encoded amino acid sequence is shown in SEQ ID NO: 35. Of these, 1 to 13 are the signal peptide ( SARS-CoV-2 spike protein), 14th-217th is RBD.
  • Example 2a Manipulation of expression of vaccine antigen protein and measurement of intracellular and extracellular secretory levels
  • the cells were seeded at a density of 2.3 ⁇ 10 5 cells/well and adherently cultured for 3 days in a 37° C., 5% CO 2 incubator. 2)
  • the number of cells in the pre-inoculated wells was measured, and based on this, the cells were infected with a vaccine antigen gene-loaded Sendai virus vector at a multiplicity of infection of 3.
  • PBS was replaced, the PBS was completely removed, the vaccine solution was added, the mixture was allowed to stand in a 37°C, 5% CO 2 incubator, and the mixture was shaken every 15 minutes for adsorption.
  • 4-2b) This cell suspension was quickly frozen with Dryice/EtOH, thawed at room temperature and mixed. This operation was repeated 3 times.
  • 4-2c) This freeze-thaw solution is centrifuged at 15,000 rpm for 5 minutes at 4°C, the supernatant is collected as a cell extract, and the cell extract and cell pellet are rapidly frozen with Dryice/EtOH and stored at -80°C. stored in 5) Using the culture supernatant of 4-1) and the cell extract of 4-2c) as extracellular secretory free protein and intracellular protein, the amount of vaccine antigen protein was measured by ELISA.
  • SARS-CoV-2 Spike S1 RBD ELISA Kit (Elabscience, Cat# E-EL-E605) was used, and S1 For expression from the -foldon-loaded Sendai virus vector, the 2019-nCoV S1 Protein ELISA Kit (SignalChem, Cat# C19SD-876) was used.
  • the present invention is considered useful in that it can be designed as a vector technology that can be programmed to induce both humoral and cellular immunity.
  • the S-RBD-foldon vaccine antigen is humoral immunity (Tables 3-8, 3-9, 3-12, 3-14) and cell-mediated immunity (Tables 3-16, 3-19 , 3-20) are strongly induced.
  • mice 100 ⁇ L of blood was collected from the orbit once each on Day 1, 8, 15, 22, 29, 36, and 43 of the day of inoculation (before inoculation) according to the schedule in Table 3-3 above. Then, on day 57, exsanguination and splenectomy were performed. Collected mouse blood was centrifuged at 6,146 x g at room temperature for 5 minutes, and the resulting serum was stored in a refrigerator.
  • Example 3b Measurement of maximum diluted IgG antibody titer using serum in animal immunogenicity test 1) For measurement of mouse serum, the antigen protein SARS-CoV-2 Spike S1-His Recombinant Protein (Sino Biological Inc. Cat# 40591-V08B1) was diluted with 0.2 M Carbonate-Bicarbonate buffer (pH 9.6) and adjusted to 100 ng/100 ⁇ L. 2) The diluted antigen protein was added to a 96-well plate (NUNC, IMMUNO PLATE, MAXISORP, Cat# 439454) at 100 ⁇ L/well, sealed to prevent evaporation, and allowed to stand at 4°C for 16 hours.
  • NUNC IMMUNO PLATE
  • MAXISORP Cat# 439454
  • SARS-CoV-2 WA1/2020 virus into VeroE6 cells (1000 TCID 50 /mL) using sera at 2, 4 and 6 weeks post-nasal inoculation from a single intranasal inoculation study with each vaccine )
  • S-RBD-foldon (1x10 7 CIU/shot)
  • S1-foldon (2x10 7 CIU/shot; 5x10 7 CIU/shot).
  • S-RBD-foldon showed a higher neutralizing antibody titer even at a lower inoculation dose.
  • SARS-CoV-2 WA1/2020 virus into VeroE6 cells using sera at 2, 4, and 6 weeks post-nasal inoculation from intranasal inoculation studies with 4-week booster with each vaccine (1000 TCID 50 /mL)
  • the maximum dilution (neutralizing antibody titer) showing neutralizing antibody activity against infection was calculated as S-RBD-foldon (1x10 7 CIU/shot) vs. S1-foldon (2x10 7 CIU/shot; 5x10 7 CIU/shot), S-RBD-foldon showed a higher neutralizing antibody titer even at a lower inoculation dose.
  • S-RBD-foldon with a larger secreted release amount is considered to induce stronger anti-SARS-CoV-2 neutralizing antibody activity. .
  • Example 3e-1 Isolation and hemolysis of mouse splenocytes in animal immunogenicity test and measurement of CTL cells by ELISpot assay 1) Spleens excised from mice were immersed in RPMI1640 medium and transported on ice. . 2) Cell strainer 40 ⁇ m Nylon (FALCON, Cat# 352340) was placed on a ⁇ 60-mm dish containing 5 mL of 1xPBS(-), and the spleen of 1) was placed therein. 3) The splenocytes were separated by pressing the flat part of a 1-mL syringe plunger against the spleen.
  • the medium of the plate was removed, and anti-CD28 mouseAb-added medium was added at 100 ⁇ L/well, and anti-CD28 mouseAb+PepTivator-added medium was added at 100 ⁇ L/well. 7-5)
  • the splenocyte suspension obtained in 6) was seeded in 2 wells at 2.5 ⁇ 10 5 cells/100 ⁇ L/well. 7-6)
  • the plate was placed in a humidified incubator at 37°C and cultured for 12-48 hours. Plates were emptied and washed 5 times with 200 ⁇ L/well of PBS to remove cells.
  • Example 3e-2 Isolation and hemolysis of rat splenocytes in animal immunogenicity test and measurement of CTL cells by ELISpot assay 1)
  • the spleens excised from rats were immersed in RPMI1640 medium and transported on ice. .
  • Cell strainer 40 ⁇ m Nylon FALCON, Cat# 352340 was placed on a ⁇ 60-mm dish containing 5 mL of 1xPBS(-), and the spleen of 1) was placed therein.
  • the splenocytes were separated by pressing the flat part of a 1-mL syringe plunger against the spleen.
  • Rat IFN- ⁇ ELISpot Plus Kit (MABTECH, Cat# 3220-3APW-2) was used on rat splenocytes.
  • 7-1) The plate was washed three times with 1xPBS(-) and 200 ⁇ L/well, 200 ⁇ L/well of 10% FBS-RPMI1640 was added, and the plate was incubated at room temperature for 30 minutes for blocking.
  • 7-2) PepTivator SARS-CoV-2 Prot S (Milteny Biotech, #130-126-700, Lot.5200904575) was added at 0.5 ⁇ L/well (double concentration) to half.
  • the medium was removed from the plate, and 100 ⁇ L/well of the medium and 100 ⁇ L/well of PepTivator-added medium were added. 7-4) The splenocyte suspension obtained in 6) was seeded in 2 wells at 2.5 ⁇ 10 5 cells/100 ⁇ L/well. 7-5) The plate was placed in a humidified incubator at 37°C and cultured for 12 to 48 hours. Plates were emptied and washed 5 times with 200 ⁇ L/well of PBS to remove cells.
  • Example 2b Considering this result together with the intracellular residual amount in Example 2b, it is considered that the vaccine antigen-specific CTL are induced by the residual vaccine antigen expressed in the infected cells in the inoculated area.
  • spleen cells derived from an intranasal inoculation study with a 4-week booster with each vaccine were used after intranasal inoculation.
  • the number of S1-peptide-stimulated IFN- ⁇ -released T cells at week 8 (mouse) was calculated as peptide stimulation effect, S-RBD-foldon (1 ⁇ 10 7 CIU/shot) (Table 3-20) vs. S1-foldon (1 ⁇ 10).
  • each vaccine showed an IFN- ⁇ release CTL stimulation rate significantly exceeding 1 (Fig. 7-2).
  • the vaccine antigen-specific CTL are induced by the residual vaccine antigen expressed in the infected cells in the inoculated area.
  • the number of S1-peptide-stimulated IFN- ⁇ -released T cells at week 8 was calculated as peptide stimulation effect, S-RBD-foldon (1 ⁇ 10 7 CIU/shot) (Table 3-20) vs. S-RBD (1 ⁇ 10). 7 CIU/shot) (Table 3-21), each vaccine showed an IFN- ⁇ release CTL stimulation rate significantly exceeding 1 (Fig. 7-2). Considering this result together with the intracellular residual amount in Example 2b, it is considered that the vaccine antigen-specific CTL are induced by the residual vaccine antigen expressed in the infected cells in the inoculated area.
  • the booster effect of vaccine antigens by booster vaccination would not be exerted due to the action of , but the results in Tables 3-13 and 3-14, etc., confirm that booster vaccination has a strong booster effect on humoral immunity. , and Tables 3-17 to 3-20, etc., it was confirmed that the booster inoculation had a strong booster effect on cell-mediated immunity. Based on these results, the booster effect is that the vaccine antigen is secreted and released from the cells and spreads before the vaccine-introduced cells after the booster vaccination are eliminated by the action of antibodies and CTLs against Sendai virus induced by the first vaccination. It is considered to have been achieved because the
  • Example 4a Measurement of productivity of vaccine antigen-loaded Sendai virus vector 1
  • MEM medium containing 10% FBS was used to prepare LLCMK2/LLCMK2 cells, which are LLCMK2 cells expressing Sendai virus F protein.
  • 7 ⁇ 10 6 cells/30 mL of F cell (Li, H.-O. et al., J. Virology 74. 6564-6569 (2000), WO00/70070) culture medium was added to each of two T225 flasks. After seeding, the cells were allowed to stand in a 37°C, 5% CO 2 incubator and cultured for 3 days.
  • CVS diluted solution was prepared by adding 2 mL of Cloned virus seed (CVS) of Sendai virus vector loaded with vaccine antigen to 6 mL of MEM medium. 3) Infection was initiated by removing the LLC-MK2/F cell culture medium from the two plates of 1) and adding 4 mL of the vector dilution from 2) to each of the two plates. 4) Cultured for 1 hour at 37°C in a 5% CO 2 incubator. At that time, T225 was soaked every 15 minutes to prevent drying.
  • MEM medium containing 5.33 mrPU/mL TrypLE Select was added at 10 mL/T75 and cultured at 32°C in a 5% CO 2 incubator for 24 hours.
  • Example 2b in the S1-foldon and S-RBD-foldon expressed from the Sendai virus vector, the molecular weight is S1-foldon > S-RBD-foldon, whereas the secreted release amount is , S1-foldon ⁇ S-RBD-foldon, but when the vector productivity, which indicates the production efficiency of each vector, was measured, S-RBD-foldon decreased to 1/6 that of S1-foldon. (S1-foldon > S-RBD-foldon). Therefore, it is considered that the increase in the amount of secretion and release is the cause of the low productivity of the vector.
  • vector productivity would be S-RBD-foldon ⁇ S-RBD, and the productivity of vectors expressing S-RBD-foldon or S-RBD As expected, removing the foldon from the S-RBD-foldon resulted in a 6.5-fold increase in vector productivity (S-RBD-foldon ⁇ S-RBD).
  • the following techniques are provided based on these verification results. That is, by adding or removing the foldon sequence of the vaccine antigen vector, the expression level of the vaccine antigen is increased or decreased in production cells in the production culture process, and the amount of secretion and release is increased or decreased in conjunction with the increase or decrease of the vector.
  • Vector productivity can be adjusted to the extent that productivity is suppressed or enhanced and high immunogenicity is maintained.
  • the present invention is considered useful as a vector technology that can be programmed to induce both humoral and cellular immunity.
  • the technology of the invention will enable selected B cells to become long-lived plasma cells and memory B cells, thereby achieving long-lived immunity.
  • Antibodies and CTLs against viral vector-derived proteins are induced in the initial inoculation of a viral vector vaccine. There was concern that the booster effect of vaccine antigens by inoculation would not be exhibited. However, a strong booster effect of humoral immunity and cell-mediated immunity was confirmed by booster inoculation of vaccine antigen-loaded Sendai virus vector with added secretion signal and foldon (Tables 3-13, 3-14, 3-17-3). -20 etc.). These results suggest that secretion and release of vaccine antigens from cells after booster vaccination can ward off the effects of antibodies and CTL against Sendai virus induced by primary vaccination. In addition, it is thought that the effect of cross-immunity due to similar viruses can also be avoided. This technique can be used as a technique for enhancing the booster effect of viral vector vaccines and as a technique for avoiding cross-immunity.
  • the foldon of the vaccine antigen vector By adding or removing sequences, the amount of vaccine antigen expressed is increased or decreased in production cells in the manufacturing culture process, which in turn increases or decreases the amount of secreted release, and suppresses or promotes vector productivity. , vector productivity can be adjusted to the extent that high immunogenicity is maintained.
  • vaccine antigens derived from the extramembrane domain of the target antigen protein can be strongly expressed and remain in the cell, while abundant extramembrane secretion and release can enhance immunogenicity.
  • INDUSTRIAL APPLICABILITY The present invention is particularly expected to be used in the field of infection immunology and its clinical application.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention provides: a vector that expresses a fusion protein containing a secretion signal, an antigen-protein fragment, and a trimer forming domain; and usages thereof. Said vector has an excellent ability to secrete and release an antigen-protein fragment to the cell exterior. The present invention is capable of: maximizing the expression by minimizing a vaccine antigen and adding a trimer forming domain thereto; and maximizing secreted and released amounts of expression products by additionally adding a secretion signal. The present technology is assumed to be useful as a vector technology that can be programmed so as to induce both humoral immunity and cell-mediated immunity.

Description

抗原タンパク質発現ベクターとその利用Antigen protein expression vector and its use
 本発明は抗原タンパク質の発現ベクターに関する。具体的には、本発明は、それに限定されるものではないが、例えばワクチン効果を誘導するタンパク質性因子の強発現・細胞内残存・膜外分泌遊離を可能とするベクターおよびその利用に関する。また本発明は、それに限定されるものではないが、例えば、感染症ワクチンとして強い液性及び細胞性免疫を誘導させることを目的に、ワクチン抗原タンパク質を、接種後、細胞内で発現し、一部を細胞内に残存させ、一部を細胞外に分泌遊離させる、ワクチンベクター技術等に関する。 The present invention relates to antigen protein expression vectors. Specifically, the present invention relates to, but is not limited to, vectors capable of strong expression, intracellular persistence, extramembrane secretion and release of protein factors that induce vaccine effects, and their use. In addition, the present invention is not limited thereto, but for example, for the purpose of inducing strong humoral and cell-mediated immunity as an infectious disease vaccine, the vaccine antigen protein is expressed intracellularly after inoculation, The present invention relates to a vaccine vector technology, etc., in which a portion of the vaccine is left inside the cell and a portion is secreted and released outside the cell.
 感染症防御のために、液性及び細胞性免疫を誘導するワクチンの製造を目的に、標的となる病原体ウイルスを弱毒株にし、あるいは不活化して接種することによって、病原性を誘発することなく、免疫原性を誘導する技術として、弱毒株ワクチン(生ワクチン)と不活化ワクチンが知られている(Crotty S. et al., The Journal of Immunology 171: 4969-4973,2003 doi: 10.4049/jimmunol.171.10.4969; Bandyopadhyay A. S. et al., Clinical Infectious Diseases 67(S1): S35-S41, 2018 doi.org/10.1093/cid/ciy633)。 For the purpose of manufacturing vaccines that induce humoral and cell-mediated immunity to protect against infectious diseases, target pathogenic viruses are attenuated or inactivated and inoculated without inducing pathogenicity. , attenuated vaccines (live vaccines) and inactivated vaccines are known as techniques for inducing immunogenicity (Crott S. et al., The Journal of Immunology 171: 4969-4973, 2003 doi: 10.4049/jimmunol .171.10.4969; Bandyopadhyay A. S. et al., Clinical Infectious Diseases 67(S1): S35-S41, 2018 doi.org/10.1093/cid/ciy633).
 弱毒株ワクチン、不活化ワクチンを生産し、接種すると、病原体特異的抗体が誘導されるが、病原体全体がワクチンとして用いられるために、感染機序に関与しない病原体構成成分に対する抗体も誘導される。その結果として、誘導された抗体における、感染を阻害できる中和抗体の比率が低い。 When an attenuated strain vaccine or an inactivated vaccine is produced and inoculated, pathogen-specific antibodies are induced, but since the whole pathogen is used as a vaccine, antibodies against pathogen components that are not involved in the infection mechanism are also induced. As a result, the proportion of neutralizing antibodies in the induced antibodies that are able to inhibit infection is low.
 弱毒株ワクチン、不活化ワクチンによって誘導された、中和活性のない抗体(非中和抗体)の中には、抗体依存性感染促進という反応を起こす抗体(悪玉抗体)が生じることがある。この反応は病原ウイルスに結合した非中和抗体のFcドメインが単球やマクロファージのFc受容体に結合して、病原ウイルスがその細胞の中で増殖することにより誘発すると考えられている(デングウイルスでの例:Katzelnick L. C. et al., Science 358(6365): 929-932,2017; COVID-19への示唆:Iwasaki, A., Yang, Y., Nat. Rev. Immunol. 20: 339-341, 2020 doi.org/10.1038/s41577-020-0321-6)。このように、ワクチンの被接種者よりも接種者の方が感染後の発症病態が増悪することは回避されなければならないので、非中和抗体をもたらす病原体由来の成分がワクチン抗原に含まれるのは好ましくない。しかし、製造上の理由などで、含まれることがあるのが現状である。 Among the antibodies without neutralizing activity (non-neutralizing antibodies) induced by attenuated strain vaccines and inactivated vaccines, antibodies (bad antibodies) that cause antibody-dependent promotion of infection may occur. This reaction is thought to be induced by the Fc domain of non-neutralizing antibodies bound to pathogenic viruses binding to the Fc receptors of monocytes and macrophages, and the pathogenic viruses proliferating in those cells (dengue virus For example: Katzelnick L. C. et al., Science 358(6365): 929-932,2017; Implications for COVID-19: Iwasaki, A., Yang, Y., Nat. Rev. Immunol. 20: 339 -341, 2020 doi.org/10.1038/s41577-020-0321-6). In this way, it is necessary to avoid exacerbation of post-infection pathological conditions in vaccine recipients compared to vaccine recipients. is not preferred. However, the current situation is that it is sometimes included for manufacturing reasons.
 感染症防御のために、液性及び細胞性免疫を誘導するワクチンの実用化技術として、標的となる病原体ウイルスのスパイクタンパク質に由来する遺伝子を持つアデノウイルスベクターや、合成mRNAを接種することによって、液性及び細胞性免疫を誘導するスパイク遺伝子搭載ワクチンが知られている。SARS-CoV-2(重症急性呼吸器症候群コロナウイルス-2)ウイルスに対する、日本国で承認されている3種のワクチンはこれらの技術を用いている(Watanabe, Y. et al., ACS Cent. Sci. 7: 594-602, 2021 doi.org/10.1021/acscentsci.1c00080; Corbett K. S. et al., Nature 586: 567-571, 2020 doi.org/10.1038/s41586-020-2622-0; Vogel A. B. et al., Nature 592: 283-289, 2021 doi.org/10.1038/s41586-021-03275-y)。 As a practical technology for vaccines that induce humoral and cellular immunity to protect against infectious diseases, by inoculating adenovirus vectors with genes derived from the spike protein of the target pathogen virus or synthetic mRNA, Spike gene-loaded vaccines that induce humoral and cell-mediated immunity are known. Three vaccines approved in Japan against the SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) virus use these techniques (Watanabe, Y. et al., ACS Cent. Sci. 7: 594-602, 2021 doi.org/10.1021/acscentsci.1c00080; Corbett K. S. et al., Nature 586: 567-571, 2020 doi.org/10.1038/s41586-020-2622-0; Vogel A. B. et al., Nature 592: 283-289, 2021 doi.org/10.1038/s41586-021-03275-y).
 これらのワクチンの接種により液性免疫と細胞性免疫が誘導され、高い感染予防効果をもたらすことが実証されている。しかし、これらはSARS-CoV-2ウイルスのスパイクタンパク質全体(1273アミノ酸残基)を抗原としており、感染初期に結合する細胞表面のACE2受容体と相互作用する受容体結合ドメイン(RBD: 227アミノ酸残基(319-545))以外の領域を含む。もしRBD以外の領域に結合する抗体が非中和抗体として誘導されると、それらが悪玉抗体として抗体依存性感染促進という反応を起こす危険性を秘めていることを警戒しなければならない。なぜならば近縁ウイルスであるSARSコロナウイルスのスパイクに対する抗体による抗体依存性感染促進が報告されているからである(SARS-CoVスパイクの例:Wang, S. F. et al., Biochem. Biophys. Res. Commun. 451(2): 208-214, 2014 doi.org/10.1016/j.bbrc.2014.07.090; Liu L. et al., JCI Insight 4(4): e123158, 2019 doi.org/10.1172/jci.insight.123158)。実際、SARS-CoV-2においてRBD領域のアミノ末端側のN末端ドメイン(NTD)に結合する抗体が見つかっており、この抗体がSARS-CoV-2のスパイクタンパク質に結合するとRBD領域が解放され、ACE2受容体への結合が促進されることが報告されている(Liu, Y. et al., Cell 184(13): 3452-3466, 2021 doi.org/10.1016/j.cell.2021.05.032)。また、COVID-19患者においてSARS-CoV-2に対する抗体の上昇と重症化の時期が重なる傾向が報告されており、この重症化の原因として抗体依存性感染促進が疑われている(Zhao, Y. et al., Clin. Infect. Dis. 71(16): 2027-2034, 2020 doi.org/10.1093/cid/ciaa344; Seow J. et al., Nat Microbiol. 5(12): 1598-1607, 2020 doi:10.1038/s41564-020-00813-8)。従って、この危険性の排除のため、非中和抗体をもたらす領域がワクチン抗原に含まれるのは好ましくない。 It has been demonstrated that inoculation of these vaccines induces humoral immunity and cell-mediated immunity, resulting in a high infection prevention effect. However, they use the entire spike protein (1273 amino acid residues) of the SARS-CoV-2 virus as an antigen, and a receptor-binding domain (RBD: 227 amino acid residues) that interacts with the ACE2 receptor on the cell surface that binds early in infection. Including regions other than the group (319-545)). If antibodies that bind to regions other than the RBD are induced as non-neutralizing antibodies, we must be aware that they may act as bad antibodies and cause a reaction that promotes antibody-dependent infection. This is because antibody-dependent promotion of infection by antibodies against spikes of the closely related SARS coronavirus has been reported (Examples of SARS-CoV spikes: Wang, S. F. et al., Biochem. Biophys. Res. Commun. 451(2): 208-214, 2014 doi.org/10.1016/j.bbrc.2014.07.090; Liu L. et al., JCI Insight 4(4): e123158, 2019 doi.org/10.1172 /jci.insight.123158). In fact, an antibody has been found that binds to the amino-terminal N-terminal domain (NTD) of the RBD region in SARS-CoV-2, and when this antibody binds to the spike protein of SARS-CoV-2, the RBD region is released, It has been reported that binding to the ACE2 receptor is enhanced (Liu, Y. et al., Cell 184(13): 3452-3466, 2021 doi.org/10.1016/j.cell.2021.05.032) . In addition, it has been reported that the rise of antibodies against SARS-CoV-2 overlaps with the time of severe disease in COVID-19 patients, and antibody-dependent promotion of infection is suspected as the cause of this severe disease (Zhao, Y 71(16): 2027-2034, 2020 doi.org/10.1093/cid/ciaa344; Seow J. et al., Nat Microbiol. 5(12): 1598-1607, 2020 doi:10.1038/s41564-020-00813-8). Therefore, to eliminate this risk, it is not preferable to include regions that give rise to non-neutralizing antibodies in vaccine antigens.
 また、これらのワクチンは、接種部位の細胞に侵入してスパイクタンパク質抗原を発現する。そのスパイクタンパク質抗原のアミノ末端に分泌シグナルが位置しており、次に、RBDを含むS1領域が続き、開裂モチーフを挟んで、その後にS2領域が続き、カルボキシ末端に膜貫通ドメインが位置する。アデノウイルスベクターワクチンにおいても、合成mRNAワクチンにおいても、発現されたスパイクタンパク質抗原はこれらが導入された細胞の細胞膜上にアンカーされた形で外側に突出している(Watanabe, Y. et al., ACS Cent. Sci. 7: 594-602, 2021 doi.org/10.1021 /acscentsci.1c00080; Corbett K. S. et al., Nature 586: 567-571, 2020 doi.org/10.1038/s41586-020-2622-0; Vogel A. B. et al., Nature 592: 283-289, 2021 doi.org/10.1038/s41586-021-03275-y)。このようなアンカーされたスパイクタンパク質を、専門的抗原提示細胞(B細胞、マクロファージ、樹状細胞)が見つけて貪食して、B細胞やT細胞などの免疫細胞に抗原提示すると考えられる。しかしながら、一つの細胞の膜が多くのアンカースパイクを提示するために、スパイクタンパク質分子が十分には拡散できず、抗原提示細胞による貪食が不十分になると考えられる(図5-1左参照)。 In addition, these vaccines enter cells at the injection site and express spike protein antigens. A secretory signal is located at the amino terminus of the spike protein antigen, followed by the S1 region containing the RBD, flanked by a cleavage motif followed by the S2 region, and at the carboxy terminus by the transmembrane domain. In both adenoviral vector vaccines and synthetic mRNA vaccines, the spike protein antigens expressed are anchored on the cell membrane of the cells into which they have been introduced and protrude outward (Watanabe, Y. et al., ACS Cent. Sci. 7: 594-602, 2021 doi.org/10.1021 /acscentsci.1c00080; Corbett K. S. et al., Nature 586: 567-571, 2020 doi.org/10.1038/s41586-020-2622- 0; Vogel A. B. et al., Nature 592: 283-289, 2021 doi.org/10.1038/s41586-021-03275-y). Such anchored spike proteins are thought to be found and phagocytosed by professional antigen-presenting cells (B cells, macrophages, and dendritic cells) to present antigens to immune cells such as B cells and T cells. However, since the membrane of a single cell presents many anchor spikes, the spike protein molecules cannot diffuse sufficiently, and phagocytosis by antigen-presenting cells is thought to be insufficient (see Fig. 5-1, left).
 最近、アミノ末端に分泌シグナルが付加されたRBDを発現するmRNAワクチンが報告されている(Tai, W. et al., Cell Research 30: 932-935, 2020 doi.org/10.1038/s41422-020-0387-5)。またこの報告に類似して、分泌シグナル付きRBDのカルボキシ末端に、病原ウイルススパイク構造に似せるために用いられてきた、三量体化ドメインfoldonを付加したmRNAワクチンも報告されている(Vogel A. B. et al., Nature 592: 283-289, 2021 doi.org/10.1038/s41586-021-03275-y)。それぞれのmRNAは脂質二重層カプセルにより細胞に導入後、ワクチン抗原が発現して、細胞外に分泌遊離する系であるが、対象細胞内でmRNA分子は増幅しないため、発現が弱いことから、分泌遊離するワクチン抗原量が少なく、十分には拡散できず、抗原提示細胞による貪食が不十分になり、その結果免疫の長寿命化に至らないと考えられる。免疫長寿命化に至るに十分な抗原提示細胞による貪食性をもたらすワクチン抗原の細胞外拡散には、ワクチン抗原の強発現とそれに続く細胞外分泌遊離化の連動が必要であると考えられるが(図5-1右参照)、それが適う技術は存在しない。 Recently, an mRNA vaccine expressing RBD with an amino-terminal secretion signal has been reported (Tai, W. et al., Cell Research 30: 932-935, 2020 doi.org/10.1038/s41422-020- 0387-5). Similar to this report, an mRNA vaccine was also reported in which a trimerization domain, foldon, was added to the carboxy terminus of the RBD with a secretion signal, which has been used to mimic the spike structure of pathogenic viruses (Vogel A. B. et al., Nature 592: 283-289, 2021doi.org/10.1038/s41586-021-03275-y). Each mRNA is introduced into the cell by the lipid bilayer capsule, then the vaccine antigen is expressed, and secreted and released outside the cell. It is thought that the amount of free vaccine antigen is small, it cannot spread sufficiently, phagocytosis by antigen-presenting cells becomes insufficient, and as a result, the lifespan of immunity does not extend. The extracellular diffusion of vaccine antigens, which leads to phagocytosis by antigen-presenting cells sufficient to extend immune longevity, is thought to require the coupling of strong expression of vaccine antigens and subsequent liberation of extracellular secretion (Fig. 5-1 (see right), but there is no technology that can meet that requirement.
 二つ上の段落で述べた、スパイクタンパク質全体をワクチン抗原とするこれらのワクチンについて、接種後半年程で抗体量が減少することが分かってきた。この原因として、2つの問題が考えられる:1)上の二つの段落で述べたワクチン抗原タンパク質の非拡散性、2)三つ上の段落で述べた非中和抗体を産生するB細胞の誘導である。
 二次リンパ節では、CD4+ヘルパーT(Th)細胞への抗原提示が起こり、Th細胞は、胚中心移行後、同一抗原由来のB細胞を増殖刺激する。増殖刺激を受けたB細胞は、抗体遺伝子可変領域に体細胞突然変異が誘導され、同一抗原分子に由来する濾胞性樹状細胞との相互作用により、高親和性抗体遺伝子を保有するB細胞が選抜されて、高親和性抗体を大量産生する長寿命形質細胞やメモリーB細胞と成り、免疫の長寿化が成立する。
 それ故に、1)ワクチン抗原の非拡散性は、胚中心で起こる、互いに同一抗原に由来する、抗体産生B細胞と濾胞性樹状細胞の相互作用の繰り返しを低下させると考えられるので、高親和性B細胞の選抜が不十分になると考えられる。また、2)非中和抗体産生B細胞の増殖が、胚中心での中和抗体産生B細胞の増殖を拮抗し妨げることによって、中和能(感染阻止能力)が高い抗体を産生するB細胞の選抜が不十分になると考えられる。その結果、抗体を大量産生する長寿命形質細胞やメモリーB細胞の形成が成立していないのではないかと考えられる。
As mentioned in the two paragraphs above, it has been found that the amount of antibody decreases in about half a year after vaccination with these vaccines that use the entire spike protein as a vaccine antigen. This could be attributed to two problems: 1) the non-diffusibility of the vaccine antigen proteins mentioned in the two paragraphs above, and 2) the induction of B cells that produce non-neutralizing antibodies as mentioned in the three paragraphs above. is.
In secondary lymph nodes, antigen presentation occurs to CD4+ helper T (Th) cells, which, after germinal center migration, stimulate proliferation of B cells derived from the same antigen. Somatic mutations are induced in antibody gene variable regions in B cells that have undergone proliferation stimulation, and through interactions with follicular dendritic cells derived from the same antigen molecule, B cells that possess high-affinity antibody genes are generated. They are selected to become long-lived plasma cells and memory B cells that produce a large amount of high-affinity antibodies, and the longevity of immunity is established.
Therefore, 1) the non-diffusibility of the vaccine antigen is thought to reduce repeated interactions between antibody-producing B cells and follicular dendritic cells, both derived from the same antigen, occurring in the germinal center, and thus high affinity It is thought that selection of sexual B cells becomes insufficient. In addition, 2) the proliferation of non-neutralizing antibody-producing B cells antagonizes and hinders the proliferation of neutralizing antibody-producing B cells in the germinal center, resulting in B cells that produce antibodies with high neutralizing ability (anti-infection ability). It is thought that the selection of As a result, it is thought that the formation of long-lived plasma cells and memory B cells that produce large amounts of antibodies has not been established.
 アデノウイルスベクターやセンダイウイルスベクターなどのウイルスベクター型のワクチンでは、その初回接種において、ウイルスベクター自体のタンパク質に対して特異的な抗体やCTLが誘導されるために、追加接種時にウイルスベクターの細胞感染が妨げられることによって、または、感染後にCTLが作用して感染細胞が除去されることによって、追加接種によるワクチン抗原のブースター効果が発揮されないという懸念がある。また、過去に類似ウイルスにより誘導されていた免疫が、ウイルスベクター自体のたんぱく質に対して作用することによって(交差免疫)、ワクチン抗原の免疫原性が抑制されるという懸念もある。 Viral vector-type vaccines such as adenoviral vectors and Sendai virus vectors induce cell-infected virus vectors during booster vaccinations because antibodies and CTLs specific to the proteins of the viral vectors themselves are induced in the initial inoculation. There is a concern that the booster effect of vaccine antigens by booster vaccination will not be exerted because CTLs act to eliminate infected cells after infection. There is also concern that the immunity induced by similar viruses in the past may act on the proteins of the virus vector itself (cross-immunity), thereby suppressing the immunogenicity of vaccine antigens.
 社会的課題(1)は、ワクチン製剤本数の限界からワクチンが世界全体に行き渡らない事である。2021年9月段階で先進国では、二回接種者が50%を超えており、早くも三回目接種が検討されている。WHOは、発展途上国では一回接種者が2021年9月で10%程度に留まっておりそれを進めるために、先進国での三回目接種を年末まで遅らせることを要望した。もしワクチン接種により誘導される免疫寿命を延ばすことができれば、接種回数を減らすことができ、限られたワクチン製剤を世界全体に拡げることができる。 The social issue (1) is that the vaccine cannot be distributed worldwide due to the limited number of vaccine formulations. As of September 2021, more than 50% of people in developed countries have been vaccinated twice, and a third dose is already being considered. WHO has requested that the third vaccination in developed countries be delayed until the end of the year in order to advance the number of people who have been vaccinated once in developing countries in September 2021 at about 10%. If the lifespan of immunity induced by vaccination can be extended, the number of vaccinations can be reduced, and limited vaccine preparations can be spread throughout the world.
 社会的課題(2)は、ワクチンに期待されていた国ごとの集団免疫化が未だなされていない事である。先進各国は、現在、感染の拡大を防ぐために、ワクチン接種による集団免疫化(感染非拡大化)を図っている。集団が感染症から保護される免疫保有者の最低限の割合を予測する式として、集団免疫閾値%=(1-1/R0)x100 (R0:基本再生産数)を用いると、1名の感染者が3名にうつす場合R0は3で、この場合には人口の67%が免疫を得ることができれば、感染は拡大しないと想定される。抗がん剤治療患者など免疫低下患者はワクチンによる免疫誘導が期待されないため、行動制限によって感染を回避しなければいけないが、集団免疫化はそのような人々を守ると考えられる。
 集団免疫化達成のためには、次の条件が必要であると考えられる。ワクチン接種によって獲得された免疫の寿命が長く、その間に感染が終息する事である。しかしながら、接種率が過半数に達している先進国であっても、感染拡大は収まっていない。
 その理由の一つは、上述したように、獲得免疫の寿命が短寿命である可能性が考えられる。なぜならば、二次リンパ節では、CD4+ヘルパーT(Th)細胞へのワクチン抗原の提示が起こり、Th細胞は、胚中心移行後、同一抗原由来のB細胞に増殖刺激する。増殖刺激を受けたB細胞は、感染を阻害できるが、短寿命であり、その後長寿命化するためには、同一抗原に由来する、抗体産生B細胞と濾胞性樹状細胞の相互作用の繰り返しが必要であるが、ワクチン抗原の非拡散性が、同一抗原由来免疫細胞同士の相互作用を低化させている可能性がある。
 また、2021年9月まで、SARS-CoV-2に対する不活化ワクチン、スパイク搭載アデノウイルスワクチン、スパイク搭載mRNAワクチンでは、投与経路として筋肉注射が選択されてきた。注射によるワクチン接種では、上気道を含む粘膜領域での免疫を誘導することができないため、発症及び重症化予防能だけを獲得しているが、感染そのものの予防能を獲得できない可能性がある。なぜならば、注射ワクチン接種者の呼吸器に侵入したウイルスは粘膜上皮細胞に感染し、インターフェロンの誘導を抑えるために発熱は起こらず、見かけ上非感染者として二次ウイルス粒子を拡げる一方、二次ウイルス粒子が下気道に達した場合には、IgG抗体や細胞障害性T細胞が働き、発症・重症化を予防している可能性がある。従って、注射接種だけでは感染拡大は収まり難く、集団免疫化に達しない懸念がある。
The social issue (2) is that the country-by-country herd immunization, which was expected for vaccines, has not yet been achieved. In order to prevent the spread of infection, developed countries are currently trying to achieve collective immunization (non-spread of infection) through vaccination. Using the herd immunity threshold % = (1-1/R 0 ) x 100 (R 0 : basic reproduction number) as a formula to predict the minimum proportion of immune carriers that a population is protected from infectious diseases, 1 If 1 infected person infects 3 people, R 0 is 3. In this case, if 67% of the population can acquire immunity, it is assumed that the infection will not spread. Immunocompromised patients, such as those treated with anticancer drugs, are not expected to induce immunity through vaccines, so they must avoid infection by restricting their behavior, but herd immunization is thought to protect such people.
The following conditions are considered necessary to achieve herd immunization. Immunity acquired by vaccination has a long lifespan, and the infection ends during that time. However, even in developed countries where the vaccination rate has reached the majority, the spread of infection has not subsided.
One possible reason for this is the short life span of acquired immunity, as described above. This is because, in secondary lymph nodes, presentation of vaccine antigens to CD4+ helper T (Th) cells occurs, which, after germinal center migration, stimulate proliferation of B cells derived from the same antigen. Proliferation-stimulated B cells can inhibit infection, but they have a short lifespan. To prolong their lifespan, repeated interactions between antibody-producing B cells and follicular dendritic cells derived from the same antigen are required. is necessary, but the non-diffusibility of vaccine antigens may reduce interactions between immune cells derived from the same antigen.
Until September 2021, intramuscular injection has been the route of choice for inactivated vaccines, spike-loaded adenovirus vaccines, and spike-loaded mRNA vaccines against SARS-CoV-2. Vaccination by injection cannot induce immunity in the mucosal region including the upper respiratory tract, so it acquires only the ability to prevent onset and exacerbation, but may not acquire the ability to prevent infection itself. This is because the virus that invades the respiratory tract of injectable vaccinees infects mucosal epithelial cells, suppresses the induction of interferon, does not cause fever, and spreads secondary virus particles as a seemingly uninfected person. When virus particles reach the lower respiratory tract, IgG antibodies and cytotoxic T cells may act to prevent the onset and severity of the disease. Therefore, there is a concern that it will be difficult to stop the spread of infection by injection vaccination alone, and herd immunization will not be achieved.
 社会的課題(3)は、ワクチンパスポートへの過剰な期待がかけられている事である。呼吸器感染症であるSARS-CoV-2に対するワクチンの筋肉注射接種後に発行されるワクチンパスポートは、上の段落で述べたように、発症予防能、重症化予防能を得ていることを意味するが、感染予防能の獲得は必ずしも意味しないと考えられ、世界で再考すべき課題である。 The social issue (3) is that excessive expectations are placed on vaccine passports. A vaccine passport issued after intramuscular injection of a vaccine against SARS-CoV-2, a respiratory infection, means that it has the ability to prevent onset and severity as described in the paragraph above. However, it is thought that acquiring the ability to prevent infection does not necessarily mean that it is an issue that should be reconsidered globally.
 上述の通り、弱毒株ワクチンや不活化ワクチンにおいては、接種後誘導される特異的抗体に対する中和抗体の比率が低い。それに伴って、非中和抗体が抗体依存性感染増強を引き起こす危険性が高い。また、スパイクタンパク質の分泌シグナルから膜貫通ドメインまでの全体を抗原とするアデノウイルス型ワクチンやmRNA型ワクチンにおいて、S1及びS2ドメインのRBD以外の領域に対する非中和抗体が抗体依存性感染増強を引き起こす危険性があり、S1ドメインのNTD領域に対する抗体が感染を促進するという問題も抱えている。また、アデノウイルス型ワクチンやmRNA型ワクチンでは接種後、スパイクタンパク質が細胞膜に繋ぎ止められているため、スパイクタンパク質分子の遊離が妨げられ、抗原提示細胞による貪食が不十分である。
 これらのワクチン接種から、医学的課題である、高い中和抗体比率、抗体依存性感染増強の回避、免疫の長寿命化を獲得することは難しいと考えられる。また、呼吸器感染症に対するワクチンの注射接種では、医学的課題である感染予防能の獲得は期待できない。
 医学的課題である免疫の長寿命化と感染予防能の獲得が達成されないならば、社会的課題である、ワクチン接種の世界全体への拡大化や集団免疫化を実現することは難しく、ワクチンパスポートの使用はかえって危険になりかねない可能性がある。
As described above, in attenuated strain vaccines and inactivated vaccines, the ratio of neutralizing antibodies to specific antibodies induced after vaccination is low. Accordingly, there is a high risk that non-neutralizing antibodies will cause antibody-dependent enhancement of infection. In addition, in adenoviral vaccines and mRNA vaccines that use the entire antigen from the spike protein secretion signal to the transmembrane domain, non-neutralizing antibodies against regions other than the RBD of the S1 and S2 domains cause antibody-dependent enhancement of infection. It is dangerous and also has the problem that antibodies to the NTD region of the S1 domain promote infection. In addition, with adenovirus-type vaccines and mRNA-type vaccines, spike proteins are tethered to the cell membrane after inoculation, which prevents the release of spike protein molecules, resulting in insufficient phagocytosis by antigen-presenting cells.
From these vaccinations, it is considered difficult to achieve the medical problems of high neutralizing antibody ratio, avoidance of antibody-dependent enhancement of infection, and longevity of immunity. In addition, vaccination against respiratory infections by injection cannot be expected to prevent infection, which is a medical problem.
If the medical challenges of extending the lifespan of immunity and acquiring the ability to prevent infection are not achieved, it will be difficult to achieve the social challenges of expanding vaccination to the entire world and mass immunization. use can be dangerous.
 本発明は、抗原タンパク質発現ベクターおよびその利用を提供することを課題とする。本発明は、それに限定されるものではないが、好ましい一態様においては、例えば、感染症ワクチンとして高い免疫原性を誘導させることを目的に、ワクチン抗原タンパク質を、接種後、細胞内で発現させ、一部を細胞内に残存させ、一部を細胞外に分泌遊離させる、ワクチンベクター技術等に関する。 An object of the present invention is to provide an antigen protein expression vector and its use. Although the present invention is not limited thereto, in a preferred embodiment, for example, for the purpose of inducing high immunogenicity as an infectious disease vaccine, a vaccine antigen protein is expressed intracellularly after inoculation. , a vaccine vector technology, etc., in which a part of the vaccine remains in the cell and a part of it is secreted and released outside the cell.
