WO2023100967A1 - Antiviral composition and molded product thereof - Google Patents

Antiviral composition and molded product thereof Download PDF

Info

Publication number
WO2023100967A1
WO2023100967A1 PCT/JP2022/044328 JP2022044328W WO2023100967A1 WO 2023100967 A1 WO2023100967 A1 WO 2023100967A1 JP 2022044328 W JP2022044328 W JP 2022044328W WO 2023100967 A1 WO2023100967 A1 WO 2023100967A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
antiviral
dispersed
mass
cellulose
Prior art date
Application number
PCT/JP2022/044328
Other languages
French (fr)
Japanese (ja)
Inventor
優衣 羽室
幸広 伊倉
康雄 中島
健一 須山
優衣 大城戸
ノルザフリザ 新田
宝生 瀧本
英道 藤原
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2023530815A priority Critical patent/JP7394266B2/en
Publication of WO2023100967A1 publication Critical patent/WO2023100967A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof

Definitions

  • the present invention relates to an antiviral composition and a molded product thereof.
  • polymeric materials are useful as antibacterial and antiviral materials because they have high strength, excellent corrosion resistance, etc., and can be molded into desired shapes.
  • a resin composition containing an antibacterial agent or an antiviral agent, particularly a polyolefin resin composition is lightweight, has both strength and flexibility, is excellent in hydrolysis resistance, etc., and is easy to mold. products are proposed.
  • inorganic antibacterial agents such as metals and their compounds are also frequently used. It has long been known that metal ions have an antibacterial effect, and inorganic antibacterial agents using these ions are less likely to volatilize or decompose than organic antibacterial agents that have functional groups such as phenols and halogens. Therefore, it is not only highly safe, but also has properties such as long-lasting antibacterial action and excellent heat resistance.
  • an inorganic antibacterial agent for example, by adding metal oxide particles to the thermoplastic resin fibers constituting the nonwoven fabric and uniformly finely dispersing them, an antibacterial nonwoven fabric with high antibacterial performance (see Patent Document 1) ) and a plastic product containing an antibacterial agent obtained by incorporating a metal salt of an antibacterial agent into the outer surface of the plastic product (see Patent Document 2).
  • JP 2021-116483 A Japanese Patent Publication No. 2007-518704
  • the object of the present invention is to provide a composition and molded article that not only have sufficiently high antibacterial properties, but also have excellent antiviral properties.
  • the present inventors have made intensive studies to achieve the above object, and as a result, dispersed particles made of a metallic material, particularly a metallic material that exhibits an antiviral function in the presence of water and/or an insoluble compound thereof,
  • the present invention has been completed based on the discovery that high antibacterial performance and antiviral performance can be imparted to polyolefin resins when used in combination with organic materials, particularly dispersion fibers made of organic materials having water absorption properties. rice field.
  • an antiviral composition comprising a base material containing a polyolefin resin, dispersed fibers made of an organic material, and dispersed particles made of a metal material and/or an insoluble compound thereof.
  • the present invention it has become possible to provide a composition having not only sufficiently high antibacterial properties but also excellent antiviral properties, and a molded article thereof. Since the antiviral composition of the present invention uses a polyolefin resin as a base material, it is lightweight, yet has high strength and flexibility, and has excellent physical properties such as hydrolysis resistance. It has the advantage that it can be molded into any shape. Since the antiviral composition of the present invention also contains a metal-based material as an antibacterial and antiviral agent, it is excellent in durability of antibacterial action and antiviral action and heat resistance.
  • FIG. 1 is a plan view schematically showing an antiviral composition according to one embodiment of the present invention, showing the dispersed state of dispersed fibers and dispersed particles present in a base material.
  • FIG. 4 is a cross-sectional view schematically showing a molded article of another embodiment of the present invention, showing the dispersed state of dispersed fibers and dispersed particles present in a base material.
  • FIG. 2 is an electron micrograph of the surface of a pressed sheet specimen of Example 2 according to the present invention;
  • FIG. 2 is an electron micrograph of a cross-section of a pressed sheet specimen of Example 2 according to the present invention;
  • 3 is an electron micrograph of the surface of the pressed sheet test piece of Comparative Example 2.
  • FIG. 10 is an electron micrograph of the surface of the pressed sheet test piece of Comparative Example 3.
  • FIG. 1 is a plan view schematically showing an antiviral composition according to one embodiment of the present invention, showing the dispersed state of dispersed fibers and dispersed
  • antiviral composition of the present invention will be described in detail below based on embodiments, but the present invention is not limited to these embodiments.
  • the antiviral composition of the present invention comprises a base material containing a polyolefin resin, dispersed fibers made of an organic material, and dispersed particles made of a metal material and/or an insoluble compound thereof.
  • the antiviral composition of the present invention particularly comprises a base material containing a polyolefin resin, dispersed fibers made of a water-absorbing organic material, and a metal material that exhibits an antiviral function in the presence of water and/or its insolubility. and dispersed particles of the compound.
  • FIG. 1 is a plan view schematically showing an antiviral composition according to one embodiment of the present invention, showing the dispersed state of dispersed fibers and dispersed particles present in a base material.
  • FIG. 2 is a cross-sectional view schematically showing a molded article according to another embodiment of the present invention, showing the dispersed state of dispersed fibers and dispersed particles present in a base material.
  • the dispersed fibers 3 and the dispersed particles 4 in the base material 2 containing a polyolefin resin are at least partially are preferably exposed from the base material 2 .
  • the dispersed fibers 13 and the dispersed particles 14 in the base material 12 preferably exist in a state in which at least part of each is exposed on the surface of the molded body 11 .
  • part of the dispersed fibers 13 and dispersed particles 14 are exposed on the surface is also demonstrated in Examples described later (Figs. ). That is, in a preferred embodiment of the present invention, at least part of the dispersed fibers and dispersed particles in the base material is in direct contact with the outside of the antiviral composition 1 and molded article 11 .
  • the exposed state described above can be more easily achieved, and the surface area of the exposed portions of the dispersed fibers 3 and dispersed particles 4 can be further increased. .
  • dispersed fibers made of an organic material are made from a metal material and/or an insoluble compound thereof. It is thought that it acts on various dispersed particles and expresses antibacterial and antiviral functions.
  • the following mechanisms have been proposed as one mechanism by which metal particles such as copper exhibit antibacterial and antiviral properties. 1. Copper ions are eluted into water. 2. Copper ions react with oxygen to generate active oxygen. 3. Copper ions and active oxygen reduce bacteria and viruses.
  • the polyolefin resin used as the base material is excellent in hydrolysis resistance, but has low hydrophilicity. It is difficult to develop antiviral properties.
  • a composition containing dispersed fibers made of an organic material for example, it is possible to take in moisture from the outside along the interface between the base material and the dispersed fibers, and the surface of the metal-based material that constitutes the dispersed particles. can be supplied with moisture.
  • the dispersed fibers are made of a water-absorbing organic material, the composition is imparted with hydrophilicity, which makes it easier to take in moisture from the outside.
  • the composition becomes water-permeable, so the surface of the metal-based material has sufficient a sufficient amount of water is supplied. Therefore, it is believed that the ionization of the metal and/or its insoluble compounds is promoted and sufficient antiviral properties are exhibited.
  • the proportions of the base material, dispersed fibers and dispersed particles are preferably in the range of 40 to 80%:5 to 55%:1 to 25% by mass percentage. . Moreover, it is preferable that at least part of each of the dispersed fibers and the dispersed particles is exposed from the base material.
  • Each component constituting the antiviral composition of the present invention is described below.
  • the antiviral composition of the present invention contains a polyolefin resin as a base material.
  • the polyolefin resin includes homopolymers and copolymers based on olefin monomers such as ethylene and propylene.
  • Examples include polypropylene resins and polyethylene resins such as polypropylene, polyethylene, polyisobutylene, polymethylpentene, ethylene-propylene copolymer, propylene- ⁇ -olefin copolymer, and ethylene- ⁇ -olefin copolymer; ethylene vinyl acetate Copolymers, copolymers of olefin monomers and other monomers such as ethylene-(meth)acrylic acid ester copolymers; halogenated polyolefins such as polyvinyl chloride, polyvinylidene chloride and chlorinated polyethylene; and polyacrylonitrile and copolymers thereof, such as acrylonitrile-styrene copolymers (AS resins, ABS resins), etc., but are not limited thereto.
  • a plurality of types of polyolefin-based resins can also be used in combination.
  • the polyolefin resin preferably does not have functional groups such as halogens and nitrile groups. If the base material is a polyolefin resin containing only carbon, hydrogen, and optionally oxygen atoms, which does not contain halogens, etc., the weight of the antiviral composition can be reduced, and harmful gases are generated when burned. Since there is no fear, it is also advantageous from an environmental point of view.
  • the polyolefin-based resin of the base material is more preferably one or more resins selected from the group consisting of polypropylene-based resins, polyethylene-based resins, and ethylene-vinyl acetate copolymers.
  • the constituent molar ratio of the olefin monomer in the copolymer is preferably 60% or more, more preferably 80% or more, and particularly preferably 90% or more.
  • the antiviral composition can be made lighter and have excellent resistance to hydrolysis and the like.
  • an ethylene-vinyl acetate copolymer having a vinyl acetate monomer composition molar ratio of 40% or less, particularly 20% or less, for example, 0.1 to 5 mol% is used.
  • the base material is a resin containing substantially only olefin, such as polypropylene resin or polyethylene resin.
  • polypropylene resin polypropylene resin
  • polypropylene-based resins include propylene homopolymers as well as copolymers of propylene and other ⁇ -olefins, such as propylene- ⁇ -olefin copolymers and propylene-ethylene- ⁇ -olefin copolymers.
  • resins containing both ethylene and propylene components are classified as polypropylene resins.
  • Polypropylene-based resins are lightweight, high-strength, and excellent in flexibility and heat resistance, so they are ideal as a base material for the antiviral composition of the present invention. From the viewpoint of strength and heat resistance, a polypropylene-based resin, at least a portion of which forms a crystal structure at room temperature (25° C.), is preferable in the molded article of the present invention. Differential scanning calorimetry (DSC measurement) of a molded article containing such a polypropylene-based resin reveals a melting peak at 164 ⁇ 5° C. associated with melting of polypropylene crystals.
  • the polypropylene resin used as the base material in the antiviral composition of the present invention is not particularly limited.
  • the propylene homopolymer having any structure such as isotactic, atactic, and syndiotactic may be used. Any of random copolymers, block copolymers, and alternating copolymers can be used as copolymers.
  • the molecular weight is also not particularly limited, and for example, a polypropylene resin having a weight average molecular weight of 1,000 to 1,000,000, particularly 3,000 to 300,000 can be used.
  • the melt flow rate (MFR) of the polypropylene resin is also not particularly limited. 10 minutes, particularly 1 to 30 g/10 minutes of the resin may be used.
  • these polypropylene-based resins may be used alone or in combination of two or more.
  • the ⁇ -olefin in the propylene- ⁇ -olefin copolymer is preferably 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-butene, 1-hexene and 1-octene are more preferred.
  • Propylene- ⁇ -olefin random copolymers include, for example, propylene-ethylene random copolymers, propylene-1-butene random copolymers, propylene-1-hexene random copolymers, and propylene-1-octene random copolymers. Amalgamation etc. are mentioned.
  • propylene-ethylene- ⁇ -olefin copolymer examples include propylene-ethylene-1-butene copolymer, propylene-ethylene-1-hexene copolymer, propylene-ethylene-1-octene copolymer and the like. be done.
  • the propylene block copolymer is obtained, for example, by copolymerizing a propylene homopolymer component or a copolymer component mainly composed of propylene, at least one monomer selected from ethylene and ⁇ -olefins, and propylene.
  • a copolymer composed of a copolymer component obtained from the above can be used.
  • Examples include (propylene)-(propylene-ethylene) copolymer, (propylene)-(propylene-ethylene-1-butene) copolymer, (propylene)-(propylene-ethylene-1-hexene) copolymer, (propylene)-(propylene-1-butene) copolymer, (propylene)-(propylene-1-hexene) copolymer, (propylene-ethylene)-(propylene-ethylene) copolymer, (propylene-ethylene) -(propylene-ethylene-1-butene) copolymer, (propylene-ethylene)-(propylene-ethylene-1-hexene) copolymer, (propylene-ethylene)-(propylene-1-butene) copolymer, (propylene-ethylene)-(propylene-1-hexene) copolymer, (propylene-ethylene)-(propylene-1-butene) copolymer, (prop
  • propylene homopolymer propylene-ethylene random copolymer, propylene-1-butene random copolymer, propylene-ethylene-1-butene copolymer or propylene block copolymer are preferred.
  • polyethylene-based resins include ethylene homopolymers as well as copolymers of ethylene and other ⁇ -olefins, such as ethylene- ⁇ -olefin copolymers.
  • Polyethylene-based resins are excellent in moldability, inexpensive and economical, and therefore are suitable as the base material for the antiviral composition of the present invention. From the standpoint of moldability, it is preferable to use a polyethylene-based resin, at least a part of which forms a crystal structure at room temperature (25° C.) in the molded article of the present invention.
  • DSC measurement differential scanning calorimetry
  • the polyethylene-based resin used as the base material in the antiviral composition of the present invention is not particularly limited, and examples thereof include ethylene homopolymers and ethylene- ⁇ -olefin copolymers. These polyethylene-based resins may be used alone or in combination of two or more.
  • Preferred ⁇ -olefins are 1-butene, 1-pentene, 1-hexene and 1-octene.
  • high density polyethylene density about 0.92 to 0.96
  • low density polyethylene LDPE, density about 0.91 to 0.92
  • ultra low density polyethylene VLDPE, density of about 0.9 or less
  • linear low-density polyethylene LLDPE, density of about 0.94 or less
  • ultra-high molecular weight polyethylene UHMW-PE, mass average molecular weight of about 1,5000,000 or more
  • ethylene- ⁇ -olefin copolymers examples include ethylene-1-butene copolymers, ethylene-1-pentene copolymers, ethylene-1-hexene copolymers, ethylene-1-octene copolymers, and the like. mentioned.
  • Ethylene vinyl acetate copolymers are copolymers of ethylene and vinyl acetate. Various varieties with different copolymerization ratios are on the market, and any of them can be used in the present invention. Examples thereof include vinyl acetate-modified polyethylene having a vinyl acetate content (mass ratio of the vinyl acetate monomer component in the copolymer) of about 4% or less, and general-purpose ethylene-vinyl acetate copolymer having a vinyl acetate content of about 4 to 30%. However, higher vinyl acetate copolymers, for example 60% vinyl acetate, can be used. Ethylene-vinyl acetate copolymers are flexible, glossy, and exhibit high adhesiveness as compared to polyethylene resins and the like. In addition, a copolymer having a higher vinyl acetate content tends to be more flexible.
  • the antiviral composition of the present invention may contain a modified polyolefin resin as part of the polyolefin resin.
  • a modified polyethylene resin may be used as the polyethylene resin, or an acid-modified polyethylene resin may be included together with a non-acid-modified polyethylene resin.
  • the term "polyolefin-based resin" in the present invention includes modified polyolefin resins such as acid-modified polyethylene resins.
  • the modified polyolefin resin is not particularly limited, but examples include those obtained by graft-modifying a polypropylene resin or polyethylene resin with an unsaturated carboxylic acid, alkoxysilane, or a derivative thereof.
  • unsaturated carboxylic acids include maleic acid, fumaric acid, itaconic acid, acrylic acid, and methacrylic acid.
  • unsaturated carboxylic acid derivatives include maleic anhydride, itaconic anhydride, methyl acrylate, Ethyl acrylate, butyl acrylate, glycidyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, glycidyl methacrylate, monoethyl maleate, diethyl maleate, monomethyl fumarate, dimethyl fumarate, etc. mentioned.
  • An unsaturated carboxylic acid anhydride is preferred as the unsaturated carboxylic acid derivative. Among these unsaturated carboxylic acids and/or derivatives thereof, maleic anhydride is particularly preferred.
  • an alkoxysilane compound having a functional group for grafting is preferable.
  • the silane coupling agent to be used has a site (group or atom) capable of undergoing a grafting reaction with the polyolefin resin in the presence of radicals generated by decomposition of the organic peroxide, and an alkoxysilyl group. can be done.
  • a group containing an ethylenically unsaturated group is exemplified as the site that can be grafted onto the polyolefin resin.
  • Examples of groups containing an ethylenically unsaturated group include, but are not limited to, vinyl groups, allyl groups, (meth)acryloyloxy groups, (meth)acryloyloxyalkylene groups, and p-styryl groups.
  • the alkoxysilyl group may be in the form of a trialkoxysilyl group, a dialkoxysilyl group, or a monoalkoxysilyl group, and it is preferable to use a trialkoxysilane compound.
  • the alkoxy group of the alkoxysilyl group preferably has 1 to 6 carbon atoms, more preferably a methoxy group or an ethoxy group.
  • the silane coupling agent preferably has an ethylenically unsaturated group-containing group and an alkoxysilyl group.
  • One type of silane coupling agent may be used, or two or more types may be used.
  • silane coupling agent examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, vinyldimethoxyethoxysilane, vinyldimethoxybutoxysilane, vinyldiethoxybutoxysilane, allyltrimethoxysilane, allyltriethoxysilane.
  • Vinylsilane compounds such as silane, vinyltriacetoxysilane, trimethoxy(4-vinylphenyl)silane, 3-(trimethoxysilyl)propyl (meth)acrylate, 3-(methyldimethoxysilyl)propyl (meth)acrylate, (meth) ) 3-(methyldiethoxysilyl)propyl acrylate, 3-(triethoxysilyl)propyl (meth)acrylate, 3-(methoxydimethylsilyl)propyl (meth)acrylate and other (meth)acrylsilane compounds, etc. mentioned.
  • the alkyl group of (trimethoxysilyl)alkyl (meth)acrylate preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 2 to 4 carbon atoms, and particularly preferably a propyl group. From the viewpoint of increasing the tensile strength of the molded article, it is preferable to use 3-(trimethoxysilyl)propyl methacrylate.
  • the amount of modification in the modified polyolefin resin is not particularly limited, but is preferably 0.2 to 10% by mass, more preferably 1 to 5% by mass relative to 100% by mass of the polyolefin resin (before modification).
  • the content thereof is preferably about 1 to 20 parts by mass, particularly about 5 to 15 parts by mass with respect to 100 parts by mass of the polyolefin resin. .
  • the proportions of the base material, dispersed fibers, and dispersed particles described later are 40 to 80%: 5 to 55%: 1 to 25% by mass. A range is preferred. If the content of the base material containing the polyolefin resin, preferably the base material substantially made of the polyolefin resin, is 40% by mass or more relative to the entire antiviral composition, good moldability is likely to be exhibited. There are advantages. On the other hand, when the same amount is 80% by mass or less, that is, when the content of the dispersed fibers and the dispersed particles of the metallic material is 20% by mass or more, good antibacterial and antiviral properties are likely to be exhibited. More preferably, the content of the base material in 100% by mass of the antiviral composition is 48-78% by mass, more preferably 55-75% by mass.
  • dispersed fibers made of an organic material are dispersed in the base material as described above, and dispersed particles made of a metal material and/or an insoluble compound thereof (metal system-dispersed particles). These dispersed fibers are considered to function as an antiviral aid that assists the antiviral properties of the metal-based dispersed particles described later.
  • the dispersed fibers in the present invention may be of any type as long as they are fibers made of an organic material (organic fibers), and there are no particular restrictions on the fiber length, fiber diameter, and the like.
  • fibers (water-absorbing organic fibers) made of organic materials having water-absorbing properties (water-absorbing organic materials) are used.
  • the coexistence of the water-absorbing organic fibers facilitates the supply of moisture to the surface of the metal material forming the dispersed particles, so that the antibacterial and antiviral effects of the composition are further enhanced.
  • organic fibers examples include natural fibers such as cellulose fibers, wool and silk; regenerated cellulose fibers, polyester fibers such as polyethylene terephthalate fibers, polyethylene naphthalate fibers, polyphenylene sulfide fibers, polyamide fibers such as nylon ) fibers and synthetic fibers such as polyimide fibers.
  • organic fiber refers to a fiber mainly made of organic material, and in addition to organic material, it may contain unavoidable mixtures such as catalyst residues during synthesis, additives for processing, and inorganic substances derived from raw materials.
  • the dispersed fibers preferably contain cellulose fibers, and more preferably mainly consist of cellulose fibers, particularly natural cellulose fibers.
  • the ratio of natural or regenerated cellulose fibers to the entire dispersed fibers can be 70% by mass or more, 80% by mass or more, or 90% by mass or more, and it is particularly preferable that almost all of the dispersed fibers are cellulose fibers.
  • Cellulose fibers have higher strength and higher rigidity than polyolefin resins. Therefore, cellulose fibers have the effect of reinforcing the base material and increasing the rigidity (flexural modulus) of the antiviral composition and molded article.
  • cellulose fiber Cellulose fibers are fibrous cellulose, and the main component is a kind of polysaccharide represented by the molecular formula (C 6 H 10 O 5 ) n , so they are excellent in water absorption.
  • the cellulose fibers used in the present invention are not particularly limited, but plant-derived natural cellulose fibers are preferable, and in particular, fine plant-derived cellulose fibers, since industrial utilization methods have been established and they are readily available. , for example flour pulp, is preferred.
  • cellulose fiber includes regenerated cellulose fiber, and regenerated cellulose can be blended in the antiviral composition of the present invention in the same manner as natural cellulose.
  • natural cellulose and regenerated cellulose have different sources of raw materials, hereinafter, unless otherwise specified, "cellulose” refers to natural cellulose, and regenerated cellulose will be described separately.
  • plant-derived cellulose fibers are bundles of 30 to 40 cellulose molecules that form ultra-thin, highly crystalline microfibrils with a diameter of about 3 nm and a length of several hundred nm to several tens of ⁇ m. A bundled structure is formed through the soft non-crystalline portion.
  • the powdery pulp (powdered cellulose) is this bundle-like aggregate.
  • the term cellulose fiber is used in the sense of including the state of defibrated microfibrils in addition to the above-mentioned microfibril bundle (unfibrillated state).
  • Plant-derived cellulose fibers are not particularly limited, but examples include wood, bamboo, hemp, jute, kenaf, agricultural waste (e.g., straw such as wheat and rice, stalks such as corn and cotton, and sugarcane). and those derived from cloth, recycled pulp, waste paper, wood powder, and the like.
  • wood-derived cellulose fibers in particular wood pulp, are used.
  • wood pulp has the advantage of being stably supplied with less seasonal fluctuations in production volume. Pulp is also a raw material for paper, and tracheids extracted from plants are chemically composed mainly of cellulose.
  • Plant-derived cellulose fibers often contain components other than cellulose, such as lignin and hemicellulose.
  • such components other than cellulose need not be completely removed, but a small amount is preferable.
  • the content of cellulose in the cellulose fiber raw material is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more.
  • a particularly preferred cellulosic fiber raw material of this type is, for example, kraft pulp.
  • Kraft pulp is a general term for pulp obtained by removing lignin and hemicellulose from wood or other plant materials through chemical treatment such as caustic soda to extract nearly pure cellulose. It is composed mainly of cellulose molecules and small amounts of hemicellulose and lignin.
  • part of the hydroxyl groups in the cellulose molecule may be acetylated or carboxylated, and the hydrogen atoms in the hydroxyl groups may be replaced by sodium, potassium, or the like. It may be substituted with a metal ion, an ammonium ion, or the like.
  • Regenerated cellulose fibers are fibers obtained by reprecipitating cellulose from a solution. For example, dissolving cellulose in a cuprammonium oxide solution (Schweitzer's solution) or sodium hydroxide solution gives a highly viscous viscose. Cellulose can be regenerated by extruding this viscose as a spinning solution through pores into a coagulating bath such as sulfuric acid. Most regenerated cellulose fibers are produced by such a viscose method and are called rayon. Various types of regenerated cellulose fibers can be obtained depending on the type of viscose, degree of aging, coagulation bath, drawing and finishing conditions. Esterification treatment with acetic anhydride or the like may be performed.
  • solvent-spun rayon in which cellulose is dissolved in a solvent such as N-methylphorpholine N-oxide and spun, and copper-ann rayon. Any of these various regenerated cellulose fibers can be used in the present invention. A combined use with natural cellulose fibers is also possible.
  • Polyester fibers are fibers composed of long-chain synthetic polymers in which monomer units are mainly ester-bonded. Most of the general-purpose polyester fibers are fibers mainly composed of polymers composed of dihydric alcohol and terephthalic acid, and polyethylene terephthalate (PET) fibers are particularly common. In addition, a polyester fiber having an ether bond, which is obtained by copolymerizing alkylene paraoxybenzoate or the like, is also known. Various types of polyester fibers can be produced depending on the monomer component, degree of polymerization, synthesis method, drawing conditions, and the like. Any of these various polyester fibers can be used in the present invention. A combination with natural and/or regenerated cellulose fibers is also possible.
  • the average fiber diameter and average fiber length of the dispersed fibers are not particularly limited, and can be appropriately selected depending on the application.
  • the average fiber diameter of dispersed fibers such as cellulose fibers is preferably 1 to 50 ⁇ m, more preferably 5 to 40 ⁇ m. is more preferable, 10 to 30 ⁇ m is still more preferable, and 15 to 25 ⁇ m is particularly preferable.
  • the average fiber length of dispersed fibers such as cellulose fibers is preferably 10 to 3000 ⁇ m, more preferably 20 to 2500 ⁇ m, still more preferably 100 to 2000 ⁇ m, and particularly preferably 400 to 1000 ⁇ m.
  • the above average fiber diameter and average fiber length are the fiber length and fiber diameter measurement by a fiber analyzer, the longitudinal size of dispersed fibers observed with an optical microscope or an electron microscope, and the transverse size. It can be obtained by averaging each of the fiber diameters.
  • the field of view for obtaining the average fiber diameter and average fiber length by microscopic observation is, for example, 960 ⁇ m ⁇ 1200 ⁇ m.
  • the content of dispersed fibers is not particularly limited, and can be appropriately selected depending on the application. Preferably, it is 7 to 110 parts by mass, more preferably 10 to 55 parts by mass, based on 100 parts by mass of the base material. If the content of the dispersed fibers is within this range, the composition exhibits sufficient antiviral properties and is excellent in mechanical strength such as flexural modulus and appearance. On the other hand, when the content of the dispersed fibers is large, the moldability is inferior, and it may become difficult to mold the film into a sheet film shape. If too little dispersed fiber is added, the antibacterial or antiviral properties of the composition may be poor.
  • the abundance ratio of the base material, the dispersed fibers, and the metal-based dispersed particles described later is is preferably in the range of 40-80%:5-55%:1-25% in terms of mass %. More preferably, the content of dispersed fibers is 8 to 51% by mass, more preferably 10 to 40% by mass, based on 100% by mass of the total antiviral composition.
  • the antiviral composition of the present invention comprises dispersed particles composed of a metal material, particularly a metal material that exhibits an antiviral function in the presence of water (antiviral metal material) and/or an insoluble compound thereof, That is, it further contains metal-based dispersed particles.
  • Dispersed particles include, but are not limited to, those containing one or more metals and/or insoluble compounds thereof selected from the group consisting of copper, silver, zinc, nickel, aluminum, palladium, tin and iron. not.
  • the "insoluble compounds" of these metals are compounds that are almost insoluble in water, and may be oxides or hydroxides.
  • they may be oxide particles or hydroxide particles of the antiviral metal material, or metal particles partially or entirely covered with oxide or hydroxide.
  • the metal material and/or its insoluble compound may be, for example, an alloy or composite oxide containing a plurality of the above metals such as copper and silver. Copper or its alloys, such as brass, are particularly preferred.
  • Such metallic materials exhibit a high antiviral function, especially in the presence of water, and act as antiviral agents in the antiviral composition of the present invention.
  • "dispersed particles composed of metallic materials and/or insoluble compounds thereof” refer to particles composed mainly of metallic materials and/or insoluble compounds of these metallic materials, and unavoidable mixtures derived from raw materials, etc. Alternatively, it may contain a surface modifier or the like for improving dispersibility.
  • the antiviral composition of the present invention contains dispersed particles composed of a metallic material and/or an insoluble compound thereof instead of a metal salt as an antiviral agent, the antiviral agent is not extracted into water or the like during use. .
  • organic antibacterial agents there is no risk of volatilization or decomposition. Therefore, the antibacterial and antiviral properties do not deteriorate with long-term use, and there is no risk of causing salt damage to peripheral equipment.
  • the antiviral composition of the present invention or its molded product comes into contact with water such as aquarium water, sewage, or body fluids such as perspiration, the antiviral function based on the dispersed particles composed of the metal material and/or its insoluble compound is activated. demonstrated.
  • Such dispersed particles in the antiviral composition of the present invention may have any shape, and at least one of shapes such as spherical, fibrous powder, and scaly can be selected. Particles in which a plurality of shapes are mixed may be used. Above all, from the viewpoint of ensuring the moldability of the composition, the dispersed particles are preferably spherical.
  • the particle diameter of the metal-based dispersed particles is not particularly limited, but the average particle diameter is preferably 0.01 ⁇ m or more and 100 ⁇ m or less, more preferably 0.1 ⁇ m or more and 50 ⁇ m or less, and 1 ⁇ m or more and 40 ⁇ m. The following are particularly preferred. In general, the smaller the diameter of the metal-based particles, the more likely they are to exhibit antiviral properties. If the particle size is large, the surface properties of the molded article may be inferior due to the unevenness of the dispersed metal particles.
  • the average particle size can be determined by a dynamic light scattering method, a laser diffraction method, or the like.
  • the abundance ratio of the base material, the dispersed fibers, and the metal-based dispersed particles is %, preferably in the range of 40-80%:5-55%:1-25%. More preferably, the content of the metal-based dispersed particles is 1 to 20% by mass, more preferably 1 to 15% by mass, based on 100% by mass of the total antiviral composition.
  • the ratio of the base material, the dispersed fibers and the dispersed particles in the antiviral composition of the present invention is more preferably 48-78% by mass: 8-51% by mass: 1-20% by mass, and more preferably 48-50% by mass. 75% by mass: 10 to 51% by mass: 1 to 15% by mass.
  • the antiviral composition of the present invention contains resins other than polyolefin-based resins, as long as the effects of the present invention are not impaired.
  • Various commonly used additives may be included.
  • additives include antioxidants, light stabilizers, radical scavengers, UV absorbers, colorants (dyes, organic pigments, inorganic pigments), fillers, lubricants, plasticizers, processing aids such as acrylic processing aids, etc. agents, foaming agents, lubricants such as paraffin wax, surface treatment agents, crystal nucleating agents, mold release agents, anti-hydrolysis agents, anti-blocking agents, anti-static agents, anti-fogging agents, anti-fogging agents, ion trap agents, Examples include, but are not limited to, retardants, flame retardant aids, and the like.
  • Such other components are within a range that does not impair the purpose of the present invention, for example, in an amount of about 0.1 to 10% by mass, particularly about 0.5 to 5% by mass, based on 100% by mass of the total antiviral composition. It can be contained as appropriate.
  • the antiviral composition of the present invention is prepared by melt-mixing (kneading) at least a base material (polyolefin resin), dispersed fibers and (metallic) dispersed particles, for example, and dispersing fibers and (metallic) in the polyolefin resin. system) can be produced by dispersing dispersed particles.
  • the present invention also includes a method of making an antiviral composition comprising the step of melt-blending the base material, dispersed fibers, and dispersed particles.
  • melt mixing means mixing the polyolefin resin in a melted state with components such as dispersed fibers and (metallic) dispersed particles.
  • mixing means that the melted polyolefin resin is melted, and as long as it can create a state in which components such as dispersed fibers and (metallic) dispersed particles are mixed, it may be uniform or non-uniform.
  • Melt-mixing is prepared by, for example, mixing components such as dispersed fibers and (metallic) dispersed particles in a melted state of polyolefin resin using an extruder, a kneader, a Banbury mixer, or the like. can be done. In particular, use of a twin-screw extruder is preferred.
  • a molten mixture A of the polyolefin resin and the (metallic) dispersed particles and a molten mixture B of the polyolefin resin and the dispersed fibers are respectively prepared, melt-mixed, and then molded. is preferable from the viewpoint of improving the dispersion of the dispersed fibers and the (metallic) dispersed particles in the polyolefin resin.
  • (metal-based) dispersed particles may be mixed with the molten mixture B prepared as described above.
  • the molten mixture A of the polyolefin resin and the (metallic) dispersed particles and the molten mixture B of the polyolefin resin and the dispersed fibers are pelletized as described below before mixing them from the viewpoint of handleability in the molding process. It is preferable to process it into a shape.
  • the alkoxysilane-modified polyolefin resin and the dispersed fibers are alkoxylated before melt mixing. Pre-mixing may be performed at a temperature below the melting point of the silane-modified polyolefin resin, or melt-mixing may be performed in the presence of a dispersing aid for dispersed fibers.
  • the dispersing aid for dispersed fibers can be added to a mixing device (eg, an extruder) and collected through a vent.
  • a mixing device eg, an extruder
  • water or the like from the viewpoint of less environmental load such as separation or recovery and less adverse effect on the dispersed fibers even if it remains.
  • the present invention also includes molded articles comprising the antiviral composition described above.
  • the shape of the molded product is not particularly limited, and various desired shapes such as sheet-like, tubular, and other complicated shapes can be used according to the purpose and application.
  • the molded article of the present invention may be a foam.
  • the method for producing the molded article of the present invention is not particularly limited as long as it can be molded into the desired shape, and any of conventionally known methods such as extrusion molding, injection molding, vacuum molding, blow molding, and calender molding can be used. be.
  • an extruder may be used to carry out the melt mixing and molding of the molded article in one step.
  • the produced antiviral composition may be once pelletized and molded by injection molding or the like.
  • the pelletization method is not particularly limited, and a general-purpose pelletizer or the like can be used.
  • liquid phase foaming methods such as injection foaming, extrusion foaming, foam blowing, etc.
  • solid phase foaming methods such as bead foaming, batch foaming, press foaming, normal pressure secondary foaming, etc. are known. Any method can be used.
  • the molding temperature in injection molding, extrusion molding, etc. varies to some extent depending on the molding method and the type of polyolefin resin used, so it cannot be defined unconditionally, but preferably the melting point of the base material +5 to
  • the temperature can be about 100°C, particularly about +10 to 50°C, for example, 180 to 260°C, more preferably 190 to 230°C.
  • the antiviral composition according to the present invention can be molded into a predetermined shape with good drawdown properties and spreadability without causing local denaturation.
  • the form of the molded article does not have to consist of only the antiviral composition of the present invention.
  • the molded article of the present invention exhibits excellent antibacterial and antiviral properties, it can be used by many users, including products for various medical and sanitary purposes, materials for transportation equipment such as automobile parts, interiors, and exteriors. It is useful as a material for durable products.
  • molded articles containing cellulose fibers, especially natural cellulose fibers, as dispersed fibers have the inherent properties of cellulose fiber reinforced resin materials, such as lightness and high specific strength, and have not only antibacterial and antiviral properties, but also rigidity and resistance. It can be used for various applications such as members or materials that require impact resistance.
  • the molded article of the present invention can be used as the following products, or their parts and/or members.
  • Examples include transportation equipment (automobiles, motorcycles, trains, aircraft, etc.), structural members of robot arms, robot parts for amusement, prosthetic limb members, home appliance materials, OA equipment housings, information processing equipment, mobile terminals, building materials, films for houses. , drainage equipment, toiletry product materials, various tanks, containers, sheets, packaging materials, toys, stationery, food containers, bobbins, tubes, cable troughs, resin gutters, furniture materials (wall materials, handrails, etc.), shoes, and sporting goods etc.
  • the molded article of the present invention is suitable as a material for transportation equipment such as automobile parts.
  • Materials for transportation equipment include materials for vehicles, such as trims such as dashboard trims, door trims, pillar trims, meter panels, meter housings, glove boxes, package trays, roof headlinings, consoles, and instrument panels. , armrests, seats, seat backs, trunk lids, trunk lid lowers, door inner panels, pillars, spare tire covers, door knobs, light housings, interior parts such as back trays, bumpers, bonnets, spoilers, radiator grills, fenders, fender liners Exterior parts such as rocker panels, side steps, door/outer panels, side doors, back doors, roofs, roof carriers, wheel cap covers, door mirror covers, under covers, etc., battery cases, engine covers, fuel tanks, fuel Tubes, fuel filler boxes, air intake ducts, air cleaner housings, air conditioner housings, coolant reserve tanks, radiator reserve tanks, window washer tanks, intake manifolds, rotating members such as fans and pulleys, parts such as wire harness protectors, junction boxes or connectors, integrally molded parts such
  • Example/Comparative example Various compositions and molded articles were prepared, and their antibacterial and antiviral properties and water absorption were evaluated.
  • Antibacterial evaluation was performed according to JIS Z 2801:201. Using the following test bacteria, the antibacterial activity value was determined at a temperature of 35°C, an action time of 24 hours, an inoculum solution concentration of 5.4 x 105 cfu/ml, and an inoculum amount of 0.4 ml/sample. ⁇ Staphylococcus aureus (NBRC12732) ⁇ Escherichia coli (NBRC3972) The antibacterial activity value was calculated from the following formula.
  • Antibacterial activity value LogA-LogB A: Number of viable bacteria per unit area of standard sample (polypropylene resin alone) B: Number of viable bacteria per unit area of test sample The obtained value is rounded to the second decimal place, and the activity value is less than 1.0. If the antibacterial property is inferior, "x”, if the activity value is 1.0 or more and less than 2.0, the antibacterial property is good, " ⁇ ", and if the activity value is 2.0 or more It was evaluated as " ⁇ " as having excellent antibacterial properties.
  • the antiviral evaluation was performed in accordance with JIS R 1756:2020 (visible light-responsive photocatalyst, antiviral, film adhesion method). Using the following test phage, etc., temperature: 25 ° C ⁇ 3 ° C, action time: 4 hours, inoculation phage solution concentration: 7.6 ⁇ 10 pfu / ml, inoculation amount: 0.4 ml / sample Antiviral activity value asked for - Bacteriophage Q ⁇ (NBRC20012) [Host E.
  • C Infectivity value of standard sample (polypropylene resin alone)
  • D Infectivity value of test sample The obtained value is rounded to the second decimal place, and the activity value of less than 1.0 is considered to be inferior in antiviral activity.
  • "X” indicates that the antiviral property is good when the activity value is 1.0 or more and less than 2.0
  • " ⁇ " indicates that the antiviral property is good when the activity value is 2.0 or more. was evaluated as " ⁇ ".
  • a co-directional twin-screw extruder trade name: KZW15TW-45MG-NH, manufactured by Technobell Co., Ltd.
  • Example 2 An antibacterial/antiviral test was performed in the same manner as in Example 1, except that the mixing ratio of the cellulose fiber masterbatch and copper powder was set to 10 parts by mass of copper powder with respect to the total of 100 parts by mass of the cellulose fiber masterbatch and copper powder. got a piece The mass ratio of polypropylene resin:cellulose fiber-1:copper powder-1 in 100 parts by mass of the test piece was 67.50:22.50:10.00. Electron microscope (SEM) photographs of the surface and cross section of this test piece are shown in FIGS. In the test piece of Example 2, the dispersed state schematically shown in FIG. 2 was developed, and the cellulose fibers (dispersed fibers 13) and copper powder (dispersed particles 14) were not completely covered with the base material. , some of which were exposed on the surface of the test piece.
  • SEM Electron microscope
  • Example 3 Antibacterial / antibacterial / An antiviral test strip was obtained.
  • the mass ratio of polypropylene resin:cellulose fiber-1:copper powder-2 in 100 parts by mass of the test piece was 67.50:22.50:10.00.
  • Example 4 An antibacterial/antiviral test piece was obtained in the same manner as in Example 3, except that the mixing ratio of copper powder was changed to 1 part by mass of copper powder for a total of 100 parts by mass of cellulose fiber masterbatch and copper powder. .
  • the mass ratio of polypropylene resin:cellulose fiber-1:copper powder-2 in 100 parts by mass of the test piece was 74.25:24.75:1.00.
  • Example 5 The mixing ratio of cellulose fibers was changed to 50.5 parts by mass of cellulose fibers per 100 parts by mass of cellulose fiber masterbatch and copper powder (51 parts by mass per 100 parts by mass of polypropylene resin and cellulose fibers).
  • An antibacterial/antiviral test piece was obtained in the same manner as in Example 4, except for the above.
  • the mass ratio of polypropylene resin:cellulose fiber-1:copper powder-2 in 100 parts by mass of the test piece was 48.50:50.50:1.00.
  • Example 6 Example except that the cellulose fiber (cellulose fiber-1, average fiber diameter 15 ⁇ m, average fiber length 450 ⁇ m) used in Example 2 was replaced with one having an average fiber diameter 25 ⁇ m and an average fiber length 900 ⁇ m (cellulose fiber-2).
  • An antibacterial/antiviral test strip was obtained in the same manner as in 2.
  • the mass ratio of polypropylene resin:cellulose fiber-2:copper powder-1 in 100 parts by mass of the test piece was 67.50:22.50:10.00.
  • Example 3 An antibacterial/antiviral test piece was obtained in the same manner as in Example 1, except that copper powder was not added to the cellulose fiber masterbatch.
  • the mass ratio of polypropylene resin to cellulose fiber-1 in 100 parts by mass of the test piece was 75.00:25.00.
  • An electron micrograph of the surface of this test piece is shown in FIG.
  • Table 1 shows the composition and the evaluation results of the antibacterial/antiviral test for the antibacterial/antiviral test pieces obtained in each example and comparative example.
  • Comparative Examples 1 and 2 are compositions in which only copper powder is added to polypropylene resin
  • Comparative Example 3 is a composition in which only cellulose fibers are added to polypropylene resin.
  • the antiviral activity values were low in all of Comparative Examples 1 to 3. It became clear that antiviral properties could not be imparted to the system resin.
  • an antiviral composition containing a base material made of polypropylene resin, dispersed fibers (cellulose fibers), and dispersed particles (copper powder) has both antibacterial and antiviral properties. was done.
  • the antiviral properties are not exhibited when some of the metal-based dispersed particles are exposed to the surface only as in the sample of Comparative Example 2, and the dispersed fibers (or through the interface between the dispersed fibers and the base material) are exposed from the outside. It is suggested that it is expressed by taking in moisture and bringing the metal-based dispersed particles inside the composition or molded article into contact with moisture.

