WO2023100885A1 - Silver-containing oxide and method for producing same - Google Patents

Silver-containing oxide and method for producing same Download PDF

Info

Publication number
WO2023100885A1
WO2023100885A1 PCT/JP2022/044001 JP2022044001W WO2023100885A1 WO 2023100885 A1 WO2023100885 A1 WO 2023100885A1 JP 2022044001 W JP2022044001 W JP 2022044001W WO 2023100885 A1 WO2023100885 A1 WO 2023100885A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
containing oxide
occupied
yteo6
layers
Prior art date
Application number
PCT/JP2022/044001
Other languages
French (fr)
Japanese (ja)
Inventor
タイタス マセセ
昇 田口
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2023565017A priority Critical patent/JPWO2023100885A1/ja
Publication of WO2023100885A1 publication Critical patent/WO2023100885A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Conductive Materials (AREA)

Abstract

Provided is a silver-containing oxide represented by general formula (1): Ag2+xM1 2+yTeO6+z [wherein M1 represents at least one component selected from the group consisting of an alkaline earth metal element and a 3d transition metal element; x represents -0.50 to 4.0; y represents -0.30 to 0.30; and z represents -0.50 to 0.50] and having such a crystal structure that two layers each occupied by Ag are present between a layer occupied by the M1 and a layer occupied by Te. The silver-containing oxide has a high ion conductivity and is a single-phase silver-containing solid electrolyte.

