WO2023100876A1 - Magnetic tape cartridge and magnetic recording playback device - Google Patents

Magnetic tape cartridge and magnetic recording playback device Download PDF

Info

Publication number
WO2023100876A1
WO2023100876A1 PCT/JP2022/043990 JP2022043990W WO2023100876A1 WO 2023100876 A1 WO2023100876 A1 WO 2023100876A1 JP 2022043990 W JP2022043990 W JP 2022043990W WO 2023100876 A1 WO2023100876 A1 WO 2023100876A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic tape
magnetic
cartridge
servo
recording
Prior art date
Application number
PCT/JP2022/043990
Other languages
French (fr)
Japanese (ja)
Inventor
成人 笠田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023100876A1 publication Critical patent/WO2023100876A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B15/00Driving, starting or stopping record carriers of filamentary or web form; Driving both such record carriers and heads; Guiding such record carriers or containers therefor; Control thereof; Control of operating function
    • G11B15/02Control of operating function, e.g. switching from recording to reproducing
    • G11B15/05Control of operating function, e.g. switching from recording to reproducing by sensing features present on or derived from record carrier or container
    • G11B15/093Control of operating function, e.g. switching from recording to reproducing by sensing features present on or derived from record carrier or container by sensing driving condition of record carrier, e.g. travel, tape tension
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B15/00Driving, starting or stopping record carriers of filamentary or web form; Driving both such record carriers and heads; Guiding such record carriers or containers therefor; Control thereof; Control of operating function
    • G11B15/18Driving; Starting; Stopping; Arrangements for control or regulation thereof
    • G11B15/43Control or regulation of mechanical tension of record carrier, e.g. tape tension
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/02Driving or moving of heads
    • G11B21/10Track finding or aligning by moving the head ; Provisions for maintaining alignment of the head relative to the track during transducing operation, i.e. track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/02Containers; Storing means both adapted to cooperate with the recording or reproducing means
    • G11B23/04Magazines; Cassettes for webs or filaments
    • G11B23/08Magazines; Cassettes for webs or filaments for housing webs or filaments having two distinct ends
    • G11B23/107Magazines; Cassettes for webs or filaments for housing webs or filaments having two distinct ends using one reel or core, one end of the record carrier coming out of the magazine or cassette
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/008Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/584Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/735Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a magnetic tape cartridge and a magnetic recording/reproducing device.
  • tape-shaped and disk-shaped magnetic recording media that is, magnetic tapes
  • tape-shaped magnetic recording media that is, magnetic tapes
  • Data is recorded on a magnetic tape by running the magnetic tape inside a magnetic recording/reproducing device (generally called a "drive") and making the magnetic head follow the data band of the magnetic tape to record the data on the data band. It is done by recording. A data track is thereby formed in the data band.
  • the magnetic tape is run in the magnetic recording/reproducing apparatus, and the magnetic head follows the data band of the magnetic tape to read the data recorded on the data band. After such recording or reproduction, the magnetic tape is wound on a reel (hereinafter referred to as "cartridge reel”) in the magnetic tape cartridge until the next recording and/or reproduction is performed. , is stored.
  • a system that performs head tracking using a servo signal.
  • a servo system that performs head tracking using a servo signal.
  • the above tension adjustment causes the magnetic head for recording or reproducing data to deviate from the intended track position due to the width deformation of the magnetic tape during recording or reproduction, causing phenomena such as overwriting of recorded data and defective reproduction.
  • one aspect of the present invention is By enabling good recording and/or reproduction of data on and/or reproduction of data on a magnetic tape stored in a magnetic tape cartridge, and by adjusting the tension applied to the magnetic tape in the longitudinal direction. To improve running stability during recording and/or reproduction by controlling the dimension of the magnetic tape in the width direction; With the goal.
  • a magnetic tape cartridge containing a magnetic tape wound around a cartridge reel The magnetic tape has a non-magnetic support and a magnetic layer containing ferromagnetic powder,
  • the non-magnetic support is a polyethylene naphthalate support having a Young's modulus in the width direction of 10000 MPa or more
  • the magnetic layer has a plurality of servo bands,
  • the following five magnetic tape deformation amounts Magnetic tape deformation amount after storage for one year in an environment with a temperature of 16 ° C and a relative humidity of 20%, Magnetic tape deformation amount after storage for one year in an environment with a temperature of 16 ° C and a relative humidity of 80%, Magnetic tape deformation amount after storage for one year in an environment with a temperature of 26 ° C and a relative humidity of 80%, Magnetic tape deformation amount after storage for one year in an environment with a temperature of 32 ° C and a relative humidity of 20%, Amount of magnetic tape deformation after storage for one year in an environment with
  • a magnetic tape cartridge wherein the rate of change in magnetic tape deformation amount with respect to temperature change is 0.0010 ⁇ m/° C. or more and 0.1000 ⁇ m/° C. or less.
  • the polyethylene naphthalate support has a Young's modulus in the width direction of 10000 MPa or more and 20000 MPa or less.
  • a magnetic recording/reproducing device including the magnetic tape cartridge according to any one of [1] to [7].
  • the present invention it is possible to record and/or reproduce data satisfactorily on and/or reproduce data from a magnetic tape after it is stored in a magnetic tape cartridge, and the length of the magnetic tape is By adjusting the tension applied in the direction, it is possible to control the dimension in the width direction of the magnetic tape and improve the running stability during recording and/or reproduction.
  • FIG. 1 is a schematic diagram showing an example of a magnetic recording/reproducing device
  • FIG. 1 is a perspective view of an example magnetic tape cartridge
  • FIG. FIG. 4 is a perspective view when starting to wind the magnetic tape around the reel
  • FIG. 4 is a perspective view when winding the magnetic tape around the reel is finished
  • An example arrangement of data bands and servo bands is shown.
  • An example of servo pattern arrangement for an LTO (Linear Tape-Open) Ultrium format tape is shown.
  • One aspect of the present invention relates to the above magnetic tape cartridge.
  • Another aspect of the present invention relates to a magnetic recording/reproducing device including the magnetic tape cartridge.
  • the magnetic tape cartridge includes a magnetic tape and a cartridge reel.
  • the magnetic tape In an unused magnetic tape cartridge before it is attached to a magnetic recording/reproducing device for recording and/or reproducing data, the magnetic tape is usually housed in a wound state on a cartridge reel.
  • a magnetic tape can be run between a cartridge reel (supply reel) and a take-up reel to record data on the magnetic tape and/or reproduce recorded data. After the data has been recorded or reproduced, the magnetic tape is rewound onto the cartridge reel and stored in the magnetic tape cartridge while being wound around the cartridge reel until the next recording and/or reproduction is performed. .
  • the portion close to the cartridge reel is deformed wider than the initial width due to the compressive stress in the tape thickness direction, and the portion far from the cartridge reel becomes wider than the initial width due to the tensile stress in the longitudinal direction of the tape. It is presumed that different deformation occurs depending on the position, such as narrow deformation. It is thought that if deformation that varies greatly depending on the position occurs, it may cause the magnetic head to record and/or reproduce data at a position deviated from the target track position when recording and/or reproducing after storage. be done.
  • the inventor of the present invention has found that data can be recorded and/or reproduced satisfactorily on a magnetic tape after storage in a magnetic tape cartridge and storage in various storage environments for at least one year. We thought that making it possible to do so would meet the needs of users expected in the future. Accordingly, the present inventors have found a solution for recording and/or reproducing by controlling the dimension in the width direction of the magnetic tape by adjusting the tension applied in the longitudinal direction of the magnetic tape as described above.
  • the magnetic tape cartridge and the magnetic recording/reproducing device will be described in more detail below.
  • one form of the magnetic tape cartridge and the magnetic recording/reproducing device may be described with reference to the drawings.
  • the magnetic tape cartridge and the magnetic recording/reproducing device are not limited to the forms shown in the drawings.
  • the present invention is not limited by the speculations of the inventors described herein.
  • the 5 environments are "temperature 16°C relative humidity 20% environment”, “temperature 16°C relative humidity 80% environment”, “temperature 26°C relative humidity 80% environment”, “temperature 32°C relative humidity 20% environment”. Environment” and “Environment with a temperature of 32° C. and a relative humidity of 80%”.
  • the amount of magnetic tape deformation after storage for one year in each environment is obtained by the following method. First, the following measurements regarding the dimensions of the magnetic tape before storage are performed before storage in the five environments. The magnetic tape cartridge to be measured is placed in an environment with an ambient temperature of 23° C.
  • the magnetic tape is run with a tension of 0.70 N applied in the longitudinal direction of the magnetic tape in a magnetic recording/reproducing apparatus having a tension adjusting mechanism that applies tension in the longitudinal direction of the magnetic tape.
  • the interval between two adjacent servo bands sandwiching the data band is measured at intervals of 1 m over the entire length of the magnetic tape.
  • the value of the tension applied in the longitudinal direction of the magnetic tape is the set value set in the magnetic recording/reproducing apparatus.
  • measured at intervals of 1 m means that for a measurement target area having a length of L meters (m), the position of one end of the measurement target area is 0 m, and the direction toward the other end , and the position of the other end is Lm, the first measurement position is the position of 1m, and the last measurement position is one position before the position of Lm is the position of Also, when there are a plurality of servo band intervals, the servo band intervals are similarly measured for all the servo band intervals. The servo band interval thus measured is defined as the "servo band interval before storage" at each measurement position. After that, the magnetic tape cartridge is stored for one year under one of the five environments.
  • One year for retention period is 365 days.
  • the magnetic tape cartridge is placed in a measurement environment with an atmospheric temperature of 23° C. and a relative humidity of 50% for 5 days, and then, under the same measurement environment, a magnetic recording/reproduction having a tension adjusting mechanism that applies tension in the longitudinal direction of the magnetic tape.
  • the magnetic tape is run while a tension of 0.70 N is applied in the longitudinal direction of the magnetic tape.
  • the servo band spacing is measured in the same manner as previously described.
  • the servo band interval thus measured is defined as the "post-storage servo band interval" at each measurement position.
  • the difference between the servo band interval before storage and the servo band interval after storage measured at intervals of 1 m is obtained.
  • a plurality of difference values are thus obtained.
  • the maximum value of the absolute values of the obtained differences is taken as the amount of magnetic tape deformation after storage for one year in each environment for the magnetic tape cartridge to be measured.
  • the interval between two adjacent servo bands sandwiching a data band can be obtained using, for example, PES (Position Error Signal) obtained from a servo signal obtained by reading a servo pattern with a servo signal reading element.
  • PES Purition Error Signal
  • the magnetic tape cartridges to be measured are sequentially placed in one of the above five environments and stored for one year, and then the magnetic tape deformation amount is measured by the above method. 5
  • the storage order of the magnetic tape cartridges does not matter. Measurements are taken after storage in each environment sequentially in an arbitrary order. The maximum value among the five values of the magnetic tape deformation amount thus obtained for the five environments is taken as the magnetic tape maximum deformation amount after storage for one year under the five environments.
  • the various measurement environments described above are examples, and the magnetic tape cartridge is not limited to storage and/or use in the illustrated environments.
  • the thickness is 0.50 ⁇ m or less, preferably 0.40 ⁇ m or less, more preferably 0.30 ⁇ m or less, further preferably 0.20 ⁇ m or less, and 0.5 ⁇ m or less. It is more preferably 10 ⁇ m or less.
  • the maximum deformation of the magnetic tape after one-year storage in the five environments of the magnetic tape cartridge is, for example, 0.00 ⁇ m or more, 0.00 ⁇ m or more, 0.01 ⁇ m or more, 0.05 ⁇ m or more, or 0.10 ⁇ m or more. be able to.
  • the rate of change in the magnetic tape deformation amount with respect to the change in the relative humidity of the magnetic tape cartridge indicates that good recording and/or reproduction of data on the magnetic tape after storage in the magnetic tape cartridge can be achieved. From the viewpoint of making it possible to carry out the above, it is 0.0500 ⁇ m/% or less, preferably 0.0300 ⁇ m/% or less, and more preferably 0.0100 ⁇ m/% or less.
  • the tension applied to the longitudinal direction of the magnetic tape the dimension of the magnetic tape in the width direction is controlled to improve the running stability during recording and/or reproduction (hereinafter simply referred to as "running stability").
  • the rate of change in magnetic tape deformation with respect to change in relative humidity of the magnetic tape cartridge is 0.0001 ⁇ m/% or more, preferably 0.0005 ⁇ m/% or more, and 0.005 ⁇ m/% or more. It is more preferably 0010 ⁇ m/% or more, and even more preferably 0.0050 ⁇ m/% or more.
  • the rate of change in the amount of magnetic tape deformation with respect to the change in temperature of the magnetic tape cartridge ensures good recording and/or reproduction of data on the magnetic tape after storage in the magnetic tape cartridge. From the viewpoint of making it possible, it is 0.1000 ⁇ m/°C or less, preferably 0.0700 ⁇ m/°C or less, and more preferably 0.0500 ⁇ m/°C or less. On the other hand, from the viewpoint of improving running stability, the rate of change in magnetic tape deformation amount with respect to change in temperature of the magnetic tape cartridge is 0.0010 ⁇ m/° C. or more, preferably 0.0050 ⁇ m/° C. or more. It is more preferably 0.0070 ⁇ m/°C or more, and even more preferably 0.0100 ⁇ m/°C or more.
  • FIG. 1 is a schematic diagram showing an example of a magnetic recording/reproducing apparatus.
  • the magnetic recording/reproducing apparatus 10 shown in FIG. 1 controls the recording/reproducing head unit 12 according to commands from the control device 11 to record and reproduce data on the magnetic tape MT.
  • the magnetic recording/reproducing apparatus 10 has a structure capable of detecting and adjusting the tension exerted in the longitudinal direction of the magnetic tape from the spindle motors 17A and 17B that control the rotation of the cartridge reel 130 and the take-up reel 16 and their driving devices 18A and 18B. have.
  • the magnetic recording/reproducing apparatus 10 has a configuration in which a magnetic tape cartridge 13 can be mounted.
  • the magnetic recording/reproducing apparatus 10 has a cartridge memory read/write device 14 capable of reading from and writing to the cartridge memory 131 in the magnetic tape cartridge 13 .
  • the end of the magnetic tape MT or the leader pin is pulled out by an automatic loading mechanism or manually, and the magnetic layer surface of the magnetic tape MT is placed on the recording/reproducing head unit 12.
  • the magnetic tape MT is passed over the recording/reproducing head through guide rollers 15A and 15B so as to contact the surface of the recording/reproducing head, and the magnetic tape MT is taken up on the take-up reel 16.
  • FIG. A signal from the controller 11 controls the rotation and torque of the spindle motors 17A and 17B to run the magnetic tape MT at an arbitrary speed and tension.
  • a servo pattern preformed on the magnetic tape can be used to control the tape speed.
  • a tension detection mechanism may be provided between the magnetic tape cartridge 13 and the take-up reel 16 to detect tension. The tension may be adjusted using the guide rollers 15A and 15B in addition to the control by the spindle motors 17A and 17B.
  • the cartridge memory read/write device 14 is configured to be able to read and write information from the cartridge memory 131 according to commands from the control device 11 .
  • the ISO International Organization for Standardization
  • the control device 11 includes, for example, a control section, a storage section, a communication section, and the like.
  • the recording/reproducing head unit 12 is composed of, for example, a recording/reproducing head, a servo tracking actuator for adjusting the position of the recording/reproducing head in the track width direction, a recording/reproducing amplifier 19, a connector cable for connecting to the control device 11, and the like.
  • a recording/reproducing head is composed of, for example, a recording element for recording data on a magnetic tape, a reproducing element for reproducing data from the magnetic tape, and a servo signal reading element for reading a servo signal recorded on the magnetic tape.
  • one or more recording elements, one or more reproducing elements, and one or more servo signal reading elements are mounted in one magnetic head.
  • each element may be separately provided in a plurality of magnetic heads corresponding to the traveling direction of the magnetic tape.
  • the recording/reproducing head unit 12 is configured to be able to record data on the magnetic tape MT according to commands from the control device 11 . Further, according to a command from the control device 11, the data recorded on the magnetic tape MT can be reproduced.
  • the controller 11 determines the running position of the magnetic tape from the servo signal read from the servo band while the magnetic tape MT is running, and controls the servo so that the recording element and/or the reproducing element are positioned at the target running position (track position). It has a mechanism for controlling the tracking actuator. This track position control is performed, for example, by feedback control.
  • the control device 11 has a mechanism for obtaining a servo band interval from servo signals read from two adjacent servo bands while the magnetic tape MT is running.
  • the control device 11 can store the obtained servo band interval information in a storage unit inside the control device 11, the cartridge memory 131, an external connected device, or the like.
  • tension can be applied in the longitudinal direction of the magnetic tape during recording and/or reproduction.
  • the tension applied in the longitudinal direction of the magnetic tape is constant in one form and varies in another form.
  • the value of the tension applied in the longitudinal direction of the magnetic tape in the magnetic recording/reproducing apparatus is the tension that should be applied in the longitudinal direction of the magnetic tape.
  • the tension actually applied in the longitudinal direction of the magnetic tape in the magnetic recording/reproducing apparatus can be detected by, for example, a tension detection mechanism provided between the magnetic tape cartridge 13 and the take-up reel 16 in FIG.
  • the minimum tension does not fall below the value specified or recommended by the standard, etc., and / or the maximum tension does not exceed the value specified or recommended by the standard, etc. It can also be controlled by a control device of a magnetic recording/reproducing device or the like.
  • the magnetic recording/reproducing device can have a tension adjusting mechanism capable of adjusting the tension applied to the magnetic tape running in the magnetic recording/reproducing device in the longitudinal direction.
  • a tension adjusting mechanism can variably control the tension applied to the magnetic tape in the longitudinal direction, and preferably controls the widthwise dimension of the magnetic tape by adjusting the tension applied in the longitudinal direction of the magnetic tape. be able to.
  • the tension applied to the magnetic tape in the longitudinal direction can be changed.
  • Magnetic tape cartridge 2. Description of the Related Art
  • a magnetic tape is generally wound around a cartridge reel and housed inside the cartridge body.
  • the cartridge reel is rotatably provided inside the cartridge body.
  • the magnetic tape cartridge can be a single reel type magnetic tape cartridge in one form, and can be a dual reel type magnetic tape cartridge in another form.
  • the cartridge reel refers to the reel on which the magnetic tape after data recording and/or reproduction is mainly taken up when it is stored, and the other reel is taken up. shall be called a reel.
  • a single-reel type magnetic tape cartridge is mounted on a magnetic recording/reproducing apparatus for recording and/or reproducing data on the magnetic tape
  • the magnetic tape is pulled out from the magnetic tape cartridge, for example, as shown in FIG. It is taken up on the take-up reel of the magnetic recording/reproducing device as shown.
  • a magnetic head is arranged in the magnetic tape transport path from the magnetic tape cartridge to the take-up reel.
  • the magnetic tape is fed and wound between the cartridge reel (also called “supply reel") of the magnetic tape cartridge and the take-up reel of the magnetic recording/reproducing device, thereby running the magnetic tape.
  • data is recorded and/or reproduced by, for example, contacting and sliding between the magnetic head and the magnetic layer surface of the magnetic tape.
  • a twin-reel magnetic tape cartridge has both a supply reel and a take-up reel inside the magnetic tape cartridge.
  • the magnetic tape cartridge is preferably a single-reel magnetic tape cartridge that has been mainly used in the data storage field in recent years.
  • the magnetic tape cartridge can include a cartridge memory.
  • the cartridge memory can be, for example, a non-volatile memory, and either the tension adjustment information is already recorded or the tension adjustment information is recorded.
  • the tension adjustment information is information for adjusting the tension applied to the magnetic tape in the longitudinal direction.
  • FIG. 2 is a perspective view of an example of a magnetic tape cartridge.
  • FIG. 2 shows a single reel type magnetic tape cartridge.
  • the magnetic tape cartridge 13 shown in FIG. 2 has a case 112 .
  • the case 112 is formed in a rectangular box shape.
  • the case 112 is normally made of resin such as polycarbonate. Only one reel 130 is rotatably accommodated inside the case 112 .
  • FIG. 3 is a perspective view when starting to wind the magnetic tape around the reel.
  • FIG. 4 is a perspective view when the magnetic tape has been completely wound around the reel.
  • the reel 130 has a cylindrical reel hub 122 forming an axial center.
  • the reel hub is a cylindrical member that constitutes the axial center around which the magnetic tape is wound within the magnetic tape cartridge.
  • the reel hub may be a single-layered cylindrical member, or may be a multi-layered cylindrical member having two or more layers. From the viewpoint of manufacturing cost and ease of manufacturing, the reel hub is preferably a single-layered cylindrical member.
  • the reel hub When the magnetic tape is wound on the reel hub, it is considered that the reel hub receives a tightening force toward the center and tends to deform in the direction of decreasing the diameter.
  • a compressive stress is generated in the direction in which the tape length is shortened so as to correspond to the deformation of the reel hub. presumed to occur. It is believed that the greater the stress generated in this way, the more likely the magnetic tape will undergo large deformation during storage in the magnetic tape cartridge.
  • the rigidity of the reel hub is high, it is possible to suppress the above-mentioned deformation, so it is also possible to suppress the occurrence of the above-mentioned stress.
  • the bending elastic modulus of the material constituting at least the outer peripheral surface layer portion of the reel hub is preferably 5 GPa or more, more preferably 6 GPa or more, and even more preferably 7 GPa or more. , 8 GPa or more.
  • the flexural modulus can be, for example, 20 GPa or less, 15 GPa or less, or 10 GPa or less. However, since a high flexural modulus is preferable from the viewpoint of suppressing deformation of the reel hub, the flexural modulus may exceed the values exemplified here.
  • the bending elastic modulus is the bending elastic modulus of the material that constitutes the cylindrical member.
  • the bending elastic modulus is the bending elastic modulus of the material forming at least the outer peripheral side surface layer of the reel hub.
  • "flexural modulus” is a value determined according to JIS (Japanese Industrial Standards) K 7171:2016.
  • JIS K 7171:2016 is a Japanese Industrial Standard created based on ISO (International Organization for Standardization) 178 and Amendment 1:2013 published as the 5th edition in 2010 without changing the technical content.
  • a test piece used for measuring the flexural modulus is prepared according to JIS K 7171:2016 Item 6 "Test piece".
  • Examples of materials that make up the reel hub include resins and metals.
  • Examples of metals include aluminum.
  • Resin is preferable from the viewpoint of cost, productivity, and the like.
  • Examples of resins include fiber-reinforced resins.
  • Examples of fiber reinforced resins include glass fiber reinforced resins and carbon fiber reinforced resins. Fiber-reinforced polycarbonate is preferable as such a fiber-reinforced resin. This is because polycarbonate is easily procured and can be molded with high precision and at low cost using a general-purpose molding machine such as an injection molding machine.
  • the content of the glass fiber is 15% by mass or more. The higher the glass fiber content, the higher the flexural modulus of the glass fiber reinforced resin.
  • the glass fiber content of the glass fiber reinforced resin may be 50% by mass or less or 40% by mass or less.
  • glass fiber reinforced polycarbonate is preferable as the resin constituting the reel hub.
  • a high-strength resin generally called super engineering plastic can be used.
  • super engineering plastics is polyphenylene sulfide (PPS).
  • the thickness of the reel hub is preferably in the range of 2.0 to 3.0 mm from the viewpoint of achieving both the strength of the reel hub and dimensional accuracy during molding.
  • the thickness of the reel hub refers to the total thickness of the multi-layered reel hub of two or more layers.
  • the outer diameter of the reel hub is usually determined by the standard of the magnetic recording/reproducing device, and can be in the range of 20 to 60 mm, for example.
  • Both ends of the reel hub 122 are provided with flanges (lower flange 124 and upper flange 126) projecting radially outward from the lower end and upper end of the reel hub 122, respectively.
  • flanges lower flange 124 and upper flange 1266
  • the upper side is referred to as “upper”
  • the lower side is referred to as "lower”.
  • One or both of the lower flange 124 and the upper flange 126 are preferably configured integrally with the reel hub 122 from the viewpoint of reinforcing the upper end side and/or the lower end side of the reel hub 122 .
  • Integrally configured means configured as one member instead of separate members.
  • the reel hub 122 and upper flange 126 are constructed as one piece, which is joined to a separately constructed lower flange 124 in a known manner.
  • the reel hub 122 and lower flange 124 are constructed as one piece which is joined in a known manner to an upper flange 126 constructed as a separate piece.
  • the reel of the magnetic tape cartridge may be of any form.
  • Each member can be produced by a known molding method such as injection molding.
  • the magnetic tape MT is wound around the outer periphery of the reel hub 122 starting from the tape inner end Tf (see FIG. 3). Reducing the tension applied in the longitudinal direction of the magnetic tape when the magnetic tape is wound around the reel hub of the cartridge reel during manufacturing of the magnetic tape cartridge (hereinafter also referred to as "manufacturing winding tension") is one of the five circumstances. This can lead to a decrease in the maximum deformation of the magnetic tape after yearly storage, the rate of change in the amount of magnetic tape deformation with respect to relative humidity, and the rate of change in the amount of magnetic tape deformation with respect to temperature. From this point of view, the winding tension during manufacturing is preferably 0.40 N or less, and can be, for example, 0.30 N or less.
  • the as-manufactured winding tension can be, for example, 0.10 N or more, or 0.20 N or more, or it can be tension-free.
  • the manufacturing winding tension can be a constant value or can be varied.
  • the take-up tension at the time of manufacture is a set value that is set in the magnetic tape cartridge manufacturing apparatus.
  • the side wall of the case 112 has an opening 114 through which the magnetic tape MT wound around the reel 130 is drawn out.
  • a leader pin 116 that is pulled out while being locked by a pull-out member (not shown) is fixed.
  • the opening 114 is opened and closed by a door 118 .
  • the door 118 is formed in a rectangular plate shape with a size capable of closing the opening 114 , and is biased by a biasing member (not shown) in a direction to close the opening 114 .
  • the door 118 is opened against the biasing force of the biasing member.
  • the total length of the magnetic tape accommodated in the magnetic tape cartridge is not particularly limited, and can be, for example, in the range of approximately 800 m to 2500 m. From the viewpoint of increasing the capacity of the magnetic tape cartridge, it is preferable that the total length of the tape accommodated in one roll of the magnetic tape cartridge is longer.
  • a magnetic tape can be run between a cartridge reel (supply reel) and a take-up reel to record data on the magnetic tape and/or reproduce recorded data.
  • tension can be applied in the longitudinal direction of the magnetic tape during running.
  • the larger the tension applied to the magnetic tape in the longitudinal direction the larger the widthwise dimension of the magnetic tape can be shrunk (that is, the narrower the width can be made), and the smaller the tension, the smaller the shrinkage. can be reduced. Therefore, the dimension of the magnetic tape in the width direction can be controlled by the value of the tension applied in the longitudinal direction of the magnetic tape running in the magnetic recording/reproducing apparatus.
  • the magnetic tape can be run while a maximum tension of 0.50 N or more is applied in the longitudinal direction. If the magnetic tape is stored in the magnetic tape cartridge after running under such a high tension, the magnetic tape is likely to be deformed during storage. As described above, in the magnetic tape housed in the magnetic tape cartridge during storage, the portion near the cartridge reel is deformed wider than the initial width due to the compressive stress in the thickness direction of the tape, and the portion far from the cartridge reel is deformed in the longitudinal direction of the tape.
  • the longitudinal direction of the magnetic tape is It is preferable to set the tension applied in the direction to 0.40 N or less. As a result, the magnetic tape can be wound onto the cartridge reel with a tension smaller than the tension applied in the longitudinal direction during running, and stored in the magnetic tape cartridge.
  • the present inventor believes that it is possible to further suppress the In addition, regardless of whether or not tension is applied during running and the value of the tension, when the magnetic tape is wound around the cartridge reel after running, the tension applied in the longitudinal direction of the magnetic tape should be 0.40 N or less.
  • the inventor presumes that it is preferable to further suppress the occurrence of the phenomenon that may occur due to the deformation described above.
  • the maximum value of the tension can be 0.50 N or more, 0.60 N or more, 0.70 N or more, or 0.80 N. and such maximum values can be, for example, 1.50 N or less, 1.40 N or less, 1.30 N or less, 1.20 N or less, 1.10 N or less or 1.00 N or less.
  • the tension applied in the longitudinal direction of the magnetic tape during running can be a constant value or can be varied. In the case of a constant value, the tension applied in the longitudinal direction of the magnetic tape can be controlled by, for example, a controller of a magnetic recording/reproducing apparatus so that a constant tension is applied in the longitudinal direction of the magnetic tape.
  • the servo signal is used to acquire the dimension information in the width direction of the running magnetic tape, and the magnetic tape is stretched according to the acquired dimension information. can be changed by adjusting the tension applied in the longitudinal direction. Thereby, the dimension in the width direction of the magnetic tape can be controlled.
  • tension adjustment is as described above with reference to FIG.
  • the magnetic recording/reproducing device is not limited to the illustrated form.
  • the minimum value is, for example, 0.10 N or more, 0.20 N or more, 0.30 N or more, or 0.40 N or more. be able to.
  • such a minimum value can be, in one form, for example, 0.40N or less, or less than 0.40N, and in another form, 0.60N or less, or 0.50N or less.
  • Mode 1 At the end of running for data recording and/or reproduction, the entire length of the magnetic tape is taken up on the take-up reel.
  • Mode 2 At the end of running for data recording and/or reproduction, the entire length of the magnetic tape is wound on the cartridge reel.
  • Mode 3 At the end of running for data recording and/or reproduction, part of the magnetic tape is wound on the cartridge reel and part is wound on the take-up reel.
  • the tension (hereinafter also referred to as "rewinding tension”) when winding the running magnetic tape on the cartridge reel by applying tension in the longitudinal direction of the magnetic tape refers to the following tension.
  • the rewinding tension is the tension applied in the longitudinal direction of the magnetic tape when the entire length of the magnetic tape is wound around the cartridge reel to be accommodated in the magnetic tape cartridge.
  • the tension applied in the longitudinal direction of the magnetic tape is not particularly limited. It may or may not be a constant value, it may vary, and it may or may not follow the previous description of the value of the tension during running.
  • Form 3 can be either of the following two forms.
  • first form when the running for recording and/or reproducing data is finished, the portion of the magnetic tape wound around the cartridge reel is longitudinally stretched when wound around the cartridge reel. It is a form wound up with tension. The tension at the time of this winding is the rewinding tension.
  • the second form (form 3-2) is a form other than the form 3-1 of the third form.
  • tension applied in the longitudinal direction of the magnetic tape is applied when the magnetic tape that is not wound on the cartridge reel is wound onto the cartridge reel.
  • Form 3-2 is the same as form 2. That is, first, the magnetic tape is wound from the cartridge reel onto the take-up reel.
  • the rewinding tension is the tension applied in the longitudinal direction of the magnetic tape when the entire length of the magnetic tape is subsequently wound from the take-up reel onto the cartridge reel.
  • the tension (rewinding tension) applied in the longitudinal direction of the magnetic tape when wound on the cartridge reel is preferably 0.40 N or less.
  • the rewinding tension may be a constant value or may be changed.
  • the rewinding tension may be a constant value of 0.40N or less, or may be varied within a range of 0.40N or less.
  • the maximum value of the tension applied in the longitudinal direction of the magnetic tape when wound on the cartridge reel is preferably 0.40 N or less, and may be, for example, 0.30 N or less.
  • the minimum value of the tension applied in the longitudinal direction of the magnetic tape when wound on the cartridge reel can be, for example, 0.10 N or more, or 0.20 N or more, or can be less than the values exemplified here.
  • the tension (rewinding tension) at the time of winding onto the cartridge reel can be controlled by, for example, the control device of the magnetic recording/reproducing device.
  • an operation program is recorded in the cartridge memory and this program is controlled so that the set rewinding tension is applied in the longitudinal direction of the magnetic tape to wind the magnetic tape onto the cartridge reel. It may be read by the device to perform the winding operation.
  • Magnetic tape In the magnetic tape cartridge, the magnetic tape is wound around the cartridge reel and accommodated. The magnetic tape will be described in more detail below.
  • the magnetic tape includes a polyethylene naphthalate support having a Young's modulus of 10000 MPa (megapascal) or more in the width direction as a non-magnetic support (hereinafter also simply referred to as "support").
  • Polyethylene naphthalate is a resin containing a naphthalene ring and a plurality of ester bonds (that is, a polyester containing a naphthalene ring). It is a resin that can be obtained by subjecting a transesterification reaction and a polycondensation reaction to
  • polyethylene naphthalate has a structure having one or more other components (e.g., copolymer components, components introduced into terminals or side chains, etc.) in addition to the above components. is also included.
  • polyethylene naphthalate support means a support comprising at least one layer of polyethylene naphthalate film.
  • polyethylene naphthalate film refers to a film in which polyethylene naphthalate is the most abundant component on a mass basis among the components constituting this film.
  • the "polyethylene naphthalate support” in the present invention and the specification includes those in which all the resin films contained in this support are polyethylene naphthalate films, and those in which polyethylene naphthalate films and other resin films are included. is included.
  • Specific embodiments of the polyethylene naphthalate support include a single-layer polyethylene naphthalate film, a laminated film of two or more layers of polyethylene naphthalate films having the same constituents, and a laminate of two or more layers of polyethylene naphthalate films having different constituents.
  • Films laminate films containing one or more layers of polyethylene naphthalate films and one or more layers of resin films other than polyethylene naphthalate, and the like can be mentioned.
  • An adhesive layer or the like may optionally be included between two adjacent layers in the laminated film.
  • the polyethylene naphthalate support may also optionally include a metal film and/or a metal oxide film formed by vapor deposition or the like on one or both surfaces.
  • the non-magnetic support can be a biaxially stretched film, and may be a film subjected to corona discharge, plasma treatment, easy adhesion treatment, heat treatment, or the like.
  • the Young's modulus of a non-magnetic support is a value measured by the following method in a measurement environment of 23° C. and 50% relative humidity.
  • the Young's modulus shown in the table below is a value determined by the following method using Tensilon manufactured by Toyo Baldwin Co., Ltd. as a universal tensile tester. A sample piece cut out from a non-magnetic support to be measured is pulled by a universal tensile tester under the conditions of a distance between chucks of 100 mm, a tensile speed of 10 mm/min and a chart speed of 500 mm/min.
  • the universal tensile tester for example, a commercially available universal tensile tester such as Tensilon manufactured by Toyo Baldwin Co., Ltd. or a universal tensile tester with a known configuration can be used.
  • the Young's modulus in the longitudinal direction and width direction of the sample piece is calculated from the tangent to the rising portion of the load-elongation curve thus obtained.
  • the longitudinal direction and width direction of the sample piece mean the longitudinal direction and width direction when this sample piece is included in the magnetic tape.
  • the longitudinal direction and width direction of the non-magnetic support are removed by the above method. Young's modulus can also be obtained.
  • the Young's modulus of the polyethylene naphthalate support in the width direction is 10000 MPa or more.
  • the inclusion of such a non-magnetic support in the magnetic tape provides the maximum amount of deformation of the magnetic tape after storage for one year in five environments, the rate of change in the amount of deformation of the magnetic tape with respect to changes in relative humidity, and the amount of deformation of the magnetic tape with respect to changes in temperature.
  • the present inventor believes that it can contribute to controlling one or more selected from the group consisting of the rate of change in the above range.
  • the widthwise Young's modulus of the polyethylene naphthalate support may be, for example, 11000 MPa or more.
  • the widthwise Young's modulus of the polyethylene naphthalate support may be, for example, 20,000 MPa or less, 18,000 MPa or less, 16,000 MPa or less, or 14,000 MPa or less, or may exceed the values exemplified here.
  • the polyethylene naphthalate support may have a Young's modulus of 10000 MPa or more in the width direction, and the Young's modulus in the longitudinal direction is not particularly limited.
  • the longitudinal Young's modulus of the polyethylene naphthalate support is preferably 2500 MPa or more, more preferably 3000 MPa or more.
  • the longitudinal Young's modulus of the polyethylene naphthalate support may be, for example, 10000 MPa or less, 9000 MPa or less, 8000 MPa or less, 7000 MPa or less, or 6000 MPa or less.
  • a non-magnetic support When manufacturing a magnetic tape, a non-magnetic support is generally used with the MD (machine direction) of the film as the longitudinal direction and the TD (transverse direction) as the width direction.
  • the Young's modulus in the longitudinal direction and the Young's modulus in the width direction of the non-magnetic support can be the same value in one form, and can be different values in another form. In one form, the Young's modulus in the width direction of the polyethylene naphthalate support may be larger than the Young's modulus in the longitudinal direction.
  • Water content is also an index of the physical properties of the non-magnetic support.
  • the water content of the non-magnetic support is a value determined by the following method.
  • the water content shown in the table below is the value obtained by the following method.
  • a sample piece (for example, a sample piece with a mass of several grams) cut out from a non-magnetic support whose water content is to be measured is dried in a vacuum dryer at a temperature of 180° C. and a pressure of 100 Pa (pascal) or less until a constant weight is obtained.
  • W1 be the mass of the sample piece thus dried.
  • W1 is a value measured within 30 seconds after being removed from the vacuum dryer in a measurement environment of temperature 23° C. and relative humidity 50%.
  • W2 be the mass of this sample piece after it has been placed in an environment with a temperature of 25° C. and a relative humidity of 75% for 48 hours.
  • W2 is a value measured in a measurement environment with a temperature of 23° C. and a relative humidity of 50% within 30 seconds after being removed from the above environment.
  • the moisture content is calculated by the following formula.
  • Moisture content (%) [(W2-W1)/W1] x 100
  • the water content of the non-magnetic support may be determined by the above method. can.
  • the polyethylene naphthalate support preferably has a water content of 2.0% or less, more preferably 1.8% or less, even more preferably 1.6% or less, It is more preferably 1.4% or less, even more preferably 1.2% or less, and even more preferably 1.0% or less.
  • the water content of the polyethylene naphthalate support may be 0%, 0% or more, 0% or more, or 0.1% or more.
  • the water content and Young's modulus of the non-magnetic support can be controlled by the types and mixing ratios of the components constituting the support, manufacturing conditions of the support, and the like.
  • the Young's modulus in the longitudinal direction and the Young's modulus in the width direction can be controlled by adjusting the draw ratio in each direction in the biaxial stretching process.
  • ferromagnetic powder As the ferromagnetic powder contained in the magnetic layer of the magnetic tape, one or a combination of two or more ferromagnetic powders known as ferromagnetic powders used in the magnetic layers of various magnetic recording media can be used. From the viewpoint of improving the recording density, it is preferable to use ferromagnetic powder having a small average particle size. From this point of view, the average particle size of the ferromagnetic powder is preferably 50 nm or less, more preferably 45 nm or less, even more preferably 40 nm or less, even more preferably 35 nm or less, and 30 nm or less.
  • the average particle size of the ferromagnetic powder is preferably 5 nm or more, more preferably 8 nm or more, still more preferably 10 nm or more, and 15 nm or more. is more preferable, and 20 nm or more is even more preferable.
  • Hexagonal Ferrite Powder A preferred specific example of the ferromagnetic powder is hexagonal ferrite powder.
  • hexagonal ferrite powder for details of the hexagonal ferrite powder, for example, paragraphs 0012 to 0030 of JP-A-2011-225417, paragraphs 0134-0136 of JP-A-2011-216149, paragraphs 0013-0030 of JP-A-2012-204726 and Paragraphs 0029 to 0084 of JP-A-2015-127985 can be referred to.
  • hexagonal ferrite powder refers to ferromagnetic powder in which the crystal structure of hexagonal ferrite is detected as the main phase by X-ray diffraction analysis.
  • the main phase refers to the structure to which the highest intensity diffraction peak is attributed in the X-ray diffraction spectrum obtained by X-ray diffraction analysis.
  • the highest intensity diffraction peak in an X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the crystal structure of hexagonal ferrite, it is determined that the crystal structure of hexagonal ferrite has been detected as the main phase. do.
  • the crystal structure of hexagonal ferrite contains at least iron atoms, divalent metal atoms and oxygen atoms as constituent atoms.
  • a divalent metal atom is a metal atom that can become a divalent cation as an ion, and examples thereof include alkaline earth metal atoms such as strontium, barium, and calcium atoms, and lead atoms.
  • hexagonal strontium ferrite powder means that the main divalent metal atoms contained in this powder are strontium atoms
  • hexagonal barium ferrite powder means that the main divalent metal atoms contained in this powder are a barium atom as a divalent metal atom.
  • the main divalent metal atom means the divalent metal atom that accounts for the largest amount on an atomic % basis among the divalent metal atoms contained in the powder.
  • the above divalent metal atoms do not include rare earth atoms.
  • "Rare earth atoms" in the present invention and herein are selected from the group consisting of scandium atoms (Sc), yttrium atoms (Y), and lanthanide atoms.
  • Lanthanide atoms include lanthanum atom (La), cerium atom (Ce), praseodymium atom (Pr), neodymium atom (Nd), promethium atom (Pm), samarium atom (Sm), europium atom (Eu), gadolinium atom (Gd ), terbium atom (Tb), dysprosium atom (Dy), holmium atom (Ho), erbium atom (Er), thulium atom (Tm), ytterbium atom (Yb), and lutetium atom (Lu) be.
  • La lanthanum atom
  • Ce cerium atom
  • Pr praseodymium atom
  • Nd neodymium atom
  • Pm promethium atom
  • Sm samarium atom
  • Eu europium atom
  • Gd gadolinium atom
  • Tb terbium atom
  • Dy dys
  • the hexagonal strontium ferrite powder which is one form of the hexagonal ferrite powder, will be described in more detail below.
  • the activated volume of the hexagonal strontium ferrite powder is preferably in the range of 800-1600 nm 3 .
  • a finely divided hexagonal strontium ferrite powder exhibiting an activation volume within the above range is suitable for making a magnetic tape exhibiting excellent electromagnetic conversion characteristics.
  • the activated volume of the hexagonal strontium ferrite powder is preferably greater than or equal to 800 nm 3 , eg it can be greater than or equal to 850 nm 3 .
  • the activated volume of the hexagonal strontium ferrite powder is more preferably 1500 nm 3 or less, further preferably 1400 nm 3 or less, and 1300 nm 3 or less. is more preferable, 1200 nm 3 or less is even more preferable, and 1100 nm 3 or less is even more preferable.
  • the same is true for the activation volume of hexagonal barium ferrite powder.
  • the "activation volume” is a unit of magnetization reversal, and is an index indicating the magnetic size of a particle.
  • the activation volume and the anisotropy constant Ku described in the present invention and this specification were measured using a vibrating sample magnetometer at magnetic field sweep speeds of 3 minutes and 30 minutes at the coercive force Hc measurement unit (measurement Temperature: 23° C. ⁇ 1° C.), which is a value obtained from the following relational expression between Hc and activation volume V.
  • Hc 2Ku/Ms ⁇ 1 ⁇ [(kT/KuV)ln(At/0.693)] 1/2 ⁇
  • Ku anisotropy constant (unit: J/m 3 )
  • Ms saturation magnetization (unit: kA/m)
  • k Boltzmann constant
  • T absolute temperature (unit: K)
  • V activity volume (unit: cm 3 )
  • A spin precession frequency (unit: s ⁇ 1 )
  • t magnetic field reversal time (unit: s)]
  • An anisotropic constant Ku can be cited as an index for reducing thermal fluctuation, in other words, improving thermal stability.
  • the hexagonal strontium ferrite powder can preferably have a Ku of 1.8 ⁇ 10 5 J/m 3 or more, more preferably 2.0 ⁇ 10 5 J/m 3 or more.
  • Ku of the hexagonal strontium ferrite powder can be, for example, 2.5 ⁇ 10 5 J/m 3 or less.
  • the higher the Ku value the higher the thermal stability, which is preferable.
  • the hexagonal strontium ferrite powder may or may not contain rare earth atoms.
  • the hexagonal strontium ferrite powder contains rare earth atoms, it preferably contains 0.5 to 5.0 atomic % of rare earth atoms (bulk content) with respect to 100 atomic % of iron atoms.
  • the hexagonal strontium ferrite powder containing rare earth atoms can have uneven distribution of rare earth atoms on the surface layer.
  • rare earth atom surface uneven distribution refers to the rare earth atom content ratio (hereinafter referred to as “Rare earth atom surface layer content” or simply “surface layer content” with respect to rare earth atoms.) is obtained by completely dissolving hexagonal strontium ferrite powder with acid. (hereinafter referred to as “rare earth atom bulk content” or simply “bulk content” with respect to rare earth atoms), and Rare earth atom surface layer content/rare earth atom bulk content>1.0 means that the ratio of The rare earth atom content rate of the hexagonal strontium ferrite powder described later is synonymous with the rare earth atom bulk content rate.
  • the content of rare earth atoms in the solution obtained by partial dissolution is It is the rare earth atom content rate in the surface layer of the particles.
  • the rare earth atom surface layer portion content ratio satisfies the ratio of "rare earth atom surface layer portion content/rare earth atom bulk content ratio >1.0" means that the rare earth atoms are present in the surface layer portion of the particles constituting the hexagonal strontium ferrite powder. It means that it is unevenly distributed (that is, it exists more than inside).
  • the term "surface layer portion” means a partial region extending from the surface toward the inside of a particle that constitutes the hexagonal strontium ferrite powder.
  • the rare earth atom content is preferably in the range of 0.5 to 5.0 atomic % with respect to 100 atomic % of iron atoms.
  • the fact that the rare earth atoms are contained in the bulk content in the above range and that the rare earth atoms are unevenly distributed in the surface layer of the particles constituting the hexagonal strontium ferrite powder contributes to suppressing the decrease in reproduction output during repeated reproduction. Conceivable. This is because the hexagonal strontium ferrite powder contains rare earth atoms with a bulk content within the above range, and the rare earth atoms are unevenly distributed in the surface layers of the particles constituting the hexagonal strontium ferrite powder.
  • hexagonal strontium ferrite powder which has rare earth atoms unevenly distributed in the surface layer, as the ferromagnetic powder for the magnetic layer contributes to suppressing abrasion of the magnetic layer surface due to sliding against the magnetic head.
  • hexagonal strontium ferrite powder having rare earth atoms unevenly distributed on the surface layer can contribute to the improvement of the running durability of the magnetic tape. This is because the uneven distribution of rare earth atoms on the surfaces of the particles that make up the hexagonal strontium ferrite powder improves the interaction between the particle surfaces and organic substances (e.g., binders and/or additives) contained in the magnetic layer.
  • the rare earth atom content is in the range of 0.5 to 4.5 atomic %. is more preferable, the range of 1.0 to 4.5 atomic % is more preferable, and the range of 1.5 to 4.5 atomic % is even more preferable.
  • the above bulk content is the content obtained by completely dissolving the hexagonal strontium ferrite powder.
  • the atomic content refers to the bulk content obtained by completely dissolving the hexagonal strontium ferrite powder.
  • the hexagonal strontium ferrite powder containing rare earth atoms may contain only one kind of rare earth atoms as rare earth atoms, or may contain two or more kinds of rare earth atoms. When two or more rare earth atoms are included, the bulk content is determined for the total of two or more rare earth atoms. This point also applies to the present invention and other components in this specification. That is, unless otherwise specified, only one component may be used, or two or more components may be used. When two or more are used, the content or content refers to the total of two or more.
  • the contained rare earth atoms may be any one or more rare earth atoms.
  • Preferred rare earth atoms from the viewpoint of further suppressing a decrease in reproduction output in repeated reproduction include neodymium atoms, samarium atoms, yttrium atoms and dysprosium atoms, with neodymium atoms, samarium atoms and yttrium atoms being more preferred, and neodymium atoms. Atoms are more preferred.
  • the rare earth atoms need only be unevenly distributed on the surface layer of the particles constituting the hexagonal strontium ferrite powder, and the degree of uneven distribution is not limited.
  • the surface layer content of rare earth atoms obtained by partially dissolving under the dissolving conditions described later and the rare earth elements obtained by completely dissolving under the dissolving conditions described later The ratio of atoms to the bulk content, "surface layer content/bulk content", is greater than 1.0 and can be 1.5 or more.
  • the "surface layer content/bulk content” is greater than 1.0, it means that the rare earth atoms are unevenly distributed in the surface layer (ie, more present than in the interior) in the particles constituting the hexagonal strontium ferrite powder. do.
  • the ratio between the surface layer content of rare earth atoms obtained by partial dissolution under the dissolution conditions described later and the bulk content of rare earth atoms obtained by complete dissolution under the dissolution conditions described later, "surface layer content/ The “bulk content” can be, for example, 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, 5.0 or less, or 4.0 or less.
  • the rare earth atoms should be unevenly distributed in the surface layer portion of the particles constituting the hexagonal strontium ferrite powder.
  • "Ratio" is not limited to the exemplified upper or lower limits.
  • Partial dissolution and total dissolution of hexagonal strontium ferrite powder are described below.
  • sample powders for partial dissolution and total dissolution are taken from the same lot of powder.
  • part of the hexagonal strontium ferrite powder taken out from the magnetic layer is subjected to partial melting, and the other part is subjected to complete melting.
  • the hexagonal strontium ferrite powder can be extracted from the magnetic layer, for example, by the method described in paragraph 0032 of JP-A-2015-91747.
  • the partial dissolution means dissolution to such an extent that residual hexagonal strontium ferrite powder can be visually confirmed in the liquid at the end of dissolution.
  • a region of 10 to 20% by mass of the particles constituting the hexagonal strontium ferrite powder can be dissolved out of 100% by mass of the entire particles.
  • the above-mentioned complete dissolution means that the hexagonal strontium ferrite powder is dissolved to the point where no residue of the hexagonal strontium ferrite powder remains in the liquid at the end of dissolution.
  • the partial dissolution and the measurement of the surface layer portion content are performed, for example, by the following methods.
  • dissolution conditions such as the amount of sample powder described below are examples, and dissolution conditions that allow partial dissolution and complete dissolution can be arbitrarily adopted.
  • a container for example, a beaker
  • 10 mL of 1 mol/L hydrochloric acid is held on a hot plate with a set temperature of 70° C. for 1 hour.
  • the resulting solution is filtered through a 0.1 ⁇ m membrane filter.
  • Elemental analysis of the filtrate thus obtained is performed by an inductively coupled plasma (ICP) analyzer. In this way, the surface layer portion content of rare earth atoms relative to 100 atomic % of iron atoms can be obtained.
  • ICP inductively coupled plasma
  • the total content of all rare earth atoms is taken as the surface layer portion content.
  • This point also applies to the measurement of the bulk content.
  • the measurement of the total dissolution and bulk content is carried out, for example, by the following method.
  • a container for example, a beaker
  • sample powder containing 12 mg of sample powder and 10 mL of 4 mol/L hydrochloric acid is held on a hot plate with a set temperature of 80° C. for 3 hours. After that, the partial dissolution and the measurement of the surface layer portion content are carried out in the same manner as described above, and the bulk content with respect to 100 atom % of iron atoms can be obtained.
  • the ferromagnetic powder contained in the magnetic tape have a high mass magnetization ⁇ s.
  • hexagonal strontium ferrite powders containing rare earth atoms but not unevenly distributed in the surface layer of rare earth atoms tended to have a significantly lower ⁇ s compared to hexagonal strontium ferrite powders containing no rare earth atoms.
  • hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer is considered preferable in terms of suppressing such a large decrease in ⁇ s.
  • the ⁇ s of the hexagonal strontium ferrite powder can be 45 A ⁇ m 2 /kg or greater, and can also be 47 A ⁇ m 2 /kg or greater.
  • ⁇ s is preferably 80 A ⁇ m 2 /kg or less, more preferably 60 A ⁇ m 2 /kg or less.
  • the strontium atom content can be, for example, in the range of 2.0 to 15.0 atomic % with respect to 100 atomic % of iron atoms. .
  • the hexagonal strontium ferrite powder can have strontium atoms as the only divalent metal atoms contained in the powder.
  • the hexagonal strontium ferrite powder can also contain one or more other divalent metal atoms in addition to the strontium atoms. For example, it can contain barium atoms and/or calcium atoms.
  • the barium atom content and calcium atom content in the hexagonal strontium ferrite powder are, for example, 0.05 to 5 atoms per 100 atomic percent of iron atoms. can be in the range of .0 atomic %.
  • the hexagonal strontium ferrite powder may have any crystal structure.
  • the crystal structure can be confirmed by X-ray diffraction analysis.
  • the hexagonal strontium ferrite powder can have a single crystal structure or two or more crystal structures detected by X-ray diffraction analysis.
  • a hexagonal strontium ferrite powder can be one in which only the M-type crystal structure is detected by X-ray diffraction analysis.
  • M-type hexagonal ferrite is represented by a composition formula of AFe 12 O 19 .
  • A represents a divalent metal atom
  • the hexagonal strontium ferrite powder is M-type, A is only a strontium atom (Sr), or if A contains a plurality of divalent metal atoms, , as described above, strontium atoms (Sr) account for the largest amount on an atomic % basis.
  • the divalent metal atom content of the hexagonal strontium ferrite powder is usually determined by the type of crystal structure of the hexagonal ferrite, and is not particularly limited. The same applies to the iron atom content and the oxygen atom content.
  • the hexagonal strontium ferrite powder contains at least iron atoms, strontium atoms and oxygen atoms, and may also contain rare earth atoms.
  • the hexagonal strontium ferrite powder may or may not contain atoms other than these atoms.
  • the hexagonal strontium ferrite powder may contain aluminum atoms (Al).
  • the content of aluminum atoms can be, for example, 0.5 to 10.0 atomic % with respect to 100 atomic % of iron atoms.
  • the hexagonal strontium ferrite powder contains iron atoms, strontium atoms, oxygen atoms and rare earth atoms, and the content of atoms other than these atoms is 100 iron atoms.
  • the hexagonal strontium ferrite powder may contain no atoms other than iron atoms, strontium atoms, oxygen atoms and rare earth atoms.
  • the content expressed in atomic % above is the content of each atom (unit: mass %) obtained by completely dissolving the hexagonal strontium ferrite powder, and converted to the value expressed in atomic % using the atomic weight of each atom. It is required by conversion.
  • the phrase "not containing" an atom means that the content of the atom is 0% by mass as measured by an ICP analyzer after being completely dissolved.
  • the detection limit of an ICP analyzer is usually 0.01 ppm (parts per million) or less on a mass basis.
  • the above-mentioned "does not contain” shall be used in the sense of containing in an amount below the detection limit of the ICP analyzer.
  • the hexagonal strontium ferrite powder in one form, can be free of bismuth atoms (Bi).
  • Metal powder Ferromagnetic metal powder is also a preferred specific example of the ferromagnetic powder.
  • paragraphs 0137 to 0141 of JP-A-2011-216149 and paragraphs 0009-0023 of JP-A-2005-251351 can be referred to.
  • ⁇ -iron oxide powder A preferred specific example of the ferromagnetic powder is ⁇ -iron oxide powder.
  • ⁇ -iron oxide powder means a ferromagnetic powder in which the crystal structure of ⁇ -iron oxide is detected as the main phase by X-ray diffraction analysis.
  • X-ray diffraction analysis For example, when the highest intensity diffraction peak in the X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the crystal structure of ⁇ -iron oxide, it is determined that the crystal structure of ⁇ -iron oxide has been detected as the main phase.
  • a method for producing ⁇ -iron oxide powder a method of producing from goethite, a reverse micelle method, and the like are known.
  • the activated volume of the ⁇ -iron oxide powder is preferably in the range of 300-1500 nm 3 .
  • a finely divided ⁇ -iron oxide powder exhibiting an activation volume in the above range is suitable for making a magnetic tape exhibiting excellent electromagnetic conversion properties.