Abstract

Provided are a composition and a molded product having sufficiently high antibacterial properties and also having antiviral properties. The provided antiviral composition contains: a base material containing a polyolefin resin; dispersed fibers composed of an organic material, particularly an organic material having water absorption properties; and dispersed particles composed of a metal material and/or an insoluble compound thereof, particularly a metal material and/or an insoluble compound thereof that exhibits an antiviral function in the presence of water. The provided molded product is composed of the aforementioned antiviral composition.

Description

抗ウイルス性組成物及びその成形体Antiviral composition and molded product thereof
 本発明は、抗ウイルス性組成物及びその成形体に関する。 The present invention relates to an antiviral composition and a molded product thereof.
 近年の環境衛生に関する関心の高まりや、新型感染病の発症などから、様々な抗菌性材料や抗ウイルス性材料、それらを用いた抗菌性製品及び抗ウイルス性製品の開発が盛んに行われている。そうした材料の中でも、高分子材料は、高強度で耐腐食性等にも優れ、しかも所望の形状に成形し得ることから、抗菌性や抗ウイルス性の材料として有用である。例えば、抗菌剤や抗ウイルス剤を含有する樹脂組成物、特にポリオレフィン系樹脂組成物は、軽量で強度と柔軟性を兼ね備え、耐加水分解性等に優れる上、成形が容易であり、そのために様々な製品が提案されている。 In recent years, due to the growing interest in environmental hygiene and the emergence of new infectious diseases, various antibacterial materials, antiviral materials, and antibacterial and antiviral products using them have been actively developed. . Among such materials, polymeric materials are useful as antibacterial and antiviral materials because they have high strength, excellent corrosion resistance, etc., and can be molded into desired shapes. For example, a resin composition containing an antibacterial agent or an antiviral agent, particularly a polyolefin resin composition, is lightweight, has both strength and flexibility, is excellent in hydrolysis resistance, etc., and is easy to mold. products are proposed.
 抗菌剤としては、一般的な有機殺菌剤の他に、金属やその化合物等の無機系抗菌剤も多用されている。金属イオンが抗菌作用を有することは従来から知られており、これらを用いた無機系抗菌剤は、フェノールやハロゲンなどの官能基を有する有機系抗菌剤に比べて、揮発や分解などを起こしにくいため、安全性が高いだけでなく、抗菌作用の持続性、耐熱性に優れるといった特性を有する。このような無機系抗菌剤の利点から、例えば、不織布を構成する熱可塑性樹脂繊維に金属酸化物粒子を添加し均一に微分散させることによって、高い抗菌性能を有する抗菌性不織布(特許文献1参照)や、プラスチック製品の外部表面等に、抗菌剤の金属塩を組み込むことによって得られる抗菌剤含有プラスチック製品(特許文献2参照)が提案されている。 As antibacterial agents, in addition to general organic antibacterial agents, inorganic antibacterial agents such as metals and their compounds are also frequently used. It has long been known that metal ions have an antibacterial effect, and inorganic antibacterial agents using these ions are less likely to volatilize or decompose than organic antibacterial agents that have functional groups such as phenols and halogens. Therefore, it is not only highly safe, but also has properties such as long-lasting antibacterial action and excellent heat resistance. From the advantage of such an inorganic antibacterial agent, for example, by adding metal oxide particles to the thermoplastic resin fibers constituting the nonwoven fabric and uniformly finely dispersing them, an antibacterial nonwoven fabric with high antibacterial performance (see Patent Document 1) ) and a plastic product containing an antibacterial agent obtained by incorporating a metal salt of an antibacterial agent into the outer surface of the plastic product (see Patent Document 2).
特開2021-116483号公報JP 2021-116483 A 特表2007-518704号公報Japanese Patent Publication No. 2007-518704
 上記の特許文献1及び特許文献2に記載の提案のように、無機系又は有機系の抗菌剤を添加することで、ある程度の抗菌性能を付与することはできるものの、新型感染症などの抗ウイルス物品のニーズが高まる現状において、抗ウイルス性については何ら検討がなされていない。 As proposed in Patent Document 1 and Patent Document 2 above, adding an inorganic or organic antibacterial agent can impart a certain degree of antibacterial performance, but it is effective against viruses such as new infectious diseases. In the current situation where the needs for articles are increasing, no investigation has been made on antiviral properties.
 そこで本発明は、十分に高い抗菌性を有するだけではなく、優れた抗ウイルス性も有する組成物及び成形体を提供することを目的とする。 Therefore, the object of the present invention is to provide a composition and molded article that not only have sufficiently high antibacterial properties, but also have excellent antiviral properties.
 本発明者らは、上記の目的を達成するべく鋭意検討を重ねた結果、金属系材料、特に水の存在下で抗ウイルス機能を発揮する金属材料及び/又はその不溶性化合物からなる分散粒子と、有機材料、特に吸水性を有する有機材料からなる分散繊維とを併用した場合、ポリオレフィン系樹脂に高い抗菌性能を付与でき、さらに抗ウイルス性能も付与できるという知見を見出し、本発明を完成するに至った。 The present inventors have made intensive studies to achieve the above object, and as a result, dispersed particles made of a metallic material, particularly a metallic material that exhibits an antiviral function in the presence of water and/or an insoluble compound thereof, The present invention has been completed based on the discovery that high antibacterial performance and antiviral performance can be imparted to polyolefin resins when used in combination with organic materials, particularly dispersion fibers made of organic materials having water absorption properties. rice field.
 上記目的を達成するため、本発明の要旨構成は、以下のとおりである。
 〔1〕ポリオレフィン系樹脂を含むベース材と、有機材料からなる分散繊維と、金属材料及び/又はその不溶性化合物からなる分散粒子とを含む、抗ウイルス性組成物。
 〔2〕 前記有機材料が吸水性を有するものであり、前記金属材料が水の存在下で抗ウイルス機能を発揮するものであることを特徴とする、上記〔1〕に記載の抗ウイルス性組成物。
 〔3〕 前記ベース材と前記分散繊維と前記分散粒子の存在割合が、質量百分率で、40~80%:5~55%:1~25%の範囲である、上記〔1〕又は〔2〕に記載の抗ウイルス性組成物。
 〔4〕 前記ポリオレフィン系樹脂が、ポリプロピレン系樹脂、ポリエチレン系樹脂、及びエチレン酢酸ビニル共重合体からなる群より選択される1種以上の樹脂である、上記〔1〕、〔2〕、又は〔3〕に記載の抗ウイルス性組成物。
 〔5〕 前記分散繊維が、セルロース繊維、再生セルロース繊維、及びポリエステル繊維からなる群より選択される1種以上の繊維であることを特徴とする、上記〔1〕~〔4〕のいずれかに記載の抗ウイルス性組成物。
 〔6〕 前記分散繊維が、セルロース繊維であることを特徴とする、上記〔5〕に記載の抗ウイルス性組成物。
 〔7〕 前記セルロース繊維は、平均繊維長が10~3000μmの範囲、平均繊維径が1~50μmの範囲であることを特徴とする、上記〔6〕に記載の抗ウイルス性組成物。
 〔8〕 前記分散粒子が、銅、銀、亜鉛、ニッケル、アルミニウム、パラジウム、スズ及び鉄からなる群より選択される1種以上の金属及び/又はその不溶性化合物を含有する、上記〔1〕~〔7〕のいずれかに記載の抗ウイルス性組成物。
 〔9〕 上記〔1〕~〔8〕のいずれかに記載の抗ウイルス性組成物からなる成形体。
In order to achieve the above object, the gist and configuration of the present invention are as follows.
[1] An antiviral composition comprising a base material containing a polyolefin resin, dispersed fibers made of an organic material, and dispersed particles made of a metal material and/or an insoluble compound thereof.
[2] The antiviral composition according to [1] above, wherein the organic material has water absorption properties, and the metallic material exhibits an antiviral function in the presence of water. thing.
[3] The above [1] or [2], wherein the base material, the dispersed fibers, and the dispersed particles are present in a mass percentage range of 40 to 80%: 5 to 55%: 1 to 25%. The antiviral composition according to .
[4] The above [1], [2], or [ 3], the antiviral composition.
[5] Any one of [1] to [4] above, wherein the dispersed fibers are one or more fibers selected from the group consisting of cellulose fibers, regenerated cellulose fibers, and polyester fibers. Antiviral composition as described.
[6] The antiviral composition of [5] above, wherein the dispersed fibers are cellulose fibers.
[7] The antiviral composition according to [6] above, wherein the cellulose fibers have an average fiber length of 10 to 3000 μm and an average fiber diameter of 1 to 50 μm.
[8] The above [1] to wherein the dispersed particles contain one or more metals and/or insoluble compounds thereof selected from the group consisting of copper, silver, zinc, nickel, aluminum, palladium, tin and iron. [7] The antiviral composition according to any one of [7].
[9] A molded article comprising the antiviral composition according to any one of [1] to [8] above.
 なお、本発明の説明において「~」とは、その前後に記載される数値を下限値及び上限値として含む意味で使用される。 In the description of the present invention, "~" is used to mean including the numerical values before and after it as lower and upper limits.
 本発明によれば、十分に高い抗菌性を有するだけではなく、優れた抗ウイルス性も有する組成物、及びその成形体の提供が可能になった。本発明の抗ウイルス性組成物は、ポリオレフィン系樹脂をベース材としているため、軽量でありながら高強度で柔軟性も有し、耐加水分解性等の物性も優れる上、成形が容易で様々な形状に成形できる利点を有する。本発明の抗ウイルス性組成物はまた、抗菌及び抗ウイルス剤として金属系の材料を含有するため、抗菌作用及び抗ウイルス作用の持続性や耐熱性の点でも優れる。 According to the present invention, it has become possible to provide a composition having not only sufficiently high antibacterial properties but also excellent antiviral properties, and a molded article thereof. Since the antiviral composition of the present invention uses a polyolefin resin as a base material, it is lightweight, yet has high strength and flexibility, and has excellent physical properties such as hydrolysis resistance. It has the advantage that it can be molded into any shape. Since the antiviral composition of the present invention also contains a metal-based material as an antibacterial and antiviral agent, it is excellent in durability of antibacterial action and antiviral action and heat resistance.
本発明に係る一の実施形態の抗ウイルス性組成物を模式的に示した平面図であって、ベース材中に存在する分散繊維と分散粒子の分散状態を示す。FIG. 1 is a plan view schematically showing an antiviral composition according to one embodiment of the present invention, showing the dispersed state of dispersed fibers and dispersed particles present in a base material. 本発明の他の実施形態の成形体を模式的に示した断面図であって、ベース材中に存在する分散繊維と分散粒子の分散状態を示す。FIG. 4 is a cross-sectional view schematically showing a molded article of another embodiment of the present invention, showing the dispersed state of dispersed fibers and dispersed particles present in a base material. 本発明に従う実施例2のプレスシート試験片の表面の、電子顕微鏡写真図である。FIG. 2 is an electron micrograph of the surface of a pressed sheet specimen of Example 2 according to the present invention; 本発明に従う実施例2のプレスシート試験片の断面の、電子顕微鏡写真図である。FIG. 2 is an electron micrograph of a cross-section of a pressed sheet specimen of Example 2 according to the present invention; 比較例2のプレスシート試験片の表面の、電子顕微鏡写真図である。3 is an electron micrograph of the surface of the pressed sheet test piece of Comparative Example 2. FIG. 比較例3のプレスシート試験片の表面の、電子顕微鏡写真図である。10 is an electron micrograph of the surface of the pressed sheet test piece of Comparative Example 3. FIG.
 以下、本発明の抗ウイルス性組成物について実施形態に基づき詳記するが、本発明はこれら実施形態に限定されるものではない。 The antiviral composition of the present invention will be described in detail below based on embodiments, but the present invention is not limited to these embodiments.
〔抗ウイルス性組成物〕
 本発明の抗ウイルス性組成物は、ポリオレフィン系樹脂を含むベース材と、有機材料からなる分散繊維と、金属材料及び/又はその不溶性化合物からなる分散粒子とを含む。本発明の抗ウイルス性組成物は特に、ポリオレフィン系樹脂を含むベース材と、吸水性を有する有機材料からなる分散繊維と、水の存在下で抗ウイルス機能を発揮する金属材料及び/又はその不溶性化合物からなる分散粒子とを含む。
[Antiviral composition]
The antiviral composition of the present invention comprises a base material containing a polyolefin resin, dispersed fibers made of an organic material, and dispersed particles made of a metal material and/or an insoluble compound thereof. The antiviral composition of the present invention particularly comprises a base material containing a polyolefin resin, dispersed fibers made of a water-absorbing organic material, and a metal material that exhibits an antiviral function in the presence of water and/or its insolubility. and dispersed particles of the compound.
 図1は、本発明に係る一の実施形態の抗ウイルス性組成物を模式的に示した平面図であって、ベース材中に存在する分散繊維と分散粒子の分散状態を示す。図2は、本発明の他の実施形態の成形体を模式的に示した断面図であって、ベース材中に存在する分散繊維と分散粒子の分散状態を示す。図1及び図2の実施形態に示されるように、本発明の抗ウイルス性組成物1においては、ポリオレフィン系樹脂を含むベース材2中の分散繊維3及び分散粒子4は、それぞれの少なくとも一部が、好ましくはベース材2から露出した状態で存在している。本発明の成形体11においても、ベース材12中の分散繊維13及び分散粒子14は、それぞれの少なくとも一部が、好ましくは成形体11の表面に露出した状態で存在している。 FIG. 1 is a plan view schematically showing an antiviral composition according to one embodiment of the present invention, showing the dispersed state of dispersed fibers and dispersed particles present in a base material. FIG. 2 is a cross-sectional view schematically showing a molded article according to another embodiment of the present invention, showing the dispersed state of dispersed fibers and dispersed particles present in a base material. As shown in the embodiments of FIGS. 1 and 2, in the antiviral composition 1 of the present invention, the dispersed fibers 3 and the dispersed particles 4 in the base material 2 containing a polyolefin resin are at least partially are preferably exposed from the base material 2 . Also in the molded body 11 of the present invention, the dispersed fibers 13 and the dispersed particles 14 in the base material 12 preferably exist in a state in which at least part of each is exposed on the surface of the molded body 11 .
 分散繊維13及び分散粒子14の一部が表面に露出していることは、後記する実施例でも実証されている(図3及び図4は、本発明に従う実施例2の試験片の表面及び断面の顕微鏡写真図である。)。すなわち、本発明の好ましい実施形態においては、ベース材中の分散繊維及び分散粒子の少なくとも一部が、抗ウイルス性組成物1や成形体11の外界と直接接触している。なお、成形体をスライスしたり、表面ブラスト処理を行うことで、上記の露出した状態をより実現しやすくし、また分散繊維3及び分散粒子4の露出部の表面積をさらに拡げることが可能となる。 The fact that part of the dispersed fibers 13 and dispersed particles 14 are exposed on the surface is also demonstrated in Examples described later (Figs. ). That is, in a preferred embodiment of the present invention, at least part of the dispersed fibers and dispersed particles in the base material is in direct contact with the outside of the antiviral composition 1 and molded article 11 . By slicing the compact or subjecting it to surface blasting, the exposed state described above can be more easily achieved, and the surface area of the exposed portions of the dispersed fibers 3 and dispersed particles 4 can be further increased. .
 本発明は、特定の理論により限定されるものではないが、本発明が効果を奏する理由として、有機材料、特に吸水性を有する有機材料からなる分散繊維が、金属材料及び/又はその不溶性化合物からなる分散粒子に作用し、抗菌及び抗ウイルス機能を発現させていることが考えられる。金属粒子、例えば銅による抗菌性及び抗ウイルス性発現メカニズムの一つとして、以下の機構が提案されている。
1.水分中に銅イオンが溶出する。
2.銅イオンが酸素と反応して、活性酸素が発生する。
3.銅イオン、活性酸素が、細菌やウイルスを減少させる。
Although the present invention is not limited by any particular theory, the reason why the present invention is effective is that dispersed fibers made of an organic material, particularly a water-absorbing organic material, are made from a metal material and/or an insoluble compound thereof. It is thought that it acts on various dispersed particles and expresses antibacterial and antiviral functions. The following mechanisms have been proposed as one mechanism by which metal particles such as copper exhibit antibacterial and antiviral properties.
1. Copper ions are eluted into water.
2. Copper ions react with oxygen to generate active oxygen.
3. Copper ions and active oxygen reduce bacteria and viruses.
 ここで、ベース材のポリオレフィン系樹脂は、耐加水分解性に優れる反面、親水性は低いため、金属系の分散粒子のみを含んでいても当該分散粒子は水分と接触する機会が少なく、十分な抗ウイルス性を発現し難い。一方で本発明に従い、有機材料からなる分散繊維を含む組成物では、例えばベース材と分散繊維との界面に沿って外部から水分を取り込むことが可能となり、分散粒子を構成する金属系材料の表面に水分が供給され得る。ここで、分散繊維が吸水性を有する有機材料からなる場合には、組成物に親水性が付されて、外部からの水分の取り込みがさらに容易となる。特に、抗ウイルス性組成物中の分散繊維及び分散粒子それぞれの少なくとも一部が、ベース材から露出した状態で存在する場合、組成物が水浸透性を帯びるので、金属系材料の表面には十分な量の水分が供給
される。そのために金属及び/又はその不溶性化合物のイオン化が促進されて、十分な抗ウイルス性が発現すると考えられる。
Here, the polyolefin resin used as the base material is excellent in hydrolysis resistance, but has low hydrophilicity. It is difficult to develop antiviral properties. On the other hand, according to the present invention, in a composition containing dispersed fibers made of an organic material, for example, it is possible to take in moisture from the outside along the interface between the base material and the dispersed fibers, and the surface of the metal-based material that constitutes the dispersed particles. can be supplied with moisture. Here, when the dispersed fibers are made of a water-absorbing organic material, the composition is imparted with hydrophilicity, which makes it easier to take in moisture from the outside. In particular, when at least a part of each of the dispersed fibers and dispersed particles in the antiviral composition exists in a state exposed from the base material, the composition becomes water-permeable, so the surface of the metal-based material has sufficient a sufficient amount of water is supplied. Therefore, it is believed that the ionization of the metal and/or its insoluble compounds is promoted and sufficient antiviral properties are exhibited.
 本発明の抗ウイルス性組成物においては、これらベース材と分散繊維と分散粒子の存在割合が、質量百分率で、40~80%:5~55%:1~25%の範囲であることが好ましい。また、分散繊維及び分散粒子は、それぞれの少なくとも一部が、ベース材から露出した状態で存在することが好ましい。以下では、本発明の抗ウイルス性組成物を構成する各成分について説明する。 In the antiviral composition of the present invention, the proportions of the base material, dispersed fibers and dispersed particles are preferably in the range of 40 to 80%:5 to 55%:1 to 25% by mass percentage. . Moreover, it is preferable that at least part of each of the dispersed fibers and the dispersed particles is exposed from the base material. Each component constituting the antiviral composition of the present invention is described below.
 <ベース材>
 本発明の抗ウイルス性組成物は、ベース材としてポリオレフィン系樹脂を含む。本発明においてポリオレフィン系樹脂とは、エチレンやプロピレン等のオレフィンモノマー等に基づく単独重合体(ホモポリマー)及び共重合体(コポリマー)等を包含する。例としてポリプロピレン、ポリエチレン、ポリイソブチレン、ポリメチルペンテン、エチレン-プロピレン共重合体、プロピレン-α-オレフィン共重合体、エチレン-α-オレフィン共重合体等のポリプロピレン系樹脂やポリエチレン系樹脂;エチレン酢酸ビニル共重合体、エチレン-(メタ)アクリル酸エステル共重合体等のオレフィンモノマーと他のモノマーとの共重合体;ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン等のハロゲン化ポリオレフィン;さらにはポリアクリロニトリル等の官能基を有するポリオレフィン及びそれらの共重合体、例えばアクリロニトリルスチレン共重合体(AS樹脂、ABS樹脂)等が挙げられるが、これらに限定されない。複数種のポリオレフィン系樹脂を、併用することもできる。
<Base material>
The antiviral composition of the present invention contains a polyolefin resin as a base material. In the present invention, the polyolefin resin includes homopolymers and copolymers based on olefin monomers such as ethylene and propylene. Examples include polypropylene resins and polyethylene resins such as polypropylene, polyethylene, polyisobutylene, polymethylpentene, ethylene-propylene copolymer, propylene-α-olefin copolymer, and ethylene-α-olefin copolymer; ethylene vinyl acetate Copolymers, copolymers of olefin monomers and other monomers such as ethylene-(meth)acrylic acid ester copolymers; halogenated polyolefins such as polyvinyl chloride, polyvinylidene chloride and chlorinated polyethylene; and polyacrylonitrile and copolymers thereof, such as acrylonitrile-styrene copolymers (AS resins, ABS resins), etc., but are not limited thereto. A plurality of types of polyolefin-based resins can also be used in combination.
