WO2023100795A1 - Protein aggregation inhibitor - Google Patents

Protein aggregation inhibitor Download PDF

Info

Publication number
WO2023100795A1
WO2023100795A1 PCT/JP2022/043739 JP2022043739W WO2023100795A1 WO 2023100795 A1 WO2023100795 A1 WO 2023100795A1 JP 2022043739 W JP2022043739 W JP 2022043739W WO 2023100795 A1 WO2023100795 A1 WO 2023100795A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
compound represented
polymer compound
protein
Prior art date
Application number
PCT/JP2022/043739
Other languages
French (fr)
Japanese (ja)
Inventor
和明 松村
ロビン ラジャン
Original Assignee
国立大学法人北陸先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北陸先端科学技術大学院大学 filed Critical 国立大学法人北陸先端科学技術大学院大学
Priority to JP2023564953A priority Critical patent/JPWO2023100795A1/ja
Publication of WO2023100795A1 publication Critical patent/WO2023100795A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates

Definitions

  • the present invention relates to protein aggregation inhibitors.
  • the problems of stability can be broadly classified into inactivation during long-term storage and aggregation during purification. Since deactivation during long-term storage often manifests itself as aggregation due to freezing, the problem of stability can be grasped as a problem of inhibition of protein aggregation during long-term storage and purification.
  • Non-Patent Document 1 examples of compounds effective in suppressing protein aggregation include trehalose (Non-Patent Document 1), polyethylene glycol (Non-Patent Document 2), arginine (Non-Patent Document 3), and polysulfobetaine (Non-Patent Document 4, Patent Document 1). has been reported.
  • Non-Patent Documents 1 to 4 and Patent Document 1 need to be added at a high concentration in order to exhibit a sufficient protein-protecting effect. However, once added, it is not possible to separate and remove easily.
  • an object of the present invention is to provide a novel protein aggregation inhibitor that exhibits an effect of inhibiting protein aggregation even when added at a low concentration, and that can be easily separated from the protein to be protected once added. It is in.
  • the inventor has conducted extensive research on protein aggregation inhibitors. Then, the inventors have found that the above object can be achieved by the protein aggregation inhibitor described below, and have arrived at the present invention.
  • the present invention includes the following (1) and below.
  • a trithiocarbonate compound represented by Formula I, a sugar monomer compound represented by Formula II, and a zwitterionic monomer compound represented by Formula III are polymerized to obtain a polymer compound represented by Formula IV.
  • R1 is a monovalent group of a polymer chain having a modified or unmodified polyethylene structure, a polymer chain having a modified or unmodified polystyrene structure, or a polymer chain having a modified or unmodified polycaprolactone structure
  • R2 is a C6-C24 alkyl group
  • R3 is a reducing or non-reducing, mono- or disaccharide monovalent group
  • R4 is a hydrogen atom or a methyl group
  • R5 is a monovalent radical of a zwitterionic compound having a quaternary ammonium cation and a sulfonic acid group
  • R6 is a hydrogen atom or a
  • a protein aggregation inhibitor comprising a micelle comprising the polymer compound according to (9) or the polymer compound according to (10).
  • a method for inhibiting protein aggregation comprising the step of mixing a micelle comprising the polymer compound according to (9) or the polymer compound according to (10) with an aqueous protein solution.
  • a method for producing an aggregation-suppressed aqueous protein solution comprising the step of mixing the polymer compound according to (9) or micelles comprising the polymer compound according to (10) with an aqueous protein solution.
  • a method for producing an aqueous protein solution comprising:
  • the polymer compound of the present invention can be used as a protein aggregation inhibitor, protein structure-protecting agent, protein activity-protecting agent, or protein function-protecting agent.
  • the present invention also resides in pharmaceuticals and pharmaceutical compositions containing the polymer compound as an active ingredient.
  • the present invention provides a method for inhibiting protein aggregation, a method for protecting protein structure, a method for protecting protein activity, and a protein function, which comprise the step of mixing a micelle comprising the polymer compound with an aqueous protein solution. There is also a way to protect the
  • the present invention provides a method for producing an aqueous protein solution whose aggregation is inhibited, a method for producing an aqueous protein solution whose structure is protected, and an aqueous protein solution whose activity is protected, comprising the step of mixing a micelle comprising the polymer compound with an aqueous protein solution. and a method for producing a functionally protected aqueous protein solution.
  • the present invention also provides a method for producing an aqueous protein solution, comprising the step of obtaining an aqueous protein solution by separating the polymer compound or micelles comprising the polymer compound from the aqueous protein solution produced by these methods.
  • the present invention provides a novel protein aggregation inhibitor.
  • INDUSTRIAL APPLICABILITY The protein aggregation inhibitor of the present invention exerts its effect even when added at a low concentration, and can be easily separated from the protein to be protected once added.
  • FIG. 1 is an explanatory diagram showing the procedure for synthesizing trehalose methacrylate.
  • FIG. 2A is an explanatory diagram showing the procedure for synthesizing PCL-CTA.
  • FIG. 2B is an explanatory diagram showing the procedure for synthesizing PS-CTA.
  • FIG. 3A is an explanatory diagram showing a procedure for synthesizing PCL micelles.
  • FIG. 3B is an explanatory diagram showing the procedure for synthesizing PS micelles.
  • FIG. 4 is a graph showing the time change of UV absorption of L and LDH solutions.
  • FIG. 5 is a graph showing the LDH aggregation inhibitory ability (2 mg/mL) of each additive.
  • FIG. 1 is an explanatory diagram showing the procedure for synthesizing trehalose methacrylate.
  • FIG. 2A is an explanatory diagram showing the procedure for synthesizing PCL-CTA.
  • FIG. 2B is an explanatory diagram showing the procedure for synthes
  • FIG. 6 is a graph showing the concentration dependence of the ability of M1 to suppress LDH aggregation.
  • FIG. 7A is a graph comparing LDH activity maintenance by each micelle at each concentration.
  • FIG. 7B is a graph comparing LDH activity maintenance by each concentration of PS micelle (M4).
  • FIG. 8A is a graph of the CD spectra of LDH heated at 37° C. with each micelle.
  • FIG. 8B is a graph showing the results of maintaining the secondary structure of LDH evaluated from the CD spectrum.
  • FIG. 9 shows an image of the appearance of the solution before centrifugation (left side of FIG. 9) and an image of the appearance of the solution (supernatant and precipitate) after centrifugation (Fig.
  • FIG. 10 is a graph showing the change in UV absorbance (350 nm) when the supernatant collected by centrifugation after adsorption to each micelle was re-incubated at 37° C. and recondensed.
  • FIG. 11 is a graph showing the enzymatic activity of LDH in the supernatant recovered by centrifugation after incubation at 37°C.
  • FIG. 12 is a graph comparing the inhibitory effect of LDH on freeze-thaw aggregation with the residual rate of LDH enzymatic activity when each micelle was used.
  • FIG. 13 is a graph showing the aggregation rate of insulin (100 ⁇ M) heated at 37° C. with each micelle.
  • FIG. 14 is a graph of CD spectra of insulin (10 ⁇ M) heated at 37° C. with each micelle (2 mg/mL).
  • FIG. 15 is a graph comparing the cytotoxicity against non-cancer cells (mouse fibroblast L929) by cell viability when using each micelle.
  • the polymer compound of the present invention is produced by polymerizing a trithiocarbonate compound represented by Formula I, a sugar monomer compound represented by Formula II, and a zwitterionic monomer compound represented by Formula III. be able to.
  • the polymeric compounds of the present invention can be obtained as polymeric compounds of Formula IV.
  • R3-R7-C(R4) CH2 (Formula II)
  • R1 is a monovalent group of a polymer chain having a modified or unmodified polyethylene structure, a polymer chain having a modified or unmodified polystyrene structure, or a polymer chain having a modified or unmodified polycaprolactone structure, preferably It is a monovalent group of a polymer chain having a modified or unmodified polystyrene structure, a polymer chain having a modified or unmodified polycaprolactone structure.
  • a monovalent group of a polymer chain refers to a monovalent group resulting from the loss of one hydrogen atom from the polymer chain.
  • R2 is a C6-C24 alkyl group, preferably a C8-C16 alkyl group, more preferably a C10-C14 alkyl group.
  • trithiocarbonate compounds of Formula Ia and Formula Ib In a preferred embodiment, the trithiocarbonate compound of Formula I can be a compound of Formula Ia or Formula Ib below.
  • n is the average degree of polymerization of the repeating unit, and can be in the range of 10-100, preferably in the range of 20-80.
  • R2 in Formula Ia, can be the group described above in Formula I.
  • l is the average degree of polymerization of repeating units, and can be in the range of 10-100, preferably in the range of 20-80.
  • R2 in formula Ib, can be the group described above in formula I.
  • R3 is a reducing or non-reducing, mono- or disaccharide monovalent group.
  • monosaccharides include glucose, fructose, galactose and mannose.
  • disaccharides include trehalose, sucrose, maltose and lactose.
  • R4 is a hydrogen atom or a methyl group, preferably a methyl group.
  • glycomonomer compound of Formula II can be a compound of Formula IIa below.
  • the glycomonomer compound represented by Formula II can be a compound represented by Formula IIb below.
  • R3 and R4 can each be the groups described above.
  • R5 can be a monovalent radical of a zwitterionic compound having a quaternary ammonium cation and a sulfonic acid group.
  • R6 can be a hydrogen atom or a methyl group.
  • the zwitterionic monomeric compound of Formula III can be a compound of Formula IIIa below.
  • R51 can be, for example, a C1-C4 alkylene group, preferably a C2-C4 alkylene group, preferably a C3-C4 alkylene group, or a C2-C3 alkylene group.
  • R52 can be, for example, a C1-C4 alkyl group, preferably a C1-C3 alkyl group, preferably a C1-C2 alkyl group.
  • R53 can be, for example, a C1-C4 alkylene group, preferably a C2-C4 alkylene group, preferably a C3-C4 alkylene group, or a C2-C3 alkylene group.
  • the zwitterionic monomeric compound of Formula III can be a compound of Formula IIIb below.
  • the zwitterionic monomeric compound of Formula III can be a compound of Formula IIIc below.
  • R5 can be the group described above.
  • R1, R3, R4, R5, R6, R7, and R8 can all be the groups described above.
  • x is the average degree of polymerization of the repeating unit, and can be in the range of 10-1000, preferably in the range of 50-500.
  • y is the average degree of polymerization of the repeating unit, and may range from 10 to 1,000, preferably from 50 to 500.
  • the ratio of x:y is, for example, in the range of 100:25 to 100:1000, alternatively in the range of 100:40 to 100:600, preferably in the range of 100:50 to 100:500, preferably 100: It can be in the range of 50-100:200, alternatively in the range of 100:90-100:150.
  • R1 group in Formula IV there can be one R1 group in Formula IV and x and y can be in the ratio of the above numerical values. That is, by way of example, the ratio of R1:x:y can range from 1:100:25 to 1:100:1000.
  • -r- indicates that repeating units described on both sides of -r- are randomly copolymerized to form a random copolymer.
  • -b- indicates that the repeating units written on both sides of -b- are block-copolymerized to form a block copolymer.
  • m is the repeating number of the repeating unit and is 1;
  • polymeric compound represented by Formula IV can be a compound represented by Formula IVa below.
  • R1, x, y, m, -b-, and -r- are all the groups described above in Formula IV, or symbols having the meanings described above.
  • polymeric compound represented by Formula IV can be a compound represented by Formula IVb below.
  • n is the average degree of polymerization of the repeating unit, and can be in the range of 10-100, preferably in the range of 20-80.
  • terminal groups derived from monomers are present at both ends of the polymer, but these descriptions are omitted in accordance with the general notation of polymers.
  • polymeric compound of Formula IV can be a compound of Formula IVc below.
  • l is the average degree of polymerization of repeating units, and can be in the range of 10-100, preferably in the range of 20-80.
  • terminal groups derived from monomers are present at both ends of the polymer, but these descriptions are omitted in accordance with the general notation of polymers.
  • the polymeric compound of the present invention represented by Formula IV comprises a trithiocarbonate compound represented by Formula I, a sugar monomer compound represented by Formula II, and a glycomonomer compound represented by Formula III.
  • Zwitterionic monomeric compounds can be produced by polymerization reactions. This polymerization reaction proceeds by Reversible Addition/Fragmentation Chain Transfer Polymerization (RAFT polymerization).
  • the trithiocarbonate compounds of Formula I are macro chain transfer agents that replace RAFT agents.
  • a sugar monomeric compound of formula II and a zwitterionic monomeric compound of formula III are used as monomers to convert from the terminal trithiocarbonate compound of formula I to formula II
  • a polymer compound of the present invention represented by Formula IV is obtained as a block copolymer by random copolymerization of the sugar monomer compound represented by and the zwitterionic monomer compound represented by Formula III.