  • the activated volume of the ⁇ -iron oxide powder is preferably greater than or equal to 300 nm 3 and may eg be greater than or equal to 500 nm 3 .
  • the activated volume of the ⁇ -iron oxide powder is more preferably 1400 nm 3 or less, further preferably 1300 nm 3 or less, and 1200 nm 3 or less. is more preferable, and 1100 nm 3 or less is even more preferable.
  • An anisotropic constant Ku can be cited as an index for reducing thermal fluctuation, in other words, improving thermal stability.
  • the ⁇ -iron oxide powder can preferably have a Ku of 3.0 ⁇ 10 4 J/m 3 or more, more preferably 8.0 ⁇ 10 4 J/m 3 or more.
  • Ku of the ⁇ -iron oxide powder can be, for example, 3.0 ⁇ 10 5 J/m 3 or less.
  • a higher Ku means a higher thermal stability, which is preferable, and thus is not limited to the values exemplified above.
  • the ferromagnetic powder contained in the magnetic tape have a high mass magnetization ⁇ s.
  • the ⁇ s of the ⁇ -iron oxide powder can be 8 A ⁇ m 2 /kg or greater, and can also be 12 A ⁇ m 2 /kg or greater.
  • ⁇ s of the ⁇ -iron oxide powder is preferably 40 A ⁇ m 2 /kg or less, more preferably 35 A ⁇ m 2 /kg or less, from the viewpoint of noise reduction.
  • the average particle size of various powders such as ferromagnetic powder is a value measured by the following method using a transmission electron microscope.
  • the powder is photographed with a transmission electron microscope at a magnification of 100,000 times and printed on photographic paper at a total magnification of 500,000 times to obtain a photograph of the particles constituting the powder.
  • the particles of interest are selected from the photograph of the particles obtained, and the contours of the particles are traced with a digitizer to measure the size of the particles (primary particles).
  • Primary particles refer to individual particles without agglomeration.
  • the above measurements are performed on 500 randomly selected particles. The arithmetic mean of the particle sizes of the 500 particles thus obtained is taken as the average particle size of the powder.
  • the transmission electron microscope for example, Hitachi's H-9000 transmission electron microscope can be used. Further, the particle size can be measured using known image analysis software such as Carl Zeiss image analysis software KS-400. Unless otherwise specified, the average particle size shown in the examples below was measured using a transmission electron microscope H-9000 manufactured by Hitachi, and image analysis software KS-400 manufactured by Carl Zeiss as image analysis software. value.
  • powder means a collection of particles.
  • ferromagnetic powder means an aggregate of ferromagnetic particles.
  • the aggregation of a plurality of particles is not limited to the form in which the particles constituting the aggregation are in direct contact, but also includes the form in which a binder, an additive, etc., which will be described later, is interposed between the particles. be.
  • the term particles is sometimes used to describe powders.
  • the size of the particles constituting the powder is the shape of the particles observed in the above particle photographs.
  • particle size is the shape of the particles observed in the above particle photographs.
  • (1) In the case of needle-like, spindle-like, columnar (however, the height is greater than the maximum major diameter of the bottom surface), etc., the length of the major axis constituting the particle, that is, the major axis length,
  • (2) In the case of a plate-like or columnar shape (where the thickness or height is smaller than the maximum major diameter of the plate surface or bottom surface), it is expressed by the maximum major diameter of the plate surface or bottom surface
  • (3) If the particle is spherical, polyhedral, irregular, or the like, and the major axis of the particle cannot be specified from the shape, it is represented by the equivalent circle diameter.
  • Equivalent circle diameter means the diameter obtained by circular projection method.
  • the average acicular ratio of the powder is obtained by measuring the length of the minor axis of the particles in the above measurement, that is, the minor axis length, and obtaining the value of (long axis length / minor axis length) of each particle. It refers to the arithmetic mean of the values obtained for the particles.
  • the minor axis length is the length of the minor axis constituting the particle in the case of (1) in the definition of the particle size, and the thickness or height in the case of (2).
  • (long axis length/short axis length) is regarded as 1 for convenience.
  • the average particle size is the average major axis length
  • the average particle size is Average plate diameter
  • the average particle size is the average diameter (also referred to as average particle size or average particle size).
  • the ferromagnetic powder content (filling rate) in the magnetic layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass, relative to the total mass of the magnetic layer.
  • a high filling rate of the ferromagnetic powder in the magnetic layer is preferable from the viewpoint of improving the recording density.
  • the magnetic tape may be a coated magnetic tape, and the magnetic layer may contain a binder.
  • a binder is one or more resins.
  • various resins commonly used as binders for coated magnetic tapes can be used.
  • binders include polyurethane resins, polyester resins, polyamide resins, vinyl chloride resins, acrylic resins obtained by copolymerizing styrene, acrylonitrile, methyl methacrylate, etc., cellulose resins such as nitrocellulose, epoxy resins, phenoxy resins, polyvinyl acetal,
  • a resin selected from polyvinyl alkylal resins such as polyvinyl butyral can be used singly, or a plurality of resins can be mixed and used.
  • polyurethane resins acrylic resins, cellulose resins, and vinyl chloride resins. These resins may be homopolymers or copolymers. These resins can also be used as binders in the non-magnetic layer and/or backcoat layer, which will be described later. Paragraphs 0028 to 0031 of JP-A-2010-24113 can be referred to for the above binders.
  • the weight-average molecular weight of the resin used as the binder can be, for example, 10,000 or more and 200,000 or less.
  • the weight average molecular weight in the present invention and the specification is a value obtained by converting a value measured by gel permeation chromatography (GPC) under the following measurement conditions into polystyrene.
  • the weight-average molecular weight of the binder shown in the examples below is a value obtained by converting the value measured under the following measurement conditions into polystyrene.
  • the binder can be used in an amount of, for example, 1.0 to 30.0 parts by mass with respect to 100.0 parts by mass of the ferromagnetic powder.
  • GPC device HLC-8120 (manufactured by Tosoh Corporation) Column: TSK gel Multipore HXL-M (manufactured by Tosoh Corporation, 7.8 mmID (Inner Diameter) ⁇ 30.0 cm)
  • Eluent Tetrahydrofuran (THF)
  • Curing agents can also be used with resins that can be used as binders.
  • the curing agent can be, in one form, a thermosetting compound which is a compound in which a curing reaction (crosslinking reaction) proceeds by heating, and in another form, a photocuring compound in which a curing reaction (crosslinking reaction) proceeds by light irradiation. can be a chemical compound.
  • the curing agent can be contained in the magnetic layer in a state where at least a portion of it reacts (crosslinks) with other components such as a binder as the curing reaction progresses during the process of forming the magnetic layer. In this respect, when the composition used for forming other layers contains a curing agent, the same applies to layers formed using this composition.
  • Preferred curing agents are thermosetting compounds, preferably polyisocyanates.
  • the curing agent is contained in the composition for forming the magnetic layer in an amount of, for example, 0 to 80.0 parts by weight per 100.0 parts by weight of the binder, and preferably 50.0 to 80.0 parts by weight from the viewpoint of improving the strength of the magnetic layer. Parts by weight amounts can be used.
  • the magnetic layer may optionally contain one or more additives.
  • additives Commercially available additives can be appropriately selected and used according to desired properties. Alternatively, a compound synthesized by a known method can be used as an additive. Additives can be used in any amount. Examples of additives include the curing agents described above.
  • Additives contained in the magnetic layer include nonmagnetic powders (e.g., inorganic powders, carbon black, etc.), lubricants, dispersants, dispersing aids, antifungal agents, antistatic agents, antioxidants, and the like. can be done. For example, regarding lubricants, paragraphs 0030 to 0033, 0035 and 0036 of JP-A-2016-126817 can be referred to.
  • a non-magnetic layer may contain a lubricant.
  • Paragraphs 0030 to 0031, 0034, 0035 and 0036 of JP-A-2016-126817 can be referred to for lubricants that can be contained in the non-magnetic layer.
  • paragraphs 0061 and 0071 of JP-A-2012-133837 can be referred to.
  • a dispersant may be added to the non-magnetic layer forming composition. See paragraph 0061 of JP-A-2012-133837 for the dispersant that can be added to the composition for forming a non-magnetic layer.
  • the non-magnetic powder that can be contained in the magnetic layer includes a non-magnetic powder that can function as an abrasive, and a non-magnetic powder that can function as a protrusion-forming agent that forms moderately protruding protrusions on the surface of the magnetic layer.
  • abrasives paragraphs 0030 to 0032 of JP-A-2004-273070 can be referred to.
  • the protrusion-forming agent colloidal particles are preferred, inorganic colloidal particles are preferred from the viewpoint of availability, inorganic oxide colloidal particles are more preferred, and silica colloidal particles (colloidal silica) are even more preferred.
  • the average particle size of the abrasive and protrusion-forming agent each preferably ranges from 30 to 200 nm, more preferably from 50 to 100 nm.
  • the magnetic layer described above can be provided directly on the surface of the non-magnetic support or indirectly via the non-magnetic layer.
  • the magnetic tape may have a magnetic layer directly on the surface of the non-magnetic support, or may have a magnetic layer on the surface of the non-magnetic support via a non-magnetic layer containing non-magnetic powder.
  • the non-magnetic powder used in the non-magnetic layer may be inorganic powder or organic powder. Carbon black or the like can also be used. Examples of powders of inorganic substances include powders of metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides, and the like. These non-magnetic powders are commercially available and can be produced by known methods.
  • paragraphs 0146 to 0150 of Japanese Patent Application Laid-Open No. 2011-216149 can be referred to.
  • carbon black that can be used in the non-magnetic layer see paragraphs 0040 and 0041 of JP-A-2010-24113.
  • the nonmagnetic powder content (filling rate) in the nonmagnetic layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass, based on the total mass of the nonmagnetic layer. .
  • the non-magnetic layer can contain a binder and can also contain additives.
  • Known techniques for nonmagnetic layers can be applied to other details such as binders and additives for the nonmagnetic layer.
  • the type and content of the binder, the type and content of the additive, etc. can be applied to known techniques relating to the magnetic layer.
  • non-magnetic layers include non-magnetic powders as well as substantially non-magnetic layers containing a small amount of ferromagnetic powders, for example as impurities or intentionally.
  • the substantially non-magnetic layer means that the residual magnetic flux density of this layer is 10 mT or less, the coercive force is 7.96 kA/m (100 Oe) or less, or the residual magnetic flux density is 10 mT or less. and a coercive force of 7.96 kA/m (100 Oe) or less.
  • the non-magnetic layer preferably has no residual magnetic flux density and no coercive force.
  • the magnetic tape may or may not have a back coat layer containing non-magnetic powder on the surface of the non-magnetic support opposite to the surface having the magnetic layer.
  • the backcoat layer preferably contains one or both of carbon black and inorganic powder.
  • the backcoat layer may contain a binder and may also contain additives.
  • binders and additives for the backcoat layer known techniques for the backcoat layer can be applied, and known techniques for the formulation of the magnetic layer and/or the non-magnetic layer can also be applied. For example, paragraphs 0018 to 0020 of JP-A-2006-331625 and US Pat. .
  • the thickness (total thickness) of magnetic tapes As for the thickness (total thickness) of magnetic tapes, with the enormous increase in the amount of information in recent years, magnetic tapes are required to have a higher recording capacity (higher capacity). Means for increasing the capacity include reducing the thickness of the magnetic tape (hereinafter also referred to as "thinning") and increasing the length of the magnetic tape accommodated per roll of the magnetic tape cartridge. From this point, the thickness (total thickness) of the magnetic tape is preferably 5.6 ⁇ m or less, more preferably 5.5 ⁇ m or less, more preferably 5.4 ⁇ m or less, and more preferably 5.3 ⁇ m. It is more preferably 5.2 ⁇ m or less, and even more preferably 5.2 ⁇ m or less. From the viewpoint of ease of handling, the thickness of the magnetic tape is preferably 3.0 ⁇ m or more, more preferably 3.5 ⁇ m or more.
  • the thickness (total thickness) of the magnetic tape can be measured by the following method. Ten tape samples (for example, 5 to 10 cm in length) are cut out from an arbitrary portion of the magnetic tape, these tape samples are overlapped, and the thickness is measured. The value (thickness per tape sample) obtained by dividing the measured thickness by 1/10 is taken as the tape thickness. The thickness measurement can be performed using a known measuring instrument capable of measuring thickness on the order of 0.1 ⁇ m.
  • the thickness of the nonmagnetic support can be, for example, 3.0 ⁇ m or more, and can be, for example, 5.0 ⁇ m or less, 4.8 ⁇ m or less, 4.6 ⁇ m or less, 4.4 ⁇ m or less, or 4.2 ⁇ m or less. can.
  • the thickness of the magnetic layer can be optimized depending on the saturation magnetization amount of the magnetic head to be used, the head gap length, the recording signal band, etc., and is generally 0.01 ⁇ m to 0.15 ⁇ m. , preferably 0.02 ⁇ m to 0.12 ⁇ m, more preferably 0.03 ⁇ m to 0.1 ⁇ m.
  • At least one magnetic layer is sufficient, and the magnetic layer may be separated into two or more layers having different magnetic properties, and a known multilayer magnetic layer structure can be applied.
  • the thickness of the magnetic layer when separated into two or more layers is the total thickness of these layers.
  • the thickness of the nonmagnetic layer is, for example, 0.1 to 1.5 ⁇ m, preferably 0.1 to 1.0 ⁇ m.
  • the thickness of the backcoat layer is preferably 0.9 ⁇ m or less, more preferably 0.1 to 0.7 ⁇ m.
  • Various thicknesses such as the thickness of the magnetic layer can be obtained by the following methods. After exposing a section of the magnetic tape in the thickness direction with an ion beam, the exposed section is observed with a scanning electron microscope. Various thicknesses can be determined as the arithmetic mean of the thicknesses determined at two arbitrary locations in cross-sectional observation. Alternatively, various thicknesses can be obtained as design thicknesses calculated from manufacturing conditions and the like.
  • a composition for forming a magnetic layer, a non-magnetic layer, or a backcoat layer usually contains a solvent along with the various components described above.
  • the solvent one or more of various solvents commonly used in the production of coating-type magnetic recording media can be used.
  • the solvent content of each layer-forming composition is not particularly limited. Regarding the solvent, paragraph 0153 of JP-A-2011-216149 can be referred to.
  • the solid content concentration and solvent composition of each layer-forming composition may be appropriately adjusted according to the handling properties of the composition, the coating conditions, and the thickness of each layer to be formed.
  • the process of preparing a composition for forming a magnetic layer, non-magnetic layer or backcoat layer usually includes at least a kneading process, a dispersing process, and a mixing process provided before or after these processes as required. can be done. Each individual step may be divided into two or more steps. Various components used for preparing each layer-forming composition may be added at the beginning or in the middle of any step. Alternatively, individual components may be added in portions in two or more steps. For example, the binder may be dividedly added in the kneading step, the dispersing step, and the mixing step for viscosity adjustment after dispersion. Conventionally known manufacturing techniques can be used as part of the manufacturing process of the magnetic tape.
  • a kneader having a strong kneading force such as an open kneader, continuous kneader, pressure kneader, extruder, or the like can be used. Details of the kneading process are described in JP-A-1-106338 and JP-A-1-79274.
  • the dispersing machine various known dispersing machines using shearing force such as a bead mill, a ball mill, a sand mill and a homomixer can be used.
  • Dispersing beads can preferably be used for dispersing. Dispersed beads include ceramic beads, glass beads and the like, and zirconia beads are preferred.
  • the bead diameter (particle size) and bead filling rate of the dispersed beads are not particularly limited, and may be set according to the powder to be dispersed.
  • Each layer-forming composition may be filtered by a known method before being applied to the coating step. Filtration can be performed, for example, by filter filtration.
  • a filter used for filtration for example, a filter having a pore size of 0.01 to 3 ⁇ m (eg, glass fiber filter, polypropylene filter, etc.) can be used.
  • the magnetic layer can be formed by directly coating the magnetic layer-forming composition on the surface of the non-magnetic support, or by sequentially or simultaneously coating the magnetic layer-forming composition with the non-magnetic layer-forming composition.
  • the backcoat layer is formed by applying a backcoat layer-forming composition to the surface opposite to the surface of the nonmagnetic support having the nonmagnetic layer and/or the magnetic layer (or the nonmagnetic layer and/or the magnetic layer is subsequently provided). It can be formed by coating the surface. For details of coating for forming each layer, paragraph 0066 of JP-A-2010-231843 can be referred to.
  • the coating layer of the composition for forming the magnetic layer can be subjected to orientation treatment in the orientation zone while the coating layer is in a wet state.
  • Various known techniques including those described in paragraph 0052 of JP-A-2010-24113 can be applied to the alignment treatment.
  • the vertical alignment treatment can be performed by a known method such as a method using opposed magnets with different polarities.
  • the drying speed of the coating layer can be controlled by the temperature and air volume of the drying air and/or the conveying speed in the orientation zone.
  • the coated layer may be pre-dried before being conveyed to the orientation zone.
  • the magnetic field strength in the vertical alignment process can be 0.1-1.5T.
  • a long magnetic tape raw material can be obtained by going through various processes.
  • the obtained magnetic tape material is cut (slit) into the width of the magnetic tape to be wound on the magnetic tape cartridge by a known cutting machine.
  • Servo patterns are usually formed on a magnetic tape obtained by slitting. The details of the formation of the servo pattern will be described later.
  • the magnetic tape can be a magnetic tape manufactured through the following heat treatment.
  • the magnetic tape can be manufactured without undergoing heat treatment as described below.
  • the following heat treatment reduces the maximum deformation of the magnetic tape after one-year storage in the five environments, the rate of change in the amount of magnetic tape deformation with respect to relative humidity, and the rate of change in the amount of magnetic tape deformation with respect to temperature. can lead to
  • the magnetic tape that has been slit and cut to a width determined according to the standard can be wound around the core member, and the heat treatment can be performed in the wound state.
  • the heat treatment is performed while the magnetic tape is wound around a core member for heat treatment (hereinafter referred to as "core for heat treatment"), and the magnetic tape after the heat treatment is placed on the cartridge reel of the magnetic tape cartridge.
  • core for heat treatment a core member for heat treatment
  • a magnetic tape cartridge in which a magnetic tape is wound around a cartridge reel can be manufactured.
  • the core for heat treatment can be made of metal, resin, paper, or the like. From the viewpoint of suppressing the occurrence of winding failures such as spokes, it is preferable that the material of the core for heat treatment be a material with high rigidity. From this point of view, the core for heat treatment is preferably made of metal or resin.
  • the bending elastic modulus of the material of the core for heat treatment is preferably 0.2 GPa or more, more preferably 0.3 GPa or more.
  • the bending elastic modulus of the material of the core for heat treatment is preferably 250 GPa or less.
  • the core for heat treatment can be a solid or hollow core member. In the case of a hollow shape, the thickness is preferably 2 mm or more from the viewpoint of maintaining rigidity.
  • the core for heat treatment may or may not have a flange.
  • a magnetic tape to be wound around the core for heat treatment prepare a magnetic tape that is longer than the length to be finally accommodated in the magnetic tape cartridge (hereinafter referred to as "final product length"), and wrap this magnetic tape around the core for heat treatment.
  • the heat treatment is carried out by placing in a heat treatment environment in a wound state.
  • the length of the magnetic tape to be wound around the heat-treating core is equal to or longer than the final product length, and from the viewpoint of ease of winding around the heat-treating core, it is preferable to set it to "final product length + ⁇ ". This ⁇ is preferably 5 m or more from the viewpoint of ease of winding.
  • a tension of 0.10 N or more is preferable when the film is wound onto the core for heat treatment.
  • the tension during winding onto the core for heat treatment is preferably 1.50 N or less, more preferably 1.00 N or less.
  • the outer diameter of the core for heat treatment is preferably 20 mm or more, more preferably 40 mm or more, from the viewpoint of ease of winding and suppression of coiling (curling in the longitudinal direction). Further, the outer diameter of the core for heat treatment is preferably 100 mm or less, more preferably 90 mm or less.
  • the width of the core for heat treatment should be equal to or greater than the width of the magnetic tape wound around the core.
  • the magnetic tape and the heat-treating core are sufficiently cooled before the magnetic tape is removed in order to prevent unintended deformation of the tape during the removal operation.
  • the removed magnetic tape is first wound on another core (called a "temporary take-up core"), and then the magnetic tape cartridge reel (generally with an outer diameter of 40 to 50 mm).
  • the magnetic tape can be wound onto the cartridge reel of the magnetic tape cartridge while maintaining the relationship between the inner side and the outer side of the magnetic tape with respect to the core for heat treatment during heat treatment.
  • the above description regarding the heat treatment winding core can be referred to.
  • the length of "+ ⁇ " may be cut at an arbitrary stage.
  • the final product length of the magnetic tape may be wound from the temporary take-up core onto the reel of the magnetic tape cartridge, and the remaining "+ ⁇ " length may be cut off.
  • the ⁇ is preferably 20 m or less.
  • the ambient temperature for heat treatment (hereinafter referred to as “heat treatment temperature”) is preferably 40° C. or higher, more preferably 50° C. or higher.
  • the heat treatment temperature is preferably 75° C. or lower, more preferably 70° C. or lower, and even more preferably 65° C. or lower.
  • the weight absolute humidity of the atmosphere in which the heat treatment is performed is preferably 0.1 g/kg Dry air or more, more preferably 1 g/kg Dry air or more. An atmosphere having a weight absolute humidity within the above range is preferable because it can be prepared without using a special device for reducing moisture.
  • the weight absolute humidity is preferably 70 g/kg dry air or less, more preferably 66 g/kg dry air or less, from the viewpoint of suppressing dew condensation and deterioration of workability.
  • the heat treatment time is preferably 0.3 hours or longer, more preferably 0.5 hours or longer. Moreover, the heat treatment time is preferably 48 hours or less from the viewpoint of production efficiency.
  • the magnetic tape has a plurality of servo bands on the magnetic layer.
  • a servo band is composed of servo patterns that are continuous in the longitudinal direction of the magnetic tape.
  • the servo pattern can enable tracking control of a magnetic head in a magnetic recording/reproducing apparatus, control of running speed of the magnetic tape, and the like.
  • "Formation of servo patterns” can also be called “recording of servo signals.” For example, by using a servo signal to acquire information on the width of the running magnetic tape, and adjusting and changing the tension applied to the longitudinal direction of the magnetic tape according to the acquired information on the dimensions, the magnetic tape can be can control the width dimension of the
  • a servo pattern is formed along the longitudinal direction of the magnetic tape.
  • Methods of control using servo signals include timing-based servo (TBS), amplitude servo, frequency servo, and the like.
  • a magnetic tape conforming to the LTO (Linear Tape-Open) standard adopts a timing-based servo system.
  • LTO tape Linear Tape-Open
  • a servo pattern is composed of a plurality of non-parallel pairs of magnetic stripes (also called “servo stripes”) arranged continuously in the longitudinal direction of the magnetic tape.
  • a servo system is a system that performs head tracking using a servo signal.
  • the term "timing-based servo pattern” refers to a servo pattern that enables head tracking in a timing-based servo system servo system.
  • the reason why the servo pattern is composed of a pair of non-parallel magnetic stripes is to inform the servo signal reading element passing over the servo pattern of its passing position.
  • the pair of magnetic stripes are formed so that the interval between them changes continuously along the width direction of the magnetic tape. and the relative position of the servo signal reading element. This relative position information enables tracking of the data tracks. For this reason, a plurality of servo tracks are usually set on the servo pattern along the width direction of the magnetic tape.
  • a servo band is composed of servo patterns that are continuous in the longitudinal direction of the magnetic tape.
  • the magnetic tape has a plurality of servo bands on the magnetic layer. For example, in LTO tape, the number is five.
  • a data band is an area sandwiched between two adjacent servo bands.
  • the data band is composed of a plurality of data tracks, each data track corresponding to each servo track.
  • each servo band includes information indicating the number of the servo band ("servo band ID (identification)” or "UDIM (Unique Data Band Identification)”).
  • Method also called information
  • This servo band ID is recorded by shifting a specific one of a plurality of pairs of servo stripes in the servo band so that the position thereof is relatively displaced in the longitudinal direction of the magnetic tape. Specifically, the method of shifting a specific one of a plurality of pairs of servo stripes is changed for each servo band.
  • the recorded servo band ID is unique for each servo band, so that one servo band can be uniquely specified only by reading one servo band with a servo signal reading element.
  • a method for uniquely specifying a servo band there is also a method using a staggered method as shown in ECMA-319 (June 2001).
  • this staggered method groups of non-parallel pairs of magnetic stripes (servo stripes) arranged continuously in the longitudinal direction of the magnetic tape are recorded so as to be shifted in the longitudinal direction of the magnetic tape for each servo band. do. Since this combination of shifts between adjacent servo bands is unique for the entire magnetic tape, the servo band can be uniquely identified when reading the servo pattern with two servo signal reading elements. It is possible.
  • each servo band information indicating the position in the longitudinal direction of the magnetic tape (also called “LPOS (Longitudinal Position) information”) is also usually embedded as indicated in ECMA-319 (June 2001).
  • LPOS Longitudinal Position
  • this LPOS information is also recorded by shifting the positions of a pair of servo stripes in the longitudinal direction of the magnetic tape.
  • the same signal is recorded in each servo band in this LPOS information.
  • UDIM and LPOS information can also be embedded in the servo band.
  • the embedded information may be different for each servo band, such as UDIM information, or common to all servo bands, such as LPOS information.
  • a method of embedding information in the servo band it is possible to adopt a method other than the above.
  • a predetermined code may be recorded by thinning out a predetermined pair from a group of paired servo stripes.
  • the servo pattern forming head is called a servo write head.
  • a servo write head normally has a pair of gaps corresponding to the pair of magnetic stripes as many as the number of servo bands.
  • a core and a coil are connected to each pair of gaps, and by supplying current pulses to the coils, a magnetic field generated in the core can generate a leakage magnetic field in the pair of gaps.
  • the magnetic pattern corresponding to the pair of gaps is transferred onto the magnetic tape by inputting a current pulse while the magnetic tape is running over the servo write head, thereby forming the servo pattern. can be done.
  • the width of each gap can be appropriately set according to the density of the servo pattern to be formed.
  • the width of each gap can be set to, for example, 1 ⁇ m or less, 1 to 10 ⁇ m, or 10 ⁇ m or more.
  • the magnetic tape is usually demagnetized (erase).
  • This erasing process can be performed by applying a uniform magnetic field to the magnetic tape using a DC magnet or an AC magnet.
  • the erase process includes DC (Direct Current) erase and AC (Alternating Current) erase.
  • AC erase is performed by gradually decreasing the strength of the magnetic field while reversing the direction of the magnetic field applied to the magnetic tape.
  • DC erase is performed by applying a unidirectional magnetic field to the magnetic tape.
  • the first method is a horizontal DC erase that applies a unidirectional magnetic field along the length of the magnetic tape.
  • the second method is perpendicular DC erase, in which a unidirectional magnetic field is applied along the thickness of the magnetic tape.
  • the erase process may be performed on the entire magnetic tape, or may be performed on each servo band of the magnetic tape.
  • the direction of the magnetic field of the formed servo pattern is determined according to the erase direction. For example, when horizontal DC erasing is performed on a magnetic tape, the servo pattern is formed so that the direction of the magnetic field is opposite to the direction of erasing. As a result, the output of the servo signal obtained by reading the servo pattern can be increased.
  • the formed servo pattern is read and obtained.
  • the servo signal has a unipolar pulse shape.
  • a servo signal obtained by reading the formed servo pattern has a bipolar pulse shape.
  • the magnetic tape After forming the servo pattern, the magnetic tape is usually wound around the reel hub of the cartridge reel and housed in the magnetic tape cartridge.
  • the vertical squareness ratio of the magnetic tape can be, for example, 0.55 or more, preferably 0.60 or more. It is preferable from the viewpoint of improving the electromagnetic conversion characteristics that the vertical squareness ratio of the magnetic tape is 0.60 or more.
  • the upper limit of the squareness ratio is, in principle, 1.00 or less.
  • the vertical squareness ratio of the magnetic tape may be 1.00 or less, 0.95 or less, 0.90 or less, 0.85 or less, or 0.80 or less.
  • a magnetic tape having a large vertical squareness ratio is preferable from the viewpoint of improving electromagnetic conversion characteristics.
  • the perpendicular squareness ratio of the magnetic tape can be controlled by a known method such as performing a perpendicular orientation treatment.
  • the vertical squareness ratio is the squareness ratio measured in the perpendicular direction of the magnetic tape.
  • the "perpendicular direction” described with respect to the squareness ratio is the direction orthogonal to the surface of the magnetic layer, and can also be called the thickness direction.
  • the vertical squareness ratio is obtained by the following method. A sample piece of a size that can be introduced into the vibrating sample magnetometer is cut out from the magnetic tape to be measured. Using a vibrating sample magnetometer, this sample piece was measured at a maximum applied magnetic field of 3979 kA/m, a measurement temperature of 296 K, and a magnetic field sweep rate of 8.3 kA/m/sec.
  • the measured value of the magnetization intensity shall be obtained as a value after demagnetization correction and as a value obtained by subtracting the magnetization of the sample probe of the vibrating sample magnetometer as background noise.
  • the measurement temperature refers to the temperature of the sample piece, and by setting the ambient temperature around the sample piece to the measurement temperature, the temperature equilibrium is established, whereby the temperature of the sample piece can be made the measurement temperature.
  • Magnetic head One aspect of the present invention relates to a magnetic recording/reproducing device including the magnetic tape cartridge.
  • the term "magnetic recording/reproducing apparatus” means an apparatus capable of at least one of recording data on a magnetic tape and reproducing data recorded on the magnetic tape.
  • Such devices are commonly called drives and typically include a magnetic head.
  • the magnetic tape cartridge is inserted into the magnetic recording/reproducing device, the magnetic tape is run in the magnetic recording/reproducing device, and the magnetic head records data on the magnetic tape and/or reproduces the recorded data.
  • the magnetic head included in the magnetic recording/reproducing device can be a recording head capable of recording data on a magnetic tape, and a reproducing head capable of reproducing data recorded on the magnetic tape.
  • the magnetic recording/reproducing apparatus can include both a recording head and a reproducing head as separate magnetic heads.
  • the magnetic head included in the magnetic recording/reproducing device can have a configuration in which both the recording element and the reproducing element are provided in one magnetic head.
  • a magnetic head (MR head) including a magnetoresistive (MR) element capable of reading information recorded on a magnetic tape with high sensitivity as a reproducing element is preferable.
  • various known MR heads eg, GMR (Giant Magnetoresistive) head, TMR (Tunnel Magnetoresistive) head, etc.
  • a magnetic head for recording and/or reproducing data may also include a servo pattern reading element.
  • the magnetic recording/reproducing apparatus may include a magnetic head (servo head) having a servo pattern reading element as a separate head from the magnetic head that records and/or reproduces data.
  • a magnetic head for recording data and/or reproducing recorded data (hereinafter also referred to as a "recording/reproducing head”) may include two servo signal reading elements. can simultaneously read two adjacent servo bands across the data band. One or more data elements can be positioned between the two servo signal read elements.
  • An element for recording data (recording element) and an element for reproducing data (reading element) are collectively referred to as a "data element".
  • the read element width of the read element is preferably 0.8 ⁇ m or less.
  • the read element width of the read element can be, for example, 0.1 ⁇ m or more. However, falling below this value is also preferable from the above viewpoint.
  • the narrower the width of the reproducing element the more likely it is that phenomena such as poor reproduction due to off-track will occur.
  • the "reproducing element width” means the physical dimension of the reproducing element width. Such physical dimensions can be measured with an optical microscope, scanning electron microscope, or the like.
  • head tracking using a servo signal can be performed. That is, by causing the servo signal reading element to follow a predetermined servo track, the data element can be controlled to pass over the target data track. The data track is moved by changing the servo track read by the servo signal reading element in the width direction of the tape.
  • the record/playback head can also record and/or play back other data bands.
  • the above-mentioned UDIM information is used to move the servo signal reading element to a predetermined servo band, and tracking for that servo band is started.
  • Fig. 5 shows an arrangement example of data bands and servo bands.
  • a plurality of servo bands 1 are sandwiched between guide bands 3 on the magnetic layer of the magnetic tape MT.
  • a plurality of areas 2 sandwiched between two servo bands are data bands.
  • a servo pattern is a magnetized region formed by magnetizing a specific region of a magnetic layer with a servo write head.
  • the area magnetized by the servo write head (the position where the servo pattern is formed) is defined by standards.
  • a plurality of servo patterns inclined with respect to the width direction of the tape are formed on the servo band as shown in FIG. 6 when the magnetic tape is manufactured.
  • FIG. 6 shows an arrangement example of data bands and servo bands.
  • the servo frame SF on servo band 1 is composed of servo subframe 1 (SSF1) and servo subframe 2 (SSF2).
  • a servo subframe 1 is composed of an A burst (symbol A in FIG. 6) and a B burst (symbol B in FIG. 6).
  • the A burst is composed of servo patterns A1 to A5, and the B burst is composed of servo patterns B1 to B5.
  • servo subframe 2 is composed of a C burst (symbol C in FIG. 6) and a D burst (symbol D in FIG. 6).
  • the C burst is composed of servo patterns C1 to C4, and the D burst is composed of servo patterns D1 to D4.
  • Such 18 servo patterns are arranged in sets of 5 and 4 in subframes arranged in an array of 5, 5, 4, 4, and are used to identify servo frames.
  • FIG. 6 shows one servo frame for explanation. In practice, however, a plurality of servo frames are arranged in the running direction in each servo band on the magnetic layer of the magnetic tape on which the head tracking of the timing-based servo system is performed. In FIG. 6, arrows indicate the direction of travel.
  • an LTO Ultrium format tape typically has 5000 or more servo frames per meter of tape length in each servo band of the magnetic layer.
  • PEN polyethylene naphthalate support
  • the water content and Young's modulus in Table 1 are values measured by the method described above.
  • SrFe1 in the ferromagnetic powder column indicates hexagonal strontium ferrite powder produced as follows. 1707 g of SrCO3, 687 g of H3BO3 , 1120 g of Fe2O3 , 45 g of Al(OH) 3 , 24 g of BaCO3 , 13 g of CaCO3 , and 235 g of Nd2O3 were weighed and mixed in a mixer. A raw material mixture was obtained by mixing.
  • the obtained raw material mixture was melted in a platinum crucible at a melting temperature of 1390° C., and while the melt was being stirred, a tap hole provided at the bottom of the platinum crucible was heated, and the melt was tapped in a rod shape at a rate of about 6 g/sec. .
  • the tapped liquid was rolled and quenched with a water-cooled twin roller to prepare an amorphous body.
  • 280 g of the produced amorphous material was placed in an electric furnace, heated to 635° C. (crystallization temperature) at a heating rate of 3.5° C./min, and held at the same temperature for 5 hours to produce hexagonal strontium ferrite particles. Precipitated (crystallized).
  • the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads having a particle size of 1 mm and 800 mL of 1% concentration of acetic acid aqueous solution were added to a glass bottle and dispersed for 3 hours using a paint shaker. did After that, the resulting dispersion was separated from the beads and placed in a stainless steel beaker. After the dispersion liquid was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass component, it was precipitated in a centrifuge and washed by repeating decantation. After drying for a few hours, hexagonal strontium ferrite powder was obtained.
  • the average particle size of the hexagonal strontium ferrite powder obtained above is 18 nm, the activation volume is 902 nm 3 , the anisotropy constant Ku is 2.2 ⁇ 10 5 J/m 3 , and the mass magnetization ⁇ s is 49 A ⁇ m 2 /. kg.
  • 12 mg of sample powder was taken from the hexagonal strontium ferrite powder obtained above, and the sample powder was partially dissolved under the dissolution conditions exemplified above. The surface layer content was determined. Separately, 12 mg of sample powder was taken from the hexagonal strontium ferrite powder obtained above, and the sample powder was completely dissolved under the dissolution conditions exemplified above. Atomic bulk content was determined.
  • the content of neodymium atoms (bulk content) with respect to 100 atomic % of iron atoms in the hexagonal strontium ferrite powder obtained above was 2.9 atomic %.
  • the content of neodymium atoms in the surface layer was 8.0 atomic %.
  • the ratio of the surface layer portion content rate to the bulk content rate, "surface layer portion content rate/bulk content rate”, was 2.8, confirming that neodymium atoms were unevenly distributed in the surface layer of the particles.
  • the fact that the powder obtained above exhibits the crystal structure of hexagonal ferrite can be confirmed by scanning CuK ⁇ rays under the conditions of a voltage of 45 kV and an intensity of 40 mA and measuring the X-ray diffraction pattern under the following conditions (X-ray diffraction analysis). confirmed.
  • the powder obtained above exhibited a crystal structure of magnetoplumbite type (M type) hexagonal ferrite.
  • the crystal phase detected by X-ray diffraction analysis was a magnetoplumbite single phase.
  • SrFe2 in the ferromagnetic powder column indicates hexagonal strontium ferrite powder produced as follows. 1725 g of SrCO3, 666 g of H3BO3 , 1332 g of Fe2O3 , 52 g of Al(OH) 3 , 34 g of CaCO3 and 141 g of BaCO3 were weighed and mixed in a mixer to obtain a raw material mixture. The obtained raw material mixture was melted in a platinum crucible at a melting temperature of 1380° C., and the melt was stirred while heating the outlet provided at the bottom of the platinum crucible to dispense the melt in a rod shape at a rate of about 6 g/sec. .
  • the tapped liquid was rolled and quenched with water-cooled twin rolls to prepare an amorphous body.
  • 280 g of the obtained amorphous material was placed in an electric furnace, heated to 645° C. (crystallization temperature), and held at the same temperature for 5 hours to precipitate (crystallize) hexagonal strontium ferrite particles.
  • the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads having a particle size of 1 mm and 800 mL of 1% concentration of acetic acid aqueous solution were added to a glass bottle and dispersed for 3 hours using a paint shaker.
  • the resulting dispersion was separated from the beads and placed in a stainless steel beaker. After the dispersion liquid was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass component, it was precipitated in a centrifuge and washed by repeating decantation. After drying for a few hours, hexagonal strontium ferrite powder was obtained.
  • the obtained hexagonal strontium ferrite powder had an average particle size of 19 nm, an activated volume of 1102 nm 3 , an anisotropy constant Ku of 2.0 ⁇ 10 5 J/m 3 , and a mass magnetization ⁇ s of 50 A ⁇ m 2 /kg. there were.
  • ⁇ -iron oxide in the column of ferromagnetic powder indicates ⁇ -iron oxide powder prepared as follows. 8.3 g of iron (III) nitrate nonahydrate, 1.3 g of gallium (III) nitrate octahydrate, 190 mg of cobalt (II) nitrate hexahydrate, 150 mg of titanium (IV) sulfate, and 4.0 g of an aqueous ammonia solution having a concentration of 25% was added to a solution of 1.5 g of polyvinylpyrrolidone (PVP) in an air atmosphere at an ambient temperature of 25° C. while stirring using a magnetic stirrer. , and the mixture was stirred for 2 hours while maintaining the ambient temperature of 25°C.
  • PVP polyvinylpyrrolidone
  • aqueous citric acid solution obtained by dissolving 1 g of citric acid in 9 g of pure water was added to the obtained solution, and the mixture was stirred for 1 hour.
  • the powder precipitated after stirring was collected by centrifugation, washed with pure water, and dried in a heating furnace with an internal furnace temperature of 80°C. 800 g of pure water was added to the dried powder, and the powder was dispersed again in water to obtain a dispersion liquid.
  • the obtained dispersion was heated to a liquid temperature of 50° C., and 40 g of an ammonia aqueous solution having a concentration of 25% was added dropwise while stirring.
  • TEOS tetraethoxysilane
  • the heat-treated ferromagnetic powder precursor is put into a 4 mol/L sodium hydroxide (NaOH) aqueous solution, and the liquid temperature is maintained at 70° C. and stirred for 24 hours to obtain a heat-treated ferromagnetic powder precursor.
  • the silicic acid compound which is an impurity, was removed from the After that, the ferromagnetic powder from which the silicic acid compound was removed was collected by centrifugal separation and washed with pure water to obtain the ferromagnetic powder.
  • the composition of the obtained ferromagnetic powder was confirmed by high-frequency inductively coupled plasma-optical emission spectrometry (ICP-OES), Ga, Co and Ti-substituted ⁇ -iron oxide ( ⁇ -Ga 0 .28 Co 0.05 Ti 0.05 Fe 1.62 O 3 ).
  • ICP-OES high-frequency inductively coupled plasma-optical emission spectrometry
  • Ga Ga
  • Co Ti-substituted ⁇ -iron oxide
  • ⁇ -Ga 0 .28 Co 0.05 Ti 0.05 Fe 1.62 O 3 X-ray diffraction analysis was performed under the same conditions as those previously described for the hexagonal strontium ferrite powder SrFe1. From the peaks of the X-ray diffraction pattern, the obtained ferromagnetic powder had an ⁇ -phase and a ⁇ -phase crystal structure.
  • the resulting ⁇ -iron oxide powder had an average particle size of 12 nm, an activated volume of 746 nm 3 , an anisotropy constant Ku of 1.2 ⁇ 10 5 J/m 3 and a mass magnetization ⁇ s of 16 A ⁇ m 2 /kg. there were.
  • the activation volume and anisotropy constant Ku of the above hexagonal strontium ferrite powder and ⁇ -iron oxide powder were obtained using a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd.) for each ferromagnetic powder, as previously described. It is a value obtained by the method of The mass magnetization ⁇ s is a value measured with a magnetic field strength of 1194 kA/m (15 kOe) using a vibrating sample magnetometer (manufactured by Toei Industry Co., Ltd.).
  • Example 1 (1) Preparation of alumina dispersion To 100.0 parts of alumina powder (HIT-80 manufactured by Sumitomo Chemical Co., Ltd.) having a gelatinization rate of about 65% and a BET (Brunauer-Emmett-Teller) specific surface area of 20 m 2 /g, 3. 0 part of 2,3-dihydroxynaphthalene (manufactured by Tokyo Kasei Co., Ltd.), a 32% solution of a polyester polyurethane resin (UR-4800 manufactured by Toyobo Co., Ltd.
  • HIT-80 manufactured by Sumitomo Chemical Co., Ltd.
  • BET Brunauer-Emmett-Teller
  • Magnetic layer forming composition Ferromagnetic powder (see Table 1) 100.0 parts SO 3 Na group-containing polyurethane resin 14.0 parts Weight average molecular weight: 70,000, SO 3 Na group: 0.2 meq/g Cyclohexanone 150.0 parts Methyl ethyl ketone 150.0 parts (abrasive liquid) 6.0 parts of the alumina dispersion prepared in (1) above (silica sol (projection forming agent liquid)) Colloidal silica (average particle size 120 nm) 2.0 parts Methyl ethyl ketone 1.4 parts (other ingredients) Stearic acid 2.0 parts Stearic acid amide 0.2 parts Butyl stearate 2.0 parts Polyisocyanate (Coronate (registered trademark) L manufactured by Tosoh Corporation) 2.5 parts (finishing additive solvent) Cyclohexanone 200.0 parts Methyl ethyl ketone 200.0 parts
  • Non-magnetic inorganic powder ⁇ -iron oxide 100.0 parts Average particle size (average major axis length): 0.15 ⁇ m Average acicular ratio: 7 BET specific surface area: 52 m 2 /g Carbon black 20.0 parts Average particle size: 20 nm SO 3 Na group-containing polyurethane resin 18.0 parts Weight average molecular weight: 70,000, SO 3 Na group: 0.2 meq/g Stearic acid 2.0 parts Stearamide 0.2 parts Butyl stearate 2.0 parts Cyclohexanone 300.0 parts Methyl ethyl ketone 300.0 parts
  • composition for forming backcoat layer Carbon black 100.0 parts DBP (Dibutyl phthalate) oil absorption 74 cm 3 /100 g Nitrocellulose 27.0 parts
  • Polyester polyurethane resin containing sulfonic acid groups and/or salts thereof 62.0 parts
  • Polyester resin 4.0 parts Alumina powder (BET specific surface area: 17 m 2 /g) 0.6 parts Methyl ethyl ketone 600.0 parts Toluene 600.0 parts
  • a magnetic layer-forming composition was prepared by the following method.
  • the above magnetic liquid was prepared by dispersing (bead dispersion) the above components for 24 hours using a batch-type vertical sand mill.
  • As dispersion beads zirconia beads with a bead diameter of 0.5 mm were used.
  • the prepared magnetic liquid, the abrasive liquid, and other components were mixed and dispersed in beads for 5 minutes, followed by a batch type ultrasonic device (20 kHz, 300 W). for 0.5 minutes (ultrasonic dispersion).
  • a composition for forming a non-magnetic layer was prepared by the following method.
  • the above ingredients except for the lubricants (stearic acid, stearic acid amide and butyl stearate) were kneaded and diluted by an open kneader, and then dispersed by a horizontal bead mill disperser. Then, lubricants (stearic acid, stearic acid amide and butyl stearate) were added, and the mixture was stirred and mixed with a dissolver stirrer to prepare a composition for forming a non-magnetic layer.
  • a composition for forming a backcoat layer was prepared by the following method.
  • the components except for the polyisocyanate were introduced into a dissolver stirrer, stirred at a peripheral speed of 10 m/sec for 30 minutes, and then dispersed using a horizontal bead mill disperser. After that, polyisocyanate was added, and the mixture was stirred and mixed with a dissolver stirrer to prepare a composition for forming a backcoat layer.
  • a magnetic field with a magnetic field strength of 0.3 T is applied in a direction perpendicular to the surface of the coating layer to perform a vertical alignment treatment, and then the coating layer is dried. to form a magnetic layer.
  • the backcoat layer-forming composition prepared in (5) above was applied to the surface of the support opposite to the surface on which the non-magnetic layer and the magnetic layer were formed so that the thickness after drying was 0.5 ⁇ m. It was coated and dried to form a backcoat layer.
  • the surface is smoothed (calendered) at a speed of 100 m / min, a linear pressure of 300 kg / cm, and a calender temperature of 90 ° C. (calender roll surface temperature).
  • heat treatment was performed by storing the long magnetic tape raw material in a heat treatment furnace with an atmospheric temperature of 70° C. (heat treatment time: 36 hours). After the heat treatment, the film was slit to a width of 1/2 inch to obtain a magnetic tape.
  • a data band, a servo band, and a guide band are arranged in accordance with the LTO (Linear Tape-Open) Ultrium format, and the servo
  • a magnetic tape having a servo pattern (timing-based servo pattern) arranged and shaped according to the LTO Ultrium format on the band was obtained.
  • the servo pattern thus formed is a servo pattern according to the descriptions of JIS (Japanese Industrial Standards) X6175:2006 and Standard ECMA-319 (June 2001).
  • the total number of servo bands is five, and the total number of data bands is four.
  • the magnetic tape (length 970 m) after forming the servo pattern was wound around a core for heat treatment, and heat-treated while being wound around the core.
  • a core for heat treatment a resin-made solid core member (outer diameter: 50 mm) having a bending elastic modulus of 0.8 GPa was used, and the tension during winding was set to 0.60 N.
  • the heat treatment was performed at the heat treatment temperature shown in Table 1 for 5 hours.
  • the weight absolute humidity of the heat-treated atmosphere was 10 g/kg Dry air.
  • a leader tape according to Standard ECMA (European Computer Manufacturers Association)-319 (June 2001) Section 3, Item 9, by commercial splicing tape.
  • As the winding core for temporary winding a solid core member made of the same material as the winding core for heat treatment and having the same outer diameter was used.
  • As the magnetic tape cartridge containing the magnetic tape a single reel type magnetic tape cartridge having the configuration shown in FIG. 2 was used.
  • the reel hub of this magnetic tape cartridge is a single-layer reel hub (thickness: 2.5 mm, outer diameter: 44 mm) injection-molded from glass fiber reinforced polycarbonate.
  • the glass fiber content of this glass fiber reinforced polycarbonate is the value shown in Table 1 (unit: % by mass).
  • a part of the glass fiber reinforced polycarbonate for injection molding was collected, and according to JIS K 7171: 2016, item 6.3.1 (manufacture from molding material), described in item 6.1.2 of the same JIS.
  • a recommended test piece was prepared, and the flexural modulus (arithmetic average of five test pieces) was obtained according to the same JIS.
  • the flexural modulus of the reel hub material was also determined by the above method for the examples and comparative examples described later.
  • the flexural modulus of the core for heat treatment is also determined in the same manner.
  • a single-reel type magnetic tape cartridge of Example 1 in which a magnetic tape having a length of 960 m was wound around a reel was produced.
  • Examples 2 to 19, Comparative Examples 1 to 9 A magnetic tape cartridge was fabricated by the method described for Example 1, except that the items in Table 1 were changed as shown in Table 1.
  • Table 1 in the comparative example described as "none" in the "heat treatment temperature” column, the magnetic tape with a final product length of 960 m was not subjected to heat treatment while being wound around the heat treatment core. housed in a cartridge.
  • Three magnetic tape cartridges were produced for each of the above examples and comparative examples, one of which was used for the evaluation of the following magnetic tape deformation amount and the evaluation of the tape thickness, and the other was used for the evaluation of the recording and reproduction performance described later. , and the remaining one was used for the evaluation of running stability, which will be described later.
  • the interval between two adjacent servo bands sandwiching the data band was obtained as follows. In order to find the interval between two adjacent servo bands sandwiching the data band, the dimension of the servo pattern is required. Servo pattern dimension standards differ depending on the LTO generation. Therefore, first, using a magnetic force microscope or the like, the average distance AC between the corresponding four stripes of the A burst and the C burst and the azimuth angle ⁇ of the servo pattern are measured. Next, a reel tester and a servo equipped with two servo signal reading elements (hereinafter referred to as the upper side and the other as the lower side) fixed at intervals in the direction orthogonal to the longitudinal direction of the magnetic tape.
  • the servo patterns formed on the magnetic tape are sequentially read along the longitudinal direction of the tape.
  • a the average time between 5 stripes corresponding to A and B bursts over the length of 1 LPOS word.
  • b the mean time of the corresponding four stripes of A and C bursts over a length of 1 m.
  • AC ⁇ (1/2 ⁇ a/b)/(2 ⁇ tan( ⁇ )) represents the width-direction reading position PES based on the servo signal obtained by the servo signal reading element. .
  • Servo pattern reading is performed simultaneously by the two upper and lower servo signal reading elements.
  • PES1 be the PES value obtained by the upper servo signal reading element
  • PES2 be the PES value obtained by the lower servo signal reading element.
  • PES2-PES1 the interval between two adjacent servo bands across the data band can be obtained. This is because the upper and lower servo pattern reading elements are fixed to the servo head and the spacing between them does not change.
  • Relative Humidity 80% Environment for 1 year and after 1 year storage, the servo band interval was measured. Storage in the 5 environments is "temperature 16 ° C relative humidity 20% environment” ⁇ "temperature 16 ° C relative humidity 80% environment” ⁇ "temperature 26 ° C relative humidity 80% environment” ⁇ "temperature 32 ° C relative humidity 20 % environment” ⁇ “Temperature 32° C. relative humidity 80% environment”. However, it is not limited to this order. From the servo band intervals obtained after one year of storage under each environment, the amount of magnetic tape deformation after one year of storage under each environment was obtained by the method described above. The maximum value of the five magnetic tape deformation amounts obtained for the five environments was taken as the magnetic tape maximum deformation amount after storage for one year under the five environments.
  • the slope c obtained by the method of least squares was determined as the ratio of the change in magnetic tape deformation to the change in temperature, where x is the temperature of the environment from which .
  • ⁇ Tape thickness> After the above evaluation, the magnetic tape cartridge was placed in an environment with a temperature of 20 to 25° C. and a relative humidity of 40 to 60% for 5 days or longer to acclimate to the same environment. Subsequently, under the same environment, 10 tape samples (5 cm in length) were cut out from an arbitrary portion of the magnetic tape taken out from the magnetic tape cartridge, and these tape samples were piled up to measure the thickness. Thickness measurements were made using a MARH Millimar 1240 compact amplifier and a Millimar 1301 inductive probe digital thickness gauge. The value (thickness per tape sample) obtained by dividing the measured thickness by 1/10 was taken as the tape thickness. The tape thickness was 5.2 ⁇ m for each magnetic tape.
  • a magnetic tape cartridge is set in the magnetic recording/reproducing device, and the magnetic tape is loaded.
  • pseudo-random data having a specific data pattern is recorded on the magnetic tape by the recording/reproducing head unit while performing servo tracking.
  • the tension applied in the longitudinal direction of the tape at that time is a constant value of 0.50N.
  • the value of the servo band interval over the entire length of the tape is measured every 1 m of the longitudinal position and recorded in the cartridge memory.
  • the data recorded on the magnetic tape is reproduced by the recording/reproducing head unit. At that time, the value of the servo band interval is measured at the same time as the reproduction. Change the direction of tension.
  • the magnetic tape cartridge containing the magnetic tape is subjected to "environment of temperature 16°C relative humidity 20%” ⁇ "temperature 16°C environment of 80% relative humidity” ⁇ "temperature 26°C environment of relative humidity 80%”.
  • ⁇ “Environment with a temperature of 32°C and a relative humidity of 20%” ⁇ “Environment of a temperature of 32°C and a relative humidity of 80%” were stored in this order for one year.
  • the tension applied in the longitudinal direction of the tape at that time is assumed to be a constant value.
  • the value of the servo band interval over the entire length of the tape is measured every 1 m of the longitudinal position and recorded in the cartridge memory.
  • the data recorded on the magnetic tape is reproduced by the recording/reproducing head unit.
  • the value of the servo band interval is measured at the same time as the reproduction. Controls the tension in the direction.
  • measurement of the servo band interval and tension control based thereon are continuously performed in real time.
  • the running stability was evaluated using the standard deviation (hereinafter referred to as " ⁇ PES") of the read position PES (Position Error Signal) in the width direction based on the servo signal obtained by the servo signal reading element during the reproduction as an index. .
  • PES is determined by the following method. In order to obtain the PES, the dimension of the servo pattern is required. Servo pattern dimension standards differ depending on the LTO generation. Therefore, first, using a magnetic force microscope or the like, the average distance AC between the corresponding four stripes of the A burst and the C burst and the azimuth angle ⁇ of the servo pattern are measured.
  • a the average time between 5 stripes corresponding to A and B bursts over the length of 1 LPOS word.
  • b the average time of the corresponding 4 stripes of the A and C bursts over the length of 1 LPOS word.
  • the value defined by AC ⁇ (1/2 ⁇ a/b)/(2 ⁇ tan( ⁇ )) is the width direction based on the servo signal obtained by the servo signal reading element over the length of 1 LPOS word. is the read position PES (Position Error Signal) of the .
  • PES Position Error Signal
  • the end on the side wound on the reel of the magnetic tape cartridge is called the inner end, and the end on the opposite side is called the outer end.
  • the standard deviation ( ⁇ PES) of the PES determined by the above method was calculated. If ⁇ PES is less than 70 nm, it can be judged that the running stability is excellent.
  • the recording and reproducing performance of the magnetic tape cartridge of Example 1 was evaluated by the above method, except that the rewinding tension for winding around the cartridge reel was changed from 0.40 N to 0.50 N in the evaluation of the recording and reproducing performance.
  • the evaluation result was "2".
  • a magnetic tape cartridge was produced by the method described above for Example 1, except that no vertical orientation treatment was performed during the production of the magnetic tape.
  • a sample piece was cut out from the magnetic tape taken out from the magnetic tape cartridge.
  • the squareness ratio in the vertical direction of this sample piece was found to be 0.55 by using the TM-TRVSM5050-SMSL model manufactured by Tamagawa Seisakusho as a vibrating sample magnetometer by the method described above.
  • a magnetic tape was taken out from the magnetic tape cartridge of Example 1, and the vertical squareness ratio of a sample piece cut out from this magnetic tape was similarly determined to be 0.60.
  • the magnetic tapes taken out from the above two magnetic tape cartridges were each attached to a 1/2 inch reel tester, and the electromagnetic conversion characteristics (SNR: Signal-to-Noise Ratio) were evaluated by the following method.
  • SNR Signal-to-Noise Ratio
  • the magnetic tape taken out from the magnetic tape cartridge of Example 1 had an SNR value that was 2 dB higher than that of the magnetic tape produced without the perpendicular orientation treatment.
  • Ten passes of recording and reproduction were performed by applying a tension of 0.7 N in the longitudinal direction of the magnetic tape in an environment of 23° C. and 50% relative humidity.
  • the relative speed between the magnetic tape and the magnetic head was 6 m/sec, and recording was performed using a MIG (Metal-in-gap) head (gap length 0.15 ⁇ m, track width 1.0 ⁇ m) as a recording head, and recording current.
  • the optimum recording current was set for each magnetic tape.
  • Reproduction was performed using a GMR (Giant-Magnetoresistive) head (element thickness: 15 nm, shield interval: 0.1 ⁇ m, reproduction element width: 0.8 ⁇ m).
  • a signal with a linear recording density of 300 kfci was recorded, and the reproduced signal was measured with a spectrum analyzer manufactured by Shibasoku.
  • the unit kfci is the unit of linear recording density (cannot be converted to the SI unit system). As the signal, a portion where the signal was sufficiently stabilized after the magnetic tape started running was used.
  • One aspect of the present invention is useful in the technical field of various data storage such as archives.