 より効果的な抗原タンパク質発現ベクターを開発するために本発明者らは、RNAウイルスのスパイクタンパク質を例として用いて抗原タンパク質発現ベクターの構築を行った。スパイクタンパク質の分泌シグナルから開裂モチーフ直前までを含むS1(膜貫通ドメインを含まない)を抗原とし、そこに三量体形成配列であるfoldonを付加した融合タンパク質(S1-foldon)をコードするセンダイウイルスベクターと、S1タンパク質の中から、宿主細胞の受容体に結合するドメイン(受容体結合ドメイン;RBD)を含む断片のみを取り出し、そこに分泌シグナルを付加し、さらにfoldonを付加した融合タンパク質(S-RBD-foldon)をコードするセンダイウイルスベクターとを構築した。また、比較のために、上記S-RBD-foldonと同じようにRBDを含む断片に分泌シグナルを付加するが、foldonは付加しないタンパク質(S-RBD)をコードするセンダイウイルスベクターも構築した。 In order to develop a more effective antigen protein expression vector, the present inventors constructed an antigen protein expression vector using the RNA virus spike protein as an example. Sendai virus that encodes a fusion protein (S1-foldon) in which the antigen is S1 (without transmembrane domain) containing the spike protein secretion signal to just before the cleavage motif, and foldon, a trimerization sequence, is added to it. A fusion protein (S -RBD-foldon) was constructed. For comparison, a Sendai virus vector was also constructed that encodes a protein (S-RBD) in which a secretion signal is added to a fragment containing RBD in the same manner as the above S-RBD-foldon, but no foldon is added.
 これらのベクターを細胞に導入してベクターからの発現を調べたところ、S1タンパク質にfoldonを付加した融合タンパク質(S1-foldon)に比べ、分泌シグナルを付加したRBDにfoldonを付加した融合タンパク質(S-RBD-foldon)は発現量が数倍から約10倍に上昇することが確認された(実施例2b)。また、S1タンパク質にfoldonを付加した融合タンパク質(S1-foldon)は、細胞外に遊離されたタンパク質は細胞内に残存するタンパク質の約10分の1であったのに対し、分泌シグナルを付加したRBDにfoldonを付加した融合タンパク質(S-RBD-foldon)の場合、発現した融合タンパク質の大半が細胞外に分泌され、具体的には、分泌され細胞外に遊離したタンパク質は、細胞に残存したタンパク質よりも数倍から約10倍またはそれ以上(3.8倍~19倍)高いことが判明した(実施例2b)。これらの特性が合わさって、S1タンパク質にfoldonを付加した融合タンパク質(S1-foldon)に比べ、分泌シグナルを付加したRBDにfoldonを付加した融合タンパク質(S-RBD-foldon)は、細胞外に分泌遊離されるタンパク質は少なくとも数十倍に上昇することが判明した。 When these vectors were introduced into cells and the expression from the vector was examined, the fusion protein (S1-foldon), which was a fusion protein (S1-foldon) with a foldon added to the S1 protein, was compared with the fusion protein (S1-foldon), which was a foldon-added RBD with a secretion signal -RBD-foldon) was confirmed to increase the expression level from several times to about 10 times (Example 2b). In addition, the fusion protein (S1-foldon), in which a foldon was added to the S1 protein, released a secretion signal, whereas the amount of protein released outside the cell was about 1/10 of the amount of protein remaining inside the cell. In the case of a fusion protein (S-RBD-foldon) in which a foldon was added to the RBD, most of the expressed fusion protein was secreted extracellularly, and specifically, the protein that was secreted and released extracellularly remained in the cell. It was found to be several to about 10-fold or more (3.8- to 19-fold) higher than protein (Example 2b). Combined with these characteristics, the fusion protein (S-RBD-foldon) with a foldon added to the RBD with a secretion signal is secreted extracellularly, compared to the fusion protein with a foldon added to the S1 protein (S1-foldon). It was found that the released protein increased at least several tens of times.
 また驚くべきことに、foldonを付加した分泌RBDタンパク質(S-RBD-foldon)の発現量は、foldonを付加しないRBDタンパク質(S-RBD)の発現量に比べ5~10倍も高かった(実施例2b)。しかも発現したタンパク質のうち分泌遊離されたタンパク質の割合(分泌遊離率)は、foldonを付加した場合(S-RBD-foldon)でも、foldonを付加しない場合(S-RBD)と同様に高い割合(約80%またはそれ以上)を維持していた。 Surprisingly, the expression level of the secreted RBD protein with foldon (S-RBD-foldon) was 5-10 times higher than that of the RBD protein without foldon (S-RBD). Example 2b). Moreover, the ratio of secreted and released proteins (secretion release rate) to the expressed proteins is as high as when foldon is added (S-RBD-foldon) and when foldon is not added (S-RBD) ( about 80% or more).
 このように、分泌シグナルを有し、三量体形成配列が付加された抗原タンパク質の断片は、抗原の細胞外領域全体などの長いポリペプチドを含む抗原タンパク質や、三量体形成配列を付加しない抗原タンパク質断片に比べ、ベクターから発現させた際に、発現量が著しく増大し、大量の発現産物を細胞外に分泌遊離することが見出された。 Thus, a fragment of an antigenic protein with a secretion signal and an appended trimerization sequence may be an antigenic protein comprising long polypeptides, such as the entire extracellular region of the antigen, or without the addition of the trimerization sequence. It was found that the expression level was remarkably increased when expressed from a vector, and a large amount of the expression product was secreted and released extracellularly compared to the antigen protein fragment.
 分泌シグナルから開裂モチーフ直前までを含むS1タンパク質(膜貫通ドメインを含まない)にfoldonを付加した融合タンパク質(S1-foldon)をコードするセンダイウイルスベクター、または分泌シグナルを付加したRBDにfoldonを付加した融合タンパク質(S-RBD-foldon)をコードするセンダイウイルスベクターをラットに経鼻接種し、誘導される血清中のIgG抗体を調べたところ、接種したウイルス量はS1-foldonに比べて1/2~1/5であるにもかかわらず、S-RBD-foldonをコードするベクターを接種した個体では、S1-foldonをコードするベクターを接種した個体に比べて著しく高いIgG抗体が誘導されることが判明した(実施例3c)。また、誘導される中和抗体活性も、単回接種、複数回接種の両方の場合で、S-RBD-foldonをコードするベクターを接種した方が、接種するウイルスベクター量は少ないにもかかわらず、高い中和抗体活性を示すことが確認された(実施例3d)。この結果は、分泌シグナルを有し、三量体形成配列が付加された、分泌遊離型の抗原タンパク質断片をコードするベクターの接種は、S1を含む抗原タンパク質に三量体形成配列を付加したタンパク質をコードするベクターを接種する場合に比べ、有意に高い液性免疫を誘導できることを示している。 A Sendai virus vector that encodes a fusion protein (S1-foldon) in which a foldon is added to the S1 protein (not including the transmembrane domain) containing the secretion signal to just before the cleavage motif, or a foldon is added to the RBD to which the secretion signal is added. Sendai virus vectors encoding a fusion protein (S-RBD-foldon) were intranasally inoculated into rats, and IgG antibodies in the induced serum were examined. 1/5, significantly higher IgG antibodies were induced in individuals inoculated with a vector encoding S-RBD-foldon than in individuals inoculated with a vector encoding S1-foldon. It turned out (Example 3c). In addition, in both single and multiple inoculations, inoculation of vectors encoding S-RBD-foldon resulted in induced neutralizing antibody activity, despite the smaller amount of viral vector inoculated. , was confirmed to exhibit high neutralizing antibody activity (Example 3d). This result indicates that inoculation of a vector encoding a secretory-free form of an antigenic protein fragment with a secretion signal and an added trimerization sequence yields a protein with an added trimerization sequence to an antigenic protein containing S1. It shows that significantly higher humoral immunity can be induced than when inoculating a vector encoding
 細胞性免疫の誘導効果を調べるため、S1を含むS1-foldonをコードするセンダイウイルスベクター、または分泌シグナルを付加したRBDにfoldonを付加した融合タンパク質(S-RBD-foldon)をコードするセンダイウイルスベクターをラットに経鼻接種し、脾臓細胞を用いて、ペプチド刺激に反応するCTL細胞数を調べた。その結果、単回接種、複数回接種の両者とも、S-RBD-foldonをコードするベクターを接種した方が、S1-foldonをコードするベクターを接種した場合よりも、接種するウイルスベクター量は少ないにもかかわらず、有意に高いCTL刺激効果を誘導できることが判明した(実施例3e)。この結果は、分泌シグナルを有し、三量体形成配列が付加された、分泌遊離型の抗原タンパク質断片をコードするベクターの接種は、S1を含む抗原タンパク質に三量体形成配列を付加したタンパク質をコードするベクターの接種に比べ、有意に高い細胞性免疫を誘導できることを示している。 Sendai virus vector encoding S1-foldon containing S1, or Sendai virus vector encoding a fusion protein (S-RBD-foldon) in which a foldon is added to RBD with a secretion signal to examine the induction effect of cell-mediated immunity. was intranasally inoculated into rats, and spleen cells were used to examine the number of CTL cells that respond to peptide stimulation. As a result, in both single and multiple inoculations, the amount of viral vector to be inoculated was smaller with the S-RBD-foldon-encoding vector than with the S1-foldon-encoding vector. Nevertheless, it was found that a significantly higher CTL stimulatory effect could be induced (Example 3e). This result indicates that inoculation of a vector encoding a secretory-free form of an antigenic protein fragment with a secretion signal and an added trimerization sequence yields a protein with an added trimerization sequence to an antigenic protein containing S1. It shows that a significantly higher cell-mediated immunity can be induced compared to inoculation of a vector encoding .
 このように、分泌シグナルを有し、三量体形成配列が付加された分泌遊離型の抗原タンパク質断片をコードするベクターは、抗原タンパク質断片の高い発現能および高い細胞外分泌遊離能を有し、液性免疫および細胞性免疫の両方に対する極めて優れた免疫応答の誘導能を有していることが判明した。本発明のベクターを用いることによって、液性免疫および細胞性免疫の両方を効率的に誘導し、感染症等に対して優れた防御免疫を付与できることが期待される。 Thus, a vector having a secretion signal and encoding a secretory-release antigen protein fragment to which a trimerization sequence has been added has a high ability to express the antigen protein fragment and a high ability to release the antigen protein fragment from extracellular secretion. It was found to have an excellent ability to induce immune responses to both sexual immunity and cell-mediated immunity. By using the vector of the present invention, it is expected that both humoral immunity and cell-mediated immunity can be efficiently induced, and excellent protective immunity against infectious diseases and the like can be imparted.
 すなわち本発明は、免疫原性を誘導するワクチン抗原として有用な、抗原タンパク質発現ベクター等に関し、より具体的には請求項の各項に記載の発明に関する。なお同一の請求項を引用する請求項に記載の発明の2つまたはそれ以上の任意の組み合わせからなる発明も、本明細書において意図された発明である。すなわち本発明は、以下の発明に関する。
〔1〕 分泌シグナル、抗原タンパク質断片、および三量体形成ドメインを含む、膜外遊離可能な融合タンパク質をコードする核酸を含む、抗原発現ベクター。
〔2〕 該融合タンパク質中に膜貫通ドメインを含まない、〔1〕に記載の抗原発現ベクター。
〔3〕 ベクターがマイナス鎖RNAウイルスベクターである、〔1〕または〔2〕に記載の抗原発現ベクター。
〔4〕 三量体形成ドメインが、T4ファージfibritinの三量体形成ドメイン(foldon)である、〔1〕から〔3〕のいずれかに記載の抗原発現ベクター。
〔5〕 抗原が感染性病原体に由来する、〔1〕から〔4〕のいずれかに記載の抗原発現ベクター。
〔6〕 抗原がウイルスに由来する、〔1〕から〔5〕のいずれかに記載の抗原発現ベクター。
〔7〕 抗原タンパク質断片が、膜タンパク質の細胞外領域またはその断片である、〔1〕から〔6〕のいずれかに記載の抗原発現ベクター。
〔8〕 抗原タンパク質断片の長さが500アミノ酸以下である、〔1〕から〔7〕のいずれかに記載の抗原発現ベクター。
〔9〕 抗原タンパク質がRNAウイルスのスパイクタンパク質である、〔1〕から〔8〕のいずれかに記載の抗原発現ベクター。
〔10〕 抗原タンパク質断片が、RNAウイルスのスパイクタンパク質の受容体結合ドメインを含む細胞外領域の断片である、〔9〕に記載の抗原発現ベクター。
〔11〕 抗原タンパク質断片を含む発現産物が、ベクター導入細胞の細胞内および細胞外の両方に分布する、〔1〕から〔10〕のいずれかに記載の抗原発現ベクター。
〔12〕 細胞外に遊離される発現産物が、細胞に留まる発現産物よりも多い、〔11〕に記載の抗原発現ベクター。
〔13〕 分泌シグナルおよび抗原タンパク質断片を含み、三量体形成ドメインを含まないタンパク質をコードする核酸を含む対照抗原発現ベクターと比べ、抗原タンパク質断片を含む発現産物の発現量が増大する、〔1〕から〔12〕のいずれかに記載の抗原発現ベクター。
〔14〕 〔1〕から〔13〕のいずれかに記載の抗原発現ベクターを含むワクチン。
〔15〕 液性および細胞性免疫の両方を誘導するための、〔14〕に記載のワクチン。
That is, the present invention relates to antigen protein expression vectors and the like useful as vaccine antigens that induce immunogenicity, and more specifically to the inventions described in the claims. Inventions comprising any combination of two or more of the inventions recited in claims that cite the same claim are also inventions contemplated herein. That is, the present invention relates to the following inventions.
[1] An antigen expression vector comprising a nucleic acid encoding an extramembrane-releasable fusion protein comprising a secretory signal, an antigenic protein fragment, and a trimerization domain.
[2] the antigen-expressing vector of [1], wherein the fusion protein does not contain a transmembrane domain;
[3] The antigen-expressing vector of [1] or [2], which is a minus-strand RNA viral vector.
[4] the antigen expression vector of any one of [1] to [3], wherein the trimerization domain is the trimerization domain (foldon) of T4 phage fibritin;
[5] The antigen-expressing vector of any one of [1] to [4], wherein the antigen is derived from an infectious pathogen.
[6] the antigen-expressing vector of any one of [1] to [5], wherein the antigen is derived from a virus;
[7] The antigen-expressing vector of any one of [1] to [6], wherein the antigen protein fragment is an extracellular region of a membrane protein or a fragment thereof.
[8] The antigen expression vector of any one of [1] to [7], wherein the length of the antigen protein fragment is 500 amino acids or less.
[9] The antigen-expressing vector of any one of [1] to [8], wherein the antigen protein is an RNA virus spike protein.
[10] the antigen-expressing vector of [9], wherein the antigenic protein fragment is a fragment of the extracellular region containing the receptor-binding domain of RNA virus spike protein;
[11] The antigen-expressing vector of any one of [1] to [10], wherein the expression product containing the antigen protein fragment is distributed both intracellularly and extracellularly in the vector-introduced cell.
[12] The antigen expression vector of [11], wherein the expression product released outside the cell is larger than the expression product that remains in the cell.
[13] the expression level of the expression product containing the antigen protein fragment is increased compared to a control antigen expression vector containing a nucleic acid encoding a protein that contains a secretory signal and an antigen protein fragment and does not contain a trimerization domain; [1 ] to [12].
[14] A vaccine comprising the antigen-expressing vector of any one of [1] to [13].
[15] the vaccine of [14] for inducing both humoral and cell-mediated immunity;
 また本発明は、以下の発明を包含する。
〔1〕 分泌シグナル、抗原タンパク質断片、および三量体形成ドメインを含む、膜外遊離可能な融合タンパク質をコードする核酸を含む、抗原発現ベクター。
〔2〕 該融合タンパク質中に膜貫通ドメインを含まない、〔1〕に記載の抗原発現ベクター。
〔3〕 ベクターがマイナス鎖RNAウイルスベクターである、〔1〕または〔2〕に記載の抗原発現ベクター。
〔4〕 マイナス鎖RNAウイルスベクターがパラミクソウイルスベクターである、〔3〕に記載の抗原発現ベクター。
〔5〕 パラミクソウイルスベクターがセンダウイルスである、〔4〕に記載の抗原発現ベクター。
〔6〕 三量体形成ドメインが、T4ファージfibritinの三量体形成ドメイン(foldon)である、〔1〕から〔5〕のいずれかに記載の抗原発現ベクター。
〔7〕 抗原が感染性病原体、感染性微生物、または感染性ウイルスに由来する、〔1〕から〔6〕のいずれかに記載の抗原発現ベクター。
〔8〕 抗原がウイルスに由来する、〔1〕から〔6〕のいずれかに記載の抗原発現ベクター。
〔9〕 ウイルスが、生体膜に由来するエンベロープを持つウイルスである、〔8〕に記載の抗原発現ベクター。
〔10〕 ウイルスがRNAウイルスである、〔8〕または〔9〕に記載の抗原発現ベクター。
〔11〕 RNAウイルスがプラス鎖RNAウイルスである、〔9〕または〔10〕に記載の抗原発現ベクター。
〔12〕 RNAウイルスがプラス鎖一本鎖RNAウイルスである、〔11〕に記載の抗原発現ベクター。
〔13〕 RNAウイルスがコロナウイルスである、〔9〕から〔12〕のいずれかに記載の抗原発現ベクター。
〔14〕 コロナウイルスがSARS-CoV-2である、〔13〕に記載の抗原発現ベクター。
〔15〕 抗原タンパク質断片が、膜タンパク質の細胞外領域またはその断片である、〔1〕から〔14〕のいずれかに記載の抗原発現ベクター。
〔16〕 抗原タンパク質断片の長さが500アミノ酸以下である、〔1〕から〔15〕のいずれかに記載の抗原発現ベクター。
〔17〕 抗原タンパク質断片の長さが400アミノ酸以下である、〔16〕に記載の抗原発現ベクター。
〔18〕 抗原タンパク質断片の長さが300アミノ酸以下である、〔17〕に記載の抗原発現ベクター。
〔19〕 抗原タンパク質がウイルスのスパイクタンパク質である、〔1〕から〔18〕のいずれかに記載の抗原発現ベクター。
〔20〕 抗原タンパク質断片が、スパイクタンパク質の宿主細胞結合ドメインを含む細胞外領域の断片である、〔19〕に記載の抗原発現ベクター。
〔21〕 抗原タンパク質断片が、RNAウイルスのスパイクタンパク質の受容体結合ドメインを含む細胞外領域の断片である、〔19〕に記載の抗原発現ベクター。
〔22〕 受容体がACE2である、〔21〕に記載の抗原発現ベクター。
〔23〕 抗原タンパク質断片が、コロナウイルスRNAウイルスのスパイクタンパク質の受容体結合ドメインを含む細胞外領域の断片である、〔21〕または〔22〕に記載の抗原発現ベクター。
〔24〕 抗原タンパク質断片が、配列番号2の328~531番目のアミノ酸配列(配列番号6)、またはそこから5個以内、好ましくは4個以内、3個以内、2個以内、または1個のアミノ酸を置換、欠失、および/または付加したアミノ酸配列、あるいはそれらのいずれかのアミノ酸配列の断片を含む、〔1〕から〔23〕のいずれかに記載の抗原発現ベクター。
〔25〕 抗原タンパク質断片が、配列番号2の319~545番目のアミノ酸配列(配列番号4)、またはそこから5個以内、好ましくは4個以内、3個以内、2個以内、または1個のアミノ酸を置換、欠失、および/または付加したアミノ酸配列、あるいはそれらのいずれかのアミノ酸配列の断片である、〔1〕から〔24〕のいずれかに記載の抗原発現ベクター。
〔26〕 抗原タンパク質断片が、配列番号2の328~531番目のアミノ酸配列(配列番号6)、またはそこから5個以内、好ましくは4個以内、3個以内、2個以内、または1個のアミノ酸を置換、欠失、および/または付加したアミノ酸配列である、〔1〕から〔24〕のいずれかに記載の抗原発現ベクター。
〔27〕 抗原タンパク質断片を含む発現産物が、ベクター導入細胞の細胞内および細胞外の両方に分布する、〔1〕から〔26〕のいずれかに記載の抗原発現ベクター。
〔28〕 細胞外に遊離される発現産物が、細胞に留まる発現産物よりも多い、〔27〕に記載の抗原発現ベクター。
〔29〕 細胞外に遊離される発現産物が、細胞に留まる発現産物の3倍以上、4倍以上、5倍以上、6倍以上、7倍以上、8倍以上、または9倍以上である、〔28〕に記載の抗原発現ベクター。
〔30〕 分泌シグナルおよび抗原タンパク質断片を含み、三量体形成ドメインを含まないタンパク質をコードする核酸を含む対照抗原発現ベクターと比べ、抗原タンパク質断片を含む発現産物の発現量が増大する、〔1〕から〔29〕のいずれかに記載の抗原発現ベクター。
〔31〕 分泌シグナルおよび抗原タンパク質断片を含み、三量体形成ドメインを含まないタンパク質をコードする核酸を含む対照抗原発現ベクターと比べ、抗原タンパク質断片を含む発現産物の発現量が1.5倍以上、2倍以上、3倍以上、4倍以上、5倍以上、6倍以上、7倍以上、8倍以上、9倍以上、または10倍以上である、〔30〕に記載の抗原発現ベクター。
〔32〕 抗原タンパク質断片を含む発現産物の量が、三量体形成ドメインの付加によって増加した、ベクター導入細胞の細胞内および細胞外の両方に該発現産物が分布する、〔1〕から〔31〕のいずれかに記載の抗原発現ベクター。
〔33〕 抗原タンパク質断片を含む発現産物の量が、三量体形成ドメインの加除によって調節された、ベクター導入細胞の細胞内および細胞外の両方に該発現産物が分布する、〔1〕から〔32〕のいずれかに記載の抗原発現ベクター。
〔34〕 抗原タンパク質断片を含む発現産物の量が、三量体形成ドメインの加除によって調節されることによって、ベクター導入細胞の細胞内および細胞外の両方に分布する該発現産物の量とベクター生産性が調節される、〔1〕から〔33〕のいずれかに記載の抗原発現ベクター。
〔35〕 抗原タンパク質断片を含む発現産物の量が、抗原タンパク質断片の大きさによって調節された、ベクター導入細胞の細胞内および細胞外の両方に該発現産物が分布する、〔1〕から〔34〕のいずれかに記載の抗原発現ベクター。
〔36〕 抗原タンパク質断片を含む発現産物の量が、抗原タンパク質断片の大きさによって調節されることによって、ベクター導入細胞の細胞内および細胞外の両方に分布する該発現産物の量とベクター生産性が調節される、〔1〕から〔35〕のいずれかに記載の抗原発現ベクター。
〔37〕 三量体形成ドメインが、T4ファージfibritinの三量体形成ドメイン(foldon)である、〔31〕から〔36〕のいずれかに記載の抗原発現ベクター。
〔38〕 〔1〕から〔37〕のいずれかに記載の抗原発現ベクターから発現される、抗原タンパク質断片および三量体形成ドメインを含む融合タンパク質。
〔39〕 〔1〕から〔37〕のいずれかに記載の抗原発現ベクターを含むワクチン。
〔40〕 液性および細胞性免疫の両方を誘導するための、〔39〕に記載のワクチン。
〔41〕 複数回接種するための、〔39〕または〔40〕に記載のワクチン。
〔42〕 経鼻投与される、〔39〕から〔41〕のいずれかに記載のワクチン。
〔43〕 〔1〕から〔37〕のいずれかに記載の抗原発現ベクターを細胞に導入する工程を含む、抗原タンパク質断片の製造方法。
〔44〕 〔1〕から〔37〕のいずれかに記載の抗原発現ベクターを細胞に導入する工程を含む、細胞外に遊離された抗原タンパク質断片の製造方法。
〔45〕 〔1〕から〔37〕のいずれかに記載の抗原発現ベクターを細胞に導入する工程を含む、抗原タンパク質断片を細胞外に遊離させる方法。
〔46〕 〔1〕から〔37〕のいずれかに記載の抗原発現ベクターまたは〔39〕から〔42〕のいずれかに記載のワクチンを接種する工程を含む、免疫誘導方法。
〔47〕 〔1〕から〔37〕のいずれかに記載の抗原発現ベクターまたは〔39〕から〔42〕のいずれかに記載のワクチンを接種する工程を含む、該抗原に対する液性免疫、細胞性免疫、またはその両方の誘導方法。
〔48〕 〔1〕から〔37〕のいずれかに記載の抗原発現ベクターの、該抗原に対する液性免疫、細胞性免疫、またはその両方を誘導するための使用。
〔49〕 〔1〕から〔37〕のいずれかに記載の抗原発現ベクターの、ワクチンの製造における使用。
〔50〕 ワクチンが、該抗原に対する液性免疫、細胞性免疫、またはその両方を誘導する、〔49〕に記載の使用。
The present invention also includes the following inventions.
[1] An antigen expression vector comprising a nucleic acid encoding an extramembrane-releasable fusion protein comprising a secretory signal, an antigenic protein fragment, and a trimerization domain.
[2] The antigen-expressing vector of [1], wherein the fusion protein does not contain a transmembrane domain.
[3] The antigen-expressing vector of [1] or [2], which is a minus-strand RNA viral vector.
[4] the antigen-expressing vector of [3], wherein the minus-strand RNA viral vector is a paramyxovirus vector;
[5] The antigen-expressing vector of [4], wherein the Paramyxovirus vector is Sendavirus.
[6] the antigen expression vector of any one of [1] to [5], wherein the trimerization domain is the trimerization domain (foldon) of T4 phage fibritin;
[7] The antigen-expressing vector of any one of [1] to [6], wherein the antigen is derived from an infectious pathogen, infectious microorganism, or infectious virus.
[8] The antigen-expressing vector of any one of [1] to [6], wherein the antigen is derived from a virus.
[9] The antigen-expressing vector of [8], wherein the virus has an envelope derived from a biological membrane.
[10] the antigen-expressing vector of [8] or [9], wherein the virus is an RNA virus;
[11] the antigen-expressing vector of [9] or [10], wherein the RNA virus is a positive-strand RNA virus;
[12] the antigen-expressing vector of [11], wherein the RNA virus is a positive-strand single-stranded RNA virus;
[13] the antigen-expressing vector of any one of [9] to [12], wherein the RNA virus is a coronavirus;
[14] the antigen expression vector of [13], wherein the coronavirus is SARS-CoV-2;
[15] the antigen-expressing vector of any one of [1] to [14], wherein the antigen protein fragment is an extracellular region of a membrane protein or a fragment thereof;
[16] the antigen expression vector of any one of [1] to [15], wherein the length of the antigen protein fragment is 500 amino acids or less;
[17] the antigen expression vector of [16], wherein the length of the antigen protein fragment is 400 amino acids or less;
[18] the antigen expression vector of [17], wherein the length of the antigen protein fragment is 300 amino acids or less;
[19] The antigen-expressing vector of any one of [1] to [18], wherein the antigen protein is a viral spike protein.
[20] the antigen expression vector of [19], wherein the antigen protein fragment is a fragment of the extracellular region containing the host cell-binding domain of the spike protein;
[21] the antigen-expressing vector of [19], wherein the antigenic protein fragment is a fragment of the extracellular region containing the receptor-binding domain of RNA virus spike protein;
[22] the antigen-expressing vector of [21], wherein the receptor is ACE2;
[23] the antigen-expressing vector of [21] or [22], wherein the antigen protein fragment is a fragment of the extracellular region containing the receptor-binding domain of the spike protein of coronavirus RNA virus;
[24] the antigenic protein fragment is the 328th to 531st amino acid sequences of SEQ ID NO: 2 (SEQ ID NO: 6), or within 5, preferably within 4, 3, 2, or 1 amino acid sequence therefrom; The antigen expression vector of any one of [1] to [23], which comprises an amino acid sequence with amino acid substitution, deletion and/or addition, or a fragment of any of these amino acid sequences.
[25] the antigenic protein fragment is the 319th to 545th amino acid sequence of SEQ ID NO: 2 (SEQ ID NO: 4), or within 5, preferably within 4, 3, 2, or 1 amino acid sequence therefrom; The antigen expression vector of any one of [1] to [24], which is an amino acid sequence with amino acid substitution, deletion and/or addition, or a fragment of any of these amino acid sequences.
[26] the antigenic protein fragment is the 328th to 531st amino acid sequences of SEQ ID NO: 2 (SEQ ID NO: 6), or within 5, preferably within 4, 3, 2, or 1 amino acid sequence therefrom; The antigen expression vector of any one of [1] to [24], which is an amino acid sequence with amino acid substitution, deletion and/or addition.
[27] the antigen-expressing vector of any one of [1] to [26], wherein the expression product containing the antigen protein fragment is distributed both intracellularly and extracellularly in the vector-introduced cell;
[28] The antigen-expressing vector of [27], wherein the amount of expression product released outside the cell is greater than the amount of expression product that remains in the cell.
[29] the expression product released outside the cell is 3-fold or more, 4-fold or more, 5-fold or more, 6-fold or more, 7-fold or more, 8-fold or more, or 9-fold or more than the expression product that remains in the cell; The antigen expression vector of [28].
[30] compared to a control antigen expression vector containing a nucleic acid encoding a protein that contains a secretory signal and an antigenic protein fragment and does not contain a trimerization domain, the expression level of the expression product containing the antigenic protein fragment is increased, [1 ] to [29].
[31] the expression level of the expression product containing the antigen protein fragment is at least 1.5 times greater than that of a control antigen expression vector containing a nucleic acid encoding a protein containing a secretion signal and an antigen protein fragment but not containing a trimerization domain; The antigen expression vector of [30], which is at least 3-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold.
[32] the amount of an expression product containing an antigenic protein fragment is increased by the addition of a trimerization domain, and the expression product is distributed both intracellularly and extracellularly in vector-introduced cells [1] to [31] ].
[33] the amount of an expression product containing an antigenic protein fragment is regulated by addition or deletion of a trimerization domain, and the expression product is distributed both intracellularly and extracellularly in vector-introduced cells [1] to [ 32], the antigen expression vector according to any one of the above.
[34] the amount of the expression product containing the antigen protein fragment is regulated by the addition or deletion of the trimerization domain, so that the amount of the expression product distributed both intracellularly and extracellularly in the vector-introduced cell and vector production; The antigen expression vector of any one of [1] to [33], which is sex-regulated.
[35] the amount of the expression product containing the antigen protein fragment is regulated by the size of the antigen protein fragment, and the expression product is distributed both intracellularly and extracellularly in vector-introduced cells, [1] to [34] ].
[36] the amount of the expression product containing the antigen protein fragment is regulated by the size of the antigen protein fragment, so that the amount of the expression product distributed both intracellularly and extracellularly in the vector-introduced cell and the vector productivity; is regulated, the antigen expression vector of any one of [1] to [35].
[37] the antigen expression vector of any one of [31] to [36], wherein the trimerization domain is the trimerization domain (foldon) of T4 phage fibritin;
[38] A fusion protein comprising an antigen protein fragment and a trimerization domain expressed from the antigen expression vector of any one of [1] to [37].
[39] A vaccine comprising the antigen-expressing vector of any one of [1] to [37].
[40] the vaccine of [39] for inducing both humoral and cellular immunity;
[41] the vaccine of [39] or [40] for multiple inoculations;
[42] the vaccine of any one of [39] to [41], which is nasally administered;
[43] A method for producing an antigen protein fragment, which comprises the step of introducing the antigen-expressing vector of any one of [1] to [37] into a cell.
[44] A method for producing an extracellularly released antigen protein fragment, which comprises the step of introducing the antigen-expressing vector of any one of [1] to [37] into a cell.
[45] A method for extracellularly releasing an antigen protein fragment, which comprises the step of introducing the antigen-expressing vector of any one of [1] to [37] into a cell.
[46] A method for inducing immunity, which comprises the step of inoculating the antigen-expressing vector of any one of [1] to [37] or the vaccine of any one of [39] to [42].
[47] Humoral immunity against the antigen, cell-mediated Methods of induction of immunity, or both.
[48] Use of the antigen-expressing vector of any one of [1] to [37] for inducing humoral immunity, cell-mediated immunity, or both against the antigen.
[49] Use of the antigen-expressing vector of any one of [1] to [37] in the production of a vaccine.
[50] the use of [49], wherein the vaccine induces humoral immunity, cellular immunity, or both against the antigen;
 なお、本明細書に記載した任意の技術的事項およびその任意の組み合わせは、本明細書に意図されている。また、それらの発明において、本明細書に記載の任意の事項またはその任意の組み合わせを除外した発明も、本明細書に意図されている。また本発明に関して、明細書中に記載されたある特定の態様は、それを開示するのみならず、その態様を含むより上位の本明細書に開示された発明から、その態様を除外した発明も開示するものである。 Any technical matter described in this specification and any combination thereof are intended in this specification. Inventions excluding any matter described herein or any combination thereof in those inventions are also intended herein. In addition, regarding the present invention, a specific aspect described in the specification not only discloses it, but also inventions excluding that aspect from higher inventions disclosed in this specification including that aspect Disclosure.
 本発明によって、例えばその好ましい一態様においては、感染症病原体タンパク質の膜外ドメイン由来のワクチン抗原を強く発現し、発現した抗原は一部が細胞内に残存する一方、豊富に膜外に分泌遊離させることによって、免疫原性を高めることが可能となった。本発明は、特に感染免疫学的分野で利用されることが期待される。また、本発明は、その好ましい一態様においては、がん細胞特異的膜タンパク質の膜外ドメインの強発現・細胞内残存・膜外分泌遊離によってがん細胞特異的抗体やキラーT細胞を誘導するがん免疫学分野での利用、細胞増殖因子などのタンパク質性組織新生因子の強発現・膜外遊離によって、死細胞組織などの新生を誘導する機能不全症治療の分野での利用、タンパク質性分化因子の強発現・膜外遊離によって、隣接細胞の分化誘導を高める再生医療分野での利用、等の様々な用途において利用可能である。 According to the present invention, for example, in one preferred embodiment thereof, a vaccine antigen derived from the extramembrane domain of an infectious disease pathogen protein is strongly expressed, and while a part of the expressed antigen remains intracellularly, it is abundantly secreted and released outside the membrane. It has become possible to enhance immunogenicity by allowing The present invention is expected to find particular application in the field of infectious immunology. In one preferred aspect of the present invention, cancer cell-specific antibodies and killer T cells are induced by strong expression, intracellular persistence, and extramembrane secretion release of the extramembrane domain of cancer cell-specific membrane proteins. Use in the field of cancer immunology, use in the field of dysfunction therapy that induces the regeneration of dead cell tissues by strong expression and extra-membrane release of protein-based tissue regeneration factors such as cell growth factors, protein-based differentiation factors Strong expression and extramembrane release of this protein can be used in various applications such as regenerative medicine that enhances differentiation induction of adjacent cells.
非中和抗体による抗体依存性感染増強の危険性の課題の解決
 例えば病原性ウイルス等に対するワクチンおいては、非中和抗体による抗体依存性感染増強の危険性という課題があった。弱毒株ワクチンや不活化ワクチンにおいては、また、スパイクタンパク質の分泌シグナルから膜貫通ドメインまでの全体を抗原とするアデノウイルス型ワクチンやmRNA型ワクチンにおいても、接種後誘導される特異的抗体に対する中和抗体の比率が低いという問題がある。抗体の中和能(感染阻止能力)の本質はウイルスと細胞の接触点での結合阻害能力であることから、非中和抗体による抗体依存性感染増強の危険性を回避するためには、ウイルス側結合部位だけをワクチン抗原として選定することが有用である。SARS-CoV-2のスパイクタンパク質においては、その領域は、報告されているRBDドメイン(319-545)(Yang, J. et al., Nature 586: 572-577, 2020 doi.org/10.1038/s41586-020-2599-8)や、より好ましくは、これをさらに絞ったRBD(328-531)を用いることが可能であり、このような短い抗原タンパク質断片を用いることにより、抗体依存性感染増強を招きうる非中和抗体の誘導を最小限に抑えることが可能となる。
Solution of the risk of increased antibody-dependent infection due to non-neutralizing antibodies For example, in vaccines against pathogenic viruses, etc., there has been the problem of the risk of increased antibody-dependent infection due to non-neutralizing antibodies. Neutralization of specific antibodies induced after inoculation in attenuated strain vaccines and inactivated vaccines, as well as in adenovirus-type vaccines and mRNA-type vaccines that use the entire antigen from the spike protein secretion signal to the transmembrane domain There is a problem that the ratio of antibodies is low. Since the neutralizing ability (anti-infection ability) of antibodies is essentially their ability to inhibit binding at the point of contact between viruses and cells, in order to avoid the risk of antibody-dependent enhancement of infection by non-neutralizing antibodies, virus It is useful to select only side binding sites as vaccine antigens. In the SARS-CoV-2 spike protein, the region is the reported RBD domain (319-545) (Yang, J. et al., Nature 586: 572-577, 2020 doi.org/10.1038/s41586 -020-2599-8) or, more preferably, RBD (328-531), which is a further narrowed version of this, can be used, and the use of such short antigen protein fragments enhances antibody-dependent infection. It is possible to minimize the possible induction of non-neutralizing antibodies.
免疫長寿命化未達成の課題の解決(1)
 免疫長寿命化を阻む原因として考えられるのは、既に述べたとおり、1)ワクチンの接種後に抗原タンパク質が生産されなかったり、短期間しか生産されなかったりすることや、効率的に分泌・遊離されないことによるワクチン抗原タンパク質の非拡散性、2)非中和抗体産生B細胞の誘導、である。
 1)について、好ましい一態様においては、ワクチン抗原の非拡散性を克服するには、分泌シグナルを残す一方で膜透過ドメインを削除してワクチン抗原の細胞からの分泌・遊離を促進することであり、さらに絞り込んだワクチン抗原断片に分泌シグナルを付加することが考えられる。これによって、ワクチン抗原断片が感染細胞外に遊離され、抗原提示細胞による貪食の機会が増大することによって、同一抗原に由来するB細胞と濾胞性樹状細胞の誘導と、それら同士の相互作用が頻発して、高親和性抗体産生B細胞の選抜を導くことが期待される。また、2)については、好ましい一態様においては、例えばSARS-CoV-2等においては、宿主細胞への結合に必須のACE2受容体結合ドメインだけをワクチン抗原として発現させることによって、中和抗体産生B細胞だけが増殖刺激を受けて、感染阻止能力が高い抗体産生B細胞の選抜が成し遂げられる。このような、課題1)2)に対する改良から、選抜B細胞が長寿命形質細胞やメモリーB細胞となり、免疫の長寿命化が成立する。
Solving the unachieved problem of immune longevity (1)
As already mentioned, the factors that prevent the extension of immune longevity are 1) the lack of production of antigen proteins after vaccination, the production of antigen proteins only for a short period of time, and the inability to efficiently secrete and release antigen proteins. 2) induction of non-neutralizing antibody-producing B cells.
Regarding 1), in a preferred embodiment, in order to overcome the non-diffusibility of vaccine antigens, it is necessary to leave secretory signals while deleting transmembrane domains to promote secretion and release of vaccine antigens from cells. Furthermore, it is conceivable to add a secretory signal to the further refined vaccine antigen fragment. As a result, the vaccine antigen fragment is released outside the infected cells, and the opportunity for phagocytosis by antigen-presenting cells increases, leading to the induction of B cells and follicular dendritic cells derived from the same antigen, and the interaction between them. It is expected to frequently lead to the selection of high-affinity antibody-producing B cells. As for 2), in a preferred embodiment, for example, in SARS-CoV-2, etc., by expressing only the ACE2 receptor-binding domain essential for binding to host cells as a vaccine antigen, a neutralizing antibody can be produced. Only B cells are stimulated to proliferate, and selection of antibody-producing B cells with high ability to block infection is achieved. By improving the problems 1) and 2), the selected B cells become long-lived plasma cells and memory B cells, and the longevity of immunity is established.
免疫長寿命化未達成の課題の解決(2)
 実施例(4)に示されるように、分子量が小さい方が分泌遊離量が大きい。この法則を利用すれば、ワクチン抗原の分泌遊離量を調節することによって液性免疫誘導能を調節することが可能となる。同じ分泌シグナルと同じfoldon配列が付加された、大小異なる2種のワクチン抗原ベクターを作製し、液性免疫誘導能を比較したところ、分泌量が大きい方が、液性免疫誘導能が強いことが分かった。これらの検証結果に基づいて次のような技術が提供される。すなわち好ましい一態様においては、ワクチン抗原のペプチド長の最小化によって、接種後細胞内で、ワクチン抗原量を増大化させ、これに連動して細胞外での拡散性を増大化させることにより、免疫長寿命化を達成する。
Solving the unachieved problem of immune longevity (2)
As shown in Example (4), the smaller the molecular weight, the larger the secreted release amount. Utilizing this rule, it becomes possible to regulate the ability to induce humoral immunity by regulating the amount of vaccine antigen secreted and released. Two types of vaccine antigen vectors with the same secretory signal and the same foldon sequence were prepared and compared in terms of their ability to induce humoral immunity. Do you get it. The following techniques are provided based on these verification results. That is, in a preferred embodiment, by minimizing the peptide length of the vaccine antigen, the amount of the vaccine antigen is increased in the cells after inoculation. Achieve longer life.
免疫長寿命化未達成の課題の解決(3)
 従来、三量体化ドメインfoldonは、病原ウイルスのスパイクの三量体構造に似せるために用いられる(WO2011008974A2)。ところが実施例(2)に示されるように、本発明において、この三量体化因子foldonをワクチン抗原S-RBDのカルボキシ末端に付加した融合タンパク質を発現するベクターを作製し、抗原タンパク質の発現及び局在を調べたところ、予想に反して、foldonを付加することにより発現するワクチン抗原量が増大することを発見した。さらに分泌遊離率にはfoldonの有無による差異がないことが確認された。これらの発見に基づいて次のような技術が提供される。すなわち、好ましい一態様において、ワクチン抗原へのfoldonの付加によって、接種後細胞内で、ワクチン抗原量を増大化させ、これに連動して細胞外での拡散性を増大化させることにより、免疫長寿命化を達成する。
Solving the unachieved challenges of extending immune lifespan (3)
Conventionally, the trimerization domain foldon is used to mimic the trimeric structure of pathogenic virus spikes (WO2011008974A2). However, as shown in Example (2), in the present invention, a vector expressing a fusion protein in which this trimerization factor foldon is added to the carboxy terminus of the vaccine antigen S-RBD is prepared, and the antigen protein is expressed and Unexpectedly, we found that the addition of foldon increased the amount of expressed vaccine antigen. Furthermore, it was confirmed that there was no difference in secretion release rate between the presence and absence of foldon. The following techniques are provided based on these discoveries. That is, in a preferred embodiment, the addition of foldon to the vaccine antigen increases the amount of the vaccine antigen in the cells after inoculation, and in conjunction with this, increases the extracellular diffusivity, thereby increasing the immunity. Achieve longevity.
ウイルスベクタータンパク質への免疫によるブースター効果の抑制や交差免疫による免疫誘導能の抑制の課題の解決
 これらの課題は、実施例(3)に示されるように、分泌シグナル付きワクチン抗原にfoldonが付加されたワクチン抗原が搭載されたセンダイウイルスベクターの反復接種によって強いブースター効果が確認されたことから、分泌遊離ワクチン抗原の技術では、その好ましい一態様において、ワクチン抗原をセンダイウイルスベクターが導入された細胞から分泌遊離させることによって、センダイウイルス自体に対する抗体やCTLによるブースター効果の低減を回避でき、また類似ウイルスによる既存の交差免疫による効果低減も同様にかわすことができると考えられる。
Solving the problems of suppressing the booster effect by immunization with viral vector proteins and suppressing the ability to induce immunity by cross-immunization A strong booster effect was confirmed by repeated inoculation of a Sendai virus vector loaded with a vaccine antigen. By secreting and liberating the virus, it is possible to avoid the reduction of the booster effect of Sendai virus itself by antibodies and CTLs, and it is also possible to avoid the reduction of effects due to existing cross-immunity with similar viruses.