  • solvents such as dimethyl sulfoxide and dimethylformamide can be used to carry out such polymerization reactions
  • additives such as azobisisobutyronitrile, 4,4' - Azobis(4-cyanovaleric acid) can be used.
  • conditions for this polymerization reaction conditions known as radical polymerization conditions can be used.
  • the polymeric compound of Formula IV of the present invention is capable of self-associating to form micelles by dispersing it in an aqueous solution.
  • Dispersion in an aqueous solution can be carried out, for example, by replacing the solvent with an aqueous solution by means of dialysis after synthesis of the polymer compound, or, for example, by freeze-drying the synthesized polymer compound and then dispersing it in the aqueous solution. can be done by
  • the micelles formed by the polymeric compounds of the present invention represented by Formula IV exhibit excellent protein aggregation inhibitory efficacy at very high concentrations.
  • the protein aggregation inhibitory effect can be exhibited by a simple means of mixing the protein to be protected with micelles in an aqueous solution.
  • the present invention by exerting the effect of suppressing aggregation on proteins that have already aggregated due to operations during purification and proteins that aggregate under storage conditions after purification, It achieves excellent effects of purifying proteins that have been difficult to purify and preserving proteins under conditions that have been difficult to preserve.
  • the protein aggregation inhibitory effect is achieved by adding the polymer compound of formula IV according to the invention in the range of, for example, 0.1 to 10 mg/L, such as in the range of 0.2 to 5 mg/L, such as It can be exerted by dispersing it in an aqueous solution at a concentration in the range of 0.5-5 mg/L, eg 1-3 mg/mL.
  • the micelle formed by the polymer compound of the present invention represented by Formula IV exhibits an excellent protein aggregation-inhibiting effect in which protein aggregation is inhibited in macroscopic observation, and at the same time, protein aggregation is inhibited in microscopic observation. It is accompanied by an excellent structural protection effect that the structure is maintained even in the observation of This excellent structure-protecting effect can be detected, for example, by CD (Circular Dichroism) spectrum measurement described later in Examples.
  • the micelle formed by the polymer compound of the present invention represented by formula IV exhibits an excellent protein aggregation-inhibiting effect in that protein aggregation is inhibited in observation of the appearance, and at the same time, the protein is It is accompanied by an excellent activity-protecting effect that maintains activity and function.
  • This excellent activity-protecting effect and function-protecting effect are as shown, for example, by the measurement of LDH enzyme activity described later in Examples.
  • the excellent aggregation-inhibiting effect, structure-protecting effect, activity-protecting effect and function-protecting effect for example, on LDH enzyme activity and on aggregation occurring during freeze-thaw, as described later in Examples. , and exerts a protective effect, and exhibits effects of aggregation suppression, structure protection, activity protection and function protection during freezing and freezing and thawing.
  • the excellent aggregation-inhibiting effect, structure-protecting effect, activity-protecting effect and function-protecting effect that the compound of the present invention exerts on proteins is limited to, for example, LDH, as described later in Examples. However, it is also effective against insulin. This indicates that a similar protective effect is exerted on a wide range of proteins in general.
  • protein aggregation is one of the major causes of structural changes and deactivation of proteins. The results of the examples described later show that the protective effect is exhibited.
  • proteins for which such a protective effect is particularly expected include antibodies, insulin, lactate dehydrogenase, alkaline phosphatase, acetylcholinesterase, ascorbic acid oxidase, and alcohol hydrogenase.
  • this superior protein-protective effect can be exerted without exhibiting cytotoxicity, as will be described later in the Examples. Therefore, the compounds of the present invention can be used not only as molecular biological research tools but also as drugs and medicines by administering them to cells, tissues, organs and living organisms.
  • the micelle formed by the polymer compound of the present invention represented by Formula IV exhibits excellent protein aggregation-inhibiting action when mixed with a protein to be protected. It can be easily separated from the protein.
  • the isolated protein to be protected maintains almost the same function and activity as compared to before mixing with micelles, and at the same time, the isolated micelles are effective in suppressing protein aggregation. can be reused for Such excellent separability is very advantageous in that it does not impose any restrictions on the subsequent use of the protected protein, and is also very advantageous in that the separated micelles can be reused. is.
  • the protein to be protected mixed with the micelle can be separated by a known separation means that utilizes the molecular weight of the micelle.
  • separation means include filter filtration and centrifugation.
  • centrifugation can be performed by applying centrifugal force at an acceleration of, for example, 5000 to 30000 g, preferably 10000 to 20000 g, for 1 to 120 minutes, or 10 to 60 minutes.
  • micelles are precipitated, and the protein to be protected can be obtained as a supernatant.
  • RAFT agent (4-Cyano-4-[(dodecylsulfanylthiocarbonyl)-sulfanyl]pentanol) 1 mmol dissolved in DMF 1 mmol, styrene 30 mmol added, azobisisobutyronitrile (AIBN) 0.03 mmol added, under nitrogen atmosphere The reaction was allowed to proceed for 16 hours. Reprecipitation recovery was performed with 1:1 (v/v) methanol:diethyl ether (PS-CTA). Since the synthesized compound has a polystyrene (PS) portion and a chain transfer agent (CTA) portion, it is denoted as PS-CTA. The procedure for this synthesis is shown in FIG. 2B.
  • PCL had a number average degree of polymerization of 69, and PS had a number average degree of polymerization of 45.
  • R is PCL-RAFT Agent, ie PCL-CTA.
  • C1 is Poly-SPB (sulfobetaine polymer).
  • C2 is TrMA (trehalose methacrylate).
  • R is PS-RAFT Agent, ie PS-CTA.
  • C1 is Poly-SPB (sulfobetaine polymer).
  • C2 is TrMA (trehalose methacrylate).
  • M1 is obtained by randomly polymerizing 100-mers of SPB and trehalose with respect to the PCL block
  • M2 is obtained by polymerizing 200-mers of SPB and 100-mers of trehalose with respect to the PCL block
  • M3 is obtained by polymerizing 100 mers of SPB and 500 mers of trehalose with respect to the PCL block.
  • FIG. 4 is a graph showing changes in UV absorption of LDH solutions over time.
  • the polymer or micelle concentration was 2 mg/mL.
  • FIG. 5 is a graph showing the LDH aggregation inhibitory ability (2 mg/mL) of each additive.
  • FIG. 5 shows the results of calculating the aggregation rate of a system in which each polymer and trehalose were added to LDH at a concentration of 2 mg/mL from the rate of increase in UV absorbance. Aggregation rate was 0.02% for M1, and 22.7% and 32.4% for M2 and M3, respectively, indicating very high activity especially for M1.
  • these micelles M1 to M3 all exhibited superior aggregation inhibitory properties compared to Poly-SPB and trehalose.
  • M1 showed a very good anti-aggregation property, in other words an LDH protective effect.
  • These aggregation-inhibiting properties were effective even at an ultra-low concentration of only 0.2% (2 mg/mL).
  • FIG. 6 is a graph showing the concentration dependence of the ability of M1 to suppress LDH aggregation. Conditions other than the M1 micelle concentration were the same as in FIG. It was found to have a high aggregation inhibitory activity of 16.6% even at 1 mg/mL. Moreover, when M1 was added at 0.2% (2 mg/mL), it exhibited LDH aggregation-inhibiting ability, in which aggregation was almost completely suppressed.
  • FIG. 7A is a graph comparing LDH activity maintenance by each micelle at each concentration.
  • the values of M1 left end
  • M2 middle
  • M3 right end
  • FIG. 7A even at very low concentrations of 1-2 mg/mL, all of M1-M3 exhibited high residual activity.
  • FIG. 7A it was found that high residual activity was exhibited at any concentration.
  • M1 was 60% at 0.5 mg/mL, 66% at 0.75 mg/mL, 76% at 1 mg/mL, 88% at 1.5 mg/mL, and 94% at 2 mg/mL. It showed a high residual activity rate.
  • M2 was 63% at 0.5 mg/mL, 68% at 0.75 mg/mL, 73% at 1 mg/mL, 87% at 1.5 mg/mL, and 89% at 2 mg/mL. It showed a high residual activity rate. M3 also showed a high residual activity rate of 50% at 0.75 mg/mL, 63% at 1 mg/mL, 75% at 1.5 mg/mL, and 82% at 2 mg/mL.
  • FIG. 7B is a graph comparing LDH activity maintenance by each concentration of PS micelles (M4). As shown in FIG. 7B, it was found that high residual activity was exhibited at any concentration. In particular, it showed a high residual activity rate of 61% at 0.75 mg/mL and 72% at 1 mg/mL.
  • CD spectrum was measured to evaluate the secondary structure change of LDH.
  • Each micelle was added to an LDH solution with a final concentration of 0.1 mg/mL (PBS) at a concentration of 2 mg/mL, introduced into a JASCO-820 spectrometer cell, and kept at 15° C. under a nitrogen gas atmosphere for 30 minutes. , 37° C. for 1 hour, and then measured. The results are shown in FIGS. 8A and 8B.
  • FIG. 8A is a graph of the CD spectrum of LDH heated at 37° C. together with each micelle.
  • FIG. 8B is a graph showing the results of maintaining the secondary structure of LDH evaluated from the CD spectrum.
  • Incubated LDH shows the results of the same incubation experiment without the addition of micelles.
  • Native LDH indicates the results of an experiment in which micelles were not added and incubation was not performed at 37°C for 1 hour.
  • FIG. 8B is a bar graph showing the content ratio of each structure created based on the results of CD spectrum measurement.
  • the first section from the top of each column is "Unordered”
  • the second section is “Turns”
  • the third section is "Strand”
  • the fourth (bottom of each column) section is " Helix” content.
  • the micelle-added system substantially maintained the structure before the treatment even after the heat treatment, compared to the additive-free LDH.
  • FIG. 9 shows an image of the appearance of the solution before centrifugation (left side of FIG. 9) and an image of the appearance of the solution (supernatant and precipitate) after centrifugation (FIG. 9) from the centrifugation experiment using PCL micelles. middle), and an image of the appearance of the redispersed solution after centrifugation (right side of FIG. 9).
  • the micelles were highly dispersible and could be dispersed again after centrifugation.
  • FIG. 10 is a graph showing the change in UV absorbance (350 nm) when the supernatant collected by centrifugation after adsorption to each micelle is reincubated at 37° C. and recondensed.
  • the upper curve of the graph in FIG. 10 shows the change in absorbance due to LDH in the supernatant collected by centrifugation, and the lower curve of the graph in FIG. Shows change in absorbance.
  • FIG. 11 is a graph showing the enzymatic activity of LDH in the supernatant recovered by centrifugation after incubation at 37°C.
  • the horizontal axis in FIG. 11 indicates the concentration of PCL micelles.
  • the vertical axis of FIG. 11 represents the residual amount of LDH enzymatic activity, which is a relative value when the unheated LDH activity is taken as 100%.
  • the graph in FIG. 11 shows the LDH enzymatic activity when M1 (leftmost), M2 (middle) and M3 (rightmost) are used as micelles for each concentration of PCL micelles. As shown in FIG. 11, LDH showed high residual activity in all micelles.
  • FIG. 12 is a graph comparing LDH activity maintenance by each micelle at each concentration.
  • the values of M1 (left end), M2 (middle), and M3 (right end) are shown for each density.
  • the system without the addition of micelles (0 mg/mL) almost lost the activity, whereas even at a very low concentration of 1 to 2 mg/mL, high residual activity was observed in all of M1 to M3. found to show.
  • FIG. 13 is the aggregation rate of insulin (100 ⁇ M) heated at 37° C. for 1 hour with each micelle. Each micelle was mixed so that the final concentration was the concentration on the horizontal axis of FIG. 13 to make 1 mL.
  • the values of M1 (left end), M2 (middle), and M3 (right end) are shown for each density.
  • the system without the addition of micelles (0 mg/mL) showed almost 100% aggregation, whereas even at extremely low concentrations of 0.25-2 mg/mL, any of M1-M3 It was found to exhibit high inhibitory ability.
  • FIG. 14 is a CD spectrum graph of insulin (10 ⁇ M) heated at 37° C. together with each micelle (2 mg/mL). Insulin-heat shows the results of the same incubation experiment without the addition of micelles. Insulin Native indicates the results of an experiment in which micelles were not added and incubation was not performed at 37°C for 1 hour. Insulin-heat shows a large change in the curve showing the higher-order structure, whereas the M1-M3 addition system has a structure close to that of insulin native.
  • FIG. 15 shows the values of M1 (left end), M2 (middle), and M3 (right end) for each density. Even at 10 mg/mL, which is five times the concentration of 2 mg/mL at which the anticoagulant effect was high, the survival rate of the cells was maintained at a high level, indicating low toxicity of the micelles.
  • the present invention provides a novel protein aggregation inhibitor.
  • the present invention is an industrially useful invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