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

Provided are a magnetic tape cartridge in which a magnetic tape is accommodated, and a magnetic recording playback device including the magnetic tape cartridge. For the magnetic tape, the maximum value of magnetic tape deformation amount after storage for one year in each of five environments is 0.50 μm or less, the rate of change in the magnetic tape deformation amount relative to a change in relative humidity derived from the five magnetic tape deformation amounts is 0.0001-0.0500 μm/% inclusive, and the rate of change in magnetic tape deformation amount relative to a change in temperature derived from the five magnetic tape deformation amounts is 0.0010-0.1000 μm/°C inclusive.

Description

磁気テープカートリッジおよび磁気記録再生装置Magnetic tape cartridges and magnetic recording/playback devices
 本発明は、磁気テープカートリッジおよび磁気記録再生装置に関する。 The present invention relates to a magnetic tape cartridge and a magnetic recording/reproducing device.
 磁気記録媒体にはテープ状のものとディスク状のものがあり、各種データストレージ用途には、テープ状の磁気記録媒体、即ち磁気テープが主に用いられている(例えば特許文献1参照)。 There are tape-shaped and disk-shaped magnetic recording media, and tape-shaped magnetic recording media, that is, magnetic tapes, are mainly used for various data storage applications (see Patent Document 1, for example).
特許第6590104号明細書Patent No. 6590104
 磁気テープへのデータの記録は、通常、磁気記録再生装置(一般に「ドライブ」と呼ばれる。)内で磁気テープを走行させ、磁気ヘッドを磁気テープのデータバンドに追従させてデータバンド上にデータを記録することにより行われる。これにより、データバンドにデータトラックが形成される。また、記録されたデータの再生時には、磁気記録再生装置内で磁気テープを走行させ、磁気ヘッドを磁気テープのデータバンドに追従させてデータバンド上に記録されたデータの読み取りを行う。そして、かかる記録後または再生後、磁気テープは、磁気テープカートリッジ内にリール(以下、「カートリッジリール」と記載する。)に巻装された状態で、次に記録および/または再生が行われるまで、保管される。 Data is recorded on a magnetic tape by running the magnetic tape inside a magnetic recording/reproducing device (generally called a "drive") and making the magnetic head follow the data band of the magnetic tape to record the data on the data band. It is done by recording. A data track is thereby formed in the data band. When reproducing the recorded data, the magnetic tape is run in the magnetic recording/reproducing apparatus, and the magnetic head follows the data band of the magnetic tape to read the data recorded on the data band. After such recording or reproduction, the magnetic tape is wound on a reel (hereinafter referred to as "cartridge reel") in the magnetic tape cartridge until the next recording and/or reproduction is performed. , is stored.
 以上のような記録および/または再生において磁気ヘッドが磁気テープのデータバンドに追従する精度を高めるために、サーボ信号を利用してヘッドトラッキングを行うシステム(以下、「サーボシステム」と記載する。)が実用化されている。
 更に、サーボ信号を利用して走行中の磁気テープの幅方向の寸法情報を取得し、取得された寸法情報に応じて磁気テープの長手方向にかかるテンションを調整することによって、磁気テープの幅方向の寸法を制御することも行われている(一例として、特許文献1の段落0170参照)。上記のテンション調整は、記録または再生時、磁気テープの幅変形によってデータを記録または再生するための磁気ヘッドが狙いのトラック位置からずれてしまい、記録済データの上書き、再生不良等の現象が発生してしまうことを抑制することに寄与し得ると考えられる。更に、そのようなテンション調整を行いながら磁気テープを磁気記録再生装置内で走行させてデータの記録および/または再生する際、磁気テープの走行安定性が高いことは、上記現象の発生をより一層抑制することにつながると期待される。
In order to improve the accuracy with which the magnetic head follows the data band of the magnetic tape during recording and/or reproduction as described above, a system (hereinafter referred to as "servo system") that performs head tracking using a servo signal is employed. has been put into practical use.
Furthermore, by using a servo signal to acquire dimension information in the width direction of the running magnetic tape and adjusting the tension applied in the longitudinal direction of the magnetic tape according to the acquired dimension information, (as an example, see paragraph 0170 of Patent Document 1). The above tension adjustment causes the magnetic head for recording or reproducing data to deviate from the intended track position due to the width deformation of the magnetic tape during recording or reproduction, causing phenomena such as overwriting of recorded data and defective reproduction. It is thought that it can contribute to suppressing the fact that Furthermore, when the magnetic tape is run in a magnetic recording/reproducing apparatus while the tension is being adjusted to record and/or reproduce data, the high running stability of the magnetic tape further reduces the occurrence of the above phenomenon. It is expected that this will lead to suppression.
 また、上記保管後、記録および/または再生が行われる際、磁気テープの変形によってデータを記録および/または再生するための磁気ヘッドが狙いのトラック位置からずれてデータの記録および/または再生を行ってしまうと、記録済データの上書き、再生不良等の現象が発生してしまう。他方、近年、データストレージ分野では、アーカイブ(archive)と呼ばれる、データの長期保管に対するニーズが高まっている。しかし、一般に、保管期間が長くなるほど磁気テープの変形は生じ易い傾向がある。したがって、保管後の上記現象の発生を抑制することが今後一層求められると予想される。 Further, when recording and/or reproduction is performed after the storage, deformation of the magnetic tape causes the magnetic head for recording and/or reproduction of data to deviate from the target track position to record and/or reproduce data. Otherwise, phenomena such as overwriting of recorded data and defective reproduction may occur. On the other hand, in recent years, in the field of data storage, there is an increasing need for long-term storage of data called an archive. However, in general, the longer the storage period, the more easily the magnetic tape tends to be deformed. Therefore, it is expected that there will be a greater need in the future to suppress the occurrence of the above phenomenon after storage.
 以上に鑑み、本発明の一態様は、
 磁気テープカートリッジに収容して保管した後の磁気テープに対するデータの記録および/または再生において良好に記録および/または再生を行うことを可能にし、かつ
 磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際の走行安定性を高めること、
 を目的とする。
In view of the above, one aspect of the present invention is
By enabling good recording and/or reproduction of data on and/or reproduction of data on a magnetic tape stored in a magnetic tape cartridge, and by adjusting the tension applied to the magnetic tape in the longitudinal direction. To improve running stability during recording and/or reproduction by controlling the dimension of the magnetic tape in the width direction;
With the goal.
 本発明の一態様は、以下の通りである。
[1]磁気テープがカートリッジリールに巻回されて収容されている磁気テープカートリッジであって、
上記磁気テープは、非磁性支持体と、強磁性粉末を含む磁性層と、を有し、
上記非磁性支持体は、幅方向のヤング率が10000MPa以上のポリエチレンナフタレート支持体であり、
上記磁性層は複数のサーボバンドを有し、
下記5つの磁気テープ変形量:
温度16℃相対湿度20%の環境下での1年保管後の磁気テープ変形量、
温度16℃相対湿度80%の環境下での1年保管後の磁気テープ変形量、
温度26℃相対湿度80%の環境下での1年保管後の磁気テープ変形量、
温度32℃相対湿度20%の環境下での1年保管後の磁気テープ変形量、
温度32℃相対湿度80%の環境下での1年保管後の磁気テープ変形量、
の最大値(以下、「5環境の1年保管後の磁気テープ最大変形量」とも記載する。)が0.50μm以下であり、
上記5つの磁気テープ変形量から求められる、相対湿度の変化に対する磁気テープ変形量の変化の割合は0.0001μm/%以上0.0500μm/%以下であり、かつ
上記5つの磁気テープ変形量から求められる、温度の変化に対する磁気テープ変形量の変化の割合は0.0010μm/℃以上0.1000μm/℃以下である、磁気テープカートリッジ。
[2]上記5つの磁気テープ変形量の最大値が0.01μm以上0.50μm以下である、[1]に記載の磁気テープカートリッジ。
[3]上記ポリエチレンナフタレート支持体の幅方向のヤング率は、10000MPa以上20000MPa以下である、[1]または[2]に記載の磁気テープカートリッジ。
[4]上記磁気テープは、上記非磁性支持体と上記磁性層との間に、非磁性粉末を含む非磁性層を更に有する、[1]~[3]のいずれかに記載の磁気テープカートリッジ。
[5]上記磁気テープは、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を更に有する、[1]~[4]のいずれかに記載の磁気テープカートリッジ。
[6]上記磁気テープのテープ厚みは5.2μm以下である、[1]~[5]のいずれかに記載の磁気テープカートリッジ。
[7]上記磁気テープの垂直方向角型比は0.60以上である、[1]~[6]のいずれかに記載の磁気テープカートリッジ。
[8][1]~[7]のいずれかに記載の磁気テープカートリッジを含む磁気記録再生装置。
[9]再生素子幅が0.8μm以下である磁気ヘッドを更に含む、[8]に記載の磁気記録再生装置。
[10]上記磁気テープカートリッジと、
巻取りリールと、
を含み、
上記巻取りリールと上記磁気テープカートリッジのカートリッジリールとの間で、上記磁気テープを該磁気テープの長手方向にテンションをかけた状態で走行させ、該テンションの最大値は0.50N(ニュートン)以上であり、かつ
上記テンションをかけた状態で走行させた後の磁気テープを、該磁気テープの長手方向に0.40N以下のテンションをかけて上記磁気テープカートリッジのカートリッジリールに巻取る、[8]または[9]に記載の磁気記録再生装置。
One aspect of the present invention is as follows.
[1] A magnetic tape cartridge containing a magnetic tape wound around a cartridge reel,
The magnetic tape has a non-magnetic support and a magnetic layer containing ferromagnetic powder,
The non-magnetic support is a polyethylene naphthalate support having a Young's modulus in the width direction of 10000 MPa or more,
The magnetic layer has a plurality of servo bands,
The following five magnetic tape deformation amounts:
Magnetic tape deformation amount after storage for one year in an environment with a temperature of 16 ° C and a relative humidity of 20%,
Magnetic tape deformation amount after storage for one year in an environment with a temperature of 16 ° C and a relative humidity of 80%,
Magnetic tape deformation amount after storage for one year in an environment with a temperature of 26 ° C and a relative humidity of 80%,
Magnetic tape deformation amount after storage for one year in an environment with a temperature of 32 ° C and a relative humidity of 20%,
Amount of magnetic tape deformation after storage for one year in an environment with a temperature of 32°C and a relative humidity of 80%,
is 0.50 μm or less, and the maximum value of
The rate of change in the amount of magnetic tape deformation with respect to the change in relative humidity, which is obtained from the five amounts of magnetic tape deformation, is 0.0001 μm/% or more and not more than 0.0500 μm/%, and is obtained from the five amounts of magnetic tape deformation. A magnetic tape cartridge, wherein the rate of change in magnetic tape deformation amount with respect to temperature change is 0.0010 μm/° C. or more and 0.1000 μm/° C. or less.
[2] The magnetic tape cartridge according to [1], wherein the maximum value of the five magnetic tape deformation amounts is 0.01 μm or more and 0.50 μm or less.
[3] The magnetic tape cartridge according to [1] or [2], wherein the polyethylene naphthalate support has a Young's modulus in the width direction of 10000 MPa or more and 20000 MPa or less.
[4] The magnetic tape cartridge according to any one of [1] to [3], wherein the magnetic tape further has a non-magnetic layer containing non-magnetic powder between the non-magnetic support and the magnetic layer. .
[5] Any one of [1] to [4], wherein the magnetic tape further has a back coat layer containing a non-magnetic powder on the surface side opposite to the surface side having the magnetic layer of the non-magnetic support. A magnetic tape cartridge according to any one of the above.
[6] The magnetic tape cartridge according to any one of [1] to [5], wherein the thickness of the magnetic tape is 5.2 μm or less.
[7] The magnetic tape cartridge according to any one of [1] to [6], wherein the perpendicular squareness ratio of the magnetic tape is 0.60 or more.
[8] A magnetic recording/reproducing device including the magnetic tape cartridge according to any one of [1] to [7].
[9] The magnetic recording/reproducing apparatus according to [8], further comprising a magnetic head having a reproducing element width of 0.8 μm or less.
[10] the magnetic tape cartridge;
a take-up reel;
including
Between the take-up reel and the cartridge reel of the magnetic tape cartridge, the magnetic tape is run with tension applied in the longitudinal direction of the magnetic tape, and the maximum value of the tension is 0.50 N (Newton) or more. and winding the magnetic tape after running with the tension applied to the cartridge reel of the magnetic tape cartridge by applying a tension of 0.40 N or less in the longitudinal direction of the magnetic tape; Or the magnetic recording/reproducing device according to [9].
 本発明の一態様によれば、磁気テープカートリッジに収容して保管した後の磁気テープに対するデータの記録および/または再生において良好に記録および/または再生を行うことを可能にし、かつ磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際の走行安定性を高めることができる。 According to one aspect of the present invention, it is possible to record and/or reproduce data satisfactorily on and/or reproduce data from a magnetic tape after it is stored in a magnetic tape cartridge, and the length of the magnetic tape is By adjusting the tension applied in the direction, it is possible to control the dimension in the width direction of the magnetic tape and improve the running stability during recording and/or reproduction.
磁気記録再生装置の一例を示す概略図である。1 is a schematic diagram showing an example of a magnetic recording/reproducing device; FIG. 磁気テープカートリッジの一例の斜視図である。1 is a perspective view of an example magnetic tape cartridge; FIG. リールに磁気テープを巻回し始めるときの斜視図である。FIG. 4 is a perspective view when starting to wind the magnetic tape around the reel; リールに磁気テープを巻回し終えたときの斜視図である。FIG. 4 is a perspective view when winding the magnetic tape around the reel is finished; データバンドおよびサーボバンドの配置例を示す。An example arrangement of data bands and servo bands is shown. LTO(Linear Tape-Open)Ultriumフォーマットテープのサーボパターン配置例を示す。An example of servo pattern arrangement for an LTO (Linear Tape-Open) Ultrium format tape is shown.
 本発明の一態様は、上記磁気テープカートリッジに関する。 One aspect of the present invention relates to the above magnetic tape cartridge.
 また、本発明の一態様は、上記磁気テープカートリッジを含む磁気記録再生装置に関する。 Another aspect of the present invention relates to a magnetic recording/reproducing device including the magnetic tape cartridge.
 上記磁気テープカートリッジは、磁気テープとカートリッジリールとを含む。データの記録および/または再生のために磁気記録再生装置に取り付けられる前の未使用の磁気テープカートリッジでは、磁気テープは、通常、カートリッジリールに巻回された状態で収容されている。磁気記録再生装置では、カートリッジリール(供給リール)と巻取りリールとの間で磁気テープを走行させて、磁気テープへのデータの記録および/または記録されたデータの再生を行うことができる。そして、データの記録後または再生後、磁気テープは、カートリッジリールに巻返され、次に記録および/または再生が行われるまで、磁気テープカートリッジ内でカートリッジリールに巻回された状態で保管される。
 保管中、磁気テープカートリッジに収容された磁気テープにおいて、カートリッジリールに近い部分はテープ厚み方向の圧縮応力によって初期より幅広に変形し、カートリッジリールから遠い部分はテープ長手方向の引っ張り応力によって初期より幅狭に変形するという、位置によって異なる変形が起こると推察される。位置によって大きく異なる変形が起こると、保管後に記録および/または再生が行われる際、磁気ヘッドが狙いのトラック位置からずれてデータの記録および/または再生を行ってしまうことの原因になり得ると考えられる。
 本発明者は検討を重ねる中で、磁気テープカートリッジに収容して多様な保管環境でそれぞれ少なくとも1年保管した後の磁気テープに対するデータの記録および/または再生において、良好に記録および/または再生を行うことを可能にすることが、今後予想されるユーザーのニーズに合致すると考えた。そこで本発明者は、かかるニーズに応えるとともに、先に記載したように磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際の走行安定性を高めるべく、更に鋭意検討を重ねた。その結果、5環境の1年保管後の磁気テープ最大変形量、相対湿度の変化に対する磁気テープ変形量の変化の割合および温度の変化に対する磁気テープ変形量の変化の割合を先に記載の範囲に制御すべきと考えるに至った。
The magnetic tape cartridge includes a magnetic tape and a cartridge reel. In an unused magnetic tape cartridge before it is attached to a magnetic recording/reproducing device for recording and/or reproducing data, the magnetic tape is usually housed in a wound state on a cartridge reel. In a magnetic recording/reproducing apparatus, a magnetic tape can be run between a cartridge reel (supply reel) and a take-up reel to record data on the magnetic tape and/or reproduce recorded data. After the data has been recorded or reproduced, the magnetic tape is rewound onto the cartridge reel and stored in the magnetic tape cartridge while being wound around the cartridge reel until the next recording and/or reproduction is performed. .
During storage, in the magnetic tape housed in the magnetic tape cartridge, the portion close to the cartridge reel is deformed wider than the initial width due to the compressive stress in the tape thickness direction, and the portion far from the cartridge reel becomes wider than the initial width due to the tensile stress in the longitudinal direction of the tape. It is presumed that different deformation occurs depending on the position, such as narrow deformation. It is thought that if deformation that varies greatly depending on the position occurs, it may cause the magnetic head to record and/or reproduce data at a position deviated from the target track position when recording and/or reproducing after storage. be done.
In the course of repeated studies, the inventor of the present invention has found that data can be recorded and/or reproduced satisfactorily on a magnetic tape after storage in a magnetic tape cartridge and storage in various storage environments for at least one year. We thought that making it possible to do so would meet the needs of users expected in the future. Accordingly, the present inventors have found a solution for recording and/or reproducing by controlling the dimension in the width direction of the magnetic tape by adjusting the tension applied in the longitudinal direction of the magnetic tape as described above. In order to improve the running stability of As a result, the maximum amount of deformation of the magnetic tape after one year's storage in the five environments, the rate of change in the amount of deformation of the magnetic tape with respect to changes in relative humidity, and the rate of change in the amount of deformation with respect to changes in temperature were found to fall within the ranges described above. I came to think that it should be controlled.
 以下、上記磁気テープカートリッジおよび磁気記録再生装置について、更に詳細に説明する。以下では、図面を参照して上記磁気テープカートリッジおよび磁気記録再生装置の一形態を説明することがある。ただし、上記磁気テープカートリッジおよび磁気記録再生装置は、図面に示された形態に限定されるものではない。また、本発明は、本明細書に記載されている本発明者の推察によって限定されるものではない。 The magnetic tape cartridge and the magnetic recording/reproducing device will be described in more detail below. Hereinafter, one form of the magnetic tape cartridge and the magnetic recording/reproducing device may be described with reference to the drawings. However, the magnetic tape cartridge and the magnetic recording/reproducing device are not limited to the forms shown in the drawings. Also, the present invention is not limited by the speculations of the inventors described herein.
[5環境の1年保管後の磁気テープ最大変形量]
 以下に、5環境の1年保管後の磁気テープ最大変形量の測定方法を説明する。
 5環境とは、「温度16℃相対湿度20%の環境」、「温度16℃相対湿度80%の環境」、「温度26℃相対湿度80%の環境」、「温度32℃相対湿度20%の環境」および「温度32℃相対湿度80%の環境」である。
 各環境での1年保管後の磁気テープ変形量は、以下の方法によって求められる。
 まず、5環境での保管に順次付す前に、保管前の磁気テープの寸法に関する以下の測定を行う。
 測定対象の磁気テープカートリッジを、磁気テープを測定環境に馴染ませるために、雰囲気温度23℃相対湿度50%の環境に5日間置く。
 その後、その測定環境下、磁気テープの長手方向にテンションをかけるテンション調整機構を有する磁気記録再生装置において、磁気テープの長手方向に0.70Nのテンションをかけた状態で磁気テープを走行させる。かかる走行について、磁気テープの全長にわたり、データバンドを挟んで隣り合う2本のサーボバンドの間隔を、1m間隔で測定する。本発明および本明細書に記載の各種測定において、磁気テープの長手方向にかけるテンションの値は、磁気記録再生装置において設定される設定値とする。また、本発明および本明細書において、「1m間隔で測定」とは、長さLメートル(m)の測定対象領域について、測定対象領域の一方の末端の位置を0m、他方の末端に向かう方向にある各位置を、1m、2m、3m・・・、とし、他方の末端の位置をLmとすると、最初の測定位置は1mの位置であり、最後の測定位置はLmの位置の1つ手前の位置である。また、サーボバンド間隔が複数存在する場合には全サーボバンド間隔について、同様にサーボバンド間隔を測定する。こうして測定されたサーボバンド間隔を、各測定位置における「保管前のサーボバンド間隔」とする。
 その後、上記磁気テープカートリッジを、上記5環境のいずれかの環境下で1年間保管する。保管期間に関する1年は365日である。
 かかる保管後、上記磁気テープカートリッジを、雰囲気温度23℃相対湿度50%の測定環境に5日間置いた後、同測定環境下、磁気テープの長手方向にテンションをかけるテンション調整機構を有する磁気記録再生装置において、磁気テープの長手方向に0.70Nのテンションをかけた状態で磁気テープを走行させる。かかる走行について、先に記載した方法と同様にサーボバンド間隔を測定する。こうして測定されたサーボバンド間隔を、各測定位置における「保管後のサーボバンド間隔」とする。
 全サーボバンド間隔について、1m間隔で測定された保管前のサーボバンド間隔と保管後のサーボバンド間隔との差分を求める。こうして差分の値が複数求められる。求められた差分の絶対値の最大値を、測定対象の磁気テープカートリッジについての各環境での1年保管後の磁気テープ変形量とする。
 データバンドを挟んで隣り合う2本のサーボバンドの間隔は、例えば、サーボ信号読み取り素子によってサーボパターンを読み取って得られるサーボ信号から求められるPES(Position Error Signal)を用いて求めることができる。詳細については、後述の実施例の記載を参照できる。
 測定対象の磁気テープカートリッジを順次上記5環境のいずれかに置いて1年保管した後、上記方法によって磁気テープ変形量を測定する。5環境について磁気テープカートリッジの保管順序は問わない。任意の順序で順次各環境での保管後に測定を行う。こうして5環境について求められた磁気テープ変形量の5つの値の中の最大値を、5環境の1年保管後の磁気テープ最大変形量とする。なお、上記の各種測定環境は例示であって、上記磁気テープカートリッジは例示した環境において保管および/または使用されるものに限定されるものではない。
[Maximum amount of deformation of magnetic tape after 1-year storage in 5 environments]
A method of measuring the maximum deformation amount of a magnetic tape after storage for one year under five environments will be described below.
The 5 environments are "temperature 16°C relative humidity 20% environment", "temperature 16°C relative humidity 80% environment", "temperature 26°C relative humidity 80% environment", "temperature 32°C relative humidity 20% environment". Environment” and “Environment with a temperature of 32° C. and a relative humidity of 80%”.
The amount of magnetic tape deformation after storage for one year in each environment is obtained by the following method.
First, the following measurements regarding the dimensions of the magnetic tape before storage are performed before storage in the five environments.
The magnetic tape cartridge to be measured is placed in an environment with an ambient temperature of 23° C. and a relative humidity of 50% for 5 days so that the magnetic tape can adapt to the measurement environment.
After that, under the measurement environment, the magnetic tape is run with a tension of 0.70 N applied in the longitudinal direction of the magnetic tape in a magnetic recording/reproducing apparatus having a tension adjusting mechanism that applies tension in the longitudinal direction of the magnetic tape. During this running, the interval between two adjacent servo bands sandwiching the data band is measured at intervals of 1 m over the entire length of the magnetic tape. In the present invention and various measurements described in this specification, the value of the tension applied in the longitudinal direction of the magnetic tape is the set value set in the magnetic recording/reproducing apparatus. In addition, in the present invention and this specification, "measured at intervals of 1 m" means that for a measurement target area having a length of L meters (m), the position of one end of the measurement target area is 0 m, and the direction toward the other end , and the position of the other end is Lm, the first measurement position is the position of 1m, and the last measurement position is one position before the position of Lm is the position of Also, when there are a plurality of servo band intervals, the servo band intervals are similarly measured for all the servo band intervals. The servo band interval thus measured is defined as the "servo band interval before storage" at each measurement position.
After that, the magnetic tape cartridge is stored for one year under one of the five environments. One year for retention period is 365 days.
After such storage, the magnetic tape cartridge is placed in a measurement environment with an atmospheric temperature of 23° C. and a relative humidity of 50% for 5 days, and then, under the same measurement environment, a magnetic recording/reproduction having a tension adjusting mechanism that applies tension in the longitudinal direction of the magnetic tape. In the device, the magnetic tape is run while a tension of 0.70 N is applied in the longitudinal direction of the magnetic tape. For such runs, the servo band spacing is measured in the same manner as previously described. The servo band interval thus measured is defined as the "post-storage servo band interval" at each measurement position.
For all servo band intervals, the difference between the servo band interval before storage and the servo band interval after storage measured at intervals of 1 m is obtained. A plurality of difference values are thus obtained. The maximum value of the absolute values of the obtained differences is taken as the amount of magnetic tape deformation after storage for one year in each environment for the magnetic tape cartridge to be measured.
The interval between two adjacent servo bands sandwiching a data band can be obtained using, for example, PES (Position Error Signal) obtained from a servo signal obtained by reading a servo pattern with a servo signal reading element. For details, the description of Examples described later can be referred to.
The magnetic tape cartridges to be measured are sequentially placed in one of the above five environments and stored for one year, and then the magnetic tape deformation amount is measured by the above method. 5 The storage order of the magnetic tape cartridges does not matter. Measurements are taken after storage in each environment sequentially in an arbitrary order. The maximum value among the five values of the magnetic tape deformation amount thus obtained for the five environments is taken as the magnetic tape maximum deformation amount after storage for one year under the five environments. The various measurement environments described above are examples, and the magnetic tape cartridge is not limited to storage and/or use in the illustrated environments.
 上記磁気テープカートリッジの5環境の1年保管後の磁気テープ最大変形量は、磁気テープカートリッジに収容して保管した後の磁気テープに対するデータの記録および/または再生において良好に記録および/または再生を行うことを可能にする観点から、0.50μm以下であり、0.40μm以下であることが好ましく、0.30μm以下であることがより好ましく、0.20μm以下であることが更に好ましく、0.10μm以下であることが一層好ましい。また、上記磁気テープカートリッジの5環境の1年保管後の磁気テープ最大変形量は、例えば、0.00μm以上、0.00μm超、0.01μm以上、0.05μm以上または0.10μm以上であることができる。5環境の1年保管後の磁気テープ最大変形量の値が小さいほど、磁気テープカートリッジに収容して保管した後の磁気テープに対するデータの記録および/または再生において良好に記録および/または再生を行うことを可能にする観点からは好ましい。 The maximum amount of deformation of the magnetic tape after storing the magnetic tape cartridge in the five environments for one year indicates that good recording and/or playback of data is performed on the magnetic tape after storage in the magnetic tape cartridge. From the viewpoint of making it possible to carry out the measurement, the thickness is 0.50 μm or less, preferably 0.40 μm or less, more preferably 0.30 μm or less, further preferably 0.20 μm or less, and 0.5 μm or less. It is more preferably 10 μm or less. Further, the maximum deformation of the magnetic tape after one-year storage in the five environments of the magnetic tape cartridge is, for example, 0.00 μm or more, 0.00 μm or more, 0.01 μm or more, 0.05 μm or more, or 0.10 μm or more. be able to. The smaller the value of the maximum deformation amount of the magnetic tape after one year's storage in the 5 environment, the better the recording and/or playback of data on the magnetic tape after storage in the magnetic tape cartridge. It is preferable from the viewpoint of making it possible to
[相対湿度の変化に対する磁気テープ変形量の変化の割合]
 上記磁気テープカートリッジの相対湿度の変化に対する磁気テープ変形量の変化の割合とは、上記方法によって5環境について求められた5つの磁気テープ変形量の値について、一次関数y=ax+b(aは傾き、bは切片)のyとして磁気テープ変形量、その磁気テープ変形量を求めた環境の相対湿度をxとして、最小二乗法により得られる傾きaである。
[Percentage of change in magnetic tape deformation amount with respect to change in relative humidity]
The rate of change in the amount of magnetic tape deformation with respect to the change in relative humidity of the magnetic tape cartridge is a linear function y = ax + b (where a is the slope, b is the slope a obtained by the method of least squares, where y of the intercept is the amount of deformation of the magnetic tape, and x is the relative humidity of the environment in which the amount of deformation of the magnetic tape is obtained.
 上記磁気テープカートリッジの相対湿度の変化に対する磁気テープ変形量の変化の割合は、磁気テープカートリッジに収容して保管した後の磁気テープに対するデータの記録および/または再生において良好に記録および/または再生を行うことを可能にする観点から、0.0500μm/%以下であり、0.0300μm/%以下であることが好ましく、0.0100μm/%以下であることがより好ましい。一方、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際の走行安定性(以下、単に「走行安定性」とも記載する。)を高める観点から、上記磁気テープカートリッジの相対湿度の変化に対する磁気テープ変形量の変化の割合は、0.0001μm/%以上であり、0.0005μm/%以上であることが好ましく、0.0010μm/%以上であることがより好ましく、0.0050μm/%以上であることが更に好ましい。 The rate of change in the magnetic tape deformation amount with respect to the change in the relative humidity of the magnetic tape cartridge indicates that good recording and/or reproduction of data on the magnetic tape after storage in the magnetic tape cartridge can be achieved. From the viewpoint of making it possible to carry out the above, it is 0.0500 µm/% or less, preferably 0.0300 µm/% or less, and more preferably 0.0100 µm/% or less. On the other hand, by adjusting the tension applied to the longitudinal direction of the magnetic tape, the dimension of the magnetic tape in the width direction is controlled to improve the running stability during recording and/or reproduction (hereinafter simply referred to as "running stability"). ), the rate of change in magnetic tape deformation with respect to change in relative humidity of the magnetic tape cartridge is 0.0001 μm/% or more, preferably 0.0005 μm/% or more, and 0.005 μm/% or more. It is more preferably 0010 µm/% or more, and even more preferably 0.0050 µm/% or more.
[温度の変化に対する磁気テープ変形量の変化の割合]
 上記磁気テープカートリッジについて、温度の変化に対する磁気テープ変形量の変化の割合とは、上記方法によって5環境について求められた5つの磁気テープ変形量の値について、一次関数y=cx+d(cは傾き、dは切片)のyとして磁気テープ変形量、その磁気テープ変形量を求めた環境の温度をxとして、最小二乗法により得られる傾きcである。
[Percentage of change in magnetic tape deformation amount with respect to temperature change]
Regarding the above magnetic tape cartridge, the rate of change in magnetic tape deformation amount with respect to temperature change is a linear function y = cx + d (c is the slope, d is the slope c obtained by the method of least squares, where y of the intercept is the amount of deformation of the magnetic tape, and x is the temperature of the environment in which the amount of deformation of the magnetic tape is obtained.
 上記磁気テープカートリッジの温度の変化に対する磁気テープ変形量の変化の割合は、磁気テープカートリッジに収容して保管した後の磁気テープに対するデータの記録および/または再生において良好に記録および/または再生を行うことを可能にする観点から、0.1000μm/℃以下であり、0.0700μm/℃以下であることが好ましく、0.0500μm/℃以下であることがより好ましい。一方、走行安定性を高める観点から、上記磁気テープカートリッジの温度の変化に対する磁気テープ変形量の変化の割合は、0.0010μm/℃以上であり、0.0050μm/℃以上であることが好ましく、0.0070μm/℃以上であることがより好ましく、0.0100μm/℃以上であることが更に好ましい。 The rate of change in the amount of magnetic tape deformation with respect to the change in temperature of the magnetic tape cartridge ensures good recording and/or reproduction of data on the magnetic tape after storage in the magnetic tape cartridge. From the viewpoint of making it possible, it is 0.1000 µm/°C or less, preferably 0.0700 µm/°C or less, and more preferably 0.0500 µm/°C or less. On the other hand, from the viewpoint of improving running stability, the rate of change in magnetic tape deformation amount with respect to change in temperature of the magnetic tape cartridge is 0.0010 μm/° C. or more, preferably 0.0050 μm/° C. or more. It is more preferably 0.0070 µm/°C or more, and even more preferably 0.0100 µm/°C or more.
 上記の各種値の制御手段については後述する。 The control means for the above various values will be described later.
[磁気記録再生装置の構成]
 図1は、磁気記録再生装置の一例を示す概略図である。
 図1に示す磁気記録再生装置10は、制御装置11からの命令により記録再生ヘッドユニット12を制御し、磁気テープMTへのデータの記録および再生を行う。
 磁気記録再生装置10は、カートリッジリール130と巻取りリール16を回転制御するスピンドルモーター17A、17Bおよびそれらの駆動装置18A、18Bから磁気テープの長手方向にかかるテンションの検出および調整が可能な構成を有している。
 磁気記録再生装置10は、磁気テープカートリッジ13を装着可能な構成を有している。
 磁気記録再生装置10は、磁気テープカートリッジ13内のカートリッジメモリ131について読み取りおよび書き込みが可能なカートリッジメモリリードライト装置14を有している。
 磁気記録再生装置10に装着された磁気テープカートリッジ13からは、磁気テープMTの端部またはリーダーピンが自動のローディング機構または手動により引き出され、磁気テープMTの磁性層表面が記録再生ヘッドユニット12の記録再生ヘッド表面に接する向きでガイドローラー15A、15Bを通して記録再生ヘッド上をパスし、磁気テープMTが巻取りリール16に巻取られる。
 制御装置11からの信号によりスピンドルモーター17Aとスピンドルモーター17Bの回転およびトルクが制御され、磁気テープMTが任意の速度とテンションで走行される。テープ速度の制御には、磁気テープ上に予め形成されたサーボパターンを利用することができる。テンションの検出のために、磁気テープカートリッジ13と巻取りリール16との間にテンション検出機構を設けてもよい。テンションの調整は、スピンドルモーター17Aおよび17Bによる制御の他に、ガイドローラー15Aおよび15Bを用いて行ってもよい。
 カートリッジメモリリードライト装置14は、制御装置11からの命令により、カートリッジメモリ131の情報の読み出しと書き込みが可能に構成されている。カートリッジメモリリードライト装置14とカートリッジメモリ131との間の通信方式としては、例えば、ISO(International Organization for Standardization)14443方式を採用できる。
[Configuration of Magnetic Recording/Reproducing Device]
FIG. 1 is a schematic diagram showing an example of a magnetic recording/reproducing apparatus.
The magnetic recording/reproducing apparatus 10 shown in FIG. 1 controls the recording/reproducing head unit 12 according to commands from the control device 11 to record and reproduce data on the magnetic tape MT.
The magnetic recording/reproducing apparatus 10 has a structure capable of detecting and adjusting the tension exerted in the longitudinal direction of the magnetic tape from the spindle motors 17A and 17B that control the rotation of the cartridge reel 130 and the take-up reel 16 and their driving devices 18A and 18B. have.
The magnetic recording/reproducing apparatus 10 has a configuration in which a magnetic tape cartridge 13 can be mounted.
The magnetic recording/reproducing apparatus 10 has a cartridge memory read/write device 14 capable of reading from and writing to the cartridge memory 131 in the magnetic tape cartridge 13 .
From the magnetic tape cartridge 13 mounted in the magnetic recording/reproducing apparatus 10, the end of the magnetic tape MT or the leader pin is pulled out by an automatic loading mechanism or manually, and the magnetic layer surface of the magnetic tape MT is placed on the recording/reproducing head unit 12. The magnetic tape MT is passed over the recording/reproducing head through guide rollers 15A and 15B so as to contact the surface of the recording/reproducing head, and the magnetic tape MT is taken up on the take-up reel 16. FIG.
A signal from the controller 11 controls the rotation and torque of the spindle motors 17A and 17B to run the magnetic tape MT at an arbitrary speed and tension. A servo pattern preformed on the magnetic tape can be used to control the tape speed. A tension detection mechanism may be provided between the magnetic tape cartridge 13 and the take-up reel 16 to detect tension. The tension may be adjusted using the guide rollers 15A and 15B in addition to the control by the spindle motors 17A and 17B.
The cartridge memory read/write device 14 is configured to be able to read and write information from the cartridge memory 131 according to commands from the control device 11 . As a communication method between the cartridge memory read/write device 14 and the cartridge memory 131, for example, the ISO (International Organization for Standardization) 14443 method can be adopted.
 制御装置11は、例えば、制御部、記憶部、通信部等を含む。 The control device 11 includes, for example, a control section, a storage section, a communication section, and the like.
 記録再生ヘッドユニット12は、例えば、記録再生ヘッド、記録再生ヘッドのトラック幅方向の位置を調整するサーボトラッキングアクチュエータ、記録再生アンプ19、制御装置11と接続するためのコネクタケーブル等から構成される。記録再生ヘッドは、例えば、磁気テープにデータを記録する記録素子、磁気テープのデータを再生する再生素子および磁気テープ上に記録されたサーボ信号を読み取るサーボ信号読み取り素子から構成される。1つの磁気ヘッド内に、記録素子、再生素子、サーボ信号読み取り素子は、例えば、それぞれ1個以上搭載されている。または、磁気テープの走行方向に応じた複数の磁気ヘッド内に別々にそれぞれの素子を有していてもよい。 The recording/reproducing head unit 12 is composed of, for example, a recording/reproducing head, a servo tracking actuator for adjusting the position of the recording/reproducing head in the track width direction, a recording/reproducing amplifier 19, a connector cable for connecting to the control device 11, and the like. A recording/reproducing head is composed of, for example, a recording element for recording data on a magnetic tape, a reproducing element for reproducing data from the magnetic tape, and a servo signal reading element for reading a servo signal recorded on the magnetic tape. For example, one or more recording elements, one or more reproducing elements, and one or more servo signal reading elements are mounted in one magnetic head. Alternatively, each element may be separately provided in a plurality of magnetic heads corresponding to the traveling direction of the magnetic tape.
 記録再生ヘッドユニット12は、制御装置11からの命令に応じて、磁気テープMTに対してデータを記録することが可能に構成されている。また、制御装置11からの命令に応じて、磁気テープMTに記録されたデータを再生することが可能に構成されている。 The recording/reproducing head unit 12 is configured to be able to record data on the magnetic tape MT according to commands from the control device 11 . Further, according to a command from the control device 11, the data recorded on the magnetic tape MT can be reproduced.
 制御装置11は、磁気テープMTの走行時にサーボバンドから読み取られるサーボ信号から磁気テープの走行位置を求め、狙いの走行位置(トラック位置)に記録素子および/または再生素子が位置するように、サーボトラッキングアクチュエータを制御する機構を有している。このトラック位置の制御は、例えば、フィードバック制御により行われる。制御装置11は、磁気テープMTの走行時に隣り合う2本のサーボバンドから読み取られるサーボ信号から、サーボバンド間隔を求める機構を有している。またサーボバンド間隔が狙いの値になるように、スピンドルモーター17Aおよびスピンドルモーター17Bのトルクおよび/またはガイドローラー15Aおよび15Bを制御して磁気テープの長手方向にかけるテンションを調整して変化させ得る機構を有している。このテンションの調整は、例えば、フィードバック制御により行われる。また、制御装置11は、求めたサーボバンド間隔の情報を、制御装置11の内部の記憶部、カートリッジメモリ131、外部の接続機器等に保管することができる。 The controller 11 determines the running position of the magnetic tape from the servo signal read from the servo band while the magnetic tape MT is running, and controls the servo so that the recording element and/or the reproducing element are positioned at the target running position (track position). It has a mechanism for controlling the tracking actuator. This track position control is performed, for example, by feedback control. The control device 11 has a mechanism for obtaining a servo band interval from servo signals read from two adjacent servo bands while the magnetic tape MT is running. A mechanism that controls the torque of the spindle motor 17A and the spindle motor 17B and/or the guide rollers 15A and 15B to adjust and change the tension applied in the longitudinal direction of the magnetic tape so that the servo band interval becomes the target value. have. This tension adjustment is performed, for example, by feedback control. Further, the control device 11 can store the obtained servo band interval information in a storage unit inside the control device 11, the cartridge memory 131, an external connected device, or the like.
 上記磁気記録再生装置において、記録時および/または再生時、磁気テープの長手方向にテンションをかけることができる。記録時および/または再生時、磁気テープの長手方向にかけるテンションは、一形態では一定値であり、他の一形態では変化する。本発明および本明細書におけるテンションに関して、磁気記録再生装置において磁気テープの長手方向にかけるテンションの値は、磁気テープの長手方向にかけるべきテンションとして、磁気記録再生装置の制御装置が上記のテンションを調整する機構を制御するために使用するテンションの値とする。また、磁気記録再生装置において磁気テープの長手方向に実際にかかるテンションは、例えば、先に記載したように、図1中、磁気テープカートリッジ13と巻取りリール16との間にテンション検出機構を設けて検出することができる。更に、例えば、最小テンションが規格等により定められた値または推奨された値を下回らないように、および/または、最大テンションが規格等により定められた値または推奨された値を上回らないように、磁気記録再生装置の制御装置等により制御することもできる。 In the above magnetic recording/reproducing device, tension can be applied in the longitudinal direction of the magnetic tape during recording and/or reproduction. During recording and/or reproduction, the tension applied in the longitudinal direction of the magnetic tape is constant in one form and varies in another form. Regarding the tension in the present invention and this specification, the value of the tension applied in the longitudinal direction of the magnetic tape in the magnetic recording/reproducing apparatus is the tension that should be applied in the longitudinal direction of the magnetic tape. Tension value used to control the adjusting mechanism. Further, the tension actually applied in the longitudinal direction of the magnetic tape in the magnetic recording/reproducing apparatus can be detected by, for example, a tension detection mechanism provided between the magnetic tape cartridge 13 and the take-up reel 16 in FIG. can be detected by Furthermore, for example, so that the minimum tension does not fall below the value specified or recommended by the standard, etc., and / or the maximum tension does not exceed the value specified or recommended by the standard, etc. It can also be controlled by a control device of a magnetic recording/reproducing device or the like.
 一形態では、磁気記録再生装置は、磁気記録再生装置内を走行する磁気テープの長手方向にかかるテンションを調整可能なテンション調整機構を有することができる。かかるテンション調整機構は、磁気テープの長手方向にかかるテンションを可変に制御することができ、好ましくは、磁気テープの長手方向にかかるテンションを調整することによって、磁気テープの幅方向の寸法を制御することができる。上記テンション調整において、磁気テープの長手方向にかかるテンションは変化し得る。テンション調整機構を有する磁気記録再生装置の一例については、先に図1を参照して説明した通りである。ただし本発明は、図1に示す例に限定されるものではない。 In one form, the magnetic recording/reproducing device can have a tension adjusting mechanism capable of adjusting the tension applied to the magnetic tape running in the magnetic recording/reproducing device in the longitudinal direction. Such a tension adjusting mechanism can variably control the tension applied to the magnetic tape in the longitudinal direction, and preferably controls the widthwise dimension of the magnetic tape by adjusting the tension applied in the longitudinal direction of the magnetic tape. be able to. In the tension adjustment described above, the tension applied to the magnetic tape in the longitudinal direction can be changed. An example of a magnetic recording/reproducing apparatus having a tension adjusting mechanism is as described above with reference to FIG. However, the invention is not limited to the example shown in FIG.
[磁気テープカートリッジ]
 磁気記録再生装置に装着される前および磁気記録再生装置から取り出された後の磁気テープカートリッジには、一般に、カートリッジ本体内部に磁気テープがカートリッジリールに巻回されて収容されている。カートリッジリールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。上記磁気テープカートリッジは、一形態では単リール型の磁気テープカートリッジであることができ、他の一形態では双リール型の磁気テープカートリッジであることができる。双リール型の磁気テープカートリッジについて、カートリッジリールとは、データの記録および/または再生後の磁気テープが保管される際に主に巻取られる側のリールをいうものとし、他方のリールを巻取りリールというものとする。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気記録再生装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて、例えば図1に示されているように、磁気記録再生装置の巻取りリールに巻取られる。磁気テープカートリッジから巻取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジのカートリッジリール(「供給リール」とも呼ばれる。)と磁気記録再生装置の巻取りリールとの間で、磁気テープの送り出しと巻取りが行われることによって、磁気テープが走行する。この間、例えば磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジには、供給リールと巻取りリールの両リールが、磁気テープカートリッジ内部に具備されている。一形態では、上記磁気テープカートリッジは、データストレージ分野で近年主に採用されている単リール型の磁気テープカートリッジであることが好ましい。
[Magnetic tape cartridge]
2. Description of the Related Art In a magnetic tape cartridge before it is mounted on a magnetic recording/reproducing device and after it is removed from the magnetic recording/reproducing device, a magnetic tape is generally wound around a cartridge reel and housed inside the cartridge body. The cartridge reel is rotatably provided inside the cartridge body. As magnetic tape cartridges, a single reel type magnetic tape cartridge having one reel inside the cartridge body and a dual reel type magnetic tape cartridge having two reels inside the cartridge body are widely used. The magnetic tape cartridge can be a single reel type magnetic tape cartridge in one form, and can be a dual reel type magnetic tape cartridge in another form. Regarding twin-reel type magnetic tape cartridges, the cartridge reel refers to the reel on which the magnetic tape after data recording and/or reproduction is mainly taken up when it is stored, and the other reel is taken up. shall be called a reel. When a single-reel type magnetic tape cartridge is mounted on a magnetic recording/reproducing apparatus for recording and/or reproducing data on the magnetic tape, the magnetic tape is pulled out from the magnetic tape cartridge, for example, as shown in FIG. It is taken up on the take-up reel of the magnetic recording/reproducing device as shown. A magnetic head is arranged in the magnetic tape transport path from the magnetic tape cartridge to the take-up reel. The magnetic tape is fed and wound between the cartridge reel (also called "supply reel") of the magnetic tape cartridge and the take-up reel of the magnetic recording/reproducing device, thereby running the magnetic tape. During this time, data is recorded and/or reproduced by, for example, contacting and sliding between the magnetic head and the magnetic layer surface of the magnetic tape. On the other hand, a twin-reel magnetic tape cartridge has both a supply reel and a take-up reel inside the magnetic tape cartridge. In one form, the magnetic tape cartridge is preferably a single-reel magnetic tape cartridge that has been mainly used in the data storage field in recent years.
 上記磁気テープカートリッジは、一形態では、カートリッジメモリを含むことができる。カートリッジメモリは、例えば不揮発メモリであることができ、テンション調整情報が既に記録されているか、またはテンション調整情報が記録される。テンション調整情報は、磁気テープの長手方向にかかるテンションを調整するための情報である。カートリッジメモリについては、先の記載も参照できる。 In one form, the magnetic tape cartridge can include a cartridge memory. The cartridge memory can be, for example, a non-volatile memory, and either the tension adjustment information is already recorded or the tension adjustment information is recorded. The tension adjustment information is information for adjusting the tension applied to the magnetic tape in the longitudinal direction. Regarding the cartridge memory, reference can also be made to the previous description.
 図2は、磁気テープカートリッジの一例の斜視図である。図2には、単リール型の磁気テープカートリッジが示されている。 FIG. 2 is a perspective view of an example of a magnetic tape cartridge. FIG. 2 shows a single reel type magnetic tape cartridge.
  図2に示されている磁気テープカートリッジ13は、ケース112を有している。ケース112は、矩形の箱状に形成されている。ケース112は、通常、ポリカーボネート等の樹脂製である。ケース112の内部には、リール130が1つだけ回転可能に収容されている。 The magnetic tape cartridge 13 shown in FIG. 2 has a case 112 . The case 112 is formed in a rectangular box shape. The case 112 is normally made of resin such as polycarbonate. Only one reel 130 is rotatably accommodated inside the case 112 .
 図3は、リールに磁気テープを巻回し始めるときの斜視図である。図4は、リールに磁気テープを巻回し終えたときの斜視図である。 Fig. 3 is a perspective view when starting to wind the magnetic tape around the reel. FIG. 4 is a perspective view when the magnetic tape has been completely wound around the reel.
 リール130は、軸心部を構成する円筒状のリールハブ122を有する。 The reel 130 has a cylindrical reel hub 122 forming an axial center.