ワクチン抗原ベクターの製造効率の課題の解決
 実施例(4)に示されるように、分泌遊離量が高いベクターでは、製造過程におけるベクター生産性が低下することを見出した。発現量を抑える技術としてワクチン抗原遺伝子の搭載位置を下流に移行することは以前より知られているが、本発明では、上の段落で述べたようにワクチン抗原量を増大させるfoldon配列を除去することによって生産細胞内でのワクチン抗原量を減少させることができればベクター生産性を向上させることができる、という仮説を立て、同じワクチン抗原に同じ分泌シグナルが付加され、foldonの有無だけが異なる2種ワクチン抗原ベクターの生産性を比較したところ、foldonの除去によりベクター生産性が上昇することが分かった。これらの検証結果に基づいて次のようなベクター生産性調節技術が提供される。すなわち、ワクチン抗原ベクターのfoldon配列を追加または除去することによって、製造培養過程にある生産細胞内で、ワクチン抗原量を増加または減少させ、連動して分泌遊離量を増加または減少させ、ベクターの生産性を抑制または向上させ、高い免疫原性が維持される範囲においてベクター生産性を調節できる。
Solution to the Problem of Vaccine Antigen Vector Production Efficiency As shown in Example (4), it was found that a vector with a high secretory release amount resulted in reduced vector productivity during the production process. Shifting the mounting position of the vaccine antigen gene downstream has been known as a technique for suppressing the expression level, but in the present invention, as described in the above paragraph, the foldon sequence that increases the amount of the vaccine antigen is removed. We hypothesized that vector productivity could be improved if the amount of vaccine antigen in the producing cells could be reduced by this method. When the productivity of vaccine antigen vectors was compared, it was found that removal of the foldon increased the vector productivity. Based on these verification results, the following vector productivity control techniques are provided. That is, by adding or removing the foldon sequence of the vaccine antigen vector, the amount of vaccine antigen is increased or decreased in production cells in the production culture process, and the amount of secretion and release is increased or decreased in conjunction with vector production. vector productivity can be adjusted to the extent that it suppresses or enhances the immunogenicity and maintains high immunogenicity.
社会的課題の解決
 社会的課題である、ワクチン接種の世界全体への拡大化や集団免疫獲得の実現には、上述のとおり、様々な困難が存在しており、ワクチンパスポートの使用にもリスクがあると考えられる。しかし本発明に基づけば、その好ましい一態様において、中和抗体を誘導しうるワクチン抗原に絞り、それに分泌シグナルを付加し膜透過ドメインは付加せずに、例えば気道親和性のあるベクター(マイナス鎖RNAウイルスベクター等)での経鼻接種により、粘膜上皮細胞で強発現させ、粘膜領域で、大量の中和抗体誘導抗原を遊離させることができる。そうすると、抗原提示細胞による貪食の機会が増大することによって、同一抗原に由来するB細胞と濾胞性樹状細胞の誘導とこれら2者の相互作用が頻発して、高親和性抗体産生B細胞の選抜が導かれて、それらが長寿命形質細胞やメモリーB細胞となり、免疫の長寿命化が成立する。従って本発明は、これらの社会的課題の解決に貢献すると考えられる。
Solving social issues As mentioned above, there are various difficulties in achieving social issues such as the global expansion of vaccination and the acquisition of herd immunity. It is believed that there is. However, according to the present invention, in one preferred embodiment thereof, vaccine antigens capable of inducing neutralizing antibodies are narrowed down, and a secretion signal is added to them without adding a membrane permeation domain, for example, a vector having airway affinity (minus chain RNA virus vector, etc.) can induce strong expression in mucosal epithelial cells and release a large amount of neutralizing antibody-inducing antigen in the mucosal region. Then, by increasing the chance of phagocytosis by antigen-presenting cells, the induction of B cells and follicular dendritic cells derived from the same antigen and the interaction of these two occur frequently, resulting in high-affinity antibody-producing B cells. Selection is induced, and they become long-lived plasma cells and memory B cells, and the longevity of immunity is established. Therefore, the present invention is considered to contribute to solving these social problems.
液性及び細胞性免疫の両方を誘導するワクチン抗原ベクターの構造を示す図である。FIG. 2 shows the structure of a vaccine antigen vector that induces both humoral and cell-mediated immunity. S1-foldon搭載センダイウイルスベクターが持つ挿入配列を示す図である。FIG. 2 shows an insertion sequence of an S1-foldon-carrying Sendai virus vector. S-RBD-foldon搭載センダイウイルスベクターが持つ挿入配列を示す図である。FIG. 2 shows an insertion sequence of an S-RBD-foldon-carrying Sendai virus vector. S-RBD搭載センダイウイルスベクターが持つ挿入配列を示す図である。FIG. 2 shows an insertion sequence of an S-RBD-loaded Sendai virus vector. ワクチン抗原ベクターの発現と細胞内残存と膜外分泌遊離を示す図である。FIG. 3 shows the expression, intracellular persistence, and extramembrane secretory release of a vaccine antigen vector. ワクチン抗原ベクターの発現と細胞内残存と膜外分泌遊離を示す図である。FIG. 3 shows the expression, intracellular persistence, and extramembrane secretory release of a vaccine antigen vector. ワクチン抗原ベクター技術による液性免疫誘導を示す図である。FIG. 2 shows humoral immunity induction by vaccine antigen vector technology. ワクチン抗原ベクター技術による液性免疫誘導を示す図である。FIG. 2 shows humoral immunity induction by vaccine antigen vector technology. ワクチン抗原ベクター技術による細胞性免疫誘導を示す図である。FIG. 2 shows cell-mediated immunity induction by vaccine antigen vector technology. ワクチン抗原ベクター技術による細胞性免疫誘導を示す図である。FIG. 2 shows cell-mediated immunity induction by vaccine antigen vector technology. 免疫誘導法:従来法の問題点、および本発明の優位性を示す図である。図中、濃い三角は抗原タンパク質、薄い三角はウイルスベクターが持つウイルス膜タンパク質を表す。抗原提示細胞は円のmajor sectorの形で表した。抗原タンパク質(濃い三角)が膜表面に繋留される形で発現する場合(左パネル)、抗原タンパク質はベクター感染細胞の表面および放出されたウイルス粒子の表面に局在するのに対し、抗原タンパク質断片が大量に分泌遊離される本発明のベクター(右パネル)においては、遊離した抗原タンパク質断片は感染細胞から遠距離にまで拡散し、抗原提示細胞に効率的に貪食され、高い免疫応答が誘導される。Immunity induction method: It is a figure which shows the problem of a conventional method, and the superiority of this invention. In the figure, dark triangles represent antigen proteins, and light triangles represent viral membrane proteins possessed by viral vectors. Antigen-presenting cells are represented in the form of major sectors of circles. When the antigen protein (dark triangle) is expressed in a membrane-tethered form (left panel), the antigen protein is localized on the surface of vector-infected cells and released virus particles, whereas the antigen protein fragment In the vector of the present invention (right panel) in which a large amount of is secreted and released, the released antigen protein fragments diffuse far from the infected cells and are efficiently phagocytosed by the antigen-presenting cells, resulting in the induction of a high immune response. be.
 以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明において「ワクチン」とは、標的抗原に対する免疫反応を惹起させるための組成物を言い、例えば、伝染病や感染症、がん等の予防または治療のために使用される組成物を言う。ワクチンは標的抗原またはその断片を含んでいるか、または標的抗原またはその断片を発現可能であり、これにより標的抗原に対する免疫応答を誘導する能力を有する。例えば病原性ウイルスの感染、伝播、および流行の予防または治療のために、本発明のワクチン組成物は、標的抗原またはその断片、あるいは当該標的抗原またはその断片を発現する核酸を含むワクチンとして製剤化されうる。このワクチンは、所望の形態で用いることができる。本発明のワクチン組成物は、コロナウイルス等のウイルスや微生物の感染、体内における複製、またはそれらに起因する疾患の予防および/または治療のために特に有用である。 In the present invention, the term "vaccine" refers to a composition for eliciting an immune response against a target antigen, for example, a composition used for prevention or treatment of infectious diseases, infectious diseases, cancer, and the like. Vaccines contain or are capable of expressing a target antigen or fragment thereof, thereby having the ability to induce an immune response against the target antigen. For example, for the prevention or treatment of pathogenic virus infection, transmission, and epidemics, the vaccine composition of the present invention is formulated as a vaccine comprising a target antigen or fragment thereof, or a nucleic acid expressing the target antigen or fragment thereof. can be This vaccine can be used in any desired form. The vaccine composition of the present invention is particularly useful for the prevention and/or treatment of infection by viruses such as coronaviruses or microorganisms, replication in the body, or diseases caused by them.
 「抗原」とは、1つまたはそれ以上のエピトープ(抗体あるいは免疫細胞が認識する抗原の一部分)を含む分子であり、宿主の免疫系を刺激して抗原特異的な免疫応答を誘導し得るものを言う。本発明の抗原は、液性免疫または細胞性免疫の応答を誘導しうる抗原が用いられる。本発明の抗原は、好ましくは、少なくとも液性免疫応答を誘導しうる抗原が用いられ、さらに好ましくは、液性免疫と細胞性免疫の両方の応答を誘導しうる抗原が用いられる。本発明の抗原としては、免疫応答を誘導しうる抗原である限り特に制限はないが、通常、蛋白質中の 1つのエピトープは、約 7~約 15アミノ酸、例えば少なくとも 8、 9、 10、 12、または 14アミノ酸を含んでいる。なお本発明においてエピトープには、一次構造から形成されるエピトープだけでなく、蛋白質の立体構造に依存したエピトープも含まれる。また、免疫応答を誘発する能力のある抗原を免疫原と言う。 An "antigen" is a molecule containing one or more epitopes (parts of an antigen recognized by antibodies or immune cells) that can stimulate the host's immune system to induce an antigen-specific immune response. say. The antigen used in the present invention is an antigen capable of inducing a humoral or cell-mediated immune response. The antigen of the present invention is preferably an antigen capable of inducing at least humoral immune response, more preferably an antigen capable of inducing both humoral and cell-mediated immunity. The antigen of the present invention is not particularly limited as long as it can induce an immune response, but usually one epitope in the protein is about 7 to about 15 amino acids, for example, at least 8, 9, 10, 12, or contains 14 amino acids. In the present invention, the epitope includes not only an epitope formed from the primary structure but also an epitope dependent on the three-dimensional structure of the protein. Antigens capable of eliciting an immune response are also referred to as immunogens.
 本発明は、分泌シグナル、抗原タンパク質断片、および三量体形成ドメインを含む、膜外遊離可能な融合タンパク質をコードする核酸を含む、抗原発現ベクターを提供する。本ベクターによりコードされる融合タンパク質は膜外遊離可能であり、細胞において発現させることにより、分泌され、細胞から遊離する。分泌の際に分泌シグナルは切断除去されてもよい。すなわち分泌された融合タンパク質は、分泌シグナルを欠き、抗原タンパク質断片および三量体形成ドメインを含む融合タンパク質であってもよい。 The present invention provides an antigen expression vector comprising a nucleic acid encoding a fusion protein capable of extramembrane releasability, comprising a secretory signal, an antigenic protein fragment, and a trimerization domain. The fusion protein encoded by this vector is capable of extramembrane releasability and is secreted and released from the cell upon expression in the cell. The secretory signal may be cleaved off during secretion. Thus, the secreted fusion protein may be a fusion protein that lacks a secretory signal and contains an antigenic protein fragment and a trimerization domain.
 抗原タンパク質断片とは、抗原性または免疫原性を有するタンパク質の一部、すなわち、天然に存在する抗原タンパク質の全長ではなく部分のことをいう。抗原タンパク質断片の長さは適宜選択することができるが、好ましくは、天然に存在する抗原タンパク質の長さの70%以下、例えば60%以下、50%以下(半分以下)、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、または10%以下であってよい。ここで天然に存在する抗原タンパク質が、例えば一旦はプロタンパク質(前駆体)として産生され、開裂してはじめて活性を発揮するような場合は、開裂後のタンパク質を天然に存在する抗原タンパク質とみなし、それに対して上記の割合の長さを持つ断片を用いることが好ましい。例えばウイルスのスパイクタンパク質(S)は、S1とS2に開裂しうるが、この場合はS1やS2それぞれが天然に存在する抗原タンパク質の全長であり、それに対して上記の割合の長さを持つ断片を用いることができる。抗原タンパク質断片は、好ましくは500アミノ酸以下、例えば450アミノ酸以下、400アミノ酸以下、350アミノ酸以下、300アミノ酸以下、280アミノ酸以下、250アミノ酸以下、または230アミノ酸以下である。特に220アミノ酸以下の抗原タンパク質断片は好ましく、例えば215アミノ酸以下、210アミノ酸以下、または205アミノ酸以下の抗原タンパク質断片は特に好ましい。 An antigenic protein fragment refers to a portion of a protein that has antigenicity or immunogenicity, that is, a portion of a naturally occurring antigenic protein that is not the full length. The length of the antigen protein fragment can be selected as appropriate, but is preferably 70% or less, such as 60% or less, 50% or less (half or less), 40% or less, 35% or less of the length of the naturally occurring antigen protein. % or less, 30% or less, 25% or less, 20% or less, 15% or less, or 10% or less. Here, when a naturally occurring antigen protein is, for example, once produced as a proprotein (precursor) and exhibits its activity only after being cleaved, the protein after cleavage is regarded as a naturally occurring antigen protein, On the other hand, it is preferable to use fragments with lengths in the above proportions. For example, the spike protein (S) of a virus can be cleaved into S1 and S2. In this case, S1 and S2 are the full-length naturally occurring antigen proteins, and fragments having the above proportions of the length. can be used. Antigenic protein fragments are preferably 500 amino acids or less, such as 450 amino acids or less, 400 amino acids or less, 350 amino acids or less, 300 amino acids or less, 280 amino acids or less, 250 amino acids or less, or 230 amino acids or less. Particularly preferred are antigenic protein fragments of 220 amino acids or less, for example antigenic protein fragments of 215 amino acids or less, 210 amino acids or less, or 205 amino acids or less are particularly preferred.
 分泌シグナルと三量体形成ドメインをさらに含む融合タンパク質全体の長さは、例えば550アミノ酸以下、例えば500アミノ酸以下、450アミノ酸以下、400アミノ酸以下、350アミノ酸以下、330アミノ酸以下、300アミノ酸以下、または280アミノ酸以下である。特に270アミノ酸以下であることは好ましく、例えば265アミノ酸以下、260アミノ酸以下、または250アミノ酸以下であることは特に好ましい。 The total length of the fusion protein, which further comprises the secretory signal and the trimerization domain, is e.g. 550 amino acids or less, e.g. 280 amino acids or less. In particular, it is preferably 270 amino acids or less, and particularly preferably 265 amino acids or less, 260 amino acids or less, or 250 amino acids or less.
 融合タンパク質全体から分泌シグナルを除いた長さは、例えば550アミノ酸以下、例えば500アミノ酸以下、450アミノ酸以下、400アミノ酸以下、350アミノ酸以下、330アミノ酸以下、300アミノ酸以下、または280アミノ酸以下である。特に270アミノ酸以下であることは好ましく、例えば265アミノ酸以下、260アミノ酸以下、255アミノ酸以下、250アミノ酸以下、245アミノ酸以下、または240アミノ酸以下であることは特に好ましい。 The length of the entire fusion protein excluding the secretory signal is, for example, 550 amino acids or less, such as 500 amino acids or less, 450 amino acids or less, 400 amino acids or less, 350 amino acids or less, 330 amino acids or less, 300 amino acids or less, or 280 amino acids or less. In particular, it is preferably 270 amino acids or less, and particularly preferably 265 amino acids or less, 260 amino acids or less, 255 amino acids or less, 250 amino acids or less, 245 amino acids or less, or 240 amino acids or less.
 抗原タンパク質断片の由来に特に制限はなく、免疫応答を誘導したい所望のタンパク質を用いることができる。例えば、感染性微生物(バクテリア、真菌、ウイルスを含む)のタンパク質やがん特異的タンパク質を標的タンパク質として用いることができる。病原性の感染性微生物のタンパク質を抗原タンパク質として用いることで、当該病原性微生物に対する予防または治療に有用なワクチンを製造することができる。抗原タンパク質の由来としては、例えば膜タンパク質が有用であり、特に細胞外ドメインを有する膜タンパク質を好適な抗原タンパク質断片の由来として用いることができる。膜タンパク質としては、ウイルスが持つ膜タンパク質や、がん細胞で特異的に発現する膜タンパク質などが挙げられる。膜タンパク質の細胞外ドメインを標的とする場合、抗原タンパク質断片としては、当該細胞外ドメインの全部または一部、好ましくは一部が抗原タンパク質断片として用いられる。抗原タンパク質断片の長さは適宜選択することができるが、好ましくは、細胞外ドメイン全体の長さの70%以下、例えば60%以下、50%以下(半分以下)、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、または10%以下であってよい。 There are no particular restrictions on the origin of the antigen protein fragment, and any desired protein to induce an immune response can be used. For example, proteins of infectious microorganisms (including bacteria, fungi, viruses) and cancer-specific proteins can be used as target proteins. By using a protein of a pathogenic infectious microorganism as an antigen protein, a vaccine useful for prevention or treatment against the pathogenic microorganism can be produced. As the origin of the antigen protein, for example, a membrane protein is useful, and in particular, a membrane protein having an extracellular domain can be used as a suitable origin of the antigen protein fragment. Membrane proteins include membrane proteins possessed by viruses, membrane proteins specifically expressed in cancer cells, and the like. When targeting the extracellular domain of a membrane protein, all or part of the extracellular domain, preferably part, is used as the antigen protein fragment. The length of the antigen protein fragment can be selected as appropriate, but is preferably 70% or less, such as 60% or less, 50% or less (half or less), 40% or less, or 35% or less of the total extracellular domain length. , 30% or less, 25% or less, 20% or less, 15% or less, or 10% or less.
 なお本発明の融合タンパク質は、分泌され、膜外遊離可能なタンパク質であり、分泌される限りは膜貫通ドメインおよび/または膜アンカリングドメイン等の一部を含んでもよいが、好ましくは、膜貫通ドメインや、膜アンカリングドメインを含まない。例えば標的としたい抗原タンパク質が膜タンパク質である場合は、タンパク質を生体膜に留める働きを有するドメイン、例えば膜貫通ドメインや膜アンカリングドメインを含まない断片を抗原タンパク質断片として用いることが好ましい。 The fusion protein of the present invention is a protein that is secreted and can be released outside the membrane. It does not contain a domain or a membrane anchoring domain. For example, when the antigen protein to be targeted is a membrane protein, it is preferable to use as the antigen protein fragment a fragment that does not contain a domain that retains the protein in a biological membrane, such as a transmembrane domain or a membrane anchoring domain.
 本発明において好適な抗原タンパク質としては、エンベロープウイルスのタンパク質が挙げられる。ここでエンベロープウイルスとは、生体膜に由来する脂質二重膜のエンベロープを有するウイルスを言う。このようなウイルスとしては、RNAウイルス、DNAウイルス、レトロウイルス等が挙げられ、RNAウイルスとしては、SARSウイルスやMERS(中東呼吸器症候群)ウイルスを含むコロナウイルス(コロナウイルス科ウイルス)、インフルエンザウイルスを含むオルトミクソウイルス(オルトミクソウイルス科ウイルス)、C型肝炎ウイルス、日本脳炎ウイルス、ジカウイルスなどを含むフラビウイルス(フラビウイルス科ウイルス)、風疹ウイルスを含むトガウイルス(トガウイルス科ウイルス)、麻疹ウイルスやヒトRSウイルスなどを含むパラミクソウイルス(パラミクソウイルス科ウイルス)、狂犬病ウイルスなどを含むラブドウイルス(ラブドウイルス科ウイルス)、クリミア・コンゴ出血熱ウイルスなどを含むブニヤウイルス(ブニヤウイルス科ウイルス)、エボラウイルスやマールブルグウイルスなどを含むフィロウイルス(フィロウイルス科ウイルス)、D型肝炎ウイルスなどが挙げられる。 Suitable antigen proteins in the present invention include proteins of enveloped viruses. Here, an enveloped virus refers to a virus having an envelope of a lipid bilayer membrane derived from a biological membrane. Such viruses include RNA viruses, DNA viruses, retroviruses, etc. RNA viruses include coronaviruses (coronaviridae viruses) including SARS virus and MERS (Middle East Respiratory Syndrome) virus, and influenza virus. orthomyxovirus (orthomyxoviridae virus), hepatitis C virus, Japanese encephalitis virus, flavivirus (flaviviridae virus) including Zika virus, togavirus (togaviridae virus) including rubella virus, measles virus and paramyxoviridae viruses, including human respiratory syncytial virus, rhabdoviruses, including rabies virus, bunyaviridae viruses, including Crimean-Congo hemorrhagic fever virus, and Ebola virus. and filoviruses (Filoviridae viruses), including Marburg virus, hepatitis D virus, and the like.
 DNAウイルスとしては、水痘・帯状疱疹ウイルスなどを含むヘルペスウイルス(ヘルペスウイルス科ウイルス)、天然痘ウイルスなどを含むポックスウイルス(ポックスウイルス科ウイルス)、B型肝炎ウイルスなどを含むヘパドナウイルス(ヘパドナウイルス科ウイルス)が挙げられる。レトロウイルスとしては、ヒト免疫不全ウイルスや成人T白血病ウイルスなどのレンチウイルス(レンチウイルス属ウイルス)を含むレトロウイルス(レトロウイルス科ウイルス)が挙げられる。 DNA viruses include herpesviruses (herpesviridae viruses), including varicella-zoster virus, poxviruses (poxviridae viruses), including smallpox virus, and hepadnaviruses, including hepatitis B virus (hepadnavirus). viruses of the family Viridae). Retroviruses include retroviruses (Retroviridae viruses), including lentiviruses (viruses of the genus Lentivirus) such as human immunodeficiency virus and adult T leukemia virus.
 またウイルス由来の抗原としては、例えばプラス鎖RNAウイルスや一本鎖RNAウイルスのウイルスタンパク質が挙げられ、特に一本鎖のプラス鎖RNAウイルスのウイルスタンパク質を好適に用いることができる。そのようなウイルスとしては、具体的にはコロナウイルス、エンテロウイルス、風疹ウイルス、日本脳炎ウイルス、デング熱ウイルス、C型肝炎ウイルス、ノロウイルスなどが挙げられる。もっとも好適なウイルス抗原としては、コロナウイルス(コロナウイルス科ウイルス)、特にベータコロナウイルス属ウイルスが挙げられ、SARS-CoV-2を含むSARSウイルス、MERSウイルスが含まれる。具体的には、例えばSARS-CoV-2およびそこから派生するコロナウイルスが挙げられる。SARS-CoV-2は所望の株であってよく、株としては例えば2019-nCoV/Japan/TY/WK-521/2020 (accession number LC522975) が挙げられるが、これに限定されるものではない。 In addition, virus-derived antigens include, for example, viral proteins of positive-strand RNA viruses and single-stranded RNA viruses, and in particular, viral proteins of single-stranded positive-strand RNA viruses can be preferably used. Specific examples of such viruses include coronavirus, enterovirus, rubella virus, Japanese encephalitis virus, dengue fever virus, hepatitis C virus, norovirus, and the like. Most preferred viral antigens include coronaviruses (coronaviridae viruses), particularly betacoronaviruses, including SARS virus, including SARS-CoV-2, MERS virus. Specific examples include SARS-CoV-2 and coronaviruses derived therefrom. SARS-CoV-2 may be a desired strain, such as, but not limited to, 2019-nCoV/Japan/TY/WK-521/2020 (accession number LC522975).
 本発明において抗原タンパク質としては、特にエンベロープウイルスのスパイクタンパク質が挙げられ、抗原タンパク質断片として、スパイクタンパク質の細胞外領域の一部を含む断片を好適に用いることができる。例えばコロナウイルスのスパイク(S)タンパク質のアミノ酸配列としては、上記のSARS-CoV-2株のSタンパク質のアミノ酸配列(配列番号2)であるaccession number BCA25674.1 が挙げられ、コード配列としては上記accession number LC522975の21560~25378番目の塩基配列(配列番号1)が挙げられる。Sタンパク質およびそれをコードする核酸としては、上記に例示した塩基配列およびアミノ酸配列以外にも、他の株や種の相同遺伝子および相同蛋白質やそれらの変異体を用いてもよい。ここで相同とは、異なるウイルスのアミノ酸配列において対応するものを言い、例えばコンピュータープログラムなどを用いて塩基配列やアミノ酸配列の相同性を検索したりアライメントを作成したりすることにより当業者であれば容易に同定することができる。これらの核酸およびタンパク質は、例えば上に例示した塩基配列およびアミノ酸配列と比較して1または複数(例えば数個、3個以内、5個以内、10個以内、15個以内、20個以内)のそれぞれ塩基およびアミノ酸が付加、欠失、置換、および/または挿入された配列を有しているものが含まれる。そうした塩基配列およびアミノ酸配列は、通常、上に例示した塩基配列およびアミノ酸配列と高い同一性を示す。例えば本発明においては、配列番号1や2と高い同一性を持つものを好適に用いることができる。 In the present invention, the antigen protein particularly includes the envelope virus spike protein, and as the antigen protein fragment, a fragment containing a part of the extracellular region of the spike protein can be preferably used. For example, the amino acid sequence of the coronavirus spike (S) protein includes the above SARS-CoV-2 strain S protein amino acid sequence (SEQ ID NO: 2), accession number BCA25674.1, and the coding sequence 21560th to 25378th base sequences of accession number LC522975 (SEQ ID NO: 1). As the S protein and the nucleic acid encoding it, in addition to the nucleotide sequences and amino acid sequences exemplified above, homologous genes and proteins of other strains and species, and variants thereof may be used. Here, homology refers to corresponding amino acid sequences of different viruses. can be easily identified. These nucleic acids and proteins are, for example, one or more (for example, several, within 3, within 5, within 10, within 15, within 20) compared to the base sequences and amino acid sequences exemplified above. Those having sequences with additions, deletions, substitutions, and/or insertions of bases and amino acids, respectively, are included. Such base sequences and amino acid sequences usually exhibit a high degree of identity with the base sequences and amino acid sequences exemplified above. For example, in the present invention, those having high identity with SEQ ID NOs: 1 and 2 can be preferably used.
 高い同一性とは、例えば70%以上、75%以上、80%以上、85%以上、90%以上、93%以上、95%以上、または96%以上の同一性を有する配列である。塩基配列やアミノ酸配列の同一性は、例えばBLASTNおよびBLASTPプログラム(Altschul, S. F. et al., J. Mol. Biol. 215: 403-410, 1990)を用いて決定することができる。例えばNCBI(National Center for Biothchnology Information)のBLASTのウェブページにおいて、デフォルトのパラメータを用いて検索を行うことができる(Altschul S.F. et al., Nature Genet. 3:266-272, 1993; Madden, T.L. et al., Meth. Enzymol. 266:131-141, 1996; Altschul S.F. et al., Nucleic Acids Res. 25:3389-3402, 1997; Zhang J. & Madden T.L., Genome Res. 7:649-656, 1997)。例えば2つの配列の比較を行うblast2sequencesプログラム(Tatiana A et al., FEMS Microbiol Lett. 174:247-250, 1999)により、2配列のアライメントを作成し、配列の同一性を決定することができる。ギャップはミスマッチと同様に扱い、上記の抗原遺伝子または蛋白質分子の塩基配列またはアミノ酸配列全体に対する同一性の値を計算する。具体的には、たとえばある蛋白質 (分泌蛋白質の場合は成熟型) の全アミノ酸数における一致するアミノ酸数の割合を計算する。あるいは当該蛋白質(分泌蛋白質の場合は成熟型)をコードする塩基配列の全塩基数における一致する塩基数の割合を計算する。配列番号2、4、6、または8と高い同一性を持つアミノ酸配列含むコロナウイルス抗原、および配列番号1、3、5、または7と高い同一性を持つ塩基配列を含むコロナウイルス抗原遺伝子は、本発明のワクチンにおいて好適に使用することができる。 A high identity is, for example, a sequence with 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 93% or more, 95% or more, or 96% or more identity. The identity of nucleotide sequences and amino acid sequences can be determined using, for example, the BLASTN and BLASTP programs (Altschul, S. F. et al., J. Mol. Biol. 215: 403-410, 1990). For example, a search can be performed using the default parameters on the BLAST web page of the NCBI (National Center for Biochnology Information) (Altschul S.F. et al., Nature Genet. 3:266-272, 1993; Madden, T.L. et al. al., Meth. Enzymol. 266:131-141, 1996; Altschul S.F. et al., Nucleic Acids Res. 25:3389-3402, 1997; Zhang J. & Madden T.L., Genome Res. 7:649-656, 1997 ). For example, the blast2sequences program (Tatiana A et al., FEMS Microbiol Lett. 174:247-250, 1999), which compares two sequences, can be used to generate a two-sequence alignment and determine sequence identity. A gap is treated in the same manner as a mismatch, and the identity value for the entire nucleotide sequence or amino acid sequence of the antigen gene or protein molecule is calculated. Specifically, for example, the ratio of the number of matching amino acids to the total number of amino acids of a certain protein (mature type in the case of a secretory protein) is calculated. Alternatively, the ratio of the number of matching bases to the total number of bases of the base sequence encoding the protein (in the case of a secretory protein, the mature form) is calculated. A coronavirus antigen comprising an amino acid sequence highly identical to SEQ ID NO: 2, 4, 6, or 8, and a coronavirus antigen gene comprising a nucleotide sequence highly identical to SEQ ID NO: 1, 3, 5, or 7, It can be preferably used in the vaccine of the present invention.
 また本発明の抗原蛋白質は、上に例示したコロナウイルス抗原遺伝子の塩基配列の一部または全部を含む核酸あるいはその相補配列からなる核酸とストリンジェントな条件でハイブリダイズする核酸がコードする蛋白質であって、抗原性を有する蛋白質が挙げられる。ハイブリダイゼーションにおいては、例えば抗原蛋白質遺伝子のコード領域の配列またはその相補配列を含む核酸、またはハイブリダイズの対象とする核酸のどちらかからプローブを調製し、それが他方の核酸にハイブリダイズするかを検出することにより同定することができる。ストリンジェントなハイブリダイゼーションの条件は、例えば 5xSSC、7%(W/V) SDS、100 μg/ml 変性サケ精子DNA、5xデンハルト液(1xデンハルト溶液は0.2%ポリビニルピロリドン、0.2%牛血清アルブミン、及び0.2%フィコールを含む)を含む溶液中、50℃、好ましくは55℃、より好ましくは60℃、より好ましくは65℃でハイブリダイゼーションを行い、その後ハイブリダイゼーションと同じ温度で2xSSC中、好ましくは1xSSC中、より好ましくは0.5xSSC中、より好ましくは0.1xSSC中で、振蘯しながら2時間洗浄する条件である。具体的には例えば配列番号1、3、5、または7の塩基配列を持つ核酸の一部または全部あるいはその相補配列からなる核酸とストリンジェントな条件でハイブリダイズする核酸がコードする蛋白質であって、抗原性を有する蛋白質は、本発明の抗原として有用である。 The antigen protein of the present invention is a protein encoded by a nucleic acid that hybridizes under stringent conditions with a nucleic acid comprising a part or all of the nucleotide sequence of the coronavirus antigen gene exemplified above or a nucleic acid comprising a complementary sequence thereof. Examples include proteins having antigenicity. In hybridization, for example, a probe is prepared from either a nucleic acid containing the coding region sequence of an antigen protein gene or its complementary sequence, or a nucleic acid to be hybridized, and whether it hybridizes to the other nucleic acid is examined. It can be identified by detection. Stringent hybridization conditions are, for example, 5x SSC, 7% (W/V) SDS, 100 μg/ml denatured salmon sperm DNA, 5x Denhardt's solution (1x Denhardt's solution contains 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin, and (containing 0.2% Ficoll) at 50°C, preferably 55°C, more preferably 60°C, more preferably 65°C, followed by hybridization at the same temperature in 2xSSC, preferably in 1xSSC , more preferably in 0.5xSSC, more preferably in 0.1xSSC, with shaking for 2 hours. Specifically, for example, a protein encoded by a nucleic acid that hybridizes under stringent conditions with a nucleic acid comprising part or all of the nucleic acid having the nucleotide sequence of SEQ ID NO: 1, 3, 5, or 7 or a complementary sequence thereof. , antigenic proteins are useful as antigens of the present invention.
 本発明のベクターにおいては、抗原タンパク質は、標的としたい部位を含む短い断片として用いることが好ましい。上述のとおり、例えばウイルスに対する感染を予防する中和効果を期待するワクチンとして用いる場合は、中和活性を有する抗体を誘導し、それ以外の抗体(非中和抗体)をなるべく誘導しないように、標的部位を含むなるべく短い抗原断片を用いることが望ましい。例えばウイルスのスパイクタンパク質等においては、宿主細胞結合ドメインを含む細胞外領域の断片が好ましく、例えばウイルスが宿主細胞の受容体に結合または相互作用して感染する場合、当該受容体に対する受容体結合ドメイン(RBD)を含む断片を用いることができる。例えば宿主細胞のACE2に結合または相互作用して感染するウイルスにおいては、ウイルスタンパク質のACE2結合ドメインを好適に用いることができる。 In the vector of the present invention, the antigen protein is preferably used as a short fragment containing the target site. As described above, for example, when used as a vaccine that is expected to have a neutralizing effect to prevent infection with viruses, it is necessary to induce antibodies with neutralizing activity and not induce other antibodies (non-neutralizing antibodies) as much as possible. It is desirable to use the shortest possible antigen fragment containing the target site. For example, in viral spike proteins and the like, fragments of extracellular regions containing host cell-binding domains are preferred. Fragments containing (RBD) can be used. For example, in a virus that binds to or interacts with ACE2 of host cells to infect, the ACE2-binding domain of the viral protein can be preferably used.
 SARS-CoV-2の場合、RBDはスパイクタンパク質(例えば配列番号2)の319~545番目のアミノ酸配列中に存在している。よって、このアミノ酸配列からなる断片や、このアミノ酸配列を含むスパイクタンパク質の断片、あるいは、このアミノ酸配列の部分配列や、当該部分配列を含むスパイクタンパク質の断片等を用いることができる。例えば328~531番目のアミノ酸配列からなる断片で、有効性の高い中和抗体が産生される。よって、328~531番目のアミノ酸配列からなる断片や、このアミノ酸配列を含むスパイクタンパク質の断片、あるいは、このアミノ酸配列の部分配列、当該部分配列を含むスパイクタンパク質の断片等を好適に用いることができる。ここで部分配列は、中和抗体を産生できるかぎり制限はなく、例えば319~545番目のアミノ酸配列または328~531番目のアミノ酸配列のうちの20%またはそれ以上、30%またはそれ以上、40%またはそれ以上、50%またはそれ以上、60%またはそれ以上、70%またはそれ以上、80%またはそれ以上、あるいは90%またはそれ以上であってよく、例えば20アミノ酸またはそれ以上、30アミノ酸またはそれ以上、40アミノ酸またはそれ以上、50アミノ酸またはそれ以上、60アミノ酸またはそれ以上、70アミノ酸またはそれ以上、80アミノ酸またはそれ以上、90アミノ酸またはそれ以上、100アミノ酸またはそれ以上、120アミノ酸またはそれ以上、150アミノ酸またはそれ以上、180アミノ酸またはそれ以上、あるいは200アミノ酸またはそれ以上であってよい。上記319~545番目のアミノ酸配列の一例を配列番号4に、そのコード配列の一例を配列番号3に示す。また上記328~531番目のアミノ酸配列の一例を配列番号6に、そのコード配列の一例を配列番号5に示す。  In the case of SARS-CoV-2, the RBD is present in the 319th to 545th amino acid sequences of the spike protein (eg, SEQ ID NO: 2). Therefore, a fragment consisting of this amino acid sequence, a spike protein fragment containing this amino acid sequence, a partial sequence of this amino acid sequence, a spike protein fragment containing this partial sequence, or the like can be used. For example, a fragment consisting of the 328th to 531st amino acid sequences produces a highly effective neutralizing antibody. Therefore, a fragment consisting of the 328th to 531st amino acid sequences, a spike protein fragment containing this amino acid sequence, a partial sequence of this amino acid sequence, a spike protein fragment containing this partial sequence, or the like can be preferably used. . Here, the partial sequence is not limited as long as it can produce a neutralizing antibody, for example, 20% or more, 30% or more, 40% of the 319th to 545th amino acid sequence or the 328th to 531st amino acid sequence or more, 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more, such as 20 amino acids or more, 30 amino acids or more 40 amino acids or more, 50 amino acids or more, 60 amino acids or more, 70 amino acids or more, 80 amino acids or more, 90 amino acids or more, 100 amino acids or more, 120 amino acids or more, It may be 150 amino acids or more, 180 amino acids or more, or 200 amino acids or more. An example of the above amino acid sequence from 319th to 545th is shown in SEQ ID NO:4, and an example of its coding sequence is shown in SEQ ID NO:3. An example of the above amino acid sequence from 328th to 531st is shown in SEQ ID NO:6, and an example of its coding sequence is shown in SEQ ID NO:5.
 なお、抗原タンパク質断片のアミノ酸またはそのコード配列は、適宜変異を加えてもよい。例えば上に例示したアミノ酸配列(例えば配列番号2、4または6)またはそのコード配列(例えば配列番号1、3または5)と比較して1または複数(例えば数個、好ましくは30個以内、20個以内、10個以内、8個以内、7個以内、5個以内、3個以内、2個以内、または1個)のアミノ酸または塩基が付加、欠失、置換、および/または挿入された配列を有しているものを用いることもできる。そうしたアミノ酸配列または塩基配列は、通常、上に例示したアミノ酸配列または塩基配列と高い同一性(例えば70%以上、75%以上、80%以上、85%以上、90%以上、93%以上、95%以上、または96%以上の同一性)を示す。例えば本発明においては、配列番号1~6と高い同一性を持つものを好適に用いることができる。高い同一性を有するかどうかは、上記のとおりに決定することができる。このような抗原タンパク質断片は、SARS-CoV-2を標的とする免疫を惹起させるために有用である。 The amino acid of the antigen protein fragment or its coding sequence may be appropriately mutated. For example, one or more (e.g. several, preferably within 30, 20 sequences in which no more than 10, no more than 8, no more than 7, no more than 5, no more than 3, no more than 2, or 1 amino acid or base are added, deleted, substituted, and/or inserted can also be used. Such amino acid sequences or base sequences usually have a high degree of identity (e.g., 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 93% or more, 95% or more) to the amino acid sequences or base sequences exemplified above. % or greater than 96% identity). For example, in the present invention, those having high identity with SEQ ID NOS: 1-6 can be preferably used. High identity can be determined as described above. Such antigenic protein fragments are useful for eliciting immunity targeting SARS-CoV-2.
 本発明において用いられる分泌シグナルは、本発明の融合タンパク質を細胞外に分泌させることができるかぎり所望のペプチドを用いることができる。抗原タンパク質がもともと分泌シグナルを有する場合は、その分泌シグナルを用いることができる。例えばSARS-CoV-2のスパイクタンパク質は、先頭の13ペプチド(配列番号8;塩基配列は配列番号7)が分泌シグナルに相当する。例えば、これを抗原タンパク質断片(例えばRBDドメインまたはその断片、あるいはRBDドメインまたはその断片を含むポリペプチド)に付加することで、抗原タンパク質断片を分泌可能とすることができる。しかし本発明はこれに限定されるものではなく、他の所望の分泌タンパク質の分泌シグナルを用いてもよい。 A desired peptide can be used as the secretion signal used in the present invention as long as it can extracellularly secrete the fusion protein of the present invention. If the antigen protein originally has a secretion signal, that secretion signal can be used. For example, in the SARS-CoV-2 spike protein, the first 13 peptides (SEQ ID NO: 8; base sequence: SEQ ID NO: 7) correspond to the secretion signal. For example, by adding it to an antigen protein fragment (eg, the RBD domain or fragment thereof, or a polypeptide comprising the RBD domain or fragment thereof), the antigen protein fragment can be made secretable. However, the present invention is not limited to this, and secretion signals for other desired secretory proteins may be used.
 本発明において用いられる三量体形成ドメインは、本発明の融合タンパク質を三量体化させることができるかぎり所望のドメインを用いることができる。好ましくは、T4ファージfibritinの三量体形成ドメイン(foldon)が用いられる。Foldonとしては、例えば配列番号10のアミノ酸配列またはその部分配列を含み、三量体形成活性を有するポリペプチドを用いることができる。コード配列としては配列番号9を例示できるが、これに限定されるものではない。foldon配列は当業者にはよく知られており、様々な改変体も作製され使用されている。それらの改変体も本発明においてはfoldonと総称する。 As the trimerization domain used in the present invention, any desired domain can be used as long as it can trimerize the fusion protein of the present invention. Preferably, the trimerization domain (foldon) of the T4 phage fibritin is used. For Foldon, for example, a polypeptide containing the amino acid sequence of SEQ ID NO: 10 or a partial sequence thereof and having trimerization activity can be used. SEQ ID NO: 9 can be exemplified as a coding sequence, but it is not limited to this. Foldon sequences are well known to those skilled in the art, and various variants have been made and used. These variants are also collectively referred to as foldon in the present invention.
 他ファージ由来のfoldon配列はnucleotide及びprotein databaseをサーチすることによって容易に特定される(例えば、Enterobacteria phage phiC600P9, Escherichia phage vB_EcoM_FJ1, これらのファージ由来のfoldon配列)。本発明においては、これらの三量体形成ドメインを適宜用いることができる。Foldon以外の三量体形成の機能を持つ、GCN4 Leucine-zipper (Harbury, P. B. et al., A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262: 1401-1407, 1993), Lung surfactant protein由来のtrimerization motif (Hoppe, H. J.et al., A parallel three stranded alpha-helical bundle at the nucleation site of collagen triplehelix formation. FEBS Lett 344: 191-195, 1994), Collagen superfamily由来のtrimerization motif (McAlinden, A.et al., Alpha-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily. J Biol Chem 278: 42200-42207,2003)などが報告されている。本発明においては、これらを含む、Foldon以外の三量体形成ドメインを適宜用いることもできる。 Foldon sequences derived from other phages are easily identified by searching nucleotide and protein databases (eg, Enterobacteria phage phiC600P9, Escherichia phage vB_EcoM_FJ1, foldon sequences derived from these phages). In the present invention, these trimerization domains can be used as appropriate. GCN4 Leucine-zipper (Harbury, P. B. et al., A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262 : 1401-1407, 1993), Lung surfactant protein-derived trimerization motif (Hoppe, H. J.et al., A parallel three stranded alpha-helical bundle at the nucleation site of collagen triplehelix formation. FEBS Lett 344: 191-195 , 1994), trimerization motif derived from the Collagen superfamily (McAlinden, A. et al., Alpha-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily. J Biol Chem 278: 42200-42207, 2003). ing. In the present invention, trimerization domains other than Foldon, including these, can also be used as appropriate.
