WO2023100979A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2023100979A1
WO2023100979A1 PCT/JP2022/044372 JP2022044372W WO2023100979A1 WO 2023100979 A1 WO2023100979 A1 WO 2023100979A1 JP 2022044372 W JP2022044372 W JP 2022044372W WO 2023100979 A1 WO2023100979 A1 WO 2023100979A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference plane
branch
control unit
entrance
information processing
Prior art date
Application number
PCT/JP2022/044372
Other languages
French (fr)
Japanese (ja)
Inventor
泰一 坂本
克彦 清水
弘之 石原
俊祐 吉澤
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2023100979A1 publication Critical patent/WO2023100979A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • the present invention relates to an information processing device, an information processing method, and a program.
  • Patent Document 1 A therapeutic device that is indwelled inside a hollow organ via a catheter is used.
  • the size and shape of the affected area where the therapeutic device is placed There are individual differences in the size and shape of the affected area where the therapeutic device is placed.
  • a doctor selects a therapeutic device suitable for each individual patient based on preoperative CT (Computed Tomography) images and the like.
  • preoperative CT Computed Tomography
  • the size and shape of the affected area may change between the day of the preoperative imaging and the day of the treatment.
  • the object is to provide an information processing device or the like that supports selection of a therapeutic device.
  • each pixel constituting a plurality of tomographic images acquired using an image acquisition catheter that performs three-dimensional scanning while sequentially moving the transmission direction of the scanning beam includes a biological tissue region and a lumen region.
  • a classification data acquisition unit that acquires a plurality of classification data classified into a plurality of regions, and a branching unit that divides the predetermined region in a three-dimensional image constructed using the plurality of classification data into a trunk and a branch.
  • An entrance determination unit that determines the entrance, and a dimension output unit that outputs a value related to the dimension of the branch entrance.
  • an information processing device or the like that supports selection of a therapeutic device.
  • FIG. 4 is an explanatory diagram for explaining an outline of a dimension measurement process; It is an explanatory view explaining a classification model. It is an explanatory view explaining the composition of an information processor.
  • FIG. 4 is an explanatory diagram for explaining a record layout of a tomogram DB; 4 is a flowchart for explaining the flow of processing of a program; This is an example screen. This is an example screen.
  • FIG. 4 is an explanatory diagram showing a cross section of a three-dimensional image cut along a reference plane; This is an example screen. This is an example screen. It is an example of a screen of a modification.
  • FIG. 10 is a flowchart for explaining the flow of processing of a program according to Embodiment 2; It is an example of a screen of Embodiment 2.
  • FIG. It is an example of a screen of Embodiment 2.
  • FIG. 11 is a flowchart for explaining the flow of processing of a program according to Embodiment 3; It is an example of a screen of Embodiment 3. It is an example of a screen of Embodiment 3.
  • FIG. 13 is an explanatory diagram illustrating an initial position of a reference plane according to the fourth embodiment;
  • FIG. FIG. 13 is a flowchart for explaining the flow of processing of a program according to Embodiment 4;
  • FIG. It is an example of a screen of Embodiment 4.
  • FIG. 10 is a flowchart for explaining the processing flow of a reference plane selection-1 subroutine
  • FIG. 14 is a flowchart for explaining the flow of processing of a program according to Embodiment 5; It is an example of a screen of Embodiment 5.
  • FIG. It is an example of a screen of Embodiment 5.
  • FIG. FIG. 14 is a flowchart for explaining the flow of processing of a program according to Embodiment 6;
  • FIG. FIG. 10 is a flowchart for explaining the processing flow of a reference plane selection-2 subroutine;
  • FIG. FIG. 21 is an explanatory diagram for explaining a branch shaft that is an axis of a branch portion of Embodiment 7;
  • FIG. 11 is an example of a screen according to Embodiment 7.
  • FIG. 11 is an example of a screen according to Embodiment 7.
  • FIG. FIG. 21 is a flow chart for explaining the flow of processing of a program according to Embodiment 7;
  • FIG. FIG. 10 is a flowchart for explaining the flow of processing of a branch axis creation subroutine;
  • FIG. FIG. 22 is a flowchart for explaining the flow of processing of a program of Embodiment 8;
  • FIG. FIG. 11 is a flow chart for explaining the processing flow of a reference plane selection-3 subroutine;
  • FIG. FIG. 11 is an example of a screen according to Embodiment 9.
  • FIG. 22 is a flowchart for explaining the flow of processing of a program according to Embodiment 9;
  • FIG. FIG. 22 is a flow chart for explaining the flow of processing of a program according to the tenth embodiment;
  • FIG. 11 is a flow chart for explaining the processing flow of a reference plane selection-4 subroutine;
  • FIG. FIG. 22 is a flowchart for explaining the flow of processing of a subroutine for constructing a three-dimensional image according to Embodiment 11;
  • FIG. FIG. 20 is an explanatory diagram illustrating the configuration of a catheter system according to a twelfth embodiment;
  • FIG. 22 is an explanatory diagram for explaining the configuration of an information processing apparatus according to a thirteenth embodiment;
  • FIG. 22 is a functional block diagram of an information processing device according to a fourteenth embodiment;
  • FIG. 1 is an explanatory diagram for explaining the outline of the dimension measurement process.
  • a user such as a doctor inserts the image acquisition catheter 28 (see FIG. 33) near the affected area.
  • the image acquisition catheter 28 is for three-dimensional scanning, and can continuously capture a plurality of tomographic images 58 in which the scanning plane is gradually changed in the axial direction.
  • the tomographic images 58 created by one three-dimensional scan may be referred to as a set of tomographic images 58.
  • FIG. 1 is an explanatory diagram for explaining the outline of the dimension measurement process.
  • a user such as a doctor inserts the image acquisition catheter 28 (see FIG. 33) near the affected area.
  • the image acquisition catheter 28 is for three-dimensional scanning, and can continuously capture a plurality of tomographic images 58 in which the scanning plane is gradually changed in the axial direction.
  • the tomographic images 58 created by one three-dimensional scan may be referred to as a set of tomographic images 58.
  • a so-called XY-format tomographic image 58 constructed according to the actual shape is shown as an example.
  • the tomographic image 58 may be of a so-called RT format constructed by arranging scanning lines in parallel in the order of scanning angles. Conversion between the RT format and the XY format may be performed during the process described using FIG. Since the conversion method between the RT format and the XY format is known, the explanation is omitted.
  • Classification data 57 is created based on each tomographic image 58 .
  • Classification data 57 is data obtained by classifying each pixel constituting tomographic image 58 into a plurality of regions such as lumen region 40, biological tissue region 46, extracavity region 45, and catheter region 47, for example. Based on the classification data 57, it is possible to create a classified image in which the pixels forming the tomographic image 58 are colored separately for each area. A set of classified images is created based on the set of tomograms 58 . The details of the classified data 57 and the classified images will be described later.
  • the control unit 201 constructs a three-dimensional image 59 based on the set of classified images.
  • the user can appropriately designate an area to be displayed in the three-dimensional image 59 .
  • FIG. 1 shows an example of a three-dimensional image 59 displaying only the lumen region 40 .
  • the lumen region 40 is the region surrounded by the tissue region 46 .
  • the lumen region 40 is a blood flow region filled with blood.
  • a dashed line indicates the axis of the image acquisition catheter 28 .
  • the catheter area 47 Around the axis is the catheter area 47, so the three-dimensional image 59 of the lumen area 40 has a through hole along the axis, as shown in FIG. The user can smoothly grasp the three-dimensional shape of the three-dimensional image 59 by appropriately cutting and rotating the three-dimensional image 59 and observing it.
  • the control unit 201 determines the branch entrance 53 based on the user's instruction.
  • the branch entrance 53 is a surface that divides a predetermined area in the three-dimensional image 59 into the trunk 51 and the branches 52 branching from the trunk 51 .
  • the control unit 201 calculates dimensions such as the major axis, the minor axis, or the area of the branch entrance 53, for example.
  • the major diameter is the maximum diameter of the branch entrance 53
  • the minor diameter is the minimum diameter of the branch entrance 53 .
  • the control unit 201 may calculate the volume of the branch portion 52, the length of the branch portion 52, or the like.
  • LAAC Left Atrial Appendage Closure
  • the left atrial appendage is a pouch-like area that projects outward from the left atrium of the heart. Patients with atrial fibrillation are at risk of serious diseases such as cerebral infarction or pulmonary thromboembolism due to thrombus generated in the left atrial appendage flowing out of the heart.
  • left atrial appendage closure device suppliers offer a line of devices in multiple sizes. Physicians select the appropriate size device for their patients from the lineup.
  • the dimensions of the left atrial appendage are measured based on preoperative CT images or MRI (Magnetic Resonance Imaging) images. However, the size and shape of the affected area may change between the day of the preoperative imaging and the day of the treatment.
  • a TEE (Transesophageal Echocardiography) probe can be used to measure the dimensions of the left atrial appendage through the esophageal wall.
  • the TEE probe is highly invasive to the patient's body, and the task of visualizing the left atrial appendage and measuring its dimensions is complicated, requiring manpower and time.
  • the image acquisition catheter 28 is inserted into the vicinity of the left atrial appendage using the pathway used to place the left atrial appendage closure device, and the TEE probe is used for dimensional measurements. It is less invasive to the patient's body than when it is used. Furthermore, by performing measurement from the vicinity of the left atrial appendage, higher measurement accuracy can be obtained than with a TEE probe. In addition, by performing the measurement immediately before placing the device, the user can select a device with an appropriate size compared to using a CT image or the like taken before surgery.
  • the case of measuring the dimensions of the left atrial appendage will be explained as an example.
  • the application of this sizing process is not limited to sizing the left atrial appendage.
  • the user when performing coil embolization for a cerebral aneurysm, the user can select an embolization coil with appropriate specifications by measuring the volume of the cerebral aneurysm using this size measurement process.
  • the object of dimension measurement is not limited to the lumen region 40.
  • the use of measured dimensions is not limited to device selection.
  • the dimensions of IPMN Extraductal Papillary Mucinous Neoplasm
  • the dimensions of IPMN can be measured from the three-dimensional shape of the biological tissue region 46. It is known that follow-up observation of IPMN dimensional and shape changes is useful for early detection of pancreatic cancer.
  • FIG. 2 is an explanatory diagram explaining the classification model 31.
  • the classification model 31 receives the tomographic image 58 and classifies each pixel constituting the tomographic image 58 into a plurality of regions such as the lumen region 40, the biological tissue region 46, the extracavity region 45, and the catheter region 47, and It outputs data that associates the pixel position with the label indicating the classification result.
  • the classification model 31 is a trained model that performs semantic segmentation on the tomographic image 58, for example.
  • the classification model 31 is generated by machine learning using training data in which a large number of pairs of tomographic images 58 and correct data obtained by coloring the tomographic images 58 for each region by a specialist such as a doctor are recorded. is a model. Generating a trained model for performing semantic segmentation has been conventionally performed, so detailed description thereof will be omitted.
  • pixels corresponding to the label of the lumen region 40 are colored in a first color
  • pixels corresponding to the label of the biological tissue region 46 are colored in a second color
  • pixels corresponding to the label of the extracavity region 45 are colored.
  • pixels corresponding to the labels of the catheter region 47 are set to the fourth color.
  • the first color is indicated by left-sloping hatching
  • the second color is indicated by thick left-sloping hatching
  • the third color is indicated by right-sloping hatching
  • the fourth color is indicated by no hatching.
  • the classification model 31 classifies each pixel constituting the tomographic image 58 into an arbitrary region such as a device region corresponding to a device such as a guide wire used simultaneously with the image acquisition catheter 28, a calcification region, or a plaque region. You may
  • the classification model 31 divides the lumen region 40 into a first lumen region that is a lumen into which the image acquisition catheter 28 is inserted and a second lumen region that is a lumen into which the image acquisition catheter 28 is not inserted. can be classified separately.
  • the classification model 31 may be a trained model trained to receive the RT format tomogram 58 and output the RT format classification data 57 .
  • FIG. 3 is an explanatory diagram for explaining the configuration of the information processing device 200.
  • the information processing device 200 includes a control section 201, a main memory device 202, an auxiliary memory device 203, a communication section 204, a display section 205, an input section 206 and a bus.
  • the control unit 201 is an arithmetic control device that executes the program of this embodiment.
  • One or a plurality of CPUs (Central Processing Units), GPUs (Graphics Processing Units), multi-core CPUs, or the like is used for the control unit 201 .
  • the control unit 201 is connected to each hardware unit forming the information processing apparatus 200 via a bus.
  • the main storage device 202 is a storage device such as SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), flash memory, or the like.
  • the main storage device 202 temporarily stores information necessary during the processing performed by the control unit 201 and the program being executed by the control unit 201 .
  • the auxiliary storage device 203 is a storage device such as SRAM, flash memory, hard disk, or magnetic tape.
  • the auxiliary storage device 203 stores a tomogram DB (database) 36, programs to be executed by the control unit 201, and various data necessary for executing the programs.
  • the tomogram DB 36 may be stored in an external large-capacity storage device connected to the information processing apparatus 200 .
  • Communication unit 204 is an interface that performs communication between information processing apparatus 200 and a network.
  • the display unit 205 is, for example, a liquid crystal display panel or an organic EL (electro-luminescence) panel.
  • Input unit 206 is, for example, a keyboard or a mouse.
  • the display unit 205 and the input unit 206 may be stacked to form a touch panel.
  • the information processing device 200 is a general-purpose personal computer, a tablet, a large computer, a virtual machine running on a large computer, or a quantum computer.
  • the information processing apparatus 200 may be configured by hardware such as a plurality of personal computers or large-scale computers that perform distributed processing.
  • the information processing device 200 may be configured by a cloud computing system.
  • the information processing apparatus 200 may be configured by hardware such as a plurality of personal computers or large computers that operate in cooperation with each other.
  • FIG. 4 is an explanatory diagram for explaining the record layout of the tomogram DB 36.
  • the tomogram DB 36 is a database in which tomograms 58 created by three-dimensional scanning and classification data 57 are recorded.
  • the tomogram DB 36 has a 3D scan ID field, a tomogram number field, a tomogram field and a classification data field.
  • the tomogram field and classification data field each have an RT format field and an XY format field.
  • the 3D scan ID field records a 3D scan ID given for each three-dimensional scan.
  • a number indicating the order of the tomographic images 58 created by one three-dimensional scan is recorded in the tomographic number field.
  • An RT format tomogram 58 is recorded in the RT format field of the tomogram field.
  • An XY format tomographic image 58 is recorded in the XY format field of the tomographic image field.
  • RT format classification data 57 is recorded in the RT format field of the classification data field.
  • XY format classification data 57 is recorded in the XY format field of the classification data field.
  • the tomographic image DB 36 records only the RT format tomographic image 58, and the control unit 201 may create the XY format tomographic image 58 by coordinate conversion as necessary.
  • a DB in which data regarding scanning lines before creating the tomographic image 58 is recorded may be used.
  • the control unit 201 creates the other classification data 57 by coordinate conversion as necessary.
  • a DB in which data on scanning lines before creating the tomogram 58 is recorded may be used.
  • the tomogram DB 36 may record only the classification data 57 created based on the tomogram 58 without including the tomogram field.
  • the control unit 201 may create the classification data 57 based on each of the set of tomographic images 58 and record them in the tomographic image DB 36 .
  • the classification model 31 is stored in the auxiliary storage device 203 or an external large-capacity storage device connected to the information processing device 200 .
  • the control unit 201 implements the function of a tomogram acquisition unit that acquires a plurality of tomograms 58 and the function of a classification data acquisition unit that acquires classification data 57 corresponding to the tomograms 58 .
  • FIG. 5 is a flowchart explaining the flow of program processing.
  • the control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501).
  • step S ⁇ b>501 the control unit 201 implements the function of a classification data acquisition unit that acquires a plurality of classification data 57 .
  • the control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502).
  • the construction of the three-dimensional image 59 has been conventionally performed, so detailed description thereof will be omitted.
  • the control unit 201 extracts a predetermined area from the three-dimensional image 59 and displays it on the display unit 205 (step S503).
  • the predetermined area is lumen area 40 .
  • the control unit 201 may, for example, display the lumen region 40 opaquely and display the extraluminal region 45 surrounding the lumen region 40 semi-transparently.
  • the user operates the input unit 206 to appropriately cut and rotate the three-dimensional image 59, and grasp the three-dimensional shape of the three-dimensional image 59.
  • the user marks the position determined to be the branch entrance 53 .
  • the control unit 201 receives designation of the marking position by the user (step S504).
  • the control unit 201 superimposes and displays a marker indicating the marking position on the three-dimensional image 59 . Since a user interface for marking the three-dimensional image 59 has been used conventionally, detailed description thereof will be omitted.
  • the control unit 201 implements the function of the marker reception unit.
  • step S504 the control unit 201 accepts designation of three or more marking positions. For example, the control unit 201 repeatedly accepts designation of the marking position until the user instructs the end of the marking position. The control unit 201 may proceed to the next step when designation of a predetermined number of marking positions is received.
  • the control unit 201 creates a reference plane 54 (see FIG. 8A) based on the marking positions (step S505). For example, if there are three marking positions, the control unit 201 calculates a plane passing through the three points. If the number of marking positions is four or more, the control unit 201 calculates a formula representing a plane that approximates the marking positions by, for example, the least-squares method. The plane calculated by the above processing is the reference plane 54 . The control unit 201 realizes the function of the reference plane creation unit that creates the reference plane 54 in step S505.
  • the control unit 201 determines the branch entrance 53 (step S506).
  • the branch entrance 53 is a cross section obtained by cutting a predetermined area displayed on the display unit 205 along the reference plane 54 .
  • the control unit 201 implements the function of the entrance determination unit that determines the branch entrance 53 where the trunk 51 and the branch 52 diverge.
  • the control unit 201 superimposes the reference plane 54 and the branch entrance 53 on the three-dimensional image 59 displayed on the display unit 205 (step S507).
  • the control unit 201 implements the functions of the reference plane display unit and the entrance output unit. After that, the control unit 201 waits for an instruction from the user.
  • the control unit 201 determines whether or not the user's instruction is an instruction to determine the reference plane 54 (step S508). If it is determined that the instruction is not for determining the reference plane 54 (NO in step S508), the control unit 201 accepts an instruction by the user to move the reference plane 54 (step S509).
  • the user instructs to move the reference plane 54 by, for example, selecting and dragging the edge of the reference plane 54 .
  • the user may give an instruction to move the reference plane 54 by an operation of adding a marking position.
  • the control unit 201 may receive an instruction to move the reference plane 54 based on any user interface.
  • the control unit 201 implements the function of an adjustment reception unit that receives an adjustment instruction regarding the position of the reference plane 54 in step S509. After that, the control unit 201 returns to step S506 and re-determines the branch entrance 53 based on the reference plane 54 after movement.
  • the control unit 201 calculates the dimensions of the branch entrance 53 (step S510). As described above, the dimension is, for example, the major axis, minor axis, area, or the like of the branch entrance 53 . The dimension may be the volume of the branch 52, the length of the branch 52, or the like.
  • the control unit 201 displays the calculated dimensions on the display unit 205 (step S511). After that, the control unit 201 terminates the processing.
  • control unit 201 may output arbitrary information regarding dimensions, such as values calculated based on the calculated dimensions. For example, the control unit 201 may output the value of the aspect ratio calculated based on the major axis and the minor axis of the branch entrance 53 .
  • Figures 6A and 6B are screen examples. A three-dimensional image 59 showing the shape of the lumen region 40 is displayed on these screens. An end button 71 is displayed at the bottom right of the screen. M1 shown in FIG. 6A is a marker indicating the position marked first by the user. Similarly, M2 is a marker indicating the second marked position by the user.
  • FIG. 6B shows a state in which the user has rotated the three-dimensional image 59 so that the branch 52 can be seen in front, and has made the third marking.
  • the M1 and M2 markers rotate with the three-dimensional image 59 while sticking to the surface of the lumen region 40 .
  • the M2 marker is hidden behind the branch 52 .
  • the control unit 201 may make the three-dimensional image 59 translucent so that the M2 marker can be seen.
  • the control unit 201 may accept instructions from the user such as moving the position of the marker and deleting the marker.
  • the control unit 201 may receive a user-designated marking instruction for a cross-section and place a marker inside the three-dimensional image 59 .
  • the control unit 201 After completing the marking, the user selects the end button 71 . Thus, the control unit 201 ends the processing from step S503 to step S504 described using FIG.
  • the control unit 201 calculates the reference plane 54 based on the three-dimensional coordinates of the position marked by the user.
  • the reference plane 54 is a plane that approximates the marking position, and is calculated, for example, by the method of least squares.
  • FIG. 7 is an explanatory diagram showing a cross section of the three-dimensional image 59 cut along the reference plane 54.
  • FIG. A three-dimensional image 59 showing lumen region 40 is separated into two.
  • the portion corresponding to trunk 51 has an oval hole corresponding to catheter area 47 .
  • the control unit 201 determines that the portion having no hole corresponding to the catheter region 47 is the bifurcation entrance 53 where the trunk 51 and the branch 52 diverge.
  • FIG. 8A shows an example of a screen displayed by the control unit 201 in step S507 of the flowchart explained using FIG.
  • the reference plane 54 and the branch inlet 53 are superimposed on the screen described using FIG. 6A.
  • the branch entrance 53 is indicated by grid-like hatching.
  • a decision button 72 is displayed at the bottom right of the screen.
  • FIG. 8A shows an example of displaying the reference plane 54 in the vicinity of the branch entrance 53 .
  • the control unit 201 may display the reference plane 54 including the portion where the trunk 51 is cut.
  • the control unit 201 may receive an instruction from the user regarding the range in which the reference plane 54 is to be displayed.
  • the control unit 201 may output a message such as "Unable to detect the entrance of the bifurcation" on the screen.
  • the user can appropriately adjust the position of the reference plane 54 on the screen shown in FIG. 8A. For example, the user drags the edge of reference plane 54 to change the position of reference plane 54 in three-dimensional space.
  • the control unit 201 receives an instruction regarding movement of the reference plane 54 from the user, and changes the display of the reference plane 54 and the branch entrance 53 .
  • Control unit 201 determines that an instruction to determine reference plane 54 has been received (YES in step S ⁇ b>508 ), and calculates the dimensions of branch entrance 53 .
  • processing for calculating the length, area, volume, etc. of a three-dimensional object based on a designated cross section has been conventionally used in three-dimensional CAD (Computer Aided Design) software and the like. Therefore, the detailed description is omitted.
  • FIG. 8B is an example of a screen displayed by the control unit 201 in step S511 of the flowchart described using FIG.
  • Various calculated dimensions are displayed in the dimension column 76 at the top of the screen.
  • the “major diameter” indicates the maximum value of the outer shape of the branch entrance 53 .
  • “Minor diameter” indicates the minimum value of the outer shape of the branch entrance 53 .
  • “Area” indicates the area of the branch entrance 53 .
  • “Volume” indicates the volume of the branch portion 52 on the front side of the reference plane 54 in FIG. 8B.
  • the items shown in the dimension column 76 in FIG. 8B are examples of dimensions calculated and output by the control unit 201 .
  • the types of dimensions to be output are not limited to those shown in FIG. 8B.
  • the dimensions may include the height of branch 52 , ie the distance between reference plane 54 and the surface of branch 52 furthest from reference plane 54 .
  • the dimensions may include the average value of the major axis and the minor axis, or the oblateness of the bifurcation inlet 53, or the like.
  • the control unit 201 implements the function of the dimension output unit using the dimension field 76 .
  • the user refers to the dimensions displayed in the dimension column 76 to determine the device to be used.
  • the control unit 201 that supports device selection. By measuring dimensions and selecting a device immediately prior to treatment, the physician can use the device that best suits the condition of the affected area. By using the path used for placing the device, it is possible to provide the information processing apparatus 200 that greatly reduces the invasiveness to the patient and the burden on the doctor and the like compared to the case of using the TEE probe.
  • the information processing device 200 can be provided that allows the doctor to select an appropriate dimension measurement location based on his/her expertise by marking the three-dimensional image 59 and adjusting the reference plane 54 .
  • FIG. 9 is a screen example of a modification.
  • a recommended device column 77 is displayed below the dimension column 76 .
  • the control unit 201 transmits the dimensions of the branch inlet 53 to a device manufacturer's server, or to a material management server in a medical institution, and receives a recommended device according to the dimensions.
  • a program for selecting a recommended device based on the dimensions of the bifurcation entrance 53 may be recorded in the auxiliary storage device 203 .
  • the control unit 201 may display a plurality of recommended device candidates in the recommended device column 77 and select the device that the doctor actually uses.
  • the control unit 201 realizes the function of a device information output unit that outputs information about recommended devices using the recommended device column 77 .
  • This embodiment relates to an information processing apparatus 200 in which some markers are automatically set. Descriptions of the parts common to the first embodiment are omitted.
  • FIG. 10 is a flowchart explaining the processing flow of the program according to the second embodiment.
  • the control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501).
  • the control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502).
  • the control unit 201 determines the position of the automatically set marker (step S521).
  • the position set in step S521 is, for example, the vicinity of the base of the branch portion 52 .
  • Control unit 201 extracts the surface of lumen region 40 .
  • Control unit 201 extracts a portion where the surface of lumen region 40 is a saddle-shaped curved surface, for example, by pattern matching or numerical analysis.
  • the control unit 201 determines the extracted vertex of the saddle-shaped curved surface as the position of the marker.
  • the control unit 201 implements the function of the automatic placement unit in step S521.
  • the control unit 201 extracts a predetermined area from the three-dimensional image 59.
  • the control unit 201 displays the three-dimensional image 59 on which the markers determined in step S521 are superimposed on the display unit 205 (step S522).
  • FIG. 11A and 11B are screen examples of the second embodiment.
  • FIG. 11A shows an example of a three-dimensional image 59 having the same shape as in the first embodiment.
  • the vertex of the saddle surface is indicated by the marker M1.
  • a message to the effect that the first mark has been automatically set is displayed above the three-dimensional image 59 .
  • FIG. 11B shows an example of a three-dimensional image 59 from which two vertices of the saddle-shaped curved surface are extracted.
  • the vertices of the saddle surface are indicated by two markers M1 and M2.
  • a message to the effect that the first and second marks have been automatically set is displayed above the three-dimensional image 59 .
  • the user operates the input unit 206 to appropriately cut and rotate the three-dimensional image 59, and grasps the three-dimensional shape of the three-dimensional image 59 and the positions of automatically set markers.
  • the user makes additional markings at the location determined to be the bifurcation entrance 53 .
  • the control unit 201 accepts designation of additional marking positions by the user so that the total of the automatically set markers is 3 or more (step S523).
  • the control unit 201 superimposes and displays a marker indicating the marking position on the three-dimensional image 59 .
  • the control unit 201 may receive instructions from the user such as to move the position of the marker, including the automatically set marker, and to delete the marker.
  • the control unit 201 calculates the reference plane 54 based on the marking position (step S505). Since subsequent processing is the same as the processing flow of the first embodiment described using FIG. 5, description thereof is omitted.
  • control unit 201 may display the marker whose position is determined in step S521 and the marker whose marking position is specified by the user in the same manner or in a manner that allows them to be distinguished.
  • the information processing apparatus 200 that reduces the user's trouble by automatically extracting the vertices of the saddle-shaped curved surface and setting the markers.
  • the position of the marker set in step S521 is not limited to the vertex of the saddle-shaped curved surface.
  • the position of the marker may be determined by pattern matching using a template showing the shape of a typical affected area and the position of the marker.
  • This embodiment relates to an information processing device 200 that uses a reference plane 54 perpendicular to the axis of the image acquisition catheter 28 . Descriptions of the parts common to the first embodiment are omitted.
  • FIG. 12 is a flowchart for explaining the processing flow of the program according to the third embodiment.
  • the control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501).
  • the control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502).
  • the control unit 201 extracts a predetermined region from the three-dimensional image 59 and displays it on the display unit 205 together with the reference plane 54 perpendicular to the axis of the image acquisition catheter 28 (step S531).
  • FIG. 13A is a screen example of the third embodiment.
  • a reference plane 54 perpendicular to the axis of the image acquisition catheter 28 is shown.
  • left-down hatching indicating a cross section of the three-dimensional image 59 is displayed.
  • the control unit 201 receives an instruction to move the reference plane 54 from the user (step S532). For example, when the user selects and drags the reference plane 54 , the control unit 201 receives an instruction to move the reference plane 54 in parallel along the axis of the image acquisition catheter 28 , and moves the position of the reference plane 54 . to change The control unit 201 implements the function of the movement reception unit in step S532.
  • the control unit 201 may accept, for example, the pressing of a cursor key or an instruction by voice.
  • the control unit 201 may display buttons for receiving an instruction to move the reference plane 54 at both ends of the axis of the image acquisition catheter 28 .
  • the control unit 201 determines the branch entrance 53 based on the reference plane 54 after being moved based on the user's instruction (step S533). Note that, as shown in FIG. 13A, if there is no region without a hole in the catheter region 47 in the cross section of the three-dimensional image 59 cut along the reference plane 54, the control unit 201 cannot determine the bifurcation entrance 53. Decide and move on to the next step.
  • the control unit 201 superimposes the bifurcation entrance 53 and the reference plane 54 after movement on the three-dimensional image 59 displayed on the display unit 205 (step S534). After that, the control unit 201 waits for an instruction from the user.
  • FIG. 13B is a screen example of the third embodiment.
  • FIG. 13B shows the state in which the user has moved the reference surface 54 to the appropriate position.
  • a reference plane 54 perpendicular to the axis of the image acquisition catheter 28 is shown.
  • grid-like hatching indicating the branch entrance 53 and left-downward hatching indicating cross sections other than the branch entrance 53 are displayed.
  • the control unit 201 determines whether or not the user's operation is an instruction to determine the reference plane 54 (step S535). If it is determined that the instruction is not for determining the reference plane 54 (NO in step S535), the control unit 201 returns to step S532 and receives an instruction by the user to move the reference plane .
  • control unit 201 When determining that an instruction to determine the reference plane 54 has been received (YES in step S535), the control unit 201 calculates the dimensions of the branch entrance 53 (step S510). The control unit 201 displays the calculated dimensions on the display unit 205 (step S511). After that, the control unit 201 terminates the processing.