 リールハブは、磁気テープカートリッジ内で磁気テープが巻回される軸心部を構成する円筒状部材である。上記磁気テープカートリッジにおいて、リールハブは、単層構成の円筒状部材であることができ、2層以上の多層構成の円筒状部材であることもできる。製造コストおよび製造の容易性の観点からは、リールハブは、単層構成の円筒状部材であることが好ましい。 The reel hub is a cylindrical member that constitutes the axial center around which the magnetic tape is wound within the magnetic tape cartridge. In the above magnetic tape cartridge, the reel hub may be a single-layered cylindrical member, or may be a multi-layered cylindrical member having two or more layers. From the viewpoint of manufacturing cost and ease of manufacturing, the reel hub is preferably a single-layered cylindrical member.
 リールハブは、磁気テープが巻回されることにより、中心方向へ巻締め力を受け、直径が小さくなる方向へ変形する傾向があると考えられ、剛性が低いリールハブほど、変形し易いと考えられる。磁気テープのカートリッジ芯側では、リールハブの変形に対応するように、テープ長が短くなる方向に圧縮応力が発生し、次いで、この圧縮応力に起因する圧縮によって、テープ幅が広がる方向に引張応力が発生すると推察される。こうして発生する応力が大きいほど、磁気テープカートリッジ内での保管中に磁気テープに大きな変形が生じ易いと考えられる。これに対し、リールハブの剛性が高いと、上記の変形の抑制が可能になるため、上記応力の発生の抑制も可能になる。このことが、5環境の1年保管後の磁気テープ最大変形量、相対湿度に対する磁気テープ変形量の変化の割合および温度に対する磁気テープ変形量の変化の割合の値を小さくすることにつながり得ると推察される。この点から、一形態では、リールハブの少なくとも外周側表層部を構成する材料の曲げ弾性率は、5GPa以上であることが好ましく、6GPa以上であることがより好ましく、7GPa以上であることが更に好ましく、8GPa以上であることが一層好ましい。上記曲げ弾性率は、例えば、20GPa以下、15GPa以下または10GPa以下であることができる。ただし、上記曲げ弾性率が高いことは、リールハブの変形抑制の観点から好ましいため、上記曲げ弾性率は、ここで例示した値を超えてもよい。 When the magnetic tape is wound on the reel hub, it is considered that the reel hub receives a tightening force toward the center and tends to deform in the direction of decreasing the diameter. On the cartridge core side of the magnetic tape, a compressive stress is generated in the direction in which the tape length is shortened so as to correspond to the deformation of the reel hub. presumed to occur. It is believed that the greater the stress generated in this way, the more likely the magnetic tape will undergo large deformation during storage in the magnetic tape cartridge. On the other hand, if the rigidity of the reel hub is high, it is possible to suppress the above-mentioned deformation, so it is also possible to suppress the occurrence of the above-mentioned stress. This can lead to a decrease in the maximum deformation of the magnetic tape after storage for one year in the five environments, the rate of change in the amount of magnetic tape deformation with respect to relative humidity, and the rate of change in the amount of magnetic tape deformation with respect to temperature. guessed. From this point, in one embodiment, the bending elastic modulus of the material constituting at least the outer peripheral surface layer portion of the reel hub is preferably 5 GPa or more, more preferably 6 GPa or more, and even more preferably 7 GPa or more. , 8 GPa or more. The flexural modulus can be, for example, 20 GPa or less, 15 GPa or less, or 10 GPa or less. However, since a high flexural modulus is preferable from the viewpoint of suppressing deformation of the reel hub, the flexural modulus may exceed the values exemplified here.
 上記曲げ弾性率は、リールハブが単層構成の円筒状部材である場合、かかる円筒状部材を構成する材料の曲げ弾性率である。一方、リールハブが2層以上の多層構成の円筒状部材の場合、上記曲げ弾性率は、かかるリールハブの少なくとも外周側表層部を構成する材料の曲げ弾性率である。本発明および本明細書において、「曲げ弾性率」とは、JIS(Japanese Industrial Standards) K 7171:2016にしたがい求められる値である。JIS K 7171:2016は、2010年に第5版として発行されたISO(International Organization for Standardization) 178およびAmendment 1:2013を基に、技術内容を変更することなく作成された日本工業規格である。曲げ弾性率を測定するために使用する試験片は、JIS K 7171:2016の項目6「試験片」にしたがい準備する。 When the reel hub is a single-layered cylindrical member, the bending elastic modulus is the bending elastic modulus of the material that constitutes the cylindrical member. On the other hand, when the reel hub is a cylindrical member having a multi-layer structure of two or more layers, the bending elastic modulus is the bending elastic modulus of the material forming at least the outer peripheral side surface layer of the reel hub. In the present invention and the specification, "flexural modulus" is a value determined according to JIS (Japanese Industrial Standards) K 7171:2016. JIS K 7171:2016 is a Japanese Industrial Standard created based on ISO (International Organization for Standardization) 178 and Amendment 1:2013 published as the 5th edition in 2010 without changing the technical content. A test piece used for measuring the flexural modulus is prepared according to JIS K 7171:2016 Item 6 "Test piece".
 リールハブを構成する材料としては、樹脂、金属等を挙げることができる。金属としては、例えばアルミニウムを挙げることができる。コスト面、生産性等の観点からは、樹脂が好ましい。樹脂としては、例えば、繊維強化樹脂を挙げることができる。繊維強化樹脂としては、例えば、ガラス繊維強化樹脂、炭素繊維強化樹脂等が挙げられる。かかる繊維強化樹脂としては、繊維強化ポリカーボネートが好ましい。ポリカーボネートは調達容易であり、射出成形機等の汎用的な成形機によって高精度かつ安価に成形可能であるためである。また、ガラス繊維強化樹脂において、ガラス繊維の含有率は、15質量%以上であることが好ましい。ガラス繊維の含有率が高いほど、ガラス繊維強化樹脂の曲げ弾性率は高くなる傾向がある。一例として、ガラス繊維強化樹脂のガラス繊維の含有率は、50質量%以下または40質量%以下であることができる。一形態では、リールハブを構成する樹脂としては、ガラス繊維強化ポリカーボネートが好ましい。また、リールハブを構成する樹脂としては、一般にスーパーエンジニアリングプラスチックと呼ばれる高強度の樹脂等を挙げることもできる。スーパーエンジニアリングプラスチックの一例としては、ポリフェニレンサルファイド(PPS)が挙げられる。 Examples of materials that make up the reel hub include resins and metals. Examples of metals include aluminum. Resin is preferable from the viewpoint of cost, productivity, and the like. Examples of resins include fiber-reinforced resins. Examples of fiber reinforced resins include glass fiber reinforced resins and carbon fiber reinforced resins. Fiber-reinforced polycarbonate is preferable as such a fiber-reinforced resin. This is because polycarbonate is easily procured and can be molded with high precision and at low cost using a general-purpose molding machine such as an injection molding machine. Moreover, in the glass fiber reinforced resin, it is preferable that the content of the glass fiber is 15% by mass or more. The higher the glass fiber content, the higher the flexural modulus of the glass fiber reinforced resin. As an example, the glass fiber content of the glass fiber reinforced resin may be 50% by mass or less or 40% by mass or less. In one form, glass fiber reinforced polycarbonate is preferable as the resin constituting the reel hub. As the resin constituting the reel hub, a high-strength resin generally called super engineering plastic can be used. One example of super engineering plastics is polyphenylene sulfide (PPS).
 リールハブの厚みは2.0~3.0mmの範囲であることが、リールハブの強度および成形時の寸法精度を両立する観点から好ましい。リールハブの厚みとは、2層以上の多層構成のリールハブについては、かかる多層の総厚をいうものとする。リールハブの外径は、通常、磁気記録再生装置の規格により定められており、例えば20~60mmの範囲であることができる。 The thickness of the reel hub is preferably in the range of 2.0 to 3.0 mm from the viewpoint of achieving both the strength of the reel hub and dimensional accuracy during molding. The thickness of the reel hub refers to the total thickness of the multi-layered reel hub of two or more layers. The outer diameter of the reel hub is usually determined by the standard of the magnetic recording/reproducing device, and can be in the range of 20 to 60 mm, for example.
 リールハブ122の両端部には、リールハブ122の下端部および上端部からそれぞれ半径方向外側に張り出すフランジ(下フランジ124および上フランジ126)が設けられている。ここでは、「上」および「下」について、磁気テープカートリッジが磁気記録再生装置に装着される際、上方に位置する側を「上」、下方に位置する側を「下」と記載する。下フランジ124および上フランジ126の一方または両方は、リールハブ122の上端部側および/または下端部側を補強する観点から、リールハブ122と一体的に構成されていることが好ましい。一体的に構成されているとは、別部材ではなく、1つの部材として構成されていることをいうものとする。第一の形態では、リールハブ122と上フランジ126とが1つの部材として構成され、この部材が、別部材として構成された下フランジ124と公知の方法で接合される。第二の形態では、リールハブ122と下フランジ124とが1つの部材として構成され、この部材が、別部材として構成された上フランジ126と公知の方法で接合される。上記磁気テープカートリッジのリールは、いずれの形態であってもよい。各部材は、射出成形等の公知の成形方法によって作製することができる。 Both ends of the reel hub 122 are provided with flanges (lower flange 124 and upper flange 126) projecting radially outward from the lower end and upper end of the reel hub 122, respectively. Here, regarding "upper" and "lower", when the magnetic tape cartridge is mounted in the magnetic recording/reproducing apparatus, the upper side is referred to as "upper", and the lower side is referred to as "lower". One or both of the lower flange 124 and the upper flange 126 are preferably configured integrally with the reel hub 122 from the viewpoint of reinforcing the upper end side and/or the lower end side of the reel hub 122 . Integrally configured means configured as one member instead of separate members. In a first configuration, the reel hub 122 and upper flange 126 are constructed as one piece, which is joined to a separately constructed lower flange 124 in a known manner. In a second configuration, the reel hub 122 and lower flange 124 are constructed as one piece which is joined in a known manner to an upper flange 126 constructed as a separate piece. The reel of the magnetic tape cartridge may be of any form. Each member can be produced by a known molding method such as injection molding.
 磁気テープMTは、テープ内側末端Tf(図3参照)を起点として、リールハブ122の外周に巻回される。磁気テープカートリッジの製造時に磁気テープをカートリッジリールのリールハブに巻回する際に磁気テープ長手方向に加わるテンション(以下、「製造時巻取りテンション」とも呼ぶ。)を小さくすることも、5環境の1年保管後の磁気テープ最大変形量、相対湿度に対する磁気テープ変形量の変化の割合および温度に対する磁気テープ変形量の変化の割合の値を小さくすることにつながり得る。この点から、製造時巻取りテンションは、0.40N以下であることが好ましく、例えば0.30N以下であることもできる。製造時巻取りテンションは、例えば0.10N以上もしくは0.20N以上であることができ、またはテンションフリーとすることもできる。製造時巻取りテンションは、一定値であることができ、変化させることもできる。製造時巻取りテンションは、磁気テープカートリッジの製造装置において設定される設定値とする。 The magnetic tape MT is wound around the outer periphery of the reel hub 122 starting from the tape inner end Tf (see FIG. 3). Reducing the tension applied in the longitudinal direction of the magnetic tape when the magnetic tape is wound around the reel hub of the cartridge reel during manufacturing of the magnetic tape cartridge (hereinafter also referred to as "manufacturing winding tension") is one of the five circumstances. This can lead to a decrease in the maximum deformation of the magnetic tape after yearly storage, the rate of change in the amount of magnetic tape deformation with respect to relative humidity, and the rate of change in the amount of magnetic tape deformation with respect to temperature. From this point of view, the winding tension during manufacturing is preferably 0.40 N or less, and can be, for example, 0.30 N or less. The as-manufactured winding tension can be, for example, 0.10 N or more, or 0.20 N or more, or it can be tension-free. The manufacturing winding tension can be a constant value or can be varied. The take-up tension at the time of manufacture is a set value that is set in the magnetic tape cartridge manufacturing apparatus.
 ケース112の側壁には、リール130に巻回された磁気テープMTを引き出すための開口114があり、この開口114から引き出される磁気テープMTのテープ外側末端Teには、磁気記録再生装置(図示せず)の引出部材(図示せず)によって係止されつつ引き出し操作されるリーダーピン116が固着されている。 The side wall of the case 112 has an opening 114 through which the magnetic tape MT wound around the reel 130 is drawn out. A leader pin 116 that is pulled out while being locked by a pull-out member (not shown) is fixed.
 また、開口114は、ドア118によって開閉されるようになっている。ドア118は、開口114を閉塞可能な大きさの矩形の板状に形成されており、その開口114を閉塞する方向へ付勢部材(図示せず)により付勢されている。そして、ドア118は、磁気テープカートリッジ13が磁気記録再生装置に装着されると、付勢部材の付勢力に抗して開放されるようになっている。 Also, the opening 114 is opened and closed by a door 118 . The door 118 is formed in a rectangular plate shape with a size capable of closing the opening 114 , and is biased by a biasing member (not shown) in a direction to close the opening 114 . When the magnetic tape cartridge 13 is loaded into the magnetic recording/reproducing apparatus, the door 118 is opened against the biasing force of the biasing member.
 磁気テープカートリッジのその他の詳細については、公知技術を適用することができる。磁気テープカートリッジに収容される磁気テープの全長は、特に限定されず、例えば800m~2500m程度の範囲であることができる。磁気テープカートリッジ1巻に収容されるテープ全長が長いほど、磁気テープカートリッジの高容量化の観点から好ましい。 For other details of the magnetic tape cartridge, known technology can be applied. The total length of the magnetic tape accommodated in the magnetic tape cartridge is not particularly limited, and can be, for example, in the range of approximately 800 m to 2500 m. From the viewpoint of increasing the capacity of the magnetic tape cartridge, it is preferable that the total length of the tape accommodated in one roll of the magnetic tape cartridge is longer.
[走行時のテンション、カートリッジリールへの巻取り時のテンション]
 磁気記録再生装置では、カートリッジリール(供給リール)と巻取りリールとの間で磁気テープを走行させて、磁気テープへのデータの記録および/または記録されたデータの再生を行うことができる。上記磁気記録再生装置において、かかる走行時、磁気テープの長手方向にテンションをかけることができる。より大きなテンションを磁気テープの長手方向にかけるほど、磁気テープの幅方向の寸法をより大きく収縮させることができ(即ち、より幅狭にすることができ)、そのテンションを小さくするほど、その収縮の程度を小さくすることができる。したがって、磁気記録再生装置内で走行している磁気テープの長手方向にかけるテンションの値によって、磁気テープの幅方向の寸法を制御することができる。上記磁気記録再生装置では、一形態では、長手方向に最大で0.50N以上のテンションがかけられた状態で磁気テープを走行させることができる。このような大きなテンションがかけられた状態での走行後にそのまま磁気テープが磁気テープカートリッジ内で保管されると、保管中に磁気テープの変形が生じやすくなると考えられる。先に記載したように、保管中、磁気テープカートリッジに収容された磁気テープにおいて、カートリッジリールに近い部分はテープ厚み方向の圧縮応力によって初期より幅広に変形し、カートリッジリールから遠い部分はテープ長手方向の引っ張り応力によって初期より幅狭に変形するという、位置によって異なる変形が起こると推察され、大きなテンションがかかった状態のままで収容された磁気テープでは、位置によって変形がより大きく異なるものになり易いと考えられる。
 そこで、一形態では、上記磁気記録再生装置では、最大で0.50N以上のテンションが長手方向にかけられた状態で走行が行われた後の磁気テープをカートリッジリールに巻取る際、磁気テープの長手方向にかけるテンションを0.40N以下とすることが好ましい。これにより、走行時に長手方向にかかったテンションよりも小さなテンションでカートリッジリールに磁気テープを巻取って磁気テープカートリッジ内で保管することが可能になるため、先に記載した変形により生じ得る現象の発生をより一層抑制することができると本発明者は考えている。また、走行中にテンションがかけられたか否かおよびテンションの値にかかわらず、走行が行われた後の磁気テープをカートリッジリールに巻取る際、磁気テープの長手方向にかけるテンションを0.40N以下とすることは、先に記載した変形により生じ得る現象の発生をより一層抑制するうえで好ましいと、本発明者は推察している。
[Tension when running, tension when winding to the cartridge reel]
In a magnetic recording/reproducing apparatus, a magnetic tape can be run between a cartridge reel (supply reel) and a take-up reel to record data on the magnetic tape and/or reproduce recorded data. In the magnetic recording/reproducing apparatus, tension can be applied in the longitudinal direction of the magnetic tape during running. The larger the tension applied to the magnetic tape in the longitudinal direction, the larger the widthwise dimension of the magnetic tape can be shrunk (that is, the narrower the width can be made), and the smaller the tension, the smaller the shrinkage. can be reduced. Therefore, the dimension of the magnetic tape in the width direction can be controlled by the value of the tension applied in the longitudinal direction of the magnetic tape running in the magnetic recording/reproducing apparatus. In one form of the magnetic recording/reproducing apparatus, the magnetic tape can be run while a maximum tension of 0.50 N or more is applied in the longitudinal direction. If the magnetic tape is stored in the magnetic tape cartridge after running under such a high tension, the magnetic tape is likely to be deformed during storage. As described above, in the magnetic tape housed in the magnetic tape cartridge during storage, the portion near the cartridge reel is deformed wider than the initial width due to the compressive stress in the thickness direction of the tape, and the portion far from the cartridge reel is deformed in the longitudinal direction of the tape. It is presumed that different deformation occurs depending on the position, such that the width is deformed narrower than the initial value due to the tensile stress of the tape, and if the magnetic tape is stored under a large amount of tension, the deformation tends to vary greatly depending on the position. it is conceivable that.
Therefore, in one embodiment, in the above magnetic recording/reproducing apparatus, when the magnetic tape is wound around the cartridge reel after the magnetic tape has been run with a tension of 0.50 N or more applied in the longitudinal direction, the longitudinal direction of the magnetic tape is It is preferable to set the tension applied in the direction to 0.40 N or less. As a result, the magnetic tape can be wound onto the cartridge reel with a tension smaller than the tension applied in the longitudinal direction during running, and stored in the magnetic tape cartridge. The present inventor believes that it is possible to further suppress the In addition, regardless of whether or not tension is applied during running and the value of the tension, when the magnetic tape is wound around the cartridge reel after running, the tension applied in the longitudinal direction of the magnetic tape should be 0.40 N or less. The inventor presumes that it is preferable to further suppress the occurrence of the phenomenon that may occur due to the deformation described above.
 上記磁気記録再生装置において走行中の磁気テープの長手方向にテンションをかける場合、かかるテンションの最大値は、0.50N以上であることができ、0.60N以上、0.70N以上または0.80N以上であることもできる、また、かかる最大値は、例えば、1.50N以下、1.40N以下、1.30N以下、1.20N以下、1.10N以下または1.00N以下であることができる。走行時に磁気テープの長手方向にかけるテンションは、一定値であることができ、変化させることもできる。一定値の場合、一定値のテンションが磁気テープの長手方向にかかるように、例えば磁気記録再生装置の制御装置によって、磁気テープの長手方向にかけるテンションを制御することができる。一方、走行時に磁気テープの長手方向にかけるテンションを変化させる場合、例えば、サーボ信号を利用して走行中の磁気テープの幅方向の寸法情報を取得し、取得された寸法情報に応じて磁気テープの長手方向にかけるテンションを調整して変化させることができる。これにより、磁気テープの幅方向の寸法を制御することができる。そのようなテンション調整の一形態については、先に図1を参照して説明した通りである。ただし、上記磁気記録再生装置は、例示した形態に限定されるものではない。上記磁気記録再生装置において、走行中の磁気テープの長手方向にかけるテンションを変化させる場合、その最小値は、例えば0.10N以上、0.20N以上、0.30N以上または0.40N以上であることができる。また、かかる最小値は、一形態では、例えば0.40N以下または0.40N未満であることができ、他の一形態では0.60N以下または0.50N以下であることができる。 When tension is applied in the longitudinal direction of the running magnetic tape in the magnetic recording/reproducing apparatus, the maximum value of the tension can be 0.50 N or more, 0.60 N or more, 0.70 N or more, or 0.80 N. and such maximum values can be, for example, 1.50 N or less, 1.40 N or less, 1.30 N or less, 1.20 N or less, 1.10 N or less or 1.00 N or less. . The tension applied in the longitudinal direction of the magnetic tape during running can be a constant value or can be varied. In the case of a constant value, the tension applied in the longitudinal direction of the magnetic tape can be controlled by, for example, a controller of a magnetic recording/reproducing apparatus so that a constant tension is applied in the longitudinal direction of the magnetic tape. On the other hand, when changing the tension applied in the longitudinal direction of the magnetic tape while it is running, for example, the servo signal is used to acquire the dimension information in the width direction of the running magnetic tape, and the magnetic tape is stretched according to the acquired dimension information. can be changed by adjusting the tension applied in the longitudinal direction. Thereby, the dimension in the width direction of the magnetic tape can be controlled. One form of such tension adjustment is as described above with reference to FIG. However, the magnetic recording/reproducing device is not limited to the illustrated form. In the above magnetic recording/reproducing apparatus, when changing the tension applied in the longitudinal direction of the running magnetic tape, the minimum value is, for example, 0.10 N or more, 0.20 N or more, 0.30 N or more, or 0.40 N or more. be able to. Also, such a minimum value can be, in one form, for example, 0.40N or less, or less than 0.40N, and in another form, 0.60N or less, or 0.50N or less.
 磁気記録再生装置において、データの記録および/または再生のために磁気テープを走行させる際、磁気テープの走行の具体的形態としては、以下の形態を挙げることができる。
 形態1:データの記録および/または再生のための走行終了時、磁気テープの全長が、巻取りリールに巻取られている。
 形態2:データの記録および/または再生のための走行終了時、磁気テープの全長が、カートリッジリールに巻取られている。
 形態3:データの記録および/または再生のための走行終了時、磁気テープの一部はカートリッジリールに巻かれ、一部は巻取りリールに巻かれている。
In the magnetic recording/reproducing apparatus, when the magnetic tape is run for recording and/or reproducing data, specific modes of running of the magnetic tape include the following modes.
Mode 1: At the end of running for data recording and/or reproduction, the entire length of the magnetic tape is taken up on the take-up reel.
Mode 2: At the end of running for data recording and/or reproduction, the entire length of the magnetic tape is wound on the cartridge reel.
Mode 3: At the end of running for data recording and/or reproduction, part of the magnetic tape is wound on the cartridge reel and part is wound on the take-up reel.
 走行させた後の磁気テープを磁気テープの長手方向にテンションをかけてカートリッジリールに巻取る際のテンション(以下、「巻返しテンション」とも記載する。)とは、以下のテンションを言うものとする。
 形態1においては、巻返しテンションは、磁気テープカートリッジに収容するために磁気テープ全長をカートリッジリールに巻取る際に磁気テープの長手方向にかけるテンションである。
 形態2においては、まずカートリッジリールから巻取りリールへ磁気テープを巻取る。この際に磁気テープの長手方向にかけるテンションは特に限定されるものではない。一定値であってもよく、変化させてもよく、走行中のテンションの値に関する先の記載にしたがってもよく、したがわなくてもよい。その後にカートリッジリールに巻取る際に磁気テープの長手方向にかけるテンションが、巻返しテンションである。かかるテンションは、巻取りリールからカートリッジリールへ磁気テープ全長を巻取る際に磁気テープの長手方向にかけるテンションである。
 形態3は、以下の2つの形態のいずれかであることができる。1つ目の形態(形態3-1)は、データの記録および/または再生のための走行終了時、磁気テープにおいてカートリッジリールに巻かれている部分が、カートリッジリールへの巻取り時に長手方向にテンションをかけて巻取られた形態である。この巻取り時のテンションが、巻返しテンションである。2つ目の形態(形態3-2)は、形態3の形態3-1以外の形態である。磁気テープ全長をカートリッジリールに巻取りカートリッジに収容するために、形態3-1においては、カートリッジリールに巻かれていない磁気テープをカートリッジリールに巻取る際に磁気テープの長手方向にかけるテンションが巻返しテンションである。形態3-2については、形態2と同様である。即ち、まずカートリッジリールから巻取りリールへ磁気テープを巻取る。その後に巻取りリールからカートリッジリールへ磁気テープ全長を巻取る際に磁気テープの長手方向にかけるテンションが巻返しテンションである。
 以上の形態1、形態2および形態3のいずれにおいても、カートリッジリールに巻取る際に磁気テープの長手方向にかけるテンション(巻返しテンション)は、0.40N以下であることが好ましい。巻返しテンションは、一定値であってもよく、変化させてもよい。一形態では、巻返しテンションは、0.40N以下の一定値であってもよく、0.40N以下の範囲で変化させてもよい。変化させる場合、カートリッジリールに巻取る際に磁気テープの長手方向にかけるテンションの最大値が0.40N以下であることが好ましく、例えば0.30N以下であることもできる。カートリッジリールに巻取る際に磁気テープの長手方向にかけるテンションの最小値は、例えば0.10N以上もしくは0.20N以上であることができ、または、ここで例示した値を下回ってもよい。カートリッジリールへの巻取り時のテンション(巻返しテンション)は、例えば磁気記録再生装置の制御装置によって制御することができる。また、磁気テープへのデータの記録および/または再生後に設定した巻返しテンションを磁気テープの長手方向にかけてカートリッジリールへの巻取りが行われるようにカートリッジメモリに動作プログラムを記録し、このプログラムを制御装置が読み出して巻取り動作が実行されるようにしてもよい。
The tension (hereinafter also referred to as "rewinding tension") when winding the running magnetic tape on the cartridge reel by applying tension in the longitudinal direction of the magnetic tape refers to the following tension. .
In form 1, the rewinding tension is the tension applied in the longitudinal direction of the magnetic tape when the entire length of the magnetic tape is wound around the cartridge reel to be accommodated in the magnetic tape cartridge.
In mode 2, first, the magnetic tape is wound from the cartridge reel to the take-up reel. At this time, the tension applied in the longitudinal direction of the magnetic tape is not particularly limited. It may or may not be a constant value, it may vary, and it may or may not follow the previous description of the value of the tension during running. The tension applied in the longitudinal direction of the magnetic tape when it is subsequently wound onto the cartridge reel is the rewind tension. This tension is applied in the longitudinal direction of the magnetic tape when winding the entire length of the magnetic tape from the take-up reel onto the cartridge reel.
Form 3 can be either of the following two forms. In the first form (form 3-1), when the running for recording and/or reproducing data is finished, the portion of the magnetic tape wound around the cartridge reel is longitudinally stretched when wound around the cartridge reel. It is a form wound up with tension. The tension at the time of this winding is the rewinding tension. The second form (form 3-2) is a form other than the form 3-1 of the third form. In order to wind the entire length of the magnetic tape onto the cartridge reel and store it in the cartridge, in the configuration 3-1, tension applied in the longitudinal direction of the magnetic tape is applied when the magnetic tape that is not wound on the cartridge reel is wound onto the cartridge reel. return tension. Form 3-2 is the same as form 2. That is, first, the magnetic tape is wound from the cartridge reel onto the take-up reel. The rewinding tension is the tension applied in the longitudinal direction of the magnetic tape when the entire length of the magnetic tape is subsequently wound from the take-up reel onto the cartridge reel.
In any of the first, second, and third embodiments, the tension (rewinding tension) applied in the longitudinal direction of the magnetic tape when wound on the cartridge reel is preferably 0.40 N or less. The rewinding tension may be a constant value or may be changed. In one form, the rewinding tension may be a constant value of 0.40N or less, or may be varied within a range of 0.40N or less. When changing the tension, the maximum value of the tension applied in the longitudinal direction of the magnetic tape when wound on the cartridge reel is preferably 0.40 N or less, and may be, for example, 0.30 N or less. The minimum value of the tension applied in the longitudinal direction of the magnetic tape when wound on the cartridge reel can be, for example, 0.10 N or more, or 0.20 N or more, or can be less than the values exemplified here. The tension (rewinding tension) at the time of winding onto the cartridge reel can be controlled by, for example, the control device of the magnetic recording/reproducing device. After recording and/or reproducing data on the magnetic tape, an operation program is recorded in the cartridge memory and this program is controlled so that the set rewinding tension is applied in the longitudinal direction of the magnetic tape to wind the magnetic tape onto the cartridge reel. It may be read by the device to perform the winding operation.
[磁気テープ]
 上記磁気テープカートリッジでは、磁気テープがカートリッジリールに巻回されて収容されている。以下、かかる磁気テープについて更に詳細に説明する。
[Magnetic tape]
In the magnetic tape cartridge, the magnetic tape is wound around the cartridge reel and accommodated. The magnetic tape will be described in more detail below.
<非磁性支持体>
 上記磁気テープは、非磁性支持体(以下、単に「支持体」とも記載する。)として、幅方向のヤング率が10000MPa(メガパスカル)以上のポリエチレンナフタレート支持体を含む。
<Nonmagnetic support>
The magnetic tape includes a polyethylene naphthalate support having a Young's modulus of 10000 MPa (megapascal) or more in the width direction as a non-magnetic support (hereinafter also simply referred to as "support").
 ポリエチレンナフタレート(PEN)は、ナフタレン環および複数のエステル結合を含む樹脂(即ちナフタレン環を含むポリエステル)であって、2,6-ナフタレンジカルボン酸ジメチルとエチレングリコールとのエステル化反応を行い、その後にエステル交換反応および重縮合反応を行って得ることができる樹脂である。本発明および本明細書における「ポリエチレンナフタレート」には、上記成分に加えて1種以上の他の成分(例えば、共重合成分、末端または側鎖に導入される成分等)を有する構造のものも包含される。本発明および本明細書において、「ポリエチレンナフタレート支持体」とは、少なくとも1層のポリエチレンナフタレートフィルムを含む支持体を意味する。「ポリエチレンナフタレートフィルム」とは、このフィルムを構成する成分の中で質量基準で最も多くを占める成分がポリエチレンナフタレートであるフィルムをいうものとする。本発明および本明細書における「ポリエチレンナフタレート支持体」には、この支持体に含まれる樹脂フィルムがすべてポリエチレンナフタレートフィルムであるものと、ポリエチレンナフタレートフィルムと他の樹脂フィルムとを含むものとが包含される。ポリエチレンナフタレート支持体の具体的態様としては、単層のポリエチレンナフタレートフィルム、構成成分が同じ2層以上のポリエチレンナフタレートフィルムの積層フィルム、構成成分が異なる2層以上のポリエチレンナフタレートフィルムの積層フィルム、1層以上のポリエチレンナフタレートフィルムおよび1層以上のポリエチレンナフタレート以外の樹脂フィルムを含む積層フィルム等を挙げることができる。積層フィルムにおいて隣り合う2層の間に接着層等が任意に含まれていてもよい。また、ポリエチレンナフタレート支持体には、一方または両方の表面に蒸着等によって形成された金属膜および/または金属酸化物膜が任意に含まれていてもよい。 Polyethylene naphthalate (PEN) is a resin containing a naphthalene ring and a plurality of ester bonds (that is, a polyester containing a naphthalene ring). It is a resin that can be obtained by subjecting a transesterification reaction and a polycondensation reaction to In the present invention and herein, "polyethylene naphthalate" has a structure having one or more other components (e.g., copolymer components, components introduced into terminals or side chains, etc.) in addition to the above components. is also included. In the present invention and herein, "polyethylene naphthalate support" means a support comprising at least one layer of polyethylene naphthalate film. The term "polyethylene naphthalate film" refers to a film in which polyethylene naphthalate is the most abundant component on a mass basis among the components constituting this film. The "polyethylene naphthalate support" in the present invention and the specification includes those in which all the resin films contained in this support are polyethylene naphthalate films, and those in which polyethylene naphthalate films and other resin films are included. is included. Specific embodiments of the polyethylene naphthalate support include a single-layer polyethylene naphthalate film, a laminated film of two or more layers of polyethylene naphthalate films having the same constituents, and a laminate of two or more layers of polyethylene naphthalate films having different constituents. Films, laminate films containing one or more layers of polyethylene naphthalate films and one or more layers of resin films other than polyethylene naphthalate, and the like can be mentioned. An adhesive layer or the like may optionally be included between two adjacent layers in the laminated film. The polyethylene naphthalate support may also optionally include a metal film and/or a metal oxide film formed by vapor deposition or the like on one or both surfaces.
 また、非磁性支持体は、二軸延伸フィルムであることができ、コロナ放電、プラズマ処理、易接着処理、熱処理等が施されたフィルムであってもよい。 In addition, the non-magnetic support can be a biaxially stretched film, and may be a film subjected to corona discharge, plasma treatment, easy adhesion treatment, heat treatment, or the like.
 本発明および本明細書において、非磁性支持体のヤング率は、温度23℃相対湿度50%の測定環境において、以下の方法によって測定される値である。後掲の表に示されているヤング率は、万能引張試験装置として東洋ボールドウィン社製テンシロンを使用して以下の方法によって求めた値である。
 測定対象の非磁性支持体から切り出した試料片を、チャック間距離100mm、引張速度10mm/分およびチャート速度500mm/分の条件で、万能引張試験装置にて引っ張る。万能引張試験装置としては、例えば、東洋ボールドウィン社製テンシロン等の市販の万能引張試験装置または公知の構成の万能引張試験装置を使用することができる。こうして得られた荷重-伸び曲線の立ち上がり部の接線より、上記試料片の長手方向および幅方向のヤング率をそれぞれ算出する。ここで試料片の長手方向および幅方向とは、この試料片が磁気テープに含まれていたときの長手方向および幅方向を意味する。
 例えば、磁気テープから磁性層等の非磁性支持体以外の部分を公知の方法(例えば有機溶媒を使用した脱膜等)によって除去した後、上記方法によって非磁性支持体の長手方向および幅方向のヤング率を求めることもできる。
In the present invention and this specification, the Young's modulus of a non-magnetic support is a value measured by the following method in a measurement environment of 23° C. and 50% relative humidity. The Young's modulus shown in the table below is a value determined by the following method using Tensilon manufactured by Toyo Baldwin Co., Ltd. as a universal tensile tester.
A sample piece cut out from a non-magnetic support to be measured is pulled by a universal tensile tester under the conditions of a distance between chucks of 100 mm, a tensile speed of 10 mm/min and a chart speed of 500 mm/min. As the universal tensile tester, for example, a commercially available universal tensile tester such as Tensilon manufactured by Toyo Baldwin Co., Ltd. or a universal tensile tester with a known configuration can be used. The Young's modulus in the longitudinal direction and width direction of the sample piece is calculated from the tangent to the rising portion of the load-elongation curve thus obtained. Here, the longitudinal direction and width direction of the sample piece mean the longitudinal direction and width direction when this sample piece is included in the magnetic tape.
For example, after removing portions other than the non-magnetic support, such as the magnetic layer, from the magnetic tape by a known method (e.g., film removal using an organic solvent, etc.), the longitudinal direction and width direction of the non-magnetic support are removed by the above method. Young's modulus can also be obtained.
 上記ポリエチレンナフタレート支持体の幅方向のヤング率は、10000MPa以上である。かかる非磁性支持体が磁気テープに含まれることは、5環境の1年保管後の磁気テープ最大変形量、相対湿度の変化に対する磁気テープ変形量の変化の割合および温度の変化に対する磁気テープ変形量の変化の割合からなる群から選ばれる1つ以上を上記範囲に制御することに寄与し得ると本発明者は考えている。上記ポリエチレンナフタレート支持体の幅方向のヤング率は、例えば11000MPa以上であることもできる。また上記ポリエチレンナフタレート支持体の幅方向のヤング率は、例えば、20000MPa以下、18000MPa以下、16000MPa以下もしくは14000MPa以下であってもよく、ここに例示した値を上回ってもよい。 The Young's modulus of the polyethylene naphthalate support in the width direction is 10000 MPa or more. The inclusion of such a non-magnetic support in the magnetic tape provides the maximum amount of deformation of the magnetic tape after storage for one year in five environments, the rate of change in the amount of deformation of the magnetic tape with respect to changes in relative humidity, and the amount of deformation of the magnetic tape with respect to changes in temperature. The present inventor believes that it can contribute to controlling one or more selected from the group consisting of the rate of change in the above range. The widthwise Young's modulus of the polyethylene naphthalate support may be, for example, 11000 MPa or more. The widthwise Young's modulus of the polyethylene naphthalate support may be, for example, 20,000 MPa or less, 18,000 MPa or less, 16,000 MPa or less, or 14,000 MPa or less, or may exceed the values exemplified here.
 上記ポリエチレンナフタレート支持体は、幅方向のヤング率が10000MPa以上であればよく、長手方向のヤング率は特に限定されるものではない。一形態では、上記ポリエチレンナフタレート支持体の長手方向のヤング率は、2500MPa以上であることが好ましく、3000MPa以上であることがより好ましい。また、上記ポリエチレンナフタレート支持体の長手方向のヤング率は、例えば、10000MPa以下、9000MPa以下、8000MPa以下、7000MPa以下または6000MPa以下であることができる。磁気テープの製造時、非磁性支持体は、通常、フィルムのMD方向(Machine direction)を長手方向、TD方向(Transverse diretion)を幅方向として使用される。非磁性支持体の長手方向のヤング率と幅方向のヤング率は、一形態では同じ値であることができ、他の一形態では異なる値であることができる。一形態では、上記ポリエチレンナフタレート支持体の幅方向のヤング率は、長手方向のヤング率より大きな値であることができる。 The polyethylene naphthalate support may have a Young's modulus of 10000 MPa or more in the width direction, and the Young's modulus in the longitudinal direction is not particularly limited. In one form, the longitudinal Young's modulus of the polyethylene naphthalate support is preferably 2500 MPa or more, more preferably 3000 MPa or more. The longitudinal Young's modulus of the polyethylene naphthalate support may be, for example, 10000 MPa or less, 9000 MPa or less, 8000 MPa or less, 7000 MPa or less, or 6000 MPa or less. When manufacturing a magnetic tape, a non-magnetic support is generally used with the MD (machine direction) of the film as the longitudinal direction and the TD (transverse direction) as the width direction. The Young's modulus in the longitudinal direction and the Young's modulus in the width direction of the non-magnetic support can be the same value in one form, and can be different values in another form. In one form, the Young's modulus in the width direction of the polyethylene naphthalate support may be larger than the Young's modulus in the longitudinal direction.
 非磁性支持体の物性の指標としては、含水率も挙げられる。本発明および本明細書において、非磁性支持体の含水率は、以下の方法により求められる値である。後掲の表に示されている含水率は、以下の方法によって求めた値である。
 含水率を測定する対象の非磁性支持体から切り出した試料片(例えば数グラムの質量の試料片)を、温度180℃圧力100Pa(パスカル)以下の真空乾燥器内で恒量になるまで乾燥させる。こうして乾燥させた試料片の質量をW1とする。W1は、上記真空乾燥器から取り出した後に30秒以内に温度23℃相対湿度50%の測定環境において測定される値である。次に、この試料片を温度25℃相対湿度75%の環境下に48時間置いた後の質量をW2とする。W2は、上記環境から取り出した後に30秒以内に温度23℃相対湿度50%の測定環境において測定される値である。含水率は、以下の式により算出される。
   含水率(%)=[(W2-W1)/W1]×100
 例えば、磁気テープから磁性層等の非磁性支持体以外の部分を公知の方法(例えば有機溶媒を使用した脱膜等)によって除去した後、上記方法によって非磁性支持体の含水率を求めることもできる。
Water content is also an index of the physical properties of the non-magnetic support. In the present invention and this specification, the water content of the non-magnetic support is a value determined by the following method. The water content shown in the table below is the value obtained by the following method.
A sample piece (for example, a sample piece with a mass of several grams) cut out from a non-magnetic support whose water content is to be measured is dried in a vacuum dryer at a temperature of 180° C. and a pressure of 100 Pa (pascal) or less until a constant weight is obtained. Let W1 be the mass of the sample piece thus dried. W1 is a value measured within 30 seconds after being removed from the vacuum dryer in a measurement environment of temperature 23° C. and relative humidity 50%. Next, let W2 be the mass of this sample piece after it has been placed in an environment with a temperature of 25° C. and a relative humidity of 75% for 48 hours. W2 is a value measured in a measurement environment with a temperature of 23° C. and a relative humidity of 50% within 30 seconds after being removed from the above environment. The moisture content is calculated by the following formula.
Moisture content (%) = [(W2-W1)/W1] x 100
For example, after removing portions other than the non-magnetic support such as the magnetic layer from the magnetic tape by a known method (e.g. film removal using an organic solvent, etc.), the water content of the non-magnetic support may be determined by the above method. can.
 一形態では、上記ポリエチレンナフタレート支持体は、含水率が2.0%以下であることが好ましく、1.8%以下であることがより好ましく、1.6%以下であることが更に好ましく、1.4%以下であることが一層好ましく、1.2%以下であることがより一層好ましく、1.0%以下であることが更に一層好ましい。また、上記ポリエチレンナフタレート支持体の含水率は、0%、0%以上、0%超または0.1%以上であることができる。含水率が低い非磁性支持体を使用することは、5環境の1年保管後の磁気テープ最大変形量、相対湿度に対する磁気テープ変形量の変化の割合および温度に対する磁気テープ変形量の変化の割合の値を小さくすることにつながり得る。 In one embodiment, the polyethylene naphthalate support preferably has a water content of 2.0% or less, more preferably 1.8% or less, even more preferably 1.6% or less, It is more preferably 1.4% or less, even more preferably 1.2% or less, and even more preferably 1.0% or less. Also, the water content of the polyethylene naphthalate support may be 0%, 0% or more, 0% or more, or 0.1% or more. The use of a non-magnetic support with a low moisture content reduces the maximum deformation of the magnetic tape after one-year storage in five environments, the rate of change in the amount of magnetic tape deformation with respect to relative humidity, and the rate of change in the amount of magnetic tape deformation with respect to temperature. can lead to a smaller value of
 非磁性支持体の含水率およびヤング率は、支持体を構成する成分の種類および混合比、支持体の製造条件等によって制御することができる。例えば、二軸延伸処理において各方向での延伸倍率を調整することによって、長手方向におけるヤング率と幅方向におけるヤング率をそれぞれ制御することができる。 The water content and Young's modulus of the non-magnetic support can be controlled by the types and mixing ratios of the components constituting the support, manufacturing conditions of the support, and the like. For example, the Young's modulus in the longitudinal direction and the Young's modulus in the width direction can be controlled by adjusting the draw ratio in each direction in the biaxial stretching process.
<磁性層>
(強磁性粉末)
 上記磁気テープの磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を1種または2種以上組み合わせて使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
<Magnetic layer>
(ferromagnetic powder)
As the ferromagnetic powder contained in the magnetic layer of the magnetic tape, one or a combination of two or more ferromagnetic powders known as ferromagnetic powders used in the magnetic layers of various magnetic recording media can be used. From the viewpoint of improving the recording density, it is preferable to use ferromagnetic powder having a small average particle size. From this point of view, the average particle size of the ferromagnetic powder is preferably 50 nm or less, more preferably 45 nm or less, even more preferably 40 nm or less, even more preferably 35 nm or less, and 30 nm or less. It is even more preferably 25 nm or less, and even more preferably 20 nm or less. On the other hand, from the viewpoint of magnetization stability, the average particle size of the ferromagnetic powder is preferably 5 nm or more, more preferably 8 nm or more, still more preferably 10 nm or more, and 15 nm or more. is more preferable, and 20 nm or more is even more preferable.
六方晶フェライト粉末
 強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。
Hexagonal Ferrite Powder A preferred specific example of the ferromagnetic powder is hexagonal ferrite powder. For details of the hexagonal ferrite powder, for example, paragraphs 0012 to 0030 of JP-A-2011-225417, paragraphs 0134-0136 of JP-A-2011-216149, paragraphs 0013-0030 of JP-A-2012-204726 and Paragraphs 0029 to 0084 of JP-A-2015-127985 can be referred to.
 本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライトの結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライトの結晶構造に帰属される場合、六方晶フェライトの結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライトの結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。 In the present invention and this specification, "hexagonal ferrite powder" refers to ferromagnetic powder in which the crystal structure of hexagonal ferrite is detected as the main phase by X-ray diffraction analysis. The main phase refers to the structure to which the highest intensity diffraction peak is attributed in the X-ray diffraction spectrum obtained by X-ray diffraction analysis. For example, when the highest intensity diffraction peak in an X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the crystal structure of hexagonal ferrite, it is determined that the crystal structure of hexagonal ferrite has been detected as the main phase. do. When only a single structure is detected by X-ray diffraction analysis, this detected structure is taken as the main phase. The crystal structure of hexagonal ferrite contains at least iron atoms, divalent metal atoms and oxygen atoms as constituent atoms. A divalent metal atom is a metal atom that can become a divalent cation as an ion, and examples thereof include alkaline earth metal atoms such as strontium, barium, and calcium atoms, and lead atoms. In the present invention and the specification, hexagonal strontium ferrite powder means that the main divalent metal atoms contained in this powder are strontium atoms, and hexagonal barium ferrite powder means that the main divalent metal atoms contained in this powder are a barium atom as a divalent metal atom. The main divalent metal atom means the divalent metal atom that accounts for the largest amount on an atomic % basis among the divalent metal atoms contained in the powder. However, the above divalent metal atoms do not include rare earth atoms. "Rare earth atoms" in the present invention and herein are selected from the group consisting of scandium atoms (Sc), yttrium atoms (Y), and lanthanide atoms. Lanthanide atoms include lanthanum atom (La), cerium atom (Ce), praseodymium atom (Pr), neodymium atom (Nd), promethium atom (Pm), samarium atom (Sm), europium atom (Eu), gadolinium atom (Gd ), terbium atom (Tb), dysprosium atom (Dy), holmium atom (Ho), erbium atom (Er), thulium atom (Tm), ytterbium atom (Yb), and lutetium atom (Lu) be.
 以下に、六方晶フェライト粉末の一形態である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。 The hexagonal strontium ferrite powder, which is one form of the hexagonal ferrite powder, will be described in more detail below.
 六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800~1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。 The activated volume of the hexagonal strontium ferrite powder is preferably in the range of 800-1600 nm 3 . A finely divided hexagonal strontium ferrite powder exhibiting an activation volume within the above range is suitable for making a magnetic tape exhibiting excellent electromagnetic conversion characteristics. The activated volume of the hexagonal strontium ferrite powder is preferably greater than or equal to 800 nm 3 , eg it can be greater than or equal to 850 nm 3 . Further, from the viewpoint of further improving the electromagnetic conversion characteristics, the activated volume of the hexagonal strontium ferrite powder is more preferably 1500 nm 3 or less, further preferably 1400 nm 3 or less, and 1300 nm 3 or less. is more preferable, 1200 nm 3 or less is even more preferable, and 1100 nm 3 or less is even more preferable. The same is true for the activation volume of hexagonal barium ferrite powder.
 「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁力計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。なお異方性定数Kuの単位に関して、1erg/cc=1.0×10-1J/mである。
 Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
The "activation volume" is a unit of magnetization reversal, and is an index indicating the magnetic size of a particle. The activation volume and the anisotropy constant Ku described in the present invention and this specification were measured using a vibrating sample magnetometer at magnetic field sweep speeds of 3 minutes and 30 minutes at the coercive force Hc measurement unit (measurement Temperature: 23° C.±1° C.), which is a value obtained from the following relational expression between Hc and activation volume V. Note that the unit of the anisotropy constant Ku is 1 erg/cc=1.0×10 −1 J/m 3 .
Hc=2Ku/Ms{1−[(kT/KuV)ln(At/0.693)] 1/2 }
[In the above formula, Ku: anisotropy constant (unit: J/m 3 ), Ms: saturation magnetization (unit: kA/m), k: Boltzmann constant, T: absolute temperature (unit: K), V: activity volume (unit: cm 3 ), A: spin precession frequency (unit: s −1 ), t: magnetic field reversal time (unit: s)]
 熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。 An anisotropic constant Ku can be cited as an index for reducing thermal fluctuation, in other words, improving thermal stability. The hexagonal strontium ferrite powder can preferably have a Ku of 1.8×10 5 J/m 3 or more, more preferably 2.0×10 5 J/m 3 or more. Also, Ku of the hexagonal strontium ferrite powder can be, for example, 2.5×10 5 J/m 3 or less. However, the higher the Ku value, the higher the thermal stability, which is preferable.
 六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5~5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一形態では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
 希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
The hexagonal strontium ferrite powder may or may not contain rare earth atoms. When the hexagonal strontium ferrite powder contains rare earth atoms, it preferably contains 0.5 to 5.0 atomic % of rare earth atoms (bulk content) with respect to 100 atomic % of iron atoms. In one form, the hexagonal strontium ferrite powder containing rare earth atoms can have uneven distribution of rare earth atoms on the surface layer. In the present invention and in this specification, the term "rare earth atom surface uneven distribution" refers to the rare earth atom content ratio (hereinafter referred to as "Rare earth atom surface layer content" or simply "surface layer content" with respect to rare earth atoms.) is obtained by completely dissolving hexagonal strontium ferrite powder with acid. (hereinafter referred to as "rare earth atom bulk content" or simply "bulk content" with respect to rare earth atoms), and
Rare earth atom surface layer content/rare earth atom bulk content>1.0
means that the ratio of The rare earth atom content rate of the hexagonal strontium ferrite powder described later is synonymous with the rare earth atom bulk content rate. On the other hand, since partial dissolution using an acid dissolves the surface layer of the particles constituting the hexagonal strontium ferrite powder, the content of rare earth atoms in the solution obtained by partial dissolution is It is the rare earth atom content rate in the surface layer of the particles. The rare earth atom surface layer portion content ratio satisfies the ratio of "rare earth atom surface layer portion content/rare earth atom bulk content ratio >1.0" means that the rare earth atoms are present in the surface layer portion of the particles constituting the hexagonal strontium ferrite powder. It means that it is unevenly distributed (that is, it exists more than inside). In the present invention and in this specification, the term "surface layer portion" means a partial region extending from the surface toward the inside of a particle that constitutes the hexagonal strontium ferrite powder.
 六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5~5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
 また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気テープの走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
 繰り返し再生における再生出力の低下をより一層抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
When the hexagonal strontium ferrite powder contains rare earth atoms, the rare earth atom content (bulk content) is preferably in the range of 0.5 to 5.0 atomic % with respect to 100 atomic % of iron atoms. The fact that the rare earth atoms are contained in the bulk content in the above range and that the rare earth atoms are unevenly distributed in the surface layer of the particles constituting the hexagonal strontium ferrite powder contributes to suppressing the decrease in reproduction output during repeated reproduction. Conceivable. This is because the hexagonal strontium ferrite powder contains rare earth atoms with a bulk content within the above range, and the rare earth atoms are unevenly distributed in the surface layers of the particles constituting the hexagonal strontium ferrite powder. This is presumed to be due to the fact that The higher the anisotropy constant Ku, the more the occurrence of a phenomenon called thermal fluctuation can be suppressed (in other words, the thermal stability can be improved). By suppressing the occurrence of thermal fluctuation, it is possible to suppress a decrease in reproduction output in repeated reproduction. The uneven distribution of rare earth atoms in the particle surface layer of the hexagonal strontium ferrite powder contributes to stabilizing the spin of the iron (Fe) site in the crystal lattice of the surface layer, thereby increasing the anisotropy constant Ku. It is speculated that it will increase.
In addition, it is speculated that the use of hexagonal strontium ferrite powder, which has rare earth atoms unevenly distributed in the surface layer, as the ferromagnetic powder for the magnetic layer contributes to suppressing abrasion of the magnetic layer surface due to sliding against the magnetic head. be. That is, it is presumed that the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed on the surface layer can contribute to the improvement of the running durability of the magnetic tape. This is because the uneven distribution of rare earth atoms on the surfaces of the particles that make up the hexagonal strontium ferrite powder improves the interaction between the particle surfaces and organic substances (e.g., binders and/or additives) contained in the magnetic layer. and as a result, the strength of the magnetic layer is improved.
From the viewpoint of further suppressing the decrease in reproduction output in repeated reproduction and/or from the viewpoint of further improving running durability, the rare earth atom content (bulk content) is in the range of 0.5 to 4.5 atomic %. is more preferable, the range of 1.0 to 4.5 atomic % is more preferable, and the range of 1.5 to 4.5 atomic % is even more preferable.
 上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。なお本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として1種の希土類原子のみ含んでもよく、2種以上の希土類原子を含んでもよい。2種以上の希土類原子を含む場合の上記バルク含有率は、2種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いられる場合の含有量または含有率とは、2種以上の合計についていうものとする。 The above bulk content is the content obtained by completely dissolving the hexagonal strontium ferrite powder. In the present invention and this specification, unless otherwise specified, the atomic content refers to the bulk content obtained by completely dissolving the hexagonal strontium ferrite powder. The hexagonal strontium ferrite powder containing rare earth atoms may contain only one kind of rare earth atoms as rare earth atoms, or may contain two or more kinds of rare earth atoms. When two or more rare earth atoms are included, the bulk content is determined for the total of two or more rare earth atoms. This point also applies to the present invention and other components in this specification. That is, unless otherwise specified, only one component may be used, or two or more components may be used. When two or more are used, the content or content refers to the total of two or more.
 六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか1種以上であればよい。繰り返し再生における再生出力の低下をより一層抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。 When the hexagonal strontium ferrite powder contains rare earth atoms, the contained rare earth atoms may be any one or more rare earth atoms. Preferred rare earth atoms from the viewpoint of further suppressing a decrease in reproduction output in repeated reproduction include neodymium atoms, samarium atoms, yttrium atoms and dysprosium atoms, with neodymium atoms, samarium atoms and yttrium atoms being more preferred, and neodymium atoms. Atoms are more preferred.
 希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。 In the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed on the surface layer, the rare earth atoms need only be unevenly distributed on the surface layer of the particles constituting the hexagonal strontium ferrite powder, and the degree of uneven distribution is not limited. For example, for a hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer, the surface layer content of rare earth atoms obtained by partially dissolving under the dissolving conditions described later and the rare earth elements obtained by completely dissolving under the dissolving conditions described later The ratio of atoms to the bulk content, "surface layer content/bulk content", is greater than 1.0 and can be 1.5 or more. When the "surface layer content/bulk content" is greater than 1.0, it means that the rare earth atoms are unevenly distributed in the surface layer (ie, more present than in the interior) in the particles constituting the hexagonal strontium ferrite powder. do. In addition, the ratio between the surface layer content of rare earth atoms obtained by partial dissolution under the dissolution conditions described later and the bulk content of rare earth atoms obtained by complete dissolution under the dissolution conditions described later, "surface layer content/ The "bulk content" can be, for example, 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, 5.0 or less, or 4.0 or less. However, in the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer portion, the rare earth atoms should be unevenly distributed in the surface layer portion of the particles constituting the hexagonal strontium ferrite powder. "Ratio" is not limited to the exemplified upper or lower limits.
 六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気テープの磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015-91747号公報の段落0032に記載の方法によって行うことができる。
 上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
 上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
 試料粉末12mgおよび1mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
 一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
 試料粉末12mgおよび4mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
Partial dissolution and total dissolution of hexagonal strontium ferrite powder are described below. For hexagonal strontium ferrite powders present as powders, sample powders for partial dissolution and total dissolution are taken from the same lot of powder. On the other hand, as for the hexagonal strontium ferrite powder contained in the magnetic layer of the magnetic tape, part of the hexagonal strontium ferrite powder taken out from the magnetic layer is subjected to partial melting, and the other part is subjected to complete melting. The hexagonal strontium ferrite powder can be extracted from the magnetic layer, for example, by the method described in paragraph 0032 of JP-A-2015-91747.
The partial dissolution means dissolution to such an extent that residual hexagonal strontium ferrite powder can be visually confirmed in the liquid at the end of dissolution. For example, by partial dissolution, a region of 10 to 20% by mass of the particles constituting the hexagonal strontium ferrite powder can be dissolved out of 100% by mass of the entire particles. On the other hand, the above-mentioned complete dissolution means that the hexagonal strontium ferrite powder is dissolved to the point where no residue of the hexagonal strontium ferrite powder remains in the liquid at the end of dissolution.
The partial dissolution and the measurement of the surface layer portion content are performed, for example, by the following methods. However, the dissolution conditions such as the amount of sample powder described below are examples, and dissolution conditions that allow partial dissolution and complete dissolution can be arbitrarily adopted.
A container (for example, a beaker) containing 12 mg of sample powder and 10 mL of 1 mol/L hydrochloric acid is held on a hot plate with a set temperature of 70° C. for 1 hour. The resulting solution is filtered through a 0.1 μm membrane filter. Elemental analysis of the filtrate thus obtained is performed by an inductively coupled plasma (ICP) analyzer. In this way, the surface layer portion content of rare earth atoms relative to 100 atomic % of iron atoms can be obtained. When multiple types of rare earth atoms are detected by elemental analysis, the total content of all rare earth atoms is taken as the surface layer portion content. This point also applies to the measurement of the bulk content.
On the other hand, the measurement of the total dissolution and bulk content is carried out, for example, by the following method.
A container (for example, a beaker) containing 12 mg of sample powder and 10 mL of 4 mol/L hydrochloric acid is held on a hot plate with a set temperature of 80° C. for 3 hours. After that, the partial dissolution and the measurement of the surface layer portion content are carried out in the same manner as described above, and the bulk content with respect to 100 atom % of iron atoms can be obtained.
 磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一形態では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。1[kOe]=10/4π[A/m]である。 From the viewpoint of increasing the reproduction output when reproducing data recorded on the magnetic tape, it is desirable that the ferromagnetic powder contained in the magnetic tape have a high mass magnetization σs. In this regard, hexagonal strontium ferrite powders containing rare earth atoms but not unevenly distributed in the surface layer of rare earth atoms tended to have a significantly lower σs compared to hexagonal strontium ferrite powders containing no rare earth atoms. On the other hand, hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer is considered preferable in terms of suppressing such a large decrease in σs. In one form, the σs of the hexagonal strontium ferrite powder can be 45 A·m 2 /kg or greater, and can also be 47 A·m 2 /kg or greater. On the other hand, from the viewpoint of noise reduction, σs is preferably 80 A·m 2 /kg or less, more preferably 60 A·m 2 /kg or less. σs can be measured using a known measuring device capable of measuring magnetic properties, such as a vibrating sample magnetometer. In the present invention and this specification, unless otherwise specified, mass magnetization σs is a value measured at a magnetic field strength of 15 kOe. 1 [kOe]=10 6 /4π [A/m].
 六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0~15.0原子%の範囲であることができる。一形態では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一形態では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて1種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%の範囲であることができる。 With respect to the content of constituent atoms (bulk content) of the hexagonal strontium ferrite powder, the strontium atom content can be, for example, in the range of 2.0 to 15.0 atomic % with respect to 100 atomic % of iron atoms. . In one form, the hexagonal strontium ferrite powder can have strontium atoms as the only divalent metal atoms contained in the powder. In yet another form, the hexagonal strontium ferrite powder can also contain one or more other divalent metal atoms in addition to the strontium atoms. For example, it can contain barium atoms and/or calcium atoms. When other divalent metal atoms other than strontium atoms are contained, the barium atom content and calcium atom content in the hexagonal strontium ferrite powder are, for example, 0.05 to 5 atoms per 100 atomic percent of iron atoms. can be in the range of .0 atomic %.
 六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または2種以上の結晶構造が検出されるものであることができる。例えば一形態では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5~10.0原子%であることができる。繰り返し再生における再生出力低下をより一層抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0~5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一形態では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一形態では、ビスマス原子(Bi)を含まないものであることができる。 As crystal structures of hexagonal ferrite, magnetoplumbite type (also called “M type”), W type, Y type and Z type are known. The hexagonal strontium ferrite powder may have any crystal structure. The crystal structure can be confirmed by X-ray diffraction analysis. The hexagonal strontium ferrite powder can have a single crystal structure or two or more crystal structures detected by X-ray diffraction analysis. For example, in one form, a hexagonal strontium ferrite powder can be one in which only the M-type crystal structure is detected by X-ray diffraction analysis. For example, M-type hexagonal ferrite is represented by a composition formula of AFe 12 O 19 . Here, A represents a divalent metal atom, and if the hexagonal strontium ferrite powder is M-type, A is only a strontium atom (Sr), or if A contains a plurality of divalent metal atoms, , as described above, strontium atoms (Sr) account for the largest amount on an atomic % basis. The divalent metal atom content of the hexagonal strontium ferrite powder is usually determined by the type of crystal structure of the hexagonal ferrite, and is not particularly limited. The same applies to the iron atom content and the oxygen atom content. The hexagonal strontium ferrite powder contains at least iron atoms, strontium atoms and oxygen atoms, and may also contain rare earth atoms. Furthermore, the hexagonal strontium ferrite powder may or may not contain atoms other than these atoms. As an example, the hexagonal strontium ferrite powder may contain aluminum atoms (Al). The content of aluminum atoms can be, for example, 0.5 to 10.0 atomic % with respect to 100 atomic % of iron atoms. From the viewpoint of further suppressing the decrease in reproduction output in repeated reproduction, the hexagonal strontium ferrite powder contains iron atoms, strontium atoms, oxygen atoms and rare earth atoms, and the content of atoms other than these atoms is 100 iron atoms. %, preferably 10.0 atomic % or less, more preferably in the range of 0 to 5.0 atomic %, and may be 0 atomic %. That is, in one form, the hexagonal strontium ferrite powder may contain no atoms other than iron atoms, strontium atoms, oxygen atoms and rare earth atoms. The content expressed in atomic % above is the content of each atom (unit: mass %) obtained by completely dissolving the hexagonal strontium ferrite powder, and converted to the value expressed in atomic % using the atomic weight of each atom. It is required by conversion. Moreover, in the present invention and this specification, the phrase "not containing" an atom means that the content of the atom is 0% by mass as measured by an ICP analyzer after being completely dissolved. The detection limit of an ICP analyzer is usually 0.01 ppm (parts per million) or less on a mass basis. The above-mentioned "does not contain" shall be used in the sense of containing in an amount below the detection limit of the ICP analyzer. The hexagonal strontium ferrite powder, in one form, can be free of bismuth atoms (Bi).
金属粉末
 強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
Metal powder Ferromagnetic metal powder is also a preferred specific example of the ferromagnetic powder. For details of the ferromagnetic metal powder, for example, paragraphs 0137 to 0141 of JP-A-2011-216149 and paragraphs 0009-0023 of JP-A-2005-251351 can be referred to.
ε-酸化鉄粉末
 強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄の結晶構造に帰属される場合、ε-酸化鉄の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁気テープの磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
ε-iron oxide powder A preferred specific example of the ferromagnetic powder is ε-iron oxide powder. In the present invention and the specification, "ε-iron oxide powder" means a ferromagnetic powder in which the crystal structure of ε-iron oxide is detected as the main phase by X-ray diffraction analysis. For example, when the highest intensity diffraction peak in the X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the crystal structure of ε-iron oxide, it is determined that the crystal structure of ε-iron oxide has been detected as the main phase. shall be As a method for producing ε-iron oxide powder, a method of producing from goethite, a reverse micelle method, and the like are known. All of the above manufacturing methods are known. Also, a method for producing ε-iron oxide powder in which a part of Fe is substituted with substitution atoms such as Ga, Co, Ti, Al, and Rh is described in J. Am. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284, J.P. Mater. Chem. C, 2013, 1, pp. 5200-5206 and the like. However, the method for producing the ε-iron oxide powder that can be used as the ferromagnetic powder in the magnetic layer of the magnetic tape is not limited to the methods mentioned here.
 ε-酸化鉄粉末の活性化体積は、好ましくは300~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε-酸化鉄粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。ε-酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε-酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。 The activated volume of the ε-iron oxide powder is preferably in the range of 300-1500 nm 3 . A finely divided ε-iron oxide powder exhibiting an activation volume in the above range is suitable for making a magnetic tape exhibiting excellent electromagnetic conversion properties. The activated volume of the ε-iron oxide powder is preferably greater than or equal to 300 nm 3 and may eg be greater than or equal to 500 nm 3 . Further, from the viewpoint of further improving the electromagnetic conversion characteristics, the activated volume of the ε-iron oxide powder is more preferably 1400 nm 3 or less, further preferably 1300 nm 3 or less, and 1200 nm 3 or less. is more preferable, and 1100 nm 3 or less is even more preferable.
 熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。 An anisotropic constant Ku can be cited as an index for reducing thermal fluctuation, in other words, improving thermal stability. The ε-iron oxide powder can preferably have a Ku of 3.0×10 4 J/m 3 or more, more preferably 8.0×10 4 J/m 3 or more. Also, Ku of the ε-iron oxide powder can be, for example, 3.0×10 5 J/m 3 or less. However, a higher Ku means a higher thermal stability, which is preferable, and thus is not limited to the values exemplified above.
 磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一形態では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。 From the viewpoint of increasing the reproduction output when reproducing data recorded on the magnetic tape, it is desirable that the ferromagnetic powder contained in the magnetic tape have a high mass magnetization σs. In this regard, in one aspect, the σs of the ε-iron oxide powder can be 8 A·m 2 /kg or greater, and can also be 12 A·m 2 /kg or greater. On the other hand, σs of the ε-iron oxide powder is preferably 40 A·m 2 /kg or less, more preferably 35 A·m 2 /kg or less, from the viewpoint of noise reduction.
 本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
 粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
 以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している形態に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している形態も包含される。粒子との語が、粉末を表すために用いられることもある。
In the present invention and this specification, unless otherwise specified, the average particle size of various powders such as ferromagnetic powder is a value measured by the following method using a transmission electron microscope.
The powder is photographed with a transmission electron microscope at a magnification of 100,000 times and printed on photographic paper at a total magnification of 500,000 times to obtain a photograph of the particles constituting the powder. The particles of interest are selected from the photograph of the particles obtained, and the contours of the particles are traced with a digitizer to measure the size of the particles (primary particles). Primary particles refer to individual particles without agglomeration.
The above measurements are performed on 500 randomly selected particles. The arithmetic mean of the particle sizes of the 500 particles thus obtained is taken as the average particle size of the powder. As the transmission electron microscope, for example, Hitachi's H-9000 transmission electron microscope can be used. Further, the particle size can be measured using known image analysis software such as Carl Zeiss image analysis software KS-400. Unless otherwise specified, the average particle size shown in the examples below was measured using a transmission electron microscope H-9000 manufactured by Hitachi, and image analysis software KS-400 manufactured by Carl Zeiss as image analysis software. value. In the present invention and herein, powder means a collection of particles. For example, ferromagnetic powder means an aggregate of ferromagnetic particles. In addition, the aggregation of a plurality of particles is not limited to the form in which the particles constituting the aggregation are in direct contact, but also includes the form in which a binder, an additive, etc., which will be described later, is interposed between the particles. be. The term particles is sometimes used to describe powders.
 粒子サイズ測定のために磁気テープから試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。 As a method for collecting sample powder from a magnetic tape for particle size measurement, for example, the method described in paragraph 0015 of JP-A-2011-048878 can be adopted.
 本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものをいう。
In the present invention and this specification, unless otherwise specified, the size of the particles constituting the powder (particle size) is the shape of the particles observed in the above particle photographs.
(1) In the case of needle-like, spindle-like, columnar (however, the height is greater than the maximum major diameter of the bottom surface), etc., the length of the major axis constituting the particle, that is, the major axis length,
(2) In the case of a plate-like or columnar shape (where the thickness or height is smaller than the maximum major diameter of the plate surface or bottom surface), it is expressed by the maximum major diameter of the plate surface or bottom surface,
(3) If the particle is spherical, polyhedral, irregular, or the like, and the major axis of the particle cannot be specified from the shape, it is represented by the equivalent circle diameter. Equivalent circle diameter means the diameter obtained by circular projection method.
 また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
 そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
In addition, the average acicular ratio of the powder is obtained by measuring the length of the minor axis of the particles in the above measurement, that is, the minor axis length, and obtaining the value of (long axis length / minor axis length) of each particle. It refers to the arithmetic mean of the values obtained for the particles. Here, unless otherwise specified, the minor axis length is the length of the minor axis constituting the particle in the case of (1) in the definition of the particle size, and the thickness or height in the case of (2). In the case of (3), since there is no distinction between the major axis and the minor axis, (long axis length/short axis length) is regarded as 1 for convenience.
Unless otherwise specified, when the particle shape is specific, for example, in the case of the definition (1) of the particle size, the average particle size is the average major axis length, and in the case of the definition (2), the average particle size is Average plate diameter. In the case of the same definition (3), the average particle size is the average diameter (also referred to as average particle size or average particle size).
 磁性層における強磁性粉末の含有率(充填率)は、磁性層の全質量に対して、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。 The ferromagnetic powder content (filling rate) in the magnetic layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass, relative to the total mass of the magnetic layer. A high filling rate of the ferromagnetic powder in the magnetic layer is preferable from the viewpoint of improving the recording density.
(結合剤)
 上記磁気テープは塗布型の磁気テープであることができ、磁性層に結合剤を含むことができる。結合剤とは、1種以上の樹脂である。結合剤としては、塗布型磁気テープの結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。
 以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって、下記測定条件により測定された値をポリスチレン換算して求められる値である。後述の実施例に示す結合剤の重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。結合剤は、強磁性粉末100.0質量部に対して、例えば1.0~30.0質量部の量で使用することができる。
 GPC装置:HLC-8120(東ソー社製)
 カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
 溶離液:テトラヒドロフラン(THF)
(Binder)
The magnetic tape may be a coated magnetic tape, and the magnetic layer may contain a binder. A binder is one or more resins. As the binder, various resins commonly used as binders for coated magnetic tapes can be used. Examples of binders include polyurethane resins, polyester resins, polyamide resins, vinyl chloride resins, acrylic resins obtained by copolymerizing styrene, acrylonitrile, methyl methacrylate, etc., cellulose resins such as nitrocellulose, epoxy resins, phenoxy resins, polyvinyl acetal, A resin selected from polyvinyl alkylal resins such as polyvinyl butyral can be used singly, or a plurality of resins can be mixed and used. Preferred among these are polyurethane resins, acrylic resins, cellulose resins, and vinyl chloride resins. These resins may be homopolymers or copolymers. These resins can also be used as binders in the non-magnetic layer and/or backcoat layer, which will be described later.
Paragraphs 0028 to 0031 of JP-A-2010-24113 can be referred to for the above binders. The weight-average molecular weight of the resin used as the binder can be, for example, 10,000 or more and 200,000 or less. The weight average molecular weight in the present invention and the specification is a value obtained by converting a value measured by gel permeation chromatography (GPC) under the following measurement conditions into polystyrene. The weight-average molecular weight of the binder shown in the examples below is a value obtained by converting the value measured under the following measurement conditions into polystyrene. The binder can be used in an amount of, for example, 1.0 to 30.0 parts by mass with respect to 100.0 parts by mass of the ferromagnetic powder.
GPC device: HLC-8120 (manufactured by Tosoh Corporation)
Column: TSK gel Multipore HXL-M (manufactured by Tosoh Corporation, 7.8 mmID (Inner Diameter) × 30.0 cm)
Eluent: Tetrahydrofuran (THF)
(硬化剤)
 結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一形態では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一形態では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。
(curing agent)
Curing agents can also be used with resins that can be used as binders. The curing agent can be, in one form, a thermosetting compound which is a compound in which a curing reaction (crosslinking reaction) proceeds by heating, and in another form, a photocuring compound in which a curing reaction (crosslinking reaction) proceeds by light irradiation. can be a chemical compound. The curing agent can be contained in the magnetic layer in a state where at least a portion of it reacts (crosslinks) with other components such as a binder as the curing reaction progresses during the process of forming the magnetic layer. In this respect, when the composition used for forming other layers contains a curing agent, the same applies to layers formed using this composition. Preferred curing agents are thermosetting compounds, preferably polyisocyanates. For details of the polyisocyanate, paragraphs 0124 to 0125 of JP-A-2011-216149 can be referred to. The curing agent is contained in the composition for forming the magnetic layer in an amount of, for example, 0 to 80.0 parts by weight per 100.0 parts by weight of the binder, and preferably 50.0 to 80.0 parts by weight from the viewpoint of improving the strength of the magnetic layer. Parts by weight amounts can be used.
(添加剤)
 磁性層には、必要に応じて1種以上の添加剤が含まれていてもよい。添加剤は、所望の性質に応じて市販品を適宜選択して使用することができる。または、公知の方法で合成された化合物を添加剤として使用することもできる。添加剤は任意の量で使用することができる。添加剤の一例としては、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末(例えば無機粉末、カーボンブラック等)、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。例えば、潤滑剤については、特開2016-126817号公報の段落0030~0033、0035および0036を参照できる。後述する非磁性層に潤滑剤が含まれていてもよい。非磁性層に含まれ得る潤滑剤については、特開2016-126817号公報の段落0030~0031、0034、0035および0036を参照できる。分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤を非磁性層形成用組成物に添加してもよい。非磁性層形成用組成物に添加し得る分散剤については、特開2012-133837号公報の段落0061を参照できる。また、磁性層に含まれ得る非磁性粉末としては、研磨剤として機能することができる非磁性粉末、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末(例えば非磁性コロイド粒子等)等が挙げられる。例えば研磨剤については、特開2004-273070号公報の段落0030~0032を参照できる。突起形成剤としては、コロイド粒子が好ましく、入手容易性の点から無機コロイド粒子が好ましく、無機酸化物コロイド粒子がより好ましく、シリカコロイド粒子(コロイダルシリカ)がより一層好ましい。研磨剤および突起形成剤の平均粒子サイズは、それぞれ好ましくは30~200nmの範囲であり、より好ましくは50~100nmの範囲である。
(Additive)
The magnetic layer may optionally contain one or more additives. Commercially available additives can be appropriately selected and used according to desired properties. Alternatively, a compound synthesized by a known method can be used as an additive. Additives can be used in any amount. Examples of additives include the curing agents described above. Additives contained in the magnetic layer include nonmagnetic powders (e.g., inorganic powders, carbon black, etc.), lubricants, dispersants, dispersing aids, antifungal agents, antistatic agents, antioxidants, and the like. can be done. For example, regarding lubricants, paragraphs 0030 to 0033, 0035 and 0036 of JP-A-2016-126817 can be referred to. A non-magnetic layer, which will be described later, may contain a lubricant. Paragraphs 0030 to 0031, 0034, 0035 and 0036 of JP-A-2016-126817 can be referred to for lubricants that can be contained in the non-magnetic layer. Regarding the dispersant, paragraphs 0061 and 0071 of JP-A-2012-133837 can be referred to. A dispersant may be added to the non-magnetic layer forming composition. See paragraph 0061 of JP-A-2012-133837 for the dispersant that can be added to the composition for forming a non-magnetic layer. The non-magnetic powder that can be contained in the magnetic layer includes a non-magnetic powder that can function as an abrasive, and a non-magnetic powder that can function as a protrusion-forming agent that forms moderately protruding protrusions on the surface of the magnetic layer. (for example, non-magnetic colloidal particles, etc.). For example, regarding abrasives, paragraphs 0030 to 0032 of JP-A-2004-273070 can be referred to. As the protrusion-forming agent, colloidal particles are preferred, inorganic colloidal particles are preferred from the viewpoint of availability, inorganic oxide colloidal particles are more preferred, and silica colloidal particles (colloidal silica) are even more preferred. The average particle size of the abrasive and protrusion-forming agent each preferably ranges from 30 to 200 nm, more preferably from 50 to 100 nm.
 以上説明した磁性層は、非磁性支持体表面上に直接、または非磁性層を介して間接的に、設けることができる。 The magnetic layer described above can be provided directly on the surface of the non-magnetic support or indirectly via the non-magnetic layer.
<非磁性層>
 次に非磁性層について説明する。上記磁気テープは、非磁性支持体表面上に直接磁性層を有していてもよく、非磁性支持体表面上に非磁性粉末を含む非磁性層を介して磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末でも有機物質の粉末でもよい。また、カーボンブラック等も使用できる。無機物質の粉末としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の粉末が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040および0041も参照できる。非磁性層における非磁性粉末の含有率(充填率)は、非磁性層の全質量に対して、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
<Non-Magnetic Layer>
Next, the nonmagnetic layer will be explained. The magnetic tape may have a magnetic layer directly on the surface of the non-magnetic support, or may have a magnetic layer on the surface of the non-magnetic support via a non-magnetic layer containing non-magnetic powder. . The non-magnetic powder used in the non-magnetic layer may be inorganic powder or organic powder. Carbon black or the like can also be used. Examples of powders of inorganic substances include powders of metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides, and the like. These non-magnetic powders are commercially available and can be produced by known methods. For details, paragraphs 0146 to 0150 of Japanese Patent Application Laid-Open No. 2011-216149 can be referred to. For carbon black that can be used in the non-magnetic layer, see paragraphs 0040 and 0041 of JP-A-2010-24113. The nonmagnetic powder content (filling rate) in the nonmagnetic layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass, based on the total mass of the nonmagnetic layer. .
 非磁性層は、結合剤を含むことができ、添加剤を含むこともできる。非磁性層の結合剤、添加剤等のその他詳細については、非磁性層に関する公知技術を適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。 The non-magnetic layer can contain a binder and can also contain additives. Known techniques for nonmagnetic layers can be applied to other details such as binders and additives for the nonmagnetic layer. Also, for example, the type and content of the binder, the type and content of the additive, etc., can be applied to known techniques relating to the magnetic layer.
 本発明および本明細書において、非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。 In the present invention and in this specification, non-magnetic layers include non-magnetic powders as well as substantially non-magnetic layers containing a small amount of ferromagnetic powders, for example as impurities or intentionally. Here, the substantially non-magnetic layer means that the residual magnetic flux density of this layer is 10 mT or less, the coercive force is 7.96 kA/m (100 Oe) or less, or the residual magnetic flux density is 10 mT or less. and a coercive force of 7.96 kA/m (100 Oe) or less. The non-magnetic layer preferably has no residual magnetic flux density and no coercive force.
<バックコート層>
 上記磁気テープは、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することもでき、有さなくてもよい。バックコート層には、カーボンブラックおよび無機粉末のいずれか一方または両方が含有されていることが好ましい。バックコート層は、結合剤を含むことができ、添加剤を含むこともできる。バックコート層の結合剤および添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
<Back coat layer>
The magnetic tape may or may not have a back coat layer containing non-magnetic powder on the surface of the non-magnetic support opposite to the surface having the magnetic layer. The backcoat layer preferably contains one or both of carbon black and inorganic powder. The backcoat layer may contain a binder and may also contain additives. As for binders and additives for the backcoat layer, known techniques for the backcoat layer can be applied, and known techniques for the formulation of the magnetic layer and/or the non-magnetic layer can also be applied. For example, paragraphs 0018 to 0020 of JP-A-2006-331625 and US Pat. .
<各種厚み>
 磁気テープの厚み(総厚)に関して、近年の情報量の莫大な増大に伴い、磁気テープには記録容量を高めること(高容量化)が求められている。高容量化のための手段としては、磁気テープの厚みを薄くし(以下、「薄型化」とも記載する。)、磁気テープカートリッジ1巻あたりに収容される磁気テープ長を増すことが挙げられる。この点から、上記磁気テープの厚み(総厚)は、5.6μm以下であることが好ましく、5.5μm以下であることがより好ましく、5.4μm以下であることがより好ましく、5.3μm以下であることが更に好ましく、5.2μm以下であることが一層好ましい。また、ハンドリングの容易性の観点からは、磁気テープの厚みは3.0μm以上であることが好ましく、3.5μm以上であることがより好ましい。
<Various thicknesses>
As for the thickness (total thickness) of magnetic tapes, with the enormous increase in the amount of information in recent years, magnetic tapes are required to have a higher recording capacity (higher capacity). Means for increasing the capacity include reducing the thickness of the magnetic tape (hereinafter also referred to as "thinning") and increasing the length of the magnetic tape accommodated per roll of the magnetic tape cartridge. From this point, the thickness (total thickness) of the magnetic tape is preferably 5.6 μm or less, more preferably 5.5 μm or less, more preferably 5.4 μm or less, and more preferably 5.3 μm. It is more preferably 5.2 μm or less, and even more preferably 5.2 μm or less. From the viewpoint of ease of handling, the thickness of the magnetic tape is preferably 3.0 μm or more, more preferably 3.5 μm or more.
 磁気テープの厚み(総厚)は、以下の方法によって測定することができる。
 磁気テープの任意の部分からテープサンプル(例えば長さ5~10cm)を10枚切り出し、これらテープサンプルを重ねて厚みを測定する。測定された厚みを10分の1して得られた値(テープサンプル1枚当たりの厚み)を、テープ厚みとする。上記厚み測定は、0.1μmオーダーでの厚み測定が可能な公知の測定器を用いて行うことができる。
The thickness (total thickness) of the magnetic tape can be measured by the following method.
Ten tape samples (for example, 5 to 10 cm in length) are cut out from an arbitrary portion of the magnetic tape, these tape samples are overlapped, and the thickness is measured. The value (thickness per tape sample) obtained by dividing the measured thickness by 1/10 is taken as the tape thickness. The thickness measurement can be performed using a known measuring instrument capable of measuring thickness on the order of 0.1 μm.
 非磁性支持体の厚みは、例えば3.0μm以上であることができ、また、例えば5.0μm以下、4.8μm以下、4.6μm以下、4.4μm以下もしくは4.2μm以下であることができる。
 磁性層の厚みは、用いる磁気ヘッドの飽和磁化量、ヘッドギャップ長、記録信号の帯域等により最適化することができ、一般には0.01μm~0.15μmであり、高密度記録化の観点から、好ましくは0.02μm~0.12μmであり、更に好ましくは0.03μm~0.1μmである。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する二層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。二層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
 非磁性層の厚みは、例えば0.1~1.5μmであり、0.1~1.0μmであることが好ましい。
 バックコート層の厚みは、0.9μm以下が好ましく、0.1~0.7μmが更に好ましい。
 磁性層の厚み等の各種厚みは、以下の方法により求めることができる。
 磁気テープの厚み方向の断面を、イオンビームにより露出させた後、露出した断面において走査型電子顕微鏡による断面観察を行う。断面観察において任意の2箇所において求められた厚みの算術平均として、各種厚みを求めることができる。または、各種厚みは、製造条件等から算出される設計厚みとして求めることもできる。
The thickness of the nonmagnetic support can be, for example, 3.0 μm or more, and can be, for example, 5.0 μm or less, 4.8 μm or less, 4.6 μm or less, 4.4 μm or less, or 4.2 μm or less. can.
The thickness of the magnetic layer can be optimized depending on the saturation magnetization amount of the magnetic head to be used, the head gap length, the recording signal band, etc., and is generally 0.01 μm to 0.15 μm. , preferably 0.02 μm to 0.12 μm, more preferably 0.03 μm to 0.1 μm. At least one magnetic layer is sufficient, and the magnetic layer may be separated into two or more layers having different magnetic properties, and a known multilayer magnetic layer structure can be applied. The thickness of the magnetic layer when separated into two or more layers is the total thickness of these layers.
The thickness of the nonmagnetic layer is, for example, 0.1 to 1.5 μm, preferably 0.1 to 1.0 μm.
The thickness of the backcoat layer is preferably 0.9 μm or less, more preferably 0.1 to 0.7 μm.
Various thicknesses such as the thickness of the magnetic layer can be obtained by the following methods.
After exposing a section of the magnetic tape in the thickness direction with an ion beam, the exposed section is observed with a scanning electron microscope. Various thicknesses can be determined as the arithmetic mean of the thicknesses determined at two arbitrary locations in cross-sectional observation. Alternatively, various thicknesses can be obtained as design thicknesses calculated from manufacturing conditions and the like.
<製造工程>
(各層形成用組成物の調製)
 磁性層、非磁性層またはバックコート層を形成するための組成物は、先に記載した各種成分とともに、通常、溶媒を含む。溶媒としては、塗布型磁気記録媒体の製造に通常用いられる各種溶媒の1種または2種以上を用いることができる。各層形成用組成物の溶媒含有量は特に限定されるものではない。溶媒については、特開2011-216149号公報の段落0153を参照できる。各層形成用組成物の固形分濃度および溶媒組成は、組成物のハンドリング適性、塗布条件および形成しようとする各層の厚みに対応させて適宜調整すればよい。磁性層、非磁性層またはバックコート層を形成するための組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ二段階以上に分かれていてもよい。各層形成用組成物の調製に用いられる各種成分は、どの工程の最初または途中で添加してもよい。また、個々の成分を2つ以上の工程で分割して添加してもよい。例えば、結合剤を、混練工程、分散工程および分散後の粘度調整のための混合工程で分割して投入してもよい。上記磁気テープの製造工程では、従来の公知の製造技術を一部の工程として用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつものを使用することができる。混練工程の詳細については、特開平1-106338号公報および特開平1-79274号公報に記載されている。分散機としては、ビーズミル、ボールミル、サンドミルまたはホモミキサー等のせん断力を利用する各種の公知の分散機を使用することができる。分散には、好ましくは分散ビーズを用いることができる。分散ビーズとしては、セラミックビーズ、ガラスビーズ等が挙げられ、ジルコニアビーズが好ましい。2種以上のビーズを組み合わせて使用してもよい。分散ビーズのビーズ径(粒径)およびビーズ充填率は、特に限定されるものではなく、分散対象の粉末に応じて設定すればよい。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