 三量体形成ドメインは、抗原タンパク質断片に適宜付加してよく、例えば抗原タンパク質断片のN末端またはC末端に付加することができる。例えば抗原タンパク質断片が由来する標的抗原タンパク質が膜タンパク質である場合、元々のタンパク質において膜に近い側に三量体形成ドメインを付加してよい。例えば三量体形成ドメインは、抗原タンパク質断片のC末端に付加することができる。本発明の融合タンパク質は、好ましくは分泌シグナル、抗原タンパク質断片、および三量体形成ドメインをこの順番で含む。 The trimerization domain may be added to the antigen protein fragment as appropriate, for example, to the N-terminus or C-terminus of the antigen protein fragment. For example, when the target antigen protein from which the antigenic protein fragment is derived is a membrane protein, a trimerization domain may be added to the original protein on the membrane-proximal side. For example, a trimerization domain can be added to the C-terminus of the antigenic protein fragment. A fusion protein of the invention preferably comprises, in that order, a secretory signal, an antigenic protein fragment, and a trimerization domain.
 抗原タンパク質断片を含む本発明の融合タンパク質は、それをコードする核酸を含むベクターから発現させることができる。核酸は、その形態に制限はなく、DNAであってもRNAであってもよい。 The fusion protein of the present invention containing an antigenic protein fragment can be expressed from a vector containing a nucleic acid encoding it. Nucleic acid is not limited in its form, and may be DNA or RNA.
 本発明においてベクターとは、核酸を細胞に導入する担体である。また本発明において発現ベクターとは、核酸を細胞に導入する担体であって、導入された細胞において該核酸に搭載された遺伝子を発現する能力を持つベクターである。なお本発明において発現ベクターは、導入された細胞において、当該ベクターから新たな核酸が生成されるものを言う。ここで新たな核酸が生成されるとは、ベクターが導入された細胞において、ベクターに含まれる核酸を鋳型として新たな核酸が合成(生合成)されることをいう。ベクターに含まれる核酸が単に修飾されることや、ベクターに含まれる核酸が分解されて分解産物が生じることや、切断されて切断産物が生成されることは、新たな核酸の生成には含まれない。例えば本発明において発現ベクターとは、それが導入された細胞において、当該ベクターに含まれる核酸が複製および/または転写されたり、当該ベクターに含まれる核酸を鋳型に機能的RNAやmRNA等が生成されたりするものである。機能的RNAやmRNAそのもの、あるいはそれを含む組成物(脂質混合物や、脂質膜カプセル等を含む)は、導入された細胞において新たな核酸が生成されず、本発明において発現ベクターではない。 A vector in the present invention is a carrier that introduces a nucleic acid into a cell. In the present invention, an expression vector is a carrier for introducing a nucleic acid into a cell, and is a vector capable of expressing a gene incorporated in the nucleic acid in the introduced cell. In the present invention, an expression vector means a vector into which a new nucleic acid is produced in a cell into which it has been introduced. Here, the production of a new nucleic acid means synthesis (biosynthesis) of a new nucleic acid using the nucleic acid contained in the vector as a template in a cell into which the vector has been introduced. Mere modification of the nucleic acid contained in the vector, decomposition of the nucleic acid contained in the vector to generate degradation products, and cleavage to generate cleavage products are not included in the generation of new nucleic acids. do not have. For example, in the present invention, an expression vector means that a nucleic acid contained in the vector is replicated and/or transcribed in a cell into which it has been introduced, or a functional RNA, mRNA, or the like is produced using the nucleic acid contained in the vector as a template. It is something to do. Functional RNA or mRNA itself, or compositions containing them (including lipid mixtures, lipid membrane capsules, etc.) do not produce new nucleic acids in the cells into which they are introduced, and are not expression vectors in the present invention.
 ベクターの形態に特に制限はなく、プラスミド、ウイルスベクター、非ウイルスベクター(例えば自己増幅型RNA)など所望のベクターを使用することができる。DNAベクターから発現させる場合は、適宜所望のプロモーターから発現させることができる。プロモーターとしては、例えばCMVプロモーター、CAGプロモーター、SV40プロモーター、RSVプロモーター、EF1αプロモーター、SRαプロモーターなどを用いることができるが、これらに限定されない。 There are no particular restrictions on the form of the vector, and any desired vector such as a plasmid, viral vector, or non-viral vector (eg, self-amplifying RNA) can be used. When expressed from a DNA vector, it can be expressed from any desired promoter. Examples of promoters that can be used include, but are not limited to, CMV promoter, CAG promoter, SV40 promoter, RSV promoter, EF1α promoter, and SRα promoter.
 本発明においては、好ましくはウイルスベクターが用いられる。「ウイルスベクター」は、当該ウイルスに由来するゲノム核酸を有し、該ゲノム核酸に導入遺伝子を組み込むこと等により、ウイルスベクターを細胞に導入後、該遺伝子を発現させることができるベクターである。ウイルスベクターとしてはアデノウイルスベクター、アデノ随伴ウイルスベクター、HSVベクター、レトロウイルスベクター(レンチウイルスベクターを含む)、およびマイナス鎖RNAウイルスベクター(パラミクソウイルスベクター、特にセンダイウイルスベクターを含む)などが挙げられる。本発明においては、ウイルスベクターとしてはマイナス鎖RNAウイルスベクターを用いることが最も好ましい。 A viral vector is preferably used in the present invention. A "viral vector" is a vector that has a genomic nucleic acid derived from the virus, and that can express the gene after the viral vector is introduced into a cell by, for example, integrating a transgene into the genomic nucleic acid. Viral vectors include adenoviral vectors, adeno-associated viral vectors, HSV vectors, retroviral vectors (including lentiviral vectors), and negative-strand RNA viral vectors (including paramyxoviral vectors, particularly Sendai virus vectors). . In the present invention, it is most preferable to use a minus-strand RNA viral vector as the viral vector.
 ウイルスベクターは、複製能を持つベクターであってもよいが、好ましくは複製不能型(複製能欠失型)のウイルスベクターが用いられる。本発明のウイルスにおいて複製不能(あるいは「複製能欠失」または「複製欠失」)とは、ウイルスベクターが感染した細胞において、感染性ウイルス粒子を複製できないことをいい、感染した細胞においてウイルスゲノムが複製するとしても、感染性ウイルス粒子を複製できないかぎり、複製不能型(複製能欠失型)と判断される。例えばウイルスゲノムから感染性ウイルス粒子の形成に必須の遺伝子、具体的にはウイルス粒子表面に存在する蛋白質(例えばパラミクソウイルスであればF、HN等のエンベロープ蛋白質)の遺伝子を欠失または欠損させることにより、複製能を欠失したウイルスを取得することができる。 The viral vector may be a replication-incompetent vector, but preferably a replication-incompetent (replication-deficient) viral vector is used. In the virus of the present invention, replication-incompetent (or “replication-deficient” or “replication-deficient”) refers to the inability to replicate infectious viral particles in cells infected with the viral vector, and the viral genome in the infected cells. Even if the virus replicates, it is judged to be replication-incompetent (replication-deficient) unless it can replicate infectious virus particles. For example, genes essential for the formation of infectious virus particles, specifically proteins present on the surface of virus particles (for example, envelope proteins such as F and HN in the case of paramyxoviruses) are deleted or deleted from the virus genome. Thus, a replication-deficient virus can be obtained.
 本発明においてマイナス鎖RNAウイルスベクターを用いる場合、用いられるマイナス鎖RNAウイルスベクターに特に制限はないが、例えばパラミクソウイルスベクターを好適に用いることができる。パラミクソウイルスとはパラミクソウイルス科(Paramyxoviridae)に属するウイルスまたはその誘導体を指す。パラミクソウイルス科は、非分節型ネガティブ鎖RNAをゲノムに持つモノネガウイルスグループの1つで、パラミクソウイルス亜科(Paramyxovirinae)(レスピロウイルス属(パラミクソウイルス属とも言う)、ルブラウイルス属、およびモービリウイルス属を含む)およびニューモウイルス亜科(Pneumovirinae)(ニューモウイルス属およびメタニューモウイルス属を含む)を含む。パラミクソウイルス科ウイルスに含まれるウイルスとして、具体的にはセンダイウイルス(Sendai virus)、ニューカッスル病ウイルス(Newcastle disease virus)、おたふくかぜウイルス(Mumps virus)、麻疹ウイルス(Measles virus)、RSウイルス(Respiratory syncytial virus)、牛疫ウイルス(rinderpest virus)、ジステンパーウイルス(distemper virus)、サルパラインフルエンザウイルス(SV5)、ヒトパラインフルエンザウイルス1, 2, 3型等が挙げられる。より具体的には、例えば Sendai virus (SeV)、human parainfluenza virus-1 (HPIV-1)、human parainfluenza virus-3 (HPIV-3)、phocine distemper virus (PDV)、canine distemper virus (CDV)、dolphin molbillivirus (DMV)、peste-des-petits-ruminants virus (PDPR)、measles virus (MeV)、rinderpest virus (RPV)、Hendra virus (Hendra)、Nipah virus (Nipah)、human parainfluenza virus-2 (HPIV-2)、simian parainfluenza virus 5 (SV5)、human parainfluenza virus-4a (HPIV-4a)、human parainfluenza virus-4b (HPIV-4b)、mumps virus (Mumps)、およびNewcastle disease virus (NDV) などが含まれる。ラブドウイルスとしては、ラブドウイルス科(Rhabdoviridae)の水疱性口内炎ウイルス(Vesicular stomatitis virus)、狂犬病ウイルス(Rabies virus)等が含まれる。 When using a minus-strand RNA viral vector in the present invention, the minus-strand RNA viral vector to be used is not particularly limited, but for example, a paramyxovirus vector can be preferably used. Paramyxovirus refers to viruses belonging to the family Paramyxoviridae or derivatives thereof. The family Paramyxoviridae is a member of the Mononegavirus group with non-segmented negative-strand RNA in the genome, and belongs to the subfamily Paramyxovirinae (genus Respirovirus (also called genus Paramyxovirus), genus Rubulavirus). , and the genera Mobilivirus) and the subfamily Pneumovirinae (including the genera Pneumovirus and Metapneumovirus). Viruses included in Paramyxoviridae viruses include, specifically, Sendai virus, Newcastle disease virus, Mumps virus, Measles virus, Respiratory syncytial virus. virus), rinderpest virus, distemper virus, simian parainfluenza virus (SV5), human parainfluenza virus types 1, 2, and 3. More specifically, for example Sendai virus (SeV), human parainfluenza virus-1 (HPIV-1), human parainfluenza virus-3 (HPIV-3), phocine distemper virus (PDV), canine distemper virus (CDV), dolphin molbillivirus (DMV), peste-des-petits-ruminants virus (PDPR), measles virus (MeV), rinderpest virus (RPV), Hendra virus (Hendra), Nipah virus (Nipah), human parainfluenza virus-2 (HPIV-2 ), simian parainfluenza virus 5 (SV5), human parainfluenza virus-4a (HPIV-4a), human parainfluenza virus-4b (HPIV-4b), mumps virus (Mumps), and Newcastle disease virus (NDV). Rhabdoviruses include Vesicular stomatitis virus, Rabies virus, etc. of the Rhabdoviridae family.
 なおパラミクソウイルスを含め一般にマイナス鎖RNAウイルスのゲノムRNAはマイナス鎖(ネガティブ鎖)であり、蛋白質等はゲノムRNA上にアンチセンス配列としてコードされている。本発明においては、このような場合も蛋白質を「コードしている」と称す。また、蛋白質がマイナス鎖RNAゲノムにアンチセンス配列としてコードされているとき、当該蛋白質の遺伝子が当該ゲノムに搭載されているとも称す。マイナス鎖RNAウイルスのゲノム(マイナス鎖)の「上流」とはゲノムの3’側を指し、「下流」とは5’側を指す。マイナス鎖RNAゲノムを鋳型としてプラス鎖(ポジティブ鎖)RNAゲノム(アンチゲノムとも言う)が複製される他、マイナス鎖RNAゲノムを鋳型として転写が起こり、センス鎖のRNAが生成される。本発明においては、マイナス鎖RNAゲノムおよびプラス鎖RNAゲノムを「ゲノム」と総称することがある。 In general, the genomic RNA of minus-strand RNA viruses, including paramyxoviruses, is the minus strand (negative strand), and proteins, etc. are encoded as antisense sequences on the genomic RNA. In the present invention, such cases are also referred to as "encoding" the protein. In addition, when a protein is encoded as an antisense sequence in the minus-strand RNA genome, it is also said that the gene for the protein is incorporated in the genome. "Upstream" of the genome (minus strand) of a negative-strand RNA virus refers to the 3' side of the genome, and "downstream" refers to the 5' side. Using the minus-strand RNA genome as a template, plus-strand (positive-strand) RNA genome (also called antigenome) is replicated, and transcription occurs using the minus-strand RNA genome as a template to generate sense-strand RNA. In the present invention, the minus-strand RNA genome and the plus-strand RNA genome are sometimes collectively referred to as "genomes".
 パラミクソウイルスベクターは、染色体非組み込み型ウイルスベクターであって、ベクターは細胞質中で発現されるので、導入遺伝子が宿主の染色体(核由来染色体)に組み込まれる危険性がない。従って安全性が高く、また感染細胞からベクターを除去することが可能である。本発明においてパラミクソウイルスベクターには、感染性ウイルス粒子の他、ウイルスコア、ウイルスゲノムとウイルス蛋白質との複合体、または非感染性ウイルス粒子などからなる複合体であって、細胞に導入することにより搭載する遺伝子を発現する能力を持つ複合体が含まれる。例えばパラミクソウイルスにおいて、パラミクソウイルスゲノムとそれに結合するパラミクソウイルス蛋白質(NP、P、およびL蛋白質)からなるリボヌクレオ蛋白質(ウイルスのコア部分)は、細胞に導入することにより細胞内で導入遺伝子を発現することができる(WO00/70055)。細胞への導入は、適宜トランスフェクション試薬等を用いて行えばよい。このようなリボヌクレオ蛋白質(RNP)も本発明においてパラミクソウイルスベクターに含まれる。本発明においてパラミクソウイルスベクターは、好ましくは上記のRNPが細胞膜由来の生体膜に包まれた粒子である。 A paramyxovirus vector is a chromosomal non-integrating virus vector, and since the vector is expressed in the cytoplasm, there is no risk of the transgene being integrated into the host's chromosome (nuclear-derived chromosome). Therefore, the safety is high, and the vector can be removed from infected cells. In the present invention, paramyxovirus vectors include not only infectious viral particles, but also viral cores, complexes of viral genomes and viral proteins, complexes composed of non-infectious viral particles, etc., which are introduced into cells. Included are complexes that are capable of expressing genes carried by the . For example, in paramyxoviruses, the ribonucleoprotein (virus core portion), which consists of the paramyxovirus genome and the paramyxovirus proteins (NP, P, and L proteins) that bind to it, is introduced into the cell to produce a transgene within the cell. (WO00/70055). Introduction into cells may be performed using an appropriate transfection reagent or the like. Such ribonucleoproteins (RNPs) are also included in the paramyxovirus vectors of the present invention. In the present invention, the paramyxovirus vector is preferably a particle in which the RNP described above is derived from the cell membrane and wrapped in a biomembrane.
 本発明の発現ベクターとしてパラミクソウイルスベクターを用いる場合、パラミクソウイルスとして特に好ましいのはパラミクソウイルス亜科(レスピロウイルス属、ルブラウイルス属、およびモービリウイルス属を含む)に属するウイルスであり、より好ましくはレスピロウイルス属(genus Respirovirus)(パラミクソウイルス属(Paramyxovirus)とも言う)に属するウイルスである。本発明を適用可能なレスピロウイルス属ウイルスとしては、例えばヒトパラインフルエンザウイルス1型(HPIV-1)、ヒトパラインフルエンザウイルス3型(HPIV-3)、ウシパラインフルエンザウイルス3型(BPIV-3)、センダイウイルス(Sendai virus; マウスパラインフルエンザウイルス1型とも呼ばれる)、麻疹ウイルス、サルパラインフルエンザウイルス(SV5)、およびサルパラインフルエンザウイルス10型(SPIV-10)などが含まれる。本発明においてパラミクソウイルスは、最も好ましくはセンダイウイルスである。 When a paramyxovirus vector is used as the expression vector of the present invention, particularly preferred paramyxoviruses are viruses belonging to the subfamily Paramyxovirinae (including the genera Respirovirus, Rubulavirus, and Mobilivirus). , more preferably a virus belonging to the genus Respirovirus (also referred to as the genus Paramyxovirus). Respirovirus viruses to which the present invention can be applied include, for example, human parainfluenza virus type 1 (HPIV-1), human parainfluenza virus type 3 (HPIV-3), and bovine parainfluenza virus type 3 (BPIV-3). , Sendai virus (also called murine parainfluenza virus type 1), measles virus, simian parainfluenza virus (SV5), and simian parainfluenza virus type 10 (SPIV-10). In the present invention, the paramyxovirus is most preferably Sendai virus.
 パラミクソウイルスは、一般に、エンベロープの内部にRNAとタンパク質からなる複合体(リボヌクレオプロテイン; RNP)を含んでいる。RNPに含まれるRNAはパラミクソウイルスのゲノムである(-)鎖(ネガティブ鎖)の一本鎖RNAであり、この一本鎖RNAが、NPタンパク質、Pタンパク質、およびLタンパク質と結合し、RNPを形成している。このRNPに含まれるRNAがウイルスゲノムの転写および複製のための鋳型となる(Lamb, R.A., and D. Kolakofsky, 1996, Paramyxoviridae: The viruses and their replication. pp.1177-1204. In Fields Virology, 3rd edn. Fields, B. N., D. M. Knipe, and P. M. Howley et al. (ed.), Raven Press, New York, N. Y.)。 Paramyxoviruses generally contain a complex consisting of RNA and protein (ribonucleoprotein; RNP) inside the envelope. The RNA contained in RNP is a single-stranded RNA of (-) strand (negative strand), which is the genome of Paramyxovirus, and this single-stranded RNA binds to NP protein, P protein, and L protein to forming The RNA contained in this RNP serves as a template for transcription and replication of the viral genome (Lamb, R.A., and D. Kolakofsky, 1996, Paramyxoviridae: The viruses and their replication. pp.1177-1204. In Fields Virology, 3rd Fields, B. N., D. M. Knipe, and P. M. Howley et al. (ed.), Raven Press, New York, N. Y.).
 パラミクソウイルスの「NP、P、M、F、HN、およびL遺伝子」とは、それぞれヌクレオキャプシド、ホスホ、マトリックス、フュージョン、ヘマグルチニン-ノイラミニダーゼ、およびラージタンパク質をコードする遺伝子のことを指す。ヌクレオキャプシド(NP)タンパク質は、ゲノムRNAに結合し、ゲノムRNAが鋳型活性を有するために不可欠なタンパク質である。一般に、NP遺伝子は「N遺伝子」と表記されることもある。ホスホ(P)タンパク質は、RNAポリメラーゼの小サブユニットであるリン酸化タンパク質である。マトリックス(M)タンパク質は、ウイルス粒子構造を内側から維持する機能を果たす。フュージョン(F)タンパク質は、宿主細胞への侵入にかかわる膜融合タンパク質であり、ヘマグルチニン-ノイラミニダーゼ(HN)タンパク質は宿主細胞との結合にかかわるタンパク質である。ラージ(L)タンパク質は、RNAポリメラーゼの大サブユニットである。上記各遺伝子は個々の転写制御ユニットを有し、各遺伝子から単独のmRNAが転写され、タンパク質が転写される。P遺伝子からは、Pタンパク質以外に、異なるORFを利用して翻訳される非構造タンパク質(C)と、Pタンパク質mRNAを読み取り途中のRNA編集により作られるタンパク質(V)が翻訳される。例えばパラミクソウイルス亜科に属する各ウイルスにおける各遺伝子は、一般に、ゲノムの先頭(3')からコードされている順に、次のように表記される。
 レスピロウイルス属 N P/C/V M F HN - L
 ルブラウイルス属 N P/V M F HN (SH) L
 モービリウイルス属 N P/C/V M F H - L
The "NP, P, M, F, HN, and L genes" of Paramyxovirus refer to the genes encoding the nucleocapsid, phospho, matrix, fusion, hemagglutinin-neuraminidase, and large proteins, respectively. Nucleocapsid (NP) protein is a protein that binds to genomic RNA and is essential for genomic RNA to have template activity. In general, the NP gene is sometimes written as "N gene". Phospho (P) proteins are phosphorylated proteins that are the small subunits of RNA polymerase. Matrix (M) proteins function to maintain the virus particle structure from the inside. The fusion (F) protein is a membrane fusion protein involved in host cell entry, and the hemagglutinin-neuraminidase (HN) protein is involved in host cell binding. The large (L) protein is the large subunit of RNA polymerase. Each gene described above has an individual transcription control unit, and a single mRNA is transcribed from each gene, and a protein is transcribed. From the P gene, in addition to the P protein, a nonstructural protein (C) that is translated using a different ORF and a protein (V) that is produced by RNA editing during reading of the P protein mRNA are translated. For example, each gene in each virus belonging to the subfamily Paramyxovirinae is generally represented in the order of encoding from the beginning (3') of the genome as follows.
Respirovirus N P/C/V M F HN - L
Rubulavirus N P/V M F HN (SH) L
Mobilivirus genus N P/C/V M F H - L
 例えばセンダイウイルスの各遺伝子の塩基配列のデータベースのアクセッション番号は、N遺伝子については M29343, M30202, M30203, M30204, M51331, M55565, M69046, X17218、P遺伝子については M30202, M30203, M30204, M55565, M69046, X00583, X17007, X17008、M遺伝子については D11446, K02742, M30202, M30203, M30204, M69046, U31956, X00584, X53056、F遺伝子については D00152, D11446, D17334, D17335, M30202, M30203, M30204, M69046, X00152, X02131、HN遺伝子については D26475, M12397, M30202, M30203, M30204, M69046, X00586, X02808, X56131、L遺伝子については D00053, M30202, M30203, M30204, M69040, X00587, X58886を参照のこと。またその他のウイルスがコードするウイルス遺伝子を例示すれば、N遺伝子については、CDV, AF014953; DMV, X75961; HPIV-1, D01070; HPIV-2, M55320; HPIV-3, D10025; Mapuera, X85128; Mumps, D86172; MeV, K01711; NDV, AF064091; PDPR, X74443; PDV, X75717; RPV, X68311; SeV, X00087; SV5, M81442; および Tupaia, AF079780、P遺伝子については、CDV, X51869; DMV, Z47758; HPIV-l, M74081; HPIV-3, X04721; HPIV-4a, M55975; HPIV-4b, M55976; Mumps, D86173; MeV, M89920; NDV, M20302; PDV, X75960; RPV, X68311; SeV, M30202; SV5, AF052755; および Tupaia, AF079780、C遺伝子については CDV, AF014953; DMV, Z47758; HPIV-1, M74081; HPIV-3, D00047; MeV, ABO16162; RPV, X68311; SeV, AB005796; および Tupaia, AF079780、M遺伝子については CDV, M12669; DMV Z30087; HPIV-1, S38067; HPIV-2, M62734; HPIV-3, D00130; HPIV-4a, D10241; HPIV-4b, D10242; Mumps, D86171; MeV, AB012948; NDV, AF089819; PDPR, Z47977; PDV, X75717; RPV, M34018; SeV, U31956; および SV5, M32248、F遺伝子については CDV, M21849; DMV, AJ224704; HPN-1, M22347; HPIV-2, M60182; HPIV-3, X05303, HPIV-4a, D49821; HPIV-4b, D49822; Mumps, D86169; MeV, AB003178; NDV, AF048763; PDPR, Z37017; PDV, AJ224706; RPV, M21514; SeV, D17334; および SV5, AB021962、HN(HまたはG)遺伝子については CDV, AF112189; DMV, AJ224705; HPIV-1, U709498; HPIV-2. D000865; HPIV-3, AB012132; HPIV-4A, M34033; HPIV-4B, AB006954; Mumps, X99040; MeV, K01711; NDV, AF204872; PDPR, X74443; PDV, Z36979; RPV, AF132934; SeV, U06433; および SV-5, S76876 、L遺伝子についてはCDV, AF014953; DMV, AJ608288; HPIV-1, AF117818; HPIV-2, X57559; HPIV-3, AB012132; Mumps, AB040874; MeV, K01711; NDV, AY049766; PDPR, AJ849636; PDV, Y09630; RPV,Z30698; およびSV-5, D13868が例示できる。但し、各ウイルスは複数の株が知られており、株の違いにより上記に例示した以外の配列からなる遺伝子も存在する。これらのいずれかの遺伝子に由来するウイルス遺伝子を持つセンダイウイルスベクターは、特に本発明のワクチンを産生するためのウイルスベクターとして有用である。例えば本発明のセンダイウイルスベクターは、上記のいずれかのウイルス遺伝子のコード配列と、90%以上、好ましくは95%以上、96%以上、97%以上、98%以上、または99%以上の同一性を持つ塩基配列を含んでよい。また、本発明のセンダイウイルスベクターは、例えば上記のいずれかのウイルス遺伝子のコード配列がコードするアミノ酸配列と、90%以上、好ましくは95%以上、96%以上、97%以上、98%以上、または99%以上の同一性を持つアミノ酸配列をコードする塩基配列を含んでよい。また、本発明においてセンダイウイルスベクターは、例えば上記のいずれかのウイルス遺伝子のコード配列がコードするアミノ酸配列において、10個以内、好ましくは9個以内、8個以内、7個以内、6個以内、5個以内、4個以内、3個以内、2個以内、または1個のアミノ酸が置換、挿入、欠失、および/または付加されたアミノ酸配列をコードする塩基配列を含んでよい。 For example, the accession number of the base sequence database for each gene of Sendai virus is M29343, M30202, M30203, M30204, M51331, M55565, M69046, X17218 for the N gene, and M30202, M30203, M30204, M55565 for the P gene. M69046 , X00583, X17007, X17008, for M gene D11446, K02742, M30202, M30203, M30204, M69046, U31956, X00584, X53056, for F gene D00152, D11446, D17334, D17335, M30202, M30203, M30204, M69046, X00152 , X02131, D26475, M12397, M30202, M30203, M30204, M69046, X00586, X02808, X56131 for HN gene, D00053, M30202, M30203, M30204 for L gene , M69040, X00587, X58886. As examples of viral genes encoded by other viruses, for the N gene, CDV, AF014953; DMV, X75961; HPIV-1, D01070; HPIV-2, M55320; HPIV-3, D10025; NDV, AF064091; PDPR, X74443; PDV, X75717; RPV, X68311; SeV, X00087; SV5, M81442; 1869; DMV, Z47758; HPIV -l, M74081; HPIV-3, X04721; HPIV-4a, M55975; HPIV-4b, M55976; Mumps, D86173; 30202; SV5, AF052755 and Tupaia, AF079780, for the C gene CDV, AF014953; DMV, Z47758; HPIV-1, M74081; HPIV-3, D00047; MeV, ABO16162; 079780, about the M gene is CDV, M12669; DMV Z30087; HPIV-1, S38067; HPIV-2, M62734; HPIV-3, D00130; HPIV-4a, D10241; HPIV-4b, D10242; ; NDV, AF089819; PDPR, Z47977; PDV, X75717; RPV, M34018; SeV, U31956; and SV5, M32248, for the F gene CDV, M21849; -3, X05303 , HPIV-4a, D49821; HPIV-4b, D49822; Mumps, D86169; MeV, AB003178; NDV, AF048763; PDPR, Z37017; PDV, AJ224706; and SV5, AB021962, HN (H or G) Genes CDV, AF112189; DMV, AJ224705; HPIV-1, U709498; HPIV-2. D000865; HPIV-3, AB012132; MeV, K01711 NDV, AF204872; PDPR, X74443; PDV, Z36979; RPV, AF132934; SeV, U06433; 18; HPIV-2, Mumps, AB040874; MeV, K01711; NDV, AY049766; PDPR, AJ849636; PDV, Y09630; However, a plurality of strains are known for each virus, and genes comprising sequences other than those exemplified above exist depending on strain differences. A Sendai virus vector having a viral gene derived from any of these genes is particularly useful as a viral vector for producing the vaccine of the present invention. For example, the Sendai virus vector of the present invention has 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more identity with the coding sequence of any of the above viral genes. may contain a base sequence with In addition, the Sendai virus vector of the present invention, for example, the amino acid sequence encoded by the coding sequence of any of the above viral genes, 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more, Alternatively, it may contain a nucleotide sequence encoding an amino acid sequence with 99% or more identity. In the present invention, the Sendai virus vector has, for example, an amino acid sequence encoded by the coding sequence of any of the above-mentioned viral genes, having 10 amino acids or less, preferably 9 amino acids or less, 8 amino acids or less, 7 amino acids or less, 6 amino acids or less, It may include a nucleotide sequence encoding an amino acid sequence in which no more than 5, no more than 4, no more than 3, no more than 2, or one amino acid is substituted, inserted, deleted, and/or added.
 なお本明細書に記載した塩基配列およびアミノ酸配列などのデータベースアクセッション番号が参照された配列は、例えば本願の出願日および優先日における配列を参照するものであって、本願の出願日および優先日のいずれ時点における配列としても特定することができ、好ましくは本願の出願日における配列として特定される。各時点での配列はデータベースのリビジョンヒストリーを参照することにより特定することができる。 The sequences referred to by database accession numbers such as base sequences and amino acid sequences described in this specification refer, for example, to sequences as of the filing date and priority date of the present application. can be specified as the sequence at any point in time, preferably as the sequence as of the filing date of the present application. The sequence at each point in time can be identified by referencing the revision history of the database.
 本発明において用いられるマイナス鎖RNAウイルスは誘導体であってもよく、誘導体には、ウイルスによる遺伝子導入能を損なわないように、ウイルス遺伝子が改変されたウイルス、および化学修飾されたウイルス等が含まれる。 The minus-strand RNA virus used in the present invention may be a derivative, and the derivative includes a virus whose viral gene has been modified so as not to impair the ability of the virus to introduce genes, a virus that has been chemically modified, and the like. .
 またウイルスベクターとして用いられるウイルスは、天然株、野生株、変異株、ラボ継代株、および人為的に構築された株などに由来してもよい。例えばセンダイウイルスであればZ株が挙げられるがそれに限定されるものではない(Medical Journal of Osaka University Vol.6, No.1, March 1955 p1-15)。つまり、当該ウイルスは、目的とするウイルス粒子を製造できる限り、天然から単離されたウイルスと同様の構造を持つウイルスであっても、遺伝子組み換えにより人為的に改変したウイルスであってもよい。例えば、野生型ウイルスが持ついずれかの遺伝子に変異や欠損があるものであってよい。例えば、ウイルスのエンベロープ蛋白質または外殻蛋白質をコードする少なくとも1つの遺伝子に欠損あるいはその発現を抑制するストップコドン変異などの変異を有するウイルスを好適に用いることができる。このようなエンベロープ蛋白質を発現しないウイルスは、例えば感染細胞においてはゲノムを複製することはできるが、感染性ウイルス粒子を形成できないウイルスである。このような伝搬能欠損型のウイルスは、安全性の高い発現ベクターとして好適である。例えばパラミクソウイルスベクターにおいては、FまたはHNのいずれかのエンベロープ蛋白質(スパイク蛋白質)の遺伝子、あるいはFおよびHNの遺伝子をゲノムにコードしないウイルスを用いることができる(WO00/70055 および WO00/70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000))。少なくともゲノム複製に必要な蛋白質(例えば N、P、およびL蛋白質)をゲノムRNAにコードしていれば、ウイルスは感染細胞においてゲノムを増幅することができる。エンベロープ蛋白質欠損型でありかつ感染性を持つウイルス粒子を製造するには、例えば、欠損している遺伝子産物またはそれを相補できる蛋白質をウイルス産生細胞において外来的に供給する(WO00/70055 および WO00/70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000))。一方、欠損するウイルス蛋白質を全く相補しないことによって、非感染性ウイルス粒子を回収することができる(WO00/70070)。 In addition, viruses used as viral vectors may be derived from natural strains, wild strains, mutant strains, laboratory passage strains, artificially constructed strains, and the like. For example, Sendai virus includes, but is not limited to, Z strain (Medical Journal of Osaka University Vol.6, No.1, March 1955 p1-15). That is, the virus may be a virus having a structure similar to that of a virus isolated from nature or a virus artificially modified by genetic recombination, as long as the virus particles of interest can be produced. For example, wild-type viruses may have mutations or deletions in any of their genes. For example, a virus having a deletion in at least one gene encoding a viral envelope protein or coat protein or a mutation such as a stop codon mutation that suppresses the expression thereof can be preferably used. A virus that does not express such an envelope protein is, for example, a virus that can replicate its genome in infected cells but cannot form infectious virus particles. Such transmissibility-deficient viruses are suitable as highly safe expression vectors. For example, in paramyxovirus vectors, viruses that do not encode either the F or HN envelope protein (spike protein) gene or the F and HN genes in their genomes can be used (WO00/70055 and WO00/70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000)). A virus can amplify its genome in an infected cell if its genomic RNA encodes at least the proteins required for genome replication (eg, the N, P, and L proteins). In order to produce envelope protein-deficient and infectious virus particles, for example, the defective gene product or a protein capable of complementing it is exogenously supplied in virus-producing cells (WO00/70055 and WO00/ 70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000)). On the other hand, non-infectious virus particles can be recovered by not complementing the defective viral proteins at all (WO00/70070).
 また、本発明のウイルスの生産において、変異型のウイルス蛋白質遺伝子を搭載するウイルスを用いてもよい。例えば、ウイルスの構造蛋白質(NP, M)やRNA合成酵素(P, L)において弱毒化変異や温度感受性変異を含む多数の変異が知られている。これらの変異蛋白質遺伝子を有するマイナス鎖RNAウイルスを本発明において目的に応じて好適に用いることができる。本発明においては、細胞傷害性を減弱したウイルスを用いてもよい。細胞傷害性は、例えば細胞からの乳酸デヒドロゲナーゼ(LDH)の放出を定量することにより測定することができる。細胞傷害性の減弱化の程度は、例えば、ヒト由来HeLa細胞(ATCC CCL-2)またはサル由来CV-1細胞(ATCC CCL 70)にMOI(感染価) 3で感染させて3日間培養した培養液中のLDH放出量が野生型に比べ有意に低下したもの、例えば20%以上、25%以上、30%以上、35%以上、40%以上、または50%以上低下したウイルスを用いることができる。また細胞傷害性を低下させる変異には、温度感受性変異も含まれる。温度感受性変異とは、低温 (30℃ないし36℃、例えば30℃ないし32℃) に比べ、ウイルス宿主の通常の温度(例えば37℃ないし38℃)において有意に活性が低下する変異のことである。このような、温度感受性変異を持つ蛋白質は、許容温度(低温)下でウイルスを作製することができるので便利である。例えば温度感受性変異を持つウイルスを用いる場合は、培養細胞において32℃で感染させた場合に比べ、37℃で感染させた場合に、増殖速度または遺伝子発現レベルが、少なくとも1/2以下、好ましくは1/3以下、より好ましくは1/5以下、より好ましくは1/10以下、より好ましくは1/20以下であるものを用いることができる。 In addition, in the production of the virus of the present invention, a virus carrying a mutant viral protein gene may be used. For example, many mutations, including attenuating mutations and temperature-sensitive mutations, are known in viral structural proteins (NP, M) and RNA synthetase (P, L). Minus-strand RNA viruses having these mutant protein genes can be suitably used in the present invention, depending on the purpose. In the present invention, viruses with reduced cytotoxicity may be used. Cytotoxicity can be measured, for example, by quantifying the release of lactate dehydrogenase (LDH) from cells. The degree of attenuation of cytotoxicity can be evaluated, for example, by infecting human-derived HeLa cells (ATCC CCL-2) or monkey-derived CV-1 cells (ATCC CCL 70) at an MOI (infectious titer) of 3 and culturing for 3 days. Viruses in which the amount of LDH released in the fluid is significantly reduced compared to the wild type, for example, viruses in which the amount is reduced by 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 50% or more can be used. . Mutations that reduce cytotoxicity also include temperature sensitive mutations. A temperature-sensitive mutation is one that has significantly reduced activity at the normal temperature of the virus host (e.g. 37°C to 38°C) compared to lower temperatures (30°C to 36°C, e.g. 30°C to 32°C). . Such proteins with temperature-sensitive mutations are convenient because viruses can be produced under the permissive temperature (low temperature). For example, when using a virus with a temperature-sensitive mutation, the growth rate or gene expression level is at least 1/2 or less, preferably at least 1/2 when infected at 32°C in cultured cells, when infected at 32°C. One-third or less, more preferably 1/5 or less, more preferably 1/10 or less, more preferably 1/20 or less can be used.
 例えば、ウイルスの構造蛋白質(NP, M)やRNA合成酵素(P, L)において弱毒化変異や温度感受性変異を含む多数の変異が知られている。これらの変異蛋白質遺伝子を有するウイルスベクターなどを本発明において目的に応じて好適に用いることができる。 For example, many mutations, including attenuating mutations and temperature-sensitive mutations, are known in viral structural proteins (NP, M) and RNA synthetase (P, L). Viral vectors and the like having these mutated protein genes can be suitably used in the present invention depending on the purpose.
 具体的には、例えばセンダイウイルスベクターであれば、M遺伝子の変異としては、M蛋白質における69位(G69)、116位(T116)、および183位(A183)からなる群より任意に選択される部位のアミノ酸置換が挙げられる(Inoue, M. et al., J.Virol. 2003, 77: 3238-3246)。センダイウイルスのM蛋白質に上記の3つの部位のいずれか、好ましくは任意の二つの部位の組み合わせ、さらに好ましくは三つの部位全てのアミノ酸が他のアミノ酸に置換された変異M蛋白質をコードするゲノムを有するウイルスは、本発明において目的に応じて好適に用いられる。 Specifically, for example, in Sendai virus vectors, the M gene mutation is arbitrarily selected from the group consisting of positions 69 (G69), 116 (T116), and 183 (A183) in the M protein. Site amino acid substitutions can be mentioned (Inoue, M. et al., J. Virol. 2003, 77: 3238-3246). A genome encoding a mutated M protein in which any one of the above three sites, preferably a combination of any two sites, more preferably all three sites are substituted with other amino acids in the Sendai virus M protein. Viruses possessing the above are preferably used in the present invention depending on the purpose.
 アミノ酸変異は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましく、例えばBLOSUM62マトリックス(Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919)の値が3以下、好ましくは2以下、より好ましくは1以下、より好ましくは0のアミノ酸に置換する。具体的には、センダイウイルスM蛋白質のG69、T116、およびA183を、それぞれGlu (E)、Ala (A)、およびSer (S) へ置換することができる。また、麻疹ウイルス温度感受性株 P253-505(Morikawa, Y. et al., Kitasato Arch. Exp. Med. 1991: 64; 15-30)のM蛋白質の変異と相同な変異を利用することも可能である。変異の導入は、例えばオリゴヌクレオチド等を用いて、公知の変異導入方法に従って実施すればよい。 Amino acid mutations are preferably substitutions of other amino acids with different side chain chemistries, such as the BLOSUM62 matrix (Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919) is 3 or less, preferably 2 or less, more preferably 1 or less, more preferably 0. Specifically, G69, T116, and A183 of the Sendai virus M protein can be replaced with Glu (E), Ala (A), and Ser (S), respectively. It is also possible to use mutations that are homologous to the mutations in the M protein of the measles virus temperature-sensitive strain P253-505 (Morikawa, Y. et al., Kitasato Arch. Exp. Med. 1991: 64; 15-30). be. Mutations may be introduced according to known methods for introducing mutations, for example, using oligonucleotides and the like.
 また、HN遺伝子の変異としては、例えばセンダイウイルスのHN蛋白質の262位(A262)、264位(G264)、および461位(K461)からなる群より任意に選択される部位のアミノ酸置換が挙げられる(Inoue, M. et al., J.Virol. 2003, 77: 3238-3246)。3つの部位のいずれか1つ、好ましくは任意の2部位の組み合わせ、さらに好ましくは3つの部位全てのアミノ酸が他のアミノ酸に置換された変異HN蛋白質をコードするゲノムを有するウイルスは、本発明において目的に応じて好適に用いられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。好ましい一例を挙げれば、センダイウイルス HN蛋白質のA262、G264、およびK461を、それぞれThr (T)、Arg (R)、およびGly (G) へ置換する。また、例えば、ムンプスウイルスの温度感受性ワクチン株 Urabe AM9を参考に、HN蛋白質の464及び468番目のアミノ酸に変異導入することもできる(Wright, K. E. et al., Virus Res. 2000: 67; 49-57)。 Further, mutations in the HN gene include, for example, amino acid substitutions at positions arbitrarily selected from the group consisting of positions 262 (A262), 264 (G264), and 461 (K461) of the Sendai virus HN protein. (Inoue, M. et al., J. Virol. 2003, 77: 3238-3246). A virus having a genome encoding a mutant HN protein in which any one of the three sites, preferably a combination of any two sites, and more preferably all three sites have amino acids substituted with other amino acids is used in the present invention. It is preferably used depending on the purpose. As with the above, substitution of amino acids with other amino acids having different side chain chemical properties is preferred. To give a preferred example, A262, G264, and K461 of the Sendai virus HN protein are replaced with Thr (T), Arg (R), and Gly (G), respectively. In addition, for example, referring to the temperature-sensitive vaccine strain Urabe AM9 of mumps virus, the 464th and 468th amino acids of the HN protein can be mutated (Wright, K. E. et al., Virus Res. 2000: 67 49-57).