 しかしながら本発明の抗ウイルス性組成物においては、ポリオレフィン系樹脂がハロゲンやニトリル基等の官能基を有しないことが好ましい。ハロゲン等不含の、例えば炭素、水素、及び任意的な酸素原子等のみから成るポリオレフィン系樹脂をベース材とすれば、抗ウイルス性組成物をより軽量化できる上、燃焼時に有害ガスが発生するおそれもないので、環境面でも有利である。 However, in the antiviral composition of the present invention, the polyolefin resin preferably does not have functional groups such as halogens and nitrile groups. If the base material is a polyolefin resin containing only carbon, hydrogen, and optionally oxygen atoms, which does not contain halogens, etc., the weight of the antiviral composition can be reduced, and harmful gases are generated when burned. Since there is no fear, it is also advantageous from an environmental point of view.
 ベース材のポリオレフィン系樹脂は、より好ましくはポリプロピレン系樹脂、ポリエチレン系樹脂、及びエチレン酢酸ビニル共重合体からなる群より選択される1種以上の樹脂である。ここで、共重合体におけるオレフィンモノマーの構成モル比は、60%以上、さらには80%以上、特に90%以上であることが好ましい。また、ベース材におけるオレフィンモノマーの構成モル比が高いと、抗ウイルス性組成物をより軽量で耐加水分解性等に優れるものとすることができる。例えば、酢酸ビニルモノマーの構成モル比が、40%以下、特に20%以下、例えば0.1~5モル%のエチレン酢酸ビニル共重合体を使用する。さらに好ましくは、ポリプロピレン系樹脂やポリエチレン系樹脂等の、実質的にオレフィンのみを成分とする樹脂をベース材とする。 The polyolefin-based resin of the base material is more preferably one or more resins selected from the group consisting of polypropylene-based resins, polyethylene-based resins, and ethylene-vinyl acetate copolymers. Here, the constituent molar ratio of the olefin monomer in the copolymer is preferably 60% or more, more preferably 80% or more, and particularly preferably 90% or more. Moreover, when the constituent molar ratio of the olefin monomer in the base material is high, the antiviral composition can be made lighter and have excellent resistance to hydrolysis and the like. For example, an ethylene-vinyl acetate copolymer having a vinyl acetate monomer composition molar ratio of 40% or less, particularly 20% or less, for example, 0.1 to 5 mol% is used. More preferably, the base material is a resin containing substantially only olefin, such as polypropylene resin or polyethylene resin.
 (ポリプロピレン系樹脂)
 本発明においてポリプロピレン系樹脂とは、プロピレン単独重合体の他、プロピレンと他のα-オレフィンとの共重合体、例えばプロピレン-α-オレフィン共重合体、プロピレン-エチレン-α-オレフィン共重合体等をも包含する。なお、本発明においては、エチレン成分とプロピレン成分の両成分を含む樹脂については、ポリプロピレン系樹脂に分類するものとする。
(polypropylene resin)
In the present invention, polypropylene-based resins include propylene homopolymers as well as copolymers of propylene and other α-olefins, such as propylene-α-olefin copolymers and propylene-ethylene-α-olefin copolymers. also includes In the present invention, resins containing both ethylene and propylene components are classified as polypropylene resins.
 ポリプロピレン系樹脂は、軽量かつ高強度で、柔軟性や耐熱性にも優れるので、本発明の抗ウイルス性組成物におけるベース材として最適である。強度や耐熱性の観点からは、本発明の成形体中において、少なくとも一部が常温(25℃)で結晶構造を形成するポリプロピレン系樹脂が好ましい。このようなポリプロピレン系樹脂を含有する成形体について、示差走査熱量測定(DSC測定)を行うと、164±5℃にポリプロピレン結晶の融解に伴う融解ピークがみられる。  Polypropylene-based resins are lightweight, high-strength, and excellent in flexibility and heat resistance, so they are ideal as a base material for the antiviral composition of the present invention. From the viewpoint of strength and heat resistance, a polypropylene-based resin, at least a portion of which forms a crystal structure at room temperature (25° C.), is preferable in the molded article of the present invention. Differential scanning calorimetry (DSC measurement) of a molded article containing such a polypropylene-based resin reveals a melting peak at 164±5° C. associated with melting of polypropylene crystals.
 しかしながら本発明の抗ウイルス性組成物でベース材とするポリプロピレン系樹脂に特に制限はなく、例えばプロピレン単独重合体としてアイソタクチック、アタクチック、シンジオタクチック等のどのような構造のものを用いることもでき、また、共重合体としてランダム共重合体、ブロック共重合体、あるいは交互共重合体のいずれをも使用することができる。分子量にも特に制限はなく、例えば質量平均分子量が1,000~1,000,000の、特に3,000~300,000のポリプロピレン系樹脂を用いることができる。ポリプロピレン系樹脂のメルトフローレート(MFR)にも特に制限はなく、例えばASTM D1238に従う2.16kg、230℃でのMFRが0.1~90g/10分、典型的には0.5~50g/10分、特に1~30g/10分程度の範囲内の樹脂であっても良い。また、これらのポリプロピレン系樹脂は、単独で使用しても、2種以上を併用してもよい。 However, the polypropylene resin used as the base material in the antiviral composition of the present invention is not particularly limited. For example, the propylene homopolymer having any structure such as isotactic, atactic, and syndiotactic may be used. Any of random copolymers, block copolymers, and alternating copolymers can be used as copolymers. The molecular weight is also not particularly limited, and for example, a polypropylene resin having a weight average molecular weight of 1,000 to 1,000,000, particularly 3,000 to 300,000 can be used. The melt flow rate (MFR) of the polypropylene resin is also not particularly limited. 10 minutes, particularly 1 to 30 g/10 minutes of the resin may be used. Moreover, these polypropylene-based resins may be used alone or in combination of two or more.
 上記プロピレン-α-オレフィン共重合体におけるα-オレフィンとしては、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセンが好ましく、1-ブテン、1-ヘキセン、1-オクテンがより好ましい。 The α-olefin in the propylene-α-olefin copolymer is preferably 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-butene, 1-hexene and 1-octene are more preferred.
 プロピレン-α-オレフィンランダム共重合体としては、例えば、プロピレン-エチレンランダム共重合体、プロピレン-1-ブテンランダム共重合体、プロピレン-1-ヘキセンランダム共重合体、プロピレン-1-オクテンランダム共重合体などが挙げられる。 Propylene-α-olefin random copolymers include, for example, propylene-ethylene random copolymers, propylene-1-butene random copolymers, propylene-1-hexene random copolymers, and propylene-1-octene random copolymers. Amalgamation etc. are mentioned.
 プロピレン-エチレン-α-オレフィン共重合体としては、例えば、プロピレン-エチレン-1-ブテン共重合体、プロピレン-エチレン-1-ヘキセン共重合体、プロピレン-エチレン-1-オクテン共重合体などが挙げられる。 Examples of the propylene-ethylene-α-olefin copolymer include propylene-ethylene-1-butene copolymer, propylene-ethylene-1-hexene copolymer, propylene-ethylene-1-octene copolymer and the like. be done.
 プロピレンブロック共重合体としては、例えば、プロピレン単独重合体成分又は主にプロピレンからなる共重合体成分と、エチレン及びα-オレフィンから選択されるモノマーの少なくとも1種とプロピレンとを共重合して得られる共重合体成分と、からなる共重合体を用いることができる。例として、(プロピレン)-(プロピレン-エチレン)共重合体、(プロピレン)-(プロピレン-エチレン-1-ブテン)共重合体、(プロピレン)-(プロピレン-エチレン-1-ヘキセン)共重合体、(プロピレン)-(プロピレン-1-ブテン)共重合体、(プロピレン)-(プロピレン-1-ヘキセン)共重合体、(プロピレン-エチレン)-(プロピレン-エチレン)共重合体、(プロピレン-エチレン)-(プロピレン-エチレン-1-ブテン)共重合体、(プロピレン-エチレン)-(プロピレン-エチレン-1-ヘキセン)共重合体、(プロピレン-エチレン)-(プロピレン-1-ブテン)共重合体、(プロピレン-エチレン)-(プロピレン-1-ヘキセン)共重合体、(プロピレン-1-ブテン)-(プロピレン-エチレン)共重合体、(プロピレン-1-ブテン)-(プロピレン-エチレン-1-ブテン)共重合体、(プロピレン-1-ブテン)-(プロピレン-エチレン-1-ヘキセン)共重合体、(プロピレン-1-ブテン)-(プロピレン-1-ブテン)共重合体、(プロピレン-1-ブテン)-(プロピレン-1-ヘキセン)共重合体などが挙げられる。 The propylene block copolymer is obtained, for example, by copolymerizing a propylene homopolymer component or a copolymer component mainly composed of propylene, at least one monomer selected from ethylene and α-olefins, and propylene. A copolymer composed of a copolymer component obtained from the above can be used. Examples include (propylene)-(propylene-ethylene) copolymer, (propylene)-(propylene-ethylene-1-butene) copolymer, (propylene)-(propylene-ethylene-1-hexene) copolymer, (propylene)-(propylene-1-butene) copolymer, (propylene)-(propylene-1-hexene) copolymer, (propylene-ethylene)-(propylene-ethylene) copolymer, (propylene-ethylene) -(propylene-ethylene-1-butene) copolymer, (propylene-ethylene)-(propylene-ethylene-1-hexene) copolymer, (propylene-ethylene)-(propylene-1-butene) copolymer, (propylene-ethylene)-(propylene-1-hexene) copolymer, (propylene-1-butene)-(propylene-ethylene) copolymer, (propylene-1-butene)-(propylene-ethylene-1-butene ) copolymer, (propylene-1-butene)-(propylene-ethylene-1-hexene) copolymer, (propylene-1-butene)-(propylene-1-butene) copolymer, (propylene-1- butene)-(propylene-1-hexene) copolymer and the like.
 これらのポリプロピレン系樹脂のうち、プロピレン単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-1-ブテンランダム共重合体、プロピレン-エチレン-1-ブテン共重合体又はプロピレンブロック共重合体が好ましい。 Of these polypropylene-based resins, propylene homopolymer, propylene-ethylene random copolymer, propylene-1-butene random copolymer, propylene-ethylene-1-butene copolymer or propylene block copolymer are preferred.
 (ポリエチレン系樹脂)
 本発明においてポリエチレン系樹脂とは、エチレン単独重合体の他、エチレンと他のα-オレフィンとの共重合体、例えばエチレン-α-オレフィン共重合体等をも包含する。ポリエチレン系樹脂は成形性に優れる上、安価で経済的であるので、本発明の抗ウイルス性組成物におけるベース材として好適である。成形性の観点からは、本発明の成形体中において、少なくとも一部が常温(25℃)で結晶構造を形成するポリエチレン系樹脂が好ましい。このようなポリエチレン系樹脂を含有する成形体について、示差走査熱量測定(DSC測定)を行うと、124±5℃にポリエチレン結晶の融解に伴う融解ピークがみられる。後述する酸変性ポリエチレン樹脂を用いた場合にも、124±5℃にポリエチレン結晶の融解に伴う融解ピークがみられる場合がある。
(polyethylene resin)
In the present invention, polyethylene-based resins include ethylene homopolymers as well as copolymers of ethylene and other α-olefins, such as ethylene-α-olefin copolymers. Polyethylene-based resins are excellent in moldability, inexpensive and economical, and therefore are suitable as the base material for the antiviral composition of the present invention. From the standpoint of moldability, it is preferable to use a polyethylene-based resin, at least a part of which forms a crystal structure at room temperature (25° C.) in the molded article of the present invention. When differential scanning calorimetry (DSC measurement) is performed on a molded product containing such a polyethylene resin, a melting peak is observed at 124±5° C. due to melting of polyethylene crystals. Even when an acid-modified polyethylene resin, which will be described later, is used, a melting peak associated with melting of polyethylene crystals may be observed at 124±5°C.
 しかしながら本発明の抗ウイルス性組成物でベース材とするポリエチレン系樹脂に特に制限はなく、例えばエチレン単独重合体、エチレン-α-オレフィン共重合体などが挙げられる。これらのポリエチレン系樹脂は、単独で使用しても、2種以上を併用してもよい。また、α-オレフィンとしては、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテンが好ましい。 However, the polyethylene-based resin used as the base material in the antiviral composition of the present invention is not particularly limited, and examples thereof include ethylene homopolymers and ethylene-α-olefin copolymers. These polyethylene-based resins may be used alone or in combination of two or more. Preferred α-olefins are 1-butene, 1-pentene, 1-hexene and 1-octene.
 ポリエチレンは、密度もしくは性状等に応じて、高密度ポリエチレン(HDPE、密度約0.92~0.96)、低密度ポリエチレン(LDPE、密度約0.91~0.92)、超低密度ポリエチレン(VLDPE、密度約0.9以下)、直鎖状低密度ポリエチレン(LLDPE、密度約0.94以下)、超高分子量ポリエチレン(UHMW-PE、質量平均分子量1,5000,000程度以上)等に分類されるが、本発明においてはこれらいずれのポリエチレン樹脂を用いてもよい。その分子量や分岐状態にも、特に制限はない。 Depending on the density or properties of polyethylene, high density polyethylene (HDPE, density about 0.92 to 0.96), low density polyethylene (LDPE, density about 0.91 to 0.92), ultra low density polyethylene ( VLDPE, density of about 0.9 or less), linear low-density polyethylene (LLDPE, density of about 0.94 or less), ultra-high molecular weight polyethylene (UHMW-PE, mass average molecular weight of about 1,5000,000 or more), etc. However, any of these polyethylene resins may be used in the present invention. There are no particular restrictions on its molecular weight or branching state.
 エチレン-α-オレフィン共重合体としては、例えば、エチレン-1-ブテン共重合体、エチレン-1-ペンテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-オクテン共重合体などが挙げられる。 Examples of ethylene-α-olefin copolymers include ethylene-1-butene copolymers, ethylene-1-pentene copolymers, ethylene-1-hexene copolymers, ethylene-1-octene copolymers, and the like. mentioned.
 (エチレン酢酸ビニル共重合体)
 エチレン酢酸ビニル共重合体は、エチレンと酢酸ビニルの共重合体である。共重合比の異なる様々な品種が上市されているが、本発明においてはそのいずれをも使用することができる。例えば、酢酸ビニル量(共重合体中の酢酸ビニルモノマー成分の質量比)が4%程度以下の酢酸ビニル修飾ポリエチレン、酢酸ビニル量4~30%程度の汎用エチレン酢酸ビニル共重合体等が挙げられるが、より酢酸ビニル量の高い、例えば酢酸ビニル量60%の共重合体を使用することもできる。エチレン酢酸ビニル共重合体は、ポリエチレン樹脂等に比べて柔軟で、光沢があり、高い接着性を示す特徴がある。また、酢酸ビニル量が高い共重合体ほど、柔軟性に優れる傾向にある。
(Ethylene vinyl acetate copolymer)
Ethylene-vinyl acetate copolymers are copolymers of ethylene and vinyl acetate. Various varieties with different copolymerization ratios are on the market, and any of them can be used in the present invention. Examples thereof include vinyl acetate-modified polyethylene having a vinyl acetate content (mass ratio of the vinyl acetate monomer component in the copolymer) of about 4% or less, and general-purpose ethylene-vinyl acetate copolymer having a vinyl acetate content of about 4 to 30%. However, higher vinyl acetate copolymers, for example 60% vinyl acetate, can be used. Ethylene-vinyl acetate copolymers are flexible, glossy, and exhibit high adhesiveness as compared to polyethylene resins and the like. In addition, a copolymer having a higher vinyl acetate content tends to be more flexible.
 (変性ポリオレフィン樹脂)
 本発明の抗ウイルス性組成物は、ポリオレフィン系樹脂の一部として、変性ポリオレフィン樹脂を含有してもよい。例えば、ポリエチレン系樹脂として変性されたポリエチレン樹脂を使用してもよく、また、酸変性されていないポリエチレン樹脂とともに酸変性されたポリエチレン樹脂を含んでもよい。すなわち、本発明において「ポリオレフィン系樹脂」という場合、酸変性されたポリエチレン樹脂等の変性ポリオレフィン樹脂を含む意味である。変性ポリオレフィン樹脂を含有することにより、ベース材中への他成分、例えば後記するセルロース繊維や金属等の分散粒子の分散状態を向上させることが可能である。
(Modified polyolefin resin)
The antiviral composition of the present invention may contain a modified polyolefin resin as part of the polyolefin resin. For example, a modified polyethylene resin may be used as the polyethylene resin, or an acid-modified polyethylene resin may be included together with a non-acid-modified polyethylene resin. That is, the term "polyolefin-based resin" in the present invention includes modified polyolefin resins such as acid-modified polyethylene resins. By containing the modified polyolefin resin, it is possible to improve the dispersion state of other components in the base material, such as dispersed particles of cellulose fibers and metals, which will be described later.
 変性ポリオレフィン樹脂に特に制限はないが、例えばポリプロピレン樹脂やポリエチレン樹脂を不飽和カルボン酸、アルコキシシランもしくはその誘導体によりグラフト変性したものが挙げられる。不飽和カルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸、アクリル酸、メタクリル酸等が挙げられ、不飽和カルボン酸誘導体としては、例えば、無水マレイン酸、無水イタコン酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸グリシジル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸グリシジル、マレイン酸モノエチルエステル、マレイン酸ジエチルエステル、フマル酸モノメチルエステル、フマル酸ジメチルエステル等が挙げられる。不飽和カルボン酸誘導体としては不飽和カルボン酸無水物が好ましい。これらの不飽和カルボン酸及び/又はその誘導体のうち、特に無水マレイン酸が好ましい。 The modified polyolefin resin is not particularly limited, but examples include those obtained by graft-modifying a polypropylene resin or polyethylene resin with an unsaturated carboxylic acid, alkoxysilane, or a derivative thereof. Examples of unsaturated carboxylic acids include maleic acid, fumaric acid, itaconic acid, acrylic acid, and methacrylic acid. Examples of unsaturated carboxylic acid derivatives include maleic anhydride, itaconic anhydride, methyl acrylate, Ethyl acrylate, butyl acrylate, glycidyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, glycidyl methacrylate, monoethyl maleate, diethyl maleate, monomethyl fumarate, dimethyl fumarate, etc. mentioned. An unsaturated carboxylic acid anhydride is preferred as the unsaturated carboxylic acid derivative. Among these unsaturated carboxylic acids and/or derivatives thereof, maleic anhydride is particularly preferred.
 アルコキシシランとしては、例えば、グラフト化のための官能基を有するアルコキシシラン化合物が好ましい。シランカップリング剤としては、有機過酸化物の分解により生じたラジカルの存在下で、ポリオレフィン系樹脂にグラフト化反応しうる部位(基又は原子)と、アルコキシシリル基とを有するものを使用することができる。ポリオレフィン系樹脂にグラフト化反応しうる部位としては、エチレン性不飽和基を含有する基が挙げられる。エチレン性不飽和基を含有する基としては、特に限定されないが、例えば、ビニル基、アリル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルオキシアルキレン基、p-スチリル基等が挙げられる。アルコキシシリル基としては、トリアルコキシシリル基、ジアルコキシシリル基、モノアルコキシシリル基のいずれの形態でもよく、トリアルコキシシラン化合物を用いることが好ましい。アルコキシシリル基のアルコキシ基は、炭素原子数1~6が好ましく、メトキシ基、エトキシ基がより好ましい。シランカップリング剤は、エチレン性不飽和基を含有する基とアルコキシシリル基とを有するものが好ましい。シランカップリング剤は、1種類を用いても、2種類以上を用いてもよい。 As the alkoxysilane, for example, an alkoxysilane compound having a functional group for grafting is preferable. The silane coupling agent to be used has a site (group or atom) capable of undergoing a grafting reaction with the polyolefin resin in the presence of radicals generated by decomposition of the organic peroxide, and an alkoxysilyl group. can be done. A group containing an ethylenically unsaturated group is exemplified as the site that can be grafted onto the polyolefin resin. Examples of groups containing an ethylenically unsaturated group include, but are not limited to, vinyl groups, allyl groups, (meth)acryloyloxy groups, (meth)acryloyloxyalkylene groups, and p-styryl groups. The alkoxysilyl group may be in the form of a trialkoxysilyl group, a dialkoxysilyl group, or a monoalkoxysilyl group, and it is preferable to use a trialkoxysilane compound. The alkoxy group of the alkoxysilyl group preferably has 1 to 6 carbon atoms, more preferably a methoxy group or an ethoxy group. The silane coupling agent preferably has an ethylenically unsaturated group-containing group and an alkoxysilyl group. One type of silane coupling agent may be used, or two or more types may be used.
 上記シランカップリング剤の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルジメトキシエトキシシラン、ビニルジメトキシブトキシシラン、ビニルジエトキシブトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ビニルトリアセトキシシラン、トリメトキシ(4-ビニルフェニル)シラン等のビニルシラン化合物、(メタ)アクリル酸3-(トリメトキシシリル)プロピル、(メタ)アクリル酸3-(メチルジメトキシシリル)プロピル、(メタ)アクリル酸3-(メチルジエトキシシリル)プロピル、(メタ)アクリル酸3-(トリエトキシシリル)プロピル、(メタ)アクリル酸3-(メトキシジメチルシリル)プロピル等の(メタ)アクリルシラン化合物等が挙げられる。中でも、ビニルトリメトキシシラン及び/又は(メタ)アクリル酸(トリメトキシシリル)アルキルの使用が特に好ましい。(メタ)アクリル酸(トリメトキシシリル)アルキルのアルキル基は、炭素原子数1~10が好ましく、1~6がより好ましく、2~4がさらに好ましく、プロピル基が特に好ましい。成形体の引張強度を高める観点からは、メタクリル酸3-(トリメトキシシリル)プロピルを用いることが好ましい。 Specific examples of the silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, vinyldimethoxyethoxysilane, vinyldimethoxybutoxysilane, vinyldiethoxybutoxysilane, allyltrimethoxysilane, allyltriethoxysilane. Vinylsilane compounds such as silane, vinyltriacetoxysilane, trimethoxy(4-vinylphenyl)silane, 3-(trimethoxysilyl)propyl (meth)acrylate, 3-(methyldimethoxysilyl)propyl (meth)acrylate, (meth) ) 3-(methyldiethoxysilyl)propyl acrylate, 3-(triethoxysilyl)propyl (meth)acrylate, 3-(methoxydimethylsilyl)propyl (meth)acrylate and other (meth)acrylsilane compounds, etc. mentioned. Among them, the use of vinyltrimethoxysilane and/or (trimethoxysilyl)alkyl (meth)acrylate is particularly preferred. The alkyl group of (trimethoxysilyl)alkyl (meth)acrylate preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 2 to 4 carbon atoms, and particularly preferably a propyl group. From the viewpoint of increasing the tensile strength of the molded article, it is preferable to use 3-(trimethoxysilyl)propyl methacrylate.