Description

銀含有酸化物及びその製造方法Silver-containing oxide and method for producing the same
 本発明は、銀含有酸化物及びその製造方法に関する。 The present invention relates to a silver-containing oxide and a method for producing the same.
 銀イオンを電荷担体として有する銀イオン二次電池(特に、全固体銀イオン二次電池)は、リチウムイオン等のアルカリイオンを電荷担体として有する二次電池と比較して、高速の拡散が可能であることから、新規高出力電池として魅力的である。 Silver-ion secondary batteries (particularly all-solid-state silver-ion secondary batteries) having silver ions as charge carriers are capable of high-speed diffusion compared to secondary batteries having alkali ions such as lithium ions as charge carriers. Therefore, it is attractive as a new high-power battery.
 しかしながら、作動電圧が低く、従来の銀含有電解質の熱力学的安定性が低く、利用用途が極めて限定されている。従来から知られている、ハロゲン化物系の銀イオン伝導体は、いずれも熱安定性が低いためである。 However, the operating voltage is low and the thermodynamic stability of conventional silver-containing electrolytes is low, which limits the applications. This is because all of the conventionally known halide-based silver ion conductors have low thermal stability.
 一方、銀含有酸化物としては、Ni及びTeが占有する層間に、Agが占有する層が1層だけ挿入されたAgNiTeOも知られている(例えば、非特許文献1参照)。 On the other hand, as a silver-containing oxide, Ag 2 Ni 2 TeO 6 in which only one layer occupied by Ag is inserted between layers occupied by Ni and Te is also known (see, for example, Non-Patent Document 1). .
 しかしながら、非特許文献1では、AgNiTeOは、不純物相を相当程度含む固体電解質しか製造できなかったことが記載されており、単一相の銀含有酸化物からなる固体電解質を製造することはできておらず、また、イオン伝導度も十分とは言えない。 However, Non-Patent Document 1 describes that Ag 2 Ni 2 TeO 6 could only produce a solid electrolyte containing a considerable amount of impurity phases, and a solid electrolyte made of a single-phase silver-containing oxide was produced. However, it cannot be said that the ionic conductivity is sufficient.
 本発明は、上記した従来技術の現状に鑑みてなされたものであり、イオン伝導度が高く、単一相の銀含有固体電解質を提供することを主な目的とする。 The present invention has been made in view of the current state of the prior art described above, and the main object thereof is to provide a single-phase silver-containing solid electrolyte with high ionic conductivity.
 本発明者らは、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、
Ag2+x 2+yTeO6+z   (1)
[式中、Mはアルカリ土類金属元素及び3d遷移金属元素よりなる群から選ばれる少なくとも1種を示す。xは-0.50~4.0を示す。yは-0.30~0.30を示す。zは-0.50~0.50を示す。]
で表される組成を有し、M及びTeが占有する層の間に、Agが占有する層を2層有するか、
Ag2+x1a 2+yTeO6+z   (1A)
[式中、M1aはアルカリ土類金属元素、Co、Cu及びZnよりなる群から選ばれる少なくとも1種を示す。xは-0.50~4.0を示す。yは-0.30~0.30を示す。zは-0.50~0.50を示す。]
組成を有することで、上記の課題を解決し、イオン伝導度の高い銀含有固体電解質を提供できることを見いだした。本発明者らは、このような知見に基づき、さらに研究を重ね、本発明を完成した。即ち、本発明は、以下の構成を包含する。
The present inventors have made intensive studies to achieve the above-described object. resulting in,
Ag2 +xM12 + yTeO6 +z (1)
[In the formula, M1 represents at least one selected from the group consisting of alkaline earth metal elements and 3d transition metal elements. x indicates -0.50 to 4.0. y represents -0.30 to 0.30. z is -0.50 to 0.50. ]
and having two layers occupied by Ag between the layers occupied by M 1 and Te,
Ag2 +xM1a2 + yTeO6 +z (1A)
[In the formula, M 1a represents at least one selected from the group consisting of alkaline earth metal elements, Co, Cu and Zn. x indicates -0.50 to 4.0. y represents -0.30 to 0.30. z is -0.50 to 0.50. ]
It has been found that by having the composition, it is possible to solve the above problems and provide a silver-containing solid electrolyte with high ionic conductivity. Based on such knowledge, the present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations.
 項1.一般式(1):
Ag2+x 2+yTeO6+z   (1)
[式中、Mはアルカリ土類金属元素及び3d遷移金属元素よりなる群から選ばれる少なくとも1種を示す。xは-0.50~4.0を示す。yは-0.30~0.30を示す。zは-0.50~0.50を示す。]
で表され、
前記M及びTeが占有する層の間に、Agが占有する層を2層有する結晶構造を有する、銀含有酸化物。
Section 1. General formula (1):
Ag2 +xM12 + yTeO6 +z (1)
[In the formula, M1 represents at least one selected from the group consisting of alkaline earth metal elements and 3d transition metal elements. x indicates -0.50 to 4.0. y represents -0.30 to 0.30. z is -0.50 to 0.50. ]
is represented by
A silver-containing oxide having a crystal structure having two Ag-occupied layers between the M1 and Te-occupied layers.
 項2.前記Mが、Mg、Co、Ni、Cu、Zn、Cr、Mn及びFeよりなる群から選ばれる少なくとも1種である、項1に記載の銀含有酸化物。 Section 2. Item 2. The silver-containing oxide according to item 1, wherein said M1 is at least one selected from the group consisting of Mg, Co, Ni, Cu, Zn, Cr, Mn and Fe.
 項3.一般式(1A):
Ag2+x1a 2+yTeO6+z   (1A)
[式中、M1aはアルカリ土類金属元素、Co、Cu、Zn、Cr、Mn及びFeよりなる群から選ばれる少なくとも1種を示す。xは-0.50~4.0を示す。yは-0.30~0.30を示す。zは-0.50~0.50を示す。]
で表される、銀含有酸化物。
Item 3. General formula (1A):
Ag2 +xM1a2 + yTeO6 +z (1A)
[In the formula, M 1a represents at least one selected from the group consisting of alkaline earth metal elements, Co, Cu, Zn, Cr, Mn and Fe. x indicates -0.50 to 4.0. y represents -0.30 to 0.30. z is -0.50 to 0.50. ]
A silver-containing oxide represented by
 項4.前記M1aが、Mg、Co及びZnよりなる群から選ばれる少なくとも1種である、項3に記載の銀含有酸化物。 Section 4. Item 4. The silver-containing oxide according to Item 3, wherein said M1a is at least one selected from the group consisting of Mg, Co and Zn.
 項5.前記M1a及びTeが占有する層の間に、Agが占有する層を2層有する結晶構造を有する、項3又は4に記載の銀含有酸化物。 Item 5. Item 5. The silver-containing oxide according to item 3 or 4, which has a crystal structure having two layers occupied by Ag between the layers occupied by M1a and Te.
 項6.前記M及びTeが占有する層、又は前記M1a及びTeが占有する層の層間距離が0.70nm以上である、項1、2又は5に記載の銀含有酸化物。 Item 6. Item 6. The silver-containing oxide according to Item 1 , 2, or 5, wherein the layer occupied by M1 and Te or the layer occupied by M1a and Te has an interlayer distance of 0.70 nm or more.
 項7.前記Agが占有する層を2層有する結晶構造からなる単一相である、項1、2、5又は6に記載の銀含有酸化物。 Item 7. 7. The silver-containing oxide according to Item 1, 2, 5, or 6, which is a single-phase crystal structure having two layers occupied by Ag.
 項8.銀含有ハニカム層状型酸化物である、項1~7のいずれか1項に記載の銀含有酸化物。 Item 8. Item 8. The silver-containing oxide according to any one of Items 1 to 7, which is a silver-containing honeycomb layered oxide.
 項9.[110]面において、スラブの配列がジグザグである非周期結晶構造を有する、項1~8のいずれか1項に記載の銀含有酸化物。 Item 9. 9. The silver-containing oxide according to any one of Items 1 to 8, which has an aperiodic crystal structure in which the slabs are arranged zigzag in the [110] plane.
 項10.項1~9のいずれか1項に記載の銀含有酸化物の製造方法であって、
一般式(2)又は(2A):
2+yTeO6+z   (2)
1a 2+yTeO6+z   (2A)
[式中、M、M1a、y及びzは前記に同じである。Mはアルカリ金属元素を示す。]
で表される酸化物と、銀化合物とを反応させる工程
を備える、製造方法。
Item 10. A method for producing a silver-containing oxide according to any one of Items 1 to 9,
General formula (2) or (2A):
M22M12 +yTeO6 + z ( 2)
M22M1a2 + yTeO6 +z ( 2A)
[In the formula, M 1 , M 1a , y and z are the same as above. M2 indicates an alkali metal element. ]
A manufacturing method comprising a step of reacting an oxide represented by with a silver compound.
 項11.前記酸化物と硝酸銀とを反応させる工程における反応温度が210~439℃である、項10に記載の製造方法。 Item 11. Item 11. The production method according to Item 10, wherein the reaction temperature in the step of reacting the oxide with silver nitrate is 210 to 439°C.
 項12.項1~9のいずれか1項に記載の銀含有酸化物からなる、固体電解質。 Item 12. A solid electrolyte comprising the silver-containing oxide according to any one of Items 1 to 9.
 項13.銀イオン二次電池用固体電解質である、項12に記載の固体電解質。 Item 13. Item 13. The solid electrolyte according to Item 12, which is a solid electrolyte for a silver ion secondary battery.
 項14.全固体銀イオン二次電池用固体電解質である、項12又は13に記載の固体電解質。 Item 14. Item 14. The solid electrolyte according to item 12 or 13, which is a solid electrolyte for an all-solid silver ion secondary battery.
 項15.項1~9のいずれか1項に記載の銀含有酸化物からなる、正極活物質。 Item 15. A positive electrode active material comprising the silver-containing oxide according to any one of Items 1 to 9.
 項16.銀イオン二次電池用正極活物質である、項15に記載の正極活物質。 Item 16. Item 16. The positive electrode active material according to Item 15, which is a positive electrode active material for a silver ion secondary battery.
 項17.全固体銀イオン二次電池用正極活物質である、項15又は16に記載の正極活物質。 Item 17. Item 17. The positive electrode active material according to Item 15 or 16, which is a positive electrode active material for an all-solid silver ion secondary battery.
 項18.項12~14のいずか1項に記載の固体電解質及び/又は項15~17のいずれか1項に記載の正極活物質を含有する、銀イオン二次電池。 Item 18. A silver ion secondary battery containing the solid electrolyte according to any one of Items 12 to 14 and/or the positive electrode active material according to any one of Items 15 to 17.
 項19.全固体銀イオン二次電池である、項18に記載の銀イオン二次電池。 Item 19. Item 19. The silver-ion secondary battery according to Item 18, which is an all-solid-state silver-ion secondary battery.
 項20.項1~9のいずれか1項に記載の銀含有酸化物からなる、磁性材料。 Item 20. A magnetic material comprising the silver-containing oxide according to any one of items 1 to 9.
 本発明によれば、イオン伝導度が高く、単一相の銀含有固体電解質を提供することができる。 According to the present invention, it is possible to provide a single-phase silver-containing solid electrolyte with high ionic conductivity.
実施例1、2-1、3-1及び4~6で得られた試料のX線回折パターンを示す。The X-ray diffraction patterns of the samples obtained in Examples 1, 2-1, 3-1 and 4-6 are shown. 実施例1で得られた試料の走査型電子顕微鏡(SEM)像(5000倍及び10000倍)を示す。1 shows scanning electron microscope (SEM) images (5000 and 10000 times) of the sample obtained in Example 1. FIG. 実施例2-1で得られた試料の走査型電子顕微鏡(SEM)像(5000倍及び10000倍)を示す。Scanning electron microscope (SEM) images (5000x and 10000x) of the sample obtained in Example 2-1 are shown. 実施例3-1で得られた試料の走査型電子顕微鏡(SEM)像(1000倍及び5000倍)を示す。Scanning electron microscope (SEM) images (1000x and 5000x) of the sample obtained in Example 3-1 are shown. 実施例4で得られた試料の走査型電子顕微鏡(SEM)像(1000倍及び2500倍)を示す。Scanning electron microscope (SEM) images (1000 and 2500 times) of the sample obtained in Example 4 are shown. 実施例5で得られた試料の走査型電子顕微鏡(SEM)像(1000倍及び2500倍)を示す。1 shows scanning electron microscope (SEM) images (1000x and 2500x) of a sample obtained in Example 5. FIG. 実施例6で得られた試料の走査型電子顕微鏡(SEM)像(1000倍及び2500倍)を示す。1 shows scanning electron microscope (SEM) images (1000x and 2500x) of a sample obtained in Example 6. FIG. 実施例1で得られた試料の[100]面及び[110]面の高角散乱環状暗視野走査透過顕微鏡(HAADF-STEM)及び環状明視野走査透過顕微鏡(ABF-STEM)像を示す。2 shows high-angle scattering annular dark-field scanning transmission microscopy (HAADF-STEM) and annular bright-field scanning transmission microscopy (ABF-STEM) images of the [100] plane and [110] plane of the sample obtained in Example 1. FIG. 実施例2-1で得られた試料の[110]面の高角散乱環状暗視野走査透過顕微鏡(HAADF-STEM)及び環状明視野走査透過顕微鏡(ABF-STEM)像を示す。2 shows high-angle scattering annular dark-field scanning transmission microscopy (HAADF-STEM) and annular bright-field scanning transmission microscopy (ABF-STEM) images of the [110] plane of the sample obtained in Example 2-1. 実施例3-1で得られた試料の[100]面及び[110]面の高角散乱環状暗視野走査透過顕微鏡(HAADF-STEM)及び環状明視野走査透過顕微鏡(ABF-STEM)像を示す。2 shows high-angle scattering annular dark-field scanning transmission microscopy (HAADF-STEM) and annular bright-field scanning transmission microscopy (ABF-STEM) images of the [100] plane and [110] plane of the sample obtained in Example 3-1. 実施例4で得られた試料の[100]面及び[110]面の高角散乱環状暗視野走査透過顕微鏡(HAADF-STEM)及び環状明視野走査透過顕微鏡(ABF-STEM)像を示す。2 shows high-angle scattering annular dark-field scanning transmission microscopy (HAADF-STEM) and annular bright-field scanning transmission transmission microscopy (ABF-STEM) images of the [100] plane and [110] plane of the sample obtained in Example 4. FIG. 実施例5で得られた試料の[100]面及び[110]面の高角散乱環状暗視野走査透過顕微鏡(HAADF-STEM)及び環状明視野走査透過顕微鏡(ABF-STEM)像を示す。3 shows high-angle scattering annular dark-field scanning transmission microscopy (HAADF-STEM) and annular bright-field scanning transmission microscopy (ABF-STEM) images of the [100] plane and [110] plane of the sample obtained in Example 5. FIG. 実施例1で得られた試料の交流インピーダンス測定の結果を示す。2 shows the result of AC impedance measurement of the sample obtained in Example 1. FIG. 実施例1、2-1及び3-1で得られた試料の熱重量・示差熱同時測定(TG-DTA)による熱的安定性の結果を示す。1 shows the results of thermal stability of the samples obtained in Examples 1, 2-1 and 3-1 by simultaneous thermogravimetry and differential thermometry (TG-DTA).
 本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。 As used herein, "contain" is a concept that includes all of "comprise," "consist essentially of," and "consist of." Further, in this specification, when a numerical range is indicated by "A to B", it means from A to B.
 1.銀含有酸化物(第1の態様)
 本発明の第1の態様に係る銀含有酸化物は、一般式(1):
Ag2+x 2+yTeO6+z   (1)
[式中、Mはアルカリ土類金属元素及び3d遷移金属元素よりなる群から選ばれる少なくとも1種を示す。xは-0.50~4.0を示す。yは-0.30~0.30を示す。zは-0.50~0.50を示す。]
で表され、
前記M及びTeが占有する層の間に、Agが占有する層を2層有する結晶構造を有する。
1. Silver-containing oxide (first aspect)
The silver-containing oxide according to the first aspect of the present invention has the general formula (1):
Ag2 +xM12 + yTeO6 +z (1)
[In the formula, M1 represents at least one selected from the group consisting of alkaline earth metal elements and 3d transition metal elements. x indicates -0.50 to 4.0. y represents -0.30 to 0.30. z is -0.50 to 0.50. ]
is represented by