  • the information processing device 200 in which the operation of adjusting the position of the reference plane 54 is simple.
  • the control unit 201 may receive an instruction to move the reference plane 54 obliquely with respect to the axis of the image acquisition catheter 28. For example, after moving the reference plane 54 to the vicinity of the target position, the user switches the operation mode of the reference plane 54 by right-clicking, voice input, or the like. The control unit 201 accepts switching of the operation mode, and then accepts an instruction such as tilting the reference plane 54 in step S532.
  • This embodiment relates to an information processing apparatus 200 that automatically extracts the bifurcation entrance 53 using a reference plane 54 perpendicular to the axis of the image acquisition catheter 28 .
  • the description of the parts common to the third embodiment is omitted.
  • FIG. 14 is an explanatory diagram for explaining the initial position of the reference plane 54 of the fourth embodiment.
  • Five reference planes 54 perpendicular to the axis of the image acquisition catheter 28 are indicated by reference planes 54S1 to 54S5.
  • the position of each reference plane 54 is indicated by an arrow pointing from the reference plane 54 to the three-dimensional image 59 .
  • a cross section of the trunk 51 appears on the reference surface 54S1.
  • a cross section of the trunk 51 extending downward appears on the reference surface 54S2.
  • a cross section in which the stem 51 and the branch 52 are separated appears on the reference plane 54S3.
  • a cross section of the stem 51 and a cross section of the tip portion of the branch portion 52 appear on the reference plane 54S4.
  • a cross section of the trunk 51 appears on the reference surface 54S5.
  • the control unit 201 sequentially moves the reference plane 54 perpendicular to the axis of the image acquisition catheter 28, and extracts the final reference plane 54 where the trunk 51 appears. Specifically, in the example shown in FIG. 14, the control unit 201 sequentially moves the reference plane 54 from the reference plane 54S1 toward the reference plane 54S5, and the reference plane 54S4, which is the last reference plane 54 where the branch portion 52 appears, is moved. to extract
  • control unit 201 sequentially moves the branch entrance 53 from the reference plane 54S4 toward the branch 52, and extracts the final reference plane 54 where the trunk 51 appears. Specifically, in the example shown in FIG. 14, the control unit 201 sequentially moves the reference plane 54 from the reference plane 54S4 toward the reference plane 54S1, and extracts the last reference plane 54 where the branch portion 52 appears. Since the reference plane 54 extracted here is the same as the reference plane 54 shown in FIG. 13B described in Embodiment 3, illustration thereof is omitted in FIG.
  • control unit 201 may use the individual classification data 57 acquired in step S501 instead of the cross section obtained by cutting the three-dimensional image 59 constructed in step S502 along the reference plane 54 .
  • the scanning plane corresponding to each classification data 57 corresponds to the reference plane 54 .
  • FIG. 15 is a flow chart for explaining the processing flow of the program of the fourth embodiment.
  • the control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501).
  • the control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502).
  • control unit 201 uses the reference plane 54 perpendicular to the axis of the image acquisition catheter 28 to extract the reference plane 54 including the end of the branch 52 (step S541 ).
  • the reference plane 54 extracted in step S541 is the reference plane 54S4 in FIG.
  • the control unit 201 determines in which side direction the branch portion 52 exists with reference to the reference plane 54 extracted in step S541 (step S542).
  • the control unit 201 displays the three-dimensional image 59 in which the predetermined area is extracted, the reference plane 54 extracted in step S541, and the direction determined in step S542 on the display unit 205 (step S543).
  • FIG. 16 is a screen example of the fourth embodiment.
  • FIG. 16 shows an example of a screen displayed on the display unit 205 by the control unit 201 in step S543.
  • a reference plane 54 corresponding to the reference plane 54S4 in FIG. 14 is superimposed on the three-dimensional image 59 and displayed.
  • An arrow indicating the direction determined in step S542 is displayed near the reference plane 54 .
  • a comment "Please wait" is displayed at the top of the screen.
  • the user can confirm that the control unit 201 has appropriately determined the reference plane 54 including the tip of the branch 52 and the direction toward the base of the branch 52 . If the determination by control unit 201 is incorrect, the user instructs the transition to the operation mode described in the third embodiment, for example, and manually determines reference plane 54 .
  • the control unit 201 starts the reference plane selection-1 subroutine (step S544).
  • the reference plane selection-1 subroutine is a subroutine that translates the reference plane 54 perpendicular to the axis of the image acquisition catheter 28 toward the base of the branch 52 .
  • the control unit 201 moves the reference plane 54 to the position shown in FIG. 13B, for example, by the reference plane selection-1 subroutine.
  • the processing flow of the reference plane selection-1 subroutine will be described later.
  • the control unit 201 determines the branch entrance 53 based on the reference plane 54 after movement (step S506). Since subsequent processing is the same as the processing flow of the first embodiment described using FIG. 5, description thereof is omitted.
  • FIG. 17 is a flowchart for explaining the processing flow of the reference plane selection-1 subroutine.
  • the reference plane selection-1 subroutine is a subroutine that translates the reference plane 54 perpendicular to the axis of the image acquisition catheter 28 toward the base of the branch 52 .
  • the control unit 201 translates the reference plane 54 by a predetermined amount in the direction determined in step S542 (step S551).
  • the predetermined amount is, for example, one or more scan planes of the image acquisition catheter 28 .
  • the predetermined amount is not limited to integral multiples of the scanning plane.
  • the control unit 201 determines whether or not the branch portion 52 has ended on the reference plane 54 after movement (step S552). Specifically, if the section obtained by cutting the three-dimensional image 59 on the reference plane 54 does not include a region without a hole in the catheter region 47 described with reference to FIG. Determine that it is finished.
  • step S552 If it is determined that the branch section 52 has not ended (NO in step S552), the control section 201 returns to step S551. If it is determined that the branch portion 52 has ended (YES in step S552), the control unit 201 returns the reference plane 54 to the previous loop position (step S553). After that, the control unit 201 terminates the processing.
  • step S551 the control unit 201 calculates the area of the branch portion 52 on the reference plane 54, and if the area of the branch portion 52 changes significantly compared to the previous loop, the branch portion 52 ends in step S552. It may be determined that
  • the control unit 201 may update the screen shown in FIG. 16 each time the reference plane 54 is moved in step S551. The user can confirm the process in which the control unit 201 automatically determines the position of the reference plane 54 .
  • the information processing device 200 that automatically determines the position of the reference plane 54 perpendicular to the axis of the image acquisition catheter 28 can be provided.
  • the user can adjust the automatically determined reference plane 54 as needed to confirm the dimensions of the bifurcation inlet 53 and select the appropriate device.
  • control unit 201 may automatically detect a point near the root of the branch 52 as described in the second embodiment, and translate the reference plane 54 to that point.
  • This embodiment relates to an information processing device 200 that uses a reference plane 54 parallel to the axis of the image acquisition catheter 28 .
  • the description of the parts common to the third embodiment is omitted.
  • FIG. 18 is a flowchart for explaining the processing flow of the program according to the fifth embodiment.
  • the control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501).
  • the control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502).
  • the control unit 201 extracts the endpoint 522 (see FIG. 19A) (step S561).
  • FIG. 19A is a screen example of the fifth embodiment.
  • end point 522 is the most distal point of branch 52 when viewed from the axis of image acquisition catheter 28 .
  • the control unit 201 realizes the function of the distal point selection unit that automatically selects the end point 522, which is the distal point.
  • the control unit 201 extracts the branches 52 for each cross section perpendicular to the axis of the image acquisition catheter 28, as described using FIG.
  • the control unit 201 extracts the farthest point from the axis of the image acquisition catheter 28 among the extracted branch portions 52 .
  • the control unit 201 may extract the farthest point from the axis of the image acquisition catheter 28 in the branch 52 .
  • the screen shown in FIG. 19A allows the user to confirm that the control unit 201 has appropriately determined the reference plane 54 that includes the axis of the image acquisition catheter 28 and is substantially perpendicular to the extending direction of the branch portion 52 . If the determination by control unit 201 is incorrect, the user instructs the mode to shift to, for example, the modes described in Embodiments 1 to 4, and determines reference plane 54 by an algorithm different from that of the present embodiment. do.
  • control unit 201 may receive an instruction from the user to change the orientation of the reference plane 54, the orientation of the perpendicular P, or the position of the end point 522.
  • the control unit 201 determines a perpendicular line P drawn down from the end point 522 extracted in step S561 to the axis of the image acquisition catheter 28 (step S562).
  • the axis of the image acquisition catheter 28 is indicated by a dashed line
  • the perpendicular line P is indicated by a thin solid line.
  • the control unit 201 creates a reference plane 54 that includes the axis of the image acquisition catheter 28 and is perpendicular to the perpendicular line P (step S563).
  • the control unit 201 realizes the function of the reference plane creation unit that creates the reference plane 54 in step S563.
  • the control unit 201 extracts a predetermined area from the three-dimensional image 59 and displays it on the display unit 205 together with the end point 522, the perpendicular line P and the reference plane 54 (step S564).
  • FIG. 19A described above is an example of the screen displayed by the control unit 201 in step S531.
  • a reference plane 54 is shown that includes and is parallel to the axis of the image acquisition catheter 28 .
  • left-down hatching indicating a cross section of the three-dimensional image 59 is displayed.
  • both ends of the hatched section are stumps of the three-dimensional image 59 and are not surrounded by closed curves indicating the surface of the three-dimensional image 59 .
  • the control unit 201 receives an instruction to move the reference plane 54 from the user (step S565). For example, when the user selects and drags the reference plane 54 , the control unit 201 receives an instruction to move the reference plane 54 parallel to the perpendicular line P and changes the position of the reference plane 54 .
  • the control unit 201 may accept, for example, the pressing of a cursor key or an instruction by voice.
  • the control unit 201 may display buttons at both ends of the perpendicular line P for accepting an instruction to move the reference plane 54 .
  • the control unit 201 implements the function of the movement reception unit in step S565.
  • the control unit 201 determines the branch entrance 53 based on the reference plane 54 after being moved based on the user's instruction (step S566). Note that when the cross section of the three-dimensional image 59 cut by the reference plane 54 is not surrounded by a closed curve representing the surface of the three-dimensional image 59 as in the reference plane 54 shown in FIG. 53 cannot be determined and proceed to the next step.
  • the control unit 201 superimposes the reference plane 54 after movement on the three-dimensional image 59 displayed on the display unit 205 (step S567). If the branch entrance 53 can be determined in step S566, the controller 201 also superimposes the branch entrance 53 in step S567. After that, the control unit 201 waits for an instruction from the user.
  • FIG. 19B is a screen example of the fifth embodiment.
  • FIG. 19B shows an example of a screen displayed by the control unit 201 in step S567 when the control unit 201 has successfully determined the branch entrance 53 .
  • the area determined by the control unit 201 to be the branch entrance 53 is indicated by grid-like hatching.
  • the control unit 201 determines whether or not the user's operation is an instruction to determine the reference plane 54 (step S568). If it is determined that the instruction is not to determine the reference plane 54 (NO in step S568), the control unit 201 returns to step S565 and accepts the user's instruction to move the reference plane .
  • control unit 201 When determining that an instruction to determine the reference plane 54 has been received (YES in step S568), the control unit 201 calculates the dimensions of the branch entrance 53 (step S510). The control unit 201 displays the calculated dimensions on the display unit 205 (step S511). After that, the control unit 201 terminates the processing.
  • the information processing device 200 in which the operation of adjusting the position of the reference plane 54 is simple.
  • step S565 of the flowchart explained using FIG. For example, after moving the reference plane 54 to the vicinity of the target position, the user switches the operation mode of the reference plane 54 by right-clicking, voice input, or the like.
  • the control unit 201 accepts switching of the operation mode, and in subsequent step S565, accepts an instruction such as tilting the reference plane 54 .
  • This embodiment relates to an information processing apparatus 200 that automatically extracts a bifurcation entrance 53 using a reference plane 54 parallel to the axis of the image acquisition catheter 28 . Descriptions of the portions common to the fifth embodiment are omitted.
  • FIG. 20 is a flow chart for explaining the processing flow of the program of the sixth embodiment.
  • the flow of processing up to step S564 is the same as the flow of processing of the program of Embodiment 5 described using FIG. 18, so description thereof will be omitted.
  • the control unit 201 starts the reference plane selection-2 subroutine (step S571).
  • the reference plane selection-2 subroutine is a subroutine that translates the reference plane 54 perpendicular to the perpendicular P to a position where the branch portion 52 is cut. The processing flow of the reference plane selection-2 subroutine will be described later.
  • the control unit 201 determines the branch entrance 53 based on the reference plane 54 after movement (step S506). Since subsequent processing is the same as the processing flow of the first embodiment described using FIG. 5, description thereof is omitted.
  • FIG. 21 is a flowchart for explaining the processing flow of the reference plane selection-2 subroutine.
  • the reference plane selection-2 subroutine is a subroutine that translates the reference plane 54 perpendicular to the perpendicular P to a position where the branch portion 52 is cut.
  • the control unit 201 performs parallel movement toward the end point 522 (step S581).
  • the control unit 201 creates a cross section in which the reference plane 54 after movement cuts the three-dimensional image 59 (step S582).
  • the control unit 201 determines whether or not the cross section is surrounded by a closed curve representing the surface of the three-dimensional image 59, that is, whether or not the cross section is a closed surface (step S583).
  • step S583 If it is determined that the surface is not closed (NO in step S583), the control unit 201 returns to step S581. If it is determined that the face is closed (YES in step S583), the control unit 201 ends the process.
  • the information processing device 200 that automatically determines the position of the reference plane 54 including the axis of the image acquisition catheter 28 can be provided.
  • the user can adjust the automatically determined reference plane 54 as needed to confirm the dimensions of the bifurcation inlet 53 and select the appropriate device.
  • control unit 201 may automatically detect a point near the root of the branch 52 as described in the second embodiment, and translate the reference plane 54 to that point.
  • control unit 201 cannot detect a plane with a closed cross section within a predetermined range from the vicinity of the base of the branch 52 (NO in step S583), the control unit 201 determines that the branch entrance 53 cannot be automatically detected, and states that. may be displayed on the display unit 205 .
  • This embodiment relates to an information processing apparatus 200 that uses a reference plane 54 perpendicular to the axis of the branch portion 52 .
  • the description of the parts common to the third embodiment is omitted.
  • FIG. 22 is an explanatory diagram for explaining a branch shaft 521 that is the axis of the branch portion 52 of the seventh embodiment.
  • Classified images S6 to S10 are classified images created based on five tomographic images 58 perpendicular to the axis of the image acquisition catheter 28.
  • FIG. The position of each classified image is indicated by an arrow pointing from the classified image to the three-dimensional image 59 .
  • the cross section of the trunk 51 appears in the classified images S6 to S10.
  • the cross section of the branch 52 separated from the trunk 51 to the lower side also appears.
  • the coordinates of the center of gravity 55 are calculated with respect to the cross section of each branch portion 52 .
  • the control unit 201 approximates the coordinates of the center of gravity 55 calculated for each classified image with a straight line, for example, by the method of least squares, and calculates an equation representing the branch axis 521 . Since the calculation of the center of gravity 55 and the linear approximation of a plurality of points have been conventionally performed, detailed description thereof will be omitted. As described above, the control unit 201 creates the branch shaft 521 that is the axis of the branch portion 52 .
  • 23A and 23B are examples of screens according to the seventh embodiment.
  • a reference plane 54 perpendicular to the branch axis 521 is displayed superimposed on the three-dimensional image 59 .
  • the user selects the decision button 72 after translating the reference plane 54 to a desired position, for example, as shown in FIG. 23B.
  • the control unit 201 extracts the bifurcation entrance 53 from the cross section of the three-dimensional image 59 cut along the reference plane 54 and calculates the dimensions.
  • FIG. 24 is a flow chart for explaining the processing flow of the program of the seventh embodiment.
  • the control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501).
  • the control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502).
  • the control unit 201 starts a branch axis creation subroutine (step S591).
  • the branch axis creation subroutine is a subroutine for creating the branch axis 521, which is the axis of the branch portion 52, as described with reference to FIG. 23A.
  • the processing flow of the branch axis creation subroutine will be described later.
  • the control unit 201 realizes the function of the branch axis calculation unit by a branch axis creation subroutine.
  • the control unit 201 selects a penetration point 523 where the branch shaft 521 penetrates the branch portion 52 (step S592).
  • the control unit 201 creates a reference plane 54 passing through the piercing point 523 selected in step S592 and perpendicular to the branch axis 521 (step S593).
  • the control unit 201 implements the function of the reference plane creation unit that creates the reference plane 54 in step S593.
  • the control unit 201 displays the three-dimensional image 59 from which the predetermined area is extracted, the branch axis 521, and the reference plane 54 determined in step S593 on the display unit 205 (step S594).
  • FIG. 23A described above is an example of the screen displayed on the display unit 205 by the control unit 201 in step S594.
  • the screen shown in FIG. 23A allows the user to confirm that the control unit 201 has created the branch axis 521 appropriately. If branch axis 521 created by control unit 201 is inappropriate, for example, the user instructs a transition to the mode described in Embodiments 1 to 6, and an algorithm different from that of this embodiment is used.
  • a reference plane 54 is determined.
  • the control unit 201 may receive an instruction from the user to change the orientation of the reference plane 54, the orientation of the branch shaft 521, or the position of the branch shaft 521 via the screen illustrated in FIG. 23A.
  • the control unit 201 receives an instruction to move the reference plane 54 from the user (step S595). For example, when the user selects and drags the reference plane 54 , the control unit 201 receives an instruction to move the reference plane 54 parallel to the branch axis 521 and changes the position of the reference plane 54 .
  • the control unit 201 may accept, for example, the pressing of a cursor key or an instruction by voice.
  • the control unit 201 may display buttons at both ends of the branch shaft 521 to receive an instruction to move the reference plane 54 .
  • the control unit 201 realizes the function of the movement reception unit in step S595.
  • the control unit 201 determines the branch entrance 53 based on the reference plane 54 after being moved based on the user's instruction (step S596). Note that if the section of the three-dimensional image 59 cut by the reference plane 54 does not include a region having no hole in the catheter region 47, the control unit 201 determines that the bifurcation entrance 53 cannot be determined, and proceeds to the next step. proceed to
  • the control unit 201 superimposes the bifurcation entrance 53 and the reference plane 54 after movement on the three-dimensional image 59 displayed on the display unit 205 (step S597). After that, the control unit 201 waits for an instruction from the user.
  • FIG. 23B described above is an example of the screen displayed on the display unit 205 by the control unit 201 in step S597.
  • the control unit 201 determines whether or not the user's operation is an instruction to determine the reference plane 54 (step S598). If it is determined that the instruction is not for determining the reference plane 54 (NO in step S598), the control unit 201 returns to step S595 and receives an instruction for moving the reference plane 54 from the user.
  • control unit 201 When determining that an instruction to determine the reference plane 54 has been received (YES in step S598), the control unit 201 calculates the dimensions of the branch entrance 53 (step S510). The control unit 201 displays the calculated dimensions on the display unit 205 (step S511). After that, the control unit 201 terminates the processing.
  • the information processing device 200 in which the operation of adjusting the position of the reference plane 54 is simple.
  • step S595 of the flowchart explained using FIG. For example, after moving the reference plane 54 to the vicinity of the target position, the user switches the operation mode of the reference plane 54 by right-clicking, voice input, or the like.
  • the control unit 201 accepts switching of the operation mode, and in subsequent step S595, accepts an instruction such as tilting the reference surface 54 .
  • FIG. 25 is a flowchart for explaining the processing flow of the branch axis creation subroutine.
  • the branch axis creation subroutine is a subroutine for creating the branch axis 521, which is the axis of the branch portion 52, as described with reference to FIG. 23A.
  • the control unit 201 acquires the classification data 57 corresponding to one tomographic image 58 from the tomographic image DB 36 (step S601).
  • the control unit 201 creates one classified image based on the classified data 57 acquired in step S601 (step S602).
  • the control unit 201 determines whether the created classified image includes the cross section of the branch portion 52 (step S603). If it is determined that it is included (YES in step S603), the control unit 201 calculates the three-dimensional coordinates of the center of gravity 55 of the branch portion 52 (step S604). The control unit 201 realizes the function of the center-of-gravity calculation unit in step S604. The control unit 201 records the calculated coordinates in the main storage device 202 or the auxiliary storage device 203 (step S605).
  • step S606 determines whether or not the processing of the set of classification data 57 has been completed. If it is determined that the processing has not ended (NO in step S606), the control unit 201 returns to step S601. If it is determined that the processing has ended (YES in step S606), the control unit 201 calculates the branch axis 521 based on the plurality of centroids 55 recorded in step S605 (step S607). After that, the control unit 201 terminates the processing.
  • the information processing device 200 in which the operation of adjusting the position of the reference plane 54 is simple.
  • This embodiment relates to an information processing apparatus 200 that automatically extracts a branch entrance 53 using a reference plane 54 perpendicular to the axis of the branch 52 .
  • the description of the parts common to the seventh embodiment is omitted.
  • FIG. 26 is a flow chart for explaining the processing flow of the program of the eighth embodiment.
  • the flow of processing up to step S594 is the same as the flow of processing of the program of Embodiment 7 described using FIG. 24, so description thereof will be omitted.
  • the control unit 201 starts the reference plane selection-3 subroutine (step S611).
  • the reference plane selection-3 subroutine is a subroutine that translates the reference plane 54 perpendicular to the branch axis 521 to the position where the branch portion 52 is cut. The processing flow of the reference plane selection-3 subroutine will be described later.
  • the control unit 201 determines the branch entrance 53 based on the reference plane 54 after movement (step S506). Since subsequent processing is the same as the processing flow of the first embodiment described using FIG. 5, description thereof is omitted.
  • FIG. 27 is a flowchart for explaining the processing flow of the reference plane selection-3 subroutine.
  • the reference plane selection-3 subroutine is a subroutine that translates the reference plane 54 perpendicular to the branch axis 521 to the position where the branch portion 52 is cut.
  • the control unit 201 translates the reference plane 54 along the branch shaft 521 toward the root of the branch 52 (step S621).
  • the control unit 201 creates a cross section in which the reference plane 54 after movement cuts the three-dimensional image 59 (step S622).
  • the control unit 201 determines whether or not the branch portion 52 has ended on the reference plane 54 after movement (step S623). Specifically, if the section obtained by cutting the three-dimensional image 59 on the reference plane 54 does not include a region without a hole in the catheter region 47 described with reference to FIG. Determine that it is finished.
  • step S623 If it is determined that the branch unit 52 has not ended (NO in step S623), the control unit 201 returns to step S621. If it is determined that the branch portion 52 has ended (YES in step S623), the control unit 201 returns the reference plane 54 to the previous loop position (step S624). After that, the control unit 201 terminates the processing.
  • step S622 the control unit 201 calculates the area of the branch portion 52 on the reference plane 54, and if the area of the branch portion 52 changes significantly compared to the previous loop, the branch portion 52 ends in step S623. It may be determined that
  • the control unit 201 may update the screen described using FIGS. 23A and 23B each time a cross section is created in step S622.
  • the user can confirm the process in which the control unit 201 automatically determines the position of the reference plane 54 .
  • the information processing device 200 that automatically determines the position of the reference plane 54 perpendicular to the axis of the branch portion 52 can be provided.
  • the user can adjust the automatically determined reference plane 54 as needed to confirm the dimensions of the bifurcation inlet 53 and select the appropriate device.
  • control unit 201 may automatically detect a point near the root of the branch 52 as described in the second embodiment, and translate the reference plane 54 to that point.
  • This embodiment relates to an information processing apparatus 200 that uses a reference plane 54 that rotates about a rotation axis 542 set near the base of a branch portion 52 .
  • the description of the parts common to the third embodiment is omitted.
  • FIGS. 28A and 28B are screen examples of the ninth embodiment.
  • Reference plane 54 of the present embodiment will be described with reference to FIGS. 28A and 28B.
  • the reference point 541 is a point near the base of the branch portion 52.
  • FIG. 28A and 28B the reference point 541 is a point near the base of the branch portion 52.
  • Control unit 201 extracts the surface of lumen region 40 .
  • Control unit 201 extracts a portion where the surface of lumen region 40 is a saddle-shaped curved surface, for example, by pattern matching or numerical analysis.
  • the control unit 201 determines the extracted vertex of the saddle-shaped curved surface as the reference point 541 .
  • the lumen area 40 is an example of a predetermined area.
  • the control unit 201 determines a perpendicular line P drawn from the reference point 541 to the axis of the image acquisition catheter 28 .
  • the axis of the image acquisition catheter 28 is indicated by a dashed line
  • the perpendicular line P is indicated by a thin solid line.
  • the controller 201 determines a reference plane 54 that passes through the reference plane 54 and is perpendicular to the axis of the image acquisition catheter 28 .
  • the control unit 201 determines a rotation axis 542 perpendicular to the perpendicular line P on the reference plane 54 .
  • the control unit 201 rotates the reference plane 54 around the rotation axis 542 based on the user's instruction.
  • the user selects the determination button 72 outside the field where the reference plane 54 has been rotated to the desired angle, and determines the junction entrance 53 .
  • FIG. 29 is a flowchart for explaining the processing flow of the program according to the ninth embodiment.
  • the control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501).
  • the control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502).
  • the control unit 201 determines the coordinates of the reference point 541 near the base of the branch 52 (step S631). A specific example will be given for explanation. Control unit 201 extracts the surface of lumen region 40 . Control unit 201 extracts a portion where the surface of lumen region 40 is a saddle-shaped curved surface, for example, by pattern matching or numerical analysis. The control unit 201 determines the coordinates of the extracted vertex of the saddle-shaped curved surface as the coordinates of the reference point 541 .
  • the control unit 201 determines a perpendicular line P drawn from the reference point 541 determined in step S631 to the central axis of the image acquisition catheter 28 (step S632).
  • the control unit 201 creates a reference plane 54 passing through the reference point 541 determined in step S631 and perpendicular to the central axis of the image acquisition catheter 28 (step S633).
  • the control unit 201 implements the function of the cross section selection unit in step S633.
  • the control unit 201 determines the rotation axis 542 perpendicular to the perpendicular line P determined in step S632 on the reference plane 54 created in step S633 (step S634). By step S ⁇ b>634 , the control unit 201 realizes the function of the rotation axis calculation unit that calculates the rotation axis 542 .
  • the control unit 201 extracts a predetermined area from the three-dimensional image 59.
  • the control unit 201 displays on the display unit 205 a three-dimensional image 59 in which the rotation axis 542 determined in step S634 and the reference plane 54 set in step S633 are superimposed (step S635).
  • FIG. 28A described above is an example of the screen displayed on the display unit 205 by the control unit 201 in step S635.
  • the screen shown in FIG. 28A allows the user to confirm that the control unit 201 has created the rotation shaft 542 appropriately. If the rotation axis 542 created by the control unit 201 is inappropriate, the user instructs a shift to the modes described in the first to eighth embodiments, for example, and an algorithm different from that of the present embodiment is executed. determines the reference plane 54 by .
  • the control unit 201 may receive an instruction from the user to change the orientation of the rotation axis 542 or the position of the reference point 541 via the screen illustrated in FIG. 28A.
  • the control unit 201 receives an instruction to move the reference plane 54 from the user (step S636). For example, when the user selects and drags the reference plane 54 , the control unit 201 receives an instruction to rotate the reference plane 54 around the rotation axis 542 and changes the position of the reference plane 54 . By step S ⁇ b>636 , the control unit 201 implements the function of a rotation reception unit that receives an instruction to rotate the reference plane 54 .
  • the control unit 201 may accept, for example, the pressing of a cursor key or an instruction by voice.
  • the control unit 201 may display buttons for accepting clockwise and counterclockwise directions near the rotation shaft 542 .
  • the control unit 201 determines the branch entrance 53 based on the reference plane 54 after being moved based on the user's instruction (step S637). Note that if the section of the three-dimensional image 59 cut by the reference plane 54 does not include a region having no hole in the catheter region 47, the control unit 201 determines that the bifurcation entrance 53 cannot be determined, and proceeds to the next step. proceed to
  • the control unit 201 superimposes the bifurcation entrance 53 and the reference plane 54 after movement on the three-dimensional image 59 displayed on the display unit 205 (step S638). After that, the control unit 201 waits for an instruction from the user.
  • FIG. 28B described above is an example of a screen displayed on the display unit 205 by the control unit 201 in step S637.
  • the control unit 201 determines whether or not the user's operation is an instruction to determine the reference plane 54 (step S639). If it is determined that the instruction is not for determining the reference plane 54 (NO in step S639), the control unit 201 returns to step S636 and receives an instruction for rotating the reference plane 54 from the user.
  • control section 201 calculates the dimensions of the branch entrance 53 (step S510).
  • the control unit 201 displays the calculated dimensions on the display unit 205 (step S511). After that, the control unit 201 terminates the processing.
  • the information processing device 200 that adjusts the position of the reference plane 54 by rotating.
  • step S631 if there are multiple suitable reference point 541 candidates, the control unit 201 may accept selection of the reference point 541 by the user.
  • This embodiment relates to an information processing apparatus 200 that automatically extracts a branch entrance 53 using a reference plane 54 that rotates about a rotation axis 542 set near the base of a branch 52 .
  • the description of the parts common to the ninth embodiment is omitted.
  • FIG. 30 is a flow chart explaining the processing flow of the program of the tenth embodiment.
  • the flow of processing up to step S635 is the same as the flow of processing of the program of Embodiment 7 described using FIG. 29, so description thereof will be omitted.
  • the control unit 201 starts the reference plane selection-4 subroutine (step S641).
  • the reference plane selection-4 subroutine is a subroutine for rotating the reference plane 54 about the rotation shaft 542 to a predetermined direction. The processing flow of the reference plane selection-4 subroutine will be described later.
  • the control unit 201 determines the branch entrance 53 based on the reference plane 54 after rotation (step S506). Since subsequent processing is the same as the processing flow of the first embodiment described using FIG. 5, description thereof is omitted.
  • FIG. 31 is a flowchart for explaining the processing flow of the reference plane selection-4 subroutine.