<Manufacturing process>
(Preparation of each layer-forming composition)
A composition for forming a magnetic layer, a non-magnetic layer, or a backcoat layer usually contains a solvent along with the various components described above. As the solvent, one or more of various solvents commonly used in the production of coating-type magnetic recording media can be used. The solvent content of each layer-forming composition is not particularly limited. Regarding the solvent, paragraph 0153 of JP-A-2011-216149 can be referred to. The solid content concentration and solvent composition of each layer-forming composition may be appropriately adjusted according to the handling properties of the composition, the coating conditions, and the thickness of each layer to be formed. The process of preparing a composition for forming a magnetic layer, non-magnetic layer or backcoat layer usually includes at least a kneading process, a dispersing process, and a mixing process provided before or after these processes as required. can be done. Each individual step may be divided into two or more steps. Various components used for preparing each layer-forming composition may be added at the beginning or in the middle of any step. Alternatively, individual components may be added in portions in two or more steps. For example, the binder may be dividedly added in the kneading step, the dispersing step, and the mixing step for viscosity adjustment after dispersion. Conventionally known manufacturing techniques can be used as part of the manufacturing process of the magnetic tape. In the kneading step, a kneader having a strong kneading force such as an open kneader, continuous kneader, pressure kneader, extruder, or the like can be used. Details of the kneading process are described in JP-A-1-106338 and JP-A-1-79274. As the dispersing machine, various known dispersing machines using shearing force such as a bead mill, a ball mill, a sand mill and a homomixer can be used. Dispersing beads can preferably be used for dispersing. Dispersed beads include ceramic beads, glass beads and the like, and zirconia beads are preferred. Two or more kinds of beads may be used in combination. The bead diameter (particle size) and bead filling rate of the dispersed beads are not particularly limited, and may be set according to the powder to be dispersed. Each layer-forming composition may be filtered by a known method before being applied to the coating step. Filtration can be performed, for example, by filter filtration. As a filter used for filtration, for example, a filter having a pore size of 0.01 to 3 μm (eg, glass fiber filter, polypropylene filter, etc.) can be used.
(塗布工程)
 磁性層は、磁性層形成用組成物を、非磁性支持体表面上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。バックコート層は、バックコート層形成用組成物を、非磁性支持体の非磁性層および/または磁性層を有する(または非磁性層および/または磁性層が追って設けられる)表面とは反対側の表面に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066を参照できる。
(Coating process)
The magnetic layer can be formed by directly coating the magnetic layer-forming composition on the surface of the non-magnetic support, or by sequentially or simultaneously coating the magnetic layer-forming composition with the non-magnetic layer-forming composition. The backcoat layer is formed by applying a backcoat layer-forming composition to the surface opposite to the surface of the nonmagnetic support having the nonmagnetic layer and/or the magnetic layer (or the nonmagnetic layer and/or the magnetic layer is subsequently provided). It can be formed by coating the surface. For details of coating for forming each layer, paragraph 0066 of JP-A-2010-231843 can be referred to.
(その他の工程)
 磁気テープの製造のためのその他の各種工程については、公知技術を適用できる。各種工程については、例えば特開2010-231843号公報の段落0067~0070を参照できる。例えば、磁性層形成用組成物の塗布層には、この塗布層が湿潤状態にあるうちに、配向ゾーンにおいて配向処理を行うことができる。配向処理については、特開2010-24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。一例として、垂直配向処理における磁場強度は、0.1~1.5Tとすることができる。
(Other processes)
Known techniques can be applied to other various steps for manufacturing the magnetic tape. For various steps, for example, paragraphs 0067 to 0070 of JP-A-2010-231843 can be referred to. For example, the coating layer of the composition for forming the magnetic layer can be subjected to orientation treatment in the orientation zone while the coating layer is in a wet state. Various known techniques including those described in paragraph 0052 of JP-A-2010-24113 can be applied to the alignment treatment. For example, the vertical alignment treatment can be performed by a known method such as a method using opposed magnets with different polarities. In the orientation zone, the drying speed of the coating layer can be controlled by the temperature and air volume of the drying air and/or the conveying speed in the orientation zone. Also, the coated layer may be pre-dried before being conveyed to the orientation zone. As an example, the magnetic field strength in the vertical alignment process can be 0.1-1.5T.
 磁気テープについては、各種工程を経ることによって、長尺状の磁気テープ原反を得ることができる。得られた磁気テープ原反は、公知の裁断機によって、磁気テープカートリッジに巻装すべき磁気テープの幅に裁断(スリット)される。上記の幅は規格にしたがい決定され、例えば1/2インチである。1/2インチ=12.65mmである。通常、スリットして得られた磁気テープにサーボパターンが形成される。サーボパターンの形成について、詳細は後述する。 For magnetic tape, a long magnetic tape raw material can be obtained by going through various processes. The obtained magnetic tape material is cut (slit) into the width of the magnetic tape to be wound on the magnetic tape cartridge by a known cutting machine. The above widths are determined according to standards and are, for example, 1/2 inch. 1/2 inch = 12.65 mm. Servo patterns are usually formed on a magnetic tape obtained by slitting. The details of the formation of the servo pattern will be described later.
(熱処理)
 一形態では、上記磁気テープは、以下のような熱処理を経て製造された磁気テープであることができる。また、他の一形態では、以下のような熱処理を経ずに製造された磁気テープであることができる。以下の熱処理を行うことは、5環境の1年保管後の磁気テープ最大変形量、相対湿度に対する磁気テープ変形量の変化の割合および温度に対する磁気テープ変形量の変化の割合の値を小さくすることにつながり得る。
(Heat treatment)
In one form, the magnetic tape can be a magnetic tape manufactured through the following heat treatment. In another form, the magnetic tape can be manufactured without undergoing heat treatment as described below. The following heat treatment reduces the maximum deformation of the magnetic tape after one-year storage in the five environments, the rate of change in the amount of magnetic tape deformation with respect to relative humidity, and the rate of change in the amount of magnetic tape deformation with respect to temperature. can lead to
 熱処理としては、スリットして規格にしたがい決定された幅に裁断された磁気テープを、芯状部材に巻付け、巻付けた状態で行う熱処理を行うことができる。 As the heat treatment, the magnetic tape that has been slit and cut to a width determined according to the standard can be wound around the core member, and the heat treatment can be performed in the wound state.
 一形態では、熱処理用の芯状部材(以下、「熱処理用巻芯」と呼ぶ。)に磁気テープを巻付けた状態で上記熱処理を行い、熱処理後の磁気テープを磁気テープカートリッジのカートリッジリールに巻取り、磁気テープがカートリッジリールに巻装された磁気テープカートリッジを作製することができる。
 熱処理用巻芯は、金属製、樹脂製、紙製等であることができる。熱処理用巻芯の材料は、スポーキング等の巻故障の発生を抑制する観点から、剛性が高い材料であることが好ましい。この点から、熱処理用巻芯は、金属製または樹脂製であることが好ましい。また、剛性の指標として、熱処理用巻芯の材料の曲げ弾性率は0.2GPa以上が好ましく、0.3GPa以上がより好ましい。他方、高剛性の材料は一般に高価であるため、巻故障の発生を抑制できる剛性を超える剛性を有する材料の熱処理用巻芯を用いることはコスト増につながる。以上の点を考慮すると、熱処理用巻芯の材料の曲げ弾性率は250GPa以下が好ましい。また、熱処理用巻芯は中実または中空の芯状部材であることができる。中空状の場合、剛性を維持する観点から、肉厚は2mm以上であることが好ましい。また、熱処理用巻芯は、フランジを有していてもよく、有さなくてもよい。
 熱処理用巻芯に巻付ける磁気テープとして最終的に磁気テープカートリッジに収容する長さ(以下、「最終製品長」と呼ぶ。)以上の磁気テープを準備し、この磁気テープを熱処理用巻芯に巻付けた状態で熱処理環境下に置くことにより熱処理を行うことが好ましい。熱処理用巻芯に巻付ける磁気テープ長は最終製品長以上であり、熱処理用巻芯等への巻取りの容易性の観点からは、「最終製品長+α」とすることが好ましい。このαは、上記の巻取りの容易性の観点からは5m以上であることが好ましい。熱処理用巻芯への巻取り時のテンションは、0.10N以上が好ましい。また、製造時に過度な変形が発生することを抑制する観点から、熱処理用巻芯への巻取り時のテンションは1.50N以下が好ましく、1.00N以下がより好ましい。熱処理用巻芯の外径は、巻付けの容易性およびコイリング(長手方向のカール)の抑制の観点から、20mm以上が好ましく、40mm以上がより好ましい。また、熱処理用巻芯の外径は100mm以下が好ましく、90mm以下がより好ましい。熱処理用巻芯の幅は、この巻芯に巻付ける磁気テープの幅以上であればよい。また、熱処理後、熱処理用巻芯から磁気テープを取り外す際には、取り外す操作中に意図しないテープ変形が生じることを抑制するために、磁気テープおよび熱処理用巻芯が十分冷却された後に磁気テープを熱処理用巻芯から取り外すことが好ましい。取り外した磁気テープは、一度別の巻芯(「一時巻取り用巻芯」と呼ぶ。)に巻取り、その後、一時巻取り用巻芯から磁気テープカートリッジのカートリッジリール(一般に外径は40~50mm程度)へ磁気テープを巻取ることが好ましい。これにより、熱処理時の磁気テープの熱処理用巻芯に対する内側と外側との関係を維持して、磁気テープカートリッジのカートリッジリールへ磁気テープを巻取ることができる。一時巻取り用巻芯の詳細およびこの巻芯へ磁気テープを巻取る際のテンションについては、熱処理用巻芯に関する先の記載を参照できる。上記熱処理を「最終製品長+α」の長さの磁気テープに施す形態においては、任意の段階で、「+α」の長さ分を切り取ればよい。例えば、一形態では、一時巻取り用巻芯から磁気テープカートリッジのリールへ最終製品長分の磁気テープを巻取り、残りの「+α」の長さ分を切り取ればよい。切り取って廃棄される部分を少なくする観点からは、上記αは20m以下であることが好ましい。
In one embodiment, the heat treatment is performed while the magnetic tape is wound around a core member for heat treatment (hereinafter referred to as "core for heat treatment"), and the magnetic tape after the heat treatment is placed on the cartridge reel of the magnetic tape cartridge. A magnetic tape cartridge in which a magnetic tape is wound around a cartridge reel can be manufactured.
The core for heat treatment can be made of metal, resin, paper, or the like. From the viewpoint of suppressing the occurrence of winding failures such as spokes, it is preferable that the material of the core for heat treatment be a material with high rigidity. From this point of view, the core for heat treatment is preferably made of metal or resin. Moreover, as an index of rigidity, the bending elastic modulus of the material of the core for heat treatment is preferably 0.2 GPa or more, more preferably 0.3 GPa or more. On the other hand, since high-rigidity materials are generally expensive, using a heat-treating winding core made of a material having rigidity exceeding the rigidity that can suppress the occurrence of winding failures leads to an increase in cost. Considering the above points, the bending elastic modulus of the material of the core for heat treatment is preferably 250 GPa or less. Further, the core for heat treatment can be a solid or hollow core member. In the case of a hollow shape, the thickness is preferably 2 mm or more from the viewpoint of maintaining rigidity. Moreover, the core for heat treatment may or may not have a flange.
As a magnetic tape to be wound around the core for heat treatment, prepare a magnetic tape that is longer than the length to be finally accommodated in the magnetic tape cartridge (hereinafter referred to as "final product length"), and wrap this magnetic tape around the core for heat treatment. It is preferred that the heat treatment is carried out by placing in a heat treatment environment in a wound state. The length of the magnetic tape to be wound around the heat-treating core is equal to or longer than the final product length, and from the viewpoint of ease of winding around the heat-treating core, it is preferable to set it to "final product length + α". This α is preferably 5 m or more from the viewpoint of ease of winding. A tension of 0.10 N or more is preferable when the film is wound onto the core for heat treatment. Moreover, from the viewpoint of suppressing excessive deformation during manufacturing, the tension during winding onto the core for heat treatment is preferably 1.50 N or less, more preferably 1.00 N or less. The outer diameter of the core for heat treatment is preferably 20 mm or more, more preferably 40 mm or more, from the viewpoint of ease of winding and suppression of coiling (curling in the longitudinal direction). Further, the outer diameter of the core for heat treatment is preferably 100 mm or less, more preferably 90 mm or less. The width of the core for heat treatment should be equal to or greater than the width of the magnetic tape wound around the core. In addition, when removing the magnetic tape from the heat-treating core after the heat treatment, the magnetic tape and the heat-treating core are sufficiently cooled before the magnetic tape is removed in order to prevent unintended deformation of the tape during the removal operation. is preferably removed from the core for heat treatment. The removed magnetic tape is first wound on another core (called a "temporary take-up core"), and then the magnetic tape cartridge reel (generally with an outer diameter of 40 to 50 mm). As a result, the magnetic tape can be wound onto the cartridge reel of the magnetic tape cartridge while maintaining the relationship between the inner side and the outer side of the magnetic tape with respect to the core for heat treatment during heat treatment. For the details of the temporary winding core and the tension when the magnetic tape is wound around this winding core, the above description regarding the heat treatment winding core can be referred to. In the case where the magnetic tape having the length of "final product length +α" is subjected to the above heat treatment, the length of "+α" may be cut at an arbitrary stage. For example, in one embodiment, the final product length of the magnetic tape may be wound from the temporary take-up core onto the reel of the magnetic tape cartridge, and the remaining "+α" length may be cut off. From the viewpoint of reducing the portion that is cut off and discarded, the α is preferably 20 m or less.
 上記のように芯状部材に巻付けた状態で行われる熱処理の具体的形態について、以下に説明する。
 熱処理を行う雰囲気温度(以下、「熱処理温度」と呼ぶ。)は、40℃以上が好ましく、50℃以上がより好ましい。一方、過度な変形を抑制する観点からは、熱処理温度は75℃以下が好ましく、70℃以下がより好ましく、65℃以下が更に好ましい。
 熱処理を行う雰囲気の重量絶対湿度は、0.1g/kg Dry air以上が好ましく、1g/kg Dry air以上がより好ましい。重量絶対湿度が上記範囲の雰囲気は、水分を低減するための特殊な装置を用いずに準備できるため好ましい。一方、重量絶対湿度は、結露が生じて作業性が低下することを抑制する観点からは、70g/kg Dry air以下が好ましく、66g/kg Dry air以下がより好ましい。熱処理時間は、0.3時間以上が好ましく、0.5時間以上がより好ましい。また、熱処理時間は、生産効率の観点からは、48時間以下が好ましい。
A specific form of the heat treatment performed while being wound around the core member as described above will be described below.
The ambient temperature for heat treatment (hereinafter referred to as “heat treatment temperature”) is preferably 40° C. or higher, more preferably 50° C. or higher. On the other hand, from the viewpoint of suppressing excessive deformation, the heat treatment temperature is preferably 75° C. or lower, more preferably 70° C. or lower, and even more preferably 65° C. or lower.
The weight absolute humidity of the atmosphere in which the heat treatment is performed is preferably 0.1 g/kg Dry air or more, more preferably 1 g/kg Dry air or more. An atmosphere having a weight absolute humidity within the above range is preferable because it can be prepared without using a special device for reducing moisture. On the other hand, the weight absolute humidity is preferably 70 g/kg dry air or less, more preferably 66 g/kg dry air or less, from the viewpoint of suppressing dew condensation and deterioration of workability. The heat treatment time is preferably 0.3 hours or longer, more preferably 0.5 hours or longer. Moreover, the heat treatment time is preferably 48 hours or less from the viewpoint of production efficiency.
(サーボパターンの形成)
 上記磁気テープは、磁性層に複数のサーボバンドを有する。サーボバンドは、磁気テープの長手方向に連続するサーボパターンにより構成される。サーボパターンは、磁気テープには、磁気記録再生装置における磁気ヘッドのトラッキング制御、磁気テープの走行速度の制御等を可能にすることができる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。例えば、サーボ信号を利用して走行中の磁気テープの幅方向の寸法情報を取得し、取得された寸法情報に応じて磁気テープの長手方向にかかるテンションを調整して変化させることによって、磁気テープの幅方向の寸法を制御することができる。
(Formation of servo pattern)
The magnetic tape has a plurality of servo bands on the magnetic layer. A servo band is composed of servo patterns that are continuous in the longitudinal direction of the magnetic tape. The servo pattern can enable tracking control of a magnetic head in a magnetic recording/reproducing apparatus, control of running speed of the magnetic tape, and the like. "Formation of servo patterns" can also be called "recording of servo signals." For example, by using a servo signal to acquire information on the width of the running magnetic tape, and adjusting and changing the tension applied to the longitudinal direction of the magnetic tape according to the acquired information on the dimensions, the magnetic tape can be can control the width dimension of the
 以下に、サーボパターンの形成について説明する。 The formation of servo patterns will be described below.
 サーボパターンは、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。 A servo pattern is formed along the longitudinal direction of the magnetic tape. Methods of control using servo signals (servo control) include timing-based servo (TBS), amplitude servo, frequency servo, and the like.
 ECMA(European Computer Manufacturers Association)―319(June 2001)に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。サーボシステムとは、サーボ信号を利用してヘッドトラッキングを行うシステムである。本発明および本明細書において、「タイミングベースサーボパターン」とは、タイミングベースサーボ方式のサーボシステムにおけるヘッドトラッキングを可能とするサーボパターンをいう。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。 As shown in ECMA (European Computer Manufacturers Association)-319 (June 2001), a magnetic tape conforming to the LTO (Linear Tape-Open) standard (generally called "LTO tape") adopts a timing-based servo system. ing. In this timing-based servo system, a servo pattern is composed of a plurality of non-parallel pairs of magnetic stripes (also called "servo stripes") arranged continuously in the longitudinal direction of the magnetic tape. A servo system is a system that performs head tracking using a servo signal. In the present invention and in this specification, the term "timing-based servo pattern" refers to a servo pattern that enables head tracking in a timing-based servo system servo system. The reason why the servo pattern is composed of a pair of non-parallel magnetic stripes is to inform the servo signal reading element passing over the servo pattern of its passing position. Specifically, the pair of magnetic stripes are formed so that the interval between them changes continuously along the width direction of the magnetic tape. and the relative position of the servo signal reading element. This relative position information enables tracking of the data tracks. For this reason, a plurality of servo tracks are usually set on the servo pattern along the width direction of the magnetic tape.
 サーボバンドは、磁気テープの長手方向に連続するサーボパターンにより構成される。上記磁気テープは、磁性層に複数のサーボバンドを有する。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域が、データバンドである。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。 A servo band is composed of servo patterns that are continuous in the longitudinal direction of the magnetic tape. The magnetic tape has a plurality of servo bands on the magnetic layer. For example, in LTO tape, the number is five. A data band is an area sandwiched between two adjacent servo bands. The data band is composed of a plurality of data tracks, each data track corresponding to each servo track.
 また、一形態では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。 In one form, as disclosed in JP-A-2004-318983, each servo band includes information indicating the number of the servo band ("servo band ID (identification)" or "UDIM (Unique Data Band Identification)"). Method (also called information) is embedded. This servo band ID is recorded by shifting a specific one of a plurality of pairs of servo stripes in the servo band so that the position thereof is relatively displaced in the longitudinal direction of the magnetic tape. Specifically, the method of shifting a specific one of a plurality of pairs of servo stripes is changed for each servo band. As a result, the recorded servo band ID is unique for each servo band, so that one servo band can be uniquely specified only by reading one servo band with a servo signal reading element.
 なお、サーボバンドを一意に特定する方法には、ECMA―319(June 2001)に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。 It should be noted that as a method for uniquely specifying a servo band, there is also a method using a staggered method as shown in ECMA-319 (June 2001). In this staggered method, groups of non-parallel pairs of magnetic stripes (servo stripes) arranged continuously in the longitudinal direction of the magnetic tape are recorded so as to be shifted in the longitudinal direction of the magnetic tape for each servo band. do. Since this combination of shifts between adjacent servo bands is unique for the entire magnetic tape, the servo band can be uniquely identified when reading the servo pattern with two servo signal reading elements. It is possible.
 また、各サーボバンドには、ECMA―319(June 2001)に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。 In each servo band, information indicating the position in the longitudinal direction of the magnetic tape (also called "LPOS (Longitudinal Position) information") is also usually embedded as indicated in ECMA-319 (June 2001). there is Like the UDIM information, this LPOS information is also recorded by shifting the positions of a pair of servo stripes in the longitudinal direction of the magnetic tape. However, unlike the UDIM information, the same signal is recorded in each servo band in this LPOS information.
 上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
 また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
Other information different from the above UDIM and LPOS information can also be embedded in the servo band. In this case, the embedded information may be different for each servo band, such as UDIM information, or common to all servo bands, such as LPOS information.
Also, as a method of embedding information in the servo band, it is possible to adopt a method other than the above. For example, a predetermined code may be recorded by thinning out a predetermined pair from a group of paired servo stripes.
 サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、通常、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。 The servo pattern forming head is called a servo write head. A servo write head normally has a pair of gaps corresponding to the pair of magnetic stripes as many as the number of servo bands. Normally, a core and a coil are connected to each pair of gaps, and by supplying current pulses to the coils, a magnetic field generated in the core can generate a leakage magnetic field in the pair of gaps. When forming the servo pattern, the magnetic pattern corresponding to the pair of gaps is transferred onto the magnetic tape by inputting a current pulse while the magnetic tape is running over the servo write head, thereby forming the servo pattern. can be done. The width of each gap can be appropriately set according to the density of the servo pattern to be formed. The width of each gap can be set to, for example, 1 μm or less, 1 to 10 μm, or 10 μm or more.
 磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。 Before forming the servo pattern on the magnetic tape, the magnetic tape is usually demagnetized (erase). This erasing process can be performed by applying a uniform magnetic field to the magnetic tape using a DC magnet or an AC magnet. The erase process includes DC (Direct Current) erase and AC (Alternating Current) erase. AC erase is performed by gradually decreasing the strength of the magnetic field while reversing the direction of the magnetic field applied to the magnetic tape. DC erase, on the other hand, is performed by applying a unidirectional magnetic field to the magnetic tape. There are two methods of DC erase. The first method is a horizontal DC erase that applies a unidirectional magnetic field along the length of the magnetic tape. The second method is perpendicular DC erase, in which a unidirectional magnetic field is applied along the thickness of the magnetic tape. The erase process may be performed on the entire magnetic tape, or may be performed on each servo band of the magnetic tape.
 形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。 The direction of the magnetic field of the formed servo pattern is determined according to the erase direction. For example, when horizontal DC erasing is performed on a magnetic tape, the servo pattern is formed so that the direction of the magnetic field is opposite to the direction of erasing. As a result, the output of the servo signal obtained by reading the servo pattern can be increased. Incidentally, as disclosed in Japanese Patent Application Laid-Open No. 2012-53940, when a magnetic pattern is transferred to a perpendicular DC-erased magnetic tape using the gap, the formed servo pattern is read and obtained. The servo signal has a unipolar pulse shape. On the other hand, when a magnetic pattern is transferred to a magnetic tape that has been horizontally DC-erased using the gap, a servo signal obtained by reading the formed servo pattern has a bipolar pulse shape.
 通常、サーボパターンの形成後、磁気テープはカートリッジリールのリールハブに巻取られて磁気テープカートリッジに収容される。 After forming the servo pattern, the magnetic tape is usually wound around the reel hub of the cartridge reel and housed in the magnetic tape cartridge.
<垂直方向角型比>
 一形態では、上記磁気テープの垂直方向角型比は、例えば0.55以上であることができ、0.60以上であることが好ましい。上記磁気テープの垂直方向角型比が0.60以上であることは、電磁変換特性向上の観点から好ましい。角型比の上限は、原理上、1.00以下である。上記磁気テープの垂直方向角型比は、1.00以下であることができ、0.95以下、0.90以下、0.85以下または0.80以下であることができる。磁気テープの垂直方向角型比の値が大きいことは、電磁変換特性向上の観点から好ましい。磁気テープの垂直方向角型比は、垂直配向処理の実施等の公知の方法によって制御することができる。
<Vertical squareness ratio>
In one form, the vertical squareness ratio of the magnetic tape can be, for example, 0.55 or more, preferably 0.60 or more. It is preferable from the viewpoint of improving the electromagnetic conversion characteristics that the vertical squareness ratio of the magnetic tape is 0.60 or more. The upper limit of the squareness ratio is, in principle, 1.00 or less. The vertical squareness ratio of the magnetic tape may be 1.00 or less, 0.95 or less, 0.90 or less, 0.85 or less, or 0.80 or less. A magnetic tape having a large vertical squareness ratio is preferable from the viewpoint of improving electromagnetic conversion characteristics. The perpendicular squareness ratio of the magnetic tape can be controlled by a known method such as performing a perpendicular orientation treatment.
 本発明および本明細書において、「垂直方向角型比」とは、磁気テープの垂直方向において測定される角型比である。角型比に関して記載する「垂直方向」とは、磁性層表面と直交する方向であり、厚み方向ということもできる。本発明および本明細書において、垂直方向角型比は、以下の方法によって求められる。
 測定対象の磁気テープから振動試料型磁力計に導入可能なサイズのサンプル片を切り出す。このサンプル片について、振動試料型磁力計を用いて、最大印加磁界3979kA/m、測定温度296K、磁界掃引速度8.3kA/m/秒にて、サンプル片の垂直方向(磁性層表面と直交する方向)に磁界を印加し、印加した磁界に対するサンプル片の磁化強度を測定する。磁化強度の測定値は、反磁界補正後の値として、かつ振動試料型磁力計のサンプルプローブの磁化をバックグラウンドノイズとして差し引いた値として得るものとする。最大印加磁界における磁化強度をMs、印加磁界ゼロにおける磁化強度をMrとしたとき、角型比SQ(Squareness Ratio)は、SQ=Mr/Msとして算出される値である。測定温度はサンプル片の温度をいい、サンプル片の周囲の雰囲気温度を測定温度にすることにより、温度平衡が成り立つことによってサンプル片の温度を測定温度にすることができる。
In the present invention and herein, the "vertical squareness ratio" is the squareness ratio measured in the perpendicular direction of the magnetic tape. The "perpendicular direction" described with respect to the squareness ratio is the direction orthogonal to the surface of the magnetic layer, and can also be called the thickness direction. In the present invention and this specification, the vertical squareness ratio is obtained by the following method.
A sample piece of a size that can be introduced into the vibrating sample magnetometer is cut out from the magnetic tape to be measured. Using a vibrating sample magnetometer, this sample piece was measured at a maximum applied magnetic field of 3979 kA/m, a measurement temperature of 296 K, and a magnetic field sweep rate of 8.3 kA/m/sec. direction) and measure the magnetization strength of the sample piece with respect to the applied magnetic field. The measured value of the magnetization intensity shall be obtained as a value after demagnetization correction and as a value obtained by subtracting the magnetization of the sample probe of the vibrating sample magnetometer as background noise. The squareness ratio SQ is a value calculated as SQ=Mr/Ms, where Ms is the magnetization intensity at the maximum applied magnetic field and Mr is the magnetization intensity at zero applied magnetic field. The measurement temperature refers to the temperature of the sample piece, and by setting the ambient temperature around the sample piece to the measurement temperature, the temperature equilibrium is established, whereby the temperature of the sample piece can be made the measurement temperature.
[磁気ヘッド]
 本発明の一態様は、上記磁気テープカートリッジを含む磁気記録再生装置に関する。本発明および本明細書において、「磁気記録再生装置」とは、磁気テープへのデータの記録および磁気テープに記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれ、通常、磁気ヘッドを含む。磁気テープカートリッジを磁気記録再生装置に挿入し、磁気記録再生装置内で磁気テープを走行させて磁気ヘッドによって磁気テープへのデータの記録および/または記録されたデータの再生を行うことができる。磁気記録再生装置に含まれる磁気ヘッドは、磁気テープへのデータの記録を行うことができる記録ヘッドであることができ、磁気テープに記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、磁気記録再生装置は、一形態では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一形態では、磁気記録再生装置に含まれる磁気ヘッドは、記録素子と再生素子の両方を1つの磁気ヘッドに備えた構成を有することもできる。再生ヘッドとして、磁気テープに記録された情報を感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、公知の各種MRヘッド(例えば、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等)を用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボパターン読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボパターン読み取り素子を備えた磁気ヘッド(サーボヘッド)が磁気記録再生装置に含まれていてもよい。例えば、データの記録および/または記録されたデータの再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、データバンドを挟んで隣り合う2本のサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)を、「データ用素子」と総称する。
[Magnetic head]
One aspect of the present invention relates to a magnetic recording/reproducing device including the magnetic tape cartridge. In the present invention and in this specification, the term "magnetic recording/reproducing apparatus" means an apparatus capable of at least one of recording data on a magnetic tape and reproducing data recorded on the magnetic tape. Such devices are commonly called drives and typically include a magnetic head. The magnetic tape cartridge is inserted into the magnetic recording/reproducing device, the magnetic tape is run in the magnetic recording/reproducing device, and the magnetic head records data on the magnetic tape and/or reproduces the recorded data. The magnetic head included in the magnetic recording/reproducing device can be a recording head capable of recording data on a magnetic tape, and a reproducing head capable of reproducing data recorded on the magnetic tape. can also In one form, the magnetic recording/reproducing apparatus can include both a recording head and a reproducing head as separate magnetic heads. In another form, the magnetic head included in the magnetic recording/reproducing device can have a configuration in which both the recording element and the reproducing element are provided in one magnetic head. As the reproducing head, a magnetic head (MR head) including a magnetoresistive (MR) element capable of reading information recorded on a magnetic tape with high sensitivity as a reproducing element is preferable. As the MR head, various known MR heads (eg, GMR (Giant Magnetoresistive) head, TMR (Tunnel Magnetoresistive) head, etc.) can be used. A magnetic head for recording and/or reproducing data may also include a servo pattern reading element. Alternatively, the magnetic recording/reproducing apparatus may include a magnetic head (servo head) having a servo pattern reading element as a separate head from the magnetic head that records and/or reproduces data. For example, a magnetic head for recording data and/or reproducing recorded data (hereinafter also referred to as a "recording/reproducing head") may include two servo signal reading elements. can simultaneously read two adjacent servo bands across the data band. One or more data elements can be positioned between the two servo signal read elements. An element for recording data (recording element) and an element for reproducing data (reading element) are collectively referred to as a "data element".
 再生素子として再生素子幅が狭い再生素子を使用してデータの再生を行うことにより、高密度記録されたデータを高感度に再生することができる。この観点から、再生素子の再生素子幅は、0.8μm以下であることが好ましい。再生素子の再生素子幅は、例えば0.1μm以上であることができる。ただし、この値を下回ることも上記観点からは好ましい。
 他方、再生素子幅が狭くなるほど、オフトラックに起因する再生不良等の現象が発生し易くなる。このような現象の発生を抑制するために、走行中、磁気テープの長手方向にかけるテンションを調整して変化させることによって、磁気テープの幅方向の寸法を制御する磁気記録再生装置は好ましい。
 ここで「再生素子幅」とは、再生素子幅の物理的な寸法をいうものとする。かかる物理的な寸法は、光学顕微鏡、走査型電子顕微鏡等により測定が可能である。
By reproducing data using a reproducing element having a narrow reproducing element width as a reproducing element, data recorded at high density can be reproduced with high sensitivity. From this point of view, the read element width of the read element is preferably 0.8 μm or less. The read element width of the read element can be, for example, 0.1 μm or more. However, falling below this value is also preferable from the above viewpoint.
On the other hand, the narrower the width of the reproducing element, the more likely it is that phenomena such as poor reproduction due to off-track will occur. In order to suppress the occurrence of such a phenomenon, it is preferable to use a magnetic recording/reproducing apparatus that controls the dimension of the magnetic tape in the width direction by adjusting and changing the tension applied to the magnetic tape in the longitudinal direction while the tape is running.
Here, the "reproducing element width" means the physical dimension of the reproducing element width. Such physical dimensions can be measured with an optical microscope, scanning electron microscope, or the like.
 データの記録および/または記録されたデータの再生の際には、まず、サーボ信号を利用したヘッドトラッキングを行うことができる。即ち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御することができる。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
 また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
When recording data and/or reproducing recorded data, first, head tracking using a servo signal can be performed. That is, by causing the servo signal reading element to follow a predetermined servo track, the data element can be controlled to pass over the target data track. The data track is moved by changing the servo track read by the servo signal reading element in the width direction of the tape.
The record/playback head can also record and/or play back other data bands. In this case, the above-mentioned UDIM information is used to move the servo signal reading element to a predetermined servo band, and tracking for that servo band is started.
 図5に、データバンドおよびサーボバンドの配置例を示す。図5中、磁気テープMTの磁性層には、複数のサーボバンド1が、ガイドバンド3に挟まれて配置されている。2本のサーボバンドに挟まれた複数の領域2が、データバンドである。サーボパターンは、磁化領域であって、サーボライトヘッドにより磁性層の特定の領域を磁化することによって形成される。サーボライトヘッドにより磁化する領域(サーボパターンを形成する位置)は規格により定められている。例えば業界標準規格であるLTO Ultriumフォーマットテープには、磁気テープ製造時に、図6に示すようにテープ幅方向に対して傾斜した複数のサーボパターンが、サーボバンド上に形成される。詳しくは、図6中、サーボバンド1上のサーボフレームSFは、サーボサブフレーム1(SSF1)およびサーボサブフレーム2(SSF2)から構成される。サーボサブフレーム1は、Aバースト(図6中、符号A)およびBバースト(図6中、符号B)から構成される。AバーストはサーボパターンA1~A5から構成され、BバーストはサーボパターンB1~B5から構成される。一方、サーボサブフレーム2は、Cバースト(図6中、符号C)およびDバースト(図6中、符号D)から構成される。CバーストはサーボパターンC1~C4から構成され、DバーストはサーボパターンD1~D4から構成される。このような18本のサーボパターンが5本と4本のセットで、5、5、4、4、の配列で並べられたサブフレームに配置され、サーボフレームを識別するために用いられる。図6には、説明のために1つのサーボフレームを示した。ただし、実際には、タイミングベースサーボ方式のヘッドトラッキングが行われる磁気テープの磁性層には、各サーボバンドに、複数のサーボフレームが走行方向に配置されている。図6中、矢印は走行方向を示している。例えば、LTO Ultriumフォーマットテープは、通常、磁性層の各サーボバンドに、テープ長1mあたり5000以上のサーボフレームを有する。 Fig. 5 shows an arrangement example of data bands and servo bands. In FIG. 5, a plurality of servo bands 1 are sandwiched between guide bands 3 on the magnetic layer of the magnetic tape MT. A plurality of areas 2 sandwiched between two servo bands are data bands. A servo pattern is a magnetized region formed by magnetizing a specific region of a magnetic layer with a servo write head. The area magnetized by the servo write head (the position where the servo pattern is formed) is defined by standards. For example, in the industry standard LTO Ultrium format tape, a plurality of servo patterns inclined with respect to the width direction of the tape are formed on the servo band as shown in FIG. 6 when the magnetic tape is manufactured. Specifically, in FIG. 6, the servo frame SF on servo band 1 is composed of servo subframe 1 (SSF1) and servo subframe 2 (SSF2). A servo subframe 1 is composed of an A burst (symbol A in FIG. 6) and a B burst (symbol B in FIG. 6). The A burst is composed of servo patterns A1 to A5, and the B burst is composed of servo patterns B1 to B5. On the other hand, servo subframe 2 is composed of a C burst (symbol C in FIG. 6) and a D burst (symbol D in FIG. 6). The C burst is composed of servo patterns C1 to C4, and the D burst is composed of servo patterns D1 to D4. Such 18 servo patterns are arranged in sets of 5 and 4 in subframes arranged in an array of 5, 5, 4, 4, and are used to identify servo frames. FIG. 6 shows one servo frame for explanation. In practice, however, a plurality of servo frames are arranged in the running direction in each servo band on the magnetic layer of the magnetic tape on which the head tracking of the timing-based servo system is performed. In FIG. 6, arrows indicate the direction of travel. For example, an LTO Ultrium format tape typically has 5000 or more servo frames per meter of tape length in each servo band of the magnetic layer.
 以下に、本発明を実施例に基づき説明する。ただし、本発明は実施例に示す実施形態に限定されるものではない。以下に記載の「部」、「%」の表示は、特に断らない限り、「質量部」、「質量%」を示す。「eq」は、当量(equivalent)であり、SI単位に換算不可の単位である。
 また、以下の各種工程および操作は、特記しない限り、温度20~25℃および相対湿度40~60%の環境において行った。
The present invention will be described below based on examples. However, the present invention is not limited to the embodiments shown in Examples. "Parts" and "%" described below indicate "mass parts" and "mass%" unless otherwise specified. "eq" is equivalent, a unit that cannot be converted to SI units.
Further, the following various steps and operations were carried out in an environment with a temperature of 20 to 25° C. and a relative humidity of 40 to 60%, unless otherwise specified.
[非磁性支持体]
 表1中、「PEN」はポリエチレンナフタレート支持体を示す。表1中の含水率およびヤング率は、先に記載の方法によって測定された値である。
[Nonmagnetic support]
In Table 1, "PEN" indicates polyethylene naphthalate support. The water content and Young's modulus in Table 1 are values measured by the method described above.
[強磁性粉末]
 表1中、強磁性粉末の欄における「BaFe」は、平均粒子サイズ(平均板径)21nmの六方晶バリウムフェライト粉末を示す。
[Ferromagnetic powder]
In Table 1, "BaFe" in the ferromagnetic powder column indicates hexagonal barium ferrite powder with an average particle size (average plate diameter) of 21 nm.
 表1中、強磁性粉末の欄における「SrFe1」は、以下のように作製された六方晶ストロンチウムフェライト粉末を示す。
 SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
 得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
 作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
 次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈殿させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
 上記で得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
 上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
 別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
 上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
In Table 1, "SrFe1" in the ferromagnetic powder column indicates hexagonal strontium ferrite powder produced as follows.
1707 g of SrCO3, 687 g of H3BO3 , 1120 g of Fe2O3 , 45 g of Al(OH) 3 , 24 g of BaCO3 , 13 g of CaCO3 , and 235 g of Nd2O3 were weighed and mixed in a mixer. A raw material mixture was obtained by mixing.
The obtained raw material mixture was melted in a platinum crucible at a melting temperature of 1390° C., and while the melt was being stirred, a tap hole provided at the bottom of the platinum crucible was heated, and the melt was tapped in a rod shape at a rate of about 6 g/sec. . The tapped liquid was rolled and quenched with a water-cooled twin roller to prepare an amorphous body.
280 g of the produced amorphous material was placed in an electric furnace, heated to 635° C. (crystallization temperature) at a heating rate of 3.5° C./min, and held at the same temperature for 5 hours to produce hexagonal strontium ferrite particles. Precipitated (crystallized).
Next, the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads having a particle size of 1 mm and 800 mL of 1% concentration of acetic acid aqueous solution were added to a glass bottle and dispersed for 3 hours using a paint shaker. did After that, the resulting dispersion was separated from the beads and placed in a stainless steel beaker. After the dispersion liquid was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass component, it was precipitated in a centrifuge and washed by repeating decantation. After drying for a few hours, hexagonal strontium ferrite powder was obtained.
The average particle size of the hexagonal strontium ferrite powder obtained above is 18 nm, the activation volume is 902 nm 3 , the anisotropy constant Ku is 2.2×10 5 J/m 3 , and the mass magnetization σs is 49 A·m 2 /. kg.
12 mg of sample powder was taken from the hexagonal strontium ferrite powder obtained above, and the sample powder was partially dissolved under the dissolution conditions exemplified above. The surface layer content was determined.
Separately, 12 mg of sample powder was taken from the hexagonal strontium ferrite powder obtained above, and the sample powder was completely dissolved under the dissolution conditions exemplified above. Atomic bulk content was determined.
The content of neodymium atoms (bulk content) with respect to 100 atomic % of iron atoms in the hexagonal strontium ferrite powder obtained above was 2.9 atomic %. The content of neodymium atoms in the surface layer was 8.0 atomic %. The ratio of the surface layer portion content rate to the bulk content rate, "surface layer portion content rate/bulk content rate", was 2.8, confirming that neodymium atoms were unevenly distributed in the surface layer of the particles.
 上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
 PANalytical X’Pert Pro回折計、PIXcel検出器
 入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
 分散スリットの固定角:1/4度
 マスク:10mm
 散乱防止スリット:1/4度
 測定モード:連続
 1段階あたりの測定時間:3秒
 測定速度:毎秒0.017度
 測定ステップ:0.05度
The fact that the powder obtained above exhibits the crystal structure of hexagonal ferrite can be confirmed by scanning CuKα rays under the conditions of a voltage of 45 kV and an intensity of 40 mA and measuring the X-ray diffraction pattern under the following conditions (X-ray diffraction analysis). confirmed. The powder obtained above exhibited a crystal structure of magnetoplumbite type (M type) hexagonal ferrite. The crystal phase detected by X-ray diffraction analysis was a magnetoplumbite single phase.
PANalytical X'Pert Pro diffractometer, PIXcel detector Soller slits for incident and diffracted beams: 0.017 radians Fixed divergence slit angle: ¼ degree Mask: 10 mm
Anti-scattering slit: 1/4 degree Measurement mode: Continuous Measurement time per step: 3 seconds Measurement speed: 0.017 degree per second Measurement step: 0.05 degree
 表1中、強磁性粉末の欄における「SrFe2」は、以下のように作製された六方晶ストロンチウムフェライト粉末を示す。
 SrCOを1725g、HBOを666g、Feを1332g、Al(OH)を52g、CaCOを34g、BaCOを141g秤量し、ミキサーにて混合し原料混合物を得た。
 得られた原料混合物を、白金ルツボで溶融温度1380℃で溶解し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ロールで圧延急冷して非晶質体を作製した。
 得られた非晶質体280gを電気炉に仕込み、645℃(結晶化温度)まで昇温し、同温度で5時間保持し六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
 次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈殿させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
 得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。
In Table 1, "SrFe2" in the ferromagnetic powder column indicates hexagonal strontium ferrite powder produced as follows.
1725 g of SrCO3, 666 g of H3BO3 , 1332 g of Fe2O3 , 52 g of Al(OH) 3 , 34 g of CaCO3 and 141 g of BaCO3 were weighed and mixed in a mixer to obtain a raw material mixture.
The obtained raw material mixture was melted in a platinum crucible at a melting temperature of 1380° C., and the melt was stirred while heating the outlet provided at the bottom of the platinum crucible to dispense the melt in a rod shape at a rate of about 6 g/sec. . The tapped liquid was rolled and quenched with water-cooled twin rolls to prepare an amorphous body.