 変性ポリオレフィン樹脂における変性量は、特に制限はないが、(変性前の)ポリオレフィン樹脂100質量%に対して0.2~10質量%が好ましく、さらには1~5質量%が好ましい。また、本発明の抗ウイルス性組成物において変性ポリオレフィン樹脂を使用する場合、その含有量はポリオレフィン系樹脂100質量部に対して1~20質量部、特に5~15質量部程度とすることが好ましい。 The amount of modification in the modified polyolefin resin is not particularly limited, but is preferably 0.2 to 10% by mass, more preferably 1 to 5% by mass relative to 100% by mass of the polyolefin resin (before modification). In addition, when a modified polyolefin resin is used in the antiviral composition of the present invention, the content thereof is preferably about 1 to 20 parts by mass, particularly about 5 to 15 parts by mass with respect to 100 parts by mass of the polyolefin resin. .
 (ベース材の含有量)
 上記のように、本発明の抗ウイルス性組成物においては、ベース材と分散繊維と後記する分散粒子の存在割合が、質量百分率で、40~80%:5~55%:1~25%の範囲であることが好ましい。ポリオレフィン系樹脂を含むベース材、好ましくは実質的にポリオレフィン系樹脂からなるベース材の含有量が、抗ウイルス性組成物全体に対して40質量%以上であれば、良好な成形性が発現し易い利点がある。一方で、同量が80質量%以下、すなわち分散繊維及び金属系材料の分散粒子の含有量が20質量%以上であれば、良好な抗菌性及び抗ウイルス性が発現し易い。より好ましくは、抗ウイルス性組成物100質量%に占めるベース材の含有量を、48~78質量%、さらに好ましくは55~75質量%とする。
(Base material content)
As described above, in the antiviral composition of the present invention, the proportions of the base material, dispersed fibers, and dispersed particles described later are 40 to 80%: 5 to 55%: 1 to 25% by mass. A range is preferred. If the content of the base material containing the polyolefin resin, preferably the base material substantially made of the polyolefin resin, is 40% by mass or more relative to the entire antiviral composition, good moldability is likely to be exhibited. There are advantages. On the other hand, when the same amount is 80% by mass or less, that is, when the content of the dispersed fibers and the dispersed particles of the metallic material is 20% by mass or more, good antibacterial and antiviral properties are likely to be exhibited. More preferably, the content of the base material in 100% by mass of the antiviral composition is 48-78% by mass, more preferably 55-75% by mass.
<分散繊維>
 本発明の抗ウイルス性組成物においては、上記のようなベース材中に、有機材料、特に吸水性を有する有機材料からなる分散繊維が、金属材料及び/又はその不溶性化合物からなる分散粒子(金属系分散粒子)と共に存在している。これら分散繊維は、後記する金属系分散粒子の抗ウイルス性を補助する、抗ウイルス助剤として機能すると考えられる。
<Dispersed fiber>
In the antiviral composition of the present invention, dispersed fibers made of an organic material, particularly a water-absorbing organic material, are dispersed in the base material as described above, and dispersed particles made of a metal material and/or an insoluble compound thereof (metal system-dispersed particles). These dispersed fibers are considered to function as an antiviral aid that assists the antiviral properties of the metal-based dispersed particles described later.
 本発明における分散繊維は、有機材料からなる繊維(有機繊維)であればどのようなものであってもよく、その繊維長や繊維径等に特に制限はない。好ましくは、吸水性を有する有機材料(吸水性有機材料)からなる繊維(吸水性有機繊維)を使用する。吸水性有機繊維の共存により、分散粒子を構成する金属材料の表面に水分が供給され易くなるので、組成物の抗菌作用及び抗ウイルス作用がさらに良好となる。そうした有機繊維の例として、セルロース繊維や羊毛、絹糸を始めとする天然繊維や;再生セルロース繊維、ポリエステル繊維、例えばポリエチレンテレフタレート繊維、ポリエチレンナフタレート繊維、ポリフェニレンサルファイド繊維、ポリアミド繊維、例えばナイロン(登録商標)繊維、ポリイミド繊維などの合成繊維が挙げられる。なお、「有機繊維」とは有機材料から主としてなる繊維を指し、有機材料以外に、合成時の触媒残渣や加工用添加剤、原料由来の無機物等の不可避的混合物を含有していてもよい。 The dispersed fibers in the present invention may be of any type as long as they are fibers made of an organic material (organic fibers), and there are no particular restrictions on the fiber length, fiber diameter, and the like. Preferably, fibers (water-absorbing organic fibers) made of organic materials having water-absorbing properties (water-absorbing organic materials) are used. The coexistence of the water-absorbing organic fibers facilitates the supply of moisture to the surface of the metal material forming the dispersed particles, so that the antibacterial and antiviral effects of the composition are further enhanced. Examples of such organic fibers include natural fibers such as cellulose fibers, wool and silk; regenerated cellulose fibers, polyester fibers such as polyethylene terephthalate fibers, polyethylene naphthalate fibers, polyphenylene sulfide fibers, polyamide fibers such as nylon ) fibers and synthetic fibers such as polyimide fibers. In addition, "organic fiber" refers to a fiber mainly made of organic material, and in addition to organic material, it may contain unavoidable mixtures such as catalyst residues during synthesis, additives for processing, and inorganic substances derived from raw materials.
 上記した繊維の中でも、コストや加工性、吸水率の観点から、セルロース繊維、再生セルロース繊維、及びポリエステル繊維からなる群より選択される1種以上の繊維がより好ましく、天然又は再生セルロース繊維が特に好ましい。すなわち、上記分散繊維はセルロース繊維を含むことが好ましく、セルロース繊維、特に天然セルロース繊維を主体とすることがより好ましい。例えば、分散繊維全体に占める天然又は再生セルロース繊維の比率を、70質量%以上、80質量%以上、90質量%以上とすることができ、特に分散繊維のほぼ全量をセルロース繊維とすることが好ましい。セルロース繊維は、ポリオレフィン系樹脂に比較して高強度、高剛性を有する。このため、セルロース繊維は、ベース材を補強し、抗ウイルス性組成物や成形体の剛性(曲げ弾性率)を高める効果も奏する。 Among the above-described fibers, from the viewpoint of cost, workability, and water absorption, more preferably one or more fibers selected from the group consisting of cellulose fibers, regenerated cellulose fibers, and polyester fibers, and particularly natural or regenerated cellulose fibers. preferable. That is, the dispersed fibers preferably contain cellulose fibers, and more preferably mainly consist of cellulose fibers, particularly natural cellulose fibers. For example, the ratio of natural or regenerated cellulose fibers to the entire dispersed fibers can be 70% by mass or more, 80% by mass or more, or 90% by mass or more, and it is particularly preferable that almost all of the dispersed fibers are cellulose fibers. . Cellulose fibers have higher strength and higher rigidity than polyolefin resins. Therefore, cellulose fibers have the effect of reinforcing the base material and increasing the rigidity (flexural modulus) of the antiviral composition and molded article.
 (セルロース繊維)
 セルロース繊維は、繊維状のセルロースであり、主成分は分子式(C10で表される多糖類の一種であるため、吸水性に優れる。本発明で使用するセルロース繊維に特に制限はないが、工業的な利用方法が確立されており、入手が容易な点から、植物由来の天然セルロース繊維が好ましく、特に、微細な植物由来のセルロース繊維、例えば粉状パルプが好ましい。なお、「セルロース繊維」とは、広義には再生セルロース繊維も包含し、本発明の抗ウイルス性組成物においても再生セルロースを天然セルロースと同様に配合することができる。しかし、天然セルロースと再生セルロースとでは、原料の供給元等が相違するため、以下では「セルロース」は特記しない限り天然セルロースを指すものとし、再生セルロースについては別途に説明することとする。
(cellulose fiber)
Cellulose fibers are fibrous cellulose, and the main component is a kind of polysaccharide represented by the molecular formula (C 6 H 10 O 5 ) n , so they are excellent in water absorption. The cellulose fibers used in the present invention are not particularly limited, but plant-derived natural cellulose fibers are preferable, and in particular, fine plant-derived cellulose fibers, since industrial utilization methods have been established and they are readily available. , for example flour pulp, is preferred. In a broad sense, "cellulose fiber" includes regenerated cellulose fiber, and regenerated cellulose can be blended in the antiviral composition of the present invention in the same manner as natural cellulose. However, since natural cellulose and regenerated cellulose have different sources of raw materials, hereinafter, unless otherwise specified, "cellulose" refers to natural cellulose, and regenerated cellulose will be described separately.
 一般に、植物由来のセルロース繊維は、30~40分子のセルロースが束となって直径約3nm、長さ数百nmから数十μmの超極細幅で高結晶性のミクロフィブリルを形成し、これらが軟質な非結晶部を介しながらさらに束となった構造を形成している。上記の粉状パルプ(粉末状セルロース)は、この束状の集合体である。なお、本発明において、セルロース繊維という場合、上記のミクロフィブリルの束(未解繊の状態)の他に、解繊されて生じたミクロフィブリルの状態を含む意味で用いる。 In general, plant-derived cellulose fibers are bundles of 30 to 40 cellulose molecules that form ultra-thin, highly crystalline microfibrils with a diameter of about 3 nm and a length of several hundred nm to several tens of μm. A bundled structure is formed through the soft non-crystalline portion. The powdery pulp (powdered cellulose) is this bundle-like aggregate. In the present invention, the term cellulose fiber is used in the sense of including the state of defibrated microfibrils in addition to the above-mentioned microfibril bundle (unfibrillated state).
 植物由来のセルロース繊維は、特に限定されるものではないが、例えば、木材、竹、麻、ジュート、ケナフ、農作物残廃物(例えば、麦や稲などの藁、とうもろこし、綿花などの茎、サトウキビ)などの植物から採取したもの、さらには布、再生パルプ、古紙、木粉等に由来するものが挙げられる。好ましくは、木材由来のセルロース繊維、特に木材パルプを使用する。木材パルプは他の植物由来のパルプに比べて季節による生産量の変動が小さく、安定供給される利点がある。なお、パルプは、紙の原料ともなるもので、植物から抽出される仮道管を、化学的に見るとセルロースを主成分とする。 Plant-derived cellulose fibers are not particularly limited, but examples include wood, bamboo, hemp, jute, kenaf, agricultural waste (e.g., straw such as wheat and rice, stalks such as corn and cotton, and sugarcane). and those derived from cloth, recycled pulp, waste paper, wood powder, and the like. Preferably, wood-derived cellulose fibers, in particular wood pulp, are used. Compared to other plant-derived pulps, wood pulp has the advantage of being stably supplied with less seasonal fluctuations in production volume. Pulp is also a raw material for paper, and tracheids extracted from plants are chemically composed mainly of cellulose.
 植物由来のセルロース繊維は、セルロース以外の成分、例えばリグニンやヘミセルロースをしばしば含有する。本発明においては、こうしたセルロース以外の成分は、完全に除去する必要はないものの、少量であることが好ましい。例えば木粉そのものを配合する組成物のように、リグニンやヘミセルロースの量が多いと、所望の機械特性を付与することが難しくなる。本発明においては、セルロース繊維原料中のセルロースの含有量は、70質量%以上であることが好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。この種の特に好ましいセルロース繊維原料としては、例えばクラフトパルプが挙げられる。 Plant-derived cellulose fibers often contain components other than cellulose, such as lignin and hemicellulose. In the present invention, such components other than cellulose need not be completely removed, but a small amount is preferable. For example, when the amount of lignin or hemicellulose is large, as in a composition containing wood flour itself, it becomes difficult to impart desired mechanical properties. In the present invention, the content of cellulose in the cellulose fiber raw material is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more. A particularly preferred cellulosic fiber raw material of this type is, for example, kraft pulp.
 クラフトパルプは、木材もしくは他の植物原料から、苛性ソーダなどの化学処理によって、リグニン及びヘミセルロースを除去し、純粋に近いセルロースを取り出したパルプの総称である。セルロース分子を主成分として、少量のヘミセルロース及びリグニンから構成される。 Kraft pulp is a general term for pulp obtained by removing lignin and hemicellulose from wood or other plant materials through chemical treatment such as caustic soda to extract nearly pure cellulose. It is composed mainly of cellulose molecules and small amounts of hemicellulose and lignin.
 本発明の抗ウイルス性組成物に含まれるセルロース繊維はまた、セルロース分子中の水酸基の一部が、アセチル化やカルボキシ化されていてもよく、また、水酸基中の水素原子がナトリウムやカリウム等の金属イオン、もしくはアンモニウムイオン等で置換されていてもよい。 In the cellulose fiber contained in the antiviral composition of the present invention, part of the hydroxyl groups in the cellulose molecule may be acetylated or carboxylated, and the hydrogen atoms in the hydroxyl groups may be replaced by sodium, potassium, or the like. It may be substituted with a metal ion, an ammonium ion, or the like.
 (再生セルロース繊維)
 再生セルロース繊維は、セルロースを溶液から再沈殿して得られる繊維である。例えばセルロースを酸化銅アンモニア溶液(シュワイツァー溶液)や水酸化ナトリウム溶液に溶かすと、高粘液のビスコースが得られる。このビスコースを紡糸液として細孔から硫酸等の凝固浴に押し出すと、セルロースを再生することができる。再生セルロース繊維の多くは、こうしたビスコース法によって製造され、レーヨンと呼ばれる。ビスコースの種類や熟成の度合い、凝固浴、延伸や仕上げの条件によって、様々な品種の再生セルロース繊維を得ることができる。無水酢酸によるエステル化処理等が施されていてもよい。また、N-メチルホルホリンN-オキシド等の溶媒にセルロースを溶解して紡糸する溶媒紡糸レーヨンや、銅安法レーヨンも知られている。本発明においては、こうした種々の再生セルロース繊維のいずれをも使用することもできる。天然セルロース繊維と併用することも、可能である。
(regenerated cellulose fiber)
Regenerated cellulose fibers are fibers obtained by reprecipitating cellulose from a solution. For example, dissolving cellulose in a cuprammonium oxide solution (Schweitzer's solution) or sodium hydroxide solution gives a highly viscous viscose. Cellulose can be regenerated by extruding this viscose as a spinning solution through pores into a coagulating bath such as sulfuric acid. Most regenerated cellulose fibers are produced by such a viscose method and are called rayon. Various types of regenerated cellulose fibers can be obtained depending on the type of viscose, degree of aging, coagulation bath, drawing and finishing conditions. Esterification treatment with acetic anhydride or the like may be performed. Also known are solvent-spun rayon in which cellulose is dissolved in a solvent such as N-methylphorpholine N-oxide and spun, and copper-ann rayon. Any of these various regenerated cellulose fibers can be used in the present invention. A combined use with natural cellulose fibers is also possible.
 (ポリエステル繊維)
 ポリエステル繊維は、モノマー単位同士が主としてエステル結合した、長鎖合成高分子からなる繊維である。汎用のポリエステル繊維の多くは、二価アルコールとテレフタル酸からなるポリマーを主体とする繊維であり、特にポリエチレンテレフタレート(PET)繊維が一般的である。他に、アルキレンパラオキシベンゾエート等を共重合させた、エーテル結合を有するポリエステル繊維も知られている。モノマー成分や重合度、合成法や延伸条件等によって、様々な品種のポリエステル繊維を製造することができる。本発明においては、こうした種々のポリエステル繊維のいずれをも使用することもできる。天然及び/又は再生セルロース繊維と併用することも、可能である。
(polyester fiber)
Polyester fibers are fibers composed of long-chain synthetic polymers in which monomer units are mainly ester-bonded. Most of the general-purpose polyester fibers are fibers mainly composed of polymers composed of dihydric alcohol and terephthalic acid, and polyethylene terephthalate (PET) fibers are particularly common. In addition, a polyester fiber having an ether bond, which is obtained by copolymerizing alkylene paraoxybenzoate or the like, is also known. Various types of polyester fibers can be produced depending on the monomer component, degree of polymerization, synthesis method, drawing conditions, and the like. Any of these various polyester fibers can be used in the present invention. A combination with natural and/or regenerated cellulose fibers is also possible.
 分散繊維の平均繊維径及び平均繊維長は特に限定されず、用途等によって適宜選択することができる。しかしながら、抗ウイルス性組成物中での繊維の分散性、抗ウイルス性組成物の成形性や補強性の観点から、分散繊維、例えばセルロース繊維の平均繊維径は1~50μmが好ましく、5~40μmがより好ましく、10~30μmがさらに好ましく、15~25μmが特に好ましい。同じ理由から、分散繊維、例えばセルロース繊維の平均繊維長は10~3000μmが好ましく、20~2500μmがより好ましく、100~2000μmがさらに好ましく、400~1000μmが特に好ましい。なお、上記平均繊維径及び平均繊維長は、繊維分析計による繊維長及び繊維径測定や、光学顕微鏡又は電子顕微鏡で観察された分散繊維の長手方向のサイズを繊維長、短手方向のサイズを繊維径とし、各々を平均化し求めることができる。平均繊維径及び平均繊維長を顕微鏡観察により求める際の観察視野は、例えば960μm×1200μmである。 The average fiber diameter and average fiber length of the dispersed fibers are not particularly limited, and can be appropriately selected depending on the application. However, from the viewpoint of the dispersibility of the fibers in the antiviral composition and the moldability and reinforcing properties of the antiviral composition, the average fiber diameter of dispersed fibers such as cellulose fibers is preferably 1 to 50 μm, more preferably 5 to 40 μm. is more preferable, 10 to 30 μm is still more preferable, and 15 to 25 μm is particularly preferable. For the same reason, the average fiber length of dispersed fibers such as cellulose fibers is preferably 10 to 3000 μm, more preferably 20 to 2500 μm, still more preferably 100 to 2000 μm, and particularly preferably 400 to 1000 μm. The above average fiber diameter and average fiber length are the fiber length and fiber diameter measurement by a fiber analyzer, the longitudinal size of dispersed fibers observed with an optical microscope or an electron microscope, and the transverse size. It can be obtained by averaging each of the fiber diameters. The field of view for obtaining the average fiber diameter and average fiber length by microscopic observation is, for example, 960 μm×1200 μm.
 分散繊維の含有量に関しては特に限定されず、用途などによって適宜選択することができる。好ましくは、上記のベース材100質量部に対して7~110質量部、より好ましくは10~55質量部とする。分散繊維の含有量がこの範囲以内であれば、十分な抗ウイルス性を発現し、曲げ弾性率等の機械的強度及び外観等にも優れた組成物となる。一方で分散繊維の含有量が多くなると、成形性に劣り、シートフィルム形状に成形することが難しくなることがある。分散繊維の添加量が少ないと、組成物の抗菌又は抗ウイルス性が劣ることがある。 The content of dispersed fibers is not particularly limited, and can be appropriately selected depending on the application. Preferably, it is 7 to 110 parts by mass, more preferably 10 to 55 parts by mass, based on 100 parts by mass of the base material. If the content of the dispersed fibers is within this range, the composition exhibits sufficient antiviral properties and is excellent in mechanical strength such as flexural modulus and appearance. On the other hand, when the content of the dispersed fibers is large, the moldability is inferior, and it may become difficult to mold the film into a sheet film shape. If too little dispersed fiber is added, the antibacterial or antiviral properties of the composition may be poor.
 本発明の抗ウイルス性組成物においてはまた、上記したように抗ウイルス性組成物の成形性及び抗菌性及び抗ウイルス性の観点から、ベース材と分散繊維と後記する金属系分散粒子の存在割合が、質量%で、40~80%:5~55%:1~25%の範囲であることが好ましい。より好ましくは、抗ウイルス性組成物全100質量%に対する分散繊維の含有量を、8~51質量%、さらに好ましくは10~40質量%とする。 In the antiviral composition of the present invention, as described above, from the viewpoint of moldability, antibacterial properties, and antiviral properties of the antiviral composition, the abundance ratio of the base material, the dispersed fibers, and the metal-based dispersed particles described later is is preferably in the range of 40-80%:5-55%:1-25% in terms of mass %. More preferably, the content of dispersed fibers is 8 to 51% by mass, more preferably 10 to 40% by mass, based on 100% by mass of the total antiviral composition.
<分散粒子>
 本発明の抗ウイルス性組成物は、上記成分に加え、金属材料、特に水の存在下で抗ウイルス機能を発揮する金属材料(抗ウイルス性金属材料)及び/又はその不溶性化合物からなる分散粒子、すなわち金属系分散粒子をさらに含む。
<Dispersed particles>
In addition to the above components, the antiviral composition of the present invention comprises dispersed particles composed of a metal material, particularly a metal material that exhibits an antiviral function in the presence of water (antiviral metal material) and/or an insoluble compound thereof, That is, it further contains metal-based dispersed particles.