  • the reference plane selection-4 subroutine is a subroutine for rotating the reference plane 54 perpendicular to the axial center of the image acquisition catheter 28 described using FIG. 28A to an angle just before the branch 52 is cut.
  • the control unit 201 rotates the reference surface 54 within a range not exceeding a predetermined angle.
  • the predetermined angle is, for example, 45 degrees with respect to the axis of the image acquisition catheter 28 .
  • the control unit 201 rotates the reference plane 54 by a predetermined angle around the rotation shaft 542 (step S651).
  • the rotation direction is such that the portion where the reference plane 54 cuts the three-dimensional image 59 moves away from the tip of the branch portion 52 .
  • the control unit 201 determines whether or not the angle between the reference plane 54 and the axis of the image acquisition catheter 28 exceeds a predetermined threshold (step S652).
  • control unit 201 If it is determined that it does not exceed (NO in step S652), the control unit 201 creates a cross section in which the reference plane 54 after rotation cuts the three-dimensional image 59 (step S653). The control unit 201 determines whether or not the branch portion 52 has ended on the reference plane 54 after rotation (step S654). Specifically, if the section obtained by cutting the three-dimensional image 59 on the reference plane 54 does not include a region without a hole in the catheter region 47 described with reference to FIG. Determine that it is finished.
  • step S654 If it is determined that the branch unit 52 has not ended (NO in step S654), the control unit 201 returns to step S651. If it is determined that the branch portion 52 has ended (YES in step S654), or if it is determined that the threshold value has been exceeded (YES in step S652), the control unit 201 returns the reference plane 54 to the angle of the previous loop. (Step S655). After that, the control unit 201 terminates the processing.
  • step S653 the control unit 201 calculates the area of the branch portion 52 on the reference plane 54, and if the area of the branch portion 52 changes significantly compared to the previous loop, the branch portion 52 ends in step S654. It may be determined that
  • the control unit 201 may update the screen described using FIG. 28B each time a cross section is created in step S653. The user can confirm the process in which the control unit 201 automatically determines the position of the reference plane 54 .
  • the information processing apparatus 200 is provided that automatically extracts the branch entrance 53 using the reference plane 54 that rotates about the rotation shaft 542 set near the base of the branch 52 . can.
  • the user can adjust the automatically determined reference plane 54 as needed to confirm the dimensions of the bifurcation inlet 53 and select the appropriate device.
  • This embodiment relates to an information processing apparatus 200 that selects and uses a tomographic image 58 to be used in synchronization with the patient's heartbeat. Descriptions of the parts common to the first embodiment are omitted.
  • heartbeat data measured while acquiring the tomographic images 58 are recorded.
  • the heartbeat data is, for example, data measured by an electrocardiograph. It is possible to associate the time when each tomographic image 58 was acquired with the heartbeat data using a time stamp or the like.
  • the control unit 201 extracts the tomographic image 58 in which the pulsation is within a predetermined range, and constructs a three-dimensional image 59 . As described above, a highly accurate three-dimensional image 59 can be constructed while avoiding the influence of pulsation.
  • FIG. 32 is a flow chart for explaining the processing flow of the three-dimensional image construction subroutine according to the eleventh embodiment.
  • the subroutine of FIG. 32 is executed instead of step S502 in the first to tenth embodiments.
  • the information processing apparatus 200 of the present embodiment is realized by constructing the 3D image 59 using the 3D image construction subroutine.
  • the control unit 201 acquires the pulsation data stored in association with the set of tomographic images 58 (step S661).
  • the control unit 201 acquires the classification data 57 created based on one tomographic image 58 (step S662).
  • the control unit 201 determines whether the classified data 57 acquired in step S662 is based on the tomographic image 58 acquired at a predetermined time in the pulse data (step S663).
  • the predetermined period of time is specified by the user, for example, during a period in which the observation target region does not move much.
  • step S663 If it is determined to be based on the tomographic image 58 acquired at a predetermined time (YES in step S663), the control unit 201 associates the tomographic number with the classification data 57 and records them in the main storage device 202 or the auxiliary storage device 203. (step S664). If it is determined that the tomogram 58 is not based on the tomographic image 58 acquired at the time (NO in step S663), or after step S664 is completed, the control unit 201 determines whether the processing of the set of classification data 57 has been completed. Determine (step S665).
  • step S665 If it is determined that the processing has not ended (NO in step S665), the control unit 201 returns to step S662. If it is determined that the process has ended (YES in step S665), the control unit 201 uses the classification data 57 recorded in step S664 to construct a three-dimensional image 59 (step S666). The control unit 201 appropriately complements the portion corresponding to the scanning plane that has not been recorded in step S664 (step S667).
  • the information processing device 200 that avoids the influence of the patient's pulsation and builds a highly accurate three-dimensional image 59 .
  • multiple sets of tomographic images 58 may be repeatedly acquired at the same location.
  • a three-dimensional image 59 with high accuracy and high spatial resolution is created by extracting the tomographic images 58 in which the pulsation is within a predetermined range from a plurality of sets of tomographic images 58 and constructing one three-dimensional image 59. can build.
  • This embodiment relates to a catheter system 10 that acquires a tomogram 58 in real time and records the tomogram 58 and classification data 57 in a tomogram DB 36 . Descriptions of the parts common to the first embodiment are omitted.
  • FIG. 33 is an explanatory diagram illustrating the configuration of the catheter system 10.
  • the catheter system 10 includes an image processing device 210 , a catheter control device 27 , an MDU (Motor Driving Unit) 289 , and an image acquisition catheter 28 .
  • Image acquisition catheter 28 is connected to image processing device 210 via MDU 289 and catheter control device 27 .
  • the image processing device 210 includes a control section 211, a main memory device 212, an auxiliary memory device 213, a communication section 214, a display section 215, an input section 216, and a bus.
  • the control unit 211 is an arithmetic control device that executes the program of this embodiment. One or a plurality of CPUs, GPUs, multi-core CPUs, or the like is used for the control unit 211 .
  • the control unit 211 is connected to each hardware unit forming the image processing apparatus 210 via a bus.
  • the main storage device 212 is a storage device such as SRAM, DRAM, and flash memory. Main storage device 212 temporarily stores information necessary during processing performed by control unit 211 and a program being executed by control unit 211 .
  • the auxiliary storage device 213 is a storage device such as SRAM, flash memory, hard disk, or magnetic tape.
  • the auxiliary storage device 213 stores the classification model 31, the tomogram DB 36, programs to be executed by the control unit 211, and various data necessary for executing the programs.
  • a communication unit 214 is an interface that performs communication between the image processing apparatus 210 and a network.
  • the classification model 31 may be stored in an external mass storage device or the like connected to the image processing device 210 .
  • the display unit 215 is, for example, a liquid crystal display panel or an organic EL panel.
  • Input unit 216 is, for example, a keyboard and a mouse.
  • the input unit 216 may be layered on the display unit 215 to form a touch panel.
  • the display unit 215 may be a display device connected to the image processing device 210 .
  • the image processing device 210 is a general-purpose personal computer, tablet, large computer, or a virtual machine running on a large computer.
  • the image processing apparatus 210 may be configured by hardware such as a plurality of personal computers or large computers that perform distributed processing.
  • the image processing device 210 may be configured by a cloud computing system.
  • the image processing device 210 and the catheter control device 27 may constitute integrated hardware.
  • the image acquisition catheter 28 has a sheath 281 , a shaft 283 inserted inside the sheath 281 , and a sensor 282 arranged at the tip of the shaft 283 .
  • MDU 289 rotates and advances shaft 283 and sensor 282 inside sheath 281 .
  • the sensor 282 is, for example, an ultrasonic transducer that transmits and receives ultrasonic waves, or a transmitter/receiver for OCT (Optical Coherence Tomography) that irradiates near-infrared light and receives reflected light.
  • OCT Optical Coherence Tomography
  • the image acquisition catheter 28 is an IVUS (Intravascular Ultrasound) catheter used for capturing an ultrasonic tomographic image from the inside of the circulatory system will be described.
  • the catheter control device 27 creates one tomographic image 58 for each rotation of the sensor 282 .
  • the catheter control device 27 continuously creates a plurality of tomographic images 58 substantially perpendicular to the sheath 281 by rotating the sensor 282 while pulling it in the axial direction or pushing it in the axial direction.
  • the control unit 211 sequentially acquires the tomographic images 58 from the catheter control device 27 .
  • the control unit 211 inputs the tomographic image 58 to the classification model 31 and acquires the output classification data 57 .
  • the control unit 211 creates a new record in the tomogram DB 36 and records the tomogram 58 and the classification data 57 in association with the tomogram number.
  • the control unit 211 may create the classification data 57 based on each tomographic image 58 and record it in the tomographic image DB 36 . As described above, so-called three-dimensional scanning is performed, and a set of tomographic images 58 and a set of classification data 57 are recorded in the tomographic image DB 36 .
  • the image acquisition catheter 28 moves in the axial direction while the sensor 282 rotates, thereby realizing three-dimensional scanning while sequentially moving the transmission direction of the ultrasonic waves that are the scanning beams. is.
  • the advance/retreat operation of the sensor 282 includes both an operation to advance/retreat the entire image acquisition catheter 28 and an operation to advance/retreat the sensor 282 inside the sheath 281 .
  • the advance/retreat operation may be automatically performed at a predetermined speed by the MDU 289, or may be manually performed by the user.
  • the image acquisition catheter 28 is not limited to a mechanical scanning method that mechanically rotates and advances and retreats.
  • it may be an electronic radial scanning type image acquisition catheter 28 using a sensor 282 in which a plurality of ultrasonic transducers are arranged in a ring.
  • the image acquisition catheter 28 may mechanically rotate or oscillate a linear scan, convex scan, or sector scan sensor 282 to achieve three-dimensional scanning.
  • the image acquisition catheter 28 sequentially switches between a plurality of ultrasonic transducers to generate an ultrasonic wave which is a scanning beam.
  • Three-dimensional scanning is realized by sequentially moving the sound wave transmission direction.
  • the image acquisition catheter 28 omits the sheath 281 and the MDU 289, and a handle portion for operating the shaft 283 and a connector extending from the handle portion are arranged at the proximal end of the shaft 283. to the catheter controller 27 via.
  • the catheter control device 27 sequentially creates a plurality of tomographic images 58 by sequentially switching a plurality of ultrasonic transducers that emit ultrasonic waves possessed by the sensor 282 .
  • the tomographic image obtained from the image acquisition catheter 28 whose sensor 282 is of the linear scanning type is rectangular in the XY format
  • the image is fan-shaped in XY format.
  • the control unit 211 uses the tomographic image DB 36 recorded by the above operations to perform the processing described in the first to eleventh embodiments, and outputs the dimensions of the bifurcation entrance 53 .
  • the control unit 211 can output the dimensions of the branch entrance 53 immediately after the completion of the three-dimensional scanning. .
  • FIG. 34 is an explanatory diagram illustrating the configuration of the information processing device 200 according to the thirteenth embodiment.
  • the present embodiment relates to a mode of realizing the information processing apparatus 200 of the present embodiment by operating a general-purpose computer 90 and a program 97 in combination. Descriptions of the parts common to the first embodiment are omitted.
  • the computer 90 includes a reading section 209 in addition to the aforementioned control section 201, main storage device 202, auxiliary storage device 203, communication section 204, display section 205, input section 206 and bus.
  • the program 97 is recorded on a portable recording medium 96.
  • the control unit 201 reads the program 97 via the reading unit 209 and stores it in the auxiliary storage device 203 .
  • Control unit 201 may also read program 97 stored in semiconductor memory 98 such as a flash memory installed in computer 90 .
  • the control unit 201 may download the program 97 from another server computer (not shown) connected via the communication unit 204 and a network (not shown) and store it in the auxiliary storage device 203 .
  • the program 97 is installed as a control program of the computer 90, loaded into the main storage device 202 and executed. As described above, the information processing apparatus 200 described in the first embodiment is realized.
  • the program 97 of this embodiment is an example of a program product.
  • FIG. 35 is a functional block diagram of the information processing device 200 according to the fourteenth embodiment.
  • the information processing device 200 includes a classification data acquisition section 81 , an entrance determination section 82 and a dimension output section 83 .
  • the classification data acquisition unit 81 is configured such that each pixel constituting a plurality of tomographic images 58 acquired using the image acquisition catheter 28 acquires images while moving the scanning plane in the axial direction. A plurality of classified data 57 classified into a plurality of areas including the area 40 are acquired.
  • the entrance determination unit 82 determines the bifurcation entrance 53 where a predetermined area in the three-dimensional image 59 constructed using a plurality of classification data 57 branches into the trunk 51 and the branch 52 .
  • the dimension output unit 83 outputs values related to the dimensions of the branch entrance 53 .
  • catheter system 200 information processing device 201 control unit 202 main storage device 203 auxiliary storage device 204 communication unit 205 display unit 206 input unit 209 reading unit 210 image processing device 211 control unit 212 main storage device 213 auxiliary storage device 214 communication unit 215 display Section 216 Input Section 27 Catheter Control Device 28 Image Acquisition Catheter 281 Sheath 282 Sensor 283 Shaft 289 MDU 31 Classification model 36 Tomogram DB 40 lumen region 45 extracavity region 46 biological tissue region 47 catheter region 51 trunk 52 branch 521 branch axis 522 end point 523 penetration point 53 bifurcation entrance 54 reference plane 541 reference point 542 rotation axis 55 center of gravity 57 classification data 58 tomographic image 59 three-dimensional image 71 end button 72 enter button 76 dimension column 77 recommended device column 81 classification data acquisition unit 82 entrance determination unit 83 dimension output unit 90 computer 96 portable recording medium 97 program 98 semiconductor memory

Abstract

The present invention provides an information processing device, etc., for assisting the selection of a therapeutic device. The information processing device comprises: a classification data acquisition unit that acquires a plurality of items of classification data (57) in which pixels constituting a plurality of tomographic images (58) acquired using an image acquisition catheter that performs three-dimensional scanning while gradually moving the direction of transmission of a scanning beam are classified into a plurality of regions including a tissue region (46) and a lumen region (40); an entrance determining unit that determines a branch entrance (53) at which a prescribed region in a three-dimensional image (59) constructed using the plurality of items of classification data (57) branches into a trunk part (51) and a branch part (52); and a dimensions output unit that outputs values relating to the dimensions of the branch entrance (53).

Description

情報処理装置、情報処理方法およびプログラムInformation processing device, information processing method and program
 本発明は、情報処理装置、情報処理方法およびプログラムに関する。 The present invention relates to an information processing device, an information processing method, and a program.
 カテーテルを介して管腔器官の内部に留置される治療用デバイスが使用されている(特許文献1)。 A therapeutic device that is indwelled inside a hollow organ via a catheter is used (Patent Document 1).
特開2009-56102号公報Japanese Patent Application Laid-Open No. 2009-56102
 治療用デバイスが留置される患部の寸法および形状には個人差がある。医師は、術前に撮影したCT(Computed Tomography)画像等に基づいて、個々の患者に適した治療用デバイスを選択する。しかしながら、術前の撮影日から、治療当日までの間に、患部の寸法および形状が変化してしまう場合がある。 There are individual differences in the size and shape of the affected area where the therapeutic device is placed. A doctor selects a therapeutic device suitable for each individual patient based on preoperative CT (Computed Tomography) images and the like. However, the size and shape of the affected area may change between the day of the preoperative imaging and the day of the treatment.
 一つの側面では、治療用デバイスの選択を支援する情報処理装置等を提供することを目的とする。 In one aspect, the object is to provide an information processing device or the like that supports selection of a therapeutic device.
 情報処理装置は、走査ビームの発信方向を順次移動させながら三次元走査を行う画像取得用カテーテルを用いて取得された複数の断層像を構成する各画素が、生体組織領域および内腔領域を含む複数の領域に分類された複数の分類データを取得する分類データ取得部と、前記複数の分類データを用いて構築された三次元画像における所定の前記領域が幹部と枝部とに分岐する分岐部入口を決定する入口決定部と、前記分岐部入口の寸法に関する値を出力する寸法出力部とを備える。 In the information processing device, each pixel constituting a plurality of tomographic images acquired using an image acquisition catheter that performs three-dimensional scanning while sequentially moving the transmission direction of the scanning beam includes a biological tissue region and a lumen region. A classification data acquisition unit that acquires a plurality of classification data classified into a plurality of regions, and a branching unit that divides the predetermined region in a three-dimensional image constructed using the plurality of classification data into a trunk and a branch. An entrance determination unit that determines the entrance, and a dimension output unit that outputs a value related to the dimension of the branch entrance.
 一つの側面では、治療用デバイスの選択を支援する情報処理装置等を提供できる。 In one aspect, it is possible to provide an information processing device or the like that supports selection of a therapeutic device.
寸法測定プロセスの概要を説明する説明図である。FIG. 4 is an explanatory diagram for explaining an outline of a dimension measurement process; 分類モデルを説明する説明図である。It is an explanatory view explaining a classification model. 情報処理装置の構成を説明する説明図である。It is an explanatory view explaining the composition of an information processor. 断層像DBのレコードレイアウトを説明する説明図である。FIG. 4 is an explanatory diagram for explaining a record layout of a tomogram DB; プログラムの処理の流れを説明するフローチャートである。4 is a flowchart for explaining the flow of processing of a program; 画面例である。This is an example screen. 画面例である。This is an example screen. 基準面で切断した三次元画像の断面を示す説明図である。FIG. 4 is an explanatory diagram showing a cross section of a three-dimensional image cut along a reference plane; 画面例である。This is an example screen. 画面例である。This is an example screen. 変形例の画面例である。It is an example of a screen of a modification. 実施の形態2のプログラムの処理の流れを説明するフローチャートである。10 is a flowchart for explaining the flow of processing of a program according to Embodiment 2; 実施の形態2の画面例である。It is an example of a screen of Embodiment 2. FIG. 実施の形態2の画面例である。It is an example of a screen of Embodiment 2. FIG. 実施の形態3のプログラムの処理の流れを説明するフローチャートである。11 is a flowchart for explaining the flow of processing of a program according to Embodiment 3; 実施の形態3の画面例である。It is an example of a screen of Embodiment 3. 実施の形態3の画面例である。It is an example of a screen of Embodiment 3. 実施の形態4の基準面の初期位置を説明する説明図である。FIG. 13 is an explanatory diagram illustrating an initial position of a reference plane according to the fourth embodiment; FIG. 実施の形態4のプログラムの処理の流れを説明するフローチャートである。FIG. 13 is a flowchart for explaining the flow of processing of a program according to Embodiment 4; FIG. 実施の形態4の画面例である。It is an example of a screen of Embodiment 4. 基準面選択-1のサブルーチンの処理の流れを説明するフローチャートである。FIG. 10 is a flowchart for explaining the processing flow of a reference plane selection-1 subroutine; FIG. 実施の形態5のプログラムの処理の流れを説明するフローチャートである。14 is a flowchart for explaining the flow of processing of a program according to Embodiment 5; 実施の形態5の画面例である。It is an example of a screen of Embodiment 5. FIG. 実施の形態5の画面例である。It is an example of a screen of Embodiment 5. FIG. 実施の形態6のプログラムの処理の流れを説明するフローチャートである。FIG. 14 is a flowchart for explaining the flow of processing of a program according to Embodiment 6; FIG. 基準面選択-2のサブルーチンの処理の流れを説明するフローチャートである。FIG. 10 is a flowchart for explaining the processing flow of a reference plane selection-2 subroutine; FIG. 実施の形態7の枝部の軸線である枝軸を説明する説明図である。FIG. 21 is an explanatory diagram for explaining a branch shaft that is an axis of a branch portion of Embodiment 7; 実施の形態7の画面例である。FIG. 11 is an example of a screen according to Embodiment 7. FIG. 実施の形態7の画面例である。FIG. 11 is an example of a screen according to Embodiment 7. FIG. 実施の形態7のプログラムの処理の流れを説明するフローチャートである。FIG. 21 is a flow chart for explaining the flow of processing of a program according to Embodiment 7; FIG. 枝軸作成のサブルーチンの処理の流れを説明するフローチャートである。FIG. 10 is a flowchart for explaining the flow of processing of a branch axis creation subroutine; FIG. 実施の形態8のプログラムの処理の流れを説明するフローチャートである。FIG. 22 is a flowchart for explaining the flow of processing of a program of Embodiment 8; FIG. 基準面選択-3のサブルーチンの処理の流れを説明するフローチャートである。FIG. 11 is a flow chart for explaining the processing flow of a reference plane selection-3 subroutine; FIG. 実施の形態9の画面例である。FIG. 11 is an example of a screen according to Embodiment 9. FIG. 実施の形態9の画面例である。FIG. 11 is an example of a screen according to Embodiment 9. FIG. 実施の形態9のプログラムの処理の流れを説明するフローチャートである。FIG. 22 is a flowchart for explaining the flow of processing of a program according to Embodiment 9; FIG. 実施の形態10のプログラムの処理の流れを説明するフローチャートである。FIG. 22 is a flow chart for explaining the flow of processing of a program according to the tenth embodiment; FIG. 基準面選択-4のサブルーチンの処理の流れを説明するフローチャートである。FIG. 11 is a flow chart for explaining the processing flow of a reference plane selection-4 subroutine; FIG. 実施の形態11の三次元画像構築のサブルーチンの処理の流れを説明するフローチャートである。FIG. 22 is a flowchart for explaining the flow of processing of a subroutine for constructing a three-dimensional image according to Embodiment 11; FIG. 実施の形態12のカテーテルシステムの構成を説明する説明図である。FIG. 20 is an explanatory diagram illustrating the configuration of a catheter system according to a twelfth embodiment; 実施の形態13の情報処理装置の構成を説明する説明図である。FIG. 22 is an explanatory diagram for explaining the configuration of an information processing apparatus according to a thirteenth embodiment; 実施の形態14の情報処理装置の機能ブロック図である。FIG. 22 is a functional block diagram of an information processing device according to a fourteenth embodiment;
[実施の形態1]
 図1は、寸法測定プロセスの概要を説明する説明図である。医師等のユーザは、画像取得用カテーテル28(図33参照)を患部付近に挿入する。画像取得用カテーテル28は、三次元走査用であり、走査面を軸方向に少しずつ変更した複数の断層像58を連続して撮影できる。以後の説明では、一回の三次元走査で作成された断層像58を、一組の断層像58と記載する場合がある。
[Embodiment 1]
FIG. 1 is an explanatory diagram for explaining the outline of the dimension measurement process. A user such as a doctor inserts the image acquisition catheter 28 (see FIG. 33) near the affected area. The image acquisition catheter 28 is for three-dimensional scanning, and can continuously capture a plurality of tomographic images 58 in which the scanning plane is gradually changed in the axial direction. In the following description, the tomographic images 58 created by one three-dimensional scan may be referred to as a set of tomographic images 58. FIG.
 なお、図1においては、実際の形状に合わせて構築された、いわゆるXY形式の断層像58を例にして図示する。断層像58は、走査線を走査角度順に平行に並べて構築したいわゆるRT形式であってもよい。図1を使用して説明する処理の途中で、RT形式とXY形式との間の変換が行なわれてもよい。RT形式とXY形式との間の変換方法は公知であるため、説明を省略する。 In FIG. 1, a so-called XY-format tomographic image 58 constructed according to the actual shape is shown as an example. The tomographic image 58 may be of a so-called RT format constructed by arranging scanning lines in parallel in the order of scanning angles. Conversion between the RT format and the XY format may be performed during the process described using FIG. Since the conversion method between the RT format and the XY format is known, the explanation is omitted.
 それぞれの断層像58に基づいて、分類データ57が作成される。分類データ57は、断層像58を構成する各画素を、たとえば内腔領域40、生体組織領域46、腔外領域45、およびカテーテル領域47等の複数の領域に分類したデータである。分類データ57に基づいて、断層像58を構成する画素を領域ごとに塗り分けた分類画像を作成可能である。一組の断層像58に基づいて、一組の分類画像が作成される。分類データ57および分類画像の詳細については後述する。 Classification data 57 is created based on each tomographic image 58 . Classification data 57 is data obtained by classifying each pixel constituting tomographic image 58 into a plurality of regions such as lumen region 40, biological tissue region 46, extracavity region 45, and catheter region 47, for example. Based on the classification data 57, it is possible to create a classified image in which the pixels forming the tomographic image 58 are colored separately for each area. A set of classified images is created based on the set of tomograms 58 . The details of the classified data 57 and the classified images will be described later.
 制御部201(図3参照)は、一組の分類画像に基づいて三次元画像59を構築する。ユーザは、三次元画像59に表示させる領域を適宜指定できる。図1においては、内腔領域40のみを表示した三次元画像59の例を示す。内腔領域40は、生体組織領域46により周囲を囲まれた領域である。画像取得用カテーテル28が血管または心臓等の循環器に挿入された場合は、内腔領域40は血液で満たされた血流領域である。 The control unit 201 (see FIG. 3) constructs a three-dimensional image 59 based on the set of classified images. The user can appropriately designate an area to be displayed in the three-dimensional image 59 . FIG. 1 shows an example of a three-dimensional image 59 displaying only the lumen region 40 . The lumen region 40 is the region surrounded by the tissue region 46 . When the image acquisition catheter 28 is inserted into a blood vessel or circulatory system such as the heart, the lumen region 40 is a blood flow region filled with blood.
 一点鎖線は、画像取得用カテーテル28の軸線を示す。軸線の周囲はカテーテル領域47であるため、図1に示すように内腔領域40の三次元画像59は軸線に沿った貫通孔を有する。ユーザは、三次元画像59を適宜切断および回転等させて観察することにより、三次元画像59の立体形状をスムーズに把握できる。 A dashed line indicates the axis of the image acquisition catheter 28 . Around the axis is the catheter area 47, so the three-dimensional image 59 of the lumen area 40 has a through hole along the axis, as shown in FIG. The user can smoothly grasp the three-dimensional shape of the three-dimensional image 59 by appropriately cutting and rotating the three-dimensional image 59 and observing it.
 制御部201は、ユーザの指示に基づいて分岐部入口53を決定する。分岐部入口53は、三次元画像59中の所定の領域を、幹部51と、幹部51から分岐する枝部52とに区切る面である。制御部201は、たとえば分岐部入口53の長径、短径または面積等の寸法を算出する。ここで長径は分岐部入口53の最大径であり、短径は分岐部入口53の最小径である。制御部201は、枝部52の体積または枝部52の長さ等を算出してもよい。 The control unit 201 determines the branch entrance 53 based on the user's instruction. The branch entrance 53 is a surface that divides a predetermined area in the three-dimensional image 59 into the trunk 51 and the branches 52 branching from the trunk 51 . The control unit 201 calculates dimensions such as the major axis, the minor axis, or the area of the branch entrance 53, for example. Here, the major diameter is the maximum diameter of the branch entrance 53 and the minor diameter is the minimum diameter of the branch entrance 53 . The control unit 201 may calculate the volume of the branch portion 52, the length of the branch portion 52, or the like.
 以上のプロセスにより算出する寸法の用途について、具体例を挙げて説明する。たとえば、左心耳閉鎖術(LAAC:Left Atrial Appendage Closure)という治療術式が存在する。左心耳は、心臓の左心房から外向きに突出する袋状の部位である。心房細動の患者では左心耳内部で生じた血栓が心臓の外に流出することにより、脳梗塞または肺血栓塞栓症等の重篤な疾患を引き起こすリスクがある。 The use of the dimensions calculated by the above process will be explained with specific examples. For example, there is a treatment technique called Left Atrial Appendage Closure (LAAC). The left atrial appendage is a pouch-like area that projects outward from the left atrium of the heart. Patients with atrial fibrillation are at risk of serious diseases such as cerebral infarction or pulmonary thromboembolism due to thrombus generated in the left atrial appendage flowing out of the heart.
 左心耳の入口に、カテーテルを介して左心耳閉鎖用デバイスを留置する治療により、血栓の発生および流出を予防できる。左心耳の形状および寸法には個人差が大きいため、左心耳閉鎖用デバイスの供給業者は複数のサイズのデバイスのラインアップを提供している。医師は、ラインアップの中から患者に適したサイズのデバイスを選択する。 By placing a device for closing the left atrial appendage via a catheter at the entrance of the left atrial appendage, it is possible to prevent the occurrence and outflow of thrombus. Due to the wide variation in the shape and size of the left atrial appendage, left atrial appendage closure device suppliers offer a line of devices in multiple sizes. Physicians select the appropriate size device for their patients from the lineup.
 術前に撮影したCT画像またはMRI(Magnetic Resonance Imaging)画像等に基づいて、左心耳の寸法測定が行なわれる。しかしながら、術前の撮影日から、治療当日までの間に、患部の寸法および形状が変化してしまう場合がある。 The dimensions of the left atrial appendage are measured based on preoperative CT images or MRI (Magnetic Resonance Imaging) images. However, the size and shape of the affected area may change between the day of the preoperative imaging and the day of the treatment.
 術中にTEE(Transesophageal Echocardiography:経食道心エコー)用プローブを用いて、食道壁越しに左心耳の寸法測定を行なうこともできる。しかしながら、TEE用プローブは患者の身体への侵襲が大きい上、左心耳を描出して寸法を測定する作業が煩雑であり、人手および時間がかかる。  Intraoperatively, a TEE (Transesophageal Echocardiography) probe can be used to measure the dimensions of the left atrial appendage through the esophageal wall. However, the TEE probe is highly invasive to the patient's body, and the task of visualizing the left atrial appendage and measuring its dimensions is complicated, requiring manpower and time.
 図1を使用して説明したプロセスでは、左心耳閉鎖用デバイスの留置に使用する経路を利用して画像取得用カテーテル28を左心耳近傍まで挿入して、寸法測定を行なうため、TEE用プローブを使用する場合に比べて患者の身体への侵襲が少ない。さらに、左心耳の近傍から測定を行なうことにより、TEE用プローブに比べて高い測定精度を得られる。また、デバイスを留置する直前に測定を行なうことにより、ユーザは術前に撮影したCT画像等を使用する場合に比べて適切なサイズのデバイスを選択できる。 In the process described with reference to FIG. 1, the image acquisition catheter 28 is inserted into the vicinity of the left atrial appendage using the pathway used to place the left atrial appendage closure device, and the TEE probe is used for dimensional measurements. It is less invasive to the patient's body than when it is used. Furthermore, by performing measurement from the vicinity of the left atrial appendage, higher measurement accuracy can be obtained than with a TEE probe. In addition, by performing the measurement immediately before placing the device, the user can select a device with an appropriate size compared to using a CT image or the like taken before surgery.