It has a crystal structure having two layers occupied by Ag between the layers occupied by M1 and Te.
 一般式(1)において、Mで示されるアルカリ土類金属としては、例えば、Mg、Ca等が挙げられる。なかでも、銀イオン伝導度、熱的安定性、電池性能、磁性等の観点から、Mgが好ましい。 In the general formula (1), examples of the alkaline earth metal represented by M1 include Mg and Ca. Among them, Mg is preferable from the viewpoint of silver ion conductivity, thermal stability, battery performance, magnetism, and the like.
 一般式(1)において、Mで示される3d遷移金属元素としては、例えば、Co、Ni、Cu、Zn、Cr、Mn、Fe等が挙げられる。なかでも、銀イオン伝導度、熱的安定性、電池性能、磁性等の観点から、Co、Ni、Cu、Zn等が好ましい。 In general formula (1), examples of the 3d transition metal element represented by M1 include Co, Ni, Cu, Zn, Cr, Mn, and Fe. Among them, Co, Ni, Cu, Zn, and the like are preferable from the viewpoint of silver ion conductivity, thermal stability, battery performance, magnetism, and the like.
 一般式(1)において、Mとしては、特に制限されるわけではないが、銀イオン伝導度、熱的安定性、電池性能、磁性等の観点から、Mg、Co、Ni、Cu、Zn等が好ましい。 In general formula (1), M 1 is not particularly limited, but from the viewpoint of silver ion conductivity, thermal stability, battery performance, magnetism, etc., Mg, Co, Ni, Cu, Zn, etc. is preferred.
 一般式(1)において、Mは、単独で用いることもでき、2種以上を組合せて用いることもできる。 In general formula (1), M 1 can be used alone or in combination of two or more.
 一般式(1)において、xは-0.50~4.0、好ましくは-0.40~2.0、より好ましくは-0.30~1.0である。xが-0.50未満では、混合物となりやすく、結晶構造を構成しにくく、銀イオン伝導度、熱的安定性、電池性能及び磁性に劣る。xが4.0をこえる銀含有酸化物は、製造が困難である。 In general formula (1), x is -0.50 to 4.0, preferably -0.40 to 2.0, more preferably -0.30 to 1.0. If x is less than -0.50, it is likely to form a mixture, it is difficult to form a crystal structure, and the silver ion conductivity, thermal stability, battery performance and magnetism are inferior. Silver-containing oxides with x greater than 4.0 are difficult to produce.
 一般式(1)において、yは-0.30~0.30、好ましくは-0.28~0.28、より好ましくは-0.25~0.25である。yが-0.30未満では、混合物となりやすく、結晶構造を構成しにくく、銀イオン伝導度及び熱的安定性に劣る。また、yが0.30をこえる場合も、混合物となりやすく、結晶構造を構成しにくく、銀イオン伝導度、熱的安定性、電池性能及び磁性に劣る。 In general formula (1), y is -0.30 to 0.30, preferably -0.28 to 0.28, more preferably -0.25 to 0.25. If y is less than -0.30, it tends to form a mixture, is difficult to form a crystal structure, and is inferior in silver ion conductivity and thermal stability. Also, when y exceeds 0.30, it tends to form a mixture, is difficult to form a crystal structure, and is inferior in silver ion conductivity, thermal stability, battery performance, and magnetism.
 一般式(1)において、zは-0.50~0.50、好ましくは-0.30~0.30、より好ましくは-0.20~0.20である。zが-0.50未満では、混合物となりやすく、結晶構造を構成しにくく、銀イオン伝導度及び熱的安定性に劣る。また、zが0.50をこえる場合も、混合物となりやすく、結晶構造を構成しにくく、銀イオン伝導度、熱的安定性、電池性能及び磁性に劣る。 In general formula (1), z is -0.50 to 0.50, preferably -0.30 to 0.30, more preferably -0.20 to 0.20. If z is less than -0.50, it tends to form a mixture, is difficult to form a crystal structure, and is inferior in silver ion conductivity and thermal stability. Also, when z exceeds 0.50, it tends to form a mixture, is difficult to form a crystal structure, and is inferior in silver ion conductivity, thermal stability, battery performance, and magnetism.
 以上のような条件を満たす本発明の銀含有酸化物としては、例えば、Ag2+xMg2+yTeO、Ag2+xCo2+yTeO、Ag2+xNi2+yTeO、Ag2+xCu2+yTeO、Ag2+xZn2+yTeO、Ag2+x(Niy1Co1-y12+yTeO等が挙げられる。なお、x及びyは上記のとおりであり、0<y1<1が好ましく、0.1≦y1≦0.9がより好ましく、0.2≦y1≦0.8がさらに好ましい。 Examples of silver-containing oxides of the present invention that satisfy the above conditions include Ag2 +xMg2 + yTeO6 , Ag2 +xCo2 + yTeO6 , Ag2+ xNi2 + yTeO6 , Ag2+ xCu2 + yTeO6 , and Ag2+xZn . 2+y TeO 6 , Ag 2+x (Ni y1 Co 1-y1 ) 2+y TeO 6 and the like. Note that x and y are as described above, preferably 0<y1<1, more preferably 0.1≤y1≤0.9, and still more preferably 0.2≤y1≤0.8.
 本発明の第1の態様に係る銀含有酸化物は、上記のような組成を有するものであるが、M及びTeが占有する層の間に、Agが占有する層を2層有する結晶構造を有する。 The silver-containing oxide according to the first aspect of the present invention has a composition as described above, but has a crystal structure having two layers occupied by Ag between layers occupied by M1 and Te. have
 一般的には、M及びTeが占有する層の間に、Agが占有する層を1層だけ有する結晶構造を有することが多いと思われるところ、本発明では、M及びTeが占有する層の間に、Agが占有する層を2層有するという特異な結晶構造を有している。この結果、M及びTeが占有する層の層間距離が拡大することになり、層間に挿入されるAgの量が増大するので銀イオン伝導度が向上するとともに、磁性材料にも有用である。 Generally, it is thought that there is often a crystal structure having only one layer occupied by Ag between layers occupied by M 1 and Te, but in the present invention, M 1 and Te are occupied It has a unique crystal structure in which there are two layers occupied by Ag between layers. As a result, the interlayer distance of the layers occupied by M1 and Te is increased, and the amount of Ag inserted between the layers is increased, thereby improving silver ion conductivity and being useful for magnetic materials.
 なお、「M及びTeが占有する層」は、主としてM及びTeで構成される層を意味しており、一部Agが混在していてもかまわない。このため、M及びTeが占有する層において、M及びTeが合計で50~100原子%、好ましくは70~100原子%、特に好ましくは80~100原子%含まれることが好ましい。 The "layer occupied by M1 and Te" means a layer mainly composed of M1 and Te, and may be partially mixed with Ag. For this reason, it is preferred that the layer occupied by M 1 and Te contains a total of 50 to 100 atomic %, preferably 70 to 100 atomic %, particularly preferably 80 to 100 atomic % of M 1 and Te.
 また、「Agが占有する層」は、主としてAgで構成される層を意味しており、一部M、Te等が混在していてもかまわない。このため、Agが占有する層において、Agが合計で50~100原子%、好ましくは70~100原子%、特に好ましくは80~100原子%含まれることが好ましい。 In addition, the "layer occupied by Ag" means a layer mainly composed of Ag, and M, Te, etc. may be mixed in part. For this reason, it is preferable that the layer occupied by Ag contains 50 to 100 atomic %, preferably 70 to 100 atomic %, and particularly preferably 80 to 100 atomic % of Ag in total.
 上記のように、本発明では、M及びTeが占有する層の間に、Agが占有する層を2層有することによって、M及びTeが占有する層の層間距離が拡大している。この結果、層間に挿入されるAgの量が増大するので銀イオン伝導度が向上するとともに、磁性材料にも有用である。このため、M及びTeが占有する層の層間距離は、0.70nm以上(7.0Å以上)が好ましく、0.75~1.10nm(7.5~11.0Å)がより好ましく、0.80~1.00nm(8.0~10.0Å)がさらに好ましい。 As described above, in the present invention, the interlayer distance between the layers occupied by M1 and Te is increased by providing two layers occupied by Ag between the layers occupied by M1 and Te. As a result, the amount of Ag inserted between the layers is increased, so that the silver ion conductivity is improved, and it is also useful for magnetic materials. Therefore, the interlayer distance between the layers occupied by M1 and Te is preferably 0.70 nm or more (7.0 Å or more), more preferably 0.75 to 1.10 nm (7.5 to 11.0 Å). 0.80 to 1.00 nm (8.0 to 10.0 Å) is more preferred.
 このような本発明の銀含有酸化物は、熱的安定性、電池性能(特に電圧)、磁性(特異な磁気基底状態)等の観点から、M及びTeが蜂の巣状に配列しているハニカム層状型酸化物であることが好ましい。 From the viewpoint of thermal stability, battery performance (especially voltage), magnetism (unique magnetic ground state), etc., the silver-containing oxide of the present invention is a honeycomb structure in which M1 and Te are arranged in a honeycomb pattern. Layered oxides are preferred.
 このような本発明の銀含有酸化物は、特異な磁気構造を示しやすい観点から、[110]面において、スラブの配列がジグザグである非周期結晶構造を有することが好ましい。 The silver-containing oxide of the present invention preferably has an aperiodic crystal structure in which the slabs are arranged zigzag on the [110] plane from the viewpoint of easily exhibiting a unique magnetic structure.
 本発明の銀含有酸化物は、このような条件を有することにより、イオン伝導度(特に銀イオン伝導度)を高くすることができる。具体的には、本発明の銀含有酸化物のイオン伝導度を、25℃において、1.00×10-5S/cm以上、好ましくは1.50×10-5~1.00×10-4S/cm、より好ましくは2.00×10-5~8.00×10-5S/cmとすることが可能である。イオン伝導度は、得られた粉末を錠剤成形後、交流インピーダンス法により測定する。 By having such conditions, the silver-containing oxide of the present invention can have high ion conductivity (especially silver ion conductivity). Specifically, the ionic conductivity of the silver-containing oxide of the present invention at 25° C. is 1.00×10 −5 S/cm or more, preferably 1.50×10 −5 to 1.00×10 −5 S/cm . 4 S/cm, more preferably 2.00×10 −5 to 8.00×10 −5 S/cm. The ionic conductivity is measured by the AC impedance method after tableting the obtained powder.
 本発明の銀含有酸化物は、上記のM及びTeが占有する層の間に、Agが占有する層を2層有する結晶構造を含んでいればよく、銀イオン伝導度、熱的安定性、電池性能、磁性等に重大な影響を及ぼさない範囲の他の不純物相を含んでいてもよい。このような不純物相としては、後述の製造方法で示す原料等が挙げられる。ただし、本発明においては、M及びTeが占有する層の間に、Agが占有する層を2層有することによって、M及びTeが占有する層の層間距離が拡大している。この結果、層間に挿入されるAgの量が増大するので銀イオン伝導度が向上するとともに、磁性材料にも有用であるため、不純物相の存在割合は低いことが好ましい。このような観点から、本発明の銀含有酸化物が不純物相を有する場合、通常、本発明の銀含有酸化物の総量を100質量%として、不純物相は0.1~10質量%(特に0.2~5質量%)が好ましい。ただし、本発明によれば、単一相の銀含有酸化物を製造することが可能であり、この結果、イオン伝導度等の各種物性を特に向上させることが可能であることから、単一相であることが好ましい。なお、本明細書において、「単一相」とは、不純物相を一切含まない場合の他、不純物相をごく少量(例えば、0~1.0質量%、好ましくは0~0.1質量%程度)含む場合も包含する。 The silver-containing oxide of the present invention only needs to contain a crystal structure having two layers occupied by Ag between the layers occupied by M1 and Te, and has silver ion conductivity and thermal stability. , may contain other impurity phases within a range that does not significantly affect battery performance, magnetism, and the like. Examples of such an impurity phase include raw materials shown in the manufacturing method described later. However, in the present invention, the interlayer distance between the layers occupied by M1 and Te is increased by providing two layers occupied by Ag between the layers occupied by M1 and Te. As a result, the amount of Ag intercalated between the layers is increased, so that the silver ion conductivity is improved, and it is also useful for magnetic materials. From this point of view, when the silver-containing oxide of the present invention has an impurity phase, the impurity phase is usually 0.1 to 10% by mass (especially 0 .2 to 5% by mass) is preferred. However, according to the present invention, it is possible to produce a single-phase silver-containing oxide, and as a result, it is possible to particularly improve various physical properties such as ionic conductivity. is preferred. In the present specification, the term “single phase” refers to the case of not containing any impurity phase, or a very small amount of impurity phase (for example, 0 to 1.0% by mass, preferably 0 to 0.1% by mass). degree) is also included.
 以上のような条件を満たす本発明の銀含有酸化物の形状は特に制限されず、例えば、粉末状、粒状、ペレット状、繊維状、シート状等の任意の形状を採用することができる。なお、後述の製造方法によれば、シート状の銀含有酸化物が生成されやすい。 The shape of the silver-containing oxide of the present invention that satisfies the above conditions is not particularly limited, and any shape such as powder, granules, pellets, fibers, and sheets can be used. In addition, according to the manufacturing method described later, a sheet-like silver-containing oxide is likely to be generated.
 以上のような条件を満たす本発明の銀含有酸化物は、イオン伝導性(特に銀イオン伝導性)に優れる。このため、銀イオン二次電池用電解質層を構成する固体電解質として有用である。また、本発明の銀含有酸化物は、銀イオン二次電池用正極活物質としても有用であるし、磁性材料としても有用である。 The silver-containing oxide of the present invention that satisfies the above conditions is excellent in ionic conductivity (especially silver ion conductivity). Therefore, it is useful as a solid electrolyte constituting an electrolyte layer for a silver ion secondary battery. In addition, the silver-containing oxide of the present invention is useful as a positive electrode active material for silver ion secondary batteries, and is also useful as a magnetic material.
 2.銀含有酸化物(第2の態様)
 本発明の第2の態様に係る銀含有酸化物は、一般式(1A):
Ag2+x1a 2+yTeO6+z   (1A)
[式中、M1aはアルカリ土類金属元素、Co、Cu、Zn、Cr、Mn及びFeよりなる群から選ばれる少なくとも1種を示す。xは-0.50~4.0を示す。yは-0.30~0.30を示す。zは-0.50~0.50を示す。]
で表される。
2. Silver-containing oxide (second aspect)
The silver-containing oxide according to the second aspect of the present invention has the general formula (1A):
Ag2 +xM1a2 + yTeO6 +z (1A)
[In the formula, M 1a represents at least one selected from the group consisting of alkaline earth metal elements, Co, Cu, Zn, Cr, Mn and Fe. x indicates -0.50 to 4.0. y represents -0.30 to 0.30. z is -0.50 to 0.50. ]
is represented by
 一般式(1A)において、M1aで示されるアルカリ土類金属としては、例えば、Mg、Ca等が挙げられる。なかでも、銀イオン伝導度、熱的安定性、電池性能、磁性等の観点から、Mgが好ましい。 In the general formula (1A), the alkaline earth metal represented by M1a includes, for example, Mg, Ca and the like. Among them, Mg is preferable from the viewpoint of silver ion conductivity, thermal stability, battery performance, magnetism, and the like.
 一般式(1A)において、M1aとしては、特に制限されるわけではないが、銀イオン伝導度、熱的安定性、電池性能、磁性等の観点から、Mg、Co、Cu、Zn等が好ましい。 In general formula (1A), M 1a is not particularly limited, but from the viewpoint of silver ion conductivity, thermal stability, battery performance, magnetism, etc., Mg, Co, Cu, Zn, etc. are preferable. .
 一般式(1A)において、M1aは、単独で用いることもでき、2種以上を組合せて用いることもできる。 In general formula (1A), M 1a can be used alone or in combination of two or more.
 一般式(1A)において、xは-0.50~4.0、好ましくは-0.40~2.0、より好ましくは-0.30~1.0である。xが-0.50未満では、混合物となりやすく、結晶構造を構成しにくく、銀イオン伝導度、熱的安定性、電池性能及び磁性に劣る。xが4.0をこえる銀含有酸化物は、製造が困難である。 In general formula (1A), x is -0.50 to 4.0, preferably -0.40 to 2.0, more preferably -0.30 to 1.0. If x is less than -0.50, it is likely to form a mixture, it is difficult to form a crystal structure, and the silver ion conductivity, thermal stability, battery performance and magnetism are inferior. Silver-containing oxides with x greater than 4.0 are difficult to produce.