By using a polymer compound represented by formula IV and a production method thereof, provided is a novel protein aggregation inhibitor that exhibits a protein aggregation inhibitory effect when added at a low concentration and, after once added, that can be easily separated from the protein to be protected.

Description

タンパク質凝集抑制剤protein aggregation inhibitor
 本発明は、タンパク質凝集抑制剤に関する。 The present invention relates to protein aggregation inhibitors.
 近年、抗体医薬や酵素製剤を初めとする、タンパク質医薬への期待が高まっている。タンパク質医薬、特に抗体医薬や酵素製剤の開発と実用化にあたっての大きな問題として、安定性の問題がある。安定性の課題として大別すると、一つには長期保存時に失活してしまうことがあり、もう一つには精製時に凝集してしまうことがある。長期保存時の失活とは、しばしば凍結による凝集などとして現れるから、つまり、安定性の問題としては、長期保存時でも精製時でも、タンパク質の凝集の抑制という問題として、把握することができる。 In recent years, expectations for protein drugs, including antibody drugs and enzyme preparations, have increased. A major problem in the development and practical use of protein drugs, especially antibody drugs and enzyme preparations, is the problem of stability. The problems of stability can be broadly classified into inactivation during long-term storage and aggregation during purification. Since deactivation during long-term storage often manifests itself as aggregation due to freezing, the problem of stability can be grasped as a problem of inhibition of protein aggregation during long-term storage and purification.
 タンパク質の凝集の抑制の効果のある化合物として、トレハロース(非特許文献1)、ポリエチレングリコール(非特許文献2)、アルギニン(非特許文献3)、ポリスルホベタイン(非特許文献4、特許文献1)が報告されている。 Examples of compounds effective in suppressing protein aggregation include trehalose (Non-Patent Document 1), polyethylene glycol (Non-Patent Document 2), arginine (Non-Patent Document 3), and polysulfobetaine (Non-Patent Document 4, Patent Document 1). has been reported.
国際公開WO2018/003909号International publication WO2018/003909
 本発明者の検討によれば、非特許文献1~4及び特許文献1に開示されたタンパク質凝集抑制効果のある化合物は、十分なタンパク質保護効果を発揮するためには、高濃度での添加が必要であったり、いったん添加してしまうと簡便に分離除去ができなかったりするという不都合があった。 According to studies by the present inventors, the compounds with protein aggregation inhibitory effects disclosed in Non-Patent Documents 1 to 4 and Patent Document 1 need to be added at a high concentration in order to exhibit a sufficient protein-protecting effect. However, once added, it is not possible to separate and remove easily.
 もし、タンパク質凝集抑制効果を、低濃度の添加で発揮しつつ、いったん添加した後に、保護対象となるタンパク質と容易に分離可能な化合物があれば、大変に好ましい。 It would be very preferable if there was a compound that exerts the effect of inhibiting protein aggregation even when added at a low concentration and that can be easily separated from the protein to be protected once added.
 したがって、本発明の目的は、タンパク質凝集抑制効果を、低濃度の添加で発揮しつつ、いったん添加した後に、保護対象となるタンパク質と容易に分離可能な、新規なタンパク質凝集抑制剤を提供することにある。 Therefore, an object of the present invention is to provide a novel protein aggregation inhibitor that exhibits an effect of inhibiting protein aggregation even when added at a low concentration, and that can be easily separated from the protein to be protected once added. It is in.
 本発明者は、タンパク質凝集抑制剤について、鋭意研究を行ってきた。そして、後述するタンパク質凝集抑制剤によって、上記目的を達成できることを見いだして、本発明に到達した。 The inventor has conducted extensive research on protein aggregation inhibitors. Then, the inventors have found that the above object can be achieved by the protein aggregation inhibitor described below, and have arrived at the present invention.
 したがって、本発明は次の(1)以下を含む。
(1)
 式Iで表されるトリチオカルボネート化合物と、式IIで表される糖モノマー化合物と、式IIIで表される双性イオンモノマー化合物を、重合反応させて、式IVで表されるポリマー化合物を製造する方法:

R1-S-(C=S)-S-R2  (式I)

R3-R7-C(R4)=CH  (式II)

CH=C(R6)-R8―R5  (式III)

 (式IV)
Figure JPOXMLDOC01-appb-I000009

(式Iにおいて、
 R1は、修飾又は被修飾のポリエチレン構造を有するポリマー鎖、修飾又は被修飾のポリスチレン構造を有するポリマー鎖、又は修飾又は被修飾のポリカプロラクトン構造を有するポリマー鎖の一価基であり、
 R2は、C6~C24のアルキル基であり、
 式IIにおいて、
 R3は、還元性又は非還元性の、単糖類又は二糖類の一価基であり、
 R4は、水素原子、又はメチル基であり、
 式IIIにおいて、
 R5は、第四級アンモニウムカチオン及びスルホン酸基を有する双性イオン化合物の一価基であり、
 R6は、水素原子、又はメチル基であり、
 R7は、-(C=O)-O-、-(C=O)-NH―、及び-(O=S=O)―から選択された二価基であり(ただし、R3とは、-(C=O)-O-R3、-(C=O)-NH―R3、及び-(O=S=O)―R3の位置で結合する)、
 R8は、-(C=O)-O-、-(C=O)-NH―、及び-(O=S=O)―から選択された二価基であり(ただし、R5とは、-(C=O)-O-R5、-(C=O)-NH―R5、及び-(O=S=O)―R5の位置で結合する)、
 式IVにおいて、
 R1、R3、R4、R5、R6、R7、R8は、いずれも上述の基であり、
 xは、繰り返し単位の平均重合度であって、10~500であり、
 yは、繰り返し単位の平均重合度であって、10~1000であり、
 -r-は、-r-の両側に記載された繰り返し単位が、ランダム共重合してランダム共重合体となっていることを示し、
 -b-は、-b-の両側に記載された繰り返し単位が、ブロック共重合してブロック共重合体となっていることを示し、
 mは、繰り返し単位の繰り返し数であって、1である)。
Therefore, the present invention includes the following (1) and below.
(1)
A trithiocarbonate compound represented by Formula I, a sugar monomer compound represented by Formula II, and a zwitterionic monomer compound represented by Formula III are polymerized to obtain a polymer compound represented by Formula IV. How to manufacture:

R1-S-(C=S)-S-R2 (Formula I)

R3-R7-C(R4)= CH2 (Formula II)

CH2 =C(R6)-R8-R5 (Formula III)

(Formula IV)
Figure JPOXMLDOC01-appb-I000009

(In Formula I,
R1 is a monovalent group of a polymer chain having a modified or unmodified polyethylene structure, a polymer chain having a modified or unmodified polystyrene structure, or a polymer chain having a modified or unmodified polycaprolactone structure;
R2 is a C6-C24 alkyl group,
In Formula II,
R3 is a reducing or non-reducing, mono- or disaccharide monovalent group;
R4 is a hydrogen atom or a methyl group,
In formula III,
R5 is a monovalent radical of a zwitterionic compound having a quaternary ammonium cation and a sulfonic acid group;
R6 is a hydrogen atom or a methyl group,
R7 is a divalent group selected from -(C=O)-O-, -(C=O)-NH-, and -(O=S=O)-, where R3 is - (C=O)-O-R, -(C=O)-NH-R, and -(O=S=O)-R3),
R8 is a divalent group selected from -(C=O)-O-, -(C=O)-NH-, and -(O=S=O)-, where R5 is - (C=O)-O-R5, -(C=O)-NH-R5, and -(O=S=O)-R5),
In formula IV,
R1, R3, R4, R5, R6, R7, and R8 are all the groups described above,
x is the average degree of polymerization of the repeating unit and is 10 to 500,
y is the average degree of polymerization of the repeating unit and is 10 to 1000,
-r- indicates that the repeating units described on both sides of -r- are randomly copolymerized to form a random copolymer,
-b- indicates that the repeating units described on both sides of -b- are block copolymerized to form a block copolymer,
m is the repeating number of the repeating unit and is 1).
(2)
 式Iで表されるトリチオカルボネート化合物が、次の式Ia又は式Ibで表される化合物である、(1)に記載の製造方法:
 式Ia:
Figure JPOXMLDOC01-appb-I000010
 式Ib:
Figure JPOXMLDOC01-appb-I000011
(式Iaにおいて、
 nは、繰り返し単位の平均重合度であって、10~100であり、
 R2は、式IにおけるR2と同じ基であり、
 式Ibにおいて、
 lは、繰り返し単位の平均重合度であって、10~100であり、
 R2は、式IにおけるR2と同じ基である)。
(2)
The process according to (1), wherein the trithiocarbonate compound represented by Formula I is a compound represented by Formula Ia or Formula Ib below:
Formula Ia:
Figure JPOXMLDOC01-appb-I000010
Formula Ib:
Figure JPOXMLDOC01-appb-I000011
(In Formula Ia,
n is the average degree of polymerization of the repeating unit and is 10 to 100,
R2 is the same group as R2 in formula I,
In Formula Ib,
l is the average degree of polymerization of the repeating unit and is 10 to 100,
R2 is the same group as R2 in Formula I).
(3)
 式IIで表される糖モノマー化合物が、次の式IIaで表される化合物である、(1)~(2)のいずれかに記載の製造方法:
 式IIa:
Figure JPOXMLDOC01-appb-I000012
(3)
The production method according to any one of (1) to (2), wherein the sugar monomer compound represented by formula II is a compound represented by the following formula IIa:
Formula IIa:
Figure JPOXMLDOC01-appb-I000012
(4)
 式IIIで表される双性イオンモノマー化合物が、次の式IIIaで表される化合物である、(1)~(3)のいずれかに記載の製造方法:
 式IIIa:
CH=CH-(C=O)-NH―R51-[N(R52)-R53-SO

(式IIIaにおいて、
 R51は、C1~C4のアルキレン基であり、
 R52は、C1~C4のアルキル基であり、
 R53は、C1~C4のアルキレン基である)。
(4)
The production method according to any one of (1) to (3), wherein the zwitterionic monomeric compound represented by Formula III is a compound represented by the following Formula IIIa:
Formula IIIa:
CH 2 =CH-(C=O)-NH-R51-[N(R52) 2 ] + -R53-SO 3 -