 以後の説明では、左心耳の寸法測定を行なう場合を例にして説明する。しかしながら、本寸法測定プロセスの用途は左心耳の寸法測定に限定しない。たとえば、脳動脈瘤に対するコイル塞栓術を行なう場合に、本寸法測定プロセスを用いて脳動脈瘤の体積を測定することで、ユーザは適切な仕様の塞栓用コイルを選択できる。 In the following explanation, the case of measuring the dimensions of the left atrial appendage will be explained as an example. However, the application of this sizing process is not limited to sizing the left atrial appendage. For example, when performing coil embolization for a cerebral aneurysm, the user can select an embolization coil with appropriate specifications by measuring the volume of the cerebral aneurysm using this size measurement process.
 寸法測定の対象は、内腔領域40に限定しない。測定した寸法の用途は、デバイスの選択に限定しない。たとえば膵管に画像取得用カテーテル28を挿入して断層像58を撮影する場合、生体組織領域46の三次元形状からIPMN(Intraductal Papillary Mucinous Neoplasm:膵管内乳頭粘液性腫瘍)の寸法を測定できる。IPMNの寸法変化および形状変化の経過観察は、すい臓がんの早期発見に有用であることが知られている。 The object of dimension measurement is not limited to the lumen region 40. The use of measured dimensions is not limited to device selection. For example, when the image acquisition catheter 28 is inserted into the pancreatic duct to capture the tomographic image 58, the dimensions of IPMN (Intraductal Papillary Mucinous Neoplasm) can be measured from the three-dimensional shape of the biological tissue region 46. It is known that follow-up observation of IPMN dimensional and shape changes is useful for early detection of pancreatic cancer.
 図2は、分類モデル31を説明する説明図である。分類モデル31は、断層像58を受け付けて、断層像58を構成する各画素をたとえば内腔領域40、生体組織領域46、腔外領域45、およびカテーテル領域47等の複数の領域に分類し、画素の位置と、分類結果を示すラベルとを関連づけたデータを出力する。 FIG. 2 is an explanatory diagram explaining the classification model 31. FIG. The classification model 31 receives the tomographic image 58 and classifies each pixel constituting the tomographic image 58 into a plurality of regions such as the lumen region 40, the biological tissue region 46, the extracavity region 45, and the catheter region 47, and It outputs data that associates the pixel position with the label indicating the classification result.
 分類モデル31は、たとえば断層像58に対してセマンテックセグメンテーションを行なう学習済モデルである。分類モデル31は、断層像58と、当該断層像58を医師等の専門家が領域ごとに塗り分けた正解データとの組を多数組記録した訓練データを使用して、機械学習により生成されたモデルである。セマンテックセグメンテーションを行なう学習済モデルの生成は従来から行なわれているため、詳細については説明を省略する。 The classification model 31 is a trained model that performs semantic segmentation on the tomographic image 58, for example. The classification model 31 is generated by machine learning using training data in which a large number of pairs of tomographic images 58 and correct data obtained by coloring the tomographic images 58 for each region by a specialist such as a doctor are recorded. is a model. Generating a trained model for performing semantic segmentation has been conventionally performed, so detailed description thereof will be omitted.
 図1および図2においては、分類画像を用いて分類データ57を模式的に図示する。分類画像は、たとえば断層像58において内腔領域40のラベルに対応する画素を第1色、生体組織領域46のラベルに対応する画素を第2色に、腔外領域45のラベルに対応する画素を第3色、カテーテル領域47のラベルに対応する画素を第4色に定めた画像である。図1および図2においては第1色を左下がりのハッチングで、第2色を太い左下がりのハッチングで、第3色を右下がりのハッチングで、第4色をハッチングなしで示す。 1 and 2 schematically illustrate the classification data 57 using classification images. For example, in the tomographic image 58, pixels corresponding to the label of the lumen region 40 are colored in a first color, pixels corresponding to the label of the biological tissue region 46 are colored in a second color, and pixels corresponding to the label of the extracavity region 45 are colored. is set to the third color, and pixels corresponding to the labels of the catheter region 47 are set to the fourth color. In FIGS. 1 and 2, the first color is indicated by left-sloping hatching, the second color is indicated by thick left-sloping hatching, the third color is indicated by right-sloping hatching, and the fourth color is indicated by no hatching.
 なお、以上に説明した分類データ57は例示である。分類モデル31は、断層像58を構成する各画素を、画像取得用カテーテル28と同時に使用されるガイドワイヤ等の器具に対応する器具領域、石灰化領域またはプラーク領域等の、任意の領域に分類してもよい。 It should be noted that the classification data 57 described above is an example. The classification model 31 classifies each pixel constituting the tomographic image 58 into an arbitrary region such as a device region corresponding to a device such as a guide wire used simultaneously with the image acquisition catheter 28, a calcification region, or a plaque region. You may
 分類モデル31は、内腔領域40を画像取得用カテーテル28が挿入されている内腔である第1内腔領域と、画像取得用カテーテル28が挿入されていない内腔である第2内腔領域とに区別して分類してもよい。分類モデル31はRT形式の断層像58を受け付けて、RT形式の分類データ57を出力するように訓練された学習済モデルであってもよい。 The classification model 31 divides the lumen region 40 into a first lumen region that is a lumen into which the image acquisition catheter 28 is inserted and a second lumen region that is a lumen into which the image acquisition catheter 28 is not inserted. can be classified separately. The classification model 31 may be a trained model trained to receive the RT format tomogram 58 and output the RT format classification data 57 .
 図3は、情報処理装置200の構成を説明する説明図である。情報処理装置200は、制御部201、主記憶装置202、補助記憶装置203、通信部204、表示部205、入力部206およびバスを備える。制御部201は、本実施の形態のプログラムを実行する演算制御装置である。制御部201には、一または複数のCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、またはマルチコアCPU等が使用される。制御部201は、バスを介して情報処理装置200を構成するハードウェア各部と接続されている。 FIG. 3 is an explanatory diagram for explaining the configuration of the information processing device 200. As shown in FIG. The information processing device 200 includes a control section 201, a main memory device 202, an auxiliary memory device 203, a communication section 204, a display section 205, an input section 206 and a bus. The control unit 201 is an arithmetic control device that executes the program of this embodiment. One or a plurality of CPUs (Central Processing Units), GPUs (Graphics Processing Units), multi-core CPUs, or the like is used for the control unit 201 . The control unit 201 is connected to each hardware unit forming the information processing apparatus 200 via a bus.
 主記憶装置202は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、フラッシュメモリ等の記憶装置である。主記憶装置202には、制御部201が行なう処理の途中で必要な情報および制御部201で実行中のプログラムが一時的に保存される。 The main storage device 202 is a storage device such as SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), flash memory, or the like. The main storage device 202 temporarily stores information necessary during the processing performed by the control unit 201 and the program being executed by the control unit 201 .
 補助記憶装置203は、SRAM、フラッシュメモリ、ハードディスクまたは磁気テープ等の記憶装置である。補助記憶装置203には、断層像DB(Database)36、制御部201に実行させるプログラム、およびプログラムの実行に必要な各種データが保存される。断層像DB36は、情報処理装置200に接続された外部の大容量記憶装置に保存されていてもよい。通信部204は、情報処理装置200とネットワークとの間の通信を行なうインターフェースである。 The auxiliary storage device 203 is a storage device such as SRAM, flash memory, hard disk, or magnetic tape. The auxiliary storage device 203 stores a tomogram DB (database) 36, programs to be executed by the control unit 201, and various data necessary for executing the programs. The tomogram DB 36 may be stored in an external large-capacity storage device connected to the information processing apparatus 200 . Communication unit 204 is an interface that performs communication between information processing apparatus 200 and a network.
 表示部205は、たとえば液晶表示パネルまたは有機EL(electro-luminescence)パネル等である。入力部206は、たとえばキーボードまたはマウス等である。表示部205と入力部206とは、積層されてタッチパネルを構成していてもよい。 The display unit 205 is, for example, a liquid crystal display panel or an organic EL (electro-luminescence) panel. Input unit 206 is, for example, a keyboard or a mouse. The display unit 205 and the input unit 206 may be stacked to form a touch panel.
 情報処理装置200は、汎用のパソコン、タブレット、大型計算機、大型計算機上で動作する仮想マシン、または、量子コンピュータである。情報処理装置200は、分散処理を行なう複数のパソコン、または大型計算機等のハードウェアにより構成されても良い。情報処理装置200は、クラウドコンピューティングシステムにより構成されても良い。情報処理装置200は、連携して動作する複数のパソコン、または大型計算機等のハードウェアにより構成されてもよい。 The information processing device 200 is a general-purpose personal computer, a tablet, a large computer, a virtual machine running on a large computer, or a quantum computer. The information processing apparatus 200 may be configured by hardware such as a plurality of personal computers or large-scale computers that perform distributed processing. The information processing device 200 may be configured by a cloud computing system. The information processing apparatus 200 may be configured by hardware such as a plurality of personal computers or large computers that operate in cooperation with each other.
 図4は、断層像DB36のレコードレイアウトを説明する説明図である。断層像DB36は、三次元走査により作成された断層像58および分類データ57が記録されたデータベースである。断層像DB36は、3D走査IDフィールド、断層番号フィールド、断層像フィールドおよび分類データフィールドを有する。断層像フィールドおよび分類データフィールドは、それぞれRT形式フィールドおよびXY形式フィールドを有する。 FIG. 4 is an explanatory diagram for explaining the record layout of the tomogram DB 36. FIG. The tomogram DB 36 is a database in which tomograms 58 created by three-dimensional scanning and classification data 57 are recorded. The tomogram DB 36 has a 3D scan ID field, a tomogram number field, a tomogram field and a classification data field. The tomogram field and classification data field each have an RT format field and an XY format field.
 3D走査IDフィールドには、三次元走査ごとに付与される3D走査IDが記録されている。断層番号フィールドには、1回の三次元走査で作成した断層像58の順番を示す番号が記録されている。断層像フィールドのRT形式フィールドには、RT形式の断層像58が記録されている。断層像フィールドのXY形式フィールドには、XY形式の断層像58が記録されている。分類データフィールドのRT形式フィールドには、RT形式の分類データ57が記録されている。分類データフィールドのXY形式フィールドには、XY形式の分類データ57が記録されている。 The 3D scan ID field records a 3D scan ID given for each three-dimensional scan. A number indicating the order of the tomographic images 58 created by one three-dimensional scan is recorded in the tomographic number field. An RT format tomogram 58 is recorded in the RT format field of the tomogram field. An XY format tomographic image 58 is recorded in the XY format field of the tomographic image field. RT format classification data 57 is recorded in the RT format field of the classification data field. XY format classification data 57 is recorded in the XY format field of the classification data field.
 なお、断層像DB36にはRT形式の断層像58のみが記録されており、必要に応じて制御部201が座標変換によりXY形式の断層像58を作成してもよい。断層像58が記録されたDBの代わりに、断層像58を作成する前の走査線に関するデータが記録されたDBが使用されてもよい。 Note that the tomographic image DB 36 records only the RT format tomographic image 58, and the control unit 201 may create the XY format tomographic image 58 by coordinate conversion as necessary. Instead of the DB in which the tomographic image 58 is recorded, a DB in which data regarding scanning lines before creating the tomographic image 58 is recorded may be used.
 同様に断層像DB36にはRT形式の分類データ57またはXY形式の分類データ57のいずれか一方のみが記録されており、必要に応じて制御部201が座標変換により他方の分類データ57を作成してもよい。断層像58の代わりに、断層像58を作成する前の走査線に関するデータが記録されたDBが使用されてもよい。断層像DB36は、断層像フィールドを備えず、断層像58に基づいて作成された分類データ57のみが記録されてもよい。 Similarly, only one of the RT format classification data 57 and the XY format classification data 57 is recorded in the tomogram DB 36, and the control unit 201 creates the other classification data 57 by coordinate conversion as necessary. may Instead of the tomogram 58, a DB in which data on scanning lines before creating the tomogram 58 is recorded may be used. The tomogram DB 36 may record only the classification data 57 created based on the tomogram 58 without including the tomogram field.
 本実施の形態においては、断層像DB36はあらかじめ作成されて、補助記憶装置203に記録されている場合を例にして説明する。断層像DB36に断層像58のみが記録されており、制御部201が一組の断層像58のそれぞれに基づいて分類データ57を作成し、断層像DB36に記録してもよい。 In the present embodiment, a case where the tomogram DB 36 is created in advance and recorded in the auxiliary storage device 203 will be described as an example. Only the tomographic images 58 are recorded in the tomographic image DB 36 , and the control unit 201 may create the classification data 57 based on each of the set of tomographic images 58 and record them in the tomographic image DB 36 .
 制御部201が分類データ57を作成する場合には、補助記憶装置203または情報処理装置200に接続された外部の大容量記憶装置に分類モデル31が保存されている。制御部201は、複数の断層像58を取得する断層像取得部の機能と、断層像58に対応する分類データ57を取得する分類データ取得部の機能とを実現する。 When the control unit 201 creates the classification data 57 , the classification model 31 is stored in the auxiliary storage device 203 or an external large-capacity storage device connected to the information processing device 200 . The control unit 201 implements the function of a tomogram acquisition unit that acquires a plurality of tomograms 58 and the function of a classification data acquisition unit that acquires classification data 57 corresponding to the tomograms 58 .
 図5は、プログラムの処理の流れを説明するフローチャートである。制御部201は、断層像DB36から一組の分類データ57を取得する(ステップS501)。ステップS501により、制御部201は複数の分類データ57を取得する分類データ取得部の機能を実現する。 FIG. 5 is a flowchart explaining the flow of program processing. The control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501). By step S<b>501 , the control unit 201 implements the function of a classification data acquisition unit that acquires a plurality of classification data 57 .
 制御部201は、一組の分類データ57に基づいて三次元画像59を構築する(ステップS502)。三次元画像59の構築は、従来から行なわれているため、詳細については説明を省略する。 The control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502). The construction of the three-dimensional image 59 has been conventionally performed, so detailed description thereof will be omitted.
 制御部201は、三次元画像59から所定の領域を抽出して表示部205に表示する(ステップS503)。本実施の形態においては、所定の領域は内腔領域40である。なお、制御部201はたとえば内腔領域40を不透明で表示し、内腔領域40を取り囲む腔外領域45を半透明で表示しても良い。 The control unit 201 extracts a predetermined area from the three-dimensional image 59 and displays it on the display unit 205 (step S503). In this embodiment, the predetermined area is lumen area 40 . Note that the control unit 201 may, for example, display the lumen region 40 opaquely and display the extraluminal region 45 surrounding the lumen region 40 semi-transparently.
 ユーザは入力部206を操作して、三次元画像59を適宜切断および回転等させ、三次元画像59の立体形状を把握する。ユーザは、分岐部入口53であると判断した位置にマーキングを行なう。制御部201は、ユーザによるマーキング位置の指定を受け付ける(ステップS504)。 The user operates the input unit 206 to appropriately cut and rotate the three-dimensional image 59, and grasp the three-dimensional shape of the three-dimensional image 59. The user marks the position determined to be the branch entrance 53 . The control unit 201 receives designation of the marking position by the user (step S504).
 制御部201は、マーキング位置を示すマーカを三次元画像59に重畳表示する。三次元画像59に対するマーキングを行なうユーザインターフェイスは従来から使用されているため、詳細については説明を省略する。ステップS504により、制御部201はマーカ受付部の機能を実現する。 The control unit 201 superimposes and displays a marker indicating the marking position on the three-dimensional image 59 . Since a user interface for marking the three-dimensional image 59 has been used conventionally, detailed description thereof will be omitted. By step S504, the control unit 201 implements the function of the marker reception unit.
 ステップS504において、制御部201は3点以上のマーキング位置の指定を受け付ける。たとえば制御部201は、ユーザがマーキング位置の終了を指示するまで繰り返してマーキング位置の指定を受け付ける。制御部201は、所定の数のマーキング位置の指定を受け付けた場合に、次のステップに進んでもよい。 In step S504, the control unit 201 accepts designation of three or more marking positions. For example, the control unit 201 repeatedly accepts designation of the marking position until the user instructs the end of the marking position. The control unit 201 may proceed to the next step when designation of a predetermined number of marking positions is received.
 制御部201は、マーキング位置に基づいて基準面54(図8A参照)を作成する(ステップS505)。たとえばマーキング位置が3点である場合には、制御部201は当該3点を通る平面を算出する。マーキング位置が4点以上である場合には、制御部201はたとえば最小二乗法によりマーキング位置を近似する平面を表す式を算出する。以上の処理により算出された平面が、基準面54である。制御部201は、ステップS505により基準面54を作成する基準面作成部の機能を実現する。 The control unit 201 creates a reference plane 54 (see FIG. 8A) based on the marking positions (step S505). For example, if there are three marking positions, the control unit 201 calculates a plane passing through the three points. If the number of marking positions is four or more, the control unit 201 calculates a formula representing a plane that approximates the marking positions by, for example, the least-squares method. The plane calculated by the above processing is the reference plane 54 . The control unit 201 realizes the function of the reference plane creation unit that creates the reference plane 54 in step S505.
 制御部201は、分岐部入口53を決定する(ステップS506)。分岐部入口53は、表示部205に表示した所定の領域を基準面54で切断した断面である。ステップS506により、制御部201は幹部51と枝部52とが分岐する分岐部入口53を決定する入口決定部の機能を実現する。 The control unit 201 determines the branch entrance 53 (step S506). The branch entrance 53 is a cross section obtained by cutting a predetermined area displayed on the display unit 205 along the reference plane 54 . By step S506, the control unit 201 implements the function of the entrance determination unit that determines the branch entrance 53 where the trunk 51 and the branch 52 diverge.
 制御部201は、表示部205に表示した三次元画像59に基準面54および分岐部入口53を重畳表示する(ステップS507)。ステップS507により制御部201は、基準面表示部および入口出力部の機能を実現する。その後、制御部201はユーザによる指示を待つ。 The control unit 201 superimposes the reference plane 54 and the branch entrance 53 on the three-dimensional image 59 displayed on the display unit 205 (step S507). By step S507, the control unit 201 implements the functions of the reference plane display unit and the entrance output unit. After that, the control unit 201 waits for an instruction from the user.
 制御部201は、ユーザによる指示が基準面54を決定する指示であるか否かを判定する(ステップS508)。基準面54を決定する指示ではないと判定した場合(ステップS508でNO)、制御部201はユーザによる基準面54を移動させる指示を受け付ける(ステップS509)。 The control unit 201 determines whether or not the user's instruction is an instruction to determine the reference plane 54 (step S508). If it is determined that the instruction is not for determining the reference plane 54 (NO in step S508), the control unit 201 accepts an instruction by the user to move the reference plane 54 (step S509).
 ユーザは、たとえば基準面54の縁を選択してドラッグする操作により基準面54を移動させる指示を行なう。ユーザはマーキング位置を追加する操作により、基準面54を移動させる指示を行なってもよい。そのほか、任意のユーザインターフェイスに基づいて、制御部201は基準面54を移動させる指示を受け付けてもよい。 The user instructs to move the reference plane 54 by, for example, selecting and dragging the edge of the reference plane 54 . The user may give an instruction to move the reference plane 54 by an operation of adding a marking position. Alternatively, the control unit 201 may receive an instruction to move the reference plane 54 based on any user interface.
 以上により、ユーザは基準面54の位置を微調整する。制御部201は、ステップS509により基準面54の位置に関する調整指示を受け付ける調整受付部の機能を実現する。その後、制御部201はステップS506に戻り、移動後の基準面54に基づいて分岐部入口53を決定しなおす。 As described above, the user finely adjusts the position of the reference plane 54 . The control unit 201 implements the function of an adjustment reception unit that receives an adjustment instruction regarding the position of the reference plane 54 in step S509. After that, the control unit 201 returns to step S506 and re-determines the branch entrance 53 based on the reference plane 54 after movement.
 基準面54を決定する指示を受け付けたと判定した場合(ステップS508でYES)、制御部201は、分岐部入口53の寸法を算出する(ステップS510)。前述の通り寸法は、たとえば分岐部入口53の長径、短径または面積等である。寸法は、枝部52の体積または枝部52の長さ等であってもよい。制御部201は、算出した寸法を表示部205に表示する(ステップS511)。その後、制御部201は処理を終了する。 When determining that an instruction to determine the reference plane 54 has been received (YES in step S508), the control unit 201 calculates the dimensions of the branch entrance 53 (step S510). As described above, the dimension is, for example, the major axis, minor axis, area, or the like of the branch entrance 53 . The dimension may be the volume of the branch 52, the length of the branch 52, or the like. The control unit 201 displays the calculated dimensions on the display unit 205 (step S511). After that, the control unit 201 terminates the processing.
 ステップS511において制御部201は、算出した寸法に基づいて演算した値等、寸法に関する任意の情報を出力してもよい。たとえば制御部201は、分岐部入口53の長径および短径に基づいて算出した縦横比の値等を出力してもよい。 In step S511, the control unit 201 may output arbitrary information regarding dimensions, such as values calculated based on the calculated dimensions. For example, the control unit 201 may output the value of the aspect ratio calculated based on the major axis and the minor axis of the branch entrance 53 .
 図6Aおよび図6Bは、画面例である。これらの画面には、内腔領域40の形状を示す三次元画像59が表示されている。画面の右下に、終了ボタン71が表示されている。図6Aに示すM1は、ユーザが最初にマーキングした位置を示すマーカである。同様にM2は、ユーザが2番目にマーキングした位置を示すマーカである。  Figures 6A and 6B are screen examples. A three-dimensional image 59 showing the shape of the lumen region 40 is displayed on these screens. An end button 71 is displayed at the bottom right of the screen. M1 shown in FIG. 6A is a marker indicating the position marked first by the user. Similarly, M2 is a marker indicating the second marked position by the user.
 図6Bは、枝部52が手前にみえるようにユーザが三次元画像59を回転させて、3番目のマーキングを行なった状態を示す。M1およびM2のマーカは、内腔領域40の表面に張り付いた状態で、三次元画像59と共に回転する。図6BにおいてはM2のマーカは枝部52の影に隠れている。制御部201は三次元画像59を半透明にして、M2のマーカが見える状態で表示してもよい。 FIG. 6B shows a state in which the user has rotated the three-dimensional image 59 so that the branch 52 can be seen in front, and has made the third marking. The M1 and M2 markers rotate with the three-dimensional image 59 while sticking to the surface of the lumen region 40 . In FIG. 6B the M2 marker is hidden behind the branch 52 . The control unit 201 may make the three-dimensional image 59 translucent so that the M2 marker can be seen.
 制御部201は、ユーザによるマーカの位置の移動、および、マーカの削除等の指示を受け付けてもよい。制御部201は、ユーザが指示した断面へのマーキングの指示を受け付け、三次元画像59の内部にマーカを配置してもよい。 The control unit 201 may accept instructions from the user such as moving the position of the marker and deleting the marker. The control unit 201 may receive a user-designated marking instruction for a cross-section and place a marker inside the three-dimensional image 59 .
 マーキングを終了後、ユーザは終了ボタン71を選択する。以上により制御部201は図5を使用して説明したステップS503からステップS504の処理を終了する。制御部201は、ユーザがマーキングした位置の三次元座標に基づいて、基準面54を算出する。基準面54は、マーキング位置を近似する平面であり、たとえば最小二乗法により算出される。 After completing the marking, the user selects the end button 71 . Thus, the control unit 201 ends the processing from step S503 to step S504 described using FIG. The control unit 201 calculates the reference plane 54 based on the three-dimensional coordinates of the position marked by the user. The reference plane 54 is a plane that approximates the marking position, and is calculated, for example, by the method of least squares.
 図7は、基準面54で切断した三次元画像59の断面を示す説明図である。内腔領域40を示す三次元画像59が、2つに分離した状態になっている。幹部51に対応する部分には、カテーテル領域47に対応する楕円形の穴が開いている。制御部201は、カテーテル領域47に対応する孔を有さない部分が、幹部51と枝部52とが分岐する分岐部入口53であると判定する。 FIG. 7 is an explanatory diagram showing a cross section of the three-dimensional image 59 cut along the reference plane 54. FIG. A three-dimensional image 59 showing lumen region 40 is separated into two. The portion corresponding to trunk 51 has an oval hole corresponding to catheter area 47 . The control unit 201 determines that the portion having no hole corresponding to the catheter region 47 is the bifurcation entrance 53 where the trunk 51 and the branch 52 diverge.
 図8Aおよび図8Bは、画面例である。図8Aは、図5を使用して説明したフローチャートのステップS507で制御部201が表示する画面の例を示す。図6Aを使用して説明した画面に、基準面54および分岐部入口53が重畳表示されている。分岐部入口53を、格子状のハッチングで示す。画面の右下に、決定ボタン72が表示されている。  Figures 8A and 8B are screen examples. FIG. 8A shows an example of a screen displayed by the control unit 201 in step S507 of the flowchart explained using FIG. The reference plane 54 and the branch inlet 53 are superimposed on the screen described using FIG. 6A. The branch entrance 53 is indicated by grid-like hatching. A decision button 72 is displayed at the bottom right of the screen.
 図8Aにおいては、分岐部入口53の近傍の部分の基準面54を表示する例を示す。制御部201は、幹部51を切断する部分も含めて基準面54を表示してもよい。制御部201は、基準面54を表示する範囲について、ユーザによる指示を受け付けてもよい。 FIG. 8A shows an example of displaying the reference plane 54 in the vicinity of the branch entrance 53 . The control unit 201 may display the reference plane 54 including the portion where the trunk 51 is cut. The control unit 201 may receive an instruction from the user regarding the range in which the reference plane 54 is to be displayed.
 基準面54で切断した断面に、図7を使用して説明したカテーテル領域47の穴を有さない領域が存在しない場合、制御部201は基準面54および内腔領域40の断面を重畳表示する。制御部201は、たとえば「分岐部入口を検出できませんでした」のようなメッセージを画面に出力してもよい。 If the cross section cut by the reference plane 54 does not include a region without a hole in the catheter region 47 described with reference to FIG. . The control unit 201 may output a message such as "Unable to detect the entrance of the bifurcation" on the screen.
 ユーザは、図8Aに示す画面上で、ユーザは基準面54の位置を適宜調整できる。たとえばユーザは基準面54の縁部をドラッグして、三次元空間内での基準面54の位置を変更する。制御部201は、ユーザから基準面54の移動に関する指示を受け付けて、基準面54および分岐部入口53の表示を変化させる。 The user can appropriately adjust the position of the reference plane 54 on the screen shown in FIG. 8A. For example, the user drags the edge of reference plane 54 to change the position of reference plane 54 in three-dimensional space. The control unit 201 receives an instruction regarding movement of the reference plane 54 from the user, and changes the display of the reference plane 54 and the branch entrance 53 .
 ユーザは、基準面54を適切な状態に調整した後に、決定ボタン72を選択する。制御部201は、基準面54を決定する指示を受け付けたと判定し(ステップS508でYES)、分岐部入口53の寸法を算出する。三次元画像59において、指定された断面に基づいて、三次元的なオブジェクトの長さ、面積および体積等を算出する処理は、三次元CAD(Computer Aided Design)ソフトウェア等で従来から使用されているため詳細については説明を省略する。 The user selects the decision button 72 after adjusting the reference plane 54 to an appropriate state. Control unit 201 determines that an instruction to determine reference plane 54 has been received (YES in step S<b>508 ), and calculates the dimensions of branch entrance 53 . In the three-dimensional image 59, processing for calculating the length, area, volume, etc. of a three-dimensional object based on a designated cross section has been conventionally used in three-dimensional CAD (Computer Aided Design) software and the like. Therefore, the detailed description is omitted.
 図8Bは、図5を使用して説明したフローチャートのステップS511で制御部201が表示する画面例である。算出した各種寸法が、画面の上部の寸法欄76に表示されている。図8Bにおいて、「長径」は、分岐部入口53の外形の最大値を示す。「短径」は分岐部入口53の外形の最小値を示す。「面積」は分岐部入口53の面積を示す。「体積」は、図8Bにおいて基準面54より手前側である枝部52の体積を示す。 FIG. 8B is an example of a screen displayed by the control unit 201 in step S511 of the flowchart described using FIG. Various calculated dimensions are displayed in the dimension column 76 at the top of the screen. In FIG. 8B, the “major diameter” indicates the maximum value of the outer shape of the branch entrance 53 . “Minor diameter” indicates the minimum value of the outer shape of the branch entrance 53 . “Area” indicates the area of the branch entrance 53 . "Volume" indicates the volume of the branch portion 52 on the front side of the reference plane 54 in FIG. 8B.
 図8Bの寸法欄76に示す項目は、制御部201が算出して出力する寸法の例示である。出力する寸法の種類は、図8Bに限定されない。たとえば寸法は、枝部52の高さ、すなわち枝部52のうち基準面54から最もはなれた表面と、基準面54との間の距離を含んでもよい。寸法は、長径と短径との平均値、または、分岐部入口53の扁平率等を含んでもよい。制御部201は、寸法欄76により寸法出力部の機能を実現する。ユーザは、寸法欄76に表示された寸法を参照して、使用するデバイスを決定する。 The items shown in the dimension column 76 in FIG. 8B are examples of dimensions calculated and output by the control unit 201 . The types of dimensions to be output are not limited to those shown in FIG. 8B. For example, the dimensions may include the height of branch 52 , ie the distance between reference plane 54 and the surface of branch 52 furthest from reference plane 54 . The dimensions may include the average value of the major axis and the minor axis, or the oblateness of the bifurcation inlet 53, or the like. The control unit 201 implements the function of the dimension output unit using the dimension field 76 . The user refers to the dimensions displayed in the dimension column 76 to determine the device to be used.