 一般式(1A)において、yは-0.30~0.30、好ましくは-0.28~0.28、より好ましくは-0.25~0.25である。yが-0.30未満では、混合物となりやすく、結晶構造を構成しにくく、銀イオン伝導度及び熱的安定性に劣る。また、yが0.30をこえる場合も、混合物となりやすく、結晶構造を構成しにくく、銀イオン伝導度、熱的安定性、電池性能及び磁性に劣る。 In general formula (1A), y is -0.30 to 0.30, preferably -0.28 to 0.28, more preferably -0.25 to 0.25. If y is less than -0.30, it tends to form a mixture, is difficult to form a crystal structure, and is inferior in silver ion conductivity and thermal stability. Also, when y exceeds 0.30, it tends to form a mixture, is difficult to form a crystal structure, and is inferior in silver ion conductivity, thermal stability, battery performance, and magnetism.
 一般式(1)において、zは-0.50~0.50、好ましくは-0.30~0.30、より好ましくは-0.20~0.20である。zが-0.50未満では、混合物となりやすく、結晶構造を構成しにくく、銀イオン伝導度及び熱的安定性に劣る。また、zが0.50をこえる場合も、混合物となりやすく、結晶構造を構成しにくく、銀イオン伝導度、熱的安定性、電池性能及び磁性に劣る。 In general formula (1), z is -0.50 to 0.50, preferably -0.30 to 0.30, more preferably -0.20 to 0.20. If z is less than -0.50, it tends to form a mixture, is difficult to form a crystal structure, and is inferior in silver ion conductivity and thermal stability. Also, when z exceeds 0.50, it tends to form a mixture, is difficult to form a crystal structure, and is inferior in silver ion conductivity, thermal stability, battery performance, and magnetism.
 以上のような条件を満たす本発明の銀含有酸化物としては、例えば、Ag2+xMg2+yTeO、Ag2+xCo2+yTeO、Ag2+xCu2+yTeO、Ag2+xZn2+yTeO等が挙げられる。なお、x及びyは上記のとおりである。 Examples of the silver-containing oxide of the present invention satisfying the above conditions include Ag2 +xMg2 + yTeO6 , Ag2 +xCo2 + yTeO6 , Ag2 +xCu2 + yTeO6 , Ag2 + xZn2+ yTeO6 , and the like. . Note that x and y are as described above.
 本発明の第2の態様に係る銀含有酸化物は、上記のような組成を有するものであるが、銀イオン伝導度、熱的安定性、電池性能、磁性等の観点から、M1a及びTeが占有する層の間に、Agが占有する層を2層有する結晶構造を有することが好ましい。 The silver-containing oxide according to the second aspect of the present invention has the composition as described above. It is preferable to have a crystal structure having two layers occupied by Ag between layers occupied by .
 一般的には、M1a及びTeが占有する層の間に、Agが占有する層を1層だけ有する結晶構造を有することが多いと思われるところ、本発明では、M1a及びTeが占有する層の間に、Agが占有する層を2層有するという特異な結晶構造を有することが好ましい。この結果、M1a及びTeが占有する層の層間距離が拡大することになり、層間に挿入されるAgの量が増大するので銀イオン伝導度が向上しやすいとともに、磁性材料にも有用である。 In general, it is thought that there is often a crystal structure having only one layer occupied by Ag between layers occupied by M 1a and Te, but in the present invention, M 1a and Te occupy It preferably has a unique crystal structure in which there are two layers occupied by Ag between layers. As a result, the interlayer distance between the layers occupied by M1a and Te increases, and the amount of Ag inserted between the layers increases, so the silver ion conductivity is easily improved, and it is also useful for magnetic materials. .
 なお、「M1a及びTeが占有する層」は、主としてM1a及びTeで構成される層を意味しており、一部Agが混在していてもかまわない。このため、M1a及びTeが占有する層において、M1a及びTeが合計で50~100原子%、好ましくは70~100原子%、特に好ましくは80~100原子%含まれることが好ましい。 Incidentally, the "layer occupied by M1a and Te" means a layer mainly composed of M1a and Te, and may be partially mixed with Ag. Therefore, it is preferable that the layer occupied by M 1a and Te contains 50 to 100 atomic %, preferably 70 to 100 atomic %, particularly preferably 80 to 100 atomic % of M 1a and Te in total.
 また、「Agが占有する層」は、主としてAgで構成される層を意味しており、一部M1a、Te等が混在していてもかまわない。このため、Agが占有する層において、Agが合計で50~100原子%、好ましくは70~100原子%、特に好ましくは80~100原子%含まれることが好ましい。 Further, the "layer occupied by Ag" means a layer mainly composed of Ag, and M 1a , Te, etc. may be mixed in part. For this reason, it is preferable that the layer occupied by Ag contains 50 to 100 atomic %, preferably 70 to 100 atomic %, and particularly preferably 80 to 100 atomic % of Ag in total.
 上記のように、本発明では、M1a及びTeが占有する層の間に、Agが占有する層を2層有することが好ましいため、M1a及びTeが占有する層の層間距離が拡大していることが好ましい。この結果、層間に挿入されるAgの量が増大するので銀イオン伝導度が向上しやすいとともに、磁性材料にも有用である。このため、M1a及びTeが占有する層の層間距離は、0.70nm以上(7.0Å以上)が好ましく、0.75~1.10nm(7.5~11.0Å)がより好ましく、0.80~1.00nm(8.0~10.0Å)がさらに好ましい。 As described above, in the present invention, since it is preferable to have two layers occupied by Ag between the layers occupied by M1a and Te, the interlayer distance between the layers occupied by M1a and Te is increased. preferably. As a result, the amount of Ag inserted between the layers increases, so that the silver ion conductivity is likely to be improved, and it is also useful for magnetic materials. Therefore, the interlayer distance between the layers occupied by M1a and Te is preferably 0.70 nm or more (7.0 Å or more), more preferably 0.75 to 1.10 nm (7.5 to 11.0 Å), 0.80 to 1.00 nm (8.0 to 10.0 Å) is more preferred.
 このような本発明の銀含有酸化物は、熱的安定性、電池性能(特に電圧)、磁性(特異な磁気基底状態)等の観点から、M1a及びTeが蜂の巣状に配列しているハニカム層状型酸化物であることが好ましい。 From the viewpoint of thermal stability, battery performance (especially voltage), magnetism (unique magnetic ground state), etc., the silver-containing oxide of the present invention is a honeycomb structure in which M1a and Te are arranged in a honeycomb pattern. Layered oxides are preferred.
 このような本発明の銀含有酸化物は、特異な磁気構造を示しやすい観点から、[110]面において、スラブの配列がジグザグである非周期結晶構造を有することが好ましい。 The silver-containing oxide of the present invention preferably has an aperiodic crystal structure in which the slabs are arranged zigzag on the [110] plane from the viewpoint of easily exhibiting a unique magnetic structure.
 本発明の銀含有酸化物は、このような条件を有することにより、イオン伝導度(特に銀イオン伝導度)を高くすることができる。具体的には、本発明の銀含有酸化物のイオン伝導度を、25℃において、1.00×10-5S/cm以上、好ましくは1.50×10-5~1.00×10-4S/cm、より好ましくは2.00×10-5~8.00×10-5S/cmとすることが可能である。イオン伝導度は、得られた粉末を錠剤成形後、交流インピーダンス法により測定する。 By having such conditions, the silver-containing oxide of the present invention can have high ion conductivity (especially silver ion conductivity). Specifically, the ionic conductivity of the silver-containing oxide of the present invention at 25° C. is 1.00×10 −5 S/cm or more, preferably 1.50×10 −5 to 1.00×10 −5 S/cm . 4 S/cm, more preferably 2.00×10 −5 to 8.00×10 −5 S/cm. The ionic conductivity is measured by the AC impedance method after tableting the obtained powder.
 本発明の銀含有酸化物は、上記のM1a及びTeが占有する層の間に、Agが占有する層を2層有する結晶構造を含んでいることが好ましく、銀イオン伝導度、熱的安定性、電池性能、磁性等に重大な影響を及ぼさない範囲の他の不純物相を含んでいてもよい。このような不純物相としては、後述の製造方法で示す原料等が挙げられる。ただし、本発明においては、M1a及びTeが占有する層の間に、Agが占有する層を2層有することによって、M1a及びTeが占有する層の層間距離が拡大していることが好ましい。この結果、層間に挿入されるAgの量が増大するので銀イオン伝導度が向上しやすいとともに、磁性材料にも有用であるため、不純物相の存在割合は低いことが好ましい。このような観点から、本発明の銀含有酸化物が不純物相を有する場合、通常、本発明の銀含有酸化物の総量を100質量%として、不純物相は0.1~10質量%(特に0.2~5質量%)が好ましい。ただし、本発明によれば、単一相の銀含有酸化物を製造することが可能であり、この結果、イオン伝導度等の各種物性を特に向上させることが可能であることから、単一相であることが好ましい。なお、本明細書において、「単一相」とは、不純物相を一切含まない場合の他、不純物相をごく少量(例えば、0~1.0質量%、好ましくは0~0.1質量%程度)含む場合も包含する。 The silver-containing oxide of the present invention preferably contains a crystal structure having two layers occupied by Ag between the layers occupied by M1a and Te, and has a silver ion conductivity, thermal stability Other impurity phases may be contained within a range that does not seriously affect properties, battery performance, magnetism, and the like. Examples of such an impurity phase include raw materials shown in the manufacturing method described later. However, in the present invention, it is preferable that the interlayer distance between the layers occupied by M1a and Te is expanded by having two layers occupied by Ag between the layers occupied by M1a and Te. . As a result, the amount of Ag intercalated between the layers increases, so the silver ion conductivity is likely to be improved, and the content of the impurity phase is preferably low because it is also useful as a magnetic material. From this point of view, when the silver-containing oxide of the present invention has an impurity phase, the impurity phase is usually 0.1 to 10% by mass (especially 0 .2 to 5% by mass) is preferred. However, according to the present invention, it is possible to produce a single-phase silver-containing oxide, and as a result, it is possible to particularly improve various physical properties such as ionic conductivity. is preferred. In the present specification, the term “single phase” refers to the case of not containing any impurity phase, or a very small amount of impurity phase (for example, 0 to 1.0% by mass, preferably 0 to 0.1% by mass). degree) is also included.
 以上のような条件を満たす本発明の銀含有酸化物の形状は特に制限されず、例えば、粉末状、粒状、ペレット状、繊維状、シート状等の任意の形状を採用することができる。なお、後述の製造方法によれば、シート状の銀含有酸化物が生成されやすい。 The shape of the silver-containing oxide of the present invention that satisfies the above conditions is not particularly limited, and any shape such as powder, granules, pellets, fibers, and sheets can be used. In addition, according to the manufacturing method described later, a sheet-like silver-containing oxide is likely to be generated.
 以上のような条件を満たす本発明の銀含有酸化物は、イオン伝導性(特に銀イオン伝導性)に優れる。このため、銀イオン二次電池用電解質層を構成する固体電解質として有用である。また、本発明の銀含有酸化物は、銀イオン二次電池用正極活物質としても有用であるし、磁性材料としても有用である。 The silver-containing oxide of the present invention that satisfies the above conditions is excellent in ionic conductivity (especially silver ion conductivity). Therefore, it is useful as a solid electrolyte constituting an electrolyte layer for a silver ion secondary battery. In addition, the silver-containing oxide of the present invention is useful as a positive electrode active material for silver ion secondary batteries, and is also useful as a magnetic material.
 3.銀含有酸化物の製造方法
 本発明の銀含有酸化物は、例えば、一般式(2)又は(2A):
2+x 2+yTeO6+z   (2)
2+x1a 2+yTeO6+z   (2A)
[式中、M、M1a、x、y及びzは前記に同じである。Mはアルカリ金属元素を示す。]
で表される酸化物と、銀化合物とを反応させる工程
を備える製造方法により得ることができる。
3. Method for Producing Silver-Containing Oxide The silver-containing oxide of the present invention has, for example, the general formula (2) or (2A):
M22 +xM12 + yTeO6 +z (2)
M 2 2+x M 1a 2+y TeO 6+z (2A)
[In the formula, M 1 , M 1a , x, y and z are the same as above. M2 indicates an alkali metal element. ]
It can be obtained by a production method comprising a step of reacting an oxide represented by with a silver compound.
 本発明の第1の態様に係る銀含有酸化物を製造しようとする場合は一般式(2)で表される酸化物を使用し、本発明の第2の態様に係る銀含有酸化物を製造しようとする場合は一般式(2A)で表される酸化物を使用することが好ましい。 When trying to produce the silver-containing oxide according to the first aspect of the present invention, the oxide represented by the general formula (2) is used to produce the silver-containing oxide according to the second aspect of the present invention. When trying to do so, it is preferable to use the oxide represented by the general formula (2A).
 一般式(2)及び(2A)において、M、M1a、x、y及びzは前記したとおりである。 In general formulas (2) and (2A), M 1 , M 1a , x, y and z are as described above.
 一般式(2)及び(2A)において、Mで示されるアルカリ金属としては、特に制限はなく、リチウム、ナトリウム、カリウム、セシウム、ルビジウム等が挙げられ、本発明の銀含有酸化物の収率等の観点から、リチウム、ナトリウム、カリウム等が好ましく、ナトリウム、カリウム等がより好ましい。 In general formulas (2) and (2A), the alkali metal represented by M2 is not particularly limited and includes lithium, sodium, potassium, cesium, rubidium and the like. etc., lithium, sodium, potassium, etc. are preferable, and sodium, potassium, etc. are more preferable.
 以上のような条件を満たす原料としては、例えば、Na2+xMg2+yTeO、Na2+xCo2+yTeO、Na2+xNi2+yTeO、Na2+xCu2+yTeO、Na2+xZn2+yTeO、Na2+x(Niy1Co1-y12+yTeO、K2+xMg2+yTeO、K2+xCo2+yTeO、K2+xNi2+yTeO、K2+xCu2+yTeO、K2+xZn2+yTeO、K2+x(Niy1Co1-y12+yTeO、Li2+xMg2+yTeO、Li2+xCo2+yTeO、Li2+xNi2+yTeO、Li2+xCu2+yTeO、Li2+xZn2+yTeO、Li2+x(Niy1Co1-y12+yTeO、(NaK)1+xMg2+yTeO、(NaK)1+xCo2+yTeO、(NaK)1+xNi2+yTeO、(NaK)1+xCu2+yTeO、(NaK)1+xZn2+yTeO、(NaK)1+x(Niy1Co1-y12+yTeO、等が挙げられる。なお、y1は上記のとおりである。これらの原料は、単独で用いることもでき、2種以上を組合せて用いることもできる。リチウム系ハニカム型出発材料は層状型の化合物である。また、これらの原料は、目的とする銀含有酸化物の形状にあわせて、同様の形状のものを使用することが好ましい。 Raw materials satisfying the above conditions include, for example, Na2 +xMg2 + yTeO6 , Na2 +xCo2 + yTeO6 , Na2 + xNi2 + yTeO6 , Na2+xCu2 + yTeO6 , Na2 +xZn2+ yTeO6 , and Na2+x. ( Niy1Co1 -y1 ) 2 + yTeO6 , K2 + xMg2 + yTeO6 , K2 + xCo2 +yTeO6, K2+xNi2+ yTeO6 , K2 + xCu2 + yTeO6 , K2 + xZn2 + yTeO6 , K 2+x ( Niy1Co1 -y1 ) 2 + yTeO6 , Li2 + xMg2 + yTeO6 , Li2 + xCo2 +yTeO6, Li2+xNi2+ yTeO6 , Li2 + xCu2 + yTeO6 , Li2 + xZn2 + yTeO6 , Li 2+x (Ni y1 Co 1-y1 ) 2+y TeO 6 , (NaK) 1+x Mg 2+y TeO 6 , (NaK) 1+x Co 2+y TeO 6 , (NaK) 1+x Ni 2+y TeO 6 , (NaK) 1+x Cu 2+y TeO 6 , (NaK) 1+x Zn 2+y TeO 6 , (NaK) 1+x (Ni y1 Co 1-y1 ) 2+y TeO 6 , and the like. Note that y1 is as described above. These raw materials can be used alone or in combination of two or more. The lithium-based honeycomb-type starting material is a layered type compound. Moreover, it is preferable to use these raw materials having the same shape according to the shape of the target silver-containing oxide.