 またセンダイウイルスは、P遺伝子および/またはL遺伝子に変異を有していてもよい。このような変異としては、具体的には、SeV P蛋白質の86番目のGlu(E86)の変異、SeV P蛋白質の511番目のLeu(L511)の他のアミノ酸への置換が挙げられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、86番目のアミノ酸のLysへの置換、511番目のアミノ酸のPheへの置換などが例示できる。またL蛋白質においては、SeV L蛋白質の1197番目のAsn(N1197)および/または1795番目のLys(K1795)の他のアミノ酸への置換が挙げられ、上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、1197番目のアミノ酸のSerへの置換、1795番目のアミノ酸のGluへの置換などが例示できる。P遺伝子およびL遺伝子の変異は、持続感染性、2次粒子放出の抑制、または細胞傷害性の抑制の効果を顕著に高めることができる。さらに、エンベロープ蛋白質遺伝子の変異および/または欠損を組み合わせることで、これらの効果を劇的に上昇させることができる。またL遺伝子は、SeV L蛋白質の1214番目のTyr(Y1214)および/または1602番目のMet(M1602)の他のアミノ酸への置換が挙げられ、上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が挙げられる。具体的には、1214番目のアミノ酸のPheへの置換、1602番目のアミノ酸のLeuへの置換などが例示できる。以上に例示した変異は、任意に組み合わせることができる。 The Sendai virus may also have mutations in the P gene and/or the L gene. Specific examples of such mutations include mutation of Glu (E86) at position 86 of SeV P protein and substitution of Leu (L511) at position 511 of SeV P protein with another amino acid. As with the above, substitution of amino acids with other amino acids having different side chain chemical properties is preferred. Specifically, substitution of the 86th amino acid with Lys, substitution of the 511th amino acid with Phe, and the like can be exemplified. In the L protein, substitution of Asn (N1197) at position 1197 and/or Lys (K1795) at position 1795 of the SeV L protein with other amino acids can be mentioned. is preferably replaced with another amino acid of different chemical nature. Specifically, substitution of the 1197th amino acid with Ser, substitution of the 1795th amino acid with Glu, and the like can be exemplified. Mutations in the P gene and L gene can significantly enhance the effects of persistent infectivity, suppression of secondary particle release, or suppression of cytotoxicity. Furthermore, these effects can be dramatically increased by combining mutations and/or deletions of envelope protein genes. In addition, the L gene includes substitution of Tyr (Y1214) at position 1214 and/or Met (M1602) at position 1602 of the SeV L protein with other amino acids. Substitutions with other amino acids with different chemical properties are included. Specifically, substitution of the 1214th amino acid with Phe, substitution of the 1602nd amino acid with Leu, and the like can be exemplified. The mutations exemplified above can be combined arbitrarily.
 例えば、SeV M蛋白質の少なくとも69位のG、116位のT、及び183位のA、SeV HN蛋白質の少なくとも262位のA,264位のG,及び461位のK、SeV P蛋白質の少なくとも511位のL、SeV L蛋白質の少なくとも1197位のN及び1795位のKが、それぞれ他のアミノ酸に置換されており、かつF遺伝子を欠損または欠失するセンダイウイルスベクター、ならびに、細胞傷害性がこれらと同様またはそれ以下、および/または37℃におけるNTVLP形成の抑制がこれらと同様またはそれ以上のF遺伝子欠損または欠失センダイウイルスベクターを、本発明において目的に応じて用いることができる。 For example, at least G at position 69, T at position 116, and A at position 183 of the SeV M protein; at least A at position 262, G at position 264, and K at position 461 of the SeV HN protein; L at position 1197 and K at position 1795 of the SeV L protein are substituted with other amino acids, respectively, and the F gene is deleted or deleted, and the cytotoxicity of these Sendai virus vectors and/or F gene-deficient or deleted Sendai virus vectors with similar or greater suppression of NTVLP formation at 37°C can be used in the present invention depending on the purpose.
 より具体的には、F遺伝子を欠失し、M蛋白質にG69E、T116A、およびA183Sの変異、HN蛋白質にA262T、G264R、およびK461Gの変異、P蛋白質にL511Fの変異、ならびにL蛋白質にN1197SおよびK1795Eの変異をゲノムに含むセンダイウイルスベクターを用いることができる。本発明において、F遺伝子の欠失とこれらの変異との組み合わせを「TSΔF」と称す。 More specifically, the F gene is deleted, the G69E, T116A, and A183S mutations in the M protein, the A262T, G264R, and K461G mutations in the HN protein, the L511F mutation in the P protein, and the N1197S and N1197S in the L protein. A Sendai virus vector containing the K1795E mutation in its genome can be used. In the present invention, the combination of F gene deletion and these mutations is referred to as "TSΔF".
 本発明に用いるウイルスベクターは、そのゲノムにウイルス蛋白質遺伝子以外に、ウイルスの性質を制御する外来の遺伝子や調節因子をコードしていてもよい。例えば、ウイルスタンパク質の発現を調整するためにdegron配列やmiRNAの標的配列をコードしていてもよい。 The viral vector used in the present invention may encode, in its genome, foreign genes and regulatory factors that control viral properties, in addition to viral protein genes. For example, it may encode a degron sequence or miRNA target sequence to regulate the expression of viral proteins.
 本発明において好適に用いられるマイナス鎖RNAウイルスは、少なくとも1つのエンベロープ遺伝子が、欠失または変異している。このようなウイルスには、少なくとも1つのエンベロープ遺伝子が欠失しているもの、少なくとも1つのエンベロープ遺伝子が変異しているもの、少なくとも1つのエンベロープ遺伝子が変異しており少なくとも1つのエンベロープ遺伝子が欠失しているものが含まれる。変異または欠失している少なくとも1つのエンベロープ遺伝子は、好ましくはエンベロープ構成蛋白質をコードする遺伝子であり、例えばパラミクソウイルスベクターにおいてはF遺伝子および/またはHN遺伝子が挙げられる。例えば、F遺伝子を欠失しているか、F遺伝子が機能喪失型変異Fタンパク質をコードするものを好適に用いることができる。また、HN遺伝子を欠失しているか、HN遺伝子が機能喪失型変異HNタンパク質をコードするものであってもよい。また、例えばF遺伝子を欠失し、HN遺伝子をさらに欠失するか、HN遺伝子に変異をさらに有するマイナス鎖RNAウイルスは、本発明において好適に用いられる。また、例えばF遺伝子を欠失し、HN遺伝子をさらに欠失するマイナス鎖RNAウイルスも、本発明において好適に用いられる。このような変異型のウイルスは、公知の方法に従って作製することが可能である。 In the minus-strand RNA virus preferably used in the present invention, at least one envelope gene is deleted or mutated. Such viruses include at least one envelope gene deleted, at least one envelope gene mutated, at least one envelope gene mutated and at least one envelope gene deleted. includes those that are At least one mutated or deleted envelope gene is preferably a gene encoding an envelope-constituting protein, such as the F gene and/or the HN gene in a paramyxovirus vector. For example, one that lacks the F gene or that encodes a loss-of-function mutant F protein can be preferably used. Alternatively, the HN gene may be deleted, or the HN gene may encode a loss-of-function mutant HN protein. In addition, for example, minus-strand RNA viruses lacking the F gene and further lacking the HN gene or having mutations in the HN gene are preferably used in the present invention. Minus-strand RNA viruses lacking the F gene and further lacking the HN gene, for example, are also preferably used in the present invention. Such mutant viruses can be produced according to known methods.
 例えばパラミクソウイルスベクターの場合、好ましい一態様においては、少なくとも一つの自身のエンベロープタンパク質遺伝子(例えばF遺伝子)をゲノムから欠失し、自身のN、P、L遺伝子を搭載している。また該ウイルスベクターは、好ましくはゲノム上に自身のM遺伝子を搭載している。 For example, in the case of a paramyxovirus vector, in a preferred embodiment, at least one of its own envelope protein genes (eg, F gene) is deleted from the genome, and its own N, P, and L genes are carried. Also, the viral vector preferably carries its own M gene on its genome.
 本発明のウイルスベクターは、本発明の融合タンパク質、すなわち分泌シグナル、抗原タンパク質断片、および三量体形成ドメインを含む、膜外遊離可能な融合タンパク質をコードする核酸を発現可能に搭載している。当該タンパク質をコードする核酸は、ウイルスベクターのゲノムの所望の位置に挿入することができる。例えばマイナス鎖RNAウイルスの場合、ゲノム(マイナス鎖)の3'末端に近いほど発現レベルの上昇が期待できるので、例えば3'末端にあるリーダー配列とその5'側にある最初のマイナス鎖RNAウイルスタンパク質(通常Nタンパク質)の遺伝子との間に、当該融合タンパク質をコードする塩基配列を挿入することができる。あるいは、最初のマイナス鎖RNAウイルスタンパク質(通常Nタンパク質)と2番目のマイナス鎖RNAウイルスタンパク質(通常Pタンパク質)の遺伝子の間、2番目と3番目(通常PとMの間)などであってもよい。 The viral vector of the present invention expressably carries a nucleic acid encoding the fusion protein of the present invention, that is, a fusion protein that can be released outside the membrane, including a secretory signal, an antigenic protein fragment, and a trimerization domain. A nucleic acid encoding the protein of interest can be inserted at the desired location in the genome of the viral vector. For example, in the case of minus-strand RNA viruses, the closer to the 3' end of the genome (minus strand), the higher the expression level can be expected. A nucleotide sequence encoding the fusion protein can be inserted between the gene for the protein (usually N protein). Alternatively, between the genes for the first negative-strand RNA viral protein (usually the N protein) and the second negative-strand RNA viral protein (usually the P protein), the second and third (usually between the P and M), etc. good too.
 なお本発明のベクターは、本発明の上記融合タンパク質をコードする限り、さらなる遺伝子をコードしていてもよく、例えば、他の抗原タンパク質や、生理活性タンパク質(サイトカイン等)をコードしていてもよい。 The vector of the present invention may encode additional genes as long as it encodes the fusion protein of the present invention. For example, the vector may encode other antigen proteins or physiologically active proteins (cytokines, etc.). .
 これらの所望のタンパク質をコードする核酸をベクターに搭載させる場合、その位置は適宜決めてよいが、パラミクソウイルスベクターに本発明の融合タンパク質をコードする核酸を含む複数の抗原をそれぞれコードする核酸を搭載させる場合、当該融合タンパク質をコードする核酸を、他の抗原をコードする核酸よりもパラミクソウイルスベクターのゲノム上流側(ウイルスゲノムの3’側)に挿入してよい。これらのタンパク質をコードする核酸は、その両端を、適宜パラミクソウイルスのS(start)配列とE(end)配列に挟んで挿入することができる。パラミクソウイルスベクターにおいて、S配列は転写を開始させるシグナル配列であり、E配列で転写が終結する。S配列とE配列で挟まれた領域は、1つの転写単位となる。ある遺伝子のE配列と次の遺伝子のS配列の間は、適宜スペーサーとなる配列(介在配列;intervening sequence; I)を挿入することができる(すなわちEIS配列)。 When a nucleic acid encoding these desired proteins is loaded onto a vector, the position thereof may be determined as appropriate. When loaded, the nucleic acid encoding the fusion protein may be inserted upstream of the genome of the paramyxovirus vector (3' side of the viral genome) relative to nucleic acids encoding other antigens. Nucleic acids encoding these proteins can be inserted with their ends flanked by the S (start) sequence and E (end) sequence of the paramyxovirus as appropriate. In paramyxovirus vectors, the S sequence is a signal sequence that initiates transcription, and the E sequence terminates transcription. A region flanked by the S and E sequences constitutes one transcription unit. Between the E sequence of one gene and the S sequence of the next gene, an appropriate spacer sequence (intervening sequence; I) can be inserted (ie EIS sequence).
 例えばセンダイウイルスベクターの場合、S配列としては、例えば 3'-UCCCWVUUWC-5'(W= AまたはU; V= A, C, またはG)(配列番号:11)の配列を好適に用いることができる。特に 3'-UCCCAGUUUC-5'(配列番号:12)、3'-UCCCACUUAC-5'(配列番号:13)、および 3'-UCCCACUUUC-5'(配列番号:14)が好ましい。これらの配列は、プラス鎖をコードするDNA配列で表すとそれぞれ 5'-AGGGTCAAAG-3'(配列番号:15)、5'-AGGGTGAATG-3'(配列番号:16)、および 5'-AGGGTGAAAG-3'(配列番号:17)である。センダイウイルスベクターのE配列としては、例えば 3'-AUUCUUUUU-5'(プラス鎖をコードするDNAでは 5'-TAAGAAAAA-3')が好ましい。I配列は、例えば任意の3塩基であってよく、具体的には 3'-GAA-5'(プラス鎖DNAでは 5'-CTT-3')を用いればよいが、これに限定されるものではない。 For example, in the case of Sendai virus vectors, the S sequence is preferably 3'-UCCCWVUUWC-5' (W = A or U; V = A, C, or G) (SEQ ID NO: 11). can. Particularly preferred are 3'-UCCCAGUUUC-5' (SEQ ID NO: 12), 3'-UCCCACUUAC-5' (SEQ ID NO: 13), and 3'-UCCCACUUUC-5' (SEQ ID NO: 14). These sequences are 5'-AGGGTCAAAG-3' (SEQ ID NO: 15), 5'-AGGGTGAATG-3' (SEQ ID NO: 16), and 5'-AGGGTGAAAG-, respectively, when represented by the DNA sequence encoding the plus strand. 3' (SEQ ID NO: 17). The E sequence of the Sendai virus vector is preferably, for example, 3'-AUUCUUUUU-5' (5'-TAAGAAAA-3' in DNA encoding the plus strand). The I sequence may be, for example, any three bases, and specifically 3'-GAA-5' (5'-CTT-3' in plus strand DNA) may be used, but is limited to this. isn't it.
 例えばSRAS-CoV-2のスパイクタンパク質を標的とする本発明の融合タンパク質としては、実施例において作製された配列番号29のアミノ酸配列(S-RBD-foldon)からなるタンパク質、あるいは当該配列を含むタンパク質、当該配列において1または複数(例えば数個、好ましくは30個以内、20個以内、10個以内、8個以内、7個以内、5個以内、3個以内、2個以内、または1個)のアミノ酸が付加、欠失、置換、および/または挿入された配列を含むタンパク質、配列番号29のアミノ酸と高い同一性(例えば70%以上、75%以上、80%以上、85%以上、90%以上、93%以上、95%以上、または96%以上の同一性)を有する配列を含むタンパク質を好適に用いることができ、当該タンパク質をコードする核酸を含むベクターは本発明において好適である。具体的には、配列番号28の15-758番目の塩基配列またはそれに対応するRNA配列、あるいはそれらの相補配列(マイナス鎖をゲノムに持つベクターの場合など)が挙げられるが、それに限定されるものではない。当該塩基配列をセンダイウイルスベクターに挿入する場合、挿入する塩基配列としては配列番号28(プラス鎖のDNA配列として)が挙げられ、例えば、その相補配列からなるRNA配列をゲノムRNAに有するセンダイウイルスベクターは本発明において好適に用いることができる。但し、本発明はそれに限定されるものではなく、当業者であれば、本明細書の記載に基づいて同様に優れた効果を発揮する様々な抗原発現ベクターを作製することができる。 For example, the fusion protein of the present invention targeting the spike protein of SRAS-CoV-2 includes a protein consisting of the amino acid sequence (S-RBD-foldon) of SEQ ID NO: 29 produced in the Examples, or a protein containing the sequence , one or more in the sequence (e.g. several, preferably no more than 30, no more than 20, no more than 10, no more than 8, no more than 7, no more than 5, no more than 3, no more than 2, or 1) A protein comprising a sequence in which amino acids of SEQ ID NO:29 are added, deleted, substituted, and/or inserted, with a high identity to the amino acid of SEQ ID NO:29 (e.g., 70% or greater, 75% or greater, 80% or greater, 85% or greater, 90% 93% or more, 95% or more, or 96% or more identity) can be preferably used, and a vector containing a nucleic acid encoding the protein is suitable in the present invention. Specific examples include, but are not limited to, the 15th to 758th base sequences of SEQ ID NO: 28 or the RNA sequences corresponding thereto, or their complementary sequences (for vectors having a minus strand in the genome, etc.). isn't it. When the nucleotide sequence is inserted into a Sendai virus vector, examples of the nucleotide sequence to be inserted include SEQ ID NO: 28 (as a positive strand DNA sequence). can be preferably used in the present invention. However, the present invention is not limited thereto, and those skilled in the art can construct various antigen expression vectors that exhibit similarly excellent effects based on the description of this specification.
 本発明の抗原発現ベクターを細胞に導入することにより、ベクターにコードされる、抗原タンパク質断片を含む融合タンパク質を細胞において発現させることができる。発現された融合タンパク質は分泌され、細胞外に遊離するが、一部の発現産物は細胞内に留まりうる。すなわち本発明のベクターは、抗原タンパク質断片を含む発現産物が、ベクター導入細胞の細胞内および細胞外の両方に分布するような抗原発現ベクターであってよい。好ましい態様においては、細胞外に遊離される発現産物の方が、細胞に留まる発現産物よりも多い。ここで発現産物とは、ポリペプチドをコードする遺伝子の発現の場合は翻訳産物のことをいい、本発明の場合、具体的には抗原タンパク質断片を含むポリペプチドのことをいう。実施例に示されるとおり、本発明の構成を持つ融合タンパク質を発現させた場合、発現産物(抗原タンパク質断片を含むポリペプチド)の大半は細胞外に分泌される。すなわち細胞外に分泌遊離される発現産物(抗原タンパク質断片を含むポリペプチド)の量は、細胞に留まる発現産物の量の3倍以上、例えば約3~20倍であり、細胞に留まるものと細胞外に遊離するものを合わせた発現産物全体における細胞内残存率は25%以下、例えば5~25%、細胞外分泌遊離率は79~95%に達した。例えば本発明のベクターは、細胞外に遊離される発現産物が、細胞に留まる発現産物の例えば3倍以上、4倍以上、5倍以上、6倍以上、7倍以上、8倍以上、9倍以上、10倍以上、または15倍以上であってよい。また本発明のベクターは、ベクターから産生された抗原タンパク質断片を含むポリペプチドにおいて、細胞外に遊離されるものの割合が、例えば60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、または90%以上であってよい。分泌されたタンパク質は、分泌シグナルが切り離されていてよい。 By introducing the antigen expression vector of the present invention into cells, a vector-encoded fusion protein containing an antigen protein fragment can be expressed in cells. Although the expressed fusion protein is secreted and released outside the cell, some expression products may remain inside the cell. That is, the vector of the present invention may be an antigen-expressing vector in which an expression product containing an antigen protein fragment is distributed both intracellularly and extracellularly in a vector-introduced cell. In preferred embodiments, more expression product is released outside the cell than is retained in the cell. Here, the expression product refers to a translation product in the case of expression of a gene encoding a polypeptide, and in the case of the present invention specifically refers to a polypeptide containing an antigenic protein fragment. As shown in the Examples, when the fusion protein having the structure of the present invention is expressed, most of the expression products (polypeptides containing antigenic protein fragments) are extracellularly secreted. That is, the amount of expression products (polypeptides containing antigen protein fragments) that are secreted and released outside the cells is three times or more, for example, about 3 to 20 times the amount of expression products that remain in cells. The intracellular retention rate of the entire expression product including those released outside reached 25% or less, for example, 5-25%, and the extracellular secretory release rate reached 79-95%. For example, in the vector of the present invention, the expression product released outside the cell is, for example, 3 times or more, 4 times or more, 5 times or more, 6 times or more, 7 times or more, 8 times or more, 9 times the expression product that remains in the cell. It may be greater than, 10 times greater, or 15 times greater. In addition, in the vector of the present invention, the percentage of polypeptides containing antigen protein fragments produced from the vector that are released outside the cells is, for example, 60% or more, 65% or more, 70% or more, 75% or more, or 80%. It may be greater than or equal to 85% or greater than or equal to 90%. A secreted protein may be truncated for a secretory signal.
 また本発明において、分泌シグナル、抗原タンパク質断片、および三量体形成ドメインを持つ本発明の融合タンパク質をベクターから発現させた場合、三量体形成ドメインを持たない以外は同じ構成(同じ分泌シグナルおよび抗原タンパク質断片を持つポリペプチド)を持つ対照タンパク質を同じベクターから発現させた場合に比べ、三量体形成ドメインを持つ本発明の融合タンパク質の方が分子サイズは大きくなるため一般的には高発現には不利であると予想されるにもかかわらず発現量が著しく上昇することが判明した。すなわち、分泌シグナル、抗原タンパク質断片、および三量体形成ドメインを含むタンパク質をコードする本発明のベクターは、分泌シグナルおよび抗原タンパク質断片を含み、三量体形成ドメインを含まないタンパク質をコードする対照抗原発現ベクターと比べ、抗原タンパク質断片を含む発現産物(抗原タンパク質断片を含むポリペプチド)の発現量が、例えば1.5倍以上、2倍以上、3倍以上、4倍以上、5倍以上、6倍以上、7倍以上、8倍以上、9倍以上、または10倍以上である。発現量の比較は、例えば三量体形成ドメインの有無以外は同じ構成のベクターを作製し、同種の細胞を用いて発現量(細胞内に留まるものと細胞外に分泌されるものを合わせた総発現量)を比較することにより測定することが可能である。用いる細胞は適宜選択でき、例えばLLCMK2細胞(ATCC-CCL-7)を用いることができるが、それに限定されない。 Further, in the present invention, when the fusion protein of the present invention having a secretion signal, an antigenic protein fragment, and a trimerization domain is expressed from a vector, it has the same configuration (same secretion signal and The fusion protein of the present invention, which has a trimerization domain, is larger in molecular size than a control protein having an antigenic protein fragment (polypeptide having an antigenic protein fragment) expressed from the same vector. Although it is expected to be disadvantageous for That is, a vector of the invention encoding a protein comprising a secretory signal, an antigenic protein fragment, and a trimerization domain, a control antigen encoding a protein comprising a secretory signal and an antigenic protein fragment, but no trimerization domain. The expression level of the expression product containing the antigen protein fragment (polypeptide containing the antigen protein fragment) is, for example, 1.5-fold or more, 2-fold or more, 3-fold or more, 4-fold or more, 5-fold or more, 6-fold or more compared to the expression vector , 7x or more, 8x or more, 9x or more, or 10x or more. Expression levels can be compared by, for example, constructing vectors with the same configuration except for the presence or absence of a trimerization domain, and using the same type of cells to determine the expression level (total sum of intracellular and extracellular secretion). expression level) can be measured. Cells to be used can be appropriately selected, for example, LLCMK2 cells (ATCC-CCL-7) can be used, but are not limited thereto.
 本発明は、本発明の抗原発現ベクターを細胞に導入する工程を含む、分泌シグナル、抗原タンパク質断片、および三量体形成ドメインを含む本発明の融合タンパク質の製造方法を提供する。また本発明は、本発明の抗原発現ベクターを細胞に導入する工程を含む、抗原タンパク質断片の製造方法を提供する。また本発明は、本発明の抗原発現ベクターを細胞に導入する工程を含む、細胞外に遊離された抗原タンパク質断片の製造方法を提供する。すなわち本発明は、本発明の抗原発現ベクターを細胞に導入する工程を含む、抗原タンパク質断片および三量体形成ドメインを含む融合タンパク質の製造方法を提供する。また本発明は、本発明の抗原発現ベクターを細胞に導入する工程を含む、抗原タンパク質断片を細胞外に分泌および遊離させる方法を提供する。各方法は、ベクターを導入した細胞を培養する工程、および、生成または分泌された、抗原タンパク質断片を含む発現産物を回収する工程をさらに含んでよい。 The present invention provides a method for producing the fusion protein of the present invention comprising a secretory signal, an antigenic protein fragment and a trimerization domain, comprising the step of introducing the antigen expression vector of the present invention into a cell. The present invention also provides a method for producing an antigen protein fragment, comprising the step of introducing the antigen expression vector of the present invention into a cell. The present invention also provides a method for producing extracellularly released antigen protein fragments, comprising the step of introducing the antigen-expressing vector of the present invention into cells. That is, the present invention provides a method for producing a fusion protein comprising an antigenic protein fragment and a trimerization domain, comprising the step of introducing an antigen expression vector of the present invention into a cell. The present invention also provides a method for extracellular secretion and release of an antigen protein fragment, comprising the step of introducing the antigen expression vector of the present invention into a cell. Each method may further comprise the steps of culturing the vector-introduced cells and recovering the produced or secreted expression products, including antigenic protein fragments.
 また本発明のベクターは、抗原タンパク質断片を含む発現産物の量が、三量体形成ドメインの付加によって増加し、また発現産物は、ベクター導入細胞の細胞内および細胞外の両方に分布する。したがって本発明のベクターは、抗原タンパク質断片の発現量を増大させるために有用であり、また、発現産物をベクター導入細胞の細胞内および細胞外の両方に分布させるために有用である。本発明は、抗原タンパク質断片を含む発現産物の量が、三量体形成ドメインの付加によって増加した、ベクター導入細胞の細胞内および細胞外の両方に該発現産物が分布する、抗原発現ベクターを提供する。また本発明は、抗原タンパク質断片を含む発現産物の量を、三量体形成ドメインの付加によって増加させるための、本発明の抗原タンパク質発現ベクターの作製方法、および、本発明の抗原タンパク質発現ベクターの使用および使用方法を提供する。また本発明は、ベクター導入細胞の細胞内および細胞外の両方にベクターからの発現産物を分布させるための、本発明の抗原タンパク質発現ベクターの作製方法、および、本発明の抗原タンパク質発現ベクターの使用および使用方法を提供する。また本発明は、抗原タンパク質または抗原タンパク質断片に三量体形成ドメインを付加することにより、当該抗原タンパク質または抗原タンパク質断片を発現させた際の発現量および/または細胞外分泌遊離量を上昇させる方法に関する。 In addition, the vectors of the present invention increase the amount of expression products containing antigen protein fragments by adding trimerization domains, and the expression products are distributed both intracellularly and extracellularly in vector-introduced cells. Therefore, the vectors of the present invention are useful for increasing the expression level of antigen protein fragments, and for distributing expression products both intracellularly and extracellularly in vector-introduced cells. The present invention provides an antigen expression vector in which the amount of the expression product containing the antigen protein fragment is increased by the addition of a trimerization domain, and the expression product is distributed both intracellularly and extracellularly in vector-introduced cells. do. The present invention also provides a method for constructing the antigen protein expression vector of the present invention and an antigen protein expression vector of the present invention for increasing the amount of an expression product containing an antigen protein fragment by adding a trimerization domain. Provide usage and usage instructions. The present invention also provides a method for producing the antigen protein expression vector of the present invention and the use of the antigen protein expression vector of the present invention for distributing the expression product from the vector both intracellularly and extracellularly in a vector-introduced cell. and provide usage instructions. The present invention also relates to a method for increasing the expression level and/or the extracellular secretion release amount when the antigen protein or antigen protein fragment is expressed by adding a trimerization domain to the antigen protein or antigen protein fragment. .
 また本発明は、抗原タンパク質断片を含む発現産物の量が、三量体形成ドメインの加除によって調節された、ベクター導入細胞の細胞内および細胞外の両方に該発現産物が分布する、抗原発現ベクターを提供する。また本発明は、抗原タンパク質断片を含む発現産物の量を三量体形成ドメインの有無によって調節するための方法を提供する。発現産物の量を増大させたい場合は、三量体形成ドメインを有するタンパク質を発現させ、低下させたい場合は、三量体形成ドメインを持たないタンパク質を発現させればよい。当該方法は、ベクター導入細胞の細胞内および細胞外の両方に該発現産物を分布させるための方法でもある。 The present invention also provides an antigen expression vector in which the amount of an expression product containing an antigen protein fragment is regulated by addition or deletion of a trimerization domain, and the expression product is distributed both intracellularly and extracellularly in a vector-introduced cell. I will provide a. The invention also provides methods for modulating the amount of expression products, including antigenic protein fragments, by the presence or absence of a trimerization domain. If it is desired to increase the amount of expression product, a protein with a trimerization domain can be expressed, and if it is desired to decrease it, a protein without a trimerization domain can be expressed. The method is also a method for distributing the expression product both intracellularly and extracellularly in vector-introduced cells.
 また本発明は、抗原タンパク質断片を含む発現産物の量は、抗原タンパク質断片の大きさによって調節しうることを見出した。また本発明は、抗原タンパク質断片の大きさによって、ベクター導入細胞の細胞内および細胞外における発現産物の分布を調節しうることも見出した。すなわち、抗原タンパク質断片を短くすることによって、ベクターからの発現量を増大させることが可能で、また、発現産物を細胞外に分泌遊離させる割合を高めることが可能である。逆に抗原タンパク質断片を長くすることによって、ベクターからの発現量を抑制し、また、発現産物を細胞外に分泌遊離させる割合を低下させる(すなわち、細胞に留まる割合を高める)ことが可能である。抗原タンパク質断片の長さは、所望の発現量および/または発現産物の細胞内外の分布を達成するために適宜調節することができる。 The present invention also found that the amount of an expression product containing an antigenic protein fragment can be regulated by the size of the antigenic protein fragment. The present invention also found that the intracellular and extracellular distribution of expression products in vector-introduced cells can be controlled by the size of the antigen protein fragment. That is, by shortening the antigen protein fragment, it is possible to increase the amount of expression from the vector and to increase the rate of extracellular secretion and release of the expression product. Conversely, by lengthening the antigen protein fragment, it is possible to suppress the expression level from the vector and to reduce the rate of secretion and release of the expression product to the outside of the cell (that is, increase the rate of retention in the cell). . The length of the antigen protein fragment can be adjusted as appropriate to achieve the desired expression level and/or intracellular/extracellular distribution of the expression product.
 例えば、発現量の増大および/または細胞外への分泌遊離を高めることを目的とする場合は、抗原タンパク質断片の長さは、例えば500アミノ酸以下、350アミノ酸以下、300アミノ酸以下、280アミノ酸以下、250アミノ酸以下、または230アミノ酸以下である。特に220アミノ酸以下の抗原タンパク質断片は好ましく、例えば215アミノ酸以下、210アミノ酸以下、または205アミノ酸以下の抗原タンパク質断片は特に好ましい。 For example, when the purpose is to increase the expression level and/or to increase extracellular secretion and release, the length of the antigen protein fragment is, for example, 500 amino acids or less, 350 amino acids or less, 300 amino acids or less, 280 amino acids or less, 250 amino acids or less, or 230 amino acids or less. Particularly preferred are antigenic protein fragments of 220 amino acids or less, for example antigenic protein fragments of 215 amino acids or less, 210 amino acids or less, or 205 amino acids or less are particularly preferred.
 分泌シグナルと三量体形成ドメインを含む融合タンパク質全体の長さは、例えば550アミノ酸以下、例えば500アミノ酸以下、450アミノ酸以下、400アミノ酸以下、350アミノ酸以下、330アミノ酸以下、300アミノ酸以下、または280アミノ酸以下である。特に270アミノ酸以下であることは好ましく、例えば265アミノ酸以下、260アミノ酸以下、または250アミノ酸以下であることは特に好ましい。 The total length of the fusion protein, including the secretory signal and the trimerization domain, is e.g. 550 amino acids or less, e.g. Amino acids or less. In particular, it is preferably 270 amino acids or less, and particularly preferably 265 amino acids or less, 260 amino acids or less, or 250 amino acids or less.
 分泌シグナルを除いた融合タンパク質全体の長さは、例えば550アミノ酸以下、例えば500アミノ酸以下、450アミノ酸以下、400アミノ酸以下、350アミノ酸以下、330アミノ酸以下、300アミノ酸以下、または280アミノ酸以下である。特に270アミノ酸以下であることは好ましく、例えば265アミノ酸以下、260アミノ酸以下、255アミノ酸以下、250アミノ酸以下、245アミノ酸以下、または240アミノ酸以下であることは特に好ましい。 The length of the entire fusion protein excluding the secretory signal is, for example, 550 amino acids or less, such as 500 amino acids or less, 450 amino acids or less, 400 amino acids or less, 350 amino acids or less, 330 amino acids or less, 300 amino acids or less, or 280 amino acids or less. In particular, it is preferably 270 amino acids or less, and particularly preferably 265 amino acids or less, 260 amino acids or less, 255 amino acids or less, 250 amino acids or less, 245 amino acids or less, or 240 amino acids or less.
 逆に発現量の抑制および/または細胞外への分泌遊離の抑制を目的とする場合は、上記とは反対に、抗原タンパク質断片の長さを長くすればよく、例えば上記のアミノ酸より長くすることができる。 Conversely, when the purpose is to suppress the expression level and/or to suppress extracellular secretion and release, the length of the antigen protein fragment may be increased, for example, longer than the above amino acids. can be done.
 また本発明は、三量体形成ドメインを有する抗原タンパク質を発現するベクターから三量体形成ドメインのコード領域を取り除き、三量体形成ドメインを有しない抗原タンパク質を発現するベクターとすることにより、ベクターの産生性を向上させることができることを見出した。この知見に基づけば、抗原タンパク質をコードするベクターの生産性を調節することが可能となる。すなわち本発明は、抗原タンパク質のコード配列において、三量体形成ドメインをコードする配列を追加または除去することによって、ベクターの生産性をそれぞれ抑制または向上させる方法を提供する。抗原タンパク質のコード配列において、三量体形成ドメインをコードする配列を追加または除去することによって、ベクターの製造培養過程にある生産細胞内で、抗原タンパク質の発現量をそれぞれ増加または減少させ、連動して分泌遊離量をそれぞれ増加または減少させ、あるいは、ベクターの生産性をそれぞれ抑制または向上させることが可能であり、高い免疫原性が維持される範囲においてベクター生産性を調節することができる。また本発明は、抗原タンパク質の発現量をそれぞれ増加または減少させるための、または、発現産物の分泌遊離量をそれぞれ増加または減少させるための、あるいは、ベクターの生産性をそれぞれ抑制または向上させるための、三量体形成ドメインを有する抗原タンパク質を発現するベクター、または、三量体形成ドメインを有しない抗原タンパク質を発現するベクターの使用、および、そのような用途に用いられるこれらのベクターに関する。 The present invention also provides a vector that expresses an antigen protein having a trimerization domain by removing the coding region of the trimerization domain from a vector that expresses an antigen protein that does not have a trimerization domain. It was found that the productivity of can be improved. Based on this knowledge, it becomes possible to regulate the productivity of vectors encoding antigen proteins. That is, the present invention provides a method for suppressing or improving vector productivity by adding or removing a trimerization domain-encoding sequence in the antigen protein coding sequence, respectively. By adding or removing the sequence encoding the trimerization domain in the coding sequence of the antigen protein, the expression level of the antigen protein is increased or decreased, respectively, in production cells during the culture process for manufacturing the vector. It is possible to increase or decrease the amount of secretion and release, respectively, or to suppress or improve vector productivity, respectively, and to adjust vector productivity to the extent that high immunogenicity is maintained. The present invention also provides methods for increasing or decreasing the expression level of an antigen protein, for increasing or decreasing the secretory release amount of an expression product, or for suppressing or improving vector productivity. , relates to the use of vectors expressing antigen proteins with or without trimerization domains, and these vectors used in such applications.
 例えば本発明は、抗原タンパク質断片を含む発現産物の量が、三量体形成ドメインの加除によって調節されることによって、ベクター導入細胞の細胞内および細胞外の両方に分布する該発現産物の量とベクター生産性が調節される、三量体形成ドメインを有する抗原タンパク質を発現するベクター、または、三量体形成ドメインを有しない抗原タンパク質を発現するベクターに関する。また本発明は、抗原タンパク質断片を含む発現産物の量が、抗原タンパク質断片の大きさによって調節されることによって、ベクター導入細胞の細胞内および細胞外の両方に分布する該発現産物の量とベクター生産性が調節される、三量体形成ドメインを有する抗原タンパク質を発現するベクター、または、三量体形成ドメインを有しない抗原タンパク質を発現するベクターに関する。 For example, the present invention provides an expression product containing an antigen protein fragment that is distributed both intracellularly and extracellularly in a vector-introduced cell by regulating the amount of the expression product by adding or removing a trimerization domain. It relates to vectors expressing antigenic proteins with or without trimerization domains, wherein vector productivity is modulated. In addition, the present invention provides an expression product containing an antigen protein fragment that is distributed both intracellularly and extracellularly in a vector-introduced cell and a vector by regulating the amount of the expression product containing the antigen protein fragment according to the size of the antigenic protein fragment. It relates to vectors expressing antigenic proteins with trimerization domains or antigenic proteins without trimerization domains with modulated productivity.
 以上の記載において三量体形成ドメインとしては適宜選択することができるが、例えばT4ファージfibritinの三量体形成ドメイン(foldon)を用いることが好適である。 In the above description, the trimerization domain can be appropriately selected, but it is preferable to use, for example, the trimerization domain (foldon) of T4 phage fibritin.
 本発明のベクター、ベクター導入細胞、またはベクターの発現産物は、例えば薬学的に許容される担体もしくは媒体を組み合わせて、適宜、組成物とすることができる。当該組成物は、例えば本発明のベクター、ベクター導入細胞、またはその発現産物と所望の担体または媒体とを含む組成物である。薬理学上許容される担体もしくは媒体は適宜選択されるが、例えば、水(例えば滅菌水)、生理食塩水(例えばリン酸緩衝生理食塩水)、緩衝液、培養液、グリコール、エタノール、グリセロール、ラクトース、スクロース、ソルビトール、マンニトール、澱粉、アカシアガム、リン酸カルシウム、ゼラチン、デキストラン、寒天、ペクチン、ポリビニルピロリドン、セルロース、メチルセルロース、メチルヒドロキシ安息香酸メチル、ヒドロキシ安息香酸プロピル、滑石、ステアリン酸マグネシウム、オリーブオイル、ピーナッツ油、ゴマ油、ミネラルオイルなどのオイル等が挙げられ、乳化剤、懸濁剤、界面活性剤、緩衝剤、香味剤、希釈剤、保存剤、安定剤、賦形剤、ベヒクル、防腐剤、徐放剤等も挙げられる(Remington: The Science and Practice of Pharmacy, 19th edition, Williams & Wilkins, 1995)。これらや他の薬学的に許容される担体もしくは媒体を任意に組み合わせて本発明の組成物とすることができる。 The vector, vector-introduced cell, or vector expression product of the present invention can be appropriately made into a composition, for example, by combining it with a pharmaceutically acceptable carrier or medium. The composition is, for example, a composition comprising a vector of the present invention, a vector-introduced cell, or an expression product thereof and a desired carrier or medium. A pharmacologically acceptable carrier or medium is appropriately selected, and examples include water (e.g., sterile water), physiological saline (e.g., phosphate-buffered saline), buffer solution, culture medium, glycol, ethanol, glycerol, Lactose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, gelatin, dextran, agar, pectin, polyvinylpyrrolidone, cellulose, methylcellulose, methylmethylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, olive oil, Oils such as peanut oil, sesame oil, mineral oil, etc., and emulsifiers, suspending agents, surfactants, buffers, flavoring agents, diluents, preservatives, stabilizers, excipients, vehicles, preservatives, slowdown agents. Release agents and the like are also included (Remington: The Science and Practice of Pharmacy, 19th edition, Williams & Wilkins, 1995). Any combination of these and other pharmaceutically acceptable carriers or media can be used to form the compositions of the present invention.
 分泌シグナル、抗原タンパク質断片、および三量体形成ドメインを持つ融合タンパク質をコードする本発明のベクターは、好ましい態様において、対象に接種することにより極めて優れたIgG抗体誘導を示し(実施例3c)、例えばウイルス抗原を標的とした場合、単回接種および反復接種のどちらにおいても、標的とするウイルスのウイルス感染に対する中和活性を有する中和抗体を高いレベルで誘導する(実施例3d)。このように本発明のベクター、ベクター導入細胞、またはベクターの発現産物は、標的抗原に対する免疫学的応答、特に液性免疫の応答を誘導するために有用である。特に本発明のベクターは、抗原タンパク質断片を細胞外に高レベルで分泌遊離することができるため、ベクターを導入した細胞にとどまることなく、その細胞の周囲の広範囲にわたって分泌遊離された抗原タンパク質が拡散することが期待される。これにより、抗原提示細胞による貪食が十分に行われ、抗体産生B細胞および細胞障害性T細胞の誘導を招き、抗体産生に寄与する長寿命形質細胞やメモリーB細胞の形成が促進され、免疫の長寿命化が達成されることが期待される。 The vector of the present invention encoding a fusion protein with a secretory signal, an antigenic protein fragment, and a trimerization domain, in a preferred embodiment, upon inoculation into a subject showed excellent IgG antibody induction (Example 3c), For example, when a viral antigen is targeted, both single and repeated inoculations induce high levels of neutralizing antibodies having neutralizing activity against viral infection of the target virus (Example 3d). Thus, the vectors, vector-introduced cells, or vector expression products of the present invention are useful for inducing an immunological response, particularly a humoral immune response, to a target antigen. In particular, the vectors of the present invention can secrete and release antigen protein fragments extracellularly at high levels, so that the secreted and released antigen proteins do not remain in the cells into which the vectors have been introduced, but spread over a wide area around the cells. expected to do so. This leads to sufficient phagocytosis by antigen-presenting cells, induces antibody-producing B cells and cytotoxic T cells, promotes the formation of long-lived plasma cells and memory B cells that contribute to antibody production, and promotes immunity. It is expected that longer life will be achieved.
 また本発明のベクターから産生された発現産物は、その一部が細胞に留まっており、ベクター接種により誘導される抗原特異的CTLは、比較対象としたベクター(S1-foldon)よりもむしろ高い(実施例3f)。このように本発明のベクターは、標的抗原に対する細胞性免疫の応答を誘導するためにも有用である。すなわち本発明のベクターは、液性および細胞性免疫の両方を誘導するために極めて優れた特性を有している。 In addition, part of the expression product produced from the vector of the present invention remains in cells, and the antigen-specific CTL induced by vector inoculation is higher than that of the vector (S1-foldon) used for comparison ( Example 3f). Thus, the vectors of the present invention are also useful for inducing cell-mediated immune responses against target antigens. That is, the vector of the present invention has excellent properties for inducing both humoral and cell-mediated immunity.
 すなわち本発明のベクターおよび本発明の組成物は、ワクチンとして特に有用である。本発明のワクチンは、抗原タンパク質に対する液性免疫および細胞性免疫の応答を効率的に誘導することができるため、例えば病原性微生物や感染性微生物(ウイルスを含む)に対する予防および治療のためのワクチンとして特に有用である。また本発明のワクチンは、がん等に対する免疫療法にも好適に用いられることが期待される。本発明のワクチン製剤は、薬学的に許容される担体または媒体、例えば、水、生理食塩水、緩衝液、緩衝剤、塩、賦形剤、凝固抑制剤、またはその組み合わせ等を組み合わせて適宜製造することができる。また本発明のワクチン製剤は、適宜アジュバントや免疫賦活剤をさらに含んでもよい。アジュバントとしては、例えばミョウバン、リン酸アルミニウム、フロイント完全および不完全アジュバント、ビロソーム、リポソーム、リポ多糖、油性または水性のエマルジョン型アジュバント等が挙げられ、これらから選択されるアジュバント、または他のアジュバント、あるいはそれらの任意の組み合わせを適宜含んでよい。 That is, the vectors of the present invention and the compositions of the present invention are particularly useful as vaccines. Since the vaccine of the present invention can efficiently induce humoral and cellular immunity responses to antigen proteins, it is a vaccine for prophylaxis and treatment against, for example, pathogenic microorganisms and infectious microorganisms (including viruses). is particularly useful as Moreover, the vaccine of the present invention is expected to be suitably used for immunotherapy against cancer and the like. The vaccine formulation of the present invention is appropriately produced by combining pharmaceutically acceptable carriers or media such as water, physiological saline, buffers, buffers, salts, excipients, anticoagulants, or combinations thereof. can do. Moreover, the vaccine formulation of the present invention may further contain an adjuvant or an immunostimulant as appropriate. Adjuvants include, for example, alum, aluminum phosphate, Freund's complete and incomplete adjuvants, virosomes, liposomes, lipopolysaccharides, oily or aqueous emulsion type adjuvants, adjuvants selected from these, or other adjuvants, or Any combination thereof may be included as appropriate.