280 g of the obtained amorphous material was placed in an electric furnace, heated to 645° C. (crystallization temperature), and held at the same temperature for 5 hours to precipitate (crystallize) hexagonal strontium ferrite particles.
Next, the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads having a particle size of 1 mm and 800 mL of 1% concentration of acetic acid aqueous solution were added to a glass bottle and dispersed for 3 hours using a paint shaker. did After that, the resulting dispersion was separated from the beads and placed in a stainless steel beaker. After the dispersion liquid was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass component, it was precipitated in a centrifuge and washed by repeating decantation. After drying for a few hours, hexagonal strontium ferrite powder was obtained.
The obtained hexagonal strontium ferrite powder had an average particle size of 19 nm, an activated volume of 1102 nm 3 , an anisotropy constant Ku of 2.0×10 5 J/m 3 , and a mass magnetization σs of 50 A·m 2 /kg. there were.
 表1中、強磁性粉末の欄における「ε-酸化鉄」は、以下のように作製されたε-酸化鉄粉末を示す。
 純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸水溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
 乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
 得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装着し、4時間の熱処理を施した。
 熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
 その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
 得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP-OES;Inductively Coupled Plasma-Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε-酸化鉄(ε-Ga0.28Co0.05Ti0.05Fe1.62)であった。また、先に六方晶ストロンチウムフェライト粉末SrFe1に関して記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε-酸化鉄の結晶構造)を有することを確認した。
 得られたε-酸化鉄粉末の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
In Table 1, "ε-iron oxide" in the column of ferromagnetic powder indicates ε-iron oxide powder prepared as follows.
8.3 g of iron (III) nitrate nonahydrate, 1.3 g of gallium (III) nitrate octahydrate, 190 mg of cobalt (II) nitrate hexahydrate, 150 mg of titanium (IV) sulfate, and 4.0 g of an aqueous ammonia solution having a concentration of 25% was added to a solution of 1.5 g of polyvinylpyrrolidone (PVP) in an air atmosphere at an ambient temperature of 25° C. while stirring using a magnetic stirrer. , and the mixture was stirred for 2 hours while maintaining the ambient temperature of 25°C. An aqueous citric acid solution obtained by dissolving 1 g of citric acid in 9 g of pure water was added to the obtained solution, and the mixture was stirred for 1 hour. The powder precipitated after stirring was collected by centrifugation, washed with pure water, and dried in a heating furnace with an internal furnace temperature of 80°C.
800 g of pure water was added to the dried powder, and the powder was dispersed again in water to obtain a dispersion liquid. The obtained dispersion was heated to a liquid temperature of 50° C., and 40 g of an ammonia aqueous solution having a concentration of 25% was added dropwise while stirring. After stirring for 1 hour while maintaining the temperature at 50° C., 14 mL of tetraethoxysilane (TEOS) was added dropwise and the mixture was stirred for 24 hours. 50 g of ammonium sulfate was added to the obtained reaction solution, and the precipitated powder was collected by centrifugation, washed with pure water, and dried in a heating furnace at an internal temperature of 80°C for 24 hours to obtain a ferromagnetic powder precursor. Obtained.
The obtained ferromagnetic powder precursor was placed in a heating furnace with an internal temperature of 1000° C. in an air atmosphere, and subjected to a heat treatment for 4 hours.
The heat-treated ferromagnetic powder precursor is put into a 4 mol/L sodium hydroxide (NaOH) aqueous solution, and the liquid temperature is maintained at 70° C. and stirred for 24 hours to obtain a heat-treated ferromagnetic powder precursor. The silicic acid compound, which is an impurity, was removed from the
After that, the ferromagnetic powder from which the silicic acid compound was removed was collected by centrifugal separation and washed with pure water to obtain the ferromagnetic powder.
When the composition of the obtained ferromagnetic powder was confirmed by high-frequency inductively coupled plasma-optical emission spectrometry (ICP-OES), Ga, Co and Ti-substituted ε-iron oxide (ε-Ga 0 .28 Co 0.05 Ti 0.05 Fe 1.62 O 3 ). In addition, X-ray diffraction analysis was performed under the same conditions as those previously described for the hexagonal strontium ferrite powder SrFe1. From the peaks of the X-ray diffraction pattern, the obtained ferromagnetic powder had an α-phase and a γ-phase crystal structure. It was confirmed to have a single-phase ε-phase crystal structure (ε-iron oxide crystal structure) containing no
The resulting ε-iron oxide powder had an average particle size of 12 nm, an activated volume of 746 nm 3 , an anisotropy constant Ku of 1.2×10 5 J/m 3 and a mass magnetization σs of 16 A·m 2 /kg. there were.
 上記の六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁力計(東英工業社製)を用いて、先に記載の方法により求められた値である。
 また、質量磁化σsは、振動試料型磁力計(東英工業社製)を用いて磁場強度1194kA/m(15kOe)で測定された値である。
The activation volume and anisotropy constant Ku of the above hexagonal strontium ferrite powder and ε-iron oxide powder were obtained using a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd.) for each ferromagnetic powder, as previously described. It is a value obtained by the method of
The mass magnetization σs is a value measured with a magnetic field strength of 1194 kA/m (15 kOe) using a vibrating sample magnetometer (manufactured by Toei Industry Co., Ltd.).
[実施例1]
(1)アルミナ分散物の調製
 アルファ化率約65%、BET(Brunauer-Emmett-Teller)比表面積20m/gのアルミナ粉末(住友化学社製HIT-80)100.0部に対し、3.0部の2,3-ジヒドロキシナフタレン(東京化成社製)、極性基としてSONa基を有するポリエステルポリウレタン樹脂(東洋紡社製UR-4800(極性基量:80meq/kg))の32%溶液(溶媒はメチルエチルケトンとトルエンの混合溶媒)を31.3部、溶媒としてメチルエチルケトンとシクロヘキサノン1:1(質量比)の混合溶液570.0部を混合し、ジルコニアビーズ存在下で、ペイントシェーカーにより5時間分散させた。分散後、メッシュにより分散液とビーズとを分け、アルミナ分散物を得た。
[Example 1]
(1) Preparation of alumina dispersion To 100.0 parts of alumina powder (HIT-80 manufactured by Sumitomo Chemical Co., Ltd.) having a gelatinization rate of about 65% and a BET (Brunauer-Emmett-Teller) specific surface area of 20 m 2 /g, 3. 0 part of 2,3-dihydroxynaphthalene (manufactured by Tokyo Kasei Co., Ltd.), a 32% solution of a polyester polyurethane resin (UR-4800 manufactured by Toyobo Co., Ltd. (polar group amount: 80 meq/kg)) having an SO 3 Na group as a polar group ( 31.3 parts of a mixed solvent of methyl ethyl ketone and toluene as a solvent, and 570.0 parts of a mixed solution of methyl ethyl ketone and cyclohexanone 1:1 (mass ratio) as a solvent are mixed, and dispersed for 5 hours with a paint shaker in the presence of zirconia beads. let me After dispersion, the dispersion liquid and the beads were separated by a mesh to obtain an alumina dispersion.
(2)磁性層形成用組成物処方
(磁性液)
強磁性粉末(表1参照)                 100.0部
SONa基含有ポリウレタン樹脂              14.0部
 重量平均分子量:70,000、SONa基:0.2meq/g
シクロヘキサノン                    150.0部
メチルエチルケトン                   150.0部
(研磨剤液)
上記(1)で調製したアルミナ分散物             6.0部
(シリカゾル(突起形成剤液))
コロイダルシリカ(平均粒子サイズ120nm)        2.0部
メチルエチルケトン                     1.4部
(その他の成分)
ステアリン酸                        2.0部
ステアリン酸アミド                     0.2部
ブチルステアレート                     2.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)L)  2.5部
(仕上げ添加溶媒)
シクロヘキサノン                    200.0部
メチルエチルケトン                   200.0部
(2) Formulation of magnetic layer forming composition (magnetic liquid)
Ferromagnetic powder (see Table 1) 100.0 parts SO 3 Na group-containing polyurethane resin 14.0 parts Weight average molecular weight: 70,000, SO 3 Na group: 0.2 meq/g
Cyclohexanone 150.0 parts Methyl ethyl ketone 150.0 parts (abrasive liquid)
6.0 parts of the alumina dispersion prepared in (1) above (silica sol (projection forming agent liquid))
Colloidal silica (average particle size 120 nm) 2.0 parts Methyl ethyl ketone 1.4 parts (other ingredients)
Stearic acid 2.0 parts Stearic acid amide 0.2 parts Butyl stearate 2.0 parts Polyisocyanate (Coronate (registered trademark) L manufactured by Tosoh Corporation) 2.5 parts (finishing additive solvent)
Cyclohexanone 200.0 parts Methyl ethyl ketone 200.0 parts
(3)非磁性層形成用組成物処方
非磁性無機粉末:α-酸化鉄               100.0部
 平均粒子サイズ(平均長軸長):0.15μm
 平均針状比:7
 BET比表面積:52m/g
カーボンブラック                     20.0部
 平均粒子サイズ:20nm  
SONa基含有ポリウレタン樹脂              18.0部
 重量平均分子量:70,000、SONa基:0.2meq/g
ステアリン酸                        2.0部
ステアリン酸アミド                     0.2部
ブチルステアレート                     2.0部
シクロヘキサノン                    300.0部
メチルエチルケトン                   300.0部
(3) Formulation of non-magnetic layer-forming composition Non-magnetic inorganic powder: α-iron oxide 100.0 parts Average particle size (average major axis length): 0.15 μm
Average acicular ratio: 7
BET specific surface area: 52 m 2 /g
Carbon black 20.0 parts Average particle size: 20 nm
SO 3 Na group-containing polyurethane resin 18.0 parts Weight average molecular weight: 70,000, SO 3 Na group: 0.2 meq/g
Stearic acid 2.0 parts Stearamide 0.2 parts Butyl stearate 2.0 parts Cyclohexanone 300.0 parts Methyl ethyl ketone 300.0 parts
(4)バックコート層形成用組成物処方 
カーボンブラック                    100.0部
 DBP(Dibutyl phthalate)吸油量74cm/100g
ニトロセルロース                     27.0部
スルホン酸基および/またはその塩を含有するポリエステルポリウレタン樹脂                            62.0部
ポリエステル樹脂                      4.0部
アルミナ粉末(BET比表面積:17m/g)         0.6部
メチルエチルケトン                   600.0部
トルエン                        600.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)L) 15.0部
(4) Formulation of composition for forming backcoat layer
Carbon black 100.0 parts DBP (Dibutyl phthalate) oil absorption 74 cm 3 /100 g
Nitrocellulose 27.0 parts Polyester polyurethane resin containing sulfonic acid groups and/or salts thereof 62.0 parts Polyester resin 4.0 parts Alumina powder (BET specific surface area: 17 m 2 /g) 0.6 parts Methyl ethyl ketone 600.0 parts Toluene 600.0 parts Polyisocyanate (Coronate (registered trademark) L manufactured by Tosoh Corporation) 15.0 parts
(5)各層形成用組成物の調製
 磁性層形成用組成物を、以下の方法により調製した。上記磁性液を、上記成分をバッチ式縦型サンドミルを用いて24時間分散(ビーズ分散)することにより調製した。分散ビーズとしては、ビーズ径0.5mmのジルコニアビーズを使用した。上記サンドミルを用いて、調製した磁性液、上記研磨剤液ならびに他の成分(シリカゾル、その他の成分および仕上げ添加溶媒)を混合し5分間ビーズ分散した後、バッチ型超音波装置(20kHz、300W)で0.5分間処理(超音波分散)を行った。その後、0.5μmの孔径を有するフィルタを用いてろ過を行い磁性層形成用組成物を調製した。
 非磁性層形成用組成物を、以下の方法により調製した。潤滑剤(ステアリン酸、ステアリン酸アミドおよびブチルステアレート)を除く上記成分を、オープンニーダにより混練および希釈処理し、その後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ステアリン酸、ステアリン酸アミドおよびブチルステアレート)を添加して、ディゾルバー撹拌機にて撹拌および混合処理を施して非磁性層形成用組成物を調製した。
 バックコート層形成用組成物を、以下の方法により調製した。ポリイソシアネートを除く上記成分を、ディゾルバー撹拌機に導入し、周速10m/秒で30分間撹拌した後、横型ビーズミル分散機により分散処理を実施した。その後、ポリイソシアネートを添加して、ディゾルバー撹拌機にて撹拌および混合処理を施し、バックコート層形成用組成物を調製した。
(5) Preparation of Each Layer-Forming Composition A magnetic layer-forming composition was prepared by the following method. The above magnetic liquid was prepared by dispersing (bead dispersion) the above components for 24 hours using a batch-type vertical sand mill. As dispersion beads, zirconia beads with a bead diameter of 0.5 mm were used. Using the sand mill, the prepared magnetic liquid, the abrasive liquid, and other components (silica sol, other components, and finishing additive solvent) were mixed and dispersed in beads for 5 minutes, followed by a batch type ultrasonic device (20 kHz, 300 W). for 0.5 minutes (ultrasonic dispersion). Thereafter, filtration was performed using a filter having a pore size of 0.5 μm to prepare a composition for forming a magnetic layer.
A composition for forming a non-magnetic layer was prepared by the following method. The above ingredients except for the lubricants (stearic acid, stearic acid amide and butyl stearate) were kneaded and diluted by an open kneader, and then dispersed by a horizontal bead mill disperser. Then, lubricants (stearic acid, stearic acid amide and butyl stearate) were added, and the mixture was stirred and mixed with a dissolver stirrer to prepare a composition for forming a non-magnetic layer.
A composition for forming a backcoat layer was prepared by the following method. The components except for the polyisocyanate were introduced into a dissolver stirrer, stirred at a peripheral speed of 10 m/sec for 30 minutes, and then dispersed using a horizontal bead mill disperser. After that, polyisocyanate was added, and the mixture was stirred and mixed with a dissolver stirrer to prepare a composition for forming a backcoat layer.
(6)磁気テープおよび磁気テープカートリッジの作製方法
 厚み4.0μmの二軸延伸された表1に記載の支持体の表面上に、乾燥後の厚みが0.6μmとなるように上記(5)で調製した非磁性層形成用組成物を塗布および乾燥させて非磁性層を形成した。次いで、非磁性層上に乾燥後の厚みが0.1μmとなるように上記(5)で調製した磁性層形成用組成物を塗布して塗布層を形成した。その後に、磁性層形成用組成物の塗布層が未乾燥状態にあるうちに、磁場強度0.3Tの磁場を塗布層の表面に対し垂直方向に印加して垂直配向処理を行った後、乾燥させ、磁性層を形成した。その後、支持体の非磁性層および磁性層を形成した表面とは反対側の表面に、乾燥後の厚みが0.5μmとなるように上記(5)で調製したバックコート層形成用組成物を塗布および乾燥させてバックコート層を形成した。
 その後、金属ロールのみから構成されるカレンダロールを用いて、速度100m/分、線圧300kg/cm、および90℃のカレンダ温度(カレンダロールの表面温度)にて、表面平滑化処理(カレンダ処理)を行った。
 その後、長尺状の磁気テープ原反を雰囲気温度70℃の熱処理炉内に保管することにより熱処理を行った(熱処理時間:36時間)。熱処理後、1/2インチ幅にスリットして、磁気テープを得た。得られた磁気テープの磁性層に市販のサーボライターによってサーボ信号を記録することにより、LTO(Linear Tape-Open)Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターン(タイミングベースサーボパターン)を有する磁気テープを得た。こうして形成されたサーボパターンは、JIS(Japanese Industrial Standards) X6175:2006およびStandard ECMA-319(June 2001)の記載にしたがうサーボパターンである。サーボバンドの合計本数は5、データバンドの合計本数は4である。
 上記サーボパターン形成後の磁気テープ(長さ970m)を熱処理用巻芯に巻取り、この巻芯に巻付けた状態で熱処理した。熱処理用巻芯としては、曲げ弾性率0.8GPaの樹脂製の中実状の芯状部材(外径:50mm)を使用し、巻取り時のテンションは0.60Nとした。熱処理は、表1に示す熱処理温度で5時間行った。熱処理を行った雰囲気の重量絶対湿度は、10g/kg Dry airであった。
 上記熱処理後、磁気テープおよび熱処理用巻芯が十分冷却された後に磁気テープを熱処理用巻芯から取り外し、一時巻取り用巻芯に巻取り、その後、一時巻取り用巻芯から磁気テープカートリッジのリールのリールハブへ最終製品長分(960m)の磁気テープを長手方向に表1の「製造時巻取りテンション」の欄に記載の値のテンションをかけて巻取り、残り10m分は切り取り、切り取り側の末端に、市販のスプライシングテープによって、Standard ECMA(European Computer Manufacturers Association)-319(June 2001)Section 3の項目9にしたがうリーダーテープを接合させた。一時巻取り用巻芯としては、熱処理用巻芯と同じ材料製で同じ外径を有する中実状の芯状部材を使用した。
 上記で磁気テープを収容する磁気テープカートリッジとしては、図2に示す構成の単リール型の磁気テープカートリッジを使用した。この磁気テープカートリッジのリールハブは、ガラス繊維強化ポリカーボネートを射出成形した単層構成のリールハブ(厚み:2.5mm、外径:44mm)である。このガラス繊維強化ポリカーボネートのガラス繊維の含有率は、表1に示す値(単位:質量%)である。射出成形用のガラス繊維強化ポリカーボネートの一部を採取し、JIS K 7171:2016の項目6.3.1(成形材料からの作製)にしたがい、同JISの項目6.1.2に記載されている推奨試験片を作製し、同JISにしたがい曲げ弾性率(5つの試験片の算術平均)を求めたところ表1に示す値であった。この後に記載の実施例および比較例についても、リールハブ材料の曲げ弾性率は、上記方法により求めた。上記の熱処理用巻芯の曲げ弾性率も同様に求めた値である。
 以上により、長さ960mの磁気テープがリールに巻装された単リール型の実施例1の磁気テープカートリッジを作製した。
(6) Method for producing magnetic tape and magnetic tape cartridge On the surface of the biaxially stretched support shown in Table 1 having a thickness of 4.0 µm, the above (5) was applied so that the thickness after drying was 0.6 µm. A non-magnetic layer was formed by coating and drying the composition for forming a non-magnetic layer prepared in 1. above. Next, the composition for forming the magnetic layer prepared in (5) above was coated on the non-magnetic layer so that the thickness after drying was 0.1 μm to form a coating layer. After that, while the coating layer of the composition for forming the magnetic layer is in an undried state, a magnetic field with a magnetic field strength of 0.3 T is applied in a direction perpendicular to the surface of the coating layer to perform a vertical alignment treatment, and then the coating layer is dried. to form a magnetic layer. After that, the backcoat layer-forming composition prepared in (5) above was applied to the surface of the support opposite to the surface on which the non-magnetic layer and the magnetic layer were formed so that the thickness after drying was 0.5 μm. It was coated and dried to form a backcoat layer.
After that, using a calender roll composed only of metal rolls, the surface is smoothed (calendered) at a speed of 100 m / min, a linear pressure of 300 kg / cm, and a calender temperature of 90 ° C. (calender roll surface temperature). did
After that, heat treatment was performed by storing the long magnetic tape raw material in a heat treatment furnace with an atmospheric temperature of 70° C. (heat treatment time: 36 hours). After the heat treatment, the film was slit to a width of 1/2 inch to obtain a magnetic tape. By recording a servo signal on the magnetic layer of the obtained magnetic tape with a commercially available servo writer, a data band, a servo band, and a guide band are arranged in accordance with the LTO (Linear Tape-Open) Ultrium format, and the servo A magnetic tape having a servo pattern (timing-based servo pattern) arranged and shaped according to the LTO Ultrium format on the band was obtained. The servo pattern thus formed is a servo pattern according to the descriptions of JIS (Japanese Industrial Standards) X6175:2006 and Standard ECMA-319 (June 2001). The total number of servo bands is five, and the total number of data bands is four.
The magnetic tape (length 970 m) after forming the servo pattern was wound around a core for heat treatment, and heat-treated while being wound around the core. As the core for heat treatment, a resin-made solid core member (outer diameter: 50 mm) having a bending elastic modulus of 0.8 GPa was used, and the tension during winding was set to 0.60 N. The heat treatment was performed at the heat treatment temperature shown in Table 1 for 5 hours. The weight absolute humidity of the heat-treated atmosphere was 10 g/kg Dry air.
After the heat treatment, after the magnetic tape and the heat treatment core are sufficiently cooled, the magnetic tape is removed from the heat treatment core, wound on the temporary take-up core, and then removed from the temporary take-up core to the magnetic tape cartridge. Wind the magnetic tape for the final product length (960m) to the reel hub of the reel in the longitudinal direction by applying the tension of the value described in the column "Tension at time of manufacture" in Table 1, cut off the remaining 10m, and cut off side To the ends of the was spliced a leader tape according to Standard ECMA (European Computer Manufacturers Association)-319 (June 2001) Section 3, Item 9, by commercial splicing tape. As the winding core for temporary winding, a solid core member made of the same material as the winding core for heat treatment and having the same outer diameter was used.
As the magnetic tape cartridge containing the magnetic tape, a single reel type magnetic tape cartridge having the configuration shown in FIG. 2 was used. The reel hub of this magnetic tape cartridge is a single-layer reel hub (thickness: 2.5 mm, outer diameter: 44 mm) injection-molded from glass fiber reinforced polycarbonate. The glass fiber content of this glass fiber reinforced polycarbonate is the value shown in Table 1 (unit: % by mass). A part of the glass fiber reinforced polycarbonate for injection molding was collected, and according to JIS K 7171: 2016, item 6.3.1 (manufacture from molding material), described in item 6.1.2 of the same JIS. A recommended test piece was prepared, and the flexural modulus (arithmetic average of five test pieces) was obtained according to the same JIS. The flexural modulus of the reel hub material was also determined by the above method for the examples and comparative examples described later. The flexural modulus of the core for heat treatment is also determined in the same manner.
As described above, a single-reel type magnetic tape cartridge of Example 1 in which a magnetic tape having a length of 960 m was wound around a reel was produced.
[実施例2~19、比較例1~9]
 表1中の項目を表1に示されているように変更した点以外、実施例1について記載した方法で磁気テープカートリッジを作製した。
 表1中、「熱処理温度」の欄に「なし」と記載されている比較例では、熱処理用巻芯に巻付けた状態での熱処理を行わずに、最終製品長960mの磁気テープを磁気テープカートリッジに収容した。
[Examples 2 to 19, Comparative Examples 1 to 9]
A magnetic tape cartridge was fabricated by the method described for Example 1, except that the items in Table 1 were changed as shown in Table 1.
In Table 1, in the comparative example described as "none" in the "heat treatment temperature" column, the magnetic tape with a final product length of 960 m was not subjected to heat treatment while being wound around the heat treatment core. housed in a cartridge.
 上記の実施例および比較例について、それぞれ磁気テープカートリッジを3つ作製し、1つを以下の磁気テープ変形量に関する評価およびテープ厚みの評価に使用し、もう1つを後述の記録再生性能の評価に使用し、残り1つを後述の走行安定性の評価に使用した。 Three magnetic tape cartridges were produced for each of the above examples and comparative examples, one of which was used for the evaluation of the following magnetic tape deformation amount and the evaluation of the tape thickness, and the other was used for the evaluation of the recording and reproduction performance described later. , and the remaining one was used for the evaluation of running stability, which will be described later.
[評価方法]
<5環境の1年保管後の磁気テープ最大変形量>
 測定対象の磁気テープカートリッジを、測定環境に馴染ませるために、雰囲気温度23℃相対湿度50%の測定環境に5日間置いた。
 その後、上記測定環境下、図1に示す磁気記録再生装置において、磁気テープの長手方向に0.70Nのテンションをかけた状態で磁気テープを走行させた。かかる走行について、磁気テープの全長にわたり、データバンドを挟んで隣り合う2本のサーボバンドの間隔を、1m間隔で測定した。測定は、全サーボバンド間隔について行った。こうして測定されたサーボバンド間隔を、各測定位置における「保管前のサーボバンド間隔」とした。データバンドを挟んで隣り合う2本のサーボバンドの間隔は、以下のように求めた。
 データバンドを挟んで隣り合う2本のサーボバンドの間隔を求めるためには、サーボパターンの寸法が必要である。サーボパターンの寸法の規格は、LTOの世代によって異なる。そこでまず、磁気力顕微鏡等を用いて、AバーストとCバーストの対応する4ストライプ間の平均距離AC、およびサーボパターンのアジマス角αを計測する。
 次に、リールテスタと、磁気テープの長手方向と直交する方向に間隔をおいて固定された2つのサーボ信号読み取り素子(以下では、一方を上側、他方を下側と呼ぶ。)を備えたサーボヘッドとを用いて、磁気テープに形成されたサーボパターンをテープ長手方向に沿って順次読み取る。1LPOSワードの長さにわたるAバーストとBバーストに対応する5ストライプ間の平均時間をaと定義する。1mの長さにわたるAバーストとCバーストの対応する4ストライプの平均時間をbと定義する。このとき、AC×(1/2-a/b)/(2×tan(α))で定義される値が、サーボ信号読み取り素子により得られたサーボ信号に基づく幅方向の読み取り位置PESを表す。サーボパターンの読み取りは、上側と下側の2つのサーボ信号読み取り素子により同時に行う。上側のサーボ信号読み取り素子により得られたPESの値をPES1、下側のサーボ信号読み取り素子により得られたPESの値をPES2とする。「PES2-PES1」として、データバンドを挟んで隣り合う2本のサーボバンドの間隔を求めることができる。これは、上側と下側のサーボパターン読み取り素子がサーボヘッドに固定されてその間隔が変わらないからである。
 その後、上記磁気テープカートリッジについて、先に記載した方法によって、「温度16℃相対湿度20%の環境」、「温度16℃相対湿度80%の環境」、「温度26℃相対湿度80%の環境」、「温度32℃相対湿度20%の環境」および「温度32℃相対湿度80%の環境」の5環境での1年保管および1年保管後のサーボバンド間隔の測定を行った。5環境での保管は、「温度16℃相対湿度20%の環境」→「温度16℃相対湿度80%の環境」→「温度26℃相対湿度80%の環境」→「温度32℃相対湿度20%の環境」→「温度32℃相対湿度80%の環境」の順に実施した。ただし、この順序に限定されるものではない。各環境下での1年保管後に求められたサーボバンド間隔から、先に記載した方法によって、各環境での1年保管後の磁気テープ変形量を求めた。5環境について求められた5つの磁気テープ変形量の最大値を、5環境の1年保管後の磁気テープ最大変形量とした。
[Evaluation method]
<Maximum amount of deformation of magnetic tape after 1-year storage in 5 environments>
The magnetic tape cartridge to be measured was placed in a measurement environment with an atmospheric temperature of 23° C. and a relative humidity of 50% for 5 days in order to familiarize it with the measurement environment.
After that, under the above measurement environment, the magnetic tape was run in the magnetic recording/reproducing apparatus shown in FIG. 1 with a tension of 0.70 N applied in the longitudinal direction of the magnetic tape. During this running, the interval between two adjacent servo bands across the data band was measured at intervals of 1 m over the entire length of the magnetic tape. Measurements were made for all servo band intervals. The servo band interval measured in this manner was defined as the "servo band interval before storage" at each measurement position. The interval between two adjacent servo bands sandwiching the data band was obtained as follows.
In order to find the interval between two adjacent servo bands sandwiching the data band, the dimension of the servo pattern is required. Servo pattern dimension standards differ depending on the LTO generation. Therefore, first, using a magnetic force microscope or the like, the average distance AC between the corresponding four stripes of the A burst and the C burst and the azimuth angle α of the servo pattern are measured.
Next, a reel tester and a servo equipped with two servo signal reading elements (hereinafter referred to as the upper side and the other as the lower side) fixed at intervals in the direction orthogonal to the longitudinal direction of the magnetic tape. Using a head, the servo patterns formed on the magnetic tape are sequentially read along the longitudinal direction of the tape. Define a as the average time between 5 stripes corresponding to A and B bursts over the length of 1 LPOS word. Define b as the mean time of the corresponding four stripes of A and C bursts over a length of 1 m. At this time, the value defined by AC×(1/2−a/b)/(2×tan(α)) represents the width-direction reading position PES based on the servo signal obtained by the servo signal reading element. . Servo pattern reading is performed simultaneously by the two upper and lower servo signal reading elements. Let PES1 be the PES value obtained by the upper servo signal reading element, and PES2 be the PES value obtained by the lower servo signal reading element. As "PES2-PES1", the interval between two adjacent servo bands across the data band can be obtained. This is because the upper and lower servo pattern reading elements are fixed to the servo head and the spacing between them does not change.
After that, the above magnetic tape cartridge was subjected to the above-described method in the "environment of temperature 16°C relative humidity 20%", "temperature 16°C environment of 80% relative humidity", and "temperature 26°C environment of 80% relative humidity". , "Temperature 32° C. Relative Humidity 20% Environment" and "Temperature 32° C. Relative Humidity 80% Environment" for 1 year and after 1 year storage, the servo band interval was measured. Storage in the 5 environments is "temperature 16 ° C relative humidity 20% environment" → "temperature 16 ° C relative humidity 80% environment" → "temperature 26 ° C relative humidity 80% environment" → "temperature 32 ° C relative humidity 20 % environment”→“Temperature 32° C. relative humidity 80% environment”. However, it is not limited to this order. From the servo band intervals obtained after one year of storage under each environment, the amount of magnetic tape deformation after one year of storage under each environment was obtained by the method described above. The maximum value of the five magnetic tape deformation amounts obtained for the five environments was taken as the magnetic tape maximum deformation amount after storage for one year under the five environments.
<相対湿度の変化に対する磁気テープ変形量の変化の割合>
 上記で5環境についてそれぞれ1年保管後に求められた5つの磁気テープ変形量の値について、一次関数y=ax+b(aは傾き、bは切片)のyとして磁気テープ変形量、その磁気テープ変形量を求めた環境の相対湿度をxとして、最小二乗法により得られる傾きaを、相対湿度の変化に対する磁気テープ変形量の変化の割合として求めた。
<Percentage of change in magnetic tape deformation amount with respect to change in relative humidity>
Regarding the five magnetic tape deformation values obtained after storage for one year in each of the five environments above, the magnetic tape deformation amount as y of the linear function y = ax + b (a is the slope and b is the intercept), and the magnetic tape deformation amount Assuming that x is the relative humidity of the environment in which the was obtained, the slope a obtained by the method of least squares was obtained as the rate of change in magnetic tape deformation amount with respect to change in relative humidity.
<温度の変化に対する磁気テープ変形量の変化の割合>
 上記で5環境についてそれぞれ1年保管後に求められた5つの磁気テープ変形量の値について、一次関数y=cx+d(cは傾き、dは切片)のyとして磁気テープ変形量、その磁気テープ変形量を求めた環境の温度をxとして、最小二乗法により得られる傾きcを、温度の変化に対する磁気テープ変形量の変化の割合として求めた。
<Percentage of change in magnetic tape deformation amount with respect to temperature change>
Regarding the five magnetic tape deformation values obtained after storage for one year in each of the above five environments, the magnetic tape deformation amount as y of the linear function y = cx + d (where c is the slope and d is the intercept), and the magnetic tape deformation amount The slope c obtained by the method of least squares was determined as the ratio of the change in magnetic tape deformation to the change in temperature, where x is the temperature of the environment from which .
<テープ厚み>
 上記評価の後の磁気テープカートリッジを、温度20~25℃および相対湿度40~60%の環境に5日間以上置いて同環境に馴染ませた。その後、引き続き同じ環境において、磁気テープカートリッジから取りだした磁気テープの任意の部分からテープサンプル(長さ5cm)を10枚切り出し、これらテープサンプルを重ねて厚みを測定した。厚みの測定は、MARH社製Millimar 1240コンパクトアンプとMillimar 1301誘導プローブのデジタル厚み計を用いて行った。測定された厚みを10分の1して得られた値(テープサンプル1枚当たりの厚み)を、テープ厚みとした。各磁気テープについて、テープ厚みは5.2μmであった。
<Tape thickness>
After the above evaluation, the magnetic tape cartridge was placed in an environment with a temperature of 20 to 25° C. and a relative humidity of 40 to 60% for 5 days or longer to acclimate to the same environment. Subsequently, under the same environment, 10 tape samples (5 cm in length) were cut out from an arbitrary portion of the magnetic tape taken out from the magnetic tape cartridge, and these tape samples were piled up to measure the thickness. Thickness measurements were made using a MARH Millimar 1240 compact amplifier and a Millimar 1301 inductive probe digital thickness gauge. The value (thickness per tape sample) obtained by dividing the measured thickness by 1/10 was taken as the tape thickness. The tape thickness was 5.2 μm for each magnetic tape.
<記録再生性能の評価>
(1)保管前の磁気テープへのデータの記録および記録されたデータの再生
 保管前の記録および再生を、図1に示した構成の磁気記録再生装置を用いて行った。記録再生ヘッドユニットに搭載された記録再生ヘッドは、再生素子(再生素子幅:0.8μm)および記録素子を32チャンネル以上有し、その両側にサーボ信号読み取り再生素子を有する。
 各磁気テープカートリッジについて、記録および後述の再生を行う環境は、上記5環境中、磁気テープ変形量が最大値であった環境とした。
 記録を行う環境に馴染ませるために、磁気テープカートリッジを再生を行う環境に5日間置いた。その後、同環境において、以下のように記録を行った。
 磁気記録再生装置に磁気テープカートリッジをセットし、磁気テープをローディングする。次にサーボトラッキングを行いながら記録再生ヘッドユニットにより磁気テープに特定のデータパターンを有する疑似ランダムデータの記録を行う。その際のテープ長手方向にかけるテンションは0.50Nの一定値とする。データの記録と同時に、テープ全長のサーボバンド間隔の値を長手位置の1m毎に測定し、カートリッジメモリに記録する。
 次に、サーボトラッキングを行いながら記録再生ヘッドユニットにより磁気テープに記録されたデータの再生を行う。その際、再生と同時にサーボバンド間隔の値を測定し、カートリッジメモリに記録された情報に基づき、同じ長手位置における記録時のサーボバンド間隔との差分の絶対値が0に近づくように、テープ長手方向にかけるテンションを変化させる。再生時は、サーボバンド間隔の測定とそれに基づいたテンション制御がリアルタイムに連続して行われる。かかる再生時、磁気記録再生装置の制御装置によって、磁気テープの長手方向にかけるテンションを0.50N~0.85Nの範囲で変化させた。したがって、上記再生時、磁気テープの長手方向にかけたテンションの最大値は0.85Nである。
 上記再生の終了時、磁気テープの全長は磁気テープカートリッジのカートリッジリールに巻取られていた。
<Evaluation of recording/playback performance>
(1) Recording of data on magnetic tape before storage and reproduction of recorded data Recording and reproduction of recorded data before storage were performed using the magnetic recording/reproducing apparatus having the configuration shown in FIG. The recording/reproducing head mounted on the recording/reproducing head unit has 32 or more channels of reproducing elements (reproducing element width: 0.8 μm) and recording elements, and has servo signal reading/reproducing elements on both sides thereof.
For each magnetic tape cartridge, the environment in which recording and later-described reproduction were performed was the environment in which the amount of magnetic tape deformation was the maximum value among the above five environments.
In order to adapt to the recording environment, the magnetic tape cartridge was placed in the reproducing environment for 5 days. Then, in the same environment, recording was performed as follows.
A magnetic tape cartridge is set in the magnetic recording/reproducing device, and the magnetic tape is loaded. Next, pseudo-random data having a specific data pattern is recorded on the magnetic tape by the recording/reproducing head unit while performing servo tracking. The tension applied in the longitudinal direction of the tape at that time is a constant value of 0.50N. Simultaneously with data recording, the value of the servo band interval over the entire length of the tape is measured every 1 m of the longitudinal position and recorded in the cartridge memory.
Next, while performing servo tracking, the data recorded on the magnetic tape is reproduced by the recording/reproducing head unit. At that time, the value of the servo band interval is measured at the same time as the reproduction. Change the direction of tension. During playback, measurement of the servo band interval and tension control based thereon are continuously performed in real time. During such reproduction, the tension applied in the longitudinal direction of the magnetic tape was changed in the range of 0.50N to 0.85N by the controller of the magnetic recording/reproducing apparatus. Therefore, the maximum value of the tension applied to the magnetic tape in the longitudinal direction is 0.85 N during the reproduction.
At the end of the playback, the entire length of the magnetic tape was wound on the cartridge reel of the magnetic tape cartridge.
(2)カートリッジリールへの巻取り(巻返し)および保管
 引き続き同環境において、上記磁気記録再生装置内で、磁気テープを走行させて磁気テープ全長を磁気記録再生装置の巻取りリールに巻取った。この巻取り時に磁気テープの長手方向にかけるテンションは0.40Nの一定値とした。
 その後、磁気テープの長手方向に0.40Nの一定値でテンションをかけて、磁気テープ全長をカートリッジリールに巻取った(「巻返し」とも記載する。)。
 上記巻返し後、磁気テープを収容した磁気テープカートリッジを、「温度16℃相対湿度20%の環境」→「温度16℃相対湿度80%の環境」→「温度26℃相対湿度80%の環境」→「温度32℃相対湿度20%の環境」→「温度32℃相対湿度80%の環境」の順に、それぞれ1年間保管した。
(2) Winding (rewinding) on a cartridge reel and storage Under the same environment, the magnetic tape was run in the magnetic recording/reproducing apparatus, and the entire length of the magnetic tape was wound onto the take-up reel of the magnetic recording/reproducing apparatus. . The tension applied in the longitudinal direction of the magnetic tape during winding was a constant value of 0.40N.
Thereafter, a constant tension of 0.40 N was applied in the longitudinal direction of the magnetic tape, and the entire length of the magnetic tape was wound around the cartridge reel (also referred to as "rewinding").
After the rewinding, the magnetic tape cartridge containing the magnetic tape is subjected to "environment of temperature 16°C relative humidity 20%" → "temperature 16°C environment of 80% relative humidity" → "temperature 26°C environment of relative humidity 80%". →“Environment with a temperature of 32°C and a relative humidity of 20%”→“Environment of a temperature of 32°C and a relative humidity of 80%” were stored in this order for one year.
(3)保管後の記録再生性能の評価
 上記保管後、再生を行う環境に馴染ませるために、磁気テープカートリッジを、上記5環境中、磁気テープ変形量が最大値であった環境に5日間置いた。その後、同環境において、上記(1)の保管前の再生と同様に再生を行った。即ち、磁気テープの長手方向にかけるテンションを先に記載したように変化させて再生を行った。
 上記再生におけるチャンネル数は32チャンネルであり、保管後の再生において、32チャンネルすべてのデータが正しく読み取られた場合に記録再生性能「4」と評価し、31チャンネルまたは30チャンネルのデータが正しく読み取られた場合に記録再生性能「3」と評価し、29チャンネルまたは28チャンネルのデータが正しく読み取られた場合に記録再生性能「2」と評価し、それ以外の場合を記録再生性能「1」と評価した。
(3) Evaluation of recording/reproducing performance after storage After the above storage, the magnetic tape cartridge was placed for 5 days in an environment in which the amount of deformation of the magnetic tape was the maximum value among the above 5 environments in order to acclimatize it to the environment for playback. rice field. Thereafter, in the same environment, regeneration was performed in the same manner as the regeneration before storage in (1) above. That is, reproduction was performed by changing the tension applied in the longitudinal direction of the magnetic tape as described above.
The number of channels in the above reproduction is 32 channels, and in the reproduction after storage, if the data of all 32 channels are correctly read, the recording and reproduction performance is evaluated as "4", and the data of 31 or 30 channels are correctly read. The recording/reproducing performance is evaluated as "3" when the data of the 29th channel or the 28th channel is correctly read, and the recording/reproducing performance is evaluated as "2" when the data of the 29th channel or the 28th channel is correctly read. bottom.
<走行安定性の評価>
 実施例および比較例の各磁気テープカートリッジを用いて、データの記録および再生を、図1に示した構成の磁気記録再生装置を用いて行った。記録再生ヘッドユニットに搭載された記録再生ヘッドは、再生素子(再生素子幅:0.8μm)および記録素子を32チャンネル以上有し、その両側にサーボ信号読み取り素子を有する。
 以下の方法により、データの記録および再生を行い、再生中の走行安定性を評価した。
 磁気記録再生装置に磁気テープカートリッジをセットし、磁気テープをローディングする。次にサーボトラッキングを行いながら記録再生ヘッドユニットにより磁気テープに特定のデータパターンを有する疑似ランダムデータの記録を行う。その際のテープ長手方向にかけるテンションは一定値とする。データの記録と同時に、テープ全長のサーボバンド間隔の値を長手位置の1m毎に測定し、カートリッジメモリに記録する。
 次に、サーボトラッキングを行いながら記録再生ヘッドユニットにより磁気テープに記録されたデータの再生を行う。その際、再生と同時にサーボバンド間隔の値を測定し、カートリッジメモリに記録された情報に基づき、同じ長手位置における記録時のサーボバンド間隔との差分の絶対値が0に近づくように、テープ長手方向にかけるテンションを制御する。再生時は、サーボバンド間隔の測定とそれに基づいたテンション制御がリアルタイムに連続して行われる。
 上記再生中にサーボ信号読み取り素子により得られたサーボ信号に基づく幅方向の読み取り位置PES(Position Error Signal)の標準偏差(以下、「σPES」と呼ぶ。)を指標として、走行安定性を評価した。
 PESは、以下の方法によって求められる。
 PESを求めるためには、サーボパターンの寸法が必要である。サーボパターンの寸法の規格は、LTOの世代によって異なる。そこでまず、磁気力顕微鏡等を用いて、AバーストとCバーストの対応する4ストライプ間の平均距離AC、およびサーボパターンのアジマス角αを計測する。
 1 LPOSワードの長さにわたるAバーストとBバーストに対応する5ストライプ間の平均時間をaと定義する。1 LPOSワードの長さにわたるAバーストとCバーストの対応する4ストライプの平均時間をbと定義する。このとき、AC×(1/2-a/b)/(2×tan(α))で定義される値が、1LPOSワードの長さにわたってサーボ信号読み取り素子により得られたサーボ信号に基づく幅方向の読み取り位置PES(Position Error Signal)である。磁気テープについて、磁気テープカートリッジのリールに巻き取られた側の末端を内側末端、その反対側の末端を外側末端と呼び、外側末端を0mとして、30m~200mの長さに亘るテープ長手方向の領域について、上記方法で求めたPESの標準偏差(σPES)を算出した。σPESが70nm未満であれば、走行安定性に優れると判断できる。
<Evaluation of running stability>
Using the magnetic tape cartridges of Examples and Comparative Examples, data was recorded and reproduced using a magnetic recording/reproducing apparatus configured as shown in FIG. The recording/reproducing head mounted on the recording/reproducing head unit has 32 or more channels of reproducing elements (reproducing element width: 0.8 μm) and recording elements, and has servo signal reading elements on both sides thereof.
Data was recorded and reproduced by the following method, and running stability during reproduction was evaluated.
A magnetic tape cartridge is set in the magnetic recording/reproducing device, and the magnetic tape is loaded. Next, pseudo-random data having a specific data pattern is recorded on the magnetic tape by the recording/reproducing head unit while performing servo tracking. The tension applied in the longitudinal direction of the tape at that time is assumed to be a constant value. Simultaneously with data recording, the value of the servo band interval over the entire length of the tape is measured every 1 m of the longitudinal position and recorded in the cartridge memory.
Next, while performing servo tracking, the data recorded on the magnetic tape is reproduced by the recording/reproducing head unit. At that time, the value of the servo band interval is measured at the same time as the reproduction. Controls the tension in the direction. During playback, measurement of the servo band interval and tension control based thereon are continuously performed in real time.
The running stability was evaluated using the standard deviation (hereinafter referred to as "σPES") of the read position PES (Position Error Signal) in the width direction based on the servo signal obtained by the servo signal reading element during the reproduction as an index. .
PES is determined by the following method.
In order to obtain the PES, the dimension of the servo pattern is required. Servo pattern dimension standards differ depending on the LTO generation. Therefore, first, using a magnetic force microscope or the like, the average distance AC between the corresponding four stripes of the A burst and the C burst and the azimuth angle α of the servo pattern are measured.
Define a as the average time between 5 stripes corresponding to A and B bursts over the length of 1 LPOS word. Define b as the average time of the corresponding 4 stripes of the A and C bursts over the length of 1 LPOS word. At this time, the value defined by AC×(1/2−a/b)/(2×tan(α)) is the width direction based on the servo signal obtained by the servo signal reading element over the length of 1 LPOS word. is the read position PES (Position Error Signal) of the . Regarding the magnetic tape, the end on the side wound on the reel of the magnetic tape cartridge is called the inner end, and the end on the opposite side is called the outer end. For the regions, the standard deviation (σPES) of the PES determined by the above method was calculated. If σPES is less than 70 nm, it can be judged that the running stability is excellent.
 以上の結果を表1(表1-1~表1-3)に示す。 The above results are shown in Table 1 (Tables 1-1 to 1-3).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1の磁気テープカートリッジについて、記録再生性能の評価においてカートリッジリールに巻取る巻返しテンションを0.40Nから0.50Nに変更した点以外は上記方法で記録再生性能の評価を行ったところ、評価結果は「2」であった。 The recording and reproducing performance of the magnetic tape cartridge of Example 1 was evaluated by the above method, except that the rewinding tension for winding around the cartridge reel was changed from 0.40 N to 0.50 N in the evaluation of the recording and reproducing performance. The evaluation result was "2".
 磁気テープ作製時に垂直配向処理を行わなかった点以外、実施例1について先に記載した方法で磁気テープカートリッジを作製した。
 上記磁気テープカートリッジから取り出した磁気テープからサンプル片を切り出した。このサンプル片について、振動試料型磁力計として玉川製作所製TM-TRVSM5050-SMSL型を用いて、先に記載した方法によって垂直方向角型比を求めたところ、0.55であった。
 実施例1の磁気テープカートリッジからも磁気テープを取り出し、この磁気テープから切り出したサンプル片について同様に垂直方向角型比を求めたところ、0.60であった。
A magnetic tape cartridge was produced by the method described above for Example 1, except that no vertical orientation treatment was performed during the production of the magnetic tape.
A sample piece was cut out from the magnetic tape taken out from the magnetic tape cartridge. The squareness ratio in the vertical direction of this sample piece was found to be 0.55 by using the TM-TRVSM5050-SMSL model manufactured by Tamagawa Seisakusho as a vibrating sample magnetometer by the method described above.
A magnetic tape was taken out from the magnetic tape cartridge of Example 1, and the vertical squareness ratio of a sample piece cut out from this magnetic tape was similarly determined to be 0.60.
 上記2つの磁気テープカートリッジから取り出した磁気テープを、それぞれ1/2インチリールテスターに取り付け、以下の方法によって電磁変換特性(SNR;Signal-to-Noise Ratio)を評価した。その結果、実施例1の磁気テープカートリッジから取り出した磁気テープについて、垂直配向処理なしで作製された上記磁気テープと比べて、2dB高いSNRの値が得られた。
 温度23℃相対湿度50%の環境において、磁気テープの長手方向に0.7Nのテンションをかけて記録および再生を10パス行った。磁気テープと磁気ヘッドとの相対速度は6m/秒とし、記録は、記録ヘッドとしてMIG(Metal-in-gap)ヘッド(ギャップ長0.15μm、トラック幅1.0μm)を使用し、記録電流を各磁気テープの最適記録電流に設定して行った。再生は、再生ヘッドとしてGMR(Giant-magnetoresistive)ヘッド(素子厚み15nm、シールド間隔0.1μm、再生素子幅0.8μm)を使用して行った。線記録密度300kfciの信号を記録し、再生信号をシバソク社製のスペクトラムアナライザーで測定した。単位kfciとは、線記録密度の単位(SI単位系に換算不可)である。信号としては、磁気テープ走行開始後に信号が十分に安定した部分を使用した。
The magnetic tapes taken out from the above two magnetic tape cartridges were each attached to a 1/2 inch reel tester, and the electromagnetic conversion characteristics (SNR: Signal-to-Noise Ratio) were evaluated by the following method. As a result, the magnetic tape taken out from the magnetic tape cartridge of Example 1 had an SNR value that was 2 dB higher than that of the magnetic tape produced without the perpendicular orientation treatment.
Ten passes of recording and reproduction were performed by applying a tension of 0.7 N in the longitudinal direction of the magnetic tape in an environment of 23° C. and 50% relative humidity. The relative speed between the magnetic tape and the magnetic head was 6 m/sec, and recording was performed using a MIG (Metal-in-gap) head (gap length 0.15 μm, track width 1.0 μm) as a recording head, and recording current. The optimum recording current was set for each magnetic tape. Reproduction was performed using a GMR (Giant-Magnetoresistive) head (element thickness: 15 nm, shield interval: 0.1 μm, reproduction element width: 0.8 μm). A signal with a linear recording density of 300 kfci was recorded, and the reproduced signal was measured with a spectrum analyzer manufactured by Shibasoku. The unit kfci is the unit of linear recording density (cannot be converted to the SI unit system). As the signal, a portion where the signal was sufficiently stabilized after the magnetic tape started running was used.
 本発明の一態様は、アーカイブ等の各種データストレージの技術分野において有用である。 One aspect of the present invention is useful in the technical field of various data storage such as archives.