 分散粒子としては、銅、銀、亜鉛、ニッケル、アルミニウム、パラジウム、スズ及び鉄からなる群より選択される1種以上の金属及び/又はその不溶性化合物を含有するものが挙げられるが、これらに限定されない。ここで、これら金属の「不溶性化合物」とは、水に殆ど不溶な化合物であり、酸化物又は水酸化物であってもよい。例えば、上記抗ウイルス性金属材料の酸化物粒子又は水酸化物粒子、あるいは表面の一部又は全部が酸化物又は水酸化物で覆われた金属粒子であってもよい。金属材料及び/又はその不溶性化合物は、銅や銀等の上記金属を複数種含む、例えば合金や複合酸化物であってもよい。特に、銅又はその合金、例えば真鍮が好ましい。こうした金属材料は、特に水の存在下で高い抗ウイルス機能を発揮し、本発明の抗ウイルス性組成物において抗ウイルス剤として作用する。なお、「金属材料及び/又はその不溶性化合物からなる分散粒子」は、粒子の主体が金属材料及び/又はそれら金属材料の不溶性化合物で構成されている粒子を指し、原料等に由来する不可避的混合物や、分散性改善のための表面改質剤等を含んでいてもよい。 Dispersed particles include, but are not limited to, those containing one or more metals and/or insoluble compounds thereof selected from the group consisting of copper, silver, zinc, nickel, aluminum, palladium, tin and iron. not. Here, the "insoluble compounds" of these metals are compounds that are almost insoluble in water, and may be oxides or hydroxides. For example, they may be oxide particles or hydroxide particles of the antiviral metal material, or metal particles partially or entirely covered with oxide or hydroxide. The metal material and/or its insoluble compound may be, for example, an alloy or composite oxide containing a plurality of the above metals such as copper and silver. Copper or its alloys, such as brass, are particularly preferred. Such metallic materials exhibit a high antiviral function, especially in the presence of water, and act as antiviral agents in the antiviral composition of the present invention. In addition, "dispersed particles composed of metallic materials and/or insoluble compounds thereof" refer to particles composed mainly of metallic materials and/or insoluble compounds of these metallic materials, and unavoidable mixtures derived from raw materials, etc. Alternatively, it may contain a surface modifier or the like for improving dispersibility.
 本発明の抗ウイルス性組成物は、抗ウイルス剤として金属塩ではなく、金属材料及び/又はその不溶性化合物からなる分散粒子を含むため、抗ウイルス剤が使用時に水等に抽出されることがない。また、有機系抗菌剤のように揮散又は分解するおそれもない。そのため、抗菌性や抗ウイルス性が経年使用によって低下することがなく、また、周辺機器に塩害をもたらすおそれもない。一方で本発明の抗ウイルス性組成物やその成形体が水分、例えば水槽の水や汚水、汗等の体液と接触すると、金属材料及び/又はその不溶性化合物からなる分散粒子に基づく抗ウイルス機能が発揮される。 Since the antiviral composition of the present invention contains dispersed particles composed of a metallic material and/or an insoluble compound thereof instead of a metal salt as an antiviral agent, the antiviral agent is not extracted into water or the like during use. . In addition, unlike organic antibacterial agents, there is no risk of volatilization or decomposition. Therefore, the antibacterial and antiviral properties do not deteriorate with long-term use, and there is no risk of causing salt damage to peripheral equipment. On the other hand, when the antiviral composition of the present invention or its molded product comes into contact with water such as aquarium water, sewage, or body fluids such as perspiration, the antiviral function based on the dispersed particles composed of the metal material and/or its insoluble compound is activated. demonstrated.
 本発明の抗ウイルス性組成物におけるこうした分散粒子は、どのような形状であってもよく、球状、繊維状の粉体、鱗片状などの形状のうちの少なくとも1種類を選択することができる。複数の形状が入り混じった粒子であってもよい。中でも、組成物の成形性を担保する観点から、分散粒子は球状であることが好ましい。 Such dispersed particles in the antiviral composition of the present invention may have any shape, and at least one of shapes such as spherical, fibrous powder, and scaly can be selected. Particles in which a plurality of shapes are mixed may be used. Above all, from the viewpoint of ensuring the moldability of the composition, the dispersed particles are preferably spherical.
 金属系分散粒子の粒径については特に制限されるものではないが、平均粒子径が0.01μm以上100μm以下であることが好ましく、0.1μm以上50μm以下であることがより好ましく、1μm以上40μm以下であることが特に好ましい。金属系粒子の径は、一般に小さい方が抗ウイルス性を発現する傾向があるが、小さ過ぎると粒子の融点が下がり、樹脂との混錬工程において不具合を生じることがある。粒子径が大きいと、金属系分散粒子の凹凸により成形体の表面性が劣ることがある。平均粒子径は、動的光散乱法やレーザー回析法などで求めることができる。 The particle diameter of the metal-based dispersed particles is not particularly limited, but the average particle diameter is preferably 0.01 μm or more and 100 μm or less, more preferably 0.1 μm or more and 50 μm or less, and 1 μm or more and 40 μm. The following are particularly preferred. In general, the smaller the diameter of the metal-based particles, the more likely they are to exhibit antiviral properties. If the particle size is large, the surface properties of the molded article may be inferior due to the unevenness of the dispersed metal particles. The average particle size can be determined by a dynamic light scattering method, a laser diffraction method, or the like.
 本発明の抗ウイルス性組成物においては、上記したように抗ウイルス性組成物の成形性及び抗菌性や抗ウイルス性の観点から、ベース材と分散繊維と金属系分散粒子の存在割合が、質量%で、40~80%:5~55%:1~25%の範囲であることが好ましい。より好ましくは、抗ウイルス性組成物全100質量%に対する金属系分散粒子の含有量を、1~20質量%、さらに好ましくは1~15質量%とする。すなわち、本発明の抗ウイルス性組成物におけるベース材と分散繊維と分散粒子の存在割合は、より好ましくは48~78質量%:8~51質量%:1~20質量%、さらに好ましくは48~75質量%:10~51質量%:1~15質量%である。 In the antiviral composition of the present invention, as described above, from the viewpoint of the moldability, antibacterial properties, and antiviral properties of the antiviral composition, the abundance ratio of the base material, the dispersed fibers, and the metal-based dispersed particles is %, preferably in the range of 40-80%:5-55%:1-25%. More preferably, the content of the metal-based dispersed particles is 1 to 20% by mass, more preferably 1 to 15% by mass, based on 100% by mass of the total antiviral composition. That is, the ratio of the base material, the dispersed fibers and the dispersed particles in the antiviral composition of the present invention is more preferably 48-78% by mass: 8-51% by mass: 1-20% by mass, and more preferably 48-50% by mass. 75% by mass: 10 to 51% by mass: 1 to 15% by mass.
 (他の成分)
 本発明の抗ウイルス性組成物は、上記のベース材(ポリオレフィン系樹脂)、分散繊維、及び(金属系)分散粒子以外に、本発明の効果を損なわない範囲で、ポリオレフィン系樹脂以外の樹脂、各種慣用添加物等を含んでいてもよい。
(other ingredients)
In addition to the base material (polyolefin-based resin), dispersed fibers, and (metal-based) dispersed particles, the antiviral composition of the present invention contains resins other than polyolefin-based resins, as long as the effects of the present invention are not impaired. Various commonly used additives may be included.
 添加物としては例えば、酸化防止剤、光安定剤、ラジカル捕捉剤、紫外線吸収剤、着色剤(染料、有機顔料、無機顔料)、充填剤、滑剤、可塑剤、アクリル加工助剤等の加工助剤、発泡剤、パラフィンワックス等の潤滑剤、表面処理剤、結晶核剤、離型剤、加水分解防止剤、アンチブロッキング剤、帯電防止剤、防曇剤、防徽剤、イオントラップ剤、難燃剤、難燃助剤等が挙げられるが、これらに限定されない。こうした他の成分は、本発明の目的を損なわない範囲で、例えば抗ウイルス性組成物全100質量%に対して0.1~10質量%、特に0.5~5質量%程度の量で、適宜含有させることができる。 Examples of additives include antioxidants, light stabilizers, radical scavengers, UV absorbers, colorants (dyes, organic pigments, inorganic pigments), fillers, lubricants, plasticizers, processing aids such as acrylic processing aids, etc. agents, foaming agents, lubricants such as paraffin wax, surface treatment agents, crystal nucleating agents, mold release agents, anti-hydrolysis agents, anti-blocking agents, anti-static agents, anti-fogging agents, anti-fogging agents, ion trap agents, Examples include, but are not limited to, retardants, flame retardant aids, and the like. Such other components are within a range that does not impair the purpose of the present invention, for example, in an amount of about 0.1 to 10% by mass, particularly about 0.5 to 5% by mass, based on 100% by mass of the total antiviral composition. It can be contained as appropriate.
〔抗ウイルス性組成物の製造方法〕
 本発明の抗ウイルス性組成物は、少なくともベース材(ポリオレフィン系樹脂)と分散繊維と(金属系)分散粒子とを、例えば溶融混合(混練)して、ポリオレフィン系樹脂中に分散繊維と(金属系)分散粒子とを分散させることにより製造することができる。本発明はまた、ベース材、分散繊維、及び分散粒子を溶融混合する工程を含む、抗ウイルス性組成物の製造方法をも包含する。
[Method for producing antiviral composition]
The antiviral composition of the present invention is prepared by melt-mixing (kneading) at least a base material (polyolefin resin), dispersed fibers and (metallic) dispersed particles, for example, and dispersing fibers and (metallic) in the polyolefin resin. system) can be produced by dispersing dispersed particles. The present invention also includes a method of making an antiviral composition comprising the step of melt-blending the base material, dispersed fibers, and dispersed particles.
 本発明において「溶融混合」とは、ポリオレフィン系樹脂を溶融させた状態で、分散繊維及び(金属系)分散粒子等の成分と混合することを意味する。また、「混合」とは、溶融したポリオレフィン系樹脂を溶融させた状態で、分散繊維及び(金属系)分散粒子等の成分とが混在した状態を作り出せる限り、均一であっても不均一であってもよい。溶融混合は例えば、ポリオレフィン系樹脂を溶融させた状態で、分散繊維及び(金属系)分散粒子等の成分とを、押出機、ニーダー、バンバリーミキサー等を用いて混合したりすることにより調製することができる。特に、二軸押出機の使用が好ましい。 In the present invention, "melt mixing" means mixing the polyolefin resin in a melted state with components such as dispersed fibers and (metallic) dispersed particles. In addition, "mixing" means that the melted polyolefin resin is melted, and as long as it can create a state in which components such as dispersed fibers and (metallic) dispersed particles are mixed, it may be uniform or non-uniform. may Melt-mixing is prepared by, for example, mixing components such as dispersed fibers and (metallic) dispersed particles in a melted state of polyolefin resin using an extruder, a kneader, a Banbury mixer, or the like. can be done. In particular, use of a twin-screw extruder is preferred.
 各成分の混合順序にも、特に制限はない。しかしながら本発明においては、ポリオレフィン系樹脂と(金属系)分散粒子との溶融混合物A及びポリオレフィン系樹脂と分散繊維との溶融混合物Bをそれぞれ調製しておき、これらを溶融混合した後、成形する方法が、分散繊維及び(金属系)分散粒子のポリオレフィン系樹脂中への分散をそれぞれ良好なものとする観点から好ましい。また、上記のようにして調製した溶融混合物Bに、(金属系)分散粒子を混合してもよい。ポリオレフィン系樹脂と(金属系)分散粒子との溶融混合物A及びポリオレフィン系樹脂と分散繊維との溶融混合物Bは、成形工程における取扱性の観点から、両者を混合する前に、後述するようにペレット状に加工することが好ましい。 There are no particular restrictions on the mixing order of each component. However, in the present invention, a molten mixture A of the polyolefin resin and the (metallic) dispersed particles and a molten mixture B of the polyolefin resin and the dispersed fibers are respectively prepared, melt-mixed, and then molded. is preferable from the viewpoint of improving the dispersion of the dispersed fibers and the (metallic) dispersed particles in the polyolefin resin. Further, (metal-based) dispersed particles may be mixed with the molten mixture B prepared as described above. The molten mixture A of the polyolefin resin and the (metallic) dispersed particles and the molten mixture B of the polyolefin resin and the dispersed fibers are pelletized as described below before mixing them from the viewpoint of handleability in the molding process. It is preferable to process it into a shape.
 ポリオレフィン系樹脂と分散繊維との溶融混合工程においては、ベース樹脂としてのポリオレフィン系樹脂中における分散繊維の分散状態を向上させる観点から、溶融混合前にアルコキシシラン変性ポリオレフィン系樹脂と分散繊維とをアルコキシシラン変性ポリオレフィン系樹脂の融点未満の温度で前混合したり、分散繊維用の分散助剤の存在下で溶融混合したりしてもよい。 In the melt mixing step of the polyolefin resin and the dispersed fibers, from the viewpoint of improving the dispersed state of the dispersed fibers in the polyolefin resin as the base resin, the alkoxysilane-modified polyolefin resin and the dispersed fibers are alkoxylated before melt mixing. Pre-mixing may be performed at a temperature below the melting point of the silane-modified polyolefin resin, or melt-mixing may be performed in the presence of a dispersing aid for dispersed fibers.
 分散繊維用の分散助剤の存在下で溶融混合する場合には、混合装置(例えば、押出機)中に、分散繊維用の分散助剤を添加して、ベントにより回収することができる。分散繊維用の分散助剤としては、分離又は回収等の環境負荷が少なく、残留しても分散繊維への悪影響が少ない観点から、水等を用いることが好ましい。 When melt mixing is performed in the presence of a dispersing aid for dispersed fibers, the dispersing aid for dispersed fibers can be added to a mixing device (eg, an extruder) and collected through a vent. As the dispersing aid for the dispersed fibers, it is preferable to use water or the like from the viewpoint of less environmental load such as separation or recovery and less adverse effect on the dispersed fibers even if it remains.
〔成形体〕
 本発明はまた、上記の抗ウイルス性組成物からなる成形体をも包含する。成形体の形状に特に制限はなく、シート状、管状、その他複雑な形状等、目的及び用途に則して種々の所望の形状とすることができる。本発明の成形体は、発泡体であってもよい。なお、本発明の成形体においては、分散繊維及び分散粒子は、それぞれの少なくとも一部が、ベース材から露出した状態で、成形体の表面に存在していることが好ましい。分散繊維及び分散粒子の一部がベース材から露出していると、特に高い抗ウイルス性が発現し得る。
[Molded body]
The present invention also includes molded articles comprising the antiviral composition described above. The shape of the molded product is not particularly limited, and various desired shapes such as sheet-like, tubular, and other complicated shapes can be used according to the purpose and application. The molded article of the present invention may be a foam. In the molded article of the present invention, it is preferable that at least a part of each of the dispersed fibers and the dispersed particles is present on the surface of the molded article in a state of being exposed from the base material. Particularly high antiviral properties can be exhibited when a part of the dispersed fibers and dispersed particles are exposed from the base material.
 本発明の成形品の製造方法としては、目的形状に成形できるものであれば特に限定されず、従来公知の押出成形、射出成形、真空成形、ブロー成形、カレンダー成形等の何れの方法も可能である。成形体の形状によっては、例えば押出成形機を使用し、前記の溶融混合と成形体の成形とを、一工程で行うこともできる。また、製造した抗ウイルス性組成物を一旦ペレット化し、射出成形等により成形体としてもよい。ペレット化の方法にも特に制限はなく、汎用のペレタイザー等を使用することができる。発泡体を製造する場合も、例えば、射出発泡、押出発泡、発泡ブロー等の液相発泡法、あるいは、ビーズ発泡、バッチ発泡、プレス発泡、常圧二次発泡等の固相発泡法等、公知のどのような方法を用いることも可能である。 The method for producing the molded article of the present invention is not particularly limited as long as it can be molded into the desired shape, and any of conventionally known methods such as extrusion molding, injection molding, vacuum molding, blow molding, and calender molding can be used. be. Depending on the shape of the molded article, for example, an extruder may be used to carry out the melt mixing and molding of the molded article in one step. Alternatively, the produced antiviral composition may be once pelletized and molded by injection molding or the like. The pelletization method is not particularly limited, and a general-purpose pelletizer or the like can be used. In the case of producing a foam, for example, liquid phase foaming methods such as injection foaming, extrusion foaming, foam blowing, etc., or solid phase foaming methods such as bead foaming, batch foaming, press foaming, normal pressure secondary foaming, etc. are known. Any method can be used.
 なお、射出成形、押出成形等における成形温度としては、その成形方法や使用するポリオレフィン系樹脂の種類等によってもある程度異なるため、一概には規定できるものではないが、好ましくはベース材の融点+5~100℃程度、特に+10~50℃程度の温度、例えば、180~260℃、より好ましくは190~230℃とすることができる。こうした温度であれば、本発明に係る抗ウイルス性組成物が、良好なドローダウン特性、延展性を持って、かつ局部的にも変性を生じることなく所定形状に成形できる。
 成形品の形態としては、本発明の抗ウイルス性組成物のみからなる成形品でなくてもよく、例えば、本発明の抗ウイルス性組成物とそれ以外の樹脂組成物を含む2層以上の積層構造からなるものであってもよい。
The molding temperature in injection molding, extrusion molding, etc. varies to some extent depending on the molding method and the type of polyolefin resin used, so it cannot be defined unconditionally, but preferably the melting point of the base material +5 to The temperature can be about 100°C, particularly about +10 to 50°C, for example, 180 to 260°C, more preferably 190 to 230°C. At such a temperature, the antiviral composition according to the present invention can be molded into a predetermined shape with good drawdown properties and spreadability without causing local denaturation.
The form of the molded article does not have to consist of only the antiviral composition of the present invention. For example, a laminate of two or more layers containing the antiviral composition of the present invention and other resin compositions. It may consist of a structure.
〔用途〕
 本発明の成形体は、優れた抗菌性及び抗ウイルス性を示すため、各種医療及び衛生用途の製品を始め、自動車部品等の輸送機器用材料、インテリア、エクステリア等、多数の使用者が接する可能性のある製品の材料として有用である。特に、分散繊維としてセルロース繊維、中でも天然セルロース繊維を含む成形体は、セルロース繊維強化樹脂材料が本来有する軽量性と高い比強度といった特性を有し、抗菌性及び抗ウイルス性だけでなく剛性や耐衝撃性が求められる部材ないし材料等の種々の用途に用いることができる。
[Use]
Since the molded article of the present invention exhibits excellent antibacterial and antiviral properties, it can be used by many users, including products for various medical and sanitary purposes, materials for transportation equipment such as automobile parts, interiors, and exteriors. It is useful as a material for durable products. In particular, molded articles containing cellulose fibers, especially natural cellulose fibers, as dispersed fibers have the inherent properties of cellulose fiber reinforced resin materials, such as lightness and high specific strength, and have not only antibacterial and antiviral properties, but also rigidity and resistance. It can be used for various applications such as members or materials that require impact resistance.
 本発明の成形体は、具体的には、以下のような製品、又はそれらの部品及び/又は部材等として用いることができる。例として輸送機器(自動車、二輪車、列車、及び航空機など)、ロボットアームの構造部材、アミューズメント用ロボット部品、義肢部材、家電材料、OA機器筐体、情報処理機器、携帯端末、建材、ハウス用フィルム、排水設備、トイレタリー製品材料、各種タンク、コンテナー、シート、包装材、玩具、文具、食品容器、ボビン、チューブ、ケーブルトラフ、樹脂側溝、家具材料(壁材、手すりなど)、靴、及びスポーツ用品などが挙げられる。本発明の成形体は、輸送機器、例えば自動車部品の材料等として好適である。 Specifically, the molded article of the present invention can be used as the following products, or their parts and/or members. Examples include transportation equipment (automobiles, motorcycles, trains, aircraft, etc.), structural members of robot arms, robot parts for amusement, prosthetic limb members, home appliance materials, OA equipment housings, information processing equipment, mobile terminals, building materials, films for houses. , drainage equipment, toiletry product materials, various tanks, containers, sheets, packaging materials, toys, stationery, food containers, bobbins, tubes, cable troughs, resin gutters, furniture materials (wall materials, handrails, etc.), shoes, and sporting goods etc. The molded article of the present invention is suitable as a material for transportation equipment such as automobile parts.