 本発明の抗原発現ベクターや組成物、ワクチンを対象に投与する場合、その投与経路は適宜選択することができ、経口または非経口で投与することができる。非経口投与としては、例えば経鼻投与、吸引、鼻腔内投与、腹腔内投与、筋肉内投与、経皮投与、皮下投与、皮内投与、舌下投与、静脈内投与、経腸投与、経粘膜投与などが挙げられるが、それらに限定されない。注射剤として製剤化するためには、注射用蒸留水等の担体を用いて処方することができる。注射用の水溶液としては、例えば生理食塩水、ブドウ糖、D-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムなどのその他の成分を含む水溶液が挙げられる。また、アルコール、プロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤等を含んでもよい。 When the antigen-expressing vector, composition, or vaccine of the present invention is administered to a subject, the administration route can be appropriately selected, and can be administered orally or parenterally. Examples of parenteral administration include nasal administration, suction, intranasal administration, intraperitoneal administration, intramuscular administration, transdermal administration, subcutaneous administration, intradermal administration, sublingual administration, intravenous administration, enteral administration, and transmucosal administration. administration and the like, but are not limited to them. For formulation as an injection, it can be formulated using a carrier such as distilled water for injection. Aqueous solutions for injection include aqueous solutions containing other ingredients such as saline, glucose, D-sorbitol, D-mannose, D-mannitol, sodium chloride and the like. It may also contain alcohol, propylene glycol, polyethylene glycol, nonionic surfactants, and the like.
 本発明は、本発明の抗原発現ベクター、組成物、またはワクチンを対象に投与する工程を含む、免疫誘導方法を提供する。また本発明は、本発明の抗原発現ベクター、組成物、またはワクチンを対象に投与する工程を含む、該抗原に対する液性免疫、細胞性免疫、またはその両方を誘導する方法を提供する。また本発明は、本発明の抗原発現ベクターの、該抗原に対する液性免疫、細胞性免疫、またはその両方を誘導するための使用を提供する。また本発明は、本発明の抗原発現ベクターの、該抗原に対する液性免疫、細胞性免疫、またはその両方を誘導するための薬剤の製造における使用を提供する。また本発明は、本発明の抗原発現ベクターの、ワクチンの製造における使用を提供する。また本発明は、本発明の抗原発現ベクター、組成物、またはワクチンの、感染症またはがんに対する予防または治療方法を提供する。また本発明は、感染症またはがんに対する予防または治療に用いるための、本発明の抗原発現ベクター、組成物、またはワクチンを提供する。また本発明は、本発明の抗原発現ベクターの、感染症またはがんに対する予防または治療に用いるための薬剤の製造における使用を提供する。たとえば抗原は、感染症に対しては原因となる感染性生物(ここで、感染性生物は感染性ウイルスであってもよい)由来の抗原が用いられ、がんに対しては、当該がんのがん抗原が用いられる。 The present invention provides an immunity induction method comprising the step of administering the antigen-expressing vector, composition, or vaccine of the present invention to a subject. The present invention also provides a method of inducing humoral immunity, cell-mediated immunity, or both against an antigen, comprising the step of administering the antigen-expressing vector, composition, or vaccine of the present invention to a subject. The present invention also provides use of the antigen-expressing vector of the present invention for inducing humoral immunity, cell-mediated immunity, or both against the antigen. The present invention also provides use of the antigen-expressing vector of the present invention in the manufacture of a drug for inducing humoral immunity, cell-mediated immunity, or both against the antigen. The present invention also provides use of the antigen-expressing vector of the present invention in the production of vaccines. The present invention also provides prophylactic or therapeutic methods against infectious diseases or cancer using the antigen-expressing vectors, compositions, or vaccines of the present invention. The present invention also provides antigen-expressing vectors, compositions, or vaccines of the invention for prophylactic or therapeutic use against infectious diseases or cancer. The present invention also provides use of the antigen-expressing vector of the present invention in the production of a drug for use in preventing or treating infectious diseases or cancer. For example, an antigen derived from an infectious organism that is the cause of an infectious disease (here, the infectious organism may be an infectious virus) is used, and for cancer, the cancer of cancer antigens are used.
 本発明の抗原発現ベクター、組成物、またはワクチンは、例えば経鼻投与、鼻腔内投与、または吸引等により投与しうる。実施例に示すとおり、本発明のベクターは、経鼻接種によりウイルス感染症等に対して優れた免疫応答を誘導する。具体的には、本発明のワクチンを経鼻接種することにより、標的抗原に対する液性免疫を高い効率で誘導することが可能である。また液性免疫のみならず、細胞性免疫も高いレベルで誘導しうる。すなわち本発明は、本発明のワクチンを対象に経鼻接種する工程を含む、感染症に対する予防または治療方法を提供する。また本発明は、本発明のワクチンを対象に経鼻接種する工程を含む、感染性生物(ウイルスを含む)の抗原蛋白質に対する免疫応答(液性免疫および/または細胞性免疫の応答)を誘導する方法を提供する。経鼻接種においては、適宜適したワクチン形態を選択してよい。例えば、マイナス鎖RNAウイルスベクターを含む本発明のワクチンは、接種部位において標的抗原を発現して免疫応答を効率よく惹起できるので好適である。本発明は、マイナス鎖RNAウイルスベクターを含む本発明のワクチンを対象に経鼻接種する工程を含む、感染症に対する予防または治療方法を提供する。また本発明は、マイナス鎖RNAウイルスベクターを含む本発明のワクチンを対象に経鼻接種する工程を含む、感染性生物(ウイルスを含む)の抗原蛋白質に対する免疫応答(液性免疫および/または細胞性免疫の応答)を誘導する方法を提供する。感染性生物としては、所望の病原性微生物であってもよいが、例えばウイルス、特に気道を介して感染しうるウイルスや細菌が挙げられ、ライノウイルス、コロナウイルス、RSウイルス、パラインフルエンザウイルス、アデノウイルス、インフルエンザウイルス、エンテロウイルス等が挙げられ、特にコロナウイルス(SRAS-CoV-2を含む)が挙げられる。 The antigen-expressing vector, composition, or vaccine of the present invention can be administered, for example, by nasal administration, intranasal administration, or inhalation. As shown in the Examples, the vector of the present invention induces excellent immune responses against viral infections and the like by intranasal inoculation. Specifically, intranasal inoculation of the vaccine of the present invention enables highly efficient induction of humoral immunity against the target antigen. Moreover, not only humoral immunity but also cell-mediated immunity can be induced at a high level. That is, the present invention provides a method for preventing or treating infectious diseases, which comprises the step of nasally inoculating a subject with the vaccine of the present invention. In addition, the present invention induces an immune response (humoral and/or cellular immune response) against an antigenic protein of an infectious organism (including a virus), which comprises the step of nasally inoculating a subject with the vaccine of the present invention. provide a way. For intranasal inoculation, a suitable form of vaccine may be selected as appropriate. For example, the vaccine of the present invention containing a minus-strand RNA viral vector is suitable because it can efficiently elicit an immune response by expressing the target antigen at the site of inoculation. The present invention provides a method for preventing or treating infectious diseases, which comprises the step of intranasally inoculating a subject with the vaccine of the present invention containing a minus-strand RNA viral vector. The present invention also provides immune response (humoral immunity and/or cellular provide a method of inducing an immune response). Infectious organisms can be any desired pathogenic microorganism, but include, for example, viruses, particularly viruses and bacteria that can be transmitted through the respiratory tract, rhinoviruses, coronaviruses, respiratory syncytial viruses, parainfluenza viruses, adenoviruses. Viruses, influenza viruses, enteroviruses, etc., and in particular coronaviruses (including SRAS-CoV-2).
 本発明の抗原発現ベクター、組成物、またはワクチンの接種形態に特に制限はなく、例えば単回接種や複数回接種に使用することができる。複数回の接種においては、例えば本発明のワクチンを複数回接種してもよく、あるいは、他のワクチンと組み合わせて接種してもよい。例えば、プライマリー接種では、非ウイルスベクターのワクチンを用いて接種を行い、ブースター接種において、ウイルスベクター(好ましくはマイナス鎖RNAウイルスベクター)を含むワクチン製剤を接種してもよい。マイナス鎖RNAウイルスベクターは宿主染色体に組み込まれるおそれがないため、安全性が高く、複数回(例えば2回またはそれ以上、3回またはそれ以上、4回またはそれ以上、あるいは5回またはそれ以上)の接種を行うのにも適している。 The form of administration of the antigen-expressing vector, composition, or vaccine of the present invention is not particularly limited, and can be used, for example, for single or multiple inoculations. In multiple vaccinations, for example, the vaccine of the present invention may be administered multiple times, or may be administered in combination with other vaccines. For example, in primary inoculation, inoculation may be performed using a non-viral vector vaccine, and in booster inoculation, a vaccine formulation containing a viral vector (preferably a negative-strand RNA viral vector) may be inoculated. Negative-strand RNA viral vectors have no risk of integration into host chromosomes, so they are highly safe and can be administered multiple times (e.g., 2 or more, 3 or more, 4 or more, or 5 or more) It is also suitable for inoculation of
 一般にウイルスベクター型のワクチンでは、ウイルスベクター自体のタンパク質に対して特異的な抗体やCTLが誘導されるために、追加接種によるワクチン抗原のブースター効果が制限されたり、過去に類似ウイルスにより誘導されていた免疫が、ウイルスベクター自体のたんぱく質に対して作用することによって(交差免疫)、ワクチン抗原の免疫原性が抑制されるという懸念がある。しかし実施例に示されるとおり、分泌シグナル、抗原タンパク質断片、および三量体形成ドメインの融合タンパク質を発現するウイルスベクターを用いて反復接種を行ったところ、反復接種によって強いブースター効果が発揮されることが確認された。これは、過去に類似したウイルスベクターによるワクチン接種を行っていたり、類似ウイルスの感染履歴がある場合でも、ウイルスベクターを用いた本発明のワクチンの強い免疫誘導効果は妨げられないことを示唆しており、ウイルスベクターを用いた本発明のワクチンが、追加接種などの複数回接種において優れた効果を発揮することを意味している。すなわち本発明のワクチンは、複数回接種や反復接種によるブースター効果を発揮させるために有用である。 In general, viral vector-type vaccines induce antibodies and CTLs specific to the protein of the viral vector itself, which limits the booster effect of vaccine antigens by booster vaccination and has been induced by similar viruses in the past. There is a concern that the immunogenicity of the vaccine antigen may be suppressed by acting on the proteins of the viral vector itself (cross-immunity). However, as shown in the Examples, when repeated inoculations were performed using a viral vector expressing a fusion protein of a secretory signal, an antigenic protein fragment, and a trimerization domain, repeated inoculations exhibited a strong booster effect. was confirmed. This suggests that the strong immunity-inducing effect of the vaccine of the present invention using a viral vector is not hindered even if vaccination with a similar viral vector has been performed in the past or there is a history of infection with a similar virus. This means that the vaccine of the present invention using a viral vector exhibits excellent effects in multiple inoculations such as booster inoculations. That is, the vaccine of the present invention is useful for exerting a booster effect by multiple or repeated inoculations.
 また本発明のワクチン組成物は、複数の抗原を含むか、複数の抗原を発現する多価ワクチンとしてもよい。 The vaccine composition of the present invention may also be a multivalent vaccine that contains multiple antigens or expresses multiple antigens.
 抗原発現ベクター、組成物、またはワクチンを複数回接種する場合の接種間隔は適宜決定してよい。例えば、1週間またはそれ以上、10日間またはそれ以上、2週間またはそれ以上、20日間またはそれ以上、3週間またはそれ以上、4週間またはそれ以上、あるいは、5週間またはそれ以上の間隔とすることができ、4か月またはそれ以下、3か月またはそれ以下、2か月またはそれ以下、9週間またはそれ以下、8週間またはそれ以下、7週間またはそれ以下、6週間またはそれ以下の間隔とすることができる。具体的には、1~6週間、10日間~5週間、2週間~5週間、3~5週間、または4~5週間とすることができるが、これに限定されない。 When administering multiple doses of an antigen-expressing vector, composition, or vaccine, the vaccination interval may be determined as appropriate. For example, intervals of 1 week or more, 10 days or more, 2 weeks or more, 20 days or more, 3 weeks or more, 4 weeks or more, or 5 weeks or more with intervals of 4 months or less, 3 months or less, 2 months or less, 9 weeks or less, 8 weeks or less, 7 weeks or less, 6 weeks or less can do. Specifically, it can be 1 to 6 weeks, 10 days to 5 weeks, 2 weeks to 5 weeks, 3 to 5 weeks, or 4 to 5 weeks, but is not limited thereto.
 例えばマイナス鎖RNAウイルスベクターを含む本発明のワクチンは、1回の接種でも標的抗原に対する免疫応答を誘導することができ、2回の接種で標的抗原に対する顕著な免疫応答を誘導する。マイナス鎖RNAウイルスベクターを含むワクチンを複数回接種する場合は、その間隔は、例えば2週間~6週間、3~6週間、4~6週間、3~5週間、または4~5週間とすることができる。また、DNAベクターを含む本発明のワクチンを複数回接種する場合は、その間隔は、例えば1週間~6週間、1週間~5週間、1週間~4週間、1週間~3週間、1週間~2週間とすることができる。 For example, the vaccine of the present invention containing a negative-strand RNA viral vector can induce an immune response against the target antigen even with one inoculation, and induces a marked immune response against the target antigen with two inoculations. When administering multiple doses of a vaccine containing a negative-strand RNA viral vector, the intervals should be, for example, 2-6 weeks, 3-6 weeks, 4-6 weeks, 3-5 weeks, or 4-5 weeks. can be done. In addition, when the vaccine of the present invention containing a DNA vector is administered multiple times, the intervals are, for example, 1 week to 6 weeks, 1 week to 5 weeks, 1 week to 4 weeks, 1 week to 3 weeks, 1 week to It can be 2 weeks.
 DNAベクターを含むワクチンとマイナス鎖RNAウイルスベクターを含むワクチンを組み合わせて接種する場合は、所望の順番で接種することができ、DNAベクターを含むワクチンを接種した後でマイナス鎖RNAウイルスベクターを含むワクチンを接種してもよく、マイナス鎖RNAウイルスベクターを含むワクチンを接種した後でDNAベクターを含むワクチンを接種してもよい。 When a vaccine containing a DNA vector and a vaccine containing a negative-strand RNA viral vector are administered in combination, they can be administered in any desired order. may be inoculated, or a vaccine containing a DNA vector may be inoculated after inoculation with a vaccine containing a negative-strand RNA viral vector.
 ワクチンの複数回接種を行う場合、各回に接種されるワクチンに含まれる、または発現される抗原タンパク質断片は、毎回同じであってもよく、異なっていてもよい。異なる抗原を含む、または発現するワクチンを組み合わせることで、ワクチン接種を行った個体で誘導される免疫応答の標的対象を拡大することができる。例えば本発明のワクチン製剤を用いてブースター接種を行う場合に、プライマリー接種で用いたワクチン製剤に含まれる(または発現される)抗原とは異なる抗原を含む(または発現される)ワクチン製剤を用いてもよい。例えば同じ病原体の抗原であっても、プライマリー接種で用いた抗原とは異なる蛋白質を標的抗原として用いたり、あるいは標的としては同じ蛋白質であっても、プライマリー接種で用いた抗原(標的蛋白質の部分断片)とは異なる部分を抗原として用いたり、あるいは、プライマリー接種で用いた抗原が属する病原体とは異なる病原体の蛋白質(相同蛋白質等)を抗原として用いることができる。特に、同種の病原体であっても、プライマリー接種で用いたワクチン製剤が由来する病原体とは異なる株をブースター接種に用いることができる。 When administering multiple doses of a vaccine, the antigenic protein fragment contained or expressed in the vaccine administered each time may be the same or different each time. Combining vaccines containing or expressing different antigens can broaden the targeting of immune responses induced in vaccinated individuals. For example, when booster vaccination is performed using the vaccine formulation of the present invention, using a vaccine formulation containing (or expressed) an antigen different from the antigen contained (or expressed) in the vaccine formulation used in primary vaccination good too. For example, even if the antigen is the same pathogen, a protein different from the antigen used in the primary inoculation may be used as the target antigen. ) can be used as an antigen, or a protein (homologous protein, etc.) of a pathogen different from the pathogen to which the antigen used in the primary inoculation belongs can be used as an antigen. In particular, even if the pathogen is of the same kind, a strain different from the pathogen from which the vaccine formulation used in the primary inoculation is derived can be used for the booster inoculation.
 本発明の抗原発現ベクター、組成物、またはワクチンを動物(ヒトを含む)に投与する場合、その投与量は、疾患、患者の体重、年齢、性別、症状、投与目的、投与組成物の形態、投与方法等に応じて適宜決定することが可能である。また投与量は、対象動物、投与部位、投与回数などに応じて適宜調整してよい。例えば体重に応じて、1 ng/kg~1000mg/kg、5 ng/kg~800mg/kg、10 ng/kg~500mg/kg、0.1 mg/kg~400mg/kg、0.2 mg/kg~300mg/kg、0.5 mg/kg~200mg/kg、または 1 mg/kg~ 100mg/kgに設定され得るが、これに限定されない。また、マイナス鎖RNAウイルスベクターを含む本発明の抗原発現ベクター、組成物、またはワクチンを投与する場合は、例えば1x104 ~ 1x1015 CIU/kg、1x105 ~ 1x1014 CIU/kg、1x106 ~ 1x1013 CIU/kg、1x107 ~ 1x1012 CIU/kg、1x108 ~ 5x1011 CIU/kg、1x109 ~ 5x1011 CIU/kg、または1x1010 ~ 1x1011 CIU/kgで投与すること、ならびに、1x106 ~ 1x1017 particles/kg、1x107 ~ 1x1016 particles/kg、1x108 ~ 1x1015 particles/kg、1x109 ~ 1x1014 particles/kg、1x1010 ~ 1x1013 particles/kg、1x1011 ~ 5x1012 particles/kg、または5x1011 ~ 5x1012 particles/kgで投与することが挙げられるが、それらに限定されない。当業者であれば、患者の体重、年齢、症状などを考慮し、適宜適当な投与量及び投与方法を決定することが可能である。 When the antigen-expressing vector, composition, or vaccine of the present invention is administered to animals (including humans), the dose varies depending on the disease, patient body weight, age, sex, symptoms, purpose of administration, form of administration composition, It can be determined as appropriate according to the administration method and the like. In addition, the dosage may be appropriately adjusted according to the target animal, administration site, administration frequency, and the like. For example, depending on body weight, 1 ng/kg to 1000 mg/kg, 5 ng/kg to 800 mg/kg, 10 ng/kg to 500 mg/kg, 0.1 mg/kg to 400 mg/kg, 0.2 mg/kg to 300 mg/kg , 0.5 mg/kg to 200 mg/kg, or 1 mg/kg to 100 mg/kg. In addition, when administering the antigen-expressing vector, composition, or vaccine of the present invention containing a negative-strand RNA viral vector, for example, 1x10 4 to 1x10 15 CIU/kg, 1x10 5 to 1x10 14 CIU/kg, 1x10 6 to 1x10 13 CIU/kg, 1x10 7 to 1x10 12 CIU/kg, 1x10 8 to 5x10 11 CIU/kg, 1x10 9 to 5x10 11 CIU/kg, or 1x10 10 to 1x10 11 CIU/kg, and 1x10 6 ~ 1x10 17 particles/kg, 1x10 7 ~ 1x10 16 particles/kg, 1x10 8 ~ 1x10 15 particles/kg, 1x10 9 ~ 1x10 14 particles/kg, 1x10 10 ~ 1x10 13 particles/kg, 1x10 11 ~ 5x10 12 particles/kg kg, or 5x10 11 to 5x10 12 particles/kg. A person skilled in the art can appropriately determine an appropriate dose and administration method in consideration of the patient's body weight, age, symptoms, and the like.
 本発明の抗原発現ベクター、組成物、またはワクチンの投与対象は、好ましくは哺乳動物(ヒトおよび非ヒト哺乳類を含む)である。具体的には、ヒト、サル等の非ヒト霊長類、マウス、ラット、モルモットなどのげっ歯類、ウサギ、ヤギ、ヒツジ、ブタ、ウシ、イヌ、ネコなどの非げっ歯類動物(例えば非げっ歯類哺乳動物)、所望の霊長類、例えばサルなどの非ヒト霊長類、具体的にはカニクイザルやアカゲザルなどのマカク、およびヒトが含まれる。 The subject of administration of the antigen-expressing vector, composition, or vaccine of the present invention is preferably mammals (including humans and non-human mammals). Specifically, non-human primates such as humans and monkeys, rodents such as mice, rats and guinea pigs, non-rodent animals such as rabbits, goats, sheep, pigs, cows, dogs and cats mammals), primates of interest, eg, non-human primates such as monkeys, particularly macaques such as cynomolgus and rhesus monkeys, and humans.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に制限されるものではない。また、本明細書中に引用された文献及びその他の参照は、すべて本明細書の一部として組み込まれる。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. Also, all publications and other references cited herein are incorporated as part of this specification.
[実施例1a]ワクチン抗原S1-foldon搭載センダイウイルスベクターの構築
 センダイウイルスベクターにおける、ゲノムへの無作為挿入の危険性がない利点を活かして、SARS-CoV-2のスパイクタンパク質(S1)と三量体化ドメインfoldonとの融合タンパク質であるS1-foldonをコードする遺伝子を搭載したセンダイウイルスベクターを細胞に導入し発現させるために、次のように、S1-foldon搭載センダイウイルスベクターを構築した(図1)。
 分泌シグナルをN末端に持つS1-foldonの遺伝子を鋳型にして、5’- ATATGCGGCCGCGCCACCATGTTCGTCTTTTTGGTGTTG -3’(Not1_Signal_N (配列番号18))及び 5’- CCAGCTCTTGTTGTTCTTATGATAGTAGAC -3’(S1-foldon_A441G_C (配列番号19))を用いて、KOD OneTM PCR Master Mix-DNA polymerase(TOYOBO株式会社 コード番号KMM-101)によるPCR反応(98℃-2分→98℃-10秒、55℃-5秒、68℃-10秒を40サイクル→68℃-30秒)を行い、約330 baseのPCR産物(1)と、S1-foldonの遺伝子を鋳型にして、5’- GTCTACTATCATAAGAACAACAAGAGCTGG -3’(S1-foldon_A441G_N (配列番号20))及び 5’- ATATGCGGCCGCGTGGATGAACTTTCACCCTAAGTTTTTCTTACTACGGCTAACCCAGGAAGGTGGAGAGCAGC -3’(foldon_EIS_Not1_C (配列番号21))を用いて、KOD OneTM PCR Master Mix-DNA polymerase(TOYOBO株式会社 コード番号KMM-101)によるPCR反応(98℃-2分→98℃-10秒、55℃-5秒、68℃-10秒を40サイクル→68℃-30秒)を行い約1700 base の PCR産物(2)を得た。この2つのPCR産物を鋳型にして、Not1_Signal_N(配列番号18)及び foldon_EIS_Not1_C(配列番号21)を用いて、KOD OneTM PCR Master Mix-DNA polymerase(TOYOBO株式会社 コード番号KMM-101)によるPCR反応(98℃-2分→98℃-10秒、55℃-5秒、68℃-10秒を30サイクル→68℃-30秒)を行い、約2000 baseのPCR産物 (4)を得た。電気泳動によってPCR産物のサイズを確認後、NucleoSpinTM Gel and PCR Clean-up (MACGEREY-NAGELカタログ番号740609.250/U0609C)にて精製した。
 第1、第2のPCRによって、当該S1-foldon配列が2分割されたPCR産物(1),(2)を得て、第3PCRでは、PCR産物(1)と3’側のPCR産物(2)を鋳型として、当該S1-foldon配列の全長に渡るPCR産物(3)を得て、これをセンダイウイルスベクターに搭載させた。第1、第2のPCRにおいて当該S1-foldon配列を2分割する理由は、当該S1-foldon配列内に1か所のA rich配列(5xA_N_2xA)が存在しているが、A rich配列上では、センダイウイルスベクターの生産過程でセンダイウイルスのRNA依存性RNAポリメラーゼによるエラーが起こりがちなので、このようなエラー現象を回避するためである。A rich配列部位上にPCRプライマーを設定して、各プライマー配列を同義コドンの制限下にA/TからG/Cに置換させた。
[Example 1a] Construction of vaccine antigen S1-foldon-loaded Sendai virus vector In order to introduce and express a Sendai virus vector carrying a gene encoding S1-foldon, which is a fusion protein with the merization domain foldon, into cells, a Sendai virus vector carrying S1-foldon was constructed as follows ( Figure 1).
Using the S1-foldon gene having a secretory signal at the N-terminus as a template, 5'-ATATGCGGCCGCGCCACCATGTTCGTCTTTTTGGTGTTG-3' (Not1_Signal_N (SEQ ID NO: 18)) and 5'-CCAGCTCTTGTTGTTCTTATGATAGTAGAC-3' (S1-foldon_A441G_C (SEQ ID NO: 19)) using KOD One TM PCR Master Mix-DNA polymerase (TOYOBO Co., Ltd. Code No. KMM-101) for PCR reaction (98°C-2 minutes → 98°C-10 seconds, 55°C-5 seconds, 68°C-10 seconds 40 cycles → 68 ° C.-30 seconds), and using the PCR product (1) of about 330 bases and the S1-foldon gene as a template, 5'-GTCTACTATCATAAGAACAACAAGAGCTGG-3' (S1-foldon_A441G_N (SEQ ID NO: 20) ) and 5'-ATATGCGGCCGCGTGGATGAACTTTCACCCTAAGTTTTTCTTACTACGGCTAACCCAGGAAGGTGGAGAGCAGC-3' (foldon_EIS_Not1_C (SEQ ID NO: 21)), KOD One TM PCR Master Mix-DNA polymerase (TOYOBO Co., Ltd. code number KMM-101) for PCR reaction (98 ° C - 2 minutes → 40 cycles of 98°C-10 seconds, 55°C-5 seconds, and 68°C-10 seconds → 68°C-30 seconds) were performed to obtain a PCR product (2) of about 1700 bases. Using these two PCR products as templates, PCR reaction ( 98°C-2 minutes → 30 cycles of 98°C-10 seconds, 55°C-5 seconds, 68°C-10 seconds → 68°C-30 seconds) to obtain a PCR product (4) of about 2000 bases. After confirming the size of the PCR product by electrophoresis, it was purified using NucleoSpin Gel and PCR Clean-up (MACGEREY-NAGEL Catalog No. 740609.250/U0609C).
By the first and second PCRs, PCR products (1) and (2) in which the S1-foldon sequence is divided into two are obtained. ) as a template, a PCR product (3) spanning the entire length of the S1-foldon sequence was obtained and loaded into a Sendai virus vector. The reason for dividing the S1-foldon sequence into two in the first and second PCRs is that there is one A rich sequence (5xA_N_2xA) in the S1-foldon sequence, but on the A rich sequence, This is to avoid errors caused by the RNA-dependent RNA polymerase of Sendai virus, which tend to occur during the production process of Sendai virus vectors. PCR primers were set on the A rich sequence site, and each primer sequence was substituted from A/T to G/C under the restriction of synonymous codons.
[表1-1]
Figure JPOXMLDOC01-appb-I000001
[Table 1-1]
Figure JPOXMLDOC01-appb-I000001
 NotIで消化・ゲル抽出した全長S1-foldon断片を、NotIで消化・BAP処理したプラスミドpSeV18+/ΔF(Δ5aa) DNA(F遺伝子を欠失し、リーダー配列とN遺伝子との間にNotIサイトを有するセンダイウイルスベクター(WO2003/025570, WO2010/008054, Z株)のプラス鎖ゲノムをコードするDNA)(図1A)でライゲーションを行い、クローニングされたS1-foldonの塩基配列を確認して、SeVに最適化された全長S1-foldonを搭載したプラスミドpSeV18+S1-foldon/ΔF(Δ5aa)を得た。このプラスミド DNAを鋳型にしてセンダイウイルス再構成を行い、S1-foldon搭載センダイウイルスベクター SeV18+S1-foldon/ΔF(Δ5aa)を得た。
 挿入された配列(配列番号22)を図2に示した。挿入配列は、NotI サイト(下線)、コザック配列(二重下線)、S1-foldonの開始コドンから停止コドンまでの配列((分泌シグナル配列S(大文字破線下線);分泌シグナル(S)配列を除くS1配列(大文字下線なし);foldon配列(大文字一点破線下線))、EIS配列(太字波線下線)を含む34塩基(波線下線)、NotIサイト(下線)から成る。センダイウイルスベクターに挿入される総塩基数(NotIサイト + コザック配列 + S1-foldonの開始コドンから停止コドンまでの配列+ EIS配列を含む34塩基)は、6の倍数であることが望ましいので(6n規則) 、6n規則に適合させるために、EIS配列を含む34塩基の直後に、調整配列cac(太字)の挿入を行った。S1-foldonの挿入塩基配列(配列番号22)のコード配列(CDS)は、配列番号22の15-2144番目である。コードされるアミノ酸配列は配列番号23に示した。このうち1-13番目がシグナルペプチド(SARS-CoV-2のスパイクタンパク質由来)、14-679番目がS1配列、680-710番目がfoldon配列である。
NotI-digested and gel-extracted full-length S1-foldon fragment was digested with NotI and BAP-treated plasmid pSeV18+/ΔF(Δ5aa) DNA (F gene deleted and NotI site between leader sequence and N gene After ligation with Sendai virus vector (WO2003/025570, WO2010/008054, DNA encoding positive strand genome of Z strain) (Fig. 1A), confirming the base sequence of cloned S1-foldon, it is suitable for SeV. A plasmid pSeV18+S1-foldon/ΔF(Δ5aa) carrying the modified full-length S1-foldon was obtained. Using this plasmid DNA as a template, Sendai virus reconstruction was performed to obtain an S1-foldon-loaded Sendai virus vector SeV18+S1-foldon/ΔF(Δ5aa).
The inserted sequence (SEQ ID NO:22) is shown in FIG. The inserted sequence consists of the NotI site (underlined), the Kozak sequence (double underlined), the sequence from the start codon to the stop codon of S1-foldon (secretory signal sequence S (uppercase dashed underlined); excluding the secretory signal (S) sequence S1 sequence (no uppercase underline); foldon sequence (uppercase single-dotted underline)), 34 bases (wavy underline) including EIS sequence (bold wavy underline), and NotI site (underlined). The number of bases (NotI site + Kozak sequence + sequence from start codon to stop codon of S1-foldon + 34 bases including EIS sequence) is preferably a multiple of 6 (6n rule), so conform to the 6n rule. Therefore, the regulatory sequence cac (bold) was inserted immediately after the 34 bases containing the EIS sequence.The coding sequence (CDS) of the insert sequence of S1-foldon (SEQ ID NO: 22) is 15 of SEQ ID NO: 22. -2144.The encoded amino acid sequence is shown in SEQ ID NO: 23. Of these, the 1-13th is the signal peptide (derived from the SARS-CoV-2 spike protein), the 14th-679th is the S1 sequence, and the 680- The 710th is the foldon array.
[実施例1b]ワクチン抗原S-RBD-foldon搭載センダイウイルスベクターの構築
 分泌シグナル(S)、SARS-CoV-2のスパイクタンパク質(S1)の受容体結合ドメイン(RBD)、および三量体化ドメインfoldonの融合タンパク質であるS-RBD-foldonをコードする遺伝子を搭載したセンダイウイルスベクターを細胞に導入し発現させるために、次のように、S-RBD-foldon搭載センダイウイルスベクターを構築した(図1)。
 分泌シグナルをN末端に持つS1-foldonの遺伝子を鋳型にして、Not1_Signal_N(配列番号18)及び 5’- ATGTTGGGGAATCTGGAGGATACCAGAGGG -3’(配列番号24)を用いて、KOD OneTM PCR Master Mix-DNA polymerase(TOYOBO株式会社 コード番号KMM-101)によるPCR反応(98℃-2分→98℃-10秒、55℃-5秒、68℃-1秒を30サイクル→68℃-30秒)を行い、約350 baseのPCR産物(1)と、RBDの合成遺伝子を鋳型にして、5’- CCCTCTGGTATCCTCCAGATTCCCCAACAT -3’(signal_RBD_N (配列番号25))及び 5’- TAACCGGAGCCGGGGGTGCTCTTCTTGGGG -3’(RBD_foldon_C (配列番号26))を用いて、KOD OneTM PCR Master Mix-DNA polymerase(TOYOBO株式会社 コード番号KMM-101)によるPCR反応(98℃-2分→98℃-10秒、55℃-5秒、68℃-1秒を30サイクル→68℃-30秒)を行い約620 base の PCR産物(2)と、C末端にfoldon tagを持つS1-foldonの遺伝子を鋳型にして、5’- CCCCAAGAAGAGCACCCCCGGCTCCGGTTA -3’(RBD_foldon_N (配列番号27))及び foldon_EIS_Not1_C(配列番号21)を用いて、KOD OneTM PCR Master Mix-DNA polymerase(TOYOBO株式会社 コード番号KMM-101)によるPCR反応(98℃-2分→98℃-10秒、55℃-5秒、68℃- 1秒を30サイクル→68℃-30秒)を行い、約100 baseのPCR産物(3)を得た。この3つのPCR産物を鋳型にして、Not1_Signal_N(配列番号18)及び foldon_EIS_Not1_C(配列番号21)を用いて、KOD OneTM PCR Master Mix-DNA polymerase(TOYOBO株式会社 コード番号KMM-101)によるPCR反応(98℃-2分→98℃-10秒、55℃-5秒、68℃-1秒を30サイクル→68℃-30秒)を行い、約830 baseのPCR産物 (4)を得た。電気泳動によってPCR産物のサイズを確認後、NucleoSpinTM Gel and PCR Clean-up (MACGEREY-NAGELカタログ番号740609.250/U0609C)にて精製した。
[Example 1b] Construction of Sendai virus vector carrying vaccine antigen S-RBD-foldon Secretion signal (S), receptor binding domain (RBD) of spike protein (S1) of SARS-CoV-2, and trimerization domain In order to introduce and express a Sendai virus vector carrying the gene encoding the foldon fusion protein S-RBD-foldon into cells, we constructed a Sendai virus vector carrying S-RBD-foldon as follows (Fig. 1).
KOD One PCR Master Mix-DNA polymerase ( TOYOBO Co., Ltd. Code No. KMM-101) PCR reaction (98°C - 2 minutes → 98°C - 10 seconds, 55°C - 5 seconds, 68°C - 1 second for 30 cycles → 68°C - 30 seconds). 5'-CCCTCTGGTATCCTCCAGATTCCCCAACAT-3' (signal_RBD_N (SEQ ID NO: 25)) and 5'-TAACCGGAGCCGGGGGTGCTCTTTCTTGGGG-3' (RBD_foldon_C (SEQ ID NO: 26)) using the 350-base PCR product (1) and the RBD synthetic gene as templates. using KOD One TM PCR Master Mix-DNA polymerase (TOYOBO Co., Ltd. Code No. KMM-101) for PCR reaction (98°C-2 minutes → 98°C-10 seconds, 55°C-5 seconds, 68°C-1 second 30 cycles → 68°C-30 seconds), and using the PCR product (2) of about 620 bases and the S1-foldon gene with a foldon tag at the C-terminus as a template, 5'-CCCCAAGAAGAGCACCCCCGGCTCCGGTTA-3' (RBD_foldon_N ( SEQ ID NO: 27)) and foldon_EIS_Not1_C (SEQ ID NO: 21), KOD One PCR Master Mix-DNA polymerase (TOYOBO Code No. KMM-101) for PCR reaction (98°C-2 minutes → 98°C-10 seconds) , 55°C-5 seconds, 68°C-1 second for 30 cycles → 68°C-30 seconds) to obtain a PCR product (3) of approximately 100 bases. Using these three PCR products as templates, PCR reaction ( 98°C-2 minutes → 30 cycles of 98°C-10 seconds, 55°C-5 seconds, 68°C-1 seconds → 68°C-30 seconds) to obtain a PCR product (4) of about 830 bases. After confirming the size of the PCR product by electrophoresis, it was purified using NucleoSpin Gel and PCR Clean-up (MACGEREY-NAGEL Catalog No. 740609.250/U0609C).
[表1-2]
Figure JPOXMLDOC01-appb-I000002
[Table 1-2]
Figure JPOXMLDOC01-appb-I000002
 NotIで消化・ゲル抽出した全長S-RBD-foldon断片を、NotIで消化・BAP処理したプラスミドpSeV18+/ΔF(Δ5aa) DNA(F遺伝子を欠失し、リーダー配列とN遺伝子との間にNotIサイトを有するセンダイウイルスベクター(WO2003/025570, WO2010/008054, Z株)のプラス鎖ゲノムをコードするDNA)(図1A)でライゲーションを行い、クローニングされたS-RBD-foldonの塩基配列を確認して、SeVに最適化された全長S-RBD-foldonを搭載したプラスミドpSeV18+S-RBD-foldon/ΔF(Δ5aa)を得た。このプラスミド DNAを鋳型にしてセンダイウイルス再構成を行い、S-RBD-foldon搭載センダイウイルスベクター SeV18+S-RBD-foldon/ΔF(Δ5aa)を得た。
 挿入された配列(配列番号28)を図3に示した。挿入配列は、NotI サイト(下線)、コザック配列(二重下線)、S-RBD-foldonの開始コドンから停止コドンまでの配列((分泌シグナル配列S(大文字破線下線);RBD配列(大文字下線なし);foldon配列(大文字一点破線下線))、EIS配列(太字波線下線)を含む34塩基(波線下線)、NotIサイト(下線)から成る。センダイウイルスベクターに挿入される総塩基数(NotIサイト + コザック配列 + S-RBD-foldonの開始コドンから停止コドンまでの配列 + EIS配列を含む34塩基)は、6の倍数であることが望ましいので(6n規則)、6n規則に適合させるために、EIS配列を含む34塩基の直後に、調整配列cac(太字)の挿入を行った。S-RBD-foldonの挿入塩基配列(配列番号28)のコード配列(CDS)は、配列番号28の15-758番目である。コードされるアミノ酸配列を配列番号29に示した。このうち1-13番目がシグナルペプチド(SARS-CoV-2のスパイクタンパク質由来)、14-217番目がRBD、218-248番目がfoldonの配列である。
The NotI-digested and gel-extracted full-length S-RBD-foldon fragment was transformed into NotI-digested and BAP-treated plasmid pSeV18+/ΔF(Δ5aa) DNA (F gene deleted, NotI site between leader sequence and N gene). DNA encoding the positive strand genome of Sendai virus vector (WO2003/025570, WO2010/008054, Z strain) (Fig. 1A) and confirming the nucleotide sequence of the cloned S-RBD-foldon. , resulting in the plasmid pSeV18+S-RBD-foldon/ΔF(Δ5aa) carrying the SeV-optimized full-length S-RBD-foldon. Using this plasmid DNA as a template, Sendai virus reconstruction was performed to obtain an S-RBD-foldon-loaded Sendai virus vector SeV18+S-RBD-foldon/ΔF(Δ5aa).
The inserted sequence (SEQ ID NO:28) is shown in FIG. The inserted sequence consists of the NotI site (underlined), the Kozak sequence (double underlined), the sequence from the start codon to the stop codon of S-RBD-foldon (secretory signal sequence S (uppercase dashed underline); RBD sequence (uppercase underlined) ); foldon sequence (one-dot dashed underline)), 34 bases (wavy underline) including EIS sequence (bold wavy underline), NotI site (underline) Total number of bases inserted into Sendai virus vector (NotI site + Kozak sequence + sequence from start codon to stop codon of S-RBD-foldon + 34 bases including EIS sequence) is preferably a multiple of 6 (6n rule). The regulatory sequence cac (bold) was inserted immediately after the 34 bases containing the sequence.The coding sequence (CDS) of the inserted nucleotide sequence of S-RBD-foldon (SEQ ID NO:28) is 15-758 of SEQ ID NO:28. The encoded amino acid sequence is shown in SEQ ID NO: 29. Of these, the 1-13th is the signal peptide (derived from the SARS-CoV-2 spike protein), the 14th-217th is the RBD, and the 218th-248th is the RBD. An array of foldons.
[実施例1c]ワクチン抗原S-RBD搭載センダイウイルスベクターの構築
 分泌シグナル(S)およびSARS-CoV-2のスパイクタンパク質(S1)の受容体結合ドメイン(RBD)をコードするS-RBD遺伝子を搭載したセンダイウイルスベクターを細胞に導入し発現させるために、次のように、S-RBD搭載センダイウイルスベクターを構築した(図1)。
 分泌シグナルをN末端に持つS-RBD-foldonの遺伝子が搭載されたpSeV18+S-RBD-foldon/dF(Δ5aa)を鋳型にして、5’- ACAAGAGAAAAAACATGTATGG -3’(SeV_F6 (配列番号30))及び 5’- GGAAGTAGCAGTTGAAGCCCTC -3’(RBD_R (配列番号31))を用いて、KOD OneTM PCR Master Mix-DNA polymerase(TOYOBO株式会社 コード番号KMM-101)によるPCR反応(98℃-2分→98℃-10秒、55℃-5秒、68℃-10秒を40サイクル→68℃-30秒)を行い、約550 baseのPCR産物(1)と、foldon tagをC末端に持たないRBDの遺伝子が搭載されたSeV18+RBD/dF(Δ5aa)を鋳型にして、5’- GCAACAACCTGGACAGCAAG -3’(RBD_F (配列番号32))及び 5’- GATAACAGCACCTCCTCCCGACT -3’(SeV_R199 (配列番号33))を用いて、KOD OneTM PCR Master Mix-DNA polymerase(TOYOBO株式会社 コード番号KMM-101)によるPCR反応(98℃-2分→98℃-10秒、55℃-5秒、68℃-10秒を40サイクル→68℃-30秒)を行い約400 base の PCR産物(2)を得た。この2つのPCR産物を鋳型にして、SeV_F6(配列番号30)及び SeV_R199(配列番号33)を用いて、KOD OneTM PCR Master Mix-DNA polymerase(TOYOBO株式会社 コード番号KMM-101)によるPCR反応(98℃-2分→98℃-10秒、55℃-5秒、68℃-10秒を40サイクル→68℃-30秒)を行い、約900baseのPCR産物 (3)を得た。電気泳動によってPCR産物のサイズを確認後、NucleoSpinTM Gel and PCR Clean-up (MACGEREY-NAGELカタログ番号740609.250/U0609C)にて精製した。
[Example 1c] Construction of Sendai virus vector carrying vaccine antigen S-RBD Equipped with S-RBD gene encoding secretory signal (S) and receptor binding domain (RBD) of spike protein (S1) of SARS-CoV-2 In order to introduce the resulting Sendai virus vector into cells and express it, an S-RBD-loaded Sendai virus vector was constructed as follows (Fig. 1).