 本実施の形態によると、分岐部入口53の寸法を出力することにより、デバイスの選択を支援する制御部201を提供できる。治療の直前に寸法を測定して、デバイスを選択することにより、医師は、患部の状態に合ったデバイスを使用して治療を行なえる。デバイスの留置に使用する経路を利用することにより、TEEプローブを使用する場合に比べて患者への侵襲および医師等の負担を大幅に低減する情報処理装置200を提供できる。 According to the present embodiment, by outputting the dimensions of the branch inlet 53, it is possible to provide the control unit 201 that supports device selection. By measuring dimensions and selecting a device immediately prior to treatment, the physician can use the device that best suits the condition of the affected area. By using the path used for placing the device, it is possible to provide the information processing apparatus 200 that greatly reduces the invasiveness to the patient and the burden on the doctor and the like compared to the case of using the TEE probe.
 医師が三次元画像59上にマーキングを行なうとともに、基準面54を調整することにより、医師が専門的知識に基づいて適切な寸法測定場所を選択できる情報処理装置200を提供できる。 The information processing device 200 can be provided that allows the doctor to select an appropriate dimension measurement location based on his/her expertise by marking the three-dimensional image 59 and adjusting the reference plane 54 .
[変形例]
 図9は、変形例の画面例である。図9においては、寸法欄76の下に推奨デバイス欄77が表示されている。たとえば、制御部201は分岐部入口53の寸法をデバイスメーカにサーバ、または、医療機関内の資材管理サーバ等に送信して、寸法に応じた推奨デバイスを受信する。分岐部入口53の寸法に基づいて推奨デバイスを選択するプログラムが、補助記憶装置203に記録されていてもよい。
[Modification]
FIG. 9 is a screen example of a modification. In FIG. 9 , a recommended device column 77 is displayed below the dimension column 76 . For example, the control unit 201 transmits the dimensions of the branch inlet 53 to a device manufacturer's server, or to a material management server in a medical institution, and receives a recommended device according to the dimensions. A program for selecting a recommended device based on the dimensions of the bifurcation entrance 53 may be recorded in the auxiliary storage device 203 .
 制御部201は複数の推奨デバイス候補を推奨デバイス欄77に表示し、医師が実際に使うデバイスを選択してもよい。制御部201は、推奨デバイス欄77により推奨デバイスに関する情報を出力するデバイス情報出力部の機能を実現する。 The control unit 201 may display a plurality of recommended device candidates in the recommended device column 77 and select the device that the doctor actually uses. The control unit 201 realizes the function of a device information output unit that outputs information about recommended devices using the recommended device column 77 .
[実施の形態2]
 本実施の形態は、一部のマーカが自動的に設定される情報処理装置200に関する。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 2]
This embodiment relates to an information processing apparatus 200 in which some markers are automatically set. Descriptions of the parts common to the first embodiment are omitted.
 図10は、実施の形態2のプログラムの処理の流れを説明するフローチャートである。制御部201は、断層像DB36から一組の分類データ57を取得する(ステップS501)。制御部201は、一組の分類データ57に基づいて三次元画像59を構築する(ステップS502)。 FIG. 10 is a flowchart explaining the processing flow of the program according to the second embodiment. The control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501). The control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502).
 制御部201は、自動的に設定するマーカの位置を決定する(ステップS521)。ステップS521で設定する位置は、たとえば枝部52の根本近傍である。具体例を挙げて説明する。制御部201は内腔領域40の表面を抽出する。制御部201は、たとえばパターンマッチングまたは数値解析により、内腔領域40の表面が鞍型曲面になっている部分を抽出する。制御部201は、抽出した鞍型曲面の頂点をマーカの位置に決定する。制御部201は、ステップS521により自動配置部の機能を実現する。 The control unit 201 determines the position of the automatically set marker (step S521). The position set in step S521 is, for example, the vicinity of the base of the branch portion 52 . A specific example will be given for explanation. Control unit 201 extracts the surface of lumen region 40 . Control unit 201 extracts a portion where the surface of lumen region 40 is a saddle-shaped curved surface, for example, by pattern matching or numerical analysis. The control unit 201 determines the extracted vertex of the saddle-shaped curved surface as the position of the marker. The control unit 201 implements the function of the automatic placement unit in step S521.
 制御部201は、三次元画像59から所定の領域を抽出する。制御部201は、ステップS521で決定したマーカを重畳させた三次元画像59を表示部205に表示する(ステップS522)。 The control unit 201 extracts a predetermined area from the three-dimensional image 59. The control unit 201 displays the three-dimensional image 59 on which the markers determined in step S521 are superimposed on the display unit 205 (step S522).
 図11Aおよび図11Bは、実施の形態2の画面例である。図11Aは、実施の形態1と同様の形状の三次元画像59の例を示す。鞍型曲面の頂点がM1のマーカで示されている。三次元画像59の上部に、第1マークを自動設定した旨のメッセージが表示されている。 11A and 11B are screen examples of the second embodiment. FIG. 11A shows an example of a three-dimensional image 59 having the same shape as in the first embodiment. The vertex of the saddle surface is indicated by the marker M1. A message to the effect that the first mark has been automatically set is displayed above the three-dimensional image 59 .
 図11Bは、鞍型曲面の頂点が2か所抽出される三次元画像59の例を示す。鞍型曲面の頂点がM1およびM2の2個のマーカで示されている。三次元画像59の上部に、第1マークおよび第2マークを自動設定した旨のメッセージが表示されている。 FIG. 11B shows an example of a three-dimensional image 59 from which two vertices of the saddle-shaped curved surface are extracted. The vertices of the saddle surface are indicated by two markers M1 and M2. A message to the effect that the first and second marks have been automatically set is displayed above the three-dimensional image 59 .
 図10に戻って説明を続ける。ユーザは入力部206を操作して、三次元画像59を適宜切断および回転等させ、三次元画像59の立体形状および自動的に設定したマーカの位置を把握する。ユーザは、分岐部入口53であると判断した位置に追加のマーキングを行なう。制御部201は、自動設定したマーカとの合計が3点以上になるように、ユーザによる追加のマーキング位置の指定を受け付ける(ステップS523)。 Return to Fig. 10 to continue the explanation. The user operates the input unit 206 to appropriately cut and rotate the three-dimensional image 59, and grasps the three-dimensional shape of the three-dimensional image 59 and the positions of automatically set markers. The user makes additional markings at the location determined to be the bifurcation entrance 53 . The control unit 201 accepts designation of additional marking positions by the user so that the total of the automatically set markers is 3 or more (step S523).
 制御部201は、マーキング位置を示すマーカを三次元画像59に重畳表示する。なお、制御部201は、自動的に設定したマーカも含めて、ユーザによるマーカの位置の移動、および、マーカの削除等の指示を受け付けてもよい。 The control unit 201 superimposes and displays a marker indicating the marking position on the three-dimensional image 59 . Note that the control unit 201 may receive instructions from the user such as to move the position of the marker, including the automatically set marker, and to delete the marker.
 制御部201は、マーキング位置に基づいて基準面54を算出する(ステップS505)。以後の処理は、図5を使用して説明した実施の形態1の処理の流れと同様であるため、説明を省略する。 The control unit 201 calculates the reference plane 54 based on the marking position (step S505). Since subsequent processing is the same as the processing flow of the first embodiment described using FIG. 5, description thereof is omitted.
 なお、制御部201はステップS521で位置を決定したマーカと、ユーザがマーキング位置を指定したマーカとを、同一の態様で表示しても、区別できる態様で表示してもよい。 Note that the control unit 201 may display the marker whose position is determined in step S521 and the marker whose marking position is specified by the user in the same manner or in a manner that allows them to be distinguished.
 本実施の形態によると、鞍型曲面の頂点を自動的に抽出してマーカを設定することにより、ユーザの手間を軽減する情報処理装置200を提供できる。なお、ステップS521で設定するマーカの位置は、鞍型曲面の頂点に限定しない。たとえば典型的な患部の形状と、マーカ位置とを示すテンプレートを用いたパターンマッチングにより、マーカの位置を決定してもよい。 According to the present embodiment, it is possible to provide the information processing apparatus 200 that reduces the user's trouble by automatically extracting the vertices of the saddle-shaped curved surface and setting the markers. Note that the position of the marker set in step S521 is not limited to the vertex of the saddle-shaped curved surface. For example, the position of the marker may be determined by pattern matching using a template showing the shape of a typical affected area and the position of the marker.
[実施の形態3]
 本実施の形態は、画像取得用カテーテル28の軸線に垂直な基準面54を使用する情報処理装置200に関する。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 3]
This embodiment relates to an information processing device 200 that uses a reference plane 54 perpendicular to the axis of the image acquisition catheter 28 . Descriptions of the parts common to the first embodiment are omitted.
 図12は、実施の形態3のプログラムの処理の流れを説明するフローチャートである。制御部201は、断層像DB36から一組の分類データ57を取得する(ステップS501)。制御部201は、一組の分類データ57に基づいて三次元画像59を構築する(ステップS502)。制御部201は、三次元画像59から所定の領域を抽出し、画像取得用カテーテル28の軸線に垂直な基準面54と共に表示部205に表示する(ステップS531)。 FIG. 12 is a flowchart for explaining the processing flow of the program according to the third embodiment. The control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501). The control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502). The control unit 201 extracts a predetermined region from the three-dimensional image 59 and displays it on the display unit 205 together with the reference plane 54 perpendicular to the axis of the image acquisition catheter 28 (step S531).
 図13Aは、実施の形態3の画面例である。画像取得用カテーテル28の軸線に垂直な基準面54が表示されている。基準面54には、三次元画像59の断面を示す左下がりのハッチングが表示されている。 FIG. 13A is a screen example of the third embodiment. A reference plane 54 perpendicular to the axis of the image acquisition catheter 28 is shown. On the reference plane 54, left-down hatching indicating a cross section of the three-dimensional image 59 is displayed.
 図12に戻って説明を続ける。制御部201は、ユーザによる基準面54の移動指示を受け付ける(ステップS532)。たとえばユーザが基準面54を選択してドラッグする操作を行なった場合、制御部201は基準面54を画像取得用カテーテル28の軸線に沿って平行に移動させる指示を受け付けて、基準面54の位置を変更する。制御部201は、ステップS532により移動受付部の機能を実現する。 Return to Fig. 12 to continue the explanation. The control unit 201 receives an instruction to move the reference plane 54 from the user (step S532). For example, when the user selects and drags the reference plane 54 , the control unit 201 receives an instruction to move the reference plane 54 in parallel along the axis of the image acquisition catheter 28 , and moves the position of the reference plane 54 . to change The control unit 201 implements the function of the movement reception unit in step S532.
 制御部201は、たとえばカーソルキーの押し下げ、または音声による指示を受け付けてもよい。制御部201は、画像取得用カテーテル28の軸線の両端に、基準面54を移動させる指示を受け付けるボタンを表示してもよい。 The control unit 201 may accept, for example, the pressing of a cursor key or an instruction by voice. The control unit 201 may display buttons for receiving an instruction to move the reference plane 54 at both ends of the axis of the image acquisition catheter 28 .
 制御部201は、ユーザの指示に基づいて移動させた後の基準面54に基づいて分岐部入口53を決定する(ステップS533)。なお、図13Aに示すように、基準面54で切断した三次元画像59の断面に、カテーテル領域47の穴を有さない領域が存在しない場合、制御部201は分岐部入口53を決定できないと判断して、次のステップに進む。 The control unit 201 determines the branch entrance 53 based on the reference plane 54 after being moved based on the user's instruction (step S533). Note that, as shown in FIG. 13A, if there is no region without a hole in the catheter region 47 in the cross section of the three-dimensional image 59 cut along the reference plane 54, the control unit 201 cannot determine the bifurcation entrance 53. Decide and move on to the next step.
 制御部201は、表示部205に表示した三次元画像59に、移動後の分岐部入口53および基準面54を重畳表示する(ステップS534)。その後、制御部201はユーザによる指示を待つ。 The control unit 201 superimposes the bifurcation entrance 53 and the reference plane 54 after movement on the three-dimensional image 59 displayed on the display unit 205 (step S534). After that, the control unit 201 waits for an instruction from the user.
 図13Bは、実施の形態3の画面例である。図13Bは、ユーザが基準面54を適切な位置に移動させた状態を示す。画像取得用カテーテル28の軸線に垂直な基準面54が表示されている。基準面54には、分岐部入口53を示す格子状のハッチングと、分岐部入口53以外の断面を示す左下がりのハッチングとが表示されている。 FIG. 13B is a screen example of the third embodiment. FIG. 13B shows the state in which the user has moved the reference surface 54 to the appropriate position. A reference plane 54 perpendicular to the axis of the image acquisition catheter 28 is shown. On the reference plane 54, grid-like hatching indicating the branch entrance 53 and left-downward hatching indicating cross sections other than the branch entrance 53 are displayed.
 ユーザは、基準面54を適切な状態に調整した後に、決定ボタン72を選択して基準面54を選択する指示を行なう。制御部201は、ユーザによる操作が基準面54を決定する指示であるか否かを判定する(ステップS535)。基準面54を決定する指示ではないと判定した場合(ステップS535でNO)、制御部201はステップS532に戻り、ユーザによる基準面54を移動させる指示を受け付ける。 After the user adjusts the reference plane 54 to an appropriate state, the user selects the enter button 72 to issue an instruction to select the reference plane 54 . The control unit 201 determines whether or not the user's operation is an instruction to determine the reference plane 54 (step S535). If it is determined that the instruction is not for determining the reference plane 54 (NO in step S535), the control unit 201 returns to step S532 and receives an instruction by the user to move the reference plane .
 基準面54を決定する指示を受け付けたと判定した場合(ステップS535でYES)、制御部201は、分岐部入口53の寸法を算出する(ステップS510)。制御部201は、算出した寸法を表示部205に表示する(ステップS511)。その後、制御部201は処理を終了する。 When determining that an instruction to determine the reference plane 54 has been received (YES in step S535), the control unit 201 calculates the dimensions of the branch entrance 53 (step S510). The control unit 201 displays the calculated dimensions on the display unit 205 (step S511). After that, the control unit 201 terminates the processing.
 本実施の形態によると、基準面54の位置を調整する操作が簡便な情報処理装置200を提供できる。 According to the present embodiment, it is possible to provide the information processing device 200 in which the operation of adjusting the position of the reference plane 54 is simple.
 なお、図12を使用して説明したフローチャートのステップS532において、制御部201は基準面54を、画像取得用カテーテル28の軸線に対して斜めに移動させる指示を受け付けてもよい。たとえばユーザは目的の位置近傍に基準面54を移動させた後に、右クリックまたは音声入力等により基準面54の動作モードを切り替える。制御部201は、動作モードの切り替えを受け付け、その後のステップS532では、基準面54を傾ける等の指示を受け付ける。 Note that in step S532 of the flowchart described using FIG. 12, the control unit 201 may receive an instruction to move the reference plane 54 obliquely with respect to the axis of the image acquisition catheter 28. For example, after moving the reference plane 54 to the vicinity of the target position, the user switches the operation mode of the reference plane 54 by right-clicking, voice input, or the like. The control unit 201 accepts switching of the operation mode, and then accepts an instruction such as tilting the reference plane 54 in step S532.
[実施の形態4]
 本実施の形態は、画像取得用カテーテル28の軸線に垂直な基準面54を使用して自動的に分岐部入口53を抽出する情報処理装置200に関する。実施の形態3と共通する部分については、説明を省略する。
[Embodiment 4]
This embodiment relates to an information processing apparatus 200 that automatically extracts the bifurcation entrance 53 using a reference plane 54 perpendicular to the axis of the image acquisition catheter 28 . The description of the parts common to the third embodiment is omitted.
 図14は、実施の形態4の基準面54の初期位置を説明する説明図である。画像取得用カテーテル28の軸線に垂直な5枚の基準面54を、基準面54S1から基準面54S5で示す。それぞれの基準面54の位置を、基準面54から三次元画像59に向けた矢印で示す。 FIG. 14 is an explanatory diagram for explaining the initial position of the reference plane 54 of the fourth embodiment. Five reference planes 54 perpendicular to the axis of the image acquisition catheter 28 are indicated by reference planes 54S1 to 54S5. The position of each reference plane 54 is indicated by an arrow pointing from the reference plane 54 to the three-dimensional image 59 .
 基準面54S1には、幹部51の断面が表れている。基準面54S2には、幹部51が下向きに伸びた断面が表れている。基準面54S3には、幹部51と枝部52とが分離した断面が表れている。基準面54S4には、幹部51の断面および枝部52の先端部分の断面が表れている。基準面54S5には、幹部51の断面が表れている。 A cross section of the trunk 51 appears on the reference surface 54S1. A cross section of the trunk 51 extending downward appears on the reference surface 54S2. A cross section in which the stem 51 and the branch 52 are separated appears on the reference plane 54S3. A cross section of the stem 51 and a cross section of the tip portion of the branch portion 52 appear on the reference plane 54S4. A cross section of the trunk 51 appears on the reference surface 54S5.
 制御部201は、画像取得用カテーテル28の軸線に垂直な基準面54を順次移動させ、幹部51が表れる最後の基準面54を抽出する。具体的には、図14に示す例においては、制御部201は基準面54S1から基準面54S5に向けて基準面54を順次移動させ、枝部52が表れる最後の基準面54である基準面54S4を抽出する。 The control unit 201 sequentially moves the reference plane 54 perpendicular to the axis of the image acquisition catheter 28, and extracts the final reference plane 54 where the trunk 51 appears. Specifically, in the example shown in FIG. 14, the control unit 201 sequentially moves the reference plane 54 from the reference plane 54S1 toward the reference plane 54S5, and the reference plane 54S4, which is the last reference plane 54 where the branch portion 52 appears, is moved. to extract
 その後、制御部201は基準面54S4から枝部52が存在する方に向けて分岐部入口53を順次移動させて、幹部51が表れる最後の基準面54を抽出する。具体的には、図14に示す例においては、制御部201は基準面54S4から基準面54S1に向けて基準面54を順次移動させ、枝部52が表れる最後の基準面54を抽出する。ここで抽出される基準面54は、実施の形態3で説明した図13Bに示す基準面54と同様であるため、図14においては図示を省略する。 After that, the control unit 201 sequentially moves the branch entrance 53 from the reference plane 54S4 toward the branch 52, and extracts the final reference plane 54 where the trunk 51 appears. Specifically, in the example shown in FIG. 14, the control unit 201 sequentially moves the reference plane 54 from the reference plane 54S4 toward the reference plane 54S1, and extracts the last reference plane 54 where the branch portion 52 appears. Since the reference plane 54 extracted here is the same as the reference plane 54 shown in FIG. 13B described in Embodiment 3, illustration thereof is omitted in FIG.
 なお、制御部201はステップS502で構築した三次元画像59を基準面54で切断した断面の代わりに、ステップS501で取得した個々の分類データ57を使用してもよい。このようにする場合には、個々の分類データ57に対応する走査面が、基準面54に対応する。 Note that the control unit 201 may use the individual classification data 57 acquired in step S501 instead of the cross section obtained by cutting the three-dimensional image 59 constructed in step S502 along the reference plane 54 . In this case, the scanning plane corresponding to each classification data 57 corresponds to the reference plane 54 .
 図15は、実施の形態4のプログラムの処理の流れを説明するフローチャートである。制御部201は、断層像DB36から一組の分類データ57を取得する(ステップS501)。制御部201は、一組の分類データ57に基づいて三次元画像59を構築する(ステップS502)。 FIG. 15 is a flow chart for explaining the processing flow of the program of the fourth embodiment. The control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501). The control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502).
 制御部201は、図14を使用して説明したように、画像取得用カテーテル28の軸に垂直な基準面54を使用して、枝部52の端を含む基準面54を抽出する(ステップS541)。ステップS541で抽出される基準面54は、図14においては基準面54S4である。 As described with reference to FIG. 14, the control unit 201 uses the reference plane 54 perpendicular to the axis of the image acquisition catheter 28 to extract the reference plane 54 including the end of the branch 52 (step S541 ). The reference plane 54 extracted in step S541 is the reference plane 54S4 in FIG.
 制御部201は、ステップS541で抽出した基準面54を基準にして、どちら側方向に枝部52が存在しているかを判定する(ステップS542)。制御部201は、所定の領域を抽出した三次元画像59と、ステップS541で抽出した基準面54と、ステップS542で判定した方向とを表示部205に表示する(ステップS543)。 The control unit 201 determines in which side direction the branch portion 52 exists with reference to the reference plane 54 extracted in step S541 (step S542). The control unit 201 displays the three-dimensional image 59 in which the predetermined area is extracted, the reference plane 54 extracted in step S541, and the direction determined in step S542 on the display unit 205 (step S543).
 図16は、実施の形態4の画面例である。図16は、ステップS543において制御部201が表示部205に表示する画面の例を示す。三次元画像59に、図14における基準面54S4に対応する基準面54が重畳表示されている。基準面54の近傍に、ステップS542で判定した方向を示す矢印が表示されている。画面の上部に「お待ちください」というコメントが表示されている。 FIG. 16 is a screen example of the fourth embodiment. FIG. 16 shows an example of a screen displayed on the display unit 205 by the control unit 201 in step S543. A reference plane 54 corresponding to the reference plane 54S4 in FIG. 14 is superimposed on the three-dimensional image 59 and displayed. An arrow indicating the direction determined in step S542 is displayed near the reference plane 54 . A comment "Please wait" is displayed at the top of the screen.
 図16に示す画面により、ユーザは制御部201が適切に枝部52の先端を含む基準面54および枝部52の根本に向かう方向を判定したことを確認できる。仮に制御部201の判定が間違っている場合、ユーザはたとえば実施の形態3で説明した動作モードへの移行を指示して、手動で基準面54を決定する。 With the screen shown in FIG. 16, the user can confirm that the control unit 201 has appropriately determined the reference plane 54 including the tip of the branch 52 and the direction toward the base of the branch 52 . If the determination by control unit 201 is incorrect, the user instructs the transition to the operation mode described in the third embodiment, for example, and manually determines reference plane 54 .
 図15に戻って説明を続ける。制御部201は基準面選択-1のサブルーチンを起動する(ステップS544)。基準面選択-1のサブルーチンは、画像取得用カテーテル28の軸線に垂直な基準面54を、枝部52の根本に向けて平行移動させるサブルーチンである。制御部201は、基準面選択-1のサブルーチンにより、基準面54をたとえば図13Bで示した位置に移動させる。基準面選択-1のサブルーチンの処理の流れは後述する。 Return to Fig. 15 to continue the explanation. The control unit 201 starts the reference plane selection-1 subroutine (step S544). The reference plane selection-1 subroutine is a subroutine that translates the reference plane 54 perpendicular to the axis of the image acquisition catheter 28 toward the base of the branch 52 . The control unit 201 moves the reference plane 54 to the position shown in FIG. 13B, for example, by the reference plane selection-1 subroutine. The processing flow of the reference plane selection-1 subroutine will be described later.
 制御部201は、移動させた後の基準面54に基づいて分岐部入口53を決定する(ステップS506)。以後の処理は、図5を使用して説明した実施の形態1の処理の流れと同様であるため、説明を省略する。 The control unit 201 determines the branch entrance 53 based on the reference plane 54 after movement (step S506). Since subsequent processing is the same as the processing flow of the first embodiment described using FIG. 5, description thereof is omitted.
 図17は、基準面選択-1のサブルーチンの処理の流れを説明するフローチャートである。基準面選択-1のサブルーチンは、画像取得用カテーテル28の軸線に垂直な基準面54を、枝部52の根本に向けて平行移動させるサブルーチンである。 FIG. 17 is a flowchart for explaining the processing flow of the reference plane selection-1 subroutine. The reference plane selection-1 subroutine is a subroutine that translates the reference plane 54 perpendicular to the axis of the image acquisition catheter 28 toward the base of the branch 52 .
 制御部201は、基準面54をステップS542で判定した向きに所定の量だけ平行移動させる(ステップS551)。所定の量は、たとえば画像取得用カテーテル28の走査面1枚分、または、複数枚分である。所定の量は、走査面の整数倍に限定しない。 The control unit 201 translates the reference plane 54 by a predetermined amount in the direction determined in step S542 (step S551). The predetermined amount is, for example, one or more scan planes of the image acquisition catheter 28 . The predetermined amount is not limited to integral multiples of the scanning plane.
 制御部201は、移動後の基準面54において、枝部52が終了しているか否かを判定する(ステップS552)。具体的には制御部201は、基準面54で三次元画像59を切断した断面に、図7を使用して説明したカテーテル領域47の穴を有さない領域が存在しない場合、枝部52が終了したと判定する。 The control unit 201 determines whether or not the branch portion 52 has ended on the reference plane 54 after movement (step S552). Specifically, if the section obtained by cutting the three-dimensional image 59 on the reference plane 54 does not include a region without a hole in the catheter region 47 described with reference to FIG. Determine that it is finished.
 枝部52が終了していないと判定した場合(ステップS552でNO)、制御部201はステップS551に戻る。枝部52が終了したと判定した場合(ステップS552でYES)、制御部201は基準面54を一つ前のループの位置に戻す(ステップS553)。その後、制御部201は処理を終了する。 If it is determined that the branch section 52 has not ended (NO in step S552), the control section 201 returns to step S551. If it is determined that the branch portion 52 has ended (YES in step S552), the control unit 201 returns the reference plane 54 to the previous loop position (step S553). After that, the control unit 201 terminates the processing.
 なお制御部201はステップS551の後に、基準面54における枝部52の面積を算出し、枝部52の面積が一つ前のループに比べて大きく変わった場合にステップS552において枝部52が終了したと判定してもよい。 Note that after step S551, the control unit 201 calculates the area of the branch portion 52 on the reference plane 54, and if the area of the branch portion 52 changes significantly compared to the previous loop, the branch portion 52 ends in step S552. It may be determined that
 制御部201は、ステップS551で基準面54を移動させるたびに、図16に示す画面を更新してもよい。ユーザは、制御部201が自動的に基準面54の位置を決定する過程を確認できる。 The control unit 201 may update the screen shown in FIG. 16 each time the reference plane 54 is moved in step S551. The user can confirm the process in which the control unit 201 automatically determines the position of the reference plane 54 .
 本実施の形態によると、画像取得用カテーテル28の軸線に垂直な基準面54の位置を自動的に定める情報処理装置200を提供できる。ユーザは、自動的に定められた基準面54を必要に応じて適宜調整して、分岐部入口53の寸法を確認し、適切なデバイスを選択できる。 According to this embodiment, the information processing device 200 that automatically determines the position of the reference plane 54 perpendicular to the axis of the image acquisition catheter 28 can be provided. The user can adjust the automatically determined reference plane 54 as needed to confirm the dimensions of the bifurcation inlet 53 and select the appropriate device.
 なお制御部201は、実施の形態2で説明したように枝部52の根本近傍の点を自動的に検出し、基準面54を当該点まで平行移動させてもよい。 Note that the control unit 201 may automatically detect a point near the root of the branch 52 as described in the second embodiment, and translate the reference plane 54 to that point.
[実施の形態5]
 本実施の形態は、画像取得用カテーテル28の軸線に平行な基準面54を使用する情報処理装置200に関する。実施の形態3と共通する部分については、説明を省略する。
[Embodiment 5]
This embodiment relates to an information processing device 200 that uses a reference plane 54 parallel to the axis of the image acquisition catheter 28 . The description of the parts common to the third embodiment is omitted.
 図18は、実施の形態5のプログラムの処理の流れを説明するフローチャートである。制御部201は、断層像DB36から一組の分類データ57を取得する(ステップS501)。制御部201は、一組の分類データ57に基づいて三次元画像59を構築する(ステップS502)。制御部201は端点522(図19A参照)を抽出する(ステップS561)。 FIG. 18 is a flowchart for explaining the processing flow of the program according to the fifth embodiment. The control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501). The control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502). The control unit 201 extracts the endpoint 522 (see FIG. 19A) (step S561).
 図19Aは、実施の形態5の画面例である。図19Aに示すように、端点522は枝部52のうち画像取得用カテーテル28の軸線からみて最も遠位側に存在する点である。制御部201は、ステップS561により、遠位点である端点522を自動的に選択する遠位点選択部の機能を実現する。 FIG. 19A is a screen example of the fifth embodiment. As shown in FIG. 19A, end point 522 is the most distal point of branch 52 when viewed from the axis of image acquisition catheter 28 . In step S561, the control unit 201 realizes the function of the distal point selection unit that automatically selects the end point 522, which is the distal point.
 端点522の抽出方法について、具体例を挙げて説明する。たとえば制御部201は図14を使用して説明したように、画像取得用カテーテル28の軸線に垂直な各断面について枝部52を抽出する。制御部201は、抽出した枝部52のうち、画像取得用カテーテル28の軸線から最も遠い点を抽出する。制御部201は、パターンマッチングにより三次元画像59から枝部52を抽出した後に、枝部52のうち、画像取得用カテーテル28の軸線から最も遠い点を抽出してもよい。 A specific example will be given to explain the method of extracting the endpoint 522. For example, the control unit 201 extracts the branches 52 for each cross section perpendicular to the axis of the image acquisition catheter 28, as described using FIG. The control unit 201 extracts the farthest point from the axis of the image acquisition catheter 28 among the extracted branch portions 52 . After extracting the branch 52 from the three-dimensional image 59 by pattern matching, the control unit 201 may extract the farthest point from the axis of the image acquisition catheter 28 in the branch 52 .
 図19Aに示す画面により、ユーザは制御部201が適切に画像取得用カテーテル28の軸を含み、枝部52が延びる向きに略垂直である基準面54を判定したことを確認できる。仮に制御部201の判定が間違っている場合、ユーザはたとえば実施の形態1から実施の形態4で説明したモードへの移行を指示して、本実施の形態とは異なるアルゴリズムにより基準面54を決定する。 The screen shown in FIG. 19A allows the user to confirm that the control unit 201 has appropriately determined the reference plane 54 that includes the axis of the image acquisition catheter 28 and is substantially perpendicular to the extending direction of the branch portion 52 . If the determination by control unit 201 is incorrect, the user instructs the mode to shift to, for example, the modes described in Embodiments 1 to 4, and determines reference plane 54 by an algorithm different from that of the present embodiment. do.