 輸送機器用材料としては、具体的には車両用材料、例えば、ダッシュボードトリム、ドアートリム、ピラートリム等のトリム類、メーターパネル、メーターハウジング、グローブボックス、パッケージトレイ、ルーフヘッドライニング、コンソール、インストルメントパネル、アームレスト、シート、シートバック、トランクリッド、トランクリッドロアー、ドアーインナーパネル、ピラー、スペアタイヤカバー、ドアノブ、ライトハウジング、バックトレー等の内装部品、バンパー、ボンネット、スポイラー、ラジエーターグリル、フェンダー、フェンダーライナー、ロッカーパネル、サイドステップ、ドア・アウターパネル、サイドドア、バックドア、ルーフ、ルーフキャリア、ホイールキャップ・カバー、ドアミラーカバー、アンダーカバー等の外装部品、その他、バッテリーケース、エンジンカバー、燃料タンク、燃料チューブ、給油口ボックス、エアインテークダクト、エアクリーナーハウジング、エアコンハウジング、クーラントリザーブタンク、ラジエターリザーブタンク、ウインドウ・ウオッシャータンク、インテークマニホールド、ファン及びプーリーなどの回転部材、ワイヤーハーネスプロテクター等の部品、接続箱又はコネクタ、また、フロントエンドモジュール、フロント・エンドパネル等の一体成形部品等が挙げられる。 Materials for transportation equipment include materials for vehicles, such as trims such as dashboard trims, door trims, pillar trims, meter panels, meter housings, glove boxes, package trays, roof headlinings, consoles, and instrument panels. , armrests, seats, seat backs, trunk lids, trunk lid lowers, door inner panels, pillars, spare tire covers, door knobs, light housings, interior parts such as back trays, bumpers, bonnets, spoilers, radiator grills, fenders, fender liners Exterior parts such as rocker panels, side steps, door/outer panels, side doors, back doors, roofs, roof carriers, wheel cap covers, door mirror covers, under covers, etc., battery cases, engine covers, fuel tanks, fuel Tubes, fuel filler boxes, air intake ducts, air cleaner housings, air conditioner housings, coolant reserve tanks, radiator reserve tanks, window washer tanks, intake manifolds, rotating members such as fans and pulleys, parts such as wire harness protectors, junction boxes or connectors, integrally molded parts such as front-end modules, front-end panels, and the like.
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は上記で規定すること以外は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples except as specified above.
(実施例・比較例)
 各種の組成物及び成形体を調製し、抗菌性及び抗ウイルス性及び吸水量を評価した。
(Example/Comparative example)
Various compositions and molded articles were prepared, and their antibacterial and antiviral properties and water absorption were evaluated.
-使用材料-
 以下に、使用した材料を示す。
<ベース材>
 ポリプロピレン樹脂:J106MG(商品名)、株式会社プライムポリマー社製のアイソタクチックポリプロピレン樹脂、MFR:10g/10min
<分散繊維>
 セルロース繊維-1:ARBOCEL B400(商品名)、RETTENMAIER社製のセルロース繊維、平均繊維長450μm、平均繊維径15μm
 セルロース繊維-2:パルプシート粉砕品、Harmac Pacific社製のパルプシートHarmac R(商品名)を粉砕機を用いて粉砕した繊維;平均繊維長900μm、平均繊維径25μm
<分散粒子>
 銅粉-1:LPW-CU-AAJK(商品名)、LPW TECHNOLOGY LTD製の銅粉、形状:球状、平均粒子径30μm
 銅粉-2:Cu―HWQ(商品名)、福田金属箔粉工業株式会社製の銅粉、形状:球状、平均粒子径1.5μm
-Materials used-
The materials used are shown below.
<Base material>
Polypropylene resin: J106MG (trade name), isotactic polypropylene resin manufactured by Prime Polymer Co., Ltd., MFR: 10 g/10 min
<Dispersed fiber>
Cellulose fiber-1: ARBOCEL B400 (trade name), cellulose fiber manufactured by RETTENMAIER, average fiber length 450 μm, average fiber diameter 15 μm
Cellulose fiber-2: Pulp sheet pulverized product, fiber obtained by pulverizing Harmac R (trade name) pulp sheet manufactured by Harmac Pacific using a pulverizer; average fiber length 900 μm, average fiber diameter 25 μm
<Dispersed particles>
Copper powder-1: LPW-CU-AAJK (trade name), copper powder manufactured by LPW TECHNOLOGY LTD, shape: spherical, average particle size 30 μm
Copper powder-2: Cu-HWQ (trade name), copper powder manufactured by Fukuda Metal Foil & Powder Co., Ltd., shape: spherical, average particle size 1.5 μm
-抗菌性評価-
 抗菌性評価は、JIS Z 2801:201に則り行った。以下の試験菌を用いて、温度:35℃、作用時間:24時間、接種菌液濃度:5.4×105cfu/ml、接種量:0.4ml/sampleにて抗菌活性値を求めた。
・黄色ブドウ球菌(NBRC12732)
・大腸菌(NBRC3972)
 なお、抗菌活性値は以下の式より算出した。
抗菌活性値=LogA-LogB
A:標準試料(ポリプロピレン樹脂単体)の単位面積あたり生菌数
B:試験試料の単位面積あたり生菌数
得られた値は、小数点第2位を四捨五入し、活性値が1.0未満である場合を抗菌性が劣るとして「×」、活性値が1.0以上2.0未満である場合を抗菌性が良好であるとして「○」、そして、活性値が2.0以上である場合を抗菌性が優れているとして「◎」として評価した。
- Antibacterial evaluation -
Antibacterial evaluation was performed according to JIS Z 2801:201. Using the following test bacteria, the antibacterial activity value was determined at a temperature of 35°C, an action time of 24 hours, an inoculum solution concentration of 5.4 x 105 cfu/ml, and an inoculum amount of 0.4 ml/sample.
・Staphylococcus aureus (NBRC12732)
・ Escherichia coli (NBRC3972)
The antibacterial activity value was calculated from the following formula.
Antibacterial activity value = LogA-LogB
A: Number of viable bacteria per unit area of standard sample (polypropylene resin alone) B: Number of viable bacteria per unit area of test sample The obtained value is rounded to the second decimal place, and the activity value is less than 1.0. If the antibacterial property is inferior, "x", if the activity value is 1.0 or more and less than 2.0, the antibacterial property is good, "○", and if the activity value is 2.0 or more It was evaluated as "⊚" as having excellent antibacterial properties.
-抗ウイルス性評価-
 抗ウイルス性評価は、JIS R 1756:2020(可視光応答型光触媒、抗ウイルス、フィルム密着法)の規定に従って行った。以下の試験ファージ等を用いて、温度:25℃±3℃、作用時間:4時間、接種ファージ液濃度:7.6×106pfu/ml、接種量:0.4ml/sampleにて抗ウイルス活性値を求めた。
・バクテリオファージQβ(NBRC20012)[宿主大腸菌(NBRC106373)]
・バクテリオファージΦ6(NBRC 105899)[宿主Pseudomonas syringae(NBRC 14084)]
 なお、抗ウイルス活性値は以下の式より算出した。
抗ウイルス活性値(暗所)=LogC-LogD
C:標準試料(ポリプロピレン樹脂単体)の感染価
D:試験試料の感染価
 得られた値は、小数点第2位を四捨五入し、活性値が1.0未満である場合を抗ウイルス性が劣るとして「×」、活性値が1.0以上2.0未満である場合を抗ウイルス性が良好であるとしてを「○」、そして、活性値が2.0以上である場合を抗ウイルス性が優れているとして「◎」として評価した。
-Antiviral evaluation-
The antiviral evaluation was performed in accordance with JIS R 1756:2020 (visible light-responsive photocatalyst, antiviral, film adhesion method). Using the following test phage, etc., temperature: 25 ° C ± 3 ° C, action time: 4 hours, inoculation phage solution concentration: 7.6 × 10 pfu / ml, inoculation amount: 0.4 ml / sample Antiviral activity value asked for
- Bacteriophage Qβ (NBRC20012) [Host E. coli (NBRC106373)]
- Bacteriophage Φ6 (NBRC 105899) [host Pseudomonas syringae (NBRC 14084)]
The antiviral activity value was calculated from the following formula.
Antiviral activity value (dark) = LogC-LogD
C: Infectivity value of standard sample (polypropylene resin alone) D: Infectivity value of test sample The obtained value is rounded to the second decimal place, and the activity value of less than 1.0 is considered to be inferior in antiviral activity. "X" indicates that the antiviral property is good when the activity value is 1.0 or more and less than 2.0, and "○" indicates that the antiviral property is good when the activity value is 2.0 or more. was evaluated as "◎".
-吸水量評価-
 吸水量は、温度25℃、湿度50%の雰囲気下に24時間以上保持した各試料を80℃で24時間真空乾燥し、乾燥前後の重量変化から以下の式に基づき算出した。
   吸水量(質量%)=(乾燥前質量-乾燥後質量)/乾燥後質量×100
-Evaluation of water absorption-
The amount of water absorption was calculated based on the following formula from the change in weight before and after drying, after holding each sample in an atmosphere of 25° C. and 50% humidity for 24 hours or more and vacuum drying at 80° C. for 24 hours.
Water absorption (mass%) = (mass before drying - mass after drying) / mass after drying x 100
(実施例1)
-セルロース繊維マスターバッチの作製-
 ポリプロピレン樹脂とセルロース繊維-1を充分乾燥した後、スクリュー径15mm、L/D=45の同方向二軸スクリュー押出機(商品名:KZW15TW-45MG-NH、株式会社テクノベル製)に2つのホッパーからそれぞれ投入し、ダイ190℃の設定にてストランド状に押出した。上記混合は、ポリプロピレン樹脂とセルロース繊維-1の合計100質量部に対して25質量部のセルロース繊維-1が混合されるように調整して行った。冷却およびカッティングを経て、ペレット状のセルロース繊維マスターバッチを得た。
(Example 1)
-Preparation of cellulose fiber masterbatch-
After sufficiently drying the polypropylene resin and the cellulose fiber-1, from two hoppers to a co-directional twin-screw extruder (trade name: KZW15TW-45MG-NH, manufactured by Technobell Co., Ltd.) with a screw diameter of 15 mm and L/D = 45. Each was charged and extruded into a strand with the die set at 190°C. The mixing was adjusted so that 25 parts by mass of cellulose fiber-1 was mixed with a total of 100 parts by mass of polypropylene resin and cellulose fiber-1. After cooling and cutting, a pellet-like cellulose fiber masterbatch was obtained.
-セルロース繊維マスターバッチへの銅粉の添加-
 セルロース繊維マスターバッチを充分乾燥した後、同二軸スクリュー押出機に2つのホッパーからセルロース繊維マスターバッチと銅粉-1とをそれぞれ投入し、ダイ190℃の設定にてストランド状に押出した。上記混合は、セルロース繊維マスターバッチと銅粉の合計100質量部に対して5質量部の銅粉-1が混合されるように調整して行った。冷却およびカッティングを経て、直径約2mm×高さ約3mmの樹脂ペレットを得た。なお、樹脂ペレット100質量部におけるポリプロピレン樹脂:セルロース繊維-1:銅粉-1の質量比は、71.25:23.75:5.00である。
- Addition of copper powder to cellulose fiber masterbatch -
After sufficiently drying the cellulose fiber masterbatch, the cellulose fiber masterbatch and the copper powder-1 were charged from two hoppers into the same twin-screw extruder, and extruded into strands with a die set at 190°C. The above mixing was adjusted so that 5 parts by mass of the copper powder-1 was mixed with a total of 100 parts by mass of the cellulose fiber masterbatch and the copper powder. After cooling and cutting, resin pellets with a diameter of about 2 mm and a height of about 3 mm were obtained. The mass ratio of polypropylene resin:cellulose fiber-1:copper powder-1 in 100 parts by mass of resin pellets was 71.25:23.75:5.00.
-抗菌/抗ウイルス試験片の作製-
 作製した樹脂ペレットをモールド内に投入し、小型熱プレス成形機(商品名:MP-WCH 株式会社東洋精機製作所製)を用いて、190℃、20MPaにて寸法約100mm×100mm×1mmのプレスシートを作製した。これを50mm×50mmに打ち抜き、抗菌/抗ウイルス試験片を得た。この試験片の断面を走査型電子顕微鏡(SEM 装置名:JSM-6390LV、日本電子株式会社製)の組成像で観察したところ、図2に示すように表面に金属系分散粒子が露出している状態であった。得られた試験片について上記のような抗菌/抗ウイルス試験を行った結果を、試験片の組成と共に、表1に示す。
-Preparation of antibacterial/antiviral test piece-
The prepared resin pellets are put into the mold, and a small hot press molding machine (trade name: MP-WCH manufactured by Toyo Seiki Seisakusho Co., Ltd.) is used to form a press sheet with dimensions of about 100 mm x 100 mm x 1 mm at 190 ° C. and 20 MPa. was made. This was punched into a size of 50 mm×50 mm to obtain an antibacterial/antiviral test piece. When the cross section of this test piece was observed as a composition image with a scanning electron microscope (SEM device name: JSM-6390LV, manufactured by JEOL Ltd.), the metal-based dispersed particles were exposed on the surface as shown in FIG. was in a state. The obtained test pieces were subjected to the antibacterial/antiviral test as described above, and the results are shown in Table 1 together with the composition of the test pieces.
(実施例2)
 セルロース繊維マスターバッチと銅粉の混合割合を、セルロース繊維マスターバッチと銅粉の合計100質量部に対して銅粉10質量部とした以外は、実施例1と同様の方法により抗菌/抗ウイルス試験片を得た。なお、試験片100質量部におけるポリプロピレン樹脂:セルロース繊維-1:銅粉-1の質量比は、67.50:22.50:10.00である。この試験片の表面及び断面の電子顕微鏡(SEM)写真図を、図3及び4に示す。実施例2の試験片においては、図2に模式的に示した分散状態が発現し、セルロース繊維(分散繊維13)及び銅粉(分散粒子14)はベース材で完全には覆われておらず、それらの一部が試験片表面に露出した状態で存在していることが明らかとなった。
(Example 2)
An antibacterial/antiviral test was performed in the same manner as in Example 1, except that the mixing ratio of the cellulose fiber masterbatch and copper powder was set to 10 parts by mass of copper powder with respect to the total of 100 parts by mass of the cellulose fiber masterbatch and copper powder. got a piece The mass ratio of polypropylene resin:cellulose fiber-1:copper powder-1 in 100 parts by mass of the test piece was 67.50:22.50:10.00. Electron microscope (SEM) photographs of the surface and cross section of this test piece are shown in FIGS. In the test piece of Example 2, the dispersed state schematically shown in FIG. 2 was developed, and the cellulose fibers (dispersed fibers 13) and copper powder (dispersed particles 14) were not completely covered with the base material. , some of which were exposed on the surface of the test piece.
(実施例3)
 実施例2で用いた銅粉(銅粉-1、平均粒子径30μm)を平均粒子径1.5μmのもの(銅粉-2)に代えた以外は、実施例2と同様の方法により抗菌/抗ウイルス試験片を得た。試験片100質量部におけるポリプロピレン樹脂:セルロース繊維-1:銅粉-2の質量比は、67.50:22.50:10.00である。
(Example 3)
Antibacterial / antibacterial / An antiviral test strip was obtained. The mass ratio of polypropylene resin:cellulose fiber-1:copper powder-2 in 100 parts by mass of the test piece was 67.50:22.50:10.00.
(実施例4)
 銅粉の混合割合を、セルロース繊維マスターバッチと銅粉の合計100質量部に対して銅粉1質量部に代えた以外は、実施例3と同様の方法により抗菌/抗ウイルス試験片を得た。試験片100質量部におけるポリプロピレン樹脂:セルロース繊維-1:銅粉-2の質量比は、74.25:24.75:1.00である。
(Example 4)
An antibacterial/antiviral test piece was obtained in the same manner as in Example 3, except that the mixing ratio of copper powder was changed to 1 part by mass of copper powder for a total of 100 parts by mass of cellulose fiber masterbatch and copper powder. . The mass ratio of polypropylene resin:cellulose fiber-1:copper powder-2 in 100 parts by mass of the test piece was 74.25:24.75:1.00.
(実施例5)
 セルロース繊維の混合割合を、セルロース繊維マスターバッチと銅粉の合計100質量部に対してセルロース繊維50.5質量部(ポリプロピレン樹脂とセルロース繊維の合計100質量部に対して51質量部)に代えた以外は、実施例4と同様の方法により抗菌/抗ウイルス試験片を得た。試験片100質量部におけるポリプロピレン樹脂:セルロース繊維-1:銅粉-2の質量比は、48.50:50.50:1.00である。
(Example 5)
The mixing ratio of cellulose fibers was changed to 50.5 parts by mass of cellulose fibers per 100 parts by mass of cellulose fiber masterbatch and copper powder (51 parts by mass per 100 parts by mass of polypropylene resin and cellulose fibers). An antibacterial/antiviral test piece was obtained in the same manner as in Example 4, except for the above. The mass ratio of polypropylene resin:cellulose fiber-1:copper powder-2 in 100 parts by mass of the test piece was 48.50:50.50:1.00.
(実施例6)
 実施例2で用いたセルロース繊維(セルロース繊維-1、平均繊維径15μm、平均繊維長450μm)を平均繊維径25μm、平均繊維長900μmのもの(セルロース繊維-2)に代えた以外は、実施例2と同様の方法により抗菌/抗ウイルス試験片を得た。試験片100質量部におけるポリプロピレン樹脂:セルロース繊維-2:銅粉-1の質量比は、67.50:22.50:10.00である。
(Example 6)
Example except that the cellulose fiber (cellulose fiber-1, average fiber diameter 15 μm, average fiber length 450 μm) used in Example 2 was replaced with one having an average fiber diameter 25 μm and an average fiber length 900 μm (cellulose fiber-2). An antibacterial/antiviral test strip was obtained in the same manner as in 2. The mass ratio of polypropylene resin:cellulose fiber-2:copper powder-1 in 100 parts by mass of the test piece was 67.50:22.50:10.00.
(比較例1)
 セルロース繊維マスターバッチの代わりにポリプロピレン樹脂を用い、ポリプロピレン樹脂と銅粉の合計100質量部に対して銅粉-1の量を5質量部とした以外は、実施例1と同様の方法により抗菌/抗ウイルス試験片を得た。試験片100質量部におけるポリプロピレン樹脂:銅粉-1の質量比は、95.00:5.00である。
(Comparative example 1)
Antibacterial / antibacterial / antibacterial / antibacterial / An antiviral test strip was obtained. The mass ratio of polypropylene resin to copper powder-1 in 100 parts by mass of the test piece was 95.00:5.00.
(比較例2)
 セルロース繊維マスターバッチの代わりにポリプロピレン樹脂を用い、ポリプロピレン樹脂と銅粉の合計100質量部に対して銅粉-1の量を10質量部とした以外は、実施例1と同様の方法により抗菌/抗ウイルス試験片を得た。試験片100質量部におけるポリプロピレン樹脂:銅粉-1の質量比は、90.00:10.00である。また、この試験片表面の電子顕微鏡写真図を、図5に示す。
(Comparative example 2)
Antibacterial / antibacterial / antibacterial / An antiviral test strip was obtained. The mass ratio of polypropylene resin to copper powder-1 in 100 parts by mass of the test piece was 90.00:10.00. An electron micrograph of the surface of this test piece is shown in FIG.
(比較例3)
 セルロース繊維マスターバッチに銅粉を添加しなかった以外は実施例1と同様の方法により、抗菌/抗ウイルス試験片を得た。試験片100質量部におけるポリプロピレン樹脂:セルロース繊維-1の質量比は、75.00:25.00である。また、この試験片表面の電子顕微鏡写真図を、図6に示す。
(Comparative Example 3)
An antibacterial/antiviral test piece was obtained in the same manner as in Example 1, except that copper powder was not added to the cellulose fiber masterbatch. The mass ratio of polypropylene resin to cellulose fiber-1 in 100 parts by mass of the test piece was 75.00:25.00. An electron micrograph of the surface of this test piece is shown in FIG.
 各実施例及び比較例で得られた抗菌/抗ウイルス試験片についての、組成及び抗菌/抗ウイルス試験の評価結果を、表1に示す。 Table 1 shows the composition and the evaluation results of the antibacterial/antiviral test for the antibacterial/antiviral test pieces obtained in each example and comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、以下のことが示された。
・比較例1,2はポリプロピレン樹脂に銅粉のみを添加した組成、比較例3はポリプロピレン樹脂にセルロース繊維のみを添加した組成である。比較例1,2の組成物は黄色ブドウ球菌に対して抗菌性を示したものの、抗ウイルス活性値は比較例1~3のいずれにおいても低い結果であり、銅単独、セルロース繊維単独では、オレフィン系樹脂に抗ウイルス性を付与できないことが明らかとなった。
・これに対して、ポリプロピレン樹脂からなるベース材と、分散繊維(セルロース繊維)と、分散粒子(銅粉)を含む抗ウイルス性組成物は、抗菌性と共に抗ウイルス性も併せて有することが示された。中でも、実施例3~5の粒子径の小さい銅粉を用いた組成物や、実施例6のセルロース長繊維を用いた組成物においては、いずれの菌種、ファージ種に対しても高い抗菌及び抗ウイルス活性値が達成された。
・セルロース繊維を含有する、実施例1~6並びに比較例3の試験片は、いずれも吸水性を有していた。一方で、比較例1及び2の試験片では、吸水量は0であった。
 この結果は、セルロース繊維の少なくとも一部が表面に露出した状態で存在していたことを裏付け、図3~6の顕微鏡写真とも合致する。抗ウイルス性は、比較例2の試料のように一部の金属系分散粒子が表面に露出しているだけでは発現せず、分散繊維が(又は分散繊維とベース材との界面を通じて)外部から水分を取り込んで組成物や成形体内部の金属系分散粒子を水分と接触させることによって、発現することが示唆される。
The results in Table 1 showed the following.
- Comparative Examples 1 and 2 are compositions in which only copper powder is added to polypropylene resin, and Comparative Example 3 is a composition in which only cellulose fibers are added to polypropylene resin. Although the compositions of Comparative Examples 1 and 2 exhibited antibacterial properties against Staphylococcus aureus, the antiviral activity values were low in all of Comparative Examples 1 to 3. It became clear that antiviral properties could not be imparted to the system resin.
・On the other hand, it has been shown that an antiviral composition containing a base material made of polypropylene resin, dispersed fibers (cellulose fibers), and dispersed particles (copper powder) has both antibacterial and antiviral properties. was done. Among them, in the compositions using copper powder with a small particle size in Examples 3 to 5 and the composition using cellulose long fibers in Example 6, high antibacterial and Antiviral activity values were achieved.
- All of the test pieces of Examples 1 to 6 and Comparative Example 3, which contained cellulose fibers, had water absorbency. On the other hand, the test pieces of Comparative Examples 1 and 2 had zero water absorption.
This result confirms that at least some of the cellulose fibers were exposed on the surface, and is consistent with the micrographs of FIGS. 3-6. The antiviral properties are not exhibited when some of the metal-based dispersed particles are exposed to the surface only as in the sample of Comparative Example 2, and the dispersed fibers (or through the interface between the dispersed fibers and the base material) are exposed from the outside. It is suggested that it is expressed by taking in moisture and bringing the metal-based dispersed particles inside the composition or molded article into contact with moisture.
 1 抗ウイルス性組成物
 2 ベース材
 3 分散繊維
 4 分散粒子
 11 成形体
 12 ベース材
 13 分散繊維
 14 分散粒子
REFERENCE SIGNS LIST 1 antiviral composition 2 base material 3 dispersed fibers 4 dispersed particles 11 compact 12 base material 13 dispersed fibers 14 dispersed particles