Using pSeV18+S-RBD-foldon/dF(Δ5aa) carrying the S-RBD-foldon gene with a secretion signal at the N-terminus as a template, 5′-ACAAGAGAAAAAACATGTATGG-3′ (SeV_F6 (SEQ ID NO: 30)) and 5'-GGAAGTAGCAGTTGAAGCCCTC-3' (RBD_R (SEQ ID NO: 31)) using KOD One PCR Master Mix-DNA polymerase (TOYOBO Co., Ltd. code number KMM-101) for PCR reaction (98°C-2 minutes → 98 ℃-10 seconds, 55℃-5 seconds, 68℃-10 seconds for 40 cycles → 68℃-30 seconds), PCR product (1) of about 550 bases and RBD without foldon tag at C-terminus 5'-GCAACAACCTGGACAGCAAG-3' (RBD_F (SEQ ID NO: 32)) and 5'-GATAACAGCACCTCCTCCCGACT-3' (SeV_R199 (SEQ ID NO: 33)) were prepared using SeV18 + RBD/dF (Δ5aa) loaded with the gene as a template. Using KOD One TM PCR Master Mix-DNA polymerase (TOYOBO Co., Ltd. code number KMM-101) PCR reaction (98°C-2 minutes → 98°C-10 seconds, 55°C-5 seconds, 68°C-10 seconds) 40 cycles→68°C-30 seconds) to obtain a PCR product (2) of about 400 bases. Using these two PCR products as templates, a PCR reaction ( 98°C-2 minutes → 40 cycles of 98°C-10 seconds, 55°C-5 seconds, 68°C-10 seconds → 68°C-30 seconds) to obtain a PCR product (3) of approximately 900 bases. After confirming the size of the PCR product by electrophoresis, it was purified using NucleoSpin Gel and PCR Clean-up (MACGEREY-NAGEL Catalog No. 740609.250/U0609C).
[表1-3]
Figure JPOXMLDOC01-appb-I000003
[Table 1-3]
Figure JPOXMLDOC01-appb-I000003
 NotIで消化・ゲル抽出した全長S-RBD断片を、NotIで消化・BAP処理したプラスミドpSeV18+/ΔF(Δ5aa) DNA(F遺伝子を欠失し、リーダー配列とN遺伝子との間にNotIサイトを有するセンダイウイルスベクター(WO2003/025570, WO2010/008054, Z株)のプラス鎖ゲノムをコードするDNA)(図1A)でライゲーションを行い、クローニングされたS-RBDの塩基配列を確認して、SeVに最適化された全長S-RBDを搭載したプラスミドpSeV18+S-RBD/ΔF(Δ5aa)を得た。このプラスミド DNAを鋳型にしてセンダイウイルス再構成を行い、S-RBD搭載センダイウイルスベクター SeV18+S-RBD/ΔF(Δ5aa)を得た。
 挿入された配列(配列番号34)を図4に示した。挿入配列は、NotI サイト(下線)、コザック配列(二重下線)、S-RBDの開始コドンから停止コドンまでの配列((分泌シグナル配列S(大文字破線下線);RBD配列(大文字下線なし))、EIS配列(太字波線下線)を含む34塩基(波線下線)、NotIサイト(下線)から成る。センダイウイルスベクターに挿入される総塩基数(NotIサイト + コザック配列 + S-RBDの開始コドンから停止コドンまでの配列 + EIS配列を含む34塩基)は、6の倍数であることが好ましいので(6n規則)、6n規則に適合しているために、調整配列の挿入は必要ない。S-RBDの挿入塩基配列(配列番号34)のコード配列(CDS)は、配列番号34の15-665番目である。コードされるアミノ酸配列を配列番号35に示した。このうち1-13番目がシグナルペプチド(SARS-CoV-2のスパイクタンパク質由来)、14-217番目がRBDである。
NotI-digested and gel-extracted full-length S-RBD fragment was digested with NotI and BAP-treated plasmid pSeV18+/ΔF(Δ5aa) DNA (F gene deleted and NotI site between leader sequence and N gene After ligation with Sendai virus vector (WO2003/025570, WO2010/008054, DNA encoding positive strand genome of Z strain) (Fig. 1A), confirming the base sequence of cloned S-RBD, it is suitable for SeV. A plasmid pSeV18+S-RBD/ΔF(Δ5aa) carrying the modified full-length S-RBD was obtained. Using this plasmid DNA as a template, Sendai virus reconstruction was performed to obtain an S-RBD-loaded Sendai virus vector SeV18+S-RBD/ΔF(Δ5aa).
The inserted sequence (SEQ ID NO:34) is shown in FIG. The inserted sequence consists of the NotI site (underlined), the Kozak sequence (double underlined), the sequence from the start codon to the stop codon of S-RBD ((secretory signal sequence S (uppercase dashed underline); RBD sequence (uppercase no underline)). , 34 bases (wavy underline) including EIS sequence (bold wavy underline), NotI site (underline) Total number of bases to be inserted into Sendai virus vector (NotI site + Kozak sequence + stop from start codon of S-RBD) The sequence up to the codon + 34 bases including the EIS sequence) is preferably a multiple of 6 (6n rule), so no adjustment sequence insertion is required to comply with the 6n rule. The coding sequence (CDS) of the inserted base sequence (SEQ ID NO: 34) is 15 to 665 of SEQ ID NO: 34. The encoded amino acid sequence is shown in SEQ ID NO: 35. Of these, 1 to 13 are the signal peptide ( SARS-CoV-2 spike protein), 14th-217th is RBD.
[実施例2a]ワクチン抗原タンパク質の発現操作と細胞内在量及び細胞外分泌遊離量の測定
1) 10% FBSを含むDMEM培地(2 mL/well)を用いて、LLCMK2細胞を6-well plateに細胞密度2.3×105 cells/wellで播種し、37℃、5% CO2インキュベーターで3日間接着培養を行った。
2) 予備に播種されたwell中の細胞数を測定しそれに基づいて、ワクチン抗原遺伝子搭載センダイウイルスベクターを感染多重度3で感染させた。感染操作は、1)に続いて、PBSで 交換、PBSを完全除去して、ワクチン溶液を添加し、37℃、5% CO2インキュベーターに静置して、15分おきに振盪して、吸着、感染開始のために1時間インキュベートを行った。
3) 2)の感染操作後、PBSで培地交換、PBS完全除去して、培地1 mL/wellで加えて、37℃、5% CO2インキュベーターで3日間培養した。
4-1) 培養上清を回収して、フィルター滅菌してDryice/EtOHで急速凍結し、-80℃で保管した。
4-2a) 一方、接着細胞を剥がすために、DPBSを加え、除去して、250 μLのRIPA buffer (nacalai tesque, Cat# 08714-04)を添加して、セルスクレイパーで細胞を剥がして細胞懸濁液を回収した。
4-2b) この細胞懸濁液をDryice/EtOHで急速凍結して、室温で融解して混和した。この操作を3回繰り返した。
4-2c) この凍結融解液を15,000 rpm、4℃で5分間遠心分離して、上澄みを細胞抽出液として回収して、細胞抽出液と細胞ペレットをDryice/EtOHで急速凍結し、-80℃で保管した。
5) 4-1)の培養上清と4-2c)の細胞抽出液のそれぞれを、細胞外分泌遊離タンパク質と細胞内在タンパク質として、ELISA測定法でワクチン抗原タンパク質量を測定した。S-RBD-foldon搭載センダイウイルスベクターとS-RBD搭載センダイウイルスベクターからの発現の場合には、SARS-CoV-2 Spike S1 RBD ELISA Kit(Elabscience, Cat# E-EL-E605)を用い、S1-foldon搭載センダイウイルスベクターからの発現の場合には、2019-nCoV S1 Protein ELISA Kit (SignalChem, Cat# C19SD-876)を用いた。
[Example 2a] Manipulation of expression of vaccine antigen protein and measurement of intracellular and extracellular secretory levels The cells were seeded at a density of 2.3×10 5 cells/well and adherently cultured for 3 days in a 37° C., 5% CO 2 incubator.
2) The number of cells in the pre-inoculated wells was measured, and based on this, the cells were infected with a vaccine antigen gene-loaded Sendai virus vector at a multiplicity of infection of 3. Following 1), PBS was replaced, the PBS was completely removed, the vaccine solution was added, the mixture was allowed to stand in a 37°C, 5% CO 2 incubator, and the mixture was shaken every 15 minutes for adsorption. , was incubated for 1 hour for initiation of infection.
3) After the infection operation of 2), the medium was replaced with PBS, PBS was completely removed, 1 mL/well of medium was added, and the cells were cultured at 37°C in a 5% CO 2 incubator for 3 days.
4-1) The culture supernatant was recovered, sterilized with a filter, quickly frozen with Dryice/EtOH, and stored at -80°C.
4-2a) On the other hand, in order to detach the adherent cells, add DPBS, remove it, add 250 μL of RIPA buffer (nacalai tesque, Cat# 08714-04), detach the cells with a cell scraper, and place them in a cell suspension. A turbid liquid was collected.
4-2b) This cell suspension was quickly frozen with Dryice/EtOH, thawed at room temperature and mixed. This operation was repeated 3 times.
4-2c) This freeze-thaw solution is centrifuged at 15,000 rpm for 5 minutes at 4°C, the supernatant is collected as a cell extract, and the cell extract and cell pellet are rapidly frozen with Dryice/EtOH and stored at -80°C. stored in
5) Using the culture supernatant of 4-1) and the cell extract of 4-2c) as extracellular secretory free protein and intracellular protein, the amount of vaccine antigen protein was measured by ELISA. In the case of expression from S-RBD-foldon-loaded Sendai virus vectors and S-RBD-loaded Sendai virus vectors, SARS-CoV-2 Spike S1 RBD ELISA Kit (Elabscience, Cat# E-EL-E605) was used, and S1 For expression from the -foldon-loaded Sendai virus vector, the 2019-nCoV S1 Protein ELISA Kit (SignalChem, Cat# C19SD-876) was used.
[実施例2b]ワクチン抗原タンパク質の発現後の細胞内在量及び細胞外分泌遊離量 [Example 2b] Cellular amount and extracellular secretory release amount after expression of vaccine antigen protein
[表2-1]
培養細胞におけるワクチン抗原搭載センダイウイルスベクターの発現後の細胞内在量及び細胞外分泌遊離量
Figure JPOXMLDOC01-appb-I000004
感染時に添加したワクチン溶液容量は、S1-foldon(S1F7S)が100μL、S1-foldon(S1F8S)が651μL、S-RBD-foldon(SRBDF007P)が100μL、S-RBD-foldon(SRBDF0012S)が655μL、S-RBD-foldon(SRBDF013S)が752μL、S-RBD(SRBD4S)が100μL、S-RBD(SRBD9S)が100μLであった。
[表2-2]
培養細胞におけるワクチン抗原搭載センダイウイルスベクターの発現後の細胞内在量及び細胞外分泌遊離量
Figure JPOXMLDOC01-appb-I000005
感染時に添加したワクチン溶液液量は、S1-foldon(S1F7002P)が100μL、S-RBD-foldon(SRBDF015P)が100μL、S-RBD(SRBD4002PS)が100μLであった。
[Table 2-1]
Cellular Amount and Extracellular Secretory Release Amount after Expression of Vaccine Antigen-Loaded Sendai Virus Vector in Cultured Cells
Figure JPOXMLDOC01-appb-I000004
The volume of the vaccine solution added at the time of infection was 100 μL for S1-foldon (S1F7S), 651 μL for S1-foldon (S1F8S), 100 μL for S-RBD-foldon (SRBDF007P), 655 μL for S-RBD-foldon (SRBDF0012S), and 655 μL for S-foldon (SRBDF0012S). -RBD-foldon (SRBDF013S) was 752 µL, S-RBD (SRBD4S) was 100 µL, and S-RBD (SRBD9S) was 100 µL.
[Table 2-2]
Cellular Amount and Extracellular Secretory Release Amount after Expression of Vaccine Antigen-Loaded Sendai Virus Vector in Cultured Cells
Figure JPOXMLDOC01-appb-I000005
The amount of the vaccine solution added at the time of infection was 100 μL for S1-foldon (S1F7002P), 100 μL for S-RBD-foldon (SRBDF015P), and 100 μL for S-RBD (SRBD4002PS).
 ワクチン抗原タンパク質の細胞外分泌遊離量と細胞内残存量を定量し、分泌遊離率、細胞内残存率を求めた(図5-1)。S1-foldonワクチン抗原においては、発現量(細胞外分泌遊離量+細胞内残存量)が2~4 μg付近で、分泌遊離量は細胞内残存量よりも数倍から10倍低かった。それとは対照的に、S-RBD-foldonワクチン抗原では、発現量が25~50μg付近で、分泌遊離量は残存量よりも数倍から10倍またはそれ以上高かった。
 これらの結果より、センダイウイルスベクターにおいて、分子量が小さい、S-RBD-foldonの方が、発現量が著しく高いことが確認されるとともに、分子量が小さい、S-RBD-foldonの方がS1-foldonよりも、分泌遊離率が著しく高いことを発見した。また、三量体化因子であるfoldonを除去したS-RBDワクチン抗原では、foldon付加に比べて、発現量が著しく低い(例えば表2-1においては40~50μg;5~7μg)ことを発見した。これはfoldonの周知の機能から予想され得ない。
 これらの2つの発見の再現性を確認するために、S1-foldon, S-RBD-foldon,S-RBDの各ワクチン抗原搭載センダイウイルスベクターの新しいロットを製造して、総発現量(/106 cells)を測定したところ、それぞれ、5.6μg, 32μg, 2.8μgであり(表2-2)、細胞外分泌遊離量/細胞内残存量においては、それぞれ、数倍低い(0.27倍), 数倍高い(3.8倍), 数倍高い(7.6倍)という結果であり(表2-2, 図5-2)、表2-1, 図5-1と同様な傾向を示した。
 これらの2つの発見に基づけば次のような技術が提供される。すなわち、ワクチン抗原を最小限化させ、それにfoldonを付加させることによって、発現が極大化し、さらに分泌シグナル付加させることによって、分泌遊離量が極大化されるとともに、細胞内残存量が確保される技術である。
 S-RBD-foldonタンパク質が、発現後、約80%またはそれ以上が細胞外に分泌遊離して、約10%またはそれ未満が細胞内に残存することが示されたが、接種領域の感染細胞においても、このように、発現したS-RBD-foldonワクチン抗原タンパク質の大半が細胞外に分泌遊離、一部が細胞内に留まると推察される。遊離されたワクチン抗原タンパク質は抗原提示細胞に貪食され、抗原特異的な、抗体産生B細胞、細胞障害性T細胞の誘導を招き、一方、感染細胞に留まったワクチン抗原はその細胞により隣接する細胞障害性T細胞に抗原提示することが期待される。このように本発明は、液性免疫と細胞性免疫の両方を誘導するようにプログラムできるベクター技術として設計できる点で有用であると考えられる。実施例3に示すように、S-RBD-foldonワクチン抗原が液性免疫(表3-8, 3-9, 3-12, 3-14)と細胞性免疫(表3-16, 3-19, 3-20)の両方を強く誘導する。
We quantified the extracellular secretion and intracellular residual amounts of the vaccine antigen protein, and determined the secretory release rate and intracellular residual rate (Fig. 5-1). In the S1-foldon vaccine antigen, the expression amount (extracellular secretion release amount + intracellular residual amount) was around 2 to 4 μg, and the secretory release amount was several to 10 times lower than the intracellular residual amount. In contrast, with the S-RBD-foldon vaccine antigen, the expressed amount was around 25-50 μg, and the secreted free amount was several to 10-fold or more higher than the residual amount.
These results confirm that the S-RBD-foldon, which has a smaller molecular weight, has a significantly higher expression level in the Sendai virus vector. It was found that the secretory release rate was significantly higher than that of In addition, it was found that the expression level of the S-RBD vaccine antigen from which foldon, a trimerization factor, was removed was significantly lower than that with foldon added (for example, 40 to 50 μg; 5 to 7 μg in Table 2-1). bottom. This cannot be expected from the known functionality of foldon.
To confirm the reproducibility of these two findings, we produced new lots of vaccine antigen-loaded Sendai virus vectors for S1-foldon, S-RBD-foldon, and S-RBD, and measured the total expression level (/10 6 cells) were 5.6 μg, 32 μg, and 2.8 μg, respectively (Table 2-2). (3.8 times) and several times higher (7.6 times) (Table 2-2, Figure 5-2), showing the same tendency as Table 2-1 and Figure 5-1.
Based on these two discoveries, the following techniques are provided. In other words, technology that maximizes expression by minimizing the vaccine antigen and adding a foldon to it, and by adding a secretory signal, maximizes the amount of released secretion and secures the residual amount in cells. is.
After expression, about 80% or more of the S-RBD-foldon protein was secreted and released outside the cells, and about 10% or less remained inside the cells. In this way, it is speculated that most of the expressed S-RBD-foldon vaccine antigen protein is secreted and released extracellularly, and part of it remains intracellularly. Released vaccine antigen proteins are phagocytosed by antigen-presenting cells, leading to the induction of antigen-specific antibody-producing B cells and cytotoxic T cells, while vaccine antigens that remain in infected cells are phagocytosed by neighboring cells. It is expected to present antigen to impaired T cells. Thus, the present invention is considered useful in that it can be designed as a vector technology that can be programmed to induce both humoral and cellular immunity. As shown in Example 3, the S-RBD-foldon vaccine antigen is humoral immunity (Tables 3-8, 3-9, 3-12, 3-14) and cell-mediated immunity (Tables 3-16, 3-19 , 3-20) are strongly induced.
[実施例3a]動物免疫原性試験における接種用量と日程と採血方法 [Example 3a] Inoculation dose, schedule and blood collection method in animal immunogenicity test
[表3-1]
S1-foldon搭載センダイウイルスベクターによるラット免疫原性試験での接種日程
Figure JPOXMLDOC01-appb-I000006
[表3-2]
S1-foldon搭載センダイウイルスベクターによるマウス免疫原性試験での接種日程
Figure JPOXMLDOC01-appb-I000007
[Table 3-1]
Inoculation schedule in rat immunogenicity test using Sendai virus vector carrying S1-foldon
Figure JPOXMLDOC01-appb-I000006
[Table 3-2]
Inoculation schedule for mouse immunogenicity test using Sendai virus vector carrying S1-foldon
Figure JPOXMLDOC01-appb-I000007
 ラットでは表3-1の日程に沿って、接種日(接種前)1日目, 8, 15, 22, 29, 36日目に各1回、一頭につき200 μLまたは500 μLが頸静脈から採血されて、43日目に全採血と脾臓の摘出が行われた。回収したラット血液は1,700 x g, 室温, 5分で遠心分離が行われ、得られた血清が凍結保管された。 For rats, 200 μL or 500 μL of blood was collected from the jugular vein of each rat on the 1st, 8th, 15th, 22nd, 29th and 36th days of inoculation (before inoculation) according to the schedule shown in Table 3-1. On day 43, exsanguination and splenectomy were performed. The collected rat blood was centrifuged at 1,700 x g at room temperature for 5 minutes, and the obtained serum was stored frozen.
[表3-3]
S-RBD-foldon搭載センダイウイルスベクターによるマウス免疫原性試験での接種日程
Figure JPOXMLDOC01-appb-I000008
[表3-4]
S-RBD-foldon搭載センダイウイルスベクターによるマウス免疫原性試験での接種日程
Figure JPOXMLDOC01-appb-I000009
[表3-5]
S-RBD搭載センダイウイルスベクターによるマウス免疫原性試験での接種日程
Figure JPOXMLDOC01-appb-I000010
[Table 3-3]
Inoculation schedule for mouse immunogenicity test using S-RBD-foldon-loaded Sendai virus vector
Figure JPOXMLDOC01-appb-I000008
[Table 3-4]
Inoculation schedule for mouse immunogenicity test using S-RBD-foldon-loaded Sendai virus vector
Figure JPOXMLDOC01-appb-I000009
[Table 3-5]
Inoculation schedule for mouse immunogenicity test using Sendai virus vector carrying S-RBD
Figure JPOXMLDOC01-appb-I000010
 マウスでは上の表3-3の日程に沿って、接種日(接種前)1日目, 8, 15, 22, 29, 36, 43日目に各1回、一頭につき100μLが眼窩から採血されて、57日目に全採血と脾臓の摘出が行われた。回収したマウス血液は6,146 x g, 室温, 5分で遠心分離が行われ、得られた血清が冷蔵保管された。 For mice, 100 μL of blood was collected from the orbit once each on Day 1, 8, 15, 22, 29, 36, and 43 of the day of inoculation (before inoculation) according to the schedule in Table 3-3 above. Then, on day 57, exsanguination and splenectomy were performed. Collected mouse blood was centrifuged at 6,146 x g at room temperature for 5 minutes, and the resulting serum was stored in a refrigerator.
[実施例3b]動物免疫原性試験における血清を用いた最大希釈IgG抗体価の測定
1)マウス血清の測定のために、抗原タンパク質SARS-CoV-2 Spike S1-His Recombinant Protein(Sino Biological Inc.Cat# 40591-V08B1)を、0.2 M Carbonate-Bicarbonate buffer(pH9.6)で希釈して、100 ng/100 μLに調整した。
2)希釈した抗原タンパク質を96-well plate(NUNC, IMMUNO PLATE, MAXISORP, Cat# 439454)に100μL/wellで加えて、蒸発しないようにシールして、4℃で16時間静置した。
3)PBS-Tにより3回洗浄の後、2% BSA/PBS-Tを250μL/well入れて1時間、37℃でブロッキングを行った。
4)PBS-Tにより3回洗浄を行った。
5-1)マウス血清を2% BSA/PBS-Tを用いて段階希釈し、duplicateで100μL/well添加し、37℃で2時間インキュベートした。
5-2)negative controlには100倍希釈したPBS接種群のマウス血清をduplicateで100μL/well添加した。
6)PBS-Tにより5回洗浄を行った。
7)二次抗体はGoat Anti-Mouse IgG H&L(HRP)(abcam, Cat# ab205719)を2% BSA/PBS-Tを用いて67 ng/mLに希釈し、100μL/well添加し、37℃で1時間でインキュベートした。
8)PBS-Tで5回洗浄を行った。
9)TMB Substrate Kit(ThermoFisher, Cat# 34021)を室温に戻し、TMB SolutionとPeroxidase Solutionを等量混合し、TMB基質溶液100 μLを各ウェルに添加した。
10)プレートを37℃で15分間インキュベートし、2M硫酸100μL加えて反応を停止した。
11)プレートリーダーを用いて、吸光度450nmで測定を行った。
12)反復投与群の血清の希釈度は、2wで100倍から4000倍、4wで100倍から7000倍、6wと8wで100倍から100000倍とした。抗体価サンプルの評価について、カットポイント(negative controlサンプルの吸光度の平均値の2倍値)以上となる最大希釈倍率を抗体価とした。
 ラット血清の測定においても、1)から12)まで、インキュベート温度を25℃で行う以外はほぼ同様な方法が行われたが、7)の二次抗体は、Mouse monoclonal Anti-Rat IgG H&L (HRP)(Abcam, Cat# ab106718)が用いられた。
[Example 3b] Measurement of maximum diluted IgG antibody titer using serum in animal immunogenicity test 1) For measurement of mouse serum, the antigen protein SARS-CoV-2 Spike S1-His Recombinant Protein (Sino Biological Inc. Cat# 40591-V08B1) was diluted with 0.2 M Carbonate-Bicarbonate buffer (pH 9.6) and adjusted to 100 ng/100 μL.
2) The diluted antigen protein was added to a 96-well plate (NUNC, IMMUNO PLATE, MAXISORP, Cat# 439454) at 100 µL/well, sealed to prevent evaporation, and allowed to stand at 4°C for 16 hours.
3) After washing three times with PBS-T, 250 μL/well of 2% BSA/PBS-T was added for blocking at 37° C. for 1 hour.
4) Washed 3 times with PBS-T.
5-1) Mouse serum was serially diluted with 2% BSA/PBS-T, added in duplicate at 100 µL/well, and incubated at 37°C for 2 hours.
5-2) To the negative control, 100 μL/well of 100-fold diluted PBS-inoculated mouse serum was added in duplicate.
6) Washed 5 times with PBS-T.
7) Secondary antibody is Goat Anti-Mouse IgG H&L (HRP) (abcam, Cat# ab205719) diluted to 67 ng/mL with 2% BSA/PBS-T, added 100 μL/well, and incubated at 37°C. Incubated for 1 hour.
8) Washed 5 times with PBS-T.
9) TMB Substrate Kit (ThermoFisher, Cat# 34021) was returned to room temperature, equal amounts of TMB Solution and Peroxidase Solution were mixed, and 100 μL of TMB substrate solution was added to each well.
10) The plate was incubated at 37°C for 15 minutes, and 100 µL of 2M sulfuric acid was added to stop the reaction.
11) Absorbance was measured at 450 nm using a plate reader.
12) Serum dilution in the repeated administration group was 100-fold to 4000-fold for 2w, 100-fold to 7000-fold for 4w, and 100-fold to 100000-fold for 6w and 8w. Regarding the evaluation of the antibody titer sample, the maximum dilution rate at which the cut point (two times the average absorbance value of the negative control sample) or higher was taken as the antibody titer.
In the measurement of rat serum, almost the same method was performed except that the incubation temperature was 25 ° C from 1) to 12), but the secondary antibody in 7) was Mouse monoclonal Anti-Rat IgG H & L (HRP ) (Abcam, Cat# ab106718) was used.
[実施例3c]血清を用いたIgG抗体価最大希釈度の比較:S1-foldon、S-RBD-foldon、S-RBD [Example 3c] Comparison of IgG antibody titer maximum dilution using serum: S1-foldon, S-RBD-foldon, S-RBD
[表3-6]
ラットでのS1-foldonワクチンの 4週目追加接種を伴う経鼻接種試験に由来する血清のIgG抗体検出可能最大希釈度
Figure JPOXMLDOC01-appb-I000011
ND: not detected(不検出)
[表3-7]
マウスでのS1-foldonワクチンの 4週目追加接種を伴う経鼻接種試験に由来する血清のIgG抗体検出可能最大希釈度
Figure JPOXMLDOC01-appb-I000012
[Table 3-6]
Maximum detectable dilution of IgG antibodies in sera from intranasal inoculation study with 4-week booster of S1-foldon vaccine in rats
Figure JPOXMLDOC01-appb-I000011
ND: not detected
[Table 3-7]
Maximum detectable dilution of IgG antibodies in sera from intranasal inoculation study with 4-week booster of S1-foldon vaccine in mice
Figure JPOXMLDOC01-appb-I000012
[表3-8]
マウスでのS-RBD-foldonワクチンの 4週目追加接種を伴う経鼻接種試験に由来する血清のIgG抗体検出可能最大希釈度
Figure JPOXMLDOC01-appb-I000013
[表3-9]
マウスでのS-RBD-foldonワクチンの 4週目追加接種を伴う経鼻接種試験に由来する血清のIgG抗体検出可能最大希釈度
Figure JPOXMLDOC01-appb-I000014
[表3-10]
マウスでのS-RBDワクチンの 4週目追加接種を伴う経鼻接種試験に由来する血清のIgG抗体検出可能最大希釈度
Figure JPOXMLDOC01-appb-I000015
[Table 3-8]
Maximum detectable dilution of IgG antibodies in sera from intranasal inoculation study with 4-week booster of S-RBD-foldon vaccine in mice
Figure JPOXMLDOC01-appb-I000013
[Table 3-9]
Maximum detectable dilution of IgG antibodies in sera from intranasal inoculation study with 4-week booster of S-RBD-foldon vaccine in mice
Figure JPOXMLDOC01-appb-I000014
[Table 3-10]
Maximum detectable dilution of IgG antibodies in sera from intranasal inoculation study with 4-week booster of S-RBD vaccine in mice
Figure JPOXMLDOC01-appb-I000015
 各ワクチンによる、4週目追加接種を伴う経鼻接種試験に由来する、経鼻接種後2週、4週、6週での血清を用いて、S1タンパク質特異的IgG抗体価の最大希釈度を、S-RBD-foldon(1x107 CIU/shot)vs. S1-foldon(2x107 CIU/shot; 5x107 CIU/shot)で比較したところ、S-RBD-foldonでは、接種用量がより小さくても、より大きい最大希釈度を示した(図6-1)。この結果と、実施例2bの分泌遊離量における差異とを合わせて考察すると、分泌遊離量がより大きいS-RBD-foldonが、より強くワクチン抗原特異的抗体を誘導すると考えられる。
 同一動物種(マウス)で各ワクチンの免疫原性を比較することを目的に、各ワクチンによる、4週目追加接種を伴う経鼻接種試験に由来する、経鼻接種後2週、4週、6週での血清を用いて、S1タンパク質特異的IgG抗体価の最大希釈度を、S-RBD-foldon(1x107 CIU/shot)(表3-9)vs. S1-foldon(1x107 CIU/shot)(表3-7)で比較したところ、S-RBD-foldonでは、同一接種量であるS1-foldonより大きい最大希釈度を示した(図6-2)。この結果と、実施例2bの分泌遊離量における差異とを合わせて考察すると、分泌遊離量がより大きいS-RBD-foldonが、より強くワクチン抗原特異的抗体を誘導すると考えられる。
 また、同一動物種(マウス)で各ワクチンの免疫原性を比較することを目的に、各ワクチンによる、4週目追加接種を伴う経鼻接種試験に由来する、経鼻接種後2週、4週、6週での血清を用いて、S1タンパク質特異的IgG抗体価の最大希釈度を、S-RBD-foldon(1x107 CIU/shot)(表3-9)vs. S-RBD(1x107 CIU/shot)(表3-10)で比較したところ、S-RBD-foldonでは、同一接種量であるS-RBDより大きい最大希釈度を示した(図6-2)。この結果と、実施例2bの分泌遊離量における差異とを合わせて考察すると、分泌遊離量がより大きいS-RBD-foldonが、より強くワクチン抗原特異的抗体を誘導すると考えられる。
Maximum dilution of S1 protein-specific IgG antibody titers was determined using sera at 2, 4, and 6 weeks post-nasal inoculation from intranasal inoculation studies with a 4-week booster for each vaccine. , S-RBD-foldon (1x10 7 CIU/shot) vs. S1-foldon (2x10 7 CIU/shot; 5x10 7 CIU/shot), S-RBD-foldon showed higher , showed a higher maximum dilution (Fig. 6-1). Considering this result together with the difference in secreted and released amount in Example 2b, it is considered that S-RBD-foldon with a larger secreted and released amount induces vaccine antigen-specific antibodies more strongly.
For the purpose of comparing the immunogenicity of each vaccine in the same animal species (mice), 2 weeks, 4 weeks, Using sera at 6 weeks, maximum dilution of S1 protein-specific IgG antibody titer was calculated as S-RBD-foldon (1x10 7 CIU/shot) (Table 3-9) vs. S1-foldon (1x10 7 CIU/shot). shot) (Table 3-7), S-RBD-foldon showed a higher maximum dilution than S1-foldon with the same inoculum dose (Fig. 6-2). Considering this result together with the difference in secreted and released amount in Example 2b, it is considered that S-RBD-foldon with a larger secreted and released amount induces vaccine antigen-specific antibodies more strongly.
In addition, with the aim of comparing the immunogenicity of each vaccine in the same animal species (mice), 2 weeks after intranasal inoculation and 4 Using sera at weeks and 6 weeks, the maximum dilution of S1 protein-specific IgG antibody titers was calculated as S-RBD-foldon (1x10 7 CIU/shot) (Table 3-9) vs. S-RBD (1x10 7 CIU/shot) (Table 3-10), S-RBD-foldon showed a higher maximum dilution than S-RBD at the same inoculum dose (Fig. 6-2). Considering this result together with the difference in secreted and released amount in Example 2b, it is considered that S-RBD-foldon with a larger secreted and released amount induces vaccine antigen-specific antibodies more strongly.
[実施例3d]動物免疫原性試験における血清を用いた中和抗体活性の測定
1)血清を用いた中和抗体活性の比較:S1-foldon vs. S-RBD-foldon
[Example 3d] Measurement of neutralizing antibody activity using serum in animal immunogenicity test 1) Comparison of neutralizing antibody activity using serum: S1-foldon vs. S-RBD-foldon
[表3-11]
ラットでのS1-foldonワクチンの単回経鼻接種試験に由来する血清の中和抗体活性検出可能最大希釈度
Figure JPOXMLDOC01-appb-I000016
[Table 3-11]
Maximum detectable dilution of neutralizing antibody activity in sera from a single intranasal inoculation study of S1-foldon vaccine in rats.
Figure JPOXMLDOC01-appb-I000016
[表3-12]
マウスでのS-RBD-foldonワクチンの単回経鼻接種試験に由来する血清の中和抗体活性検出可能最大希釈度
Figure JPOXMLDOC01-appb-I000017
ND: not detected(不検出)
[Table 3-12]
Maximum detectable dilution of neutralizing antibody activity in sera from a single intranasal inoculation study of S-RBD-foldon vaccine in mice.
Figure JPOXMLDOC01-appb-I000017
ND: not detected
 各ワクチンによる、単回経鼻接種試験に由来する、経鼻接種後2週、4週、6週で血清を用いて、VeroE6細胞へのSARS-CoV-2 WA1/2020ウイルス(1000TCID50/mL)感染に対する中和抗体活性を示す最大希釈度(中和抗体価)を、S-RBD-foldon(1x107 CIU/shot)vs. S1-foldon(2x107 CIU/shot; 5x107 CIU/shot)で比較したところ、S-RBD-foldonでは、接種用量がより小さくても、より大きい中和抗体価を示した。 SARS-CoV-2 WA1/2020 virus into VeroE6 cells (1000 TCID 50 /mL) using sera at 2, 4 and 6 weeks post-nasal inoculation from a single intranasal inoculation study with each vaccine ) S-RBD-foldon (1x10 7 CIU/shot) vs. S1-foldon (2x10 7 CIU/shot; 5x10 7 CIU/shot). , S-RBD-foldon showed a higher neutralizing antibody titer even at a lower inoculation dose.
[表3-13]
ラットでのS1-foldonワクチンの4週目追加接種を伴う経鼻接種試験に由来する血清の中和抗体活性検出可能最大希釈度
Figure JPOXMLDOC01-appb-I000018
[Table 3-13]
Neutralizing Antibody Activity Maximum Detectable Dilution of Serum from Nasal Inoculation Study with Week 4 Booster of S1-foldon Vaccine in Rats
Figure JPOXMLDOC01-appb-I000018
[表3-14]
マウスでのS-RBD-foldonワクチンの4週目追加接種を伴う経鼻接種試験に由来する血清の中和抗体活性検出可能最大希釈度
Figure JPOXMLDOC01-appb-I000019
[Table 3-14]
Neutralizing Antibody Activity Maximum Detectable Dilution of Serum from Nasal Inoculation Study with S-RBD-foldon Vaccine Week 4 Booster in Mice
Figure JPOXMLDOC01-appb-I000019
 各ワクチンによる、4週目追加接種を伴う経鼻接種試験に由来する、経鼻接種後2週、4週、6週で血清を用いて、VeroE6細胞へのSARS-CoV-2 WA1/2020ウイルス(1000TCID50/mL)感染に対する中和抗体活性を示す最大希釈度(中和抗体価)を、S-RBD-foldon(1x107 CIU/shot)vs. S1-foldon(2x107 CIU/shot; 5x107 CIU/shot)で比較したところ、S-RBD-foldonでは、接種用量がより小さくても、より大きい中和抗体価を示した。この結果と、実施例2bの分泌遊離量における差異とを合わせて考察すると、分泌遊離量がより大きいS-RBD-foldonが、より強く対SARS-CoV-2中和抗体活性を誘導すると考えられる。 SARS-CoV-2 WA1/2020 virus into VeroE6 cells using sera at 2, 4, and 6 weeks post-nasal inoculation from intranasal inoculation studies with 4-week booster with each vaccine (1000 TCID 50 /mL) The maximum dilution (neutralizing antibody titer) showing neutralizing antibody activity against infection was calculated as S-RBD-foldon (1x10 7 CIU/shot) vs. S1-foldon (2x10 7 CIU/shot; 5x10 7 CIU/shot), S-RBD-foldon showed a higher neutralizing antibody titer even at a lower inoculation dose. Considering this result together with the difference in secreted release amount in Example 2b, S-RBD-foldon with a larger secreted release amount is considered to induce stronger anti-SARS-CoV-2 neutralizing antibody activity. .
[実施例3e-1]動物免疫原性試験におけるマウス脾細胞の分離・溶血とELISpot assayによるCTL細胞の測定
1)マウスより摘出された脾臓は、RPMI1640培地に浸漬し、on iceで運搬された。
2)1xPBS(-)を5 mL入れたΦ60-mm dishにCell strainer 40 μm Nylon(FALCON、Cat# 352340)を置き、その中に1)の脾臓が置かれた。
3)1-mLシリンジプランジャーの平らな部位を脾臓に押し付けて脾細胞を分離した。
4)Cell strainerを取り出し、dishに残った脾細胞をチューブに回収して、低速で遠心分離され、上澄みが除去された。
5)RBC Lysis Buffer(Bio Legend, Cat# 420301)を10倍希釈し、4)の脾細胞ペレット上に加えて、10分on iceで時々揺すって溶血を行った。
6)低速で遠心分離され、上澄みが除去され、CTL Test PLUS Medium(C.T.L., # CTLTP-005)を加え、Cell countを行った。
7)ELISpot assayのために、マウス脾細胞に対して、Mouse IFN-γ/IL-2 FluoroSpot Kit(MABTECH,Cat# FS-4142-2)が使用された。
7-1)プレートを1xPBS(-)、200 μL /ウェルで5回洗浄し、10% FBS-RPMI1640を200 μL /ウェル追加し、室温で1時間インキュベートしblockingした。
7-2)CTL Test PLUS Mediumに、抗原特異的刺激を高めるために抗CD28 mouseAb(0.2 μg/mL)2倍濃度で培地に添加した。
7-3)その半分にはPepTivator SARS-CoV-2 Prot S(Milteny Biotech、#130-126-700、Lot.5200904575)を0.5 μL/well(2倍濃度)添加した。
7-4)プレートの培地を除去し、抗CD28 mouseAb添加培地を100 μL/wellで、抗CD28 mouseAb+PepTivator添加培地を100 μL/wellで加えた。
7-5)6)の脾細胞懸濁液を2.5x105 cells/100 μL/wellで2 wellに播種した。
7-6)プレートを37℃の加湿した培養器に入れ12~48時間培養した。
プレートを空にし、PBS 200 μL /ウェルで5回洗浄し細胞を除去した。
7-7)0.1% BSA/PBSで、R4-6A2-BAM を1:200に、及び、5H4-ビオチンを2 μg/mLに希釈し、0.2-μmの低タンパク質結合フィルターを使用して抗体溶液をろ過して100 μL/ウェルで追加し、室温で2時間インキュベートした。
7-8)1xPBS(-)で5回洗浄した。
7-9)0.1% BSA/PBSで、抗BAM-490 を1:200に、及び、SA-550を 1:200に希釈し、0.2-μmの低タンパク質結合フィルターを使用して溶液をろ過し、100 μL/ウェルで追加し室温で1時間インキュベートした。
7-10)露光を制限するためにプレートをアルミホイルでカバーした。1xPBS(-)で5回洗浄した。
7-11)プレートを空にして50 μL/wellの蛍光エンハンサー-IIを加え、プレートを室温で15分インキュベートした。
7-12)プレートを空にしてきれいなペーパータオルに対してプレートをしっかりとたたいて、残留蛍光エンハンサーを除去した。
7-13)プレートの下のプラスチックを取り外し、プレートを暗所に置いて乾燥させた。
7-14)FITC(励起490 nm /発光510 nm)用のフィルターを備えた顕微鏡でspotを観察した。FITCフィルターで識別されたスポットはIFN-γ産生細胞を表す。
[Example 3e-1] Isolation and hemolysis of mouse splenocytes in animal immunogenicity test and measurement of CTL cells by ELISpot assay 1) Spleens excised from mice were immersed in RPMI1640 medium and transported on ice. .
2) Cell strainer 40 µm Nylon (FALCON, Cat# 352340) was placed on a Φ60-mm dish containing 5 mL of 1xPBS(-), and the spleen of 1) was placed therein.
3) The splenocytes were separated by pressing the flat part of a 1-mL syringe plunger against the spleen.
4) The cell strainer was taken out, the splenocytes remaining in the dish were collected in a tube, centrifuged at a low speed, and the supernatant was removed.
5) RBC Lysis Buffer (Bio Legend, Cat# 420301) was diluted 10-fold, added onto the splenocyte pellet of 4), and hemolyzed on ice for 10 minutes with occasional shaking.
6) It was centrifuged at low speed, the supernatant was removed, CTL Test PLUS Medium (CTL, # CTLTP-005) was added, and a cell count was performed.
7) Mouse IFN-γ/IL-2 FluoroSpot Kit (MABTECH, Cat# FS-4142-2) was used on mouse splenocytes for ELISpot assay.
7-1) The plate was washed 5 times with 1xPBS(-) and 200 µL/well, 200 µL/well of 10% FBS-RPMI1640 was added, and the plate was incubated at room temperature for 1 hour for blocking.
7-2) Anti-CD28 mouseAb (0.2 µg/mL) was added to CTL Test PLUS Medium at a double concentration to enhance antigen-specific stimulation.
7-3) 0.5 μL/well (double concentration) of PepTivator SARS-CoV-2 Prot S (Milteny Biotech, #130-126-700, Lot.5200904575) was added to half of them.
7-4) The medium of the plate was removed, and anti-CD28 mouseAb-added medium was added at 100 μL/well, and anti-CD28 mouseAb+PepTivator-added medium was added at 100 μL/well.
7-5) The splenocyte suspension obtained in 6) was seeded in 2 wells at 2.5×10 5 cells/100 μL/well.
7-6) The plate was placed in a humidified incubator at 37°C and cultured for 12-48 hours.
Plates were emptied and washed 5 times with 200 μL/well of PBS to remove cells.
7-7) Dilute R4-6A2-BAM to 1:200 and 5H4-Biotin to 2 μg/mL with 0.1% BSA/PBS and filter antibody solution using 0.2-μm low protein binding filter. was filtered and added at 100 μL/well and incubated for 2 hours at room temperature.
7-8) Washed 5 times with 1xPBS(-).
7-9) Dilute anti-BAM-490 1:200 and SA-550 1:200 with 0.1% BSA/PBS and filter the solution using a 0.2-μm low protein binding filter. , was added at 100 μL/well and incubated for 1 hour at room temperature.
7-10) The plate was covered with aluminum foil to limit exposure. Washed 5 times with 1xPBS(-).
7-11) The plate was emptied, 50 μL/well of fluorescence enhancer-II was added, and the plate was incubated at room temperature for 15 minutes.
7-12) Empty the plate and tap the plate firmly against a clean paper towel to remove residual fluorescence enhancer.