 なお制御部201は、基準面54の向き、垂線Pの向き、または、端点522の位置を変更する指示をユーザから受け付けてもよい。 Note that the control unit 201 may receive an instruction from the user to change the orientation of the reference plane 54, the orientation of the perpendicular P, or the position of the end point 522.
 図18に戻って説明を続ける。制御部201は、ステップS561で抽出した端点522から、画像取得用カテーテル28の軸線に下ろした垂線Pを決定する(ステップS562)。なお、図19Aにおいては、画像取得用カテーテル28の軸線を一点鎖線で示し、垂線Pを細い実線で示す。 Return to Fig. 18 to continue the explanation. The control unit 201 determines a perpendicular line P drawn down from the end point 522 extracted in step S561 to the axis of the image acquisition catheter 28 (step S562). In FIG. 19A, the axis of the image acquisition catheter 28 is indicated by a dashed line, and the perpendicular line P is indicated by a thin solid line.
 制御部201は、画像取得用カテーテル28の軸線を含み、垂線Pに垂直な基準面54を作成する(ステップS563)。制御部201は、ステップS563により基準面54を作成する基準面作成部の機能を実現する。制御部201は、三次元画像59から所定の領域を抽出し、端点522、垂線Pおよび基準面54と共に表示部205に表示する(ステップS564)。 The control unit 201 creates a reference plane 54 that includes the axis of the image acquisition catheter 28 and is perpendicular to the perpendicular line P (step S563). The control unit 201 realizes the function of the reference plane creation unit that creates the reference plane 54 in step S563. The control unit 201 extracts a predetermined area from the three-dimensional image 59 and displays it on the display unit 205 together with the end point 522, the perpendicular line P and the reference plane 54 (step S564).
 前述の図19Aは、ステップS531で制御部201が表示する画面の例である。画像取得用カテーテル28の軸線を含み、当該軸線に平行な基準面54が表示されている。基準面54には、三次元画像59の断面を示す左下がりのハッチングが表示されている。図19Aにおいては、ハッチングした断面の両端は三次元画像59の断端であり、三次元画像59の表面を示す閉曲線で囲まれてはいない。 FIG. 19A described above is an example of the screen displayed by the control unit 201 in step S531. A reference plane 54 is shown that includes and is parallel to the axis of the image acquisition catheter 28 . On the reference plane 54, left-down hatching indicating a cross section of the three-dimensional image 59 is displayed. In FIG. 19A , both ends of the hatched section are stumps of the three-dimensional image 59 and are not surrounded by closed curves indicating the surface of the three-dimensional image 59 .
 図18に戻って説明を続ける。制御部201は、ユーザによる基準面54の移動指示を受け付ける(ステップS565)。たとえばユーザが基準面54を選択してドラッグする操作を行なった場合、制御部201は基準面54を垂線Pに沿って平行に移動させる指示を受け付けて、基準面54の位置を変更する。 Return to Fig. 18 to continue the explanation. The control unit 201 receives an instruction to move the reference plane 54 from the user (step S565). For example, when the user selects and drags the reference plane 54 , the control unit 201 receives an instruction to move the reference plane 54 parallel to the perpendicular line P and changes the position of the reference plane 54 .
 制御部201は、たとえばカーソルキーの押し下げ、または音声による指示を受け付けてもよい。制御部201は、垂線Pの両端に、基準面54を移動させる指示を受け付けるボタンを表示してもよい。制御部201は、ステップS565により移動受付部の機能を実現する。 The control unit 201 may accept, for example, the pressing of a cursor key or an instruction by voice. The control unit 201 may display buttons at both ends of the perpendicular line P for accepting an instruction to move the reference plane 54 . The control unit 201 implements the function of the movement reception unit in step S565.
 制御部201は、ユーザの指示に基づいて移動させた後の基準面54に基づいて分岐部入口53を決定する(ステップS566)。なお、図19Aに示す基準面54のように、基準面54で切断した三次元画像59の断面が、三次元画像59の表面を示す閉曲線で囲まれていない場合、制御部201は分岐部入口53を決定できないと判断して、次のステップに進む。 The control unit 201 determines the branch entrance 53 based on the reference plane 54 after being moved based on the user's instruction (step S566). Note that when the cross section of the three-dimensional image 59 cut by the reference plane 54 is not surrounded by a closed curve representing the surface of the three-dimensional image 59 as in the reference plane 54 shown in FIG. 53 cannot be determined and proceed to the next step.
 制御部201は、表示部205に表示した三次元画像59に、移動後の基準面54を重畳表示する(ステップS567)。ステップS566で分岐部入口53を決定できた場合、制御部201はステップS567において分岐部入口53も重畳表示する。その後、制御部201はユーザによる指示を待つ。 The control unit 201 superimposes the reference plane 54 after movement on the three-dimensional image 59 displayed on the display unit 205 (step S567). If the branch entrance 53 can be determined in step S566, the controller 201 also superimposes the branch entrance 53 in step S567. After that, the control unit 201 waits for an instruction from the user.
 図19Bは、実施の形態5の画面例である。図19Bは、制御部201が分岐部入口53を決定できた場合に制御部201がステップS567で表示する画面例を示す。制御部201が分岐部入口53であると決定した領域を、格子状のハッチングで示す。ユーザは、基準面54を適切な状態に調整した後に、決定ボタン72を選択して基準面54を選択する指示を行なう。 FIG. 19B is a screen example of the fifth embodiment. FIG. 19B shows an example of a screen displayed by the control unit 201 in step S567 when the control unit 201 has successfully determined the branch entrance 53 . The area determined by the control unit 201 to be the branch entrance 53 is indicated by grid-like hatching. After the user adjusts the reference plane 54 to an appropriate state, the user selects the enter button 72 to issue an instruction to select the reference plane 54 .
 図18に戻って説明を続ける。制御部201は、ユーザによる操作が基準面54を決定する指示であるか否かを判定する(ステップS568)。基準面54を決定する指示ではないと判定した場合(ステップS568でNO)、制御部201はステップS565に戻り、ユーザによる基準面54を移動させる指示を受け付ける。 Return to Fig. 18 to continue the explanation. The control unit 201 determines whether or not the user's operation is an instruction to determine the reference plane 54 (step S568). If it is determined that the instruction is not to determine the reference plane 54 (NO in step S568), the control unit 201 returns to step S565 and accepts the user's instruction to move the reference plane .
 基準面54を決定する指示を受け付けたと判定した場合(ステップS568でYES)、制御部201は、分岐部入口53の寸法を算出する(ステップS510)。制御部201は、算出した寸法を表示部205に表示する(ステップS511)。その後、制御部201は処理を終了する。 When determining that an instruction to determine the reference plane 54 has been received (YES in step S568), the control unit 201 calculates the dimensions of the branch entrance 53 (step S510). The control unit 201 displays the calculated dimensions on the display unit 205 (step S511). After that, the control unit 201 terminates the processing.
 本実施の形態によると、基準面54の位置を調整する操作が簡便な情報処理装置200を提供できる。 According to the present embodiment, it is possible to provide the information processing device 200 in which the operation of adjusting the position of the reference plane 54 is simple.
 なお、図18を使用して説明したフローチャートのステップS565において、制御部201は基準面54を、垂線Pに対して斜めに移動させる指示を受け付けてもよい。たとえばユーザは目的の位置近傍に基準面54を移動させた後に、右クリックまたは音声入力等により基準面54の動作モードを切り替える。制御部201は、動作モードの切り替えを受け付け、その後のステップS565では、基準面54を傾ける等の指示を受け付ける。 It should be noted that in step S565 of the flowchart explained using FIG. For example, after moving the reference plane 54 to the vicinity of the target position, the user switches the operation mode of the reference plane 54 by right-clicking, voice input, or the like. The control unit 201 accepts switching of the operation mode, and in subsequent step S565, accepts an instruction such as tilting the reference plane 54 .
[実施の形態6]
 本実施の形態は、画像取得用カテーテル28の軸線に平行な基準面54を使用して自動的に分岐部入口53を抽出する情報処理装置200に関する。実施の形態5と共通する部分については、説明を省略する。
[Embodiment 6]
This embodiment relates to an information processing apparatus 200 that automatically extracts a bifurcation entrance 53 using a reference plane 54 parallel to the axis of the image acquisition catheter 28 . Descriptions of the portions common to the fifth embodiment are omitted.
 図20は、実施の形態6のプログラムの処理の流れを説明するフローチャートである。ステップS564までの処理の流れは、図18を使用して説明した実施の形態5のプログラムの処理の流れと同様であるため、説明を省略する。 FIG. 20 is a flow chart for explaining the processing flow of the program of the sixth embodiment. The flow of processing up to step S564 is the same as the flow of processing of the program of Embodiment 5 described using FIG. 18, so description thereof will be omitted.
 制御部201は基準面選択-2のサブルーチンを起動する(ステップS571)。基準面選択-2のサブルーチンは、垂線Pに垂直な基準面54を枝部52が切断される位置まで平行移動させるサブルーチンである。基準面選択-2のサブルーチンの処理の流れは後述する。 The control unit 201 starts the reference plane selection-2 subroutine (step S571). The reference plane selection-2 subroutine is a subroutine that translates the reference plane 54 perpendicular to the perpendicular P to a position where the branch portion 52 is cut. The processing flow of the reference plane selection-2 subroutine will be described later.
 制御部201は、移動させた後の基準面54に基づいて分岐部入口53を決定する(ステップS506)。以後の処理は、図5を使用して説明した実施の形態1の処理の流れと同様であるため、説明を省略する。 The control unit 201 determines the branch entrance 53 based on the reference plane 54 after movement (step S506). Since subsequent processing is the same as the processing flow of the first embodiment described using FIG. 5, description thereof is omitted.
 図21は、基準面選択-2のサブルーチンの処理の流れを説明するフローチャートである。基準面選択-2のサブルーチンは、垂線Pに垂直な基準面54を枝部52が切断される位置まで平行移動させるサブルーチンである。 FIG. 21 is a flowchart for explaining the processing flow of the reference plane selection-2 subroutine. The reference plane selection-2 subroutine is a subroutine that translates the reference plane 54 perpendicular to the perpendicular P to a position where the branch portion 52 is cut.
 制御部201は、端点522に向けて平行移動させる(ステップS581)。制御部201は、移動後の基準面54が三次元画像59を切断する断面を作成する(ステップS582)。制御部201は、断面が三次元画像59の表面を示す閉曲線で囲まれているか否か、すなわち閉じた面になっているか否かを判定する(ステップS583)。 The control unit 201 performs parallel movement toward the end point 522 (step S581). The control unit 201 creates a cross section in which the reference plane 54 after movement cuts the three-dimensional image 59 (step S582). The control unit 201 determines whether or not the cross section is surrounded by a closed curve representing the surface of the three-dimensional image 59, that is, whether or not the cross section is a closed surface (step S583).
 閉じた面になっていないと判定した場合(ステップS583でNO)、制御部201はステップS581に戻る。閉じた面になっていると判定した場合(ステップS583でYES)、制御部201は処理を終了する。 If it is determined that the surface is not closed (NO in step S583), the control unit 201 returns to step S581. If it is determined that the face is closed (YES in step S583), the control unit 201 ends the process.
 本実施の形態によると、画像取得用カテーテル28の軸線を含む基準面54の位置を自動的に定める情報処理装置200を提供できる。ユーザは、自動的に定められた基準面54を必要に応じて適宜調整して、分岐部入口53の寸法を確認し、適切なデバイスを選択できる。 According to this embodiment, the information processing device 200 that automatically determines the position of the reference plane 54 including the axis of the image acquisition catheter 28 can be provided. The user can adjust the automatically determined reference plane 54 as needed to confirm the dimensions of the bifurcation inlet 53 and select the appropriate device.
 なお制御部201は、実施の形態2で説明したように枝部52の根本近傍の点を自動的に検出し、基準面54を当該点まで平行移動させてもよい。制御部201は、枝部52の根本近傍から所定の範囲内で断面が閉じている平面を検出できない場合(ステップS583でNO)、分岐部入口53を自動的に検出できないと判定し、その旨を表示部205に表示してもよい。 Note that the control unit 201 may automatically detect a point near the root of the branch 52 as described in the second embodiment, and translate the reference plane 54 to that point. When the control unit 201 cannot detect a plane with a closed cross section within a predetermined range from the vicinity of the base of the branch 52 (NO in step S583), the control unit 201 determines that the branch entrance 53 cannot be automatically detected, and states that. may be displayed on the display unit 205 .
[実施の形態7]
 本実施の形態は、枝部52の軸線に垂直な基準面54を使用する情報処理装置200に関する。実施の形態3と共通する部分については、説明を省略する。
[Embodiment 7]
This embodiment relates to an information processing apparatus 200 that uses a reference plane 54 perpendicular to the axis of the branch portion 52 . The description of the parts common to the third embodiment is omitted.
 図22は、実施の形態7の枝部52の軸線である枝軸521を説明する説明図である。画像取得用カテーテル28の軸線に垂直な5枚の断層像58に基づいて作成された分類画像を分類画像S6から分類画像S10で示す。それぞれの分類画像の位置を、分類画像から三次元画像59に向けた矢印で示す。 FIG. 22 is an explanatory diagram for explaining a branch shaft 521 that is the axis of the branch portion 52 of the seventh embodiment. Classified images S6 to S10 are classified images created based on five tomographic images 58 perpendicular to the axis of the image acquisition catheter 28. FIG. The position of each classified image is indicated by an arrow pointing from the classified image to the three-dimensional image 59 .
 分類画像S6から分類画像S10には、幹部51の断面が表れている。分類画像S6から分類画像S10には、幹部51から下側に分離した枝部52の断面も表れている。それぞれの枝部52の断面に対して、重心55の座標が算出されている。 The cross section of the trunk 51 appears in the classified images S6 to S10. In the classified images S6 to S10, the cross section of the branch 52 separated from the trunk 51 to the lower side also appears. The coordinates of the center of gravity 55 are calculated with respect to the cross section of each branch portion 52 .
 制御部201は、それぞれの分類画像で算出した重心55の座標をたとえば最小二乗法により直線で近似して、枝軸521を表す式を算出する。重心55の算出および複数の点の直線近似は従来から行なわれているため、詳細については説明を省略する。以上により制御部201は、枝部52の軸線である枝軸521を作成する。 The control unit 201 approximates the coordinates of the center of gravity 55 calculated for each classified image with a straight line, for example, by the method of least squares, and calculates an equation representing the branch axis 521 . Since the calculation of the center of gravity 55 and the linear approximation of a plurality of points have been conventionally performed, detailed description thereof will be omitted. As described above, the control unit 201 creates the branch shaft 521 that is the axis of the branch portion 52 .
 図23Aおよび図23Bは、実施の形態7の画面例である。枝軸521に垂直な基準面54が、三次元画像59に重畳表示されている。ユーザは、たとえば図23Bに示すように所望の位置まで基準面54を平行移動させた後に、決定ボタン72を選択する。制御部201は、基準面54で切断した三次元画像59の断面から、分岐部入口53を抽出して、寸法を算出する。 23A and 23B are examples of screens according to the seventh embodiment. A reference plane 54 perpendicular to the branch axis 521 is displayed superimposed on the three-dimensional image 59 . The user selects the decision button 72 after translating the reference plane 54 to a desired position, for example, as shown in FIG. 23B. The control unit 201 extracts the bifurcation entrance 53 from the cross section of the three-dimensional image 59 cut along the reference plane 54 and calculates the dimensions.
 図24は、実施の形態7のプログラムの処理の流れを説明するフローチャートである。制御部201は、断層像DB36から一組の分類データ57を取得する(ステップS501)。制御部201は、一組の分類データ57に基づいて三次元画像59を構築する(ステップS502)。 FIG. 24 is a flow chart for explaining the processing flow of the program of the seventh embodiment. The control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501). The control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502).
 制御部201は枝軸作成のサブルーチンを起動する(ステップS591)。枝軸作成のサブルーチンは、図23Aを使用して説明したように枝部52の軸線である枝軸521を作成するサブルーチンである。枝軸作成のサブルーチンの処理の流れは後述する。制御部201は、枝軸作成のサブルーチンにより枝軸算出部の機能を実現する。 The control unit 201 starts a branch axis creation subroutine (step S591). The branch axis creation subroutine is a subroutine for creating the branch axis 521, which is the axis of the branch portion 52, as described with reference to FIG. 23A. The processing flow of the branch axis creation subroutine will be described later. The control unit 201 realizes the function of the branch axis calculation unit by a branch axis creation subroutine.
 制御部201は、枝軸521が枝部52を貫通する貫通点523を選択する(ステップS592)。制御部201は、ステップS592で選択した貫通点523を通り、枝軸521に垂直な基準面54を作成する(ステップS593)。制御部201は、ステップS593により基準面54を作成する基準面作成部の機能を実現する。制御部201は、所定の領域を抽出した三次元画像59と、枝軸521と、ステップS593で決定した基準面54とを表示部205に表示する(ステップS594)。 The control unit 201 selects a penetration point 523 where the branch shaft 521 penetrates the branch portion 52 (step S592). The control unit 201 creates a reference plane 54 passing through the piercing point 523 selected in step S592 and perpendicular to the branch axis 521 (step S593). The control unit 201 implements the function of the reference plane creation unit that creates the reference plane 54 in step S593. The control unit 201 displays the three-dimensional image 59 from which the predetermined area is extracted, the branch axis 521, and the reference plane 54 determined in step S593 on the display unit 205 (step S594).
 前述の図23Aは、ステップS594で制御部201が表示部205に表示する画面の例である。なお、図23Aに示す画面により、ユーザは制御部201が枝軸521を適切に作成したことを確認できる。仮に制御部201が作成した枝軸521が不適切である場合、ユーザはたとえば実施の形態1から実施の形態6で説明したモードへの移行を指示して、本実施の形態とは異なるアルゴリズムにより基準面54を決定する。 FIG. 23A described above is an example of the screen displayed on the display unit 205 by the control unit 201 in step S594. The screen shown in FIG. 23A allows the user to confirm that the control unit 201 has created the branch axis 521 appropriately. If branch axis 521 created by control unit 201 is inappropriate, for example, the user instructs a transition to the mode described in Embodiments 1 to 6, and an algorithm different from that of this embodiment is used. A reference plane 54 is determined.
 制御部201は、図23Aに例示する画面を介して、基準面54の向き、枝軸521の向き、または、枝軸521の位置を変更する指示をユーザから受け付けてもよい。 The control unit 201 may receive an instruction from the user to change the orientation of the reference plane 54, the orientation of the branch shaft 521, or the position of the branch shaft 521 via the screen illustrated in FIG. 23A.
 制御部201は、ユーザによる基準面54の移動指示を受け付ける(ステップS595)。たとえばユーザが基準面54を選択してドラッグする操作を行なった場合、制御部201は基準面54を枝軸521に沿って平行に移動させる指示を受け付けて、基準面54の位置を変更する。 The control unit 201 receives an instruction to move the reference plane 54 from the user (step S595). For example, when the user selects and drags the reference plane 54 , the control unit 201 receives an instruction to move the reference plane 54 parallel to the branch axis 521 and changes the position of the reference plane 54 .
 制御部201は、たとえばカーソルキーの押し下げ、または音声による指示を受け付けてもよい。制御部201は、枝軸521の両端に、基準面54を移動させる指示を受け付けるボタンを表示してもよい。制御部201は、ステップS595により移動受付部の機能を実現する。 The control unit 201 may accept, for example, the pressing of a cursor key or an instruction by voice. The control unit 201 may display buttons at both ends of the branch shaft 521 to receive an instruction to move the reference plane 54 . The control unit 201 realizes the function of the movement reception unit in step S595.
 制御部201は、ユーザの指示に基づいて移動させた後の基準面54に基づいて分岐部入口53を決定する(ステップS596)。なお、基準面54で切断した三次元画像59の断面に、カテーテル領域47の穴を有さない領域が存在しない場合、制御部201は分岐部入口53を決定できないと判断して、次のステップに進む。 The control unit 201 determines the branch entrance 53 based on the reference plane 54 after being moved based on the user's instruction (step S596). Note that if the section of the three-dimensional image 59 cut by the reference plane 54 does not include a region having no hole in the catheter region 47, the control unit 201 determines that the bifurcation entrance 53 cannot be determined, and proceeds to the next step. proceed to
 制御部201は、表示部205に表示した三次元画像59に、移動後の分岐部入口53および基準面54を重畳表示する(ステップS597)。その後、制御部201はユーザによる指示を待つ。前述の図23Bは、ステップS597で制御部201が表示部205に表示する画面の例である。 The control unit 201 superimposes the bifurcation entrance 53 and the reference plane 54 after movement on the three-dimensional image 59 displayed on the display unit 205 (step S597). After that, the control unit 201 waits for an instruction from the user. FIG. 23B described above is an example of the screen displayed on the display unit 205 by the control unit 201 in step S597.
 ユーザは、基準面54を適切な状態に調整した後に、決定ボタン72を選択して基準面54を選択する指示を行なう。制御部201は、ユーザによる操作が基準面54を決定する指示であるか否かを判定する(ステップS598)。基準面54を決定する指示ではないと判定した場合(ステップS598でNO)、制御部201はステップS595に戻り、ユーザによる基準面54を移動させる指示を受け付ける。 After the user adjusts the reference plane 54 to an appropriate state, the user selects the enter button 72 to issue an instruction to select the reference plane 54 . The control unit 201 determines whether or not the user's operation is an instruction to determine the reference plane 54 (step S598). If it is determined that the instruction is not for determining the reference plane 54 (NO in step S598), the control unit 201 returns to step S595 and receives an instruction for moving the reference plane 54 from the user.
 基準面54を決定する指示を受け付けたと判定した場合(ステップS598でYES)、制御部201は、分岐部入口53の寸法を算出する(ステップS510)。制御部201は、算出した寸法を表示部205に表示する(ステップS511)。その後、制御部201は処理を終了する。 When determining that an instruction to determine the reference plane 54 has been received (YES in step S598), the control unit 201 calculates the dimensions of the branch entrance 53 (step S510). The control unit 201 displays the calculated dimensions on the display unit 205 (step S511). After that, the control unit 201 terminates the processing.
 本実施の形態によると、基準面54の位置を調整する操作が簡便な情報処理装置200を提供できる。 According to the present embodiment, it is possible to provide the information processing device 200 in which the operation of adjusting the position of the reference plane 54 is simple.
 なお、図24を使用して説明したフローチャートのステップS595において、制御部201は基準面54を、枝軸521に対して斜めに移動させる指示を受け付けてもよい。たとえばユーザは目的の位置近傍に基準面54を移動させた後に、右クリックまたは音声入力等により基準面54の動作モードを切り替える。制御部201は、動作モードの切り替えを受け付け、その後のステップS595では、基準面54を傾ける等の指示を受け付ける。 It should be noted that in step S595 of the flowchart explained using FIG. For example, after moving the reference plane 54 to the vicinity of the target position, the user switches the operation mode of the reference plane 54 by right-clicking, voice input, or the like. The control unit 201 accepts switching of the operation mode, and in subsequent step S595, accepts an instruction such as tilting the reference surface 54 .
 図25は、枝軸作成のサブルーチンの処理の流れを説明するフローチャートである。枝軸作成のサブルーチンは、図23Aを使用して説明したように枝部52の軸線である枝軸521を作成するサブルーチンである。 FIG. 25 is a flowchart for explaining the processing flow of the branch axis creation subroutine. The branch axis creation subroutine is a subroutine for creating the branch axis 521, which is the axis of the branch portion 52, as described with reference to FIG. 23A.
 制御部201は、断層像DB36から一枚の断層像58に対応する分類データ57を取得する(ステップS601)。制御部201は、ステップS601で取得した分類データ57に基づいて、一枚の分類画像を作成する(ステップS602)。 The control unit 201 acquires the classification data 57 corresponding to one tomographic image 58 from the tomographic image DB 36 (step S601). The control unit 201 creates one classified image based on the classified data 57 acquired in step S601 (step S602).
 制御部201は、作成した分類画像が枝部52の断面を含んでいるか否かを判定する(ステップS603)。含んでいると判定した場合(ステップS603でYES)、制御部201は枝部52の重心55に関する三次元座標を算出する(ステップS604)。制御部201は、ステップS604により重心算出部の機能を実現する。制御部201は、主記憶装置202または補助記憶装置203に算出した座標を記録する(ステップS605)。 The control unit 201 determines whether the created classified image includes the cross section of the branch portion 52 (step S603). If it is determined that it is included (YES in step S603), the control unit 201 calculates the three-dimensional coordinates of the center of gravity 55 of the branch portion 52 (step S604). The control unit 201 realizes the function of the center-of-gravity calculation unit in step S604. The control unit 201 records the calculated coordinates in the main storage device 202 or the auxiliary storage device 203 (step S605).
 枝部52を含んでいないと判定した場合(ステップS603でNO)またはステップS605の終了後、制御部201は一組の分類データ57の処理を終了したか否かを判定する(ステップS606)。終了していないと判定した場合(ステップS606でNO)、制御部201はステップS601に戻る。終了したと判定した場合(ステップS606でYES)、制御部201はステップS605で記録した複数の重心55に基づいて枝軸521を算出する(ステップS607)。その後、制御部201は処理を終了する。 When it is determined that the branch part 52 is not included (NO in step S603) or after step S605 is completed, the control unit 201 determines whether or not the processing of the set of classification data 57 has been completed (step S606). If it is determined that the processing has not ended (NO in step S606), the control unit 201 returns to step S601. If it is determined that the processing has ended (YES in step S606), the control unit 201 calculates the branch axis 521 based on the plurality of centroids 55 recorded in step S605 (step S607). After that, the control unit 201 terminates the processing.
 本実施の形態によると、基準面54の位置を調整する操作が簡便な情報処理装置200を提供できる。 According to the present embodiment, it is possible to provide the information processing device 200 in which the operation of adjusting the position of the reference plane 54 is simple.
[実施の形態8]
 本実施の形態は、枝部52の軸線に垂直な基準面54を使用して自動的に分岐部入口53を抽出する情報処理装置200に関する。実施の形態7と共通する部分については、説明を省略する。
[Embodiment 8]
This embodiment relates to an information processing apparatus 200 that automatically extracts a branch entrance 53 using a reference plane 54 perpendicular to the axis of the branch 52 . The description of the parts common to the seventh embodiment is omitted.
 図26は、実施の形態8のプログラムの処理の流れを説明するフローチャートである。ステップS594までの処理の流れは、図24を使用して説明した実施の形態7のプログラムの処理の流れと同様であるため、説明を省略する。 FIG. 26 is a flow chart for explaining the processing flow of the program of the eighth embodiment. The flow of processing up to step S594 is the same as the flow of processing of the program of Embodiment 7 described using FIG. 24, so description thereof will be omitted.
 制御部201は基準面選択-3のサブルーチンを起動する(ステップS611)。基準面選択-3のサブルーチンは、枝軸521に垂直な基準面54を枝部52が切断される位置まで平行移動させるサブルーチンである。基準面選択-3のサブルーチンの処理の流れは後述する。 The control unit 201 starts the reference plane selection-3 subroutine (step S611). The reference plane selection-3 subroutine is a subroutine that translates the reference plane 54 perpendicular to the branch axis 521 to the position where the branch portion 52 is cut. The processing flow of the reference plane selection-3 subroutine will be described later.
 制御部201は、移動させた後の基準面54に基づいて分岐部入口53を決定する(ステップS506)。以後の処理は、図5を使用して説明した実施の形態1の処理の流れと同様であるため、説明を省略する。 The control unit 201 determines the branch entrance 53 based on the reference plane 54 after movement (step S506). Since subsequent processing is the same as the processing flow of the first embodiment described using FIG. 5, description thereof is omitted.
 図27は、基準面選択-3のサブルーチンの処理の流れを説明するフローチャートである。基準面選択-3のサブルーチンは、枝軸521に垂直な基準面54を枝部52が切断される位置まで平行移動させるサブルーチンである。 FIG. 27 is a flowchart for explaining the processing flow of the reference plane selection-3 subroutine. The reference plane selection-3 subroutine is a subroutine that translates the reference plane 54 perpendicular to the branch axis 521 to the position where the branch portion 52 is cut.
 制御部201は、基準面54を枝軸521に沿って枝部52の根本川に向けて平行移動させる(ステップS621)。制御部201は、移動後の基準面54が三次元画像59を切断する断面を作成する(ステップS622)。制御部201は、移動後の基準面54において、枝部52が終了しているか否かを判定する(ステップS623)。具体的には制御部201は、基準面54で三次元画像59を切断した断面に、図7を使用して説明したカテーテル領域47の穴を有さない領域が存在しない場合、枝部52が終了したと判定する。 The control unit 201 translates the reference plane 54 along the branch shaft 521 toward the root of the branch 52 (step S621). The control unit 201 creates a cross section in which the reference plane 54 after movement cuts the three-dimensional image 59 (step S622). The control unit 201 determines whether or not the branch portion 52 has ended on the reference plane 54 after movement (step S623). Specifically, if the section obtained by cutting the three-dimensional image 59 on the reference plane 54 does not include a region without a hole in the catheter region 47 described with reference to FIG. Determine that it is finished.
 枝部52が終了していないと判定した場合(ステップS623でNO)、制御部201はステップS621に戻る。枝部52が終了したと判定した場合(ステップS623でYES)、制御部201は基準面54を一つ前のループの位置に戻す(ステップS624)。その後、制御部201は処理を終了する。 If it is determined that the branch unit 52 has not ended (NO in step S623), the control unit 201 returns to step S621. If it is determined that the branch portion 52 has ended (YES in step S623), the control unit 201 returns the reference plane 54 to the previous loop position (step S624). After that, the control unit 201 terminates the processing.
 なお制御部201はステップS622の後に、基準面54における枝部52の面積を算出し、枝部52の面積が一つ前のループに比べて大きく変わった場合にステップS623において枝部52が終了したと判定してもよい。 Note that after step S622, the control unit 201 calculates the area of the branch portion 52 on the reference plane 54, and if the area of the branch portion 52 changes significantly compared to the previous loop, the branch portion 52 ends in step S623. It may be determined that
 制御部201は、ステップS622で断面を作成するたびに、図23Aおよび図23Bを使用して説明した画面を更新してもよい。ユーザは、制御部201が自動的に基準面54の位置を決定する過程を確認できる。 The control unit 201 may update the screen described using FIGS. 23A and 23B each time a cross section is created in step S622. The user can confirm the process in which the control unit 201 automatically determines the position of the reference plane 54 .