Claims (9)

  1.  ポリオレフィン系樹脂を含むベース材と、
     有機材料からなる分散繊維と、
     金属材料及び/又はその不溶性化合物からなる分散粒子と
    を含む、抗ウイルス性組成物。
    a base material containing a polyolefin resin;
    Dispersed fibers made of an organic material;
    and dispersed particles comprising a metallic material and/or an insoluble compound thereof.
  2.  前記有機材料が吸水性を有するものであり、前記金属材料が水の存在下で抗ウイルス機能を発揮するものであることを特徴とする、請求項1に記載の抗ウイルス性組成物。 The antiviral composition according to claim 1, wherein the organic material has water absorption properties, and the metallic material exhibits an antiviral function in the presence of water.
  3.  前記ベース材と前記分散繊維と前記分散粒子の存在割合が、質量百分率で、40~80%:5~55%:1~25%の範囲である、請求項1又は2に記載の抗ウイルス性組成物。 The antiviral property according to claim 1 or 2, wherein the proportion of the base material, the dispersed fibers and the dispersed particles is in the range of 40 to 80%:5 to 55%:1 to 25% by mass. Composition.
  4.  前記ポリオレフィン系樹脂が、ポリプロピレン系樹脂、ポリエチレン系樹脂、及びエチレン酢酸ビニル共重合体からなる群より選択される1種以上の樹脂である、請求項1、2、又は3に記載の抗ウイルス性組成物。 The antiviral property according to claim 1, 2, or 3, wherein the polyolefin-based resin is one or more resins selected from the group consisting of polypropylene-based resins, polyethylene-based resins, and ethylene-vinyl acetate copolymers. Composition.
  5.  前記分散繊維が、セルロース繊維、再生セルロース繊維、及びポリエステル繊維からなる群より選択される1種以上の繊維であることを特徴とする、請求項1~4のいずれか1項に記載の抗ウイルス性組成物。 The antiviral according to any one of claims 1 to 4, wherein the dispersed fibers are one or more fibers selected from the group consisting of cellulose fibers, regenerated cellulose fibers, and polyester fibers. sex composition.
  6.  前記分散繊維が、セルロース繊維であることを特徴とする、請求項5に記載の抗ウイルス性組成物。 The antiviral composition according to claim 5, wherein the dispersed fibers are cellulose fibers.
  7.  前記セルロース繊維は、平均繊維長が10~3000μmの範囲、平均繊維径が1~50μmの範囲であることを特徴とする、請求項6に記載の抗ウイルス性組成物。 The antiviral composition according to claim 6, wherein the cellulose fibers have an average fiber length of 10 to 3000 µm and an average fiber diameter of 1 to 50 µm.
  8.  前記分散粒子が、銅、銀、亜鉛、ニッケル、アルミニウム、パラジウム、スズ及び鉄からなる群より選択される1種以上の金属及び/又はその不溶性化合物を含有する、請求項1~7のいずれか1項に記載の抗ウイルス性組成物。 Any one of claims 1 to 7, wherein the dispersed particles contain one or more metals and/or insoluble compounds thereof selected from the group consisting of copper, silver, zinc, nickel, aluminum, palladium, tin and iron. 2. The antiviral composition according to item 1.
  9.  請求項1~8のいずれか1項記載の抗ウイルス性組成物からなる成形体。 A molded article made of the antiviral composition according to any one of claims 1 to 8.
PCT/JP2022/044328 2021-12-03 2022-12-01 Antiviral composition and molded product thereof WO2023100967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023530815A JP7394266B2 (en) 2021-12-03 2022-12-01 Antiviral composition and molded product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021197064 2021-12-03
JP2021-197064 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023100967A1 true WO2023100967A1 (en) 2023-06-08