 銀化合物としては、特に制限されるわけではないが、上記した原料との反応により本発明の銀含有酸化物が得られやすい観点から、AgNO、AgI、AgOH、AgBr、AgCl、AgC等が挙げられる。これらの銀化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。 The silver compound is not particularly limited, but AgNO 3 , AgI, AgOH, AgBr, AgCl, and AgC 2 H 3 are used from the viewpoint of easily obtaining the silver-containing oxide of the present invention by reaction with the raw materials described above. O2 and the like. These silver compounds can be used alone or in combination of two or more.
 原料と銀化合物とを反応させる方法は、特に制限されない。例えば、原料と銀化合物とを常法で混合することができる。この際、原料と銀化合物とを十分に反応させやすいため、銀化合物を過剰量、例えば、原料1モルに対して、3~30モル、特に5~20モルとすることが好ましい。 The method of reacting the raw material with the silver compound is not particularly limited. For example, raw materials and silver compounds can be mixed in a conventional manner. At this time, since the raw material and the silver compound are easily reacted sufficiently, it is preferable to use an excessive amount of the silver compound, for example, 3 to 30 mol, particularly 5 to 20 mol, per 1 mol of the raw material.
 また、原料と銀化合物とを反応させる際には、加熱することは好ましい。反応温度は、本発明の銀含有酸化物の収率等の観点から、210~439℃が好ましく、220~300℃がより好ましい。 In addition, it is preferable to heat when reacting the raw material and the silver compound. The reaction temperature is preferably 210 to 439°C, more preferably 220 to 300°C, from the viewpoint of the yield of the silver-containing oxide of the present invention.
 また、原料と銀化合物とを反応させる際の反応時間は、本発明の銀含有酸化物の収率等の観点から、1~200時間が好ましく、20~100時間がより好ましい。 The reaction time for reacting the raw material with the silver compound is preferably 1 to 200 hours, more preferably 20 to 100 hours, from the viewpoint of the yield of the silver-containing oxide of the present invention.
 このようにして本発明の銀含有酸化物が得られるが、この後、必要に応じて加熱処理を施すこともできる。これにより、本発明の銀含有酸化物の収率を向上させやすく、M及びTeが占有する層の間にAgが占有する層を2層有する結晶構造の結晶性を向上させやすい。この場合、加熱温度は特に制限はなく、212~440℃が好ましく、230~260℃がより好ましい。また、加熱時間も特に制限はなく、1~200時間が好ましく、20~100時間がより好ましい。 Although the silver-containing oxide of the present invention is obtained in this way, it can be subjected to a heat treatment if necessary. This makes it easier to improve the yield of the silver-containing oxide of the present invention and to improve the crystallinity of the crystal structure having two layers occupied by Ag between layers occupied by M1 and Te. In this case, the heating temperature is not particularly limited, preferably 212 to 440°C, more preferably 230 to 260°C. The heating time is also not particularly limited, preferably 1 to 200 hours, more preferably 20 to 100 hours.
 4.銀イオン二次電池
 本発明の銀含有酸化物を用いる銀イオン二次電池は、公知の手法により製造することができる。
4. Silver Ion Secondary Battery A silver ion secondary battery using the silver-containing oxide of the present invention can be produced by a known method.
 例えば、本発明の銀含有酸化物を正極活物質として使用する場合には、本発明の銀含有酸化物を正極活物質として用いて、公知の手法により正極を製造することができる。つまり、通常使用されている正極活物質の代替材料として本発明の銀含有酸化物を用い、正極を作製することができる。本発明の銀含有酸化物を正極活物質として使用しない場合は従来公知の正極を採用することができる。 For example, when the silver-containing oxide of the present invention is used as a positive electrode active material, a positive electrode can be produced by a known method using the silver-containing oxide of the present invention as a positive electrode active material. In other words, a positive electrode can be produced using the silver-containing oxide of the present invention as a substitute material for a commonly used positive electrode active material. When the silver-containing oxide of the present invention is not used as a positive electrode active material, conventionally known positive electrodes can be employed.
 また、負極としては従来公知の負極を採用することができる。 In addition, a conventionally known negative electrode can be employed as the negative electrode.
 また、本発明の銀含有酸化物を電解質層の固体電解質として使用する場合は、本発明の銀含有酸化物を常法により層状に成形し、電解質層として使用することができる。 In addition, when the silver-containing oxide of the present invention is used as the solid electrolyte of the electrolyte layer, the silver-containing oxide of the present invention can be formed into a layer by a conventional method and used as the electrolyte layer.
 さらに、その他の公知の電池構成要素を使用して、常法に従って、銀イオン二次電池を組立てることができる。なお、本発明において、「銀イオン二次電池」とは、銀イオンを電荷担体として機能する二次電池を意味しており、負極材料として金属銀を用いた「銀二次電池」も包含する概念である。 In addition, other known battery components can be used to assemble a silver-ion secondary battery according to conventional methods. In the present invention, the term "silver-ion secondary battery" means a secondary battery in which silver ions function as charge carriers, and the concept also includes a "silver secondary battery" using metallic silver as a negative electrode material. is.
 以下、実施例および比較例を示し、本発明の特徴とするところを一層明確にするが、本発明は以下の実施例に限定されるものではない。 Examples and comparative examples are shown below to further clarify the features of the present invention, but the present invention is not limited to the following examples.
 実施例1:Ag Mg TeO (第1及び第2の態様)
 モル等量のNaCO(Purity: 99.8%, Kishida Chemicals)、MgO(Purity: 99%, Kishida Chemicals)、及びTeO(Purity: 99+%, Sigma-Aldrich)をモル比1:2:1で秤量し、ジルコニアボール(15mmφ×20個)にて、400rpmで6時間粉砕及び混合した。その後減圧下でエタノールを気化させ、回収した粉末を100MPaでペレット成型した。このペレットを空気中840℃で48時間焼成したのち、目的物質として層状型NaMgTeOを得た。
Example 1: Ag2Mg2TeO6 ( first and second aspects)
molar equivalents of Na2CO3 (Purity: 99.8%, Kishida Chemicals), MgO (Purity: 99%, Kishida Chemicals), and TeO2 (Purity: 99+%, Sigma -Aldrich) in a molar ratio of 1:2: 1, and pulverized and mixed with zirconia balls (15 mmφ×20 pieces) at 400 rpm for 6 hours. After that, the ethanol was vaporized under reduced pressure, and the collected powder was pelletized at 100 MPa. After firing the pellets in air at 840° C. for 48 hours, layered Na 2 Mg 2 TeO 6 was obtained as the target material.
 次に、グローブボックス内にて、得られた層状型NaMgTeOとAgNOとをモル比1:10になるように秤量後、乳鉢で1時間混合した。全量は2gとなるように調整した。混合後、グローブボックス(磁器製のるつぼ)内にて、空気雰囲気下、250℃で99時間焼成してAgNOを溶解させた。その後、得られた生成物をマグネチックスターラーで、熱蒸留水中で激しく洗浄することで残りのAgNOを溶解させた後、濾過し、最後に80℃のオーブンで一晩乾燥させた。グローブボックス内にて容器から粉末を回収し、目的物を得た。 Next, in a glove box, the layered Na 2 Mg 2 TeO 6 and AgNO 3 thus obtained were weighed so as to have a molar ratio of 1:10, and then mixed in a mortar for 1 hour. The total amount was adjusted to 2 g. After mixing, the mixture was calcined at 250° C. for 99 hours in an air atmosphere in a glove box (porcelain crucible) to dissolve AgNO 3 . The resulting product was then washed vigorously with a magnetic stirrer in hot distilled water to dissolve the remaining AgNO 3 , filtered and finally dried in an oven at 80° C. overnight. The powder was recovered from the container in the glove box to obtain the desired product.
 実施例2-1:Ag Ni TeO (その1;第1の態様)
 モル等量のNaCO(Purity: 99.8%, Kishida Chemicals)、NiO(Purity: 98%, Kishida Chemicals)、及びTeO(Purity: 99+%, Sigma-Aldrich)をモル比1:2:1で秤量し、ジルコニアボール(15mmφ×20個)と共にクロム銅製容器に入れ、エタノールを加えて遊星型ボールミル(Fritsch;P-7)にて、400rpmで6時間粉砕及び混合した。その後減圧下でエタノールを気化させ、回収した粉末を100MPaでペレット成型した。このペレットを空気中840℃で99時間焼成したのち、目的物質として層状型NaNiTeOを得た。
Example 2-1: Ag 2 Ni 2 TeO 6 (part 1; first aspect)
molar equivalents of Na2CO3 (Purity: 99.8%, Kishida Chemicals), NiO (Purity: 98%, Kishida Chemicals ) , and TeO2 (Purity: 99+%, Sigma-Aldrich) in a molar ratio of 1:2: 1, placed in a chromium-copper container together with zirconia balls (15 mmφ×20 pieces), added with ethanol, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-7). After that, the ethanol was vaporized under reduced pressure, and the collected powder was pelletized at 100 MPa. After firing the pellets in air at 840° C. for 99 hours, layered Na 2 Ni 2 TeO 6 was obtained as the target material.
 グローブボックス内にて、得られた層状型NaNiTeOとAgNOとをモル比1:10になるように秤量後、乳鉢で1時間混合した。全量は2gとなるように調整した。混合後、グローブボックス内にて、空気雰囲気下、250℃で99時間焼成し、グローブボックス内にて容器から粉末を回収し、目的物を得た。 In a glove box, the obtained layered Na 2 Ni 2 TeO 6 and AgNO 3 were weighed so as to have a molar ratio of 1:10, and then mixed in a mortar for 1 hour. The total amount was adjusted to 2 g. After mixing, the mixture was calcined in an air atmosphere at 250° C. for 99 hours in a glove box, and the powder was recovered from the container in the glove box to obtain the desired product.
 実施例2-2:Ag Ni TeO (その2;第1の態様)
 モル等量のKCO(Purity: 99.5%, Kishida Chemicals)、NiO(Purity: 98%, Kishida Chemicals)、及びTeO(Purity: 99+%, Sigma-Aldrich)をモル比1:2:1で秤量し、ジルコニアボール(15mmφ×20個)と共にクロム銅製容器に入れ、エタノールを加えて遊星型ボールミル(Fritsch;P-7)にて、400rpmで6時間粉砕及び混合した。その後減圧下でエタノールを気化させ、回収した粉末を100MPaでペレット成型した。このペレットを空気中840℃で99時間焼成したのち、目的物質として層状型KNiTeOを得た。
Example 2-2: Ag 2 Ni 2 TeO 6 (part 2; first aspect)
molar equivalents of K2CO3 (Purity: 99.5%, Kishida Chemicals), NiO (Purity: 98%, Kishida Chemicals), and TeO2 (Purity: 99+%, Sigma-Aldrich) in a molar ratio of 1: 2 : 1, placed in a chromium-copper container together with zirconia balls (15 mmφ×20 pieces), added with ethanol, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-7). After that, the ethanol was vaporized under reduced pressure, and the collected powder was pelletized at 100 MPa. After firing the pellets at 840° C. for 99 hours in air, layered K 2 Ni 2 TeO 6 was obtained as the target material.
 グローブボックス内にて、得られた層状型KNiTeOとAgNOとをモル比1:10になるように秤量後、乳鉢で1時間混合した。全量は2gとなるように調整した。混合後、グローブボックス内にて、空気雰囲気下、250℃で99時間焼成し、グローブボックス内にて容器から粉末を回収し、目的物を得た。 In a glove box, the obtained layered K 2 Ni 2 TeO 6 and AgNO 3 were weighed so as to have a molar ratio of 1:10, and then mixed in a mortar for 1 hour. The total amount was adjusted to 2 g. After mixing, the mixture was calcined in an air atmosphere at 250° C. for 99 hours in a glove box, and the powder was recovered from the container in the glove box to obtain the desired product.
 実施例2-3:Ag Ni TeO (その3;第1の態様)
 モル等量のNaCO(Purity: 99.8%, Kishida Chemicals)、KCO(Purity: 99.5%, Kishida Chemicals)、NiO(Purity: 98%, Kishida Chemicals)、及びTeO(Purity: 99+%, Sigma-Aldrich)をモル比0.5:0.5:2:1で秤量し、ジルコニアボール(15mmφ×20個)と共にクロム銅製容器に入れ、エタノールを加えて遊星型ボールミル(Fritsch;P-7)にて、400rpmで6時間粉砕及び混合した。その後減圧下でエタノールを気化させ、回収した粉末を100MPaでペレット成型した。このペレットを空気中840℃で48時間焼成したのち、目的物質として層状型NaKNiTeOを得た。
Example 2-3: Ag 2 Ni 2 TeO 6 (part 3; first aspect)
molar equivalents of Na2CO3 (Purity: 99.8%, Kishida Chemicals), K2CO3 (Purity: 99.5%, Kishida Chemicals), NiO ( Purity: 98 %, Kishida Chemicals), and TeO2 (Purity: 99 +%, Sigma-Aldrich) was weighed at a molar ratio of 0.5: 0.5: 2: 1, placed in a chromium copper container together with zirconia balls (15 mmφ x 20 pieces), ethanol was added, and a planetary ball mill (Fritsch; P-7), grinding and mixing at 400 rpm for 6 hours. After that, the ethanol was vaporized under reduced pressure, and the collected powder was pelletized at 100 MPa. After firing the pellets in air at 840° C. for 48 hours, layered NaKNi 2 TeO 6 was obtained as the target material.
 グローブボックス内にて、得られた層状型NaKNiTeOとAgNOとをモル比1:10になるように秤量後、乳鉢で1時間混合した。全量は2gとなるように調整した。混合後、グローブボックス内にて、空気雰囲気下、250℃で99時間焼成し、グローブボックス内にて容器から粉末を回収し、目的物を得た。 In a glove box, the obtained layered NaKNi 2 TeO 6 and AgNO 3 were weighed so as to have a molar ratio of 1:10, and then mixed in a mortar for 1 hour. The total amount was adjusted to 2 g. After mixing, the mixture was calcined in an air atmosphere at 250° C. for 99 hours in a glove box, and the powder was recovered from the container in the glove box to obtain the desired product.
 実施例3-1:Ag NiCoTeO (その1;第1の態様)
 モル等量のNaCO(Purity: 99.8%, Kishida Chemicals)、NiO(Purity: 98%, Kishida Chemicals)、CoO(Purity: 99%, Kojundo Chemicals)、及びTeO(Purity: 99+%, Sigma-Aldrich)をモル比1:1:1:1で秤量し、ジルコニアボール(15mmφ×20個)と共にクロム銅製容器に入れ、エタノールを加えて遊星型ボールミル(Fritsch;P-7)にて、400rpmで6時間粉砕及び混合した。その後減圧下でエタノールを気化させ、回収した粉末を100MPaでペレット成型した。このペレットを空気中840℃で99時間焼成したのち、目的物質として層状型NaNiCoTeOを得た。
Example 3-1: Ag 2 NiCoTeO 6 (part 1; first aspect)
molar equivalents of Na2CO3 (Purity: 99.8%, Kishida Chemicals), NiO (Purity: 98%, Kishida Chemicals ), CoO (Purity: 99%, Kojundo Chemicals), and TeO2 (Purity: 99+%, Sigma-Aldrich) was weighed at a molar ratio of 1:1:1:1, placed in a chromium copper container together with zirconia balls (15 mmφ × 20 pieces), ethanol was added, and a planetary ball mill (Fritsch; P-7) was used to Milled and mixed at 400 rpm for 6 hours. After that, the ethanol was vaporized under reduced pressure, and the collected powder was pelletized at 100 MPa. After firing the pellets in air at 840° C. for 99 hours, layered Na 2 NiCoTeO 6 was obtained as the target material.
 グローブボックス内にて、得られた層状型NaNiCoTeOとAgNOとをモル比1:10になるように秤量後、乳鉢で1時間混合した。全量は2gとなるように調整した。混合後、グローブボックス内にて、空気雰囲気下、250℃で99時間焼成し、グローブボックス内にて容器から粉末を回収し、目的物を得た。 In a glove box, the obtained layered Na 2 NiCoTeO 6 and AgNO 3 were weighed so as to have a molar ratio of 1:10, and then mixed in a mortar for 1 hour. The total amount was adjusted to 2 g. After mixing, the mixture was calcined in an air atmosphere at 250° C. for 99 hours in a glove box, and the powder was recovered from the container in the glove box to obtain the desired product.
 実施例3-2:Ag NiCoTeO (その2;第1の態様)