Claims (10)

  1. 磁気テープがカートリッジリールに巻回されて収容されている磁気テープカートリッジであって、
    前記磁気テープは、非磁性支持体と、強磁性粉末を含む磁性層と、を有し、
    前記非磁性支持体は、幅方向のヤング率が10000MPa以上のポリエチレンナフタレート支持体であり、
    前記磁性層は複数のサーボバンドを有し、
    下記5つの磁気テープ変形量:
    温度16℃相対湿度20%の環境下での1年保管後の磁気テープ変形量、
    温度16℃相対湿度80%の環境下での1年保管後の磁気テープ変形量、
    温度26℃相対湿度80%の環境下での1年保管後の磁気テープ変形量、
    温度32℃相対湿度20%の環境下での1年保管後の磁気テープ変形量、
    温度32℃相対湿度80%の環境下での1年保管後の磁気テープ変形量、
    の最大値が0.50μm以下であり、
    前記5つの磁気テープ変形量から求められる、相対湿度の変化に対する磁気テープ変形量の変化の割合は0.0001μm/%以上0.0500μm/%以下であり、かつ
    前記5つの磁気テープ変形量から求められる、温度の変化に対する磁気テープ変形量の変化の割合は0.0010μm/℃以上0.1000μm/℃以下である、磁気テープカートリッジ。
    A magnetic tape cartridge containing a magnetic tape wound around a cartridge reel,
    The magnetic tape has a non-magnetic support and a magnetic layer containing ferromagnetic powder,
    The nonmagnetic support is a polyethylene naphthalate support having a Young's modulus in the width direction of 10000 MPa or more,
    The magnetic layer has a plurality of servo bands,
    The following five magnetic tape deformation amounts:
    Magnetic tape deformation amount after storage for one year in an environment with a temperature of 16 ° C and a relative humidity of 20%,
    Magnetic tape deformation amount after storage for one year in an environment with a temperature of 16 ° C and a relative humidity of 80%,
    Magnetic tape deformation amount after storage for one year in an environment with a temperature of 26 ° C and a relative humidity of 80%,
    Magnetic tape deformation amount after storage for one year in an environment with a temperature of 32 ° C and a relative humidity of 20%,
    Amount of magnetic tape deformation after storage for one year in an environment with a temperature of 32°C and a relative humidity of 80%,
    The maximum value of is 0.50 μm or less,
    The rate of change in the amount of magnetic tape deformation with respect to the change in relative humidity, which is obtained from the five amounts of magnetic tape deformation, is 0.0001 μm/% or more and 0.0500 μm/% or less, and is obtained from the five amounts of magnetic tape deformation. A magnetic tape cartridge, wherein the rate of change in magnetic tape deformation amount with respect to temperature change is 0.0010 μm/° C. or more and 0.1000 μm/° C. or less.
  2. 前記5つの磁気テープ変形量の最大値が0.01μm以上0.50μm以下である、請求項1に記載の磁気テープカートリッジ。 2. The magnetic tape cartridge according to claim 1, wherein the maximum value of said five magnetic tape deformation amounts is 0.01 [mu]m or more and 0.50 [mu]m or less.
  3. 前記ポリエチレンナフタレート支持体の幅方向のヤング率は、10000MPa以上20000MPa以下である、請求項1に記載の磁気テープカートリッジ。 2. The magnetic tape cartridge according to claim 1, wherein said polyethylene naphthalate support has a Young's modulus in the width direction of 10000 MPa or more and 20000 MPa or less.
  4. 前記磁気テープは、前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を更に有する、請求項1に記載の磁気テープカートリッジ。 2. The magnetic tape cartridge according to claim 1, wherein said magnetic tape further comprises a non-magnetic layer containing non-magnetic powder between said non-magnetic support and said magnetic layer.
  5. 前記磁気テープは、前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を更に有する、請求項1に記載の磁気テープカートリッジ。 2. The magnetic tape cartridge according to claim 1, wherein said magnetic tape further comprises a back coat layer containing non-magnetic powder on the surface of said non-magnetic support opposite to the surface having said magnetic layer.
  6. 前記磁気テープのテープ厚みは5.2μm以下である、請求項1に記載の磁気テープカートリッジ。 2. The magnetic tape cartridge according to claim 1, wherein said magnetic tape has a tape thickness of 5.2 [mu]m or less.
  7. 前記磁気テープの垂直方向角型比は0.60以上である、請求項1に記載の磁気テープカートリッジ。 2. The magnetic tape cartridge according to claim 1, wherein said magnetic tape has a vertical squareness ratio of 0.60 or more.
  8. 請求項1~7のいずれか1項に記載の磁気テープカートリッジを含む磁気記録再生装置。 A magnetic recording/reproducing apparatus comprising the magnetic tape cartridge according to any one of claims 1 to 7.
  9. 再生素子幅が0.8μm以下である磁気ヘッドを更に含む、請求項8に記載の磁気記録再生装置。 9. The magnetic recording/reproducing apparatus according to claim 8, further comprising a magnetic head having a reproducing element width of 0.8 μm or less.
  10. 前記磁気テープカートリッジと、
    巻取りリールと、
    を含み、
    前記巻取りリールと前記磁気テープカートリッジのカートリッジリールとの間で、前記磁気テープを該磁気テープの長手方向にテンションをかけた状態で走行させ、該テンションの最大値は0.50N以上であり、かつ
    前記テンションをかけた状態で走行させた後の磁気テープを、該磁気テープの長手方向に0.40N以下のテンションをかけて前記磁気テープカートリッジのカートリッジリールに巻取る、請求項8に記載の磁気記録再生装置。
    the magnetic tape cartridge;
    a take-up reel;
    including
    Between the take-up reel and the cartridge reel of the magnetic tape cartridge, the magnetic tape is run under tension in the longitudinal direction of the magnetic tape, the maximum value of the tension being 0.50 N or more, 9. The magnetic tape according to claim 8, wherein the magnetic tape that has been run under the tension is wound around the cartridge reel of the magnetic tape cartridge by applying a tension of 0.40 N or less in the longitudinal direction of the magnetic tape. Magnetic recording and reproducing device.
PCT/JP2022/043990 2021-12-02 2022-11-29 Magnetic tape cartridge and magnetic recording playback device WO2023100876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-195829 2021-12-02
JP2021195829 2021-12-02

Publications (1)

Publication Number Publication Date
WO2023100876A1 true WO2023100876A1 (en) 2023-06-08

Family

ID=86612199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043990 WO2023100876A1 (en) 2021-12-02 2022-11-29 Magnetic tape cartridge and magnetic recording playback device

Country Status (1)

Country Link
WO (1) WO2023100876A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10320957A (en) * 1997-05-15 1998-12-04 Sony Corp Tape cassette
JP2002269735A (en) * 2001-03-07 2002-09-20 Fuji Photo Film Co Ltd Method for manufacturing magnetic tape
JP2006099919A (en) * 2004-09-30 2006-04-13 Hitachi Maxell Ltd Recording and reproducing method and device of magnetic tape
WO2010131643A1 (en) * 2009-05-15 2010-11-18 東レ株式会社 Biaxially oriented polyester film and magnetic recording medium
JP2017228328A (en) * 2016-06-23 2017-12-28 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP2019021363A (en) * 2017-07-19 2019-02-07 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP2021108236A (en) * 2020-07-03 2021-07-29 ソニーグループ株式会社 Magnetic recording medium and cartridge
JP2021125274A (en) * 2020-01-31 2021-08-30 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge and magnetic tape device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10320957A (en) * 1997-05-15 1998-12-04 Sony Corp Tape cassette
JP2002269735A (en) * 2001-03-07 2002-09-20 Fuji Photo Film Co Ltd Method for manufacturing magnetic tape
JP2006099919A (en) * 2004-09-30 2006-04-13 Hitachi Maxell Ltd Recording and reproducing method and device of magnetic tape
WO2010131643A1 (en) * 2009-05-15 2010-11-18 東レ株式会社 Biaxially oriented polyester film and magnetic recording medium
JP2017228328A (en) * 2016-06-23 2017-12-28 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP2019021363A (en) * 2017-07-19 2019-02-07 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP2021125274A (en) * 2020-01-31 2021-08-30 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge and magnetic tape device
JP2021108236A (en) * 2020-07-03 2021-07-29 ソニーグループ株式会社 Magnetic recording medium and cartridge

Similar Documents

Publication Publication Date Title
JP7254731B2 (en) Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP7220139B2 (en) Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP2022170598A (en) Magnetic tape cartridge and magnetic recording playback device
JP7459340B2 (en) Magnetic tape, magnetic tape cartridge and magnetic tape device
JP2022170599A (en) Magnetic tape cartridge and magnetic recording playback device
JP2022100075A (en) Magnetic tape cartridge and magnetic tape device
JP2022170601A (en) Magnetic tape cartridge and magnetic recording playback device
JP7340498B2 (en) Magnetic tape cartridges and magnetic tape devices
JP7394718B2 (en) Magnetic tape cartridges and magnetic tape devices
US20220351748A1 (en) Magnetic tape cartridge and magnetic recording and reproducing device
JP7277397B2 (en) magnetic tape device
JP2023017433A (en) Magnetic tape unit
JP7394719B2 (en) Magnetic tape cartridges and magnetic tape devices
JP2022100076A (en) Magnetic tape cartridge and magnetic tape device
WO2023100876A1 (en) Magnetic tape cartridge and magnetic recording playback device
WO2023100872A1 (en) Magnetic tape cartridge, and magnetic recording/playback device
WO2023100874A1 (en) Magnetic-tape cartridge group and magnetic record playback device
WO2023100881A1 (en) Magnetic tape device
WO2023100877A1 (en) Magnetic tape cartridge and magnetic recording/reproducing device
WO2023100873A1 (en) Magnetic tape cartridge and magnetic recording playback device
WO2023100875A1 (en) Magnetic tape cartridge group and magnetic recording playback device
WO2023100880A1 (en) Magnetic tape device
WO2023100882A1 (en) Magnetic tape apparatus
WO2023100869A1 (en) Magnetic tape and magnetic tape encasing body
US11823711B2 (en) Magnetic tape cartridge group and magnetic recording and reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901308

Country of ref document: EP

Kind code of ref document: A1