 本実施の形態によると、枝部52の軸線に垂直な基準面54の位置を自動的に定める情報処理装置200を提供できる。ユーザは、自動的に定められた基準面54を必要に応じて適宜調整して、分岐部入口53の寸法を確認し、適切なデバイスを選択できる。 According to this embodiment, the information processing device 200 that automatically determines the position of the reference plane 54 perpendicular to the axis of the branch portion 52 can be provided. The user can adjust the automatically determined reference plane 54 as needed to confirm the dimensions of the bifurcation inlet 53 and select the appropriate device.
 なお制御部201は、実施の形態2で説明したように枝部52の根本近傍の点を自動的に検出し、基準面54を当該点まで平行移動させてもよい。 Note that the control unit 201 may automatically detect a point near the root of the branch 52 as described in the second embodiment, and translate the reference plane 54 to that point.
[実施の形態9]
 本実施の形態は、枝部52の根本付近に設定した回動軸542を軸にして回動する基準面54を使用する情報処理装置200に関する。実施の形態3と共通する部分については、説明を省略する。
[Embodiment 9]
This embodiment relates to an information processing apparatus 200 that uses a reference plane 54 that rotates about a rotation axis 542 set near the base of a branch portion 52 . The description of the parts common to the third embodiment is omitted.
 図28Aおよび図28Bは、実施の形態9の画面例である。図28Aおよび図28Bを使用して、本実施の形態の基準面54について説明する。図28Aおよび図28Bにおいて、基準点541は枝部52の根本付近の点である。 FIGS. 28A and 28B are screen examples of the ninth embodiment. Reference plane 54 of the present embodiment will be described with reference to FIGS. 28A and 28B. 28A and 28B, the reference point 541 is a point near the base of the branch portion 52. FIG.
 具体例を挙げて説明する。制御部201は内腔領域40の表面を抽出する。制御部201は、たとえばパターンマッチングまたは数値解析により、内腔領域40の表面が鞍型曲面になっている部分を抽出する。制御部201は、抽出した鞍型曲面の頂点を基準点541に決定する。以上の説明において内腔領域40は所定の領域の例示である。 Explain with specific examples. Control unit 201 extracts the surface of lumen region 40 . Control unit 201 extracts a portion where the surface of lumen region 40 is a saddle-shaped curved surface, for example, by pattern matching or numerical analysis. The control unit 201 determines the extracted vertex of the saddle-shaped curved surface as the reference point 541 . In the above description, the lumen area 40 is an example of a predetermined area.
 図28Aに示すように、制御部201は、基準点541から画像取得用カテーテル28の軸線に下ろした垂線Pを決定する。なお、図28Aにおいては、画像取得用カテーテル28の軸線を一点鎖線で示し、垂線Pを細い実線で示す。制御部201は、基準面54を通り、画像取得用カテーテル28の軸線に垂直な基準面54を決定する。制御部201は、基準面54上で垂線Pに垂直な回動軸542を決定する。 As shown in FIG. 28A , the control unit 201 determines a perpendicular line P drawn from the reference point 541 to the axis of the image acquisition catheter 28 . In FIG. 28A, the axis of the image acquisition catheter 28 is indicated by a dashed line, and the perpendicular line P is indicated by a thin solid line. The controller 201 determines a reference plane 54 that passes through the reference plane 54 and is perpendicular to the axis of the image acquisition catheter 28 . The control unit 201 determines a rotation axis 542 perpendicular to the perpendicular line P on the reference plane 54 .
 図28Bに示すように、制御部201はユーザによる指示に基づいて基準面54を回動軸542回りに回動させる。ユーザは、所望の角度に基準面54を回動させた場外で決定ボタン72を選択し、分岐部入口53を決定する。 As shown in FIG. 28B, the control unit 201 rotates the reference plane 54 around the rotation axis 542 based on the user's instruction. The user selects the determination button 72 outside the field where the reference plane 54 has been rotated to the desired angle, and determines the junction entrance 53 .
 図29は、実施の形態9のプログラムの処理の流れを説明するフローチャートである。制御部201は、断層像DB36から一組の分類データ57を取得する(ステップS501)。制御部201は、一組の分類データ57に基づいて三次元画像59を構築する(ステップS502)。 FIG. 29 is a flowchart for explaining the processing flow of the program according to the ninth embodiment. The control unit 201 acquires a set of classification data 57 from the tomogram DB 36 (step S501). The control unit 201 constructs a three-dimensional image 59 based on the set of classification data 57 (step S502).
 制御部201は、枝部52の根本近傍に基準点541の座標を決定する(ステップS631)。具体例を挙げて説明する。制御部201は内腔領域40の表面を抽出する。制御部201は、たとえばパターンマッチングまたは数値解析により、内腔領域40の表面が鞍型曲面になっている部分を抽出する。制御部201は、抽出した鞍型曲面の頂点の座標を基準点541の座標に決定する。 The control unit 201 determines the coordinates of the reference point 541 near the base of the branch 52 (step S631). A specific example will be given for explanation. Control unit 201 extracts the surface of lumen region 40 . Control unit 201 extracts a portion where the surface of lumen region 40 is a saddle-shaped curved surface, for example, by pattern matching or numerical analysis. The control unit 201 determines the coordinates of the extracted vertex of the saddle-shaped curved surface as the coordinates of the reference point 541 .
 制御部201は、ステップS631で決定した基準点541から画像取得用カテーテル28の中心軸に下ろした垂線Pを決定する(ステップS632)。制御部201は、ステップS631で決定した基準点541を通り、画像取得用カテーテル28の中心軸に垂直な基準面54を作成する(ステップS633)。制御部201は、ステップS633により断面選択部の機能を実現する。 The control unit 201 determines a perpendicular line P drawn from the reference point 541 determined in step S631 to the central axis of the image acquisition catheter 28 (step S632). The control unit 201 creates a reference plane 54 passing through the reference point 541 determined in step S631 and perpendicular to the central axis of the image acquisition catheter 28 (step S633). The control unit 201 implements the function of the cross section selection unit in step S633.
 制御部201は、ステップS633で作成した基準面54上で、ステップS632で決定した垂線Pに垂直な回動軸542を決定する(ステップS634)。ステップS634により、制御部201は回動軸542を算出する回動軸算出部の機能を実現する。 The control unit 201 determines the rotation axis 542 perpendicular to the perpendicular line P determined in step S632 on the reference plane 54 created in step S633 (step S634). By step S<b>634 , the control unit 201 realizes the function of the rotation axis calculation unit that calculates the rotation axis 542 .
 制御部201は、三次元画像59から所定の領域を抽出する。制御部201は、ステップS634で決定した回動軸542およびステップS633で設定した基準面54を重畳させた三次元画像59を表示部205に表示する(ステップS635)。 The control unit 201 extracts a predetermined area from the three-dimensional image 59. The control unit 201 displays on the display unit 205 a three-dimensional image 59 in which the rotation axis 542 determined in step S634 and the reference plane 54 set in step S633 are superimposed (step S635).
 前述の図28Aは、ステップS635で制御部201が表示部205に表示する画面の例である。なお、図28Aに示す画面により、ユーザは制御部201が回動軸542を適切に作成したことを確認できる。仮に制御部201が作成した回動軸542が不適切である場合、ユーザはたとえば実施の形態1から実施の形態8で説明したモードへの移行を指示して、本実施の形態とは異なるアルゴリズムにより基準面54を決定する。 FIG. 28A described above is an example of the screen displayed on the display unit 205 by the control unit 201 in step S635. The screen shown in FIG. 28A allows the user to confirm that the control unit 201 has created the rotation shaft 542 appropriately. If the rotation axis 542 created by the control unit 201 is inappropriate, the user instructs a shift to the modes described in the first to eighth embodiments, for example, and an algorithm different from that of the present embodiment is executed. determines the reference plane 54 by .
 制御部201は、図28Aに例示する画面を介して、回動軸542の向き、または、基準点541の位置を変更する指示をユーザから受け付けてもよい。 The control unit 201 may receive an instruction from the user to change the orientation of the rotation axis 542 or the position of the reference point 541 via the screen illustrated in FIG. 28A.
 制御部201は、ユーザによる基準面54の移動指示を受け付ける(ステップS636)。たとえばユーザが基準面54を選択してドラッグする操作を行なった場合、制御部201は基準面54を回動軸542回りに回動させる指示を受け付けて、基準面54の位置を変更する。ステップS636により、制御部201は基準面54を回動させる指示を受け付ける回動受付部の機能を実現する。 The control unit 201 receives an instruction to move the reference plane 54 from the user (step S636). For example, when the user selects and drags the reference plane 54 , the control unit 201 receives an instruction to rotate the reference plane 54 around the rotation axis 542 and changes the position of the reference plane 54 . By step S<b>636 , the control unit 201 implements the function of a rotation reception unit that receives an instruction to rotate the reference plane 54 .
 制御部201は、たとえばカーソルキーの押し下げ、または音声による指示を受け付けてもよい。制御部201は、回動軸542付近に時計回りおよび反時計回りの指示を受け付けるボタンを表示してもよい。 The control unit 201 may accept, for example, the pressing of a cursor key or an instruction by voice. The control unit 201 may display buttons for accepting clockwise and counterclockwise directions near the rotation shaft 542 .
 制御部201は、ユーザの指示に基づいて移動させた後の基準面54に基づいて分岐部入口53を決定する(ステップS637)。なお、基準面54で切断した三次元画像59の断面に、カテーテル領域47の穴を有さない領域が存在しない場合、制御部201は分岐部入口53を決定できないと判断して、次のステップに進む。 The control unit 201 determines the branch entrance 53 based on the reference plane 54 after being moved based on the user's instruction (step S637). Note that if the section of the three-dimensional image 59 cut by the reference plane 54 does not include a region having no hole in the catheter region 47, the control unit 201 determines that the bifurcation entrance 53 cannot be determined, and proceeds to the next step. proceed to
 制御部201は、表示部205に表示した三次元画像59に、移動後の分岐部入口53および基準面54を重畳表示する(ステップS638)。その後、制御部201はユーザによる指示を待つ。前述の図28Bは、ステップS637で制御部201が表示部205に表示する画面の例である。 The control unit 201 superimposes the bifurcation entrance 53 and the reference plane 54 after movement on the three-dimensional image 59 displayed on the display unit 205 (step S638). After that, the control unit 201 waits for an instruction from the user. FIG. 28B described above is an example of a screen displayed on the display unit 205 by the control unit 201 in step S637.
 ユーザは、基準面54を適切な状態に調整した後に、決定ボタン72を選択して基準面54を選択する指示を行なう。制御部201は、ユーザによる操作が基準面54を決定する指示であるか否かを判定する(ステップS639)。基準面54を決定する指示ではないと判定した場合(ステップS639でNO)、制御部201はステップS636に戻り、ユーザによる基準面54を回動させる指示を受け付ける。 After the user adjusts the reference plane 54 to an appropriate state, the user selects the enter button 72 to issue an instruction to select the reference plane 54 . The control unit 201 determines whether or not the user's operation is an instruction to determine the reference plane 54 (step S639). If it is determined that the instruction is not for determining the reference plane 54 (NO in step S639), the control unit 201 returns to step S636 and receives an instruction for rotating the reference plane 54 from the user.
 基準面54を決定する指示を受け付けたと判定した場合(ステップS639でYES)、制御部201は、分岐部入口53の寸法を算出する(ステップS510)。制御部201は、算出した寸法を表示部205に表示する(ステップS511)。その後、制御部201は処理を終了する。 When it is determined that an instruction to determine the reference plane 54 has been received (YES in step S639), the control section 201 calculates the dimensions of the branch entrance 53 (step S510). The control unit 201 displays the calculated dimensions on the display unit 205 (step S511). After that, the control unit 201 terminates the processing.
 本実施の形態によると、基準面54の位置を回動により調整する情報処理装置200を提供できる。 According to the present embodiment, it is possible to provide the information processing device 200 that adjusts the position of the reference plane 54 by rotating.
 なお、ステップS631において適切な基準点541の候補が複数存在する場合、制御部201はユーザによる基準点541の選択を受け付けてもよい。 It should be noted that in step S631, if there are multiple suitable reference point 541 candidates, the control unit 201 may accept selection of the reference point 541 by the user.
[実施の形態10]
 本実施の形態は、枝部52の根本付近に設定した回動軸542を軸にして回動する基準面54を使用して自動的に分岐部入口53を抽出する情報処理装置200に関する。実施の形態9と共通する部分については、説明を省略する。
[Embodiment 10]
This embodiment relates to an information processing apparatus 200 that automatically extracts a branch entrance 53 using a reference plane 54 that rotates about a rotation axis 542 set near the base of a branch 52 . The description of the parts common to the ninth embodiment is omitted.
 図30は、実施の形態10のプログラムの処理の流れを説明するフローチャートである。ステップS635までの処理の流れは、図29を使用して説明した実施の形態7のプログラムの処理の流れと同様であるため、説明を省略する。 FIG. 30 is a flow chart explaining the processing flow of the program of the tenth embodiment. The flow of processing up to step S635 is the same as the flow of processing of the program of Embodiment 7 described using FIG. 29, so description thereof will be omitted.
 制御部201は基準面選択-4のサブルーチンを起動する(ステップS641)。基準面選択-4のサブルーチンは、回動軸542を軸にして基準面54を所定の向きまで回動させるサブルーチンである。基準面選択-4のサブルーチンの処理の流れは後述する。 The control unit 201 starts the reference plane selection-4 subroutine (step S641). The reference plane selection-4 subroutine is a subroutine for rotating the reference plane 54 about the rotation shaft 542 to a predetermined direction. The processing flow of the reference plane selection-4 subroutine will be described later.
 制御部201は、回動させた後の基準面54に基づいて分岐部入口53を決定する(ステップS506)。以後の処理は、図5を使用して説明した実施の形態1の処理の流れと同様であるため、説明を省略する。 The control unit 201 determines the branch entrance 53 based on the reference plane 54 after rotation (step S506). Since subsequent processing is the same as the processing flow of the first embodiment described using FIG. 5, description thereof is omitted.
 図31は、基準面選択-4のサブルーチンの処理の流れを説明するフローチャートである。基準面選択-4のサブルーチンは、図28Aを使用して説明した画像取得用カテーテル28の軸芯に垂直な基準面54を枝部52が切断されなくなる直前の角度まで回動させるサブルーチンである。ただし、本実施の形態においては、制御部201は所定の角度を超えない範囲で基準面54を回動させる。所定の角度は、たとえば画像取得用カテーテル28の軸芯に対して45度である。 FIG. 31 is a flowchart for explaining the processing flow of the reference plane selection-4 subroutine. The reference plane selection-4 subroutine is a subroutine for rotating the reference plane 54 perpendicular to the axial center of the image acquisition catheter 28 described using FIG. 28A to an angle just before the branch 52 is cut. However, in this embodiment, the control unit 201 rotates the reference surface 54 within a range not exceeding a predetermined angle. The predetermined angle is, for example, 45 degrees with respect to the axis of the image acquisition catheter 28 .
 制御部201は、基準面54を回動軸542回りに所定の角度回動させる(ステップS651)。回動方向は、基準面54が三次元画像59を切断する部分が、枝部52の先端から遠ざかる向きである。制御部201は、基準面54と画像取得用カテーテル28の軸芯とが成す角度が所定の閾値を超えるか否かを判定する(ステップS652)。 The control unit 201 rotates the reference plane 54 by a predetermined angle around the rotation shaft 542 (step S651). The rotation direction is such that the portion where the reference plane 54 cuts the three-dimensional image 59 moves away from the tip of the branch portion 52 . The control unit 201 determines whether or not the angle between the reference plane 54 and the axis of the image acquisition catheter 28 exceeds a predetermined threshold (step S652).
 超えないと判定した場合(ステップS652でNO)、制御部201は回動後の基準面54が三次元画像59を切断する断面を作成する(ステップS653)。制御部201は、回動後の基準面54において、枝部52が終了しているか否かを判定する(ステップS654)。具体的には制御部201は、基準面54で三次元画像59を切断した断面に、図7を使用して説明したカテーテル領域47の穴を有さない領域が存在しない場合、枝部52が終了したと判定する。 If it is determined that it does not exceed (NO in step S652), the control unit 201 creates a cross section in which the reference plane 54 after rotation cuts the three-dimensional image 59 (step S653). The control unit 201 determines whether or not the branch portion 52 has ended on the reference plane 54 after rotation (step S654). Specifically, if the section obtained by cutting the three-dimensional image 59 on the reference plane 54 does not include a region without a hole in the catheter region 47 described with reference to FIG. Determine that it is finished.
 枝部52が終了していないと判定した場合(ステップS654でNO)、制御部201はステップS651に戻る。枝部52が終了したと判定した場合(ステップS654でYES)、または、閾値を超えたと判定した場合(ステップS652でYES)、制御部201は基準面54を一つ前のループの角度に戻す(ステップS655)。その後、制御部201は処理を終了する。 If it is determined that the branch unit 52 has not ended (NO in step S654), the control unit 201 returns to step S651. If it is determined that the branch portion 52 has ended (YES in step S654), or if it is determined that the threshold value has been exceeded (YES in step S652), the control unit 201 returns the reference plane 54 to the angle of the previous loop. (Step S655). After that, the control unit 201 terminates the processing.
 なお制御部201はステップS653の後に、基準面54における枝部52の面積を算出し、枝部52の面積が一つ前のループに比べて大きく変わった場合にステップS654において枝部52が終了したと判定してもよい。 Note that after step S653, the control unit 201 calculates the area of the branch portion 52 on the reference plane 54, and if the area of the branch portion 52 changes significantly compared to the previous loop, the branch portion 52 ends in step S654. It may be determined that
 制御部201は、ステップS653で断面を作成するたびに、図28Bを使用して説明した画面を更新してもよい。ユーザは、制御部201が自動的に基準面54の位置を決定する過程を確認できる。 The control unit 201 may update the screen described using FIG. 28B each time a cross section is created in step S653. The user can confirm the process in which the control unit 201 automatically determines the position of the reference plane 54 .
 本実施の形態によると、枝部52の根本付近に設定した回動軸542を軸にして回動する基準面54を使用して自動的に分岐部入口53を抽出する情報処理装置200を提供できる。ユーザは、自動的に定められた基準面54を必要に応じて適宜調整して、分岐部入口53の寸法を確認し、適切なデバイスを選択できる。 According to this embodiment, the information processing apparatus 200 is provided that automatically extracts the branch entrance 53 using the reference plane 54 that rotates about the rotation shaft 542 set near the base of the branch 52 . can. The user can adjust the automatically determined reference plane 54 as needed to confirm the dimensions of the bifurcation inlet 53 and select the appropriate device.
[実施の形態11]
 本実施の形態は、患者の拍動に同期して使用する断層像58を選択して使用する情報処理装置200に関する。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 11]
This embodiment relates to an information processing apparatus 200 that selects and uses a tomographic image 58 to be used in synchronization with the patient's heartbeat. Descriptions of the parts common to the first embodiment are omitted.
 本実施の形態においては、一組の断層像58と共に、当該断層像58を取得する間に測定された心拍データが記録されている。拍動データは、たとえば心電計により測定されたデータである。タイムスタンプ等によりそれぞれの断層像58を取得した時刻と心拍データとの対応付けが可能である。制御部201は、拍動が所定の範囲である断層像58を抽出して、三次元画像59を構築する。以上により、拍動の影響を避けて、高精度の三次元画像59を構築できる。 In the present embodiment, together with a set of tomographic images 58, heartbeat data measured while acquiring the tomographic images 58 are recorded. The heartbeat data is, for example, data measured by an electrocardiograph. It is possible to associate the time when each tomographic image 58 was acquired with the heartbeat data using a time stamp or the like. The control unit 201 extracts the tomographic image 58 in which the pulsation is within a predetermined range, and constructs a three-dimensional image 59 . As described above, a highly accurate three-dimensional image 59 can be constructed while avoiding the influence of pulsation.
 図32は、実施の形態11の三次元画像構築のサブルーチンの処理の流れを説明するフローチャートである。図32のサブルーチンは、実施の形態1から実施の形態10において、ステップS502の代わりに実行される。三次元画像構築のサブルーチンを使用して三次元画像59を構築することにより、本実施の形態の情報処理装置200が実現する。 FIG. 32 is a flow chart for explaining the processing flow of the three-dimensional image construction subroutine according to the eleventh embodiment. The subroutine of FIG. 32 is executed instead of step S502 in the first to tenth embodiments. The information processing apparatus 200 of the present embodiment is realized by constructing the 3D image 59 using the 3D image construction subroutine.
 制御部201は、一組の断層像58と関連づけて保存された拍動データを取得する(ステップS661)。制御部201は1枚の断層像58に基づいて作成された分類データ57を取得する(ステップS662)。 The control unit 201 acquires the pulsation data stored in association with the set of tomographic images 58 (step S661). The control unit 201 acquires the classification data 57 created based on one tomographic image 58 (step S662).
 制御部201は、ステップS662で取得した分類データ57が、拍動データのうちの所定時期に取得された断層像58に基づくものであるか否かを判定する(ステップS663)。所定時期は、たとえば観察対象部位の動きが少ない期間をユーザが指定する。 The control unit 201 determines whether the classified data 57 acquired in step S662 is based on the tomographic image 58 acquired at a predetermined time in the pulse data (step S663). The predetermined period of time is specified by the user, for example, during a period in which the observation target region does not move much.
 所定時期に取得された断層像58に基づくものであると判定した場合(ステップS663でYES)、制御部201は断層番号と分類データ57とを関連づけて主記憶装置202または補助記憶装置203に記録する(ステップS664)。時期に取得された断層像58に基づくものではないと判定した場合(ステップS663でNO)、またはステップS664の終了後、制御部201は一組の分類データ57の処理が終了したか否かを判定する(ステップS665)。 If it is determined to be based on the tomographic image 58 acquired at a predetermined time (YES in step S663), the control unit 201 associates the tomographic number with the classification data 57 and records them in the main storage device 202 or the auxiliary storage device 203. (step S664). If it is determined that the tomogram 58 is not based on the tomographic image 58 acquired at the time (NO in step S663), or after step S664 is completed, the control unit 201 determines whether the processing of the set of classification data 57 has been completed. Determine (step S665).
 終了していないと判定した場合(ステップS665でNO)、制御部201はステップS662に戻る。終了したと判定した場合(ステップS665でYES)、制御部201はステップS664で記録した分類データ57を使用して三次元画像59を構築する(ステップS666)。制御部201は、ステップS664で記録していない走査面に対応する部分については、適宜補完を行なう(ステップS667)。 If it is determined that the processing has not ended (NO in step S665), the control unit 201 returns to step S662. If it is determined that the process has ended (YES in step S665), the control unit 201 uses the classification data 57 recorded in step S664 to construct a three-dimensional image 59 (step S666). The control unit 201 appropriately complements the portion corresponding to the scanning plane that has not been recorded in step S664 (step S667).
 本実施の形態によると、患者の拍動の影響を避けて高精度の三次元画像59を構築する情報処理装置200を提供できる。 According to the present embodiment, it is possible to provide the information processing device 200 that avoids the influence of the patient's pulsation and builds a highly accurate three-dimensional image 59 .
 なお、同一の場所で複数組の断層像58が繰り返し取得されていてもよい。複数組の断層像58から、拍動が所定の範囲である断層像58をそれぞれ抽出して一つの三次元画像59を構築することにより、高精度で、かつ空間分解能の高い三次元画像59を構築できる。 It should be noted that multiple sets of tomographic images 58 may be repeatedly acquired at the same location. A three-dimensional image 59 with high accuracy and high spatial resolution is created by extracting the tomographic images 58 in which the pulsation is within a predetermined range from a plurality of sets of tomographic images 58 and constructing one three-dimensional image 59. can build.
[実施の形態12]
 本実施の形態はリアルタイムで断層像58を取得して、断層像DB36に断層像58および分類データ57を記録するカテーテルシステム10に関する。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 12]
This embodiment relates to a catheter system 10 that acquires a tomogram 58 in real time and records the tomogram 58 and classification data 57 in a tomogram DB 36 . Descriptions of the parts common to the first embodiment are omitted.
 図33は、カテーテルシステム10の構成を説明する説明図である。カテーテルシステム10は、画像処理装置210と、カテーテル制御装置27とMDU(Motor Driving Unit)289と、画像取得用カテーテル28とを備える。画像取得用カテーテル28は、MDU289およびカテーテル制御装置27を介して画像処理装置210に接続されている。 FIG. 33 is an explanatory diagram illustrating the configuration of the catheter system 10. FIG. The catheter system 10 includes an image processing device 210 , a catheter control device 27 , an MDU (Motor Driving Unit) 289 , and an image acquisition catheter 28 . Image acquisition catheter 28 is connected to image processing device 210 via MDU 289 and catheter control device 27 .
 画像処理装置210は、制御部211、主記憶装置212、補助記憶装置213、通信部214、表示部215、入力部216およびバスを備える。制御部211は、本実施の形態のプログラムを実行する演算制御装置である。制御部211には、一または複数のCPU、GPU、またはマルチコアCPU等が使用される。制御部211は、バスを介して画像処理装置210を構成するハードウェア各部と接続されている。 The image processing device 210 includes a control section 211, a main memory device 212, an auxiliary memory device 213, a communication section 214, a display section 215, an input section 216, and a bus. The control unit 211 is an arithmetic control device that executes the program of this embodiment. One or a plurality of CPUs, GPUs, multi-core CPUs, or the like is used for the control unit 211 . The control unit 211 is connected to each hardware unit forming the image processing apparatus 210 via a bus.
 主記憶装置212は、SRAM、DRAM、フラッシュメモリ等の記憶装置である。主記憶装置212には、制御部211が行なう処理の途中で必要な情報、および、制御部211で実行中のプログラムが一時的に保存される。 The main storage device 212 is a storage device such as SRAM, DRAM, and flash memory. Main storage device 212 temporarily stores information necessary during processing performed by control unit 211 and a program being executed by control unit 211 .
 補助記憶装置213は、SRAM、フラッシュメモリ、ハードディスクまたは磁気テープ等の記憶装置である。補助記憶装置213には、分類モデル31、断層像DB36、制御部211に実行させるプログラム、およびプログラムの実行に必要な各種データが保存される。通信部214は、画像処理装置210とネットワークとの間の通信を行なうインターフェースである。分類モデル31は、画像処理装置210に接続された外部の大容量記憶装置等に記憶されていてもよい。 The auxiliary storage device 213 is a storage device such as SRAM, flash memory, hard disk, or magnetic tape. The auxiliary storage device 213 stores the classification model 31, the tomogram DB 36, programs to be executed by the control unit 211, and various data necessary for executing the programs. A communication unit 214 is an interface that performs communication between the image processing apparatus 210 and a network. The classification model 31 may be stored in an external mass storage device or the like connected to the image processing device 210 .
 表示部215は、たとえば液晶表示パネルまたは有機ELパネル等である。入力部216は、たとえばキーボードおよびマウス等である。表示部215に入力部216が積層されてタッチパネルを構成していてもよい。表示部215は、画像処理装置210に接続された表示装置であってもよい。 The display unit 215 is, for example, a liquid crystal display panel or an organic EL panel. Input unit 216 is, for example, a keyboard and a mouse. The input unit 216 may be layered on the display unit 215 to form a touch panel. The display unit 215 may be a display device connected to the image processing device 210 .
 画像処理装置210は、汎用のパソコン、タブレット、大型計算機、または、大型計算機上で動作する仮想マシンである。画像処理装置210は、分散処理を行なう複数のパソコン、または大型計算機等のハードウェアにより構成されても良い。画像処理装置210は、クラウドコンピューティングシステムにより構成されても良い。画像処理装置210とカテーテル制御装置27とは、一体のハードウェアを構成していてもよい。 The image processing device 210 is a general-purpose personal computer, tablet, large computer, or a virtual machine running on a large computer. The image processing apparatus 210 may be configured by hardware such as a plurality of personal computers or large computers that perform distributed processing. The image processing device 210 may be configured by a cloud computing system. The image processing device 210 and the catheter control device 27 may constitute integrated hardware.
 画像取得用カテーテル28は、シース281と、シース281の内部に挿通されたシャフト283と、シャフト283の先端に配置されたセンサ282とを有する。MDU289は、シース281の内部でシャフト283およびセンサ282を回転および進退させる。 The image acquisition catheter 28 has a sheath 281 , a shaft 283 inserted inside the sheath 281 , and a sensor 282 arranged at the tip of the shaft 283 . MDU 289 rotates and advances shaft 283 and sensor 282 inside sheath 281 .
 センサ282は、たとえば超音波の送受信を行なう超音波トランスデューサ、または、近赤外光の照射と反射光の受光とを行なうOCT(Optical Coherence Tomography)用の送受信部である。以下の説明では、画像取得用カテーテル28は循環器の内側から超音波断層像を撮影する際に用いられるIVUS(Intravascular Ultrasound)用カテーテルである場合を例にして説明する。 The sensor 282 is, for example, an ultrasonic transducer that transmits and receives ultrasonic waves, or a transmitter/receiver for OCT (Optical Coherence Tomography) that irradiates near-infrared light and receives reflected light. In the following description, an example in which the image acquisition catheter 28 is an IVUS (Intravascular Ultrasound) catheter used for capturing an ultrasonic tomographic image from the inside of the circulatory system will be described.
 カテーテル制御装置27は、センサ282の一回転ごとに1枚の断層像58を作成する。MDU289がセンサ282を軸方向に引っ張りながら、または軸方向に押し込みながら回転させる操作により、カテーテル制御装置27はシース281に略垂直な複数枚の断層像58を連続的に作成する。制御部211は、カテーテル制御装置27から断層像58を逐次取得する。 The catheter control device 27 creates one tomographic image 58 for each rotation of the sensor 282 . The catheter control device 27 continuously creates a plurality of tomographic images 58 substantially perpendicular to the sheath 281 by rotating the sensor 282 while pulling it in the axial direction or pushing it in the axial direction. The control unit 211 sequentially acquires the tomographic images 58 from the catheter control device 27 .