 モル等量のKCO(Purity: 99.5%, Kishida Chemicals)、NiO(Purity: 98%, Kishida Chemicals)、CoO(Purity: 99%, Kojundo Chemicals)、及びTeO(Purity: 99+%, Sigma-Aldrich)をモル比1:1:1:1で秤量し、ジルコニアボール(15mmφ×20個)と共にクロム銅製容器に入れ、エタノールを加えて遊星型ボールミル(Fritsch;P-7)にて、400rpmで6時間粉砕及び混合した。その後減圧下でエタノールを気化させ、回収した粉末を100MPaでペレット成型した。このペレットを空気中840℃で99時間焼成したのち、目的物質として層状型KNiCoTeOを得た。
Example 3-2: Ag 2 NiCoTeO 6 (part 2; first aspect)
molar equivalents of K2CO3 (Purity: 99.5%, Kishida Chemicals), NiO (Purity: 98%, Kishida Chemicals ), CoO (Purity: 99%, Kojundo Chemicals), and TeO2 (Purity: 99+%, Sigma-Aldrich) was weighed at a molar ratio of 1:1:1:1, placed in a chromium copper container together with zirconia balls (15 mmφ × 20 pieces), ethanol was added, and a planetary ball mill (Fritsch; P-7) was used to Milled and mixed at 400 rpm for 6 hours. After that, the ethanol was vaporized under reduced pressure, and the collected powder was pelletized at 100 MPa. After firing the pellets in air at 840° C. for 99 hours, layered K 2 NiCoTeO 6 was obtained as the target material.
 グローブボックス内にて、得られた層状型KNiCoTeOとAgNOとをモル比1:10になるように秤量後、乳鉢で1時間混合した。全量は2gとなるように調整した。混合後、グローブボックス内にて、空気雰囲気下、250℃で99時間焼成し、グローブボックス内にて容器から粉末を回収し、目的物を得た。 In a glove box, the obtained layered K 2 NiCoTeO 6 and AgNO 3 were weighed so as to have a molar ratio of 1:10, and then mixed in a mortar for 1 hour. The total amount was adjusted to 2 g. After mixing, the mixture was calcined in an air atmosphere at 250° C. for 99 hours in a glove box, and the powder was recovered from the container in the glove box to obtain the desired product.
 実施例4:Ag Co TeO (第1及び第2の態様)
 モル等量のNaCO(Purity: 99.8%, Kishida Chemicals)、Co(Purity: 99.8%, Sigma-Aldrich)、及びTeO(Purity: 99+%, Sigma-Aldrich)をモル比3:2:3秤量し、ジルコニアボール(15mmφ×20個)と共にクロム銅製容器に入れ、エタノールを加えて遊星型ボールミル(Fritsch;P-7)にて、400rpmで6時間粉砕及び混合した。その後減圧下でエタノールを気化させ、回収した粉末を100MPaでペレット成型した。このペレットを空気中840℃で99時間焼成したのち、目的物質として層状型NaCoTeOを得た。
Example 4: Ag2Co2TeO6 ( first and second aspects)
molar equivalents of Na2CO3 ( Purity : 99.8%, Kishida Chemicals), Co3O4 (Purity: 99.8%, Sigma-Aldrich ) , and TeO2 (Purity: 99+%, Sigma-Aldrich) It was weighed at 3:2:3, placed in a chromium copper container together with zirconia balls (15 mmφ×20 pieces), ethanol was added, and the mixture was ground and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-7). After that, the ethanol was vaporized under reduced pressure, and the collected powder was pelletized at 100 MPa. After firing the pellets at 840° C. for 99 hours in air, layered Na 2 Co 2 TeO 6 was obtained as the target material.
 グローブボックス内にて、得られた層状型NaCoTeOとAgNOとをモル比1:10になるように秤量後、乳鉢で1時間混合した。全量は2gとなるように調整した。混合後、グローブボックス内にて、空気雰囲気下、250℃で99時間焼成し、グローブボックス内にて容器から粉末を回収し、目的物を得た。 In a glove box, the obtained layered Na 2 Co 2 TeO 6 and AgNO 3 were weighed so as to have a molar ratio of 1:10, and then mixed in a mortar for 1 hour. The total amount was adjusted to 2 g. After mixing, the mixture was calcined in an air atmosphere at 250° C. for 99 hours in a glove box, and the powder was recovered from the container in the glove box to obtain the desired product.
 実施例5:Ag Cu TeO (第1及び第2の態様)
 モル等量のNaCO(Purity: 99.8%, Kishida Chemicals)、CuO(Purity: 99%, Kishida Chemicals)、及びTeO(Purity: 99+%, Sigma-Aldrich)をモル比1:2:1秤量し、ジルコニアボール(15mmφ×20個)と共にクロム銅製容器に入れ、エタノールを加えて遊星型ボールミル(Fritsch;P-7)にて、400rpmで6時間粉砕及び混合した。その後減圧下でエタノールを気化させ、回収した粉末を100MPaでペレット成型した。このペレットを空気中840℃で99時間焼成したのち、目的物質として層状型NaCuTeOを得た。
Example 5: Ag2Cu2TeO6 ( first and second aspects)
molar equivalents of Na2CO3 (Purity: 99.8%, Kishida Chemicals), CuO (Purity: 99%, Kishida Chemicals), and TeO2 (Purity: 99+%, Sigma -Aldrich) in a molar ratio of 1:2: 1 was weighed, placed in a chromium copper container together with zirconia balls (15 mmφ×20 pieces), ethanol was added, and the mixture was pulverized and mixed at 400 rpm for 6 hours with a planetary ball mill (Fritsch; P-7). After that, the ethanol was vaporized under reduced pressure, and the collected powder was pelletized at 100 MPa. After firing the pellets at 840° C. for 99 hours in air, layered Na 2 Cu 2 TeO 6 was obtained as the target material.
 グローブボックス内にて、得られた層状型NaCuTeOとAgNOとをモル比1:10になるように秤量後、乳鉢で1時間混合した。全量は2gとなるように調整した。混合後、グローブボックス内にて、空気雰囲気下、250℃で99時間焼成し、グローブボックス内にて容器から粉末を回収し、目的物を得た。 In a glove box, the obtained layered Na 2 Cu 2 TeO 6 and AgNO 3 were weighed so as to have a molar ratio of 1:10, and then mixed in a mortar for 1 hour. The total amount was adjusted to 2 g. After mixing, the mixture was calcined in an air atmosphere at 250° C. for 99 hours in a glove box, and the powder was recovered from the container in the glove box to obtain the desired product.
 実施例6:Ag Zn TeO (第1及び第2の態様)
 モル等量のNaCO(Purity: 99.8%, Kishida Chemicals)、ZnO(Purity: 99.5%, Kishida Chemicals)、及びTeO(Purity: 99+%, Sigma-Aldrich)をモル比1:2:1秤量し、ジルコニアボール(15mmφ×20個)と共にクロム銅製容器に入れ、エタノールを加えて遊星型ボールミル(Fritsch;P-7)にて、400rpmで6時間粉砕及び混合した。その後減圧下でエタノールを気化させ、回収した粉末を100MPaでペレット成型した。このペレットを空気中840℃で48時間焼成したのち、目的物質として層状型NaZnTeOを得た。
Example 6: Ag2Zn2TeO6 ( first and second aspects)
molar equivalents of Na2CO3 (Purity: 99.8%, Kishida Chemicals), ZnO (Purity: 99.5%, Kishida Chemicals), and TeO2 (Purity: 99+%, Sigma-Aldrich) in a molar ratio of 1: 2 : 1 was weighed, placed in a chromium copper container together with zirconia balls (15 mmφ×20 pieces), ethanol was added, and the mixture was pulverized and mixed at 400 rpm for 6 hours with a planetary ball mill (Fritsch; P-7). After that, the ethanol was vaporized under reduced pressure, and the collected powder was pelletized at 100 MPa. After firing the pellets in air at 840° C. for 48 hours, layered Na 2 Zn 2 TeO 6 was obtained as the target material.
 グローブボックス内にて、得られた層状型NaZnTeOとAgNOとをモル比1:10になるように秤量後、乳鉢で1時間混合した。全量は2gとなるように調整した。混合後、グローブボックス内にて、空気雰囲気下、250℃で99時間焼成し、グローブボックス内にて容器から粉末を回収し、目的物を得た。 In a glove box, the obtained layered Na 2 Zn 2 TeO 6 and AgNO 3 were weighed so as to have a molar ratio of 1:10, and then mixed in a mortar for 1 hour. The total amount was adjusted to 2 g. After mixing, the mixture was calcined in an air atmosphere at 250° C. for 99 hours in a glove box, and the powder was recovered from the container in the glove box to obtain the desired product.
 試験例1:X線構造解析
 実施例1~6で得られた試料について、2θ=5~90°の範囲で、CuKα線によるX線回折測定を行った。結果を図1に示す。この結果、実施例6のように、ピークがブロードになっており、X線構造解析は困難であった。
Test Example 1: X-Ray Structural Analysis The samples obtained in Examples 1 to 6 were subjected to X-ray diffraction measurement using CuKα rays in the range of 2θ = 5 to 90°. The results are shown in FIG. As a result, as in Example 6, the peak was broadened and the X-ray structural analysis was difficult.
 試験例2:組成分析
 実施例1~6で得られた試料について、誘導結合プラズマ原子発光分析(ICPAES)により元素分析を行った。結果を表1に示す。
Test Example 2: Composition Analysis The samples obtained in Examples 1 to 6 were subjected to elemental analysis by inductively coupled plasma atomic emission spectroscopy (ICPAES). Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試験例3:電子顕微鏡観察
 実施例1~6で得られた試料について、走査型電子顕微鏡(5000倍及び10000倍)により粒子形態観察を行った。結果を図2~7に示す。この結果、いずれの実施例においても、シート状(あるいは平板状(Lamellar-like))の粒子が得られたことが理解できる。
Test Example 3: Electron Microscopic Observation The particles obtained in Examples 1 to 6 were observed with a scanning electron microscope (5,000 and 10,000 times). The results are shown in Figures 2-7. As a result, it can be understood that sheet-like (or tabular (Lamellar-like)) grains were obtained in all Examples.
 ハニカム構造を有するAgTeO層状型酸化物は、既報(Chem. Soc. Rev., 2021, 50, 3990-4030)等からも理解できるとおり、Kitaev磁性体モデルが予測しているexoticな磁性特性を示すことができる。本発明においても、3d遷移金属がハニカムのような形に配列した層状化合物であるため、Kitaev材料群として期待され、例えば、2D Spintronics、Topological Quantum Computing等の分野に適用される磁性材料として有用である。 Ag 2 M 2 TeO 6- layered oxide having a honeycomb structure is an exotic magnetic properties. Also in the present invention, since the 3d transition metal is a layered compound arranged in a honeycomb-like shape, it is expected to be a Kitaev material group, and is useful as a magnetic material applied to fields such as 2D Spintronics and Topological Quantum Computing. be.
 次に、実施例1、2-1、3-1、4及び5で得られた試料について、透過型電子顕微鏡である高角散乱環状暗視野走査透過顕微鏡(HAADF-STEM)及び環状明視野走査透過顕微鏡(ABF-STEM)により、[100]面及び[110]面の層状構成の観察を行った。結果を図8~12に示す。この結果、いずれの場合も、MであるMg、Ni、Co等とTeとが占有する層間にAgが占有する層が2層有する層状構造の単一相であることが明らかとなった。また、いずれの場合も、MであるMg、Ni、Co等とTeとが占有する層の層間距離は、約0.9nm(9.0Å)であった。また、いずれの場合も、Agの積層方向には周期性がなくスラグの配列がジグザグである非周期構造を有していた。この結果は、実施例1、2-1、3-1、4及び5のみについて示しているが、同じように製造している他の実施例についても同様の構造を有することが理解できる。このように、従来の層状構造を有する銀含有酸化物と比較して、層間距離が増大しているため、イオン伝導度が高いことが示唆されている。 Next, for the samples obtained in Examples 1, 2-1, 3-1, 4 and 5, a high-angle scattering annular dark-field scanning transmission microscope (HAADF-STEM), which is a transmission electron microscope, and an annular bright-field scanning transmission microscope [100] plane and [110] plane layer structures were observed with a microscope (ABF-STEM). The results are shown in Figures 8-12. As a result, in both cases, it was found that the single phase of the layered structure having two layers occupied by Ag between the layers occupied by Te and Mg, Ni, Co, etc., which are M1 . In both cases, the interlayer distance between the layers occupied by Te and Mg, Ni, Co, etc., which are M1 , was about 0.9 nm (9.0 Å). In both cases, there was no periodicity in the Ag stacking direction, and the slag had an aperiodic structure in which the slag was arranged in a zigzag pattern. Although this result is shown only for Examples 1, 2-1, 3-1, 4 and 5, it can be understood that the other examples manufactured in the same manner have similar structures. Thus, it is suggested that the ionic conductivity is high because the interlayer distance is increased compared to the conventional silver-containing oxide having a layered structure.
 試験例4:イオン伝導率
 実施例1で得られた試料について、25~100℃における交流インピーダンス測定によりイオン伝導率を測定した。結果を図13に示す。この結果、イオン伝導率は、25℃において3.51×10-5S/cmであり、100℃において1.00×10-4S/cmであった。このことから、粉末製造工程を最適化せずとも、高いイオン伝導度を示していた。
Test Example 4: Ionic Conductivity The ionic conductivity of the sample obtained in Example 1 was measured by AC impedance measurement at 25 to 100°C. The results are shown in FIG. As a result, the ionic conductivity was 3.51×10 -5 S/cm at 25°C and 1.00×10 -4 S/cm at 100°C. From this, high ionic conductivity was exhibited even without optimizing the powder manufacturing process.
 試験例5:熱的安定性
 従来から銀イオン伝導体として知られる銀含有ハロゲン化物は、いずれも熱的安定性が低く、500℃以下の温度で相変態を起こす。
Test Example 5: Thermal Stability All of the silver-containing halides conventionally known as silver ion conductors have low thermal stability and undergo phase transformation at temperatures below 500°C.
 それに対して、実施例1、2、3-1、4、5及び6で得られた試料について、熱重量・示差熱同時測定(TG-DTA)により、昇温速度300℃/分でAr雰囲気で、0~1000℃の範囲で熱的安定性を評価した。結果を図14に示す。この結果、実施例1のAgMgTeOは630℃及び940℃において相変態を起こし、実施例2-1のAgNiTeOは900℃において相変態を起こし、実施例3-1のAgNiCoTeOは890℃及び960℃において相変態を起こし、実施例4のAgCoTeOは768℃及び962℃において相変態を起こし、実施例5のAgCuTeOは662℃、774℃、904℃及び950℃において相変態を起こし、実施例6のAgZnTeOは645℃及び962℃において相変態を起こすことが理解できる。この結果、従来から銀イオン伝導体として知られる銀含有ハロゲン化物と比較しても劇的に熱的安定性が改善されていることが理解できる。 On the other hand, the samples obtained in Examples 1, 2, 3-1, 4, 5 and 6 were subjected to simultaneous thermogravimetry and differential thermal measurement (TG-DTA) at a heating rate of 300 ° C./min in an Ar atmosphere. was evaluated for thermal stability in the range of 0 to 1000°C. The results are shown in FIG. As a result, Ag 2 Mg 2 TeO 6 of Example 1 undergoes phase transformation at 630° C. and 940° C., Ag 2 Ni 2 TeO 6 of Example 2-1 undergoes phase transformation at 900° C., and Example 3- Ag 2 NiCoTeO 6 of Example 1 undergoes phase transformation at 890° C. and 960° C., Ag 2 Co 2 TeO 6 of Example 4 undergoes phase transformation at 768° C. and 962° C., and Ag 2 Cu 2 TeO 6 of Example 5 undergoes phase transformation. undergoes phase transformation at 662°C, 774°C, 904°C and 950°C, and Ag2Zn2TeO 6 of Example 6 undergoes phase transformation at 645°C and 962°C. As a result, it can be understood that the thermal stability is dramatically improved even when compared with silver-containing halides conventionally known as silver ion conductors.
 本発明の銀含有酸化物は、例えば、イオン伝導性(特に銀イオン伝導性)に優れるとともに、単一相として得ることができる。このため、銀イオン二次電池用電解質層を構成する固体電解質として有用である。また、本発明の銀含有酸化物は、銀イオン二次電池用正極活物質としても有用であるし、磁性材料としても有用である。 The silver-containing oxide of the present invention, for example, has excellent ion conductivity (especially silver ion conductivity) and can be obtained as a single phase. Therefore, it is useful as a solid electrolyte constituting an electrolyte layer for a silver ion secondary battery. In addition, the silver-containing oxide of the present invention is useful as a positive electrode active material for silver ion secondary batteries, and is also useful as a magnetic material.