(In Formula IIIa,
R51 is a C1-C4 alkylene group,
R52 is a C1-C4 alkyl group,
R53 is a C1-C4 alkylene group).
(5)
 式IIIで表される双性イオンモノマー化合物が、次の式IIIbで表される化合物である、(1)~(4)のいずれかに記載の製造方法:
 式IIIb:
Figure JPOXMLDOC01-appb-I000013
(5)
The production method according to any one of (1) to (4), wherein the zwitterionic monomeric compound represented by Formula III is a compound represented by the following Formula IIIb:
Formula IIIb:
Figure JPOXMLDOC01-appb-I000013
(6)
 式IVで表されるポリマー化合物が、次の式IVaで表される化合物である、(1)~(5)のいずれかに記載の製造方法:
 式IVa:
Figure JPOXMLDOC01-appb-I000014
(式IVaにおいて、
 R1、x、y、m、-b-、―r-は、いずれも式IVにおけるR1、x、y、m、-b-、―r-と同じである)。
(6)
The production method according to any one of (1) to (5), wherein the polymer compound represented by Formula IV is a compound represented by Formula IVa below:
Formula IVa:
Figure JPOXMLDOC01-appb-I000014
(In Formula IVa,
R1, x, y, m, -b- and -r- are all the same as R1, x, y, m, -b- and -r- in formula IV).
(7)
 式IVで表されるポリマー化合物が、次の式IVb又は式IVcで表される化合物である、(1)~(6)のいずれかに記載の製造方法:
 式IVb:
Figure JPOXMLDOC01-appb-I000015
 式IVc:
Figure JPOXMLDOC01-appb-I000016
(式IVbにおいて、
 nは、繰り返し単位の平均重合度であって、10~100であり、
 x、y、m、-b-、―r-は、いずれも式IVにおけるx、y、m、-b-、―r-と同じであり、
 式IVcにおいて、
 lは、繰り返し単位の平均重合度であって、10~100であり、
 x、y、m、-b-、―r-は、いずれも式IVにおけるx、y、m、-b-、―r-と同じである)。
(7)
The production method according to any one of (1) to (6), wherein the polymer compound represented by Formula IV is a compound represented by Formula IVb or Formula IVc below:
Formula IVb:
Figure JPOXMLDOC01-appb-I000015
Formula IVc:
Figure JPOXMLDOC01-appb-I000016
(In formula IVb,
n is the average degree of polymerization of the repeating unit and is 10 to 100,
x, y, m, -b-, -r- are all the same as x, y, m, -b-, -r- in formula IV,
In Formula IVc,
l is the average degree of polymerization of the repeating unit and is 10 to 100,
x, y, m, -b- and -r- are all the same as x, y, m, -b- and -r- in Formula IV).
(8)
 (1)~(7)のいずれかに記載の製造方法によって製造された式IVで表されるポリマー化合物を、水溶液中に分散することによって、式IVで表されるポリマー化合物からなるミセルを製造する方法。
(8)
By dispersing the polymer compound represented by Formula IV produced by the production method according to any one of (1) to (7) in an aqueous solution, a micelle composed of the polymer compound represented by Formula IV is produced. how to.
(9)
 (1)に記載の式IV、(6)に記載の式IVa、又は(7)に記載の式IVb又は式IVcで表されるポリマー化合物。
(9)
A polymeric compound of formula IV as described in (1), formula IVa as described in (6), or formula IVb or IVc as described in (7).
(10)
 (9)に記載のポリマー化合物からなるミセル。
(10)
A micelle comprising the polymer compound according to (9).
(11)
 (9)に記載のポリマー化合物、又は(10)に記載のポリマー化合物からなるミセルを含んでなる、タンパク質凝集抑制剤。
(11)
A protein aggregation inhibitor comprising a micelle comprising the polymer compound according to (9) or the polymer compound according to (10).
(12)
 タンパク質凝集抑制剤が、保護対象タンパク質へ混合して凝集抑制した後に保護対象タンパク質から分離可能なタンパク質凝集抑制剤である、(11)に記載のタンパク質凝集抑制剤。
(12)
The protein aggregation inhibitor according to (11), which is a protein aggregation inhibitor that can be separated from the protein to be protected after being mixed with the protein to be protected to inhibit aggregation.
(13)
 (9)に記載のポリマー化合物、又は(10)に記載のポリマー化合物からなるミセルを、タンパク質水溶液と混合する工程、を含む、タンパク質の凝集を抑制する方法。
(13)
A method for inhibiting protein aggregation, comprising the step of mixing a micelle comprising the polymer compound according to (9) or the polymer compound according to (10) with an aqueous protein solution.
(14)
 (9)に記載のポリマー化合物、又は(10)に記載のポリマー化合物からなるミセルを、タンパク質水溶液と混合する工程、を含む、凝集抑制されたタンパク質水溶液を製造する方法。
(14)
A method for producing an aggregation-suppressed aqueous protein solution, comprising the step of mixing the polymer compound according to (9) or micelles comprising the polymer compound according to (10) with an aqueous protein solution.
(15)
 (14)に記載の製造方法によって製造された凝集抑制されたタンパク質水溶液から、上記ポリマー化合物又はポリマー化合物からなるミセルを分離することによって、タンパク質水溶液を得る工程、
を含む、タンパク質水溶液を製造する方法。
(15)
A step of obtaining an aqueous protein solution by separating the polymer compound or micelles comprising the polymer compound from the aggregation-suppressed protein aqueous solution produced by the production method according to (14);
A method for producing an aqueous protein solution, comprising:
 本願発明のポリマー化合物は、タンパク質凝集抑制剤、タンパク質構造保護剤、タンパク質活性保護剤、又はタンパク質機能保護剤として使用することができる。 The polymer compound of the present invention can be used as a protein aggregation inhibitor, protein structure-protecting agent, protein activity-protecting agent, or protein function-protecting agent.
 また、本願発明のポリマー化合物は、細胞毒性を示すことなく使用することができるから、本願発明は、上記ポリマー化合物を有効成分として含んでなる、医薬、及び医薬組成物にもある。 In addition, since the polymer compound of the present invention can be used without exhibiting cytotoxicity, the present invention also resides in pharmaceuticals and pharmaceutical compositions containing the polymer compound as an active ingredient.
 また、本願発明は、上記ポリマー化合物からなるミセルをタンパク質水溶液と混合する工程を含む、タンパク質の凝集を抑制する方法、タンパク質の構造を保護する方法、タンパク質の活性を保護する方法、及びタンパク質の機能を保護する方法にもある。 In addition, the present invention provides a method for inhibiting protein aggregation, a method for protecting protein structure, a method for protecting protein activity, and a protein function, which comprise the step of mixing a micelle comprising the polymer compound with an aqueous protein solution. There is also a way to protect the
 また、本願発明は、上記ポリマー化合物からなるミセルをタンパク質水溶液と混合する工程を含む、凝集抑制されたタンパク質水溶液を製造する方法、構造保護されたタンパク質水溶液を製造する方法、活性保護されたタンパク質水溶液を製造する方法、機能保護されたタンパク質水溶液を製造する方法にもある。また、本願発明は、これらの方法によって製造されたタンパク質水溶液から、上記ポリマー化合物又はポリマー化合物からなるミセルを分離することによって、タンパク質水溶液を得る工程を含む、タンパク質水溶液を製造する方法にもある。 Further, the present invention provides a method for producing an aqueous protein solution whose aggregation is inhibited, a method for producing an aqueous protein solution whose structure is protected, and an aqueous protein solution whose activity is protected, comprising the step of mixing a micelle comprising the polymer compound with an aqueous protein solution. and a method for producing a functionally protected aqueous protein solution. The present invention also provides a method for producing an aqueous protein solution, comprising the step of obtaining an aqueous protein solution by separating the polymer compound or micelles comprising the polymer compound from the aqueous protein solution produced by these methods.
 本発明は、新規なタンパク質凝集抑制剤を提供する。本発明のタンパク質凝集抑制剤は、低濃度の添加で発揮しつつ、いったん添加した後に、保護対象となるタンパク質と容易に分離することができる。 The present invention provides a novel protein aggregation inhibitor. INDUSTRIAL APPLICABILITY The protein aggregation inhibitor of the present invention exerts its effect even when added at a low concentration, and can be easily separated from the protein to be protected once added.
図1は、トレハロースメタクリレートの合成の手順を示す説明図である。FIG. 1 is an explanatory diagram showing the procedure for synthesizing trehalose methacrylate. 図2Aは、PCL-CTAの合成の手順を示す説明図である。FIG. 2A is an explanatory diagram showing the procedure for synthesizing PCL-CTA. 図2Bは、PS-CTAの合成の手順を示す説明図である。FIG. 2B is an explanatory diagram showing the procedure for synthesizing PS-CTA. 図3Aは、PCLミセルの合成の手順を示す説明図である。FIG. 3A is an explanatory diagram showing a procedure for synthesizing PCL micelles. 図3Bは、PSミセルの合成の手順を示す説明図である。FIG. 3B is an explanatory diagram showing the procedure for synthesizing PS micelles. 図4はL、LDH溶液のUV吸収の時間変化を示すグラフである。FIG. 4 is a graph showing the time change of UV absorption of L and LDH solutions. 図5は、各添加物のLDH凝集抑制能(2mg/mL)を示すグラフである。FIG. 5 is a graph showing the LDH aggregation inhibitory ability (2 mg/mL) of each additive. 図6は、M1のLDH凝集抑制能の濃度依存性を示すグラフである。FIG. 6 is a graph showing the concentration dependence of the ability of M1 to suppress LDH aggregation. 図7Aは、各濃度の各ミセルによるLDH活性維持を対比したグラフである。FIG. 7A is a graph comparing LDH activity maintenance by each micelle at each concentration. 図7Bは、各濃度のPSミセル(M4)によるLDH活性維持を対比したグラフである。FIG. 7B is a graph comparing LDH activity maintenance by each concentration of PS micelle (M4). 図8Aは、各ミセルとともに37℃加熱したLDHのCDスペクトルのグラフである。FIG. 8A is a graph of the CD spectra of LDH heated at 37° C. with each micelle. 図8Bは、CDスペクトルから評価したLDHの2次構造の維持の結果を示すグラフである。FIG. 8B is a graph showing the results of maintaining the secondary structure of LDH evaluated from the CD spectrum. 図9は、PCLのミセルを用いて行った遠心分離実験による、遠心分離前の溶液の外観の画像(図9の左側)、遠心分離後の溶液(上清及び沈殿)外観の画像(図図9の中央)、遠心分離後に再分散させた溶液の外観の画像(図9の右側)である。FIG. 9 shows an image of the appearance of the solution before centrifugation (left side of FIG. 9) and an image of the appearance of the solution (supernatant and precipitate) after centrifugation (Fig. 9 middle) and an image of the appearance of the redispersed solution after centrifugation (right side of FIG. 9). 図10は、各ミセルへ吸着した後に、遠心分離して回収した上清を、再度37℃でインキュベートして再凝縮させた場合のUV吸光度(350nm)の変化を示すグラフである。FIG. 10 is a graph showing the change in UV absorbance (350 nm) when the supernatant collected by centrifugation after adsorption to each micelle was re-incubated at 37° C. and recondensed. 図11は、37℃でインキュベートした後に、遠心分離して回収した上清中のLDHの酵素活性を示すグラフである。FIG. 11 is a graph showing the enzymatic activity of LDH in the supernatant recovered by centrifugation after incubation at 37°C. 図12は、LDHの凍結解凍による凝集に対する抑制効果を、各ミセルを使用した場合のLDHの酵素活性の残存率によって対比したグラフである。FIG. 12 is a graph comparing the inhibitory effect of LDH on freeze-thaw aggregation with the residual rate of LDH enzymatic activity when each micelle was used. 図13は、各ミセルとともに37℃加熱したインスリン(100μM)の凝集率を示すグラフである。FIG. 13 is a graph showing the aggregation rate of insulin (100 μM) heated at 37° C. with each micelle. 図14は、各ミセル(2mg/mL)とともに37℃加熱したインスリン(10μM)のCDスペクトルのグラフである。FIG. 14 is a graph of CD spectra of insulin (10 μM) heated at 37° C. with each micelle (2 mg/mL). 図15は、非がん細胞(マウス線維芽細胞L929)に対する細胞毒性を、各ミセルを使用した場合の細胞の生存率によって対比したグラフである。FIG. 15 is a graph comparing the cytotoxicity against non-cancer cells (mouse fibroblast L929) by cell viability when using each micelle.