 制御部211は、断層像58を分類モデル31に入力して、出力された分類データ57を取得する。制御部211は、断層像DB36に新規レコードを作成して、断層番号と関連づけて断層像58および分類データ57を記録する。なお、制御部211は一組の断層像58を断層像DB36に記録した後に、それぞれの断層像58に基づいて分類データ57を作成し、断層像DB36に記録してもよい。以上により、いわゆる三次元走査が行なわれ、一組の断層像58および一組の分類データ57が断層像DB36に記録される。 The control unit 211 inputs the tomographic image 58 to the classification model 31 and acquires the output classification data 57 . The control unit 211 creates a new record in the tomogram DB 36 and records the tomogram 58 and the classification data 57 in association with the tomogram number. After recording a set of tomographic images 58 in the tomographic image DB 36 , the control unit 211 may create the classification data 57 based on each tomographic image 58 and record it in the tomographic image DB 36 . As described above, so-called three-dimensional scanning is performed, and a set of tomographic images 58 and a set of classification data 57 are recorded in the tomographic image DB 36 .
 なお、本実施の形態において、画像取得用カテーテル28は、センサ282が回転しながら軸方向に移動することにより、走査ビームである超音波の発信方向を順次移動させながら三次元走査を実現するものである。 In this embodiment, the image acquisition catheter 28 moves in the axial direction while the sensor 282 rotates, thereby realizing three-dimensional scanning while sequentially moving the transmission direction of the ultrasonic waves that are the scanning beams. is.
 センサ282の進退操作には、画像取得用カテーテル28全体を進退させる操作と、シース281の内部でセンサ282を進退させる操作との両方を含む。進退操作は、MDU289により所定の速度で自動的に行なわれても、ユーザにより手動で行なわれても良い。 The advance/retreat operation of the sensor 282 includes both an operation to advance/retreat the entire image acquisition catheter 28 and an operation to advance/retreat the sensor 282 inside the sheath 281 . The advance/retreat operation may be automatically performed at a predetermined speed by the MDU 289, or may be manually performed by the user.
 なお、画像取得用カテーテル28は機械的に回転および進退を行なう機械走査方式に限定しない。たとえば、複数の超音波トランスデューサを環状に配置したセンサ282を用いた、電子ラジアル走査型の画像取得用カテーテル28であってもよい。画像取得用カテーテル28は、リニア走査型、コンベックス走査型またはセクタ走査型のセンサ282を機械的に回転または揺動させて三次元走査を実現してもよい。 It should be noted that the image acquisition catheter 28 is not limited to a mechanical scanning method that mechanically rotates and advances and retreats. For example, it may be an electronic radial scanning type image acquisition catheter 28 using a sensor 282 in which a plurality of ultrasonic transducers are arranged in a ring. The image acquisition catheter 28 may mechanically rotate or oscillate a linear scan, convex scan, or sector scan sensor 282 to achieve three-dimensional scanning.
 また、センサ282が超音波トランスデューサを複数並べたリニア走査型、コンベックス走査型またはセクタ走査型の場合、画像取得用カテーテル28は、複数ある超音波トランスデューサが順次切替わることで、走査ビームである超音波の発信方向を順次移動させながら三次元走査を実現するものである。この場合、画像取得用カテーテル28は、シース281とMDU289が省略されるとともに、シャフト283の基端に、シャフト283を操作するためのハンドル部と、ハンドル部から延びるコネクタとが配置され、このコネクタを介してカテーテル制御装置27に接続される。 When the sensor 282 is of a linear scanning type, a convex scanning type, or a sector scanning type in which a plurality of ultrasonic transducers are arranged, the image acquisition catheter 28 sequentially switches between a plurality of ultrasonic transducers to generate an ultrasonic wave which is a scanning beam. Three-dimensional scanning is realized by sequentially moving the sound wave transmission direction. In this case, the image acquisition catheter 28 omits the sheath 281 and the MDU 289, and a handle portion for operating the shaft 283 and a connector extending from the handle portion are arranged at the proximal end of the shaft 283. to the catheter controller 27 via.
 また、カテーテル制御装置27は、センサ282が有する超音波を発信する複数の超音波トランスデューサを順次切り替えることで、複数枚の断層像58を連続的に作成する。なお、センサ282がリニア走査型である画像取得用カテーテル28から得られる断層像は、XY形式で矩形であり、センサ282がコンベックス走査型またはセクタ走査型である画像取得用カテーテル28から得られる断層像は、XY形式で扇形となる。 In addition, the catheter control device 27 sequentially creates a plurality of tomographic images 58 by sequentially switching a plurality of ultrasonic transducers that emit ultrasonic waves possessed by the sensor 282 . Note that the tomographic image obtained from the image acquisition catheter 28 whose sensor 282 is of the linear scanning type is rectangular in the XY format, and the tomographic image obtained from the image acquisition catheter 28 whose sensor 282 is of the convex scanning type or the sector scanning type. The image is fan-shaped in XY format.
 制御部211は、以上の動作により記録した断層像DB36を用いて、実施の形態1から実施の形態11で説明した処理を行ない、分岐部入口53の寸法を出力する。なお、制御部211は三次元走査の完了前に、実施の形態1から実施の形態11で説明した処理を開始することにより、三次元走査の完了後速やかに分岐部入口53の寸法を出力できる。 The control unit 211 uses the tomographic image DB 36 recorded by the above operations to perform the processing described in the first to eleventh embodiments, and outputs the dimensions of the bifurcation entrance 53 . By starting the processing described in Embodiments 1 to 11 before the completion of the three-dimensional scanning, the control unit 211 can output the dimensions of the branch entrance 53 immediately after the completion of the three-dimensional scanning. .
[実施の形態13]
 図34は、実施の形態13の情報処理装置200の構成を説明する説明図である。本実施の形態は、汎用のコンピュータ90と、プログラム97とを組み合わせて動作させることにより、本実施の形態の情報処理装置200を実現する形態に関する。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 13]
FIG. 34 is an explanatory diagram illustrating the configuration of the information processing device 200 according to the thirteenth embodiment. The present embodiment relates to a mode of realizing the information processing apparatus 200 of the present embodiment by operating a general-purpose computer 90 and a program 97 in combination. Descriptions of the parts common to the first embodiment are omitted.
 コンピュータ90は、前述の制御部201、主記憶装置202、補助記憶装置203、通信部204、表示部205、入力部206およびバスに加えて読取部209を備える。 The computer 90 includes a reading section 209 in addition to the aforementioned control section 201, main storage device 202, auxiliary storage device 203, communication section 204, display section 205, input section 206 and bus.
 プログラム97は、可搬型記録媒体96に記録されている。制御部201は、読取部209を介してプログラム97を読み込み、補助記憶装置203に保存する。また制御部201は、コンピュータ90内に実装されたフラッシュメモリ等の半導体メモリ98に記憶されたプログラム97を読出してもよい。さらに、制御部201は、通信部204および図示しないネットワークを介して接続される図示しない他のサーバコンピュータからプログラム97をダウンロードして補助記憶装置203に保存してもよい。 The program 97 is recorded on a portable recording medium 96. The control unit 201 reads the program 97 via the reading unit 209 and stores it in the auxiliary storage device 203 . Control unit 201 may also read program 97 stored in semiconductor memory 98 such as a flash memory installed in computer 90 . Furthermore, the control unit 201 may download the program 97 from another server computer (not shown) connected via the communication unit 204 and a network (not shown) and store it in the auxiliary storage device 203 .
 プログラム97は、コンピュータ90の制御プログラムとしてインストールされ、主記憶装置202にロードして実行される。以上により、実施の形態1で説明した情報処理装置200が実現される。本実施の形態のプログラム97は、プログラム製品の例示である。 The program 97 is installed as a control program of the computer 90, loaded into the main storage device 202 and executed. As described above, the information processing apparatus 200 described in the first embodiment is realized. The program 97 of this embodiment is an example of a program product.
[実施の形態14]
 図35は、実施の形態14の情報処理装置200の機能ブロック図である。情報処理装置200は、分類データ取得部81と、入口決定部82と、寸法出力部83とを備える。分類データ取得部81は、走査面を軸方向に移動させながら画像を取得する画像取得用カテーテル28を用いて取得された複数の断層像58を構成する各画素が、生体組織領域46および内腔領域40を含む複数の領域に分類された複数の分類データ57を取得する。
[Embodiment 14]
FIG. 35 is a functional block diagram of the information processing device 200 according to the fourteenth embodiment. The information processing device 200 includes a classification data acquisition section 81 , an entrance determination section 82 and a dimension output section 83 . The classification data acquisition unit 81 is configured such that each pixel constituting a plurality of tomographic images 58 acquired using the image acquisition catheter 28 acquires images while moving the scanning plane in the axial direction. A plurality of classified data 57 classified into a plurality of areas including the area 40 are acquired.
 入口決定部82は、複数の分類データ57を用いて構築された三次元画像59における所定の領域が幹部51と枝部52とに分岐する分岐部入口53を決定する。寸法出力部83は、分岐部入口53の寸法に関する値を出力する。 The entrance determination unit 82 determines the bifurcation entrance 53 where a predetermined area in the three-dimensional image 59 constructed using a plurality of classification data 57 branches into the trunk 51 and the branch 52 . The dimension output unit 83 outputs values related to the dimensions of the branch entrance 53 .
 各実施例で記載されている技術的特徴(構成要件)はお互いに組合せ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した意味では無く、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The technical features (constituent elements) described in each embodiment can be combined with each other, and new technical features can be formed by combining them.
The embodiments disclosed this time are illustrative in all respects and should be considered not restrictive. The scope of the present invention is not defined by the above-described meaning, but is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 10  カテーテルシステム
 200 情報処理装置
 201 制御部
 202 主記憶装置
 203 補助記憶装置
 204 通信部
 205 表示部
 206 入力部
 209 読取部
 210 画像処理装置
 211 制御部
 212 主記憶装置
 213 補助記憶装置
 214 通信部
 215 表示部
 216 入力部
 27  カテーテル制御装置
 28  画像取得用カテーテル
 281 シース
 282 センサ
 283 シャフト
 289 MDU
 31  分類モデル
 36  断層像DB
 40  内腔領域
 45  腔外領域
 46  生体組織領域
 47  カテーテル領域
 51  幹部
 52  枝部
 521 枝軸
 522 端点
 523 貫通点
 53  分岐部入口
 54  基準面
 541 基準点
 542 回動軸
 55  重心
 57  分類データ
 58  断層像
 59  三次元画像
 71  終了ボタン
 72  決定ボタン
 76  寸法欄
 77  推奨デバイス欄
 81  分類データ取得部
 82  入口決定部
 83  寸法出力部
 90  コンピュータ
 96  可搬型記録媒体
 97  プログラム
 98  半導体メモリ
10 catheter system 200 information processing device 201 control unit 202 main storage device 203 auxiliary storage device 204 communication unit 205 display unit 206 input unit 209 reading unit 210 image processing device 211 control unit 212 main storage device 213 auxiliary storage device 214 communication unit 215 display Section 216 Input Section 27 Catheter Control Device 28 Image Acquisition Catheter 281 Sheath 282 Sensor 283 Shaft 289 MDU
31 Classification model 36 Tomogram DB
40 lumen region 45 extracavity region 46 biological tissue region 47 catheter region 51 trunk 52 branch 521 branch axis 522 end point 523 penetration point 53 bifurcation entrance 54 reference plane 541 reference point 542 rotation axis 55 center of gravity 57 classification data 58 tomographic image 59 three-dimensional image 71 end button 72 enter button 76 dimension column 77 recommended device column 81 classification data acquisition unit 82 entrance determination unit 83 dimension output unit 90 computer 96 portable recording medium 97 program 98 semiconductor memory

Claims (20)

  1.  走査ビームの発信方向を順次移動させながら三次元走査を行う画像取得用カテーテルを用いて取得された複数の断層像を構成する各画素が、生体組織領域および内腔領域を含む複数の領域に分類された複数の分類データを取得する分類データ取得部と、
     前記複数の分類データを用いて構築された三次元画像における所定の前記領域が幹部と枝部とに分岐する分岐部入口を決定する入口決定部と、
     前記分岐部入口の寸法に関する値を出力する寸法出力部と
     を備える情報処理装置。
    Each pixel constituting a plurality of tomographic images acquired using an image acquisition catheter that performs three-dimensional scanning while sequentially moving the transmission direction of the scanning beam is classified into a plurality of regions including a biological tissue region and a lumen region. a classification data acquisition unit that acquires a plurality of classification data obtained by
    an entrance determination unit that determines a bifurcation entrance where the predetermined region in the three-dimensional image constructed using the plurality of classification data branches into a trunk and a branch;
    and a dimension output unit that outputs a value related to the dimension of the branch entrance.
  2.  前記寸法に関する値は、前記分岐部入口の長径、前記分岐部入口の短径、前記分岐部入口の面積、前記枝部の長さ、または、前記枝部の体積を含む
     請求項1に記載の情報処理装置。
    2. The value for the dimension according to claim 1, wherein the values for the dimensions include the major diameter of the bifurcation entrance, the minor diameter of the bifurcation entrance, the area of the bifurcation entrance, the length of the branch, or the volume of the branch. Information processing equipment.
  3.  前記三次元画像に前記分岐部入口を重畳して出力する入口出力部を備える
     請求項1または請求項2に記載の情報処理装置。
    3. The information processing apparatus according to claim 1, further comprising an entrance output unit that superimposes the branch entrance on the three-dimensional image and outputs the image.
  4.  前記三次元画像において、3点以上のマーカの入力を受け付けるマーカ受付部と、
     前記マーカに基づいて前記分岐部入口を含む基準面を作成する基準面作成部と
     を備える請求項1から請求項3のいずれか一つに記載の情報処理装置。
    a marker reception unit that receives input of three or more markers in the three-dimensional image;
    4. The information processing apparatus according to any one of claims 1 to 3, further comprising: a reference plane creation unit that creates a reference plane including the branch entrance based on the marker.
  5.  前記三次元画像において、前記枝部の根本にマーカを自動的に配置する自動配置部と、
     前記三次元画像において、前記自動配置部が配置したマーカとの合計が3点以上になるようにマーカの入力を受け付けるマーカ受付部と、
     前記マーカに基づいて前記分岐部入口を含む基準面を作成する基準面作成部と
     を備える請求項1から請求項3のいずれか一つに記載の情報処理装置。
    an automatic placement unit that automatically places a marker at the base of the branch in the three-dimensional image;
    a marker receiving unit that receives an input of a marker such that the sum of the markers placed by the automatic placement unit in the three-dimensional image is 3 or more;
    4. The information processing apparatus according to any one of claims 1 to 3, further comprising: a reference plane creation unit that creates a reference plane including the branch entrance based on the marker.
  6.  前記三次元画像において、前記枝部の根本を通り、前記断層像に平行な基準面を作成する基準面作成部を備え、
     前記分岐部入口は、前記基準面のうち前記枝部が貫通する部分である
     請求項1から請求項3のいずれか一つに記載の情報処理装置。
    In the three-dimensional image, a reference plane creating unit that creates a reference plane that passes through the base of the branch and is parallel to the tomographic image,
    The information processing apparatus according to any one of claims 1 to 3, wherein the branch entrance is a portion of the reference plane through which the branch penetrates.
  7.  前記三次元画像と、前記断層像に平行な基準面とを重畳させて表示する基準面表示部と、
     前記基準面を該基準面に垂直な向きに移動させる指示を受け付ける移動受付部とを備え、
     前記分岐部入口は、前記基準面のうち前記枝部が貫通する部分である
     請求項1から請求項3のいずれか一つに記載の情報処理装置。
    a reference plane display unit for superimposing and displaying the three-dimensional image and a reference plane parallel to the tomographic image;
    a movement reception unit that receives an instruction to move the reference plane in a direction perpendicular to the reference plane;
    The information processing apparatus according to any one of claims 1 to 3, wherein the branch entrance is a portion of the reference plane through which the branch penetrates.
  8.  前記三次元画像において、前記枝部の根本を通り、該根本から前記画像取得用カテーテルの軸線に下ろした垂線に垂直な基準面を作成する基準面作成部を備え、
     前記分岐部入口は、前記基準面のうち前記枝部が貫通する部分である
     請求項1から請求項3のいずれか一つに記載の情報処理装置。
    a reference plane creating unit that creates a reference plane in the three-dimensional image that passes through the root of the branch and is perpendicular to a vertical line drawn from the root to the axis of the image acquisition catheter;
    The information processing apparatus according to any one of claims 1 to 3, wherein the branch entrance is a portion of the reference plane through which the branch penetrates.
  9.  前記三次元画像において、前記枝部のうち前記画像取得用カテーテルからみて遠位側にある遠位点を選択する遠位点選択部と、
     前記三次元画像と、前記遠位点から前記画像取得用カテーテルの軸線に下ろした垂線に垂直な基準面とを重畳させて表示する基準面表示部と、
     前記基準面を該基準面に垂直な向きに移動させる指示を受け付ける移動受付部とを備え、
     前記分岐部入口は、前記基準面のうち前記枝部が貫通する部分である
     請求項1から請求項3のいずれか一つに記載の情報処理装置。
    a distal point selection unit that selects a distal point on the distal side of the branch from the image acquisition catheter in the three-dimensional image;
    a reference plane display unit for superimposing and displaying the three-dimensional image and a reference plane perpendicular to a perpendicular drawn from the distal point to the axis of the image acquisition catheter;
    a movement reception unit that receives an instruction to move the reference plane in a direction perpendicular to the reference plane;
    The information processing apparatus according to any one of claims 1 to 3, wherein the branch entrance is a portion of the reference plane through which the branch penetrates.
  10.  前記分類データのそれぞれについて、前記枝部の重心を算出する重心算出部と、
     算出した複数の重心に基づいて前記枝部の軸線を算出する枝軸算出部と、
     前記三次元画像において、前記枝部の根本を通り、前記軸線に垂直な基準面を作成する基準面作成部を備え、
     前記分岐部入口は、前記基準面のうち前記枝部が貫通する部分である
     請求項1から請求項3のいずれか一つに記載の情報処理装置。
    a center-of-gravity calculation unit that calculates the center of gravity of the branch for each of the classified data;
    a branch axis calculator that calculates the axis of the branch based on the plurality of calculated centers of gravity;
    a reference plane creation unit that creates a reference plane that passes through the base of the branch and is perpendicular to the axis in the three-dimensional image;
    The information processing apparatus according to any one of claims 1 to 3, wherein the branch entrance is a portion of the reference plane through which the branch penetrates.
  11.  前記分類データのそれぞれについて、前記枝部の重心を算出する重心算出部と、
     算出した複数の重心に基づいて前記枝部の軸線を算出する枝軸算出部と、
     前記三次元画像と、前記軸線に垂直な基準面とを重畳させて表示する基準面表示部と、
     前記基準面を該基準面に垂直な向きに移動させる指示を受け付ける移動受付部とを備え、
     前記分岐部入口は、前記基準面のうち前記枝部が貫通する部分である
     請求項1から請求項3のいずれか一つに記載の情報処理装置。
    a center-of-gravity calculation unit that calculates the center of gravity of the branch for each of the classified data;
    a branch axis calculator that calculates the axis of the branch based on the plurality of calculated centers of gravity;
    a reference plane display unit for superimposing and displaying the three-dimensional image and a reference plane perpendicular to the axis;
    a movement reception unit that receives an instruction to move the reference plane in a direction perpendicular to the reference plane;
    The information processing apparatus according to any one of claims 1 to 3, wherein the branch entrance is a portion of the reference plane through which the branch penetrates.
  12.  前記三次元画像において、前記枝部の根本を含み前記画像取得用カテーテルの軸線に対して垂直な断面を選択する断面選択部と、
     前記断面において、前記根本から前記画像取得用カテーテルの軸線に下ろした垂線に垂直な回動軸を算出する回動軸算出部と、
     前記三次元画像において、前記回動軸を軸にして前記断面を回動させた基準面を作成する基準面作成部とを備える
     請求項1から請求項3のいずれか一つに記載の情報処理装置。
    a cross-section selection unit that selects a cross-section that includes the base of the branch and is perpendicular to the axis of the image acquisition catheter in the three-dimensional image;
    a rotation axis calculator for calculating a rotation axis perpendicular to a vertical line extending from the base to the axis of the image acquisition catheter in the cross section;
    4. The information processing according to any one of claims 1 to 3, further comprising a reference plane creating unit that creates a reference plane by rotating the cross section about the rotation axis in the three-dimensional image. Device.
  13.  前記三次元画像において、前記枝部の根本を含み前記画像取得用カテーテルの軸線に対して垂直な基準面を作成する基準面作成部と、
     前記基準面において、前記根本から前記画像取得用カテーテルの軸線に下ろした垂線に垂直な回動軸を算出する回動軸算出部と、
     前記回動軸を軸にして前記基準面を回動させる指示を受け付ける回動受付部とを備え、
     前記分岐部入口は、前記基準面のうち前記枝部が貫通する部分である
     請求項1から請求項3のいずれか一つに記載の情報処理装置。
    a reference plane creation unit that creates a reference plane that includes the base of the branch and is perpendicular to the axis of the image acquisition catheter in the three-dimensional image;
    a rotation axis calculation unit that calculates a rotation axis perpendicular to a vertical line extending from the base to the axis of the image acquisition catheter on the reference plane;
    a rotation reception unit that receives an instruction to rotate the reference plane about the rotation axis;
    The information processing apparatus according to any one of claims 1 to 3, wherein the branch entrance is a portion of the reference plane through which the branch penetrates.
  14.  前記基準面の調整指示を受け付ける調整受付部を備える
     請求項4から請求項13のいずれか一つに記載の情報処理装置。
    The information processing apparatus according to any one of claims 4 to 13, further comprising an adjustment reception unit that receives an adjustment instruction for the reference plane.
  15.  前記寸法に関する値に基づいて選択された推奨デバイスに関する情報を出力するデバイス情報出力部を備える
     請求項1から請求項14のいずれか一つに記載の情報処理装置。
    15. The information processing apparatus according to any one of claims 1 to 14, further comprising a device information output unit that outputs information regarding recommended devices selected based on the values regarding the dimensions.
  16.  前記所定の領域は内腔領域であり、
     前記幹部は、前記画像取得用カテーテルが挿入されている内腔領域である
     請求項1から請求項15のいずれか一つに記載の情報処理装置。
    the predetermined region is a lumen region;
    The information processing apparatus according to any one of claims 1 to 15, wherein the trunk is a lumen region into which the image acquisition catheter is inserted.
  17.  前記所定の領域は生体組織領域であり、
     前記枝部は、生体組織領域の一部が突出した部分である
     請求項1から請求項15のいずれか一つに記載の情報処理装置。
    the predetermined region is a biological tissue region;
    16. The information processing apparatus according to any one of claims 1 to 15, wherein the branch portion is a protruding portion of a living tissue region.
  18.  前記画像取得用カテーテルを用いて時系列的に取得された複数の断層像を取得する断層像取得部を備え、
     前記分類データ取得部は、断層像を入力した場合に前記分類データを出力するモデルに、前記断層像取得部が取得したそれぞれの前記断層像を入力して、出力される前記分類データを取得する
     請求項1から請求項17のいずれか一つに記載の情報処理装置。
    A tomographic image acquisition unit that acquires a plurality of tomographic images acquired in time series using the image acquisition catheter,
    The classification data acquisition unit acquires the classification data to be output by inputting each of the tomograms acquired by the tomography acquisition unit into a model that outputs the classification data when a tomogram is input. The information processing apparatus according to any one of claims 1 to 17.
  19.  走査ビームの発信方向を順次移動させながら三次元走査を行う画像取得用カテーテルを用いて取得された複数の断層像を構成する各画素が、生体組織領域および内腔領域を含む複数の領域に分類された複数の分類データを取得し、
     前記複数の分類データを用いて構築された三次元画像における所定の前記領域が幹部と枝部とに分岐する分岐部入口を決定し、
     前記分岐部入口の寸法に関する値を出力する
     処理をコンピュータが実行する情報処理方法。
    Each pixel constituting a plurality of tomographic images acquired using an image acquisition catheter that performs three-dimensional scanning while sequentially moving the transmission direction of the scanning beam is classified into a plurality of regions including a biological tissue region and a lumen region. Get multiple classification data that have been
    Determining a bifurcation entrance at which the predetermined region in the three-dimensional image constructed using the plurality of classification data branches into a trunk and a branch,
    An information processing method in which a computer executes a process of outputting a value related to the dimension of the branch entrance.
  20.  走査ビームの発信方向を順次移動させながら三次元走査を行う画像取得用カテーテルを用いて取得された複数の断層像を構成する各画素が、生体組織領域および内腔領域を含む複数の領域に分類された複数の分類データを取得し、
     前記複数の分類データを用いて構築された三次元画像における所定の前記領域が幹部と枝部とに分岐する分岐部入口を決定し、
     前記分岐部入口の寸法に関する値を出力する
     処理をコンピュータに実行させるプログラム。
    Each pixel constituting a plurality of tomographic images acquired using an image acquisition catheter that performs three-dimensional scanning while sequentially moving the transmission direction of the scanning beam is classified into a plurality of regions including a biological tissue region and a lumen region. Get multiple classification data that have been
    Determining a bifurcation entrance at which the predetermined region in the three-dimensional image constructed using the plurality of classification data branches into a trunk and a branch,
    A program for causing a computer to execute a process of outputting values relating to the dimensions of the entrance of the branch.
PCT/JP2022/044372 2021-12-03 2022-12-01 Information processing device, information processing method, and program WO2023100979A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021197156 2021-12-03
JP2021-197156 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023100979A1 true WO2023100979A1 (en) 2023-06-08

Family

ID=86612241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044372 WO2023100979A1 (en) 2021-12-03 2022-12-01 Information processing device, information processing method, and program

Country Status (1)

Country Link
WO (1) WO2023100979A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078497A (en) * 1993-06-25 1995-01-13 Toshiba Corp Ultrasonic diagnostic device
US20100016658A1 (en) * 2007-04-03 2010-01-21 Hui Zou Anatomical visualization and measurement system
JP2012521852A (en) * 2009-03-31 2012-09-20 ボストン サイエンティフィック サイムド,インコーポレイテッド System and method for creating and using an intravascular imaging system having multiple pullback rates
JP2015173820A (en) * 2014-03-14 2015-10-05 テルモ株式会社 Image processing device, image processing method, and program
WO2021193019A1 (en) * 2020-03-27 2021-09-30 テルモ株式会社 Program, information processing method, information processing device, and model generation method
WO2021199968A1 (en) * 2020-03-30 2021-10-07 テルモ株式会社 Computer program, information processing method, information processing device, and method for generating model
JP2021531138A (en) * 2018-07-02 2021-11-18 博動医学影像科技(上海)有限公司Pulse Medical Imaging Technology (Shanghai) Co., Ltd How to correct the pressure difference of blood vessels, equipment and facilities
JP2021531889A (en) * 2018-07-30 2021-11-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Workflow guide specific to intravascular imaging procedures and related equipment, systems, and methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078497A (en) * 1993-06-25 1995-01-13 Toshiba Corp Ultrasonic diagnostic device
US20100016658A1 (en) * 2007-04-03 2010-01-21 Hui Zou Anatomical visualization and measurement system
JP2012521852A (en) * 2009-03-31 2012-09-20 ボストン サイエンティフィック サイムド,インコーポレイテッド System and method for creating and using an intravascular imaging system having multiple pullback rates
JP2015173820A (en) * 2014-03-14 2015-10-05 テルモ株式会社 Image processing device, image processing method, and program
JP2021531138A (en) * 2018-07-02 2021-11-18 博動医学影像科技(上海)有限公司Pulse Medical Imaging Technology (Shanghai) Co., Ltd How to correct the pressure difference of blood vessels, equipment and facilities
JP2021531889A (en) * 2018-07-30 2021-11-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Workflow guide specific to intravascular imaging procedures and related equipment, systems, and methods
WO2021193019A1 (en) * 2020-03-27 2021-09-30 テルモ株式会社 Program, information processing method, information processing device, and model generation method
WO2021199968A1 (en) * 2020-03-30 2021-10-07 テルモ株式会社 Computer program, information processing method, information processing device, and method for generating model

Similar Documents

Publication Publication Date Title
US10660613B2 (en) Measurement point determination in medical diagnostic imaging
KR102452998B1 (en) Ultrasonic Diagnostic Apparatus
JP5474342B2 (en) Anatomical modeling with 3-D images and surface mapping
AU2007237321B2 (en) Coloring electroanatomical maps to indicate ultrasound data acquisition
US9196046B2 (en) Medical imaging
EP2807978A1 (en) Method and system for 3D acquisition of ultrasound images
JP2014217745A (en) Ultrasonic diagnostic apparatus and method of controlling the same
US9107607B2 (en) Method and system for measuring dimensions in volumetric ultrasound data
JP2014000475A (en) Medical image processor and medical image diagnostic apparatus
MXPA06004653A (en) Ultrasound imaging catheter with registration of electro-anatomical map and pre-acquired image.
JP2006305359A (en) Software product for three-dimensional cardiac imaging using ultrasound contour reconstruction
CN106028950A (en) Method and apparatus for displaying ultrasonic image
CN107209924A (en) Utilize the survey tool of the plane projection in rendered volume imagery
KR20170086311A (en) Medical imaging apparatus and operating method for the same
KR20200056927A (en) Medical user interface
WO2023100979A1 (en) Information processing device, information processing method, and program
CN112669449A (en) CAG and IVUS accurate linkage analysis method and system based on 3D reconstruction technology
KR20210114281A (en) Ultrasound imaging apparatus, method for controlling the same, and computer program
RU2735068C1 (en) Body cavity map
JP6740051B2 (en) Ultrasonic diagnostic device, medical image processing device, and medical image processing program
WO2022071325A1 (en) Information processing device, information processing method, program, and trained model generation method
JP7379473B2 (en) Diagnosis support device and diagnosis support method
JP7421548B2 (en) Diagnostic support device and diagnostic support system
WO2023054001A1 (en) Image processing device, image processing system, image display method, and image processing program
TWI793008B (en) Image projecting method for demonstrating internal information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901409

Country of ref document: EP

Kind code of ref document: A1