Claims (20)

  1. 一般式(1):
    Ag2+x 2+yTeO6+z   (1)
    [式中、Mはアルカリ土類金属元素及び3d遷移金属元素よりなる群から選ばれる少なくとも1種を示す。xは-0.50~4.0を示す。yは-0.30~0.30を示す。zは-0.50~0.50を示す。]
    で表され、
    前記M及びTeが占有する層の間に、Agが占有する層を2層有する結晶構造を有する、銀含有酸化物。
    General formula (1):
    Ag2 +xM12 + yTeO6 +z (1)
    [In the formula, M1 represents at least one selected from the group consisting of alkaline earth metal elements and 3d transition metal elements. x indicates -0.50 to 4.0. y represents -0.30 to 0.30. z is -0.50 to 0.50. ]
    is represented by
    A silver-containing oxide having a crystal structure having two Ag-occupied layers between the M1 and Te-occupied layers.
  2. 前記Mが、Mg、Co、Ni、Cu、Zn、Cr、Mn及びFeよりなる群から選ばれる少なくとも1種である、請求項1に記載の銀含有酸化物。 The silver-containing oxide according to claim 1 , wherein said M1 is at least one selected from the group consisting of Mg, Co, Ni, Cu, Zn, Cr, Mn and Fe.
  3. 一般式(1A):
    Ag2+x1a 2+yTeO6+z   (1A)
    [式中、M1aはアルカリ土類金属元素、Co、Cu、Zn、Cr、Mn及びFeよりなる群から選ばれる少なくとも1種を示す。xは-0.50~4.0を示す。yは-0.30~0.30を示す。zは-0.50~0.50を示す。]
    で表される、銀含有酸化物。
    General formula (1A):
    Ag2 +xM1a2 + yTeO6 +z (1A)
    [In the formula, M 1a represents at least one selected from the group consisting of alkaline earth metal elements, Co, Cu, Zn, Cr, Mn and Fe. x indicates -0.50 to 4.0. y represents -0.30 to 0.30. z is -0.50 to 0.50. ]
    A silver-containing oxide represented by
  4. 前記M1aが、Mg、Co及びZnよりなる群から選ばれる少なくとも1種である、請求項3に記載の銀含有酸化物。 4. The silver-containing oxide according to claim 3, wherein said M1a is at least one selected from the group consisting of Mg, Co and Zn.
  5. 前記M1a及びTeが占有する層の間に、Agが占有する層を2層有する結晶構造を有する、請求項3又は4に記載の銀含有酸化物。 5. The silver-containing oxide according to claim 3 or 4, having a crystal structure having two Ag-occupied layers between said M1a and Te-occupied layers.
  6. 前記M及びTeが占有する層、又は前記M1a及びTeが占有する層の層間距離が0.70nm以上である、請求項1、2又は5に記載の銀含有酸化物。 6. The silver-containing oxide according to claim 1 , 2 or 5, wherein the layer occupied by M1 and Te or the layer occupied by M1a and Te has an interlayer distance of 0.70 nm or more.
  7. 前記Agが占有する層を2層有する結晶構造からなる単一相である、請求項1、2、5又は6に記載の銀含有酸化物。 7. The silver-containing oxide according to claim 1, 2, 5 or 6, which is a single phase crystalline structure having two layers occupied by said Ag.
  8. 銀含有ハニカム層状型酸化物である、請求項1~7のいずれか1項に記載の銀含有酸化物。 The silver-containing oxide according to any one of claims 1 to 7, which is a silver-containing honeycomb layered oxide.
  9. [110]面において、スラブの配列がジグザグである非周期結晶構造を有する、請求項1~8のいずれか1項に記載の銀含有酸化物。 The silver-containing oxide according to any one of claims 1 to 8, which has an aperiodic crystal structure in which the slabs are arranged zigzag in the [110] plane.
  10. 請求項1~9のいずれか1項に記載の銀含有酸化物の製造方法であって、
    一般式(2)又は(2A):
    2+yTeO6+z   (2)
    1a 2+yTeO6+z   (2A)
    [式中、M、M1a、y及びzは前記に同じである。Mはアルカリ金属元素を示す。]
    で表される酸化物と、銀化合物とを反応させる工程
    を備える、製造方法。
    A method for producing a silver-containing oxide according to any one of claims 1 to 9,
    General formula (2) or (2A):
    M22M12 +yTeO6 + z ( 2)
    M22M1a2 + yTeO6 +z ( 2A)
    [In the formula, M 1 , M 1a , y and z are the same as above. M2 indicates an alkali metal element. ]
    A manufacturing method comprising a step of reacting an oxide represented by with a silver compound.
  11. 前記酸化物と硝酸銀とを反応させる工程における反応温度が210~439℃である、請求項10に記載の製造方法。 The production method according to claim 10, wherein the reaction temperature in the step of reacting the oxide with silver nitrate is 210 to 439°C.
  12. 請求項1~9のいずれか1項に記載の銀含有酸化物からなる、固体電解質。 A solid electrolyte comprising the silver-containing oxide according to any one of claims 1 to 9.
  13. 銀イオン二次電池用固体電解質である、請求項12に記載の固体電解質。 The solid electrolyte according to claim 12, which is a solid electrolyte for a silver ion secondary battery.
  14. 全固体銀イオン二次電池用固体電解質である、請求項12又は13に記載の固体電解質。 The solid electrolyte according to claim 12 or 13, which is a solid electrolyte for an all-solid silver ion secondary battery.
  15. 請求項1~9のいずれか1項に記載の銀含有酸化物からなる、正極活物質。 A positive electrode active material comprising the silver-containing oxide according to any one of claims 1 to 9.
  16. 銀イオン二次電池用正極活物質である、請求項15に記載の正極活物質。 The positive electrode active material according to claim 15, which is a positive electrode active material for a silver ion secondary battery.
  17. 全固体銀イオン二次電池用正極活物質である、請求項15又は16に記載の正極活物質。 The positive electrode active material according to claim 15 or 16, which is a positive electrode active material for an all-solid silver ion secondary battery.
  18. 請求項12~14のいずか1項に記載の固体電解質及び/又は請求項15~17のいずれか1項に記載の正極活物質を含有する、銀イオン二次電池。 A silver ion secondary battery containing the solid electrolyte according to any one of claims 12 to 14 and/or the positive electrode active material according to any one of claims 15 to 17.
  19. 全固体銀イオン二次電池である、請求項18に記載の銀イオン二次電池。 The silver ion secondary battery according to claim 18, which is an all-solid silver ion secondary battery.
  20. 請求項1~9のいずれか1項に記載の銀含有酸化物からなる、磁性材料。
     