 具体的な実施の形態をあげて、以下に本発明を詳細に説明する。本発明は、以下にあげる具体的な実施の形態に限定されるものではない。 The present invention will be described in detail below with specific embodiments. The present invention is not limited to the specific embodiments given below.
[本発明のポリマー化合物の製造]
 本発明のポリマー化合物は、式Iで表されるトリチオカルボネート化合物と、式IIで表される糖モノマー化合物と、式IIIで表される双性イオンモノマー化合物を、重合反応させて製造することができる。本発明のポリマー化合物は、式IVで表されるポリマー化合物として得ることができる。
[Production of the polymer compound of the present invention]
The polymer compound of the present invention is produced by polymerizing a trithiocarbonate compound represented by Formula I, a sugar monomer compound represented by Formula II, and a zwitterionic monomer compound represented by Formula III. be able to. The polymeric compounds of the present invention can be obtained as polymeric compounds of Formula IV.
 R1-S-(C=S)-S-R2  (式I)  R1-S-(C=S)-S-R2 (Formula I)
R3-R7-C(R4)=CH  (式II) R3-R7-C(R4)= CH2 (Formula II)
CH=C(R6)-R8―R5  (式III) CH2 =C(R6)-R8-R5 (formula III)
 (式IV)
Figure JPOXMLDOC01-appb-I000017
(Formula IV)
Figure JPOXMLDOC01-appb-I000017
[式Iのトリチオカルボネート化合物]
 好適な実施の態様において、式Iにおいて、
 R1は、修飾又は被修飾のポリエチレン構造を有するポリマー鎖、修飾又は被修飾のポリスチレン構造を有するポリマー鎖、又は修飾又は被修飾のポリカプロラクトン構造を有するポリマー鎖の一価基であり、好ましくは、修飾又は被修飾のポリスチレン構造を有するポリマー鎖、修飾又は被修飾のポリカプロラクトン構造を有するポリマー鎖の一価基である。ポリマー鎖の一価基とは、ポリマー鎖から水素原子が1個失われて生じた一価の基をいう。
[Trithiocarbonate Compounds of Formula I]
In a preferred embodiment, in Formula I,
R1 is a monovalent group of a polymer chain having a modified or unmodified polyethylene structure, a polymer chain having a modified or unmodified polystyrene structure, or a polymer chain having a modified or unmodified polycaprolactone structure, preferably It is a monovalent group of a polymer chain having a modified or unmodified polystyrene structure, a polymer chain having a modified or unmodified polycaprolactone structure. A monovalent group of a polymer chain refers to a monovalent group resulting from the loss of one hydrogen atom from the polymer chain.
 好適な実施の態様において、式Iにおいて、
 R2は、C6~C24のアルキル基であり、好ましくは、C8~C16のアルキル基、さらに好ましくはC10~C14のアルキル基である。
In a preferred embodiment, in Formula I,
R2 is a C6-C24 alkyl group, preferably a C8-C16 alkyl group, more preferably a C10-C14 alkyl group.
[式Ia及び式Ibのトリチオカルボネート化合物]
 好適な実施の態様において、式Iのトリチオカルボネート化合物は、次の式Ia又は式Ibで表される化合物とすることができる。
[Trithiocarbonate compounds of Formula Ia and Formula Ib]
In a preferred embodiment, the trithiocarbonate compound of Formula I can be a compound of Formula Ia or Formula Ib below.
 式Ia:
Figure JPOXMLDOC01-appb-I000018
Formula Ia:
Figure JPOXMLDOC01-appb-I000018
 式Ib:
Figure JPOXMLDOC01-appb-I000019
Formula Ib:
Figure JPOXMLDOC01-appb-I000019
 好適な実施の態様において、式Iaにおいて、
 nは、繰り返し単位の平均重合度であって、10~100の範囲、好ましくは20~80の範囲とすることができる。
In a preferred embodiment, in Formula Ia,
n is the average degree of polymerization of the repeating unit, and can be in the range of 10-100, preferably in the range of 20-80.
 好適な実施の態様において、式Iaにおいて、R2は、式Iにおいて上述した基とすることができる。 In a preferred embodiment, in Formula Ia, R2 can be the group described above in Formula I.
 好適な実施の態様において、式Ibにおいて、
 lは、繰り返し単位の平均重合度であって、10~100の範囲、好ましくは20~80の範囲とすることができる。
In a preferred embodiment, in Formula Ib,
l is the average degree of polymerization of repeating units, and can be in the range of 10-100, preferably in the range of 20-80.
 好適な実施の態様において、式Ibにおいて、R2は、式Iにおいて上述した基とすることができる。 In a preferred embodiment, in formula Ib, R2 can be the group described above in formula I.
[式IIの糖モノマー化合物]
 好適な実施の態様において、式IIにおいて、
 R3は、還元性又は非還元性の、単糖類又は二糖類の一価基である。このような単糖類として、例えばグルコース、フルクトース、ガラクトース、マンノースをあげることができる。このような二糖類として、例えばトレハロース、スクロース、マルトース、ラクトースをあげることができる。
[Sugar monomer compound of formula II]
In a preferred embodiment, in Formula II,
R3 is a reducing or non-reducing, mono- or disaccharide monovalent group. Examples of such monosaccharides include glucose, fructose, galactose and mannose. Examples of such disaccharides include trehalose, sucrose, maltose and lactose.
 好適な実施の態様において、式IIにおいて、
 R4は、水素原子、又はメチル基であり、好ましくはメチル基である。
In a preferred embodiment, in Formula II,
R4 is a hydrogen atom or a methyl group, preferably a methyl group.
 好適な実施の態様において、式IIにおいて、
 R7は、-(C=O)-O-、-(C=O)-NH―、及び-(O=S=O)―から選択された二価基である。ただし、これらの二価基は、R3とは、それぞれ、-(C=O)-O-R3、-(C=O)-NH―R3、及び-(O=S=O)―R3の位置で結合する。
In a preferred embodiment, in Formula II,
R7 is a divalent group selected from -(C=O)-O-, -(C=O)-NH-, and -(O=S=O)-. provided that these divalent groups are defined as -(C=O)-O-R3, -(C=O)-NH-R3, and -(O=S=O)-R3 positions, respectively. join with .
[式IIaの糖モノマー化合物]
 好適な実施の態様において、式IIで表される糖モノマー化合物は、次の式IIaで表される化合物とすることができる。
[Sugar monomer compound of formula IIa]
In a preferred embodiment, the glycomonomer compound of Formula II can be a compound of Formula IIa below.
 式IIa:
Figure JPOXMLDOC01-appb-I000020
Formula IIa:
Figure JPOXMLDOC01-appb-I000020
[式IIbの糖モノマー化合物]
 好適な実施の態様において、式IIで表される糖モノマー化合物は、次の式IIbで表される化合物とすることができる。
R3-O-(C=O)-C(R4)=CH  (式IIb)
[Sugar monomer compound of formula IIb]
In a preferred embodiment, the glycomonomer compound represented by Formula II can be a compound represented by Formula IIb below.
R3-O-(C=O)-C(R4)= CH2 (Formula IIb)
 式IIbにおいて、R3及びR4は、それぞれ上述した基とすることができる。 In Formula IIb, R3 and R4 can each be the groups described above.
[式IIIの双性イオンモノマー化合物]
 好適な実施の態様において、式IIIにおいて、
 R5は、第四級アンモニウムカチオン及びスルホン酸基を有する双性イオン化合物の一価基とすることができる。
[Zwitterionic Monomeric Compounds of Formula III]
In a preferred embodiment, in Formula III,
R5 can be a monovalent radical of a zwitterionic compound having a quaternary ammonium cation and a sulfonic acid group.
 好適な実施の態様において、式IIIにおいて、
 R6は、水素原子、又はメチル基とすることができる。
In a preferred embodiment, in Formula III,
R6 can be a hydrogen atom or a methyl group.
 好適な実施の態様において、式IIIにおいて、
 R8は、-(C=O)-O-、-(C=O)-NH―、及び-(O=S=O)―から選択された二価基とすることができる。ただし、これらの二価基は、R5とは、それぞれ、、-(C=O)-O-R5、-(C=O)-NH―R5、及び-(O=S=O)―R5の位置で結合する。
In a preferred embodiment, in Formula III,
R8 can be a divalent group selected from -(C=O)-O-, -(C=O)-NH-, and -(O=S=O)-. provided that these divalent groups are defined as -(C=O)-O-R5, -(C=O)-NH-R5, and -(O=S=O)-R5, respectively. Join in position.
[式IIIaの双性イオンモノマー化合物]
 好適な実施の態様において、式IIIで表される双性イオンモノマー化合物は、次の式IIIaで表される化合物とすることができる。
[Zwitterionic Monomeric Compounds of Formula IIIa]
In a preferred embodiment, the zwitterionic monomeric compound of Formula III can be a compound of Formula IIIa below.
 式IIIa:
CH=CH-(C=O)-NH―R51-[N(R52)-R53-SO
Formula IIIa:
CH 2 =CH-(C=O)-NH-R51-[N(R52) 2 ] + -R53-SO 3 -
 好適な実施の態様において、式IIIaにおいて、
 R51は、例えばC1~C4のアルキレン基、好ましくはC2~C4のアルキレン基、好ましくはC3~C4のアルキレン基、あるいはC2~C3のアルキレン基とすることができる。
In a preferred embodiment, in Formula IIIa,
R51 can be, for example, a C1-C4 alkylene group, preferably a C2-C4 alkylene group, preferably a C3-C4 alkylene group, or a C2-C3 alkylene group.
 好適な実施の態様において、式IIIaにおいて、
 R52は、例えばC1~C4のアルキル基、好ましくはC1~C3のアルキル基、好ましくはC1~C2のアルキル基とすることができる。
In a preferred embodiment, in Formula IIIa,
R52 can be, for example, a C1-C4 alkyl group, preferably a C1-C3 alkyl group, preferably a C1-C2 alkyl group.
 好適な実施の態様において、式IIIaにおいて、
 R53は、例えばC1~C4のアルキレン基、好ましくはC2~C4のアルキレン基、好ましくはC3~C4のアルキレン基、あるいはC2~C3のアルキレン基とすることができる。
In a preferred embodiment, in Formula IIIa,
R53 can be, for example, a C1-C4 alkylene group, preferably a C2-C4 alkylene group, preferably a C3-C4 alkylene group, or a C2-C3 alkylene group.
[式IIIbの双性イオンモノマー化合物]
 好適な実施の態様において、式IIIで表される双性イオンモノマー化合物は、次の式IIIbで表される化合物とすることができる。
[Zwitterionic Monomeric Compounds of Formula IIIb]
In a preferred embodiment, the zwitterionic monomeric compound of Formula III can be a compound of Formula IIIb below.
 式IIIb:
Figure JPOXMLDOC01-appb-I000021
Formula IIIb:
Figure JPOXMLDOC01-appb-I000021
[式IIIcの双性イオンモノマー化合物]
 好適な実施の態様において、式IIIで表される双性イオンモノマー化合物は、次の式IIIcで表される化合物とすることができる。
CH=CH-(C=O)-NH―R5  (式IIIc)
[Zwitterionic Monomeric Compounds of Formula IIIc]
In a preferred embodiment, the zwitterionic monomeric compound of Formula III can be a compound of Formula IIIc below.
CH2 =CH-(C=O)-NH-R5 (Formula IIIc)
 式IIIcにおいて、R5は、上述した基とすることができる。 In Formula IIIc, R5 can be the group described above.
[式IVのポリマー化合物]
 好適な実施の態様において、式IVにおいて、
 R1、R3、R4、R5、R6、R7、R8は、いずれも上述の基とすることができる。
[Polymer Compound of Formula IV]
In a preferred embodiment, in Formula IV,
R1, R3, R4, R5, R6, R7, and R8 can all be the groups described above.
 好適な実施の態様において、式IVにおいて、
 xは、繰り返し単位の平均重合度であって、10~1000の範囲、好ましくは50~500の範囲とすることができる。
In a preferred embodiment, in Formula IV,
x is the average degree of polymerization of the repeating unit, and can be in the range of 10-1000, preferably in the range of 50-500.