7-13) Remove the plastic underneath the plate and place the plate in the dark to dry.
7-14) Spots were observed with a microscope equipped with filters for FITC (excitation 490 nm/emission 510 nm). Spots identified with the FITC filter represent IFN-γ-producing cells.
[実施例3e-2]動物免疫原性試験におけるラット脾細胞の分離・溶血とELISpot assayによるCTL細胞の測定
1)ラットより摘出された脾臓は、RPMI1640培地に浸漬し、on iceで運搬された。
2)1xPBS(-)を5 mL入れたΦ60-mm dishにCell strainer 40 μm Nylon(FALCON、Cat# 352340)を置き、その中に1)の脾臓が置かれた。
3)1-mLシリンジプランジャーの平らな部位を脾臓に押し付けて脾細胞を分離した。
4)Cell strainerを取り出し、dishに残った脾細胞をチューブに回収して、低速で遠心分離され、上澄みが除去された。
5)RBC Lysis Buffer(Bio Legend, Cat# 420301)を10倍希釈し、4)の脾細胞ペレット上に加えて、10分on iceで時々揺すって溶血を行った。
6)低速で遠心分離され、上澄みが除去され、CTL Test PLUS Medium(C.T.L., # CTLTP-005)を加え、Cell countを行った。
7)ELISpot assayのために、ラット脾細胞に対して、Rat IFN-γ ELISpot Plus Kit(MABTECH,Cat# 3220-3APW-2)が使用された。
7-1)プレートを1xPBS(-)、200 μL /ウェルで3回洗浄し、10% FBS-RPMI1640を200 μL /ウェル追加し、室温で30分間インキュベートしblockingした。
7-2)半分にはPepTivator SARS-CoV-2 Prot S(Milteny Biotech、#130-126-700、Lot.5200904575)を0.5 μL/well(2倍濃度)添加した。
7-3)プレートの培地を除去し、培地を100 μL/wellで、PepTivator添加培地を100 μL/wellで加えた。
7-4)6)の脾細胞懸濁液を2.5x105 cells/100 μL/wellで2 wellに播種した。
7-5)プレートを37℃の加湿した培養器に入れ12~48時間培養した。
プレートを空にし、PBS 200 μL /ウェルで5回洗浄し細胞を除去した。
7-6)0.5% FBS/PBSで、1mg/mL rIFNγ-II-biotinを1μg/mLに希釈し、0.2-μmの低タンパク質結合フィルターを使用して抗体溶液をろ過して100 μL/ウェルで追加し、室温で2時間インキュベートした。
7-7)1xPBS(-)で5回洗浄した。
7-8)0.5% FBS/PBSで、Streptavidin-ALPを1000倍希釈し、0.2-μmの低タンパク質結合フィルターを使用して溶液をろ過し、100 μL/ウェルで追加し室温で1時間インキュベートした。
7-9)露光を制限するためにプレートをアルミホイルでカバーした。1xPBS(-)で5回洗浄した。
7-10)プレートを空にしてBCIP/NBT-plus substrateを加え、プレートを室温で15分インキュベートした。
7-11)プレートを空にし、水道水でよくウェルを洗浄してた。
7-12)プレートの下のプラスチックを取り外し、プレートを暗所に置いて乾燥させた。
7-13)光学顕微鏡でspotを観察した。観察されたALPによるスポットはIFN-γ産生細胞を表す。
[Example 3e-2] Isolation and hemolysis of rat splenocytes in animal immunogenicity test and measurement of CTL cells by ELISpot assay 1) The spleens excised from rats were immersed in RPMI1640 medium and transported on ice. .
2) Cell strainer 40 µm Nylon (FALCON, Cat# 352340) was placed on a Φ60-mm dish containing 5 mL of 1xPBS(-), and the spleen of 1) was placed therein.
3) The splenocytes were separated by pressing the flat part of a 1-mL syringe plunger against the spleen.
4) The cell strainer was taken out, the splenocytes remaining in the dish were collected in a tube, centrifuged at a low speed, and the supernatant was removed.
5) RBC Lysis Buffer (Bio Legend, Cat# 420301) was diluted 10-fold, added onto the splenocyte pellet of 4), and hemolyzed on ice for 10 minutes with occasional shaking.
6) It was centrifuged at low speed, the supernatant was removed, CTL Test PLUS Medium (CTL, # CTLTP-005) was added, and a cell count was performed.
7) For the ELISpot assay, the Rat IFN-γ ELISpot Plus Kit (MABTECH, Cat# 3220-3APW-2) was used on rat splenocytes.
7-1) The plate was washed three times with 1xPBS(-) and 200 µL/well, 200 µL/well of 10% FBS-RPMI1640 was added, and the plate was incubated at room temperature for 30 minutes for blocking.
7-2) PepTivator SARS-CoV-2 Prot S (Milteny Biotech, #130-126-700, Lot.5200904575) was added at 0.5 μL/well (double concentration) to half.
7-3) The medium was removed from the plate, and 100 μL/well of the medium and 100 μL/well of PepTivator-added medium were added.
7-4) The splenocyte suspension obtained in 6) was seeded in 2 wells at 2.5×10 5 cells/100 μL/well.
7-5) The plate was placed in a humidified incubator at 37°C and cultured for 12 to 48 hours.
Plates were emptied and washed 5 times with 200 μL/well of PBS to remove cells.
7-6) Dilute 1 mg/mL rIFNγ-II-biotin to 1 μg/mL with 0.5% FBS/PBS and filter the antibody solution using a 0.2-μm low protein binding filter at 100 μL/well. added and incubated for 2 hours at room temperature.
7-7) Washed 5 times with 1xPBS(-).
7-8) Streptavidin-ALP was diluted 1000-fold with 0.5% FBS/PBS, the solution was filtered using a 0.2-μm low protein binding filter, added at 100 μL/well and incubated at room temperature for 1 hour. .
7-9) The plate was covered with aluminum foil to limit exposure. Washed 5 times with 1xPBS(-).
7-10) The plate was emptied, BCIP/NBT-plus substrate was added, and the plate was incubated at room temperature for 15 minutes.
7-11) The plate was emptied and the wells washed well with tap water.
7-12) Removed the plastic underneath the plate and placed the plate in the dark to dry.
7-13) Spots were observed with an optical microscope. The observed ALP spots represent IFN-γ-producing cells.
[実施例3f]脾細胞を用いたELISpot assayによるCTL細胞数の比較:S1-foldon vs. S-RBD-foldon [Example 3f] Comparison of CTL cell numbers by ELISpot assay using splenocytes: S1-foldon vs. S-RBD-foldon
[表3-15]
ラットでのS1-foldonワクチンの単回経鼻接種試験に由来する脾臓細胞におけるELISpot assayによるCTL細胞数のpeptide刺激効果
Figure JPOXMLDOC01-appb-I000020
[Table 3-15]
Peptide stimulation effect on the number of CTL cells by ELISpot assay in spleen cells derived from a single intranasal inoculation test of S1-foldon vaccine in rats
Figure JPOXMLDOC01-appb-I000020
[表3-16]
マウスでのS-RBD-foldonワクチンの単回経鼻接種試験に由来する脾臓細胞におけるELISpot assayによるCTL細胞数のpeptide刺激効果
Figure JPOXMLDOC01-appb-I000021
[Table 3-16]
Peptide stimulation effect on the number of CTL cells by ELISpot assay in spleen cells derived from a single intranasal inoculation test of S-RBD-foldon vaccine in mice
Figure JPOXMLDOC01-appb-I000021
 各ワクチンによる、単回経鼻接種試験に由来する、脾臓細胞を用いて、経鼻接種後6週目(ラット)、8週目(マウス)でのS1-peptide刺激IFN-γ放出T細胞数をpeptide刺激効果として、S-RBD-foldon(1x107 CIU/shot)vs. S1-foldon(2x107 CIU/shot; 5x107 CIU/shot)で比較したところ、それぞれのワクチンにおいて、1を優位に超える、IFN-γ放出CTL刺激率を示した。 Number of S1-peptide-stimulated IFN-γ-releasing T cells at 6 weeks (rats) and 8 weeks (mice) after nasal inoculation using spleen cells derived from a single intranasal inoculation test with each vaccine was compared with S-RBD-foldon (1x10 7 CIU/shot) vs. S1-foldon (2x10 7 CIU/shot; 5x10 7 CIU/shot) as a peptide stimulation effect. showed a higher IFN-γ release CTL stimulation rate.
[表3-17]
ラットでのS1-foldonワクチンの4週目追加接種を伴う経鼻接種試験に由来する脾臓細胞におけるELISpot assayによるCTL細胞数のpeptide刺激効果
Figure JPOXMLDOC01-appb-I000022
[表3-18]
マウスでのS1-foldonワクチンの4週目追加接種を伴う経鼻接種試験に由来する脾臓細胞におけるELISpot assayによるCTL細胞数のpeptide刺激効果
Figure JPOXMLDOC01-appb-I000023
[Table 3-17]
Peptide stimulation effect on the number of CTL cells by ELISpot assay in spleen cells derived from intranasal inoculation test with 4-week booster inoculation of S1-foldon vaccine in rats
Figure JPOXMLDOC01-appb-I000022
[Table 3-18]
Peptide stimulation effect on the number of CTL cells by ELISpot assay in spleen cells derived from intranasal inoculation test with 4-week booster inoculation of S1-foldon vaccine in mice
Figure JPOXMLDOC01-appb-I000023
[表3-19]
マウスでのS-RBD-foldonワクチンの4週目追加接種を伴う経鼻接種試験に由来する脾臓細胞におけるELISpot assayによるCTL細胞数のpeptide刺激効果
Figure JPOXMLDOC01-appb-I000024
[表3-20]
マウスでのS-RBD-foldonワクチンの4週目追加接種を伴う経鼻接種試験に由来する脾臓細胞におけるELISpot assayによるCTL細胞数のpeptide刺激効果
Figure JPOXMLDOC01-appb-I000025
[表3-21]
マウスでのS-RBDワクチンの4週目追加接種を伴う経鼻接種試験に由来する脾臓細胞におけるELISpot assayによるCTL細胞数のpeptide刺激効果
Figure JPOXMLDOC01-appb-I000026
[Table 3-19]
Peptide stimulation effect on the number of CTL cells by ELISpot assay in spleen cells derived from intranasal inoculation test with 4-week booster inoculation of S-RBD-foldon vaccine in mice
Figure JPOXMLDOC01-appb-I000024
[Table 3-20]
Peptide stimulation effect on the number of CTL cells by ELISpot assay in spleen cells derived from intranasal inoculation test with 4-week booster inoculation of S-RBD-foldon vaccine in mice
Figure JPOXMLDOC01-appb-I000025
[Table 3-21]
Peptide stimulation effect on the number of CTL cells by ELISpot assay in spleen cells derived from intranasal inoculation test with 4-week booster inoculation of S-RBD vaccine in mice
Figure JPOXMLDOC01-appb-I000026
 各ワクチンによる、4週目追加接種を伴う経鼻接種試験に由来する、脾臓細胞を用いて、経鼻接種後6週目(ラット)、8週目(マウス)でのS1-peptide刺激IFN-γ放出T細胞数をpeptide刺激効果として、S-RBD-foldon(1x107 CIU/shot)vs. S1-foldon(2x107 CIU/shot; 5x107 CIU/shot)で比較したところ、それぞれのワクチンにおいて、1を優位に超える、IFN-γ放出CTL刺激率を示した(図7-1)。この結果と、実施例2bの細胞内残存量とを合わせて考察すると、接種領域の感染細胞内で発現したワクチン抗原が残存することによって、ワクチン抗原特異的CTLが誘導されると考えられる。
 同一動物種(マウス)で各ワクチンの免疫原性を比較することを目的に、各ワクチンによる、4週目追加接種を伴う経鼻接種試験に由来する、脾臓細胞を用いて、経鼻接種後8週目(マウス)でのS1-peptide刺激IFN-γ放出T細胞数をpeptide刺激効果として、S-RBD-foldon(1x107 CIU/shot)(表3-20)vs. S1-foldon(1x107 CIU/shot)(表3-18)で比較したところ、それぞれのワクチンにおいて、1を優位に超える、IFN-γ放出CTL刺激率を示した(図7-2)。この結果と、実施例2bの細胞内残存量とを合わせて考察すると、接種領域の感染細胞内で発現したワクチン抗原が残存することによって、ワクチン抗原特異的CTLが誘導されると考えられる。
 同一動物種(マウス)で各ワクチンの免疫原性を比較することを目的に、各ワクチンによる、4週目追加接種を伴う経鼻接種試験に由来する、脾臓細胞を用いて、経鼻接種後8週目(マウス)でのS1-peptide刺激IFN-γ放出T細胞数をpeptide刺激効果として、S-RBD-foldon(1x107 CIU/shot)(表3-20)vs. S-RBD(1x107 CIU/shot)(表3-21)で比較したところ、それぞれのワクチンにおいて、1を優位に超える、IFN-γ放出CTL刺激率を示した(図7-2)。この結果と、実施例2bの細胞内残存量とを合わせて考察すると、接種領域の感染細胞内で発現したワクチン抗原が残存することによって、ワクチン抗原特異的CTLが誘導されると考えられる。
S1-peptide-stimulated IFN-stimulated 6 weeks (rats) and 8 weeks (mice) after nasal inoculation using spleen cells derived from intranasal inoculation tests with 4-week booster inoculation with each vaccine. When comparing the number of γ-released T cells as the peptide stimulation effect between S-RBD-foldon (1x10 7 CIU/shot) and S1-foldon (2x10 7 CIU/shot; 5x10 7 CIU/shot), each vaccine showed , showed an IFN-γ release CTL stimulation rate significantly greater than 1 (Fig. 7-1). Considering this result together with the intracellular residual amount in Example 2b, it is considered that the vaccine antigen-specific CTL are induced by the residual vaccine antigen expressed in the infected cells in the inoculated area.
For the purpose of comparing the immunogenicity of each vaccine in the same animal species (mice), spleen cells derived from an intranasal inoculation study with a 4-week booster with each vaccine were used after intranasal inoculation. The number of S1-peptide-stimulated IFN-γ-released T cells at week 8 (mouse) was calculated as peptide stimulation effect, S-RBD-foldon (1×10 7 CIU/shot) (Table 3-20) vs. S1-foldon (1×10). 7 CIU/shot) (Table 3-18), each vaccine showed an IFN-γ release CTL stimulation rate significantly exceeding 1 (Fig. 7-2). Considering this result together with the intracellular residual amount in Example 2b, it is considered that the vaccine antigen-specific CTL are induced by the residual vaccine antigen expressed in the infected cells in the inoculated area.
For the purpose of comparing the immunogenicity of each vaccine in the same animal species (mice), spleen cells derived from an intranasal inoculation study with a 4-week booster with each vaccine were used after intranasal inoculation. The number of S1-peptide-stimulated IFN-γ-released T cells at week 8 (mice) was calculated as peptide stimulation effect, S-RBD-foldon (1×10 7 CIU/shot) (Table 3-20) vs. S-RBD (1×10). 7 CIU/shot) (Table 3-21), each vaccine showed an IFN-γ release CTL stimulation rate significantly exceeding 1 (Fig. 7-2). Considering this result together with the intracellular residual amount in Example 2b, it is considered that the vaccine antigen-specific CTL are induced by the residual vaccine antigen expressed in the infected cells in the inoculated area.
 センダイウイルスベクターワクチンの初回接種において、センダイウイルスベクター由来のタンパク質に対して特異的な抗体やCTLが誘導されるために、追加接種によるウイルスベクターの細胞感染が妨げられることによって、または、感染後にCTLが作用することによって、追加接種によるワクチン抗原のブースター効果が発揮されないという懸念があったが、表3-13, 3-14等の結果より、追加接種によって強い液性免疫のブースター効果が確認され、表3-17~表3-20等の結果より、追加接種によって強い細胞性免疫のブースター効果も確認された。これらの結果より、ブースター効果は、追加接種後のワクチン導入細胞が初回接種によって誘導されたセンダイウイルスに対する抗体やCTLの作用を受けて排除される前に、ワクチン抗原が細胞から分泌遊離されて拡散されたために達成されたと考えられる。 In the initial inoculation of the Sendai virus vector vaccine, specific antibodies and CTL are induced against proteins derived from the Sendai virus vector. There was concern that the booster effect of vaccine antigens by booster vaccination would not be exerted due to the action of , but the results in Tables 3-13 and 3-14, etc., confirm that booster vaccination has a strong booster effect on humoral immunity. , and Tables 3-17 to 3-20, etc., it was confirmed that the booster inoculation had a strong booster effect on cell-mediated immunity. Based on these results, the booster effect is that the vaccine antigen is secreted and released from the cells and spreads before the vaccine-introduced cells after the booster vaccination are eliminated by the action of antibodies and CTLs against Sendai virus induced by the first vaccination. It is considered to have been achieved because the
[実施例4a]ワクチン抗原搭載センダイウイルスベクターの生産性の測定
1)preMVBシードの準備のために、10%FBSを含むMEM培地を用いて、センダイウイルスFタンパク質を発現するLLCMK2細胞であるLLCMK2/F細胞(Li, H.-O. et al., J. Virology 74. 6564-6569 (2000), WO00/70070)の培養液7×10cells/30 mLを2枚のT225フラスコのそれぞれに播種して、37℃、5% CO2インキュベーターに静置し3日間培養した。
2)6 mLのMEM培地に2 mLのワクチン抗原搭載センダイウイルスベクターのCloned virus seed(CVS)を加えることによって、CVS希釈液を作製した。
3)1)の2枚のLLC-MK2/F細胞の培養液を除き、2)のベクター希釈液の4 mLを2枚のそれぞれに加えることによって感染を開始させた。
4)37℃、5% CO2インキュベーターで1時間培養した。その際に乾燥防ぐために15分おきにT225を浸とうさせた。
5)5.33 mrPU/mL TrypLE Select(ThermoFisher, Cat# 12563011)を含むMEM培地25 mLを、4)のT225に添加し、32℃、5% CO2インキュベーターで一晩静置培養した。
6)5.33 mrPU/mL TrypLE Selectを含むMEM培地30 mLで培地交換し、32℃、5% CO2インキュベーターで3~4日間培養した。
7)毎日、培養液の回収を行い、その培養上清について、赤血球凝集活性を測定し、HA活性が確認された培養上清の一部を用いて、搭載遺伝子の塩基配列解析を実施した。
8)残りの培養上清は、ドライアイス/エタノールで急速に凍結させた後、-80℃で保管した。
9)塩基配列解析の結果、搭載遺伝子の塩基配列が設計通りであることを確認できた培養上清をpreMVBとした。
10)感染力価を測定した。
11)生産性試験用細胞の準備(T75フラスコ)として、10%FBSを含むMEM培地を用いて、LLC-MK2/F細胞の培養液2.3×106 cells/10 mLを試験サンプル数+1枚分のT75フラスコのそれぞれに播種して、37℃、5% CO2インキュベーターに静置し3日間培養した。
12)フラスコ一枚より、細胞を回収し、カウントを行い、フラスコ一枚あたりの細胞数を算出した。
13)感染多重度0.5相当のベクター量になるように、MEM培地を用いてベクター溶液1 mL/T75を作製した。
14)11)のLLC-MK2/F細胞の培養液を除き、13)のベクター溶液1 mL/T75 のサンプルを感染させ、37℃、5% CO2インキュベーターで1時間培養した。その際に乾燥防ぐために15分おきにフラスコを浸とうさせた。
15)5.33 mrPU/mL TrypLE Selectを含むMEM培地を、10 mL/T75で添加し、32℃、5% CO2インキュベーターで24hr培養した。
16)5.33 mrPU/mL TrypLE Selectを含むMEM培地、10 mL/T75で、培地交換を行い、48hr培養後、培養液を一部回収しその上清のHA測定を行い、上清の残りを感染力価の測定のために-80℃にて保管した。
17)72hr, 96hr, 120hr, 144hr, 168hr培養後、16)と同じように赤血球凝集活性の測定を行い、上清の残りを感染力価の測定のために-80℃にて保管した。
18)感染力価の測定を行った。
19)赤血球凝集活性の測定結果から、全SeV粒子数/mLを計算し、感染力価の測定結果とともに、時間的推移をグラフに表し、最大感染力価としてベクター生産性を求めた。
[Example 4a] Measurement of productivity of vaccine antigen-loaded Sendai virus vector 1) For preparation of preMVB seeds, MEM medium containing 10% FBS was used to prepare LLCMK2/LLCMK2 cells, which are LLCMK2 cells expressing Sendai virus F protein. 7×10 6 cells/30 mL of F cell (Li, H.-O. et al., J. Virology 74. 6564-6569 (2000), WO00/70070) culture medium was added to each of two T225 flasks. After seeding, the cells were allowed to stand in a 37°C, 5% CO 2 incubator and cultured for 3 days.
2) A CVS diluted solution was prepared by adding 2 mL of Cloned virus seed (CVS) of Sendai virus vector loaded with vaccine antigen to 6 mL of MEM medium.
3) Infection was initiated by removing the LLC-MK2/F cell culture medium from the two plates of 1) and adding 4 mL of the vector dilution from 2) to each of the two plates.
4) Cultured for 1 hour at 37°C in a 5% CO 2 incubator. At that time, T225 was soaked every 15 minutes to prevent drying.
5) 25 mL of MEM medium containing 5.33 mrPU/mL TrypLE Select (ThermoFisher, Cat# 12563011) was added to T225 of 4), and statically cultured overnight at 32°C in a 5% CO 2 incubator.
6) The medium was replaced with 30 mL of MEM medium containing 5.33 mrPU/mL TrypLE Select, and cultured at 32°C in a 5% CO 2 incubator for 3 to 4 days.
7) The culture medium was collected every day, the hemagglutination activity of the culture supernatant was measured, and a portion of the culture supernatant in which HA activity was confirmed was used to analyze the base sequence of the loaded gene.
8) The rest of the culture supernatant was stored at -80°C after being rapidly frozen with dry ice/ethanol.
9) As a result of nucleotide sequence analysis, the culture supernatant in which it was confirmed that the nucleotide sequence of the loaded gene was as designed was designated as preMVB.
10) Infectious titers were measured.
11) To prepare the cells for the productivity test (T75 flask), 2.3×10 6 cells/10 mL of LLC-MK2/F cell culture solution was added to the number of test samples + 1 using MEM medium containing 10% FBS. was seeded in each of the T75 flasks, left at rest in a 37°C, 5% CO 2 incubator, and cultured for 3 days.
12) Cells were recovered from one flask, counted, and the number of cells per flask was calculated.
13) Using MEM medium, a vector solution of 1 mL/T75 was prepared so that the vector amount was equivalent to a multiplicity of infection of 0.5.
14) Except for the LLC-MK2/F cell culture medium of 11), the cells were infected with 1 mL/T75 sample of the vector solution of 13) and cultured at 37°C in a 5% CO 2 incubator for 1 hour. At that time, the flask was soaked every 15 minutes to prevent drying.
15) MEM medium containing 5.33 mrPU/mL TrypLE Select was added at 10 mL/T75 and cultured at 32°C in a 5% CO 2 incubator for 24 hours.
16) Replace the medium with 10 mL/T75 of MEM medium containing 5.33 mrPU/mL TrypLE Select. After culturing for 48 hours, collect a part of the culture medium, measure the HA of the supernatant, and infect the rest of the supernatant. Stored at -80°C for titer determination.
17) After culturing for 72, 96, 120, 144, and 168 hours, hemagglutination activity was measured in the same manner as in 16), and the remainder of the supernatant was stored at -80°C for infectious titer measurement.
18) The infection titer was measured.
19) From the measurement results of the hemagglutination activity, the total number of SeV particles/mL was calculated, and the change over time was graphed along with the measurement results of the infection titer, and vector productivity was determined as the maximum infection titer.
[実施例4b]ワクチン抗原搭載センダイウイルスベクターのベクター生産性(製造効率)とワクチン抗原の細胞外分泌遊離量の負の相関性 [Example 4b] Negative correlation between vector productivity (manufacturing efficiency) of vaccine antigen-carrying Sendai virus vector and extracellular secretion release amount of vaccine antigen
[表4-1]
培養細胞でのワクチン抗原搭載センダイウイルスベクターのワクチン抗原発現量とベクター生産性
Figure JPOXMLDOC01-appb-I000027
*:S-RBD-foldonの細胞内在量(μg/106 cells)(表2-1)に対する、S1-foldonとS-RBDのそれぞれの細胞内在量(μg/106 cells)(表2-1)の相対値
**:S-RBD-foldonの細胞外分泌遊離量(μg/106 cells)(表2-1)に対する、S1-foldonとS-RBDのそれぞれの細胞外分泌遊離量(μg/106 cells)(表2-1)の相対値
***:S-RBD-foldonの最大感染力価(CIU(感染粒子数)/mL)に対する、S1-foldonとS-RBDのそれぞれの最大感染力価(CIU(感染粒子数)/mL)の相対値
[Table 4-1]
Vaccine antigen expression level and vector productivity of vaccine antigen-loaded Sendai virus vectors in cultured cells
Figure JPOXMLDOC01-appb-I000027
*: The intracellular amount of S1-foldon and S-RBD (μg/10 6 cells) (Table 2-1) relative to the intracellular amount of S-RBD-foldon (μg/10 6 cells) (Table 2-1) 1) Relative value **: The extracellular secretion release amount of S1-foldon and S-RBD (µg/ 10 6 cells) (Table 2-1) ***: Maximum S1-foldon and S-RBD relative to S-RBD-foldon maximum infectious titer (CIU (infectious particle number)/mL) Relative value of infectious titer (CIU (number of infectious particles)/mL)
 実施例2bで示されたように、センダイウイルスベクターから発現するS1-foldonとS-RBD-foldonにおいて、分子量がS1-foldon > S-RBD-foldonであるのに対して、分泌遊離量においては、S1-foldon < S-RBD-foldonであったが、それぞれのベクターの製造効率を示すベクター生産性を測定したところ、S-RBD-foldonの方が、S1-foldonの1/6まで低下していたことが分かった(S1-foldon > S-RBD-foldon)。そこで分泌遊離量の増大がベクターの低生産性の原因であると考え、実施例2bで示された、センダイウイルスベクターから発現するS-RBD-foldonとS-RBDにおいて、発現量がS-RBD-foldon > S-RBDであったことから、ベクター生産性においては、S-RBD-foldon < S-RBDになるという仮説を立て、S-RBD-foldonまたはS-RBDを発現するベクターの生産性を比較したところ、予想通りにS-RBD-foldonからfoldonを除去することによって、ベクター生産性が6.5倍上昇した(S-RBD-foldon < S-RBD)。これらの検証結果に基づいて次のような技術が提供される。すなわち、ワクチン抗原ベクターのfoldon配列を追加または除去することによって、製造培養過程にある生産細胞内で、ワクチン抗原発現量を増加または減少させ、連動して分泌遊離量を増加または減少させ、ベクターの生産性を抑制または向上させ、高い免疫原性が維持される範囲においてベクター生産性を調節できる。 As shown in Example 2b, in the S1-foldon and S-RBD-foldon expressed from the Sendai virus vector, the molecular weight is S1-foldon > S-RBD-foldon, whereas the secreted release amount is , S1-foldon < S-RBD-foldon, but when the vector productivity, which indicates the production efficiency of each vector, was measured, S-RBD-foldon decreased to 1/6 that of S1-foldon. (S1-foldon > S-RBD-foldon). Therefore, it is considered that the increase in the amount of secretion and release is the cause of the low productivity of the vector. -foldon > S-RBD, we hypothesized that vector productivity would be S-RBD-foldon < S-RBD, and the productivity of vectors expressing S-RBD-foldon or S-RBD As expected, removing the foldon from the S-RBD-foldon resulted in a 6.5-fold increase in vector productivity (S-RBD-foldon < S-RBD). The following techniques are provided based on these verification results. That is, by adding or removing the foldon sequence of the vaccine antigen vector, the expression level of the vaccine antigen is increased or decreased in production cells in the production culture process, and the amount of secretion and release is increased or decreased in conjunction with the increase or decrease of the vector. Vector productivity can be adjusted to the extent that productivity is suppressed or enhanced and high immunogenicity is maintained.
 二種ワクチンにおける免疫誘導能の違い(S-RBD-foldon > S1-foldon)から、ワクチン抗原を最小限化させ、それにfoldonを付加させることによって、発現が極大化し、さらに分泌シグナル付加させることによって、分泌遊離量が極大化されるとともに、細胞内残存量が確保されるので、遊離されたワクチン抗原タンパク質は抗原提示細胞に貪食され、抗原特異的な、抗体産生B細胞、細胞障害性T細胞の誘導を招き、一方、感染細胞に留まったワクチン抗原はその細胞により隣接する細胞障害性T細胞に抗原提示することが期待される。このように本発明は、液性免疫と細胞性免疫の両方を誘導するようにプログラムできるベクター技術として有用であると考えられる。 From the difference in immunity induction in the two vaccines (S-RBD-foldon > S1-foldon), by minimizing the vaccine antigen and adding foldon to it, expression is maximized, and by adding a secretory signal , the released amount of vaccine antigen protein is maximized and the intracellular residual amount is secured. while vaccine antigens retained in infected cells are expected to be presented by those cells to neighboring cytotoxic T cells. Thus, the present invention is considered useful as a vector technology that can be programmed to induce both humoral and cellular immunity.
 このように、二種ワクチンにおける免疫誘導能の違い(S-RBD-foldon > S1-foldon)から、ワクチン抗原を最小限化させ、それにfoldonを付加させることによって、発現が極大化し、さらに分泌シグナル付加させることによって、分泌遊離量が極大化されるとともに、細胞内残存量が確保されるので、ワクチン抗原が感染細胞外に大量に遊離すると、抗原提示細胞による貪食の機会が増大することによって、同一抗原に由来するB細胞と濾胞性樹状細胞の誘導、それら同士の相互作用が頻発して、高親和性抗体産生B細胞の選抜を導くことが期待される(図8)。また、ACE2受容体結合ドメインだけをワクチン抗原として発現させることによって、中和抗体産生B細胞だけが増殖刺激を受けて、感染阻止能力が高い抗体産生B細胞の選抜が成し遂げられる。
 従って、ワクチン抗原を最小限化させ、それにfoldonを付加させることによって、発現が極大化し、さらに分泌シグナル付加させることによって、分泌遊離量が極大化されるとともに、細胞内残存量が確保される本発明の技術によって、選抜B細胞が長寿命形質細胞やメモリーB細胞となり、免疫の長寿命化が成立すると考えられる。
In this way, from the difference in the ability to induce immunity between the two vaccines (S-RBD-foldon > S1-foldon), by minimizing the vaccine antigen and adding foldon to it, the expression is maximized and the secretion signal The addition maximizes the amount of secretion and release and secures the intracellular residual amount. It is expected that the induction of B cells and follicular dendritic cells derived from the same antigen and frequent interactions between them will lead to the selection of high-affinity antibody-producing B cells (Fig. 8). In addition, by expressing only the ACE2 receptor-binding domain as a vaccine antigen, only neutralizing antibody-producing B cells are stimulated to proliferate, and antibody-producing B cells with high infection-blocking ability can be selected.
Therefore, by minimizing the vaccine antigen and adding a foldon to it, the expression is maximized, and by adding a secretory signal, the amount of released secretion is maximized and the residual amount in the cell is secured. It is believed that the technology of the invention will enable selected B cells to become long-lived plasma cells and memory B cells, thereby achieving long-lived immunity.
 ウイルスベクターワクチンの初回接種において、ウイルスベクター由来のタンパク質に対する抗体やCTLが誘導されるために、追加接種によるウイルスベクターの細胞感染が妨げられることによって、または、感染後にCTLが作用することによって、追加接種によるワクチン抗原のブースター効果が発揮されないという懸念があった。しかしながら、分泌シグナルとfoldonが付加されたワクチン抗原搭載センダイウイルスベクターを追加接種によって強い液性免疫及び細胞性免疫のブースター効果が確認された(表3-13, 3-14, 3-17~3-20等)。これらの結果より、追加接種後ワクチン抗原が細胞から分泌遊離されることによって、初回接種によって誘導されたセンダイウイルスに対する抗体やCTLの作用をかわすことができると考えられる。また、同様に類似ウイルスによる交差免疫の作用についても回避できると考えられる。本技術は、ウイルスベクターワクチンのブースター効果を高める技術、交差免疫を回避する技術として、利用できる。 Antibodies and CTLs against viral vector-derived proteins are induced in the initial inoculation of a viral vector vaccine. There was concern that the booster effect of vaccine antigens by inoculation would not be exhibited. However, a strong booster effect of humoral immunity and cell-mediated immunity was confirmed by booster inoculation of vaccine antigen-loaded Sendai virus vector with added secretion signal and foldon (Tables 3-13, 3-14, 3-17-3). -20 etc.). These results suggest that secretion and release of vaccine antigens from cells after booster vaccination can ward off the effects of antibodies and CTL against Sendai virus induced by primary vaccination. In addition, it is thought that the effect of cross-immunity due to similar viruses can also be avoided. This technique can be used as a technique for enhancing the booster effect of viral vector vaccines and as a technique for avoiding cross-immunity.
 Foldon有無が異なっている二種ワクチンにおける分泌遊離量の違い(S-RBD-foldon > S-RBD)とベクター生産性の違い(S-RBD-foldon < S-RBD)から、ワクチン抗原ベクターのfoldon配列を追加または除去することによって、製造培養工程にある生産細胞内で、ワクチン抗原発現量を増加または減少させ、連動して分泌遊離量を増加または減少させ、ベクターの生産性を抑制または促進させ、高い免疫原性が維持される範囲においてベクター生産性を調節できる。 From the difference in the amount of secretion and release (S-RBD-foldon > S-RBD) and the difference in vector productivity (S-RBD-foldon < S-RBD) in the two vaccines with and without Foldon, the foldon of the vaccine antigen vector By adding or removing sequences, the amount of vaccine antigen expressed is increased or decreased in production cells in the manufacturing culture process, which in turn increases or decreases the amount of secreted release, and suppresses or promotes vector productivity. , vector productivity can be adjusted to the extent that high immunogenicity is maintained.
 本発明の好ましい態様を詳細に説明してきたが、これらの態様が変更され得ることは当業者にとって自明であろう。よって、本発明は、本発明が本明細書に詳細に記載された以外の方法や態様で実施され得ることを意図する。即ち、本発明は添付の「特許請求の範囲」の精神またはその本質的部分を同じくする範囲に包含されるすべての変更を含むものである。 Although preferred embodiments of the invention have been described in detail, it will be apparent to those skilled in the art that these embodiments can be modified. Accordingly, it is contemplated that the present invention may be practiced in ways and aspects other than those specifically described herein. That is, the present invention includes all modifications that fall within the spirit or essential parts of the appended claims.
 本発明によって、例えば標的とする抗原タンパク質の膜外ドメイン由来のワクチン抗原を強く発現し、細胞内に残存する一方、豊富に膜外分泌遊離させることによって免疫原性を高めることが可能となる。本発明は、特に感染免疫学的分野や、その臨床適用において利用が期待される。 According to the present invention, for example, vaccine antigens derived from the extramembrane domain of the target antigen protein can be strongly expressed and remain in the cell, while abundant extramembrane secretion and release can enhance immunogenicity. INDUSTRIAL APPLICABILITY The present invention is particularly expected to be used in the field of infection immunology and its clinical application.

Claims (15)

  1.  分泌シグナル、抗原タンパク質断片、および三量体形成ドメインを含む、分泌可能な融合タンパク質をコードする核酸を含む、抗原発現ベクター。 An antigen expression vector comprising a nucleic acid encoding a secretable fusion protein comprising a secretory signal, an antigenic protein fragment, and a trimerization domain.
  2.  該融合タンパク質中に膜貫通ドメインを含まない、請求項1に記載の抗原発現ベクター。 The antigen expression vector according to claim 1, wherein the fusion protein does not contain a transmembrane domain.
  3.  ベクターがマイナス鎖RNAウイルスベクターである、請求項1に記載の抗原発現ベクター。 The antigen expression vector according to claim 1, wherein the vector is a negative-strand RNA viral vector.
  4.  三量体形成ドメインが、T4ファージfibritinの三量体形成ドメイン(foldon)である、請求項1に記載の抗原発現ベクター。 The antigen expression vector according to claim 1, wherein the trimerization domain is the trimerization domain (foldon) of T4 phage fibritin.
  5.  抗原が感染性病原体に由来する、請求項1に記載の抗原発現ベクター。 The antigen expression vector according to claim 1, wherein the antigen is derived from an infectious pathogen.
  6.  抗原がウイルスに由来する、請求項1に記載の抗原発現ベクター。 The antigen expression vector according to claim 1, wherein the antigen is derived from a virus.
  7.  抗原タンパク質断片が、膜タンパク質の細胞外領域またはその断片である、請求項1に記載の抗原発現ベクター。 The antigen expression vector according to claim 1, wherein the antigen protein fragment is the extracellular domain of a membrane protein or a fragment thereof.
  8.  抗原タンパク質断片の長さが500アミノ酸以下である、請求項1に記載の抗原発現ベクター。 The antigen expression vector according to claim 1, wherein the antigen protein fragment has a length of 500 amino acids or less.
  9.  抗原タンパク質がRNAウイルスのスパイクタンパク質である、請求項1に記載の抗原発現ベクター。 The antigen expression vector according to claim 1, wherein the antigen protein is an RNA virus spike protein.
  10.  抗原タンパク質断片が、RNAウイルスのスパイクタンパク質の受容体結合ドメインを含む細胞外領域の断片である、請求項9に記載の抗原発現ベクター。 The antigen expression vector according to claim 9, wherein the antigen protein fragment is a fragment of the extracellular region containing the receptor-binding domain of the RNA virus spike protein.
  11.  抗原タンパク質断片を含む発現産物が、ベクター導入細胞の細胞内および細胞外の両方に分布する、請求項1に記載の抗原発現ベクター。 The antigen expression vector according to claim 1, wherein the expression product containing the antigen protein fragment is distributed both intracellularly and extracellularly in the vector-introduced cell.
  12.  細胞外に分泌される発現産物が、細胞に留まる発現産物よりも多い、請求項11に記載の抗原発現ベクター。 The antigen expression vector according to claim 11, wherein the expression product secreted extracellularly is greater than the expression product that remains in the cell.
  13.  分泌シグナルおよび抗原タンパク質断片を含み、三量体形成ドメインを含まないタンパク質をコードする核酸を含む対照抗原発現ベクターと比べ、抗原タンパク質断片を含む発現産物の発現量が増大する、請求項1に記載の抗原発現ベクター。 2. The amount of expression product comprising the antigenic protein fragment is increased compared to a control antigen expression vector comprising a protein-encoding nucleic acid comprising a secretory signal and an antigenic protein fragment and not comprising a trimerization domain. antigen expression vector.
  14.  請求項1から13のいずれかに記載の抗原発現ベクターを含むワクチン。 A vaccine comprising the antigen expression vector according to any one of claims 1 to 13.
  15.  液性および細胞性免疫の両方を誘導するための、請求項14に記載のワクチン。 The vaccine according to claim 14, for inducing both humoral and cellular immunity.
PCT/JP2022/044526 2021-12-03 2022-12-02 Antigen-protein expression vector and utilization thereof WO2023101007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-197377 2021-12-03
JP2021197377 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023101007A1 true WO2023101007A1 (en) 2023-06-08

Family

ID=86612395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044526 WO2023101007A1 (en) 2021-12-03 2022-12-02 Antigen-protein expression vector and utilization thereof

Country Status (1)

Country Link
WO (1) WO2023101007A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220246A1 (en) * 2020-04-30 2021-11-04 University Of Cape Town Recombinant sars-cov-2 polypeptides and uses
WO2021222228A1 (en) * 2020-04-27 2021-11-04 Ohio State Innovation Foundation A live attenuated measles virus vectored vaccine for sars-cov-2

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021222228A1 (en) * 2020-04-27 2021-11-04 Ohio State Innovation Foundation A live attenuated measles virus vectored vaccine for sars-cov-2
WO2021220246A1 (en) * 2020-04-30 2021-11-04 University Of Cape Town Recombinant sars-cov-2 polypeptides and uses

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUSANO KOJI, RYUTARO SHIMAZAKI, KUMIKO SAEKI: "Development of airway-tropic Sendai virus vector-type vaccine to prevent respiratory infections", BIOENGINEERING, vol. 98, no. 11, 1 January 2020 (2020-01-01), pages 590 - 594, XP093070051 *
VOGEL ANNETTE B.; KANEVSKY ISIS; CHE YE; SWANSON KENA A.; MUIK ALEXANDER; VORMEHR MATHIAS; KRANZ LENA M.; WALZER KERSTIN C.; HEIN : "BNT162b vaccines protect rhesus macaques from SARS-CoV-2", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 592, no. 7853, 8 April 2021 (2021-04-08), London, pages 283 - 289, XP037417629, ISSN: 0028-0836, DOI: 10.1038/s41586-021-03275-y *

Similar Documents

Publication Publication Date Title
AU2017203189B2 (en) Expression systems
Collins et al. Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years
JP7239948B2 (en) RECOMBINANT RSV HAVING SILENT MUTATIONS, VACCINES, AND RELATED METHODS
JP2014530010A (en) Recombinant nanoparticle RSVF vaccine for respiratory syncytial virus
JP2016536346A (en) Immunogenic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Compositions and Methods
EP3309251A1 (en) Human parainfluenza type 2 virus vector and vaccine
US20120087940A1 (en) Vector for treating alzheimer&#39;s disease
JP2023524990A (en) Recombinant Newcastle disease virus expressing SARS-CoV-2 spike protein and uses thereof
US20210401969A1 (en) Rsv virus-like particles and methods of use thereof
JPWO2003029475A1 (en) Mammalian cell-infecting viral vector encoding epitope-binding β2m and use thereof
JP7314059B2 (en) Recombinant Chimeric Bovine/Human Parainfluenza Virus 3 Expressing RSV G and Methods of Use Thereof
US20030091592A1 (en) Generation of virus-like particles by VSV
US10828359B2 (en) Anti-Mycobacterium tuberculosis vaccine using sendai virus as vector
WO2005080417A2 (en) Recombinant viruses with heterologous envelope proteins
EP2363472B1 (en) Method for enhancing expression of recombinant protein
WO2023101007A1 (en) Antigen-protein expression vector and utilization thereof
EP1559780A1 (en) Method of strengthening foreign epitope presentation by mhc class i by inhibiting tap activity
JP7150241B2 (en) Infectious disease vaccine using non-infectious paramyxovirus particles
KR20160023769A (en) Semi-live respiratory syncytial virus vaccine
US20210275662A1 (en) Method for rescuing and producing a virus in avian cells
JP7314441B2 (en) Selective CD8-positive T-cell induction vaccine antigen
JP2023003315A (en) Coronavirus vaccines
US20240148857A1 (en) Recombinant rsv vaccine: methods of making and using the same
Virus Human Respiratory Syncytial Virus
WO2023092100A2 (en) Methods of administering chimeric vaccines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901437

Country of ref document: EP

Kind code of ref document: A1