    A magnetic material comprising the silver-containing oxide according to any one of claims 1-9.
PCT/JP2022/044001 2021-12-02 2022-11-29 Silver-containing oxide and method for producing same WO2023100885A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023565017A JPWO2023100885A1 (en) 2021-12-02 2022-11-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021196487 2021-12-02
JP2021-196487 2021-12-02

Publications (1)

Publication Number Publication Date
WO2023100885A1 true WO2023100885A1 (en) 2023-06-08

Family

ID=86612351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044001 WO2023100885A1 (en) 2021-12-02 2022-11-29 Silver-containing oxide and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2023100885A1 (en)
WO (1) WO2023100885A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019119667A (en) * 2017-12-28 2019-07-22 国立研究開発法人産業技術総合研究所 Potassium compound, solid electrolyte for potassium ion secondary battery, cathode active material for potassium ion secondary battery, and secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019119667A (en) * 2017-12-28 2019-07-22 国立研究開発法人産業技術総合研究所 Potassium compound, solid electrolyte for potassium ion secondary battery, cathode active material for potassium ion secondary battery, and secondary battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANYOLO GODWILL MBITI, MASESE TITUS, MATSUBARA NAMI, CHEN CHIH-YAO, RIZELL JOSEF, HUANG ZHEN-DONG, SASSA YASMINE, MÅNSSON MARTIN, : "Honeycomb layered oxides: structure, energy storage, transport, topology and relevant insights", CHEMICAL SOCIETY REVIEWS, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 50, no. 6, 29 March 2021 (2021-03-29), UK , pages 3990 - 4030, XP093070095, ISSN: 0306-0012, DOI: 10.1039/D0CS00320D *
NALBANDYAN VLADIMIR B., SHUKAEV IGOR L., RAGANYAN GRIGORY V., SVYAZHIN ARTEM, VASILIEV ALEXANDER N., ZVEREVA ELENA A.: "Preparation, Crystal Chemistry, and Hidden Magnetic Order in the Family of Trigonal Layered Tellurates A 2 Mn(4+)TeO 6 (A = Li, Na, Ag, or Tl)", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON , US, vol. 58, no. 9, 6 May 2019 (2019-05-06), Easton , US , pages 5524 - 5532, XP055947701, ISSN: 0020-1669, DOI: 10.1021/acs.inorgchem.8b03445 *

Also Published As

Publication number Publication date
JPWO2023100885A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
JP7236459B2 (en) O3/P2 Mixed Phase Sodium Containing Doped Layered Oxide Materials
JP5732638B2 (en) Method for producing positive electrode material for lithium ion battery
Bhide et al. Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery
US20220336805A1 (en) Lithium transition metal oxide and precursor particulates and methods
Salian et al. Entropy stabilized multicomponent oxides with diverse functionality–a review
JPH11302020A (en) Lithium manganese compound oxide, its production and its use
US6268085B1 (en) Composite manganese oxide cathodes for rechargeable lithium batteries
JPWO2019168160A1 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP2021072288A (en) Solid ion conductor compound, solid electrolyte including solid ion conductor compound, electrochemical cell including solid ion conductor compound, and method of preparing solid ion conductor compound
Mathiyalagan et al. Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries
WO2022009934A1 (en) Sulfide-based solid electrolyte used for lithium ion secondary battery and production method for same, solid electrolyte layer, and lithium ion secondary battery
WO2023100885A1 (en) Silver-containing oxide and method for producing same
Ananta Synthesis, formation and characterization of Mg4Nb2O9 powders
WO2018096972A1 (en) Lithium-manganese complex oxide and method for producing same
JP6186814B2 (en) Metal-substituted manganese trioxide, method for producing the same, and method for producing lithium manganese composite oxide using the same
Luo et al. Implication of lithium excess induced structure and electrochemical behavior changes of LiNi0. 5Mn1. 5O4 Spinel
JP7473713B2 (en) Lithium-cobalt composite oxide particles and their manufacturing method, lithium-cobalt composite oxide particle composition and their manufacturing method
WO2023100599A1 (en) Solid electrolyte material for fluoride ion batteries and production method for solid electrolyte material for fluoride ion batteries
Wei et al. Layered Li–Mn oxides with the O2 structure: preparation of Li2/3 [Mn1− xMx] O2 (M= Li, Cr, Mg, Al) by ion exchange
US20240079572A1 (en) Battery material
WO2023243347A1 (en) Lithium-cobalt-based composite oxide particles and method for producing same, and lithium-cobalt-based composite oxide particle composition and method for producing same.
Azahidi et al. Influence of Ti and Fe doping on the structural and electrochemical performance of LiCo0. 6Ni0. 4O2 cathode materials for Li-ion batteries
WO2021177346A1 (en) Li ion conductor and method for producing same
WO2023157830A1 (en) Electrode mixture and electrode slurry and battery which use said electrode mixture
JP2023121067A (en) Electrode mixture, and electrode slurry and battery using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023565017

Country of ref document: JP