 好適な実施の態様において、式IVにおいて、
 yは、繰り返し単位の平均重合度であって、10~1000であり、好ましくは50~500の範囲とすることができる。
In a preferred embodiment, in Formula IV,
y is the average degree of polymerization of the repeating unit, and may range from 10 to 1,000, preferably from 50 to 500.
 好適な実施の態様において、式IVにおいて、
 xとyは、x:yの比率が、例えば100:25~100:1000の範囲、あるいは100:40~100:600の範囲、好ましくは100:50~100:500の範囲、好ましくは100:50~100:200の範囲、あるいは100:90~100:150の範囲とすることができる。
In a preferred embodiment, in Formula IV,
x and y, the ratio of x:y is, for example, in the range of 100:25 to 100:1000, alternatively in the range of 100:40 to 100:600, preferably in the range of 100:50 to 100:500, preferably 100: It can be in the range of 50-100:200, alternatively in the range of 100:90-100:150.
 好適な実施の態様において、式IVにおけるR1基が1個存在すると同時に、xとyとが上述の数値の比率であるものとすることができる。すなわち、一例をあげると、R1:x:yの比率が、1:100:25~1:100:1000の範囲とすることができる。 In a preferred embodiment, there can be one R1 group in Formula IV and x and y can be in the ratio of the above numerical values. That is, by way of example, the ratio of R1:x:y can range from 1:100:25 to 1:100:1000.
 好適な実施の態様において、式IVにおいて、
 -r-は、-r-の両側に記載された繰り返し単位が、ランダム共重合してランダム共重合体となっていることを示す。
In a preferred embodiment, in Formula IV,
-r- indicates that repeating units described on both sides of -r- are randomly copolymerized to form a random copolymer.
 好適な実施の態様において、式IVにおいて、
 -b-は、-b-の両側に記載された繰り返し単位が、ブロック共重合してブロック共重合体となっていることを示す。
In a preferred embodiment, in Formula IV,
-b- indicates that the repeating units written on both sides of -b- are block-copolymerized to form a block copolymer.
 好適な実施の態様において、式IVにおいて、
 mは、繰り返し単位の繰り返し数であって、1である。
In a preferred embodiment, in Formula IV,
m is the repeating number of the repeating unit and is 1;
[式IVaのポリマー化合物]
 好適な実施の態様において、式IVで表されるポリマー化合物は、次の式IVaで表される化合物とすることができる。
[Polymer Compound of Formula IVa]
In a preferred embodiment, the polymeric compound represented by Formula IV can be a compound represented by Formula IVa below.
 式IVa:
Figure JPOXMLDOC01-appb-I000022
Formula IVa:
Figure JPOXMLDOC01-appb-I000022
 好適な実施の態様において、式IVaにおいて、
 R1、x、y、m、-b-、―r-は、いずれも式IVにおいて上述した基であり、あるいは上述した意味の記号である。
In a preferred embodiment, in Formula IVa,
R1, x, y, m, -b-, and -r- are all the groups described above in Formula IV, or symbols having the meanings described above.
[式IVbのポリマー化合物]
 好適な実施の態様において、式IVで表されるポリマー化合物は、次の式IVbで表される化合物とすることができる。
[Polymer compound of formula IVb]
In a preferred embodiment, the polymeric compound represented by Formula IV can be a compound represented by Formula IVb below.
 式IVb:
Figure JPOXMLDOC01-appb-I000023
Formula IVb:
Figure JPOXMLDOC01-appb-I000023
 好適な実施の態様において、式IVbにおいて、
 nは、繰り返し単位の平均重合度であって、10~100の範囲、好ましくは20~80の範囲とすることができる。
In a preferred embodiment, in formula IVb,
n is the average degree of polymerization of the repeating unit, and can be in the range of 10-100, preferably in the range of 20-80.
 好適な実施の態様において、式IVbにおいて、
 x、y、m、-b-、―r-は、いずれも式IVにおいて上述した基であり、あるいは上述した意味の記号である。
In a preferred embodiment, in formula IVb,
All of x, y, m, -b-, and -r- are the groups described above in Formula IV, or symbols having the meanings described above.
 なお、式IVbにおいては、ポリマーの両末端には、それぞれモノマーに由来する末端の基が存在しているが、ポリマーの表記の通例にならって、これらの記載は省略されている。 In formula IVb, terminal groups derived from monomers are present at both ends of the polymer, but these descriptions are omitted in accordance with the general notation of polymers.
[式IVcのポリマー化合物]
 好適な実施の態様において、式IVで表されるポリマー化合物は、次の式IVcで表される化合物とすることができる。
[Polymer Compound of Formula IVc]
In a preferred embodiment, the polymeric compound of Formula IV can be a compound of Formula IVc below.
 式IVc:
Figure JPOXMLDOC01-appb-I000024
Formula IVc:
Figure JPOXMLDOC01-appb-I000024
 好適な実施の態様において、式IVcにおいて、
 lは、繰り返し単位の平均重合度であって、10~100の範囲、好ましくは20~80の範囲とすることができる。
In a preferred embodiment, in Formula IVc,
l is the average degree of polymerization of repeating units, and can be in the range of 10-100, preferably in the range of 20-80.
 好適な実施の態様において、式IVcにおいて、
 x、y、m、-b-、―r-は、いずれも式IVにおいて上述した基であり、あるいは上述した意味の記号である。
In a preferred embodiment, in Formula IVc,
All of x, y, m, -b-, and -r- are the groups described above in Formula IV, or symbols having the meanings described above.
 なお、式IVcにおいては、ポリマーの両末端には、それぞれモノマーに由来する末端の基が存在しているが、ポリマーの表記の通例にならって、これらの記載は省略されている。 In formula IVc, terminal groups derived from monomers are present at both ends of the polymer, but these descriptions are omitted in accordance with the general notation of polymers.
[重合反応]
 好適な実施の態様において、式IVで表される本発明のポリマー化合物は、式Iで表されるトリチオカルボネート化合物と、式IIで表される糖モノマー化合物と、式IIIで表される双性イオンモノマー化合物を、重合反応させて、製造することができる。この重合反応は、可逆的付加開裂連鎖移動重合(Reversible Addition/Fragmentation Chain Transfer Polymerization)(RAFT重合)によって進行する。式Iで表されるトリチオカルボネート化合物が、RAFT剤の代わりとなる、マクロ連鎖移動剤となる。この場合に、式IIで表される糖モノマー化合物と、式IIIで表される双性イオンモノマー化合物がモノマーとして使用されて、式Iで表されるトリチオカルボネート化合物の末端から、式IIで表される糖モノマー化合物と、式IIIで表される双性イオンモノマー化合物とのランダム共重合が起こることによって、ブロック共重合体として式IVで表される本発明のポリマー化合物が得られる。
[Polymerization reaction]
In a preferred embodiment, the polymeric compound of the present invention represented by Formula IV comprises a trithiocarbonate compound represented by Formula I, a sugar monomer compound represented by Formula II, and a glycomonomer compound represented by Formula III. Zwitterionic monomeric compounds can be produced by polymerization reactions. This polymerization reaction proceeds by Reversible Addition/Fragmentation Chain Transfer Polymerization (RAFT polymerization). The trithiocarbonate compounds of Formula I are macro chain transfer agents that replace RAFT agents. In this case, a sugar monomeric compound of formula II and a zwitterionic monomeric compound of formula III are used as monomers to convert from the terminal trithiocarbonate compound of formula I to formula II A polymer compound of the present invention represented by Formula IV is obtained as a block copolymer by random copolymerization of the sugar monomer compound represented by and the zwitterionic monomer compound represented by Formula III.
 好適な実施の態様において、このような重合反応を進行させるために、溶媒として、例えばジメチルスルホキシド、ジメチルホルムアミドを使用することができ、添加剤として、例えばアゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノ吉草酸)を使用することができる。この重合反応の条件としては、ラジカル重合条件として公知の条件を使用することができる。 In a preferred embodiment, solvents such as dimethyl sulfoxide and dimethylformamide can be used to carry out such polymerization reactions, and additives such as azobisisobutyronitrile, 4,4' - Azobis(4-cyanovaleric acid) can be used. As conditions for this polymerization reaction, conditions known as radical polymerization conditions can be used.
[ミセルの形成]
 好適な実施の態様において、式IVで表される本発明のポリマー化合物は、これを水溶液中に分散することによって、自己会合してミセルを形成することができる。水溶液中への分散は、例えばポリマー化合物の合成後に溶媒を透析等の手段で水溶液へと置換することによって行うことができ、あるいは例えば合成したポリマー化合物を凍結乾燥した後に、水溶液中へ分散することによって行うことができる。
[Formation of micelles]
In a preferred embodiment, the polymeric compound of Formula IV of the present invention is capable of self-associating to form micelles by dispersing it in an aqueous solution. Dispersion in an aqueous solution can be carried out, for example, by replacing the solvent with an aqueous solution by means of dialysis after synthesis of the polymer compound, or, for example, by freeze-drying the synthesized polymer compound and then dispersing it in the aqueous solution. can be done by
[タンパク質凝集抑制]
 式IVで表される本発明のポリマー化合物によって形成されたミセルは、非常に濃度で、優れたタンパク質凝集抑制の効果を発揮する。タンパク質凝集抑制効果は、保護対象とするタンパク質を、水溶液中でミセルと混合するという簡便な手段で発揮することができる。
[Inhibition of protein aggregation]
The micelles formed by the polymeric compounds of the present invention represented by Formula IV exhibit excellent protein aggregation inhibitory efficacy at very high concentrations. The protein aggregation inhibitory effect can be exhibited by a simple means of mixing the protein to be protected with micelles in an aqueous solution.
 すなわち、本発明によれば、通常はその精製時の操作によって既に凝集してしまうタンパク質や、精製後の保存条件下で凝集してしまうタンパク質に対して、凝集抑制の効果を発揮することによって、これまで精製困難であったタンパク質の精製や、これまで保存困難であった条件下でのタンパク質の保存を可能とするという、優れた効果を達成する。 That is, according to the present invention, by exerting the effect of suppressing aggregation on proteins that have already aggregated due to operations during purification and proteins that aggregate under storage conditions after purification, It achieves excellent effects of purifying proteins that have been difficult to purify and preserving proteins under conditions that have been difficult to preserve.
[凝集抑制のための濃度]
 好適な実施の態様において、タンパク質凝集抑制効果は、式IVで表される本発明のポリマー化合物を、例えば、0.1~10mg/Lの範囲、例えば0.2~5mg/Lの範囲、例えば0.5~5mg/Lの範囲、例えば1~3mg/mLの濃度で、水溶液中に分散することによって、発揮させることができる。
[Concentration for suppressing aggregation]
In a preferred embodiment, the protein aggregation inhibitory effect is achieved by adding the polymer compound of formula IV according to the invention in the range of, for example, 0.1 to 10 mg/L, such as in the range of 0.2 to 5 mg/L, such as It can be exerted by dispersing it in an aqueous solution at a concentration in the range of 0.5-5 mg/L, eg 1-3 mg/mL.
[タンパク質構造保護]
 好適な実施の態様において、式IVで表される本発明のポリマー化合物によって形成されたミセルは、タンパク質がマクロの観察において凝集抑制されるという優れたタンパク質凝集抑制効果を奏すると同時に、タンパク質がミクロの観察においても構造を維持しているという、優れた構造保護効果を伴ったものとなっている。この優れた構造保護効果は、例えば、実施例において後述するCD(Circular Dichroism)スペクトル測定によって検出することができる。