Family

ID=86612311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044328 WO2023100967A1 (en) 2021-12-03 2022-12-01 Antiviral composition and molded product thereof

Country Status (2)

Country Link
JP (1) JP7394266B2 (en)
WO (1) WO2023100967A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063913A (en) * 2001-08-28 2003-03-05 Nippon Sanmou Senshoku Kk Resin composition having antibacaterial and deodorant property
WO2008029387A1 (en) * 2006-09-10 2008-03-13 The Cupron Corporation Multi-layered material
JP2010030984A (en) * 2008-02-20 2010-02-12 Daiwabo Holdings Co Ltd Antiviral substance, antiviral fiber and antiviral fiber structure
EP2682421A1 (en) * 2012-07-06 2014-01-08 UrbanPlast, SIA Method for producing reinforced hybrid composite polyethylene plastics
CN104262750A (en) * 2014-09-18 2015-01-07 苏州经贸职业技术学院 Anti-bacterial polymer material and preparation method thereof
CN104264273A (en) * 2014-08-31 2015-01-07 青岛锦绣水源商贸有限公司 Water soluble fiber with high mechanical strength for embroidery
WO2016194284A1 (en) * 2015-05-29 2016-12-08 王子ホールディングス株式会社 Sheet containing metal oxide and/or metal hydroxide
CN107857902A (en) * 2017-10-10 2018-03-30 中南林业科技大学 A kind of cellulose nano-fibrous plate and preparation method thereof
CN109467813A (en) * 2018-12-07 2019-03-15 谢海常 A kind of thermally conductive polypropylene material and preparation method thereof
WO2020116517A1 (en) * 2018-12-05 2020-06-11 古河電気工業株式会社 Cellulose fiber-dispersed resin composite material, molding, and composite member
WO2020116518A1 (en) * 2018-12-05 2020-06-11 古河電気工業株式会社 Cellulose fiber-dispersed resin composite material, molded body, and composite member

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063913A (en) * 2001-08-28 2003-03-05 Nippon Sanmou Senshoku Kk Resin composition having antibacaterial and deodorant property
WO2008029387A1 (en) * 2006-09-10 2008-03-13 The Cupron Corporation Multi-layered material
JP2010030984A (en) * 2008-02-20 2010-02-12 Daiwabo Holdings Co Ltd Antiviral substance, antiviral fiber and antiviral fiber structure
EP2682421A1 (en) * 2012-07-06 2014-01-08 UrbanPlast, SIA Method for producing reinforced hybrid composite polyethylene plastics
CN104264273A (en) * 2014-08-31 2015-01-07 青岛锦绣水源商贸有限公司 Water soluble fiber with high mechanical strength for embroidery
CN104262750A (en) * 2014-09-18 2015-01-07 苏州经贸职业技术学院 Anti-bacterial polymer material and preparation method thereof
WO2016194284A1 (en) * 2015-05-29 2016-12-08 王子ホールディングス株式会社 Sheet containing metal oxide and/or metal hydroxide
CN107857902A (en) * 2017-10-10 2018-03-30 中南林业科技大学 A kind of cellulose nano-fibrous plate and preparation method thereof
WO2020116517A1 (en) * 2018-12-05 2020-06-11 古河電気工業株式会社 Cellulose fiber-dispersed resin composite material, molding, and composite member
WO2020116518A1 (en) * 2018-12-05 2020-06-11 古河電気工業株式会社 Cellulose fiber-dispersed resin composite material, molded body, and composite member
CN109467813A (en) * 2018-12-07 2019-03-15 谢海常 A kind of thermally conductive polypropylene material and preparation method thereof

Also Published As

Publication number Publication date
JPWO2023100967A1 (en) 2023-06-08
JP7394266B2 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
Ichazo et al. Polypropylene/wood flour composites: treatments and properties
CN104066783B (en) Fiber reinforced polypropylene resin composition, moulding material and prepreg
TWI302918B (en) Novel resin modifier, polar group-containing polymer composition containing it and production method thereof
JP2012236906A (en) Resin composition
La Mantia et al. Mechanical properties of recycled polyethylene ecocomposites filled with natural organic fillers
CN105820438A (en) Thermoplastic vulcanized rubber material for automobile steering dedusting cover and preparation method of thermoplastic vulcanized rubber material
JP2001316534A (en) Long-fiber reinforced polypropylene resin composition and molded product
CN109897285B (en) Polypropylene composite resin composition containing silylated microfibrillated cellulose and vehicle pillar trim using the same
WO2023100967A1 (en) Antiviral composition and molded product thereof
JP6142539B2 (en) Molding material
WO2022014539A1 (en) Cellulose-fiber-reinforced molded resin object and production method therefor
Li Properties of agave fiber reinforced thermoplastic composites
US20220025133A1 (en) Organic fiber-reinforced resin formed body and method for producing the same
US20060241221A1 (en) Polyolefin resin composition and processes for the production thereof
JP7371302B1 (en) Cellulose fiber reinforced resin composite, method for producing cellulose fiber reinforced resin composite, and cellulose fiber reinforced resin molded article
JP7269259B2 (en) Resin molding and resin composition
WO2022149508A1 (en) Cellulose fiber-reinforced thermoplastic resin molded body and method for producing same
JP6715686B2 (en) Fiber-reinforced resin composition and injection foam molding method
US20230312883A1 (en) Cellulose fiber reinforced thermoplastic resin formed body and method of producing the same
WO2023176452A1 (en) Masterbatch
WO2023120464A1 (en) Glass fiber-reinforced propylene-based resin composition
WO2022181010A1 (en) Glass fiber-reinforced propylene-based resin composition
JPH11302464A (en) Polyamide fiber-reinforced polyolefin resin composition and its preparation
KR100961263B1 (en) Dust proof film
JP3849150B2 (en) Electron beam modified ethylene / α-olefin copolymer elastomer and polypropylene resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023530815

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901398

Country of ref document: EP

Kind code of ref document: A1