[Protein structure protection]
In a preferred embodiment, the micelle formed by the polymer compound of the present invention represented by Formula IV exhibits an excellent protein aggregation-inhibiting effect in which protein aggregation is inhibited in macroscopic observation, and at the same time, protein aggregation is inhibited in microscopic observation. It is accompanied by an excellent structural protection effect that the structure is maintained even in the observation of This excellent structure-protecting effect can be detected, for example, by CD (Circular Dichroism) spectrum measurement described later in Examples.
[タンパク質活性保護]
 好適な実施の態様において、式IVで表される本発明のポリマー化合物によって形成されたミセルは、タンパク質が外観の観察において凝集抑制されるという優れたタンパク質凝集抑制効果を奏すると同時に、タンパク質がその活性や機能を維持しているという、優れた活性保護効果を伴ったものとなっている。この優れた活性保護効果及び機能保護効果は、例えば、実施例において後述するLDH酵素活性の測定によって示される通りである。
[Protection of protein activity]
In a preferred embodiment, the micelle formed by the polymer compound of the present invention represented by formula IV exhibits an excellent protein aggregation-inhibiting effect in that protein aggregation is inhibited in observation of the appearance, and at the same time, the protein is It is accompanied by an excellent activity-protecting effect that maintains activity and function. This excellent activity-protecting effect and function-protecting effect are as shown, for example, by the measurement of LDH enzyme activity described later in Examples.
[凍結による凝集に対する抑制及び保護]
 好適な実施の態様において、この優れた凝集抑制効果、構造保護効果、活性保護効果及び機能保護効果は、例えば、実施例において後述する通り、LDH酵素活性について、凍結解凍時に生じる凝集に対しても、保護効果を発揮しており、凍結時及び凍結解凍時の、凝集抑制、構造保護、活性保護及び機能保護の効果を奏するものとなっている。
[Inhibition and protection against aggregation by freezing]
In a preferred embodiment, the excellent aggregation-inhibiting effect, structure-protecting effect, activity-protecting effect and function-protecting effect, for example, on LDH enzyme activity and on aggregation occurring during freeze-thaw, as described later in Examples. , and exerts a protective effect, and exhibits effects of aggregation suppression, structure protection, activity protection and function protection during freezing and freezing and thawing.
[多様なタンパク質に対する効果]
 好適な実施の態様において、本願発明の化合物がタンパク質に対して発揮する、優れた凝集抑制効果、構造保護効果、活性保護効果及び機能保護効果は、例えば、実施例において後述する通り、LDHに限られることなく、インスリンに対しても同様に効果を発揮している。このことは、広くタンパク質全般に対して、同様の保護効果を発揮することを示している。よく知られているように、タンパク質の構造変化や失活の重大な原因のひとつがタンパク質の凝集であるから、凝集の抑制によってタンパク質を保護する本願発明の化合物は、広くタンパク質全般に対して同様の保護効果を発揮することを、後述する実施例の結果が示している。このような保護効果が特に期待されるタンパク質として、例えば、抗体、インスリン、乳酸脱水素酵素、アルカリフォスファターゼ、アセチルコリンエステラーゼ、アスコルビン酸オキシダーゼ、アルコールでヒドロゲナーゼをあげることができる。
[Effects on various proteins]
In preferred embodiments, the excellent aggregation-inhibiting effect, structure-protecting effect, activity-protecting effect and function-protecting effect that the compound of the present invention exerts on proteins is limited to, for example, LDH, as described later in Examples. However, it is also effective against insulin. This indicates that a similar protective effect is exerted on a wide range of proteins in general. As is well known, protein aggregation is one of the major causes of structural changes and deactivation of proteins. The results of the examples described later show that the protective effect is exhibited. Examples of proteins for which such a protective effect is particularly expected include antibodies, insulin, lactate dehydrogenase, alkaline phosphatase, acetylcholinesterase, ascorbic acid oxidase, and alcohol hydrogenase.
[細胞毒性]
 好適な実施の態様において、この優れたタンパク質保護効果は、実施例において後述する通り、細胞毒性を示すことなく、発揮することができる。したがって、本願発明の化合物は、分子生物学的研究ツールにとどまることなく、細胞、組織、臓器、及び生体に対して投与して、薬剤及び医薬として使用できるものとなっている。
[Cytotoxicity]
In preferred embodiments, this superior protein-protective effect can be exerted without exhibiting cytotoxicity, as will be described later in the Examples. Therefore, the compounds of the present invention can be used not only as molecular biological research tools but also as drugs and medicines by administering them to cells, tissues, organs and living organisms.
[保護対象タンパク質からの分離]
 好適な実施の態様において、式IVで表される本発明のポリマー化合物によって形成されたミセルは、保護対象タンパク質と混合することによって、優れたタンパク質凝集抑制作用を示し、さらに、混合された保護対象タンパク質から容易に分離することができる。そして、驚くべきことに、分離された保護対象タンパク質は、ミセルとの混合前と対比して、ほとんど変わらない機能と活性を維持しており、同時に、分離されたミセルは、タンパク質凝集抑制のために再利用することができる。このような優れた分離性は、保護されたタンパク質のその後の利用に何ら制約を設けないという点で、非常に有利であり、また、分離されたミセルが再利用できるという点で、非常に有利である。
[Separation from protein to be protected]
In a preferred embodiment, the micelle formed by the polymer compound of the present invention represented by Formula IV exhibits excellent protein aggregation-inhibiting action when mixed with a protein to be protected. It can be easily separated from the protein. Surprisingly, the isolated protein to be protected maintains almost the same function and activity as compared to before mixing with micelles, and at the same time, the isolated micelles are effective in suppressing protein aggregation. can be reused for Such excellent separability is very advantageous in that it does not impose any restrictions on the subsequent use of the protected protein, and is also very advantageous in that the separated micelles can be reused. is.
 好適な実施の態様において、ミセルと混合された保護対象タンパク質との分離は、ミセルの分子量を活かした公知の分離手段によって分離することができる。このような分離手段として、例えば、フィルターろ過、遠心分離をあげることができる。好適な実施の態様において、遠心分離は、例えば、5000~30000g、好ましくは10000~20000gの加速度で、例えば、1~120分間、あるいは10~60分間、遠心力を負荷することによって行うことができる。好適な実施の態様において、遠心分離によって固液分離すれば、ミセルは沈殿となり、保護対象タンパク質は上清として得ることができる。 In a preferred embodiment, the protein to be protected mixed with the micelle can be separated by a known separation means that utilizes the molecular weight of the micelle. Examples of such separation means include filter filtration and centrifugation. In a preferred embodiment, centrifugation can be performed by applying centrifugal force at an acceleration of, for example, 5000 to 30000 g, preferably 10000 to 20000 g, for 1 to 120 minutes, or 10 to 60 minutes. . In a preferred embodiment, when solid-liquid separation is performed by centrifugation, micelles are precipitated, and the protein to be protected can be obtained as a supernatant.
 以下に実施例をあげて、本発明を詳細に説明する。本発明は、以下に例示する実施例に限定されるものではない。なお、実施例中、特にことわりのない限り「%」及び「部」はそれぞれ重量%及び重量部を示す。 The present invention will be described in detail below with reference to examples. The invention is not limited to the examples illustrated below. In the examples, "%" and "parts" indicate weight % and weight parts, respectively, unless otherwise specified.
[実験例1]
[1. ミセルの合成]
[1.1 トレハロースメタクリレートの合成]
 無水トレハロースを2日間105℃で真空乾燥した。
 乾燥したトレハロースを(2mmol)モルに無水ジメチルホルムアミド(DMF、2mmol)に溶解し、トリエチルアミン4mmol、無水メタクリル酸を2mmol添加して窒素下で25℃、24時間反応させた。反応液を4℃のジエチルエーテルで神殿させ、ヘキサンとジエチルエーテルで洗浄後、沈殿を回収した。この合成の手順を、図1に示す。
[Experimental example 1]
[1. Synthesis of micelles]
[1.1 Synthesis of trehalose methacrylate]
Anhydrous trehalose was vacuum dried at 105° C. for 2 days.
Dried trehalose was dissolved in anhydrous dimethylformamide (DMF, 2 mmol) to (2 mmol) mol, triethylamine 4 mmol and methacrylic anhydride 2 mmol were added and reacted at 25° C. for 24 hours under nitrogen. The reaction mixture was diluted with diethyl ether at 4° C., washed with hexane and diethyl ether, and precipitates were collected. The procedure for this synthesis is shown in FIG.
[1.2 マクロ連鎖移動剤(PCL-CTA、PS-CTA)の合成]
 RAFT剤(4-Cyano-4-[(dodecylsulfanylthiocarbonyl)-sulfanyl]pentanol)1mmolをDMF1mmolに溶解し、εカプロラクトンを30mmol加え、tin(II) 2-ethylhexanoate (0.1 wt%)を触媒量添加し、窒素雰囲気下で16時間反応させた。1:1(v/v)のメタノール:ジエチルエーテルで再沈殿回収を行った(PCL-CTA)。合成された化合物は、ポリカプロラクトン(PCL)部分と連鎖移動剤(CTA、Chain Transfer Agent)部分を備えているので、PCL-CTAと表記する。この合成の手順を、図2Aに示す。
[1.2 Synthesis of macro chain transfer agents (PCL-CTA, PS-CTA)]
1 mmol of RAFT agent (4-Cyano-4-[(dodecylsulfanylthiocarbonyl)-sulfanyl]pentanol) was dissolved in 1 mmol of DMF, 30 mmol of ε-caprolactone was added, and a catalytic amount of tin(II) 2-ethylhexanoate (0.1 wt%) was added. , under a nitrogen atmosphere for 16 hours. Reprecipitation recovery was performed with 1:1 (v/v) methanol:diethyl ether (PCL-CTA). The synthesized compound has a polycaprolactone (PCL) moiety and a chain transfer agent (CTA) moiety, and thus is denoted as PCL-CTA. The procedure for this synthesis is shown in Figure 2A.
 RAFT剤(4-Cyano-4-[(dodecylsulfanylthiocarbonyl)-sulfanyl]pentanol)1mmolをDMF1mmolに溶解し、スチレンを30mmol加え、アゾビスイソブチロニトリル(AIBN)を0.03mmol添加し、窒素雰囲気下で16時間反応させた。1:1(v/v)のメタノール:ジエチルエーテルで再沈殿回収を行った(PS-CTA)。合成された化合物は、ポリスチレン(PS)部分と連鎖移動剤(CTA、Chain Transfer Agent)部分を備えているので、PS-CTAと表記する。この合成の手順を、図2Bに示す。 RAFT agent (4-Cyano-4-[(dodecylsulfanylthiocarbonyl)-sulfanyl]pentanol) 1 mmol dissolved in DMF 1 mmol, styrene 30 mmol added, azobisisobutyronitrile (AIBN) 0.03 mmol added, under nitrogen atmosphere The reaction was allowed to proceed for 16 hours. Reprecipitation recovery was performed with 1:1 (v/v) methanol:diethyl ether (PS-CTA). Since the synthesized compound has a polystyrene (PS) portion and a chain transfer agent (CTA) portion, it is denoted as PS-CTA. The procedure for this synthesis is shown in FIG. 2B.
 NMRよりPCLの数平均重合度は69、PSの数平均重合度は45であった。 According to NMR, PCL had a number average degree of polymerization of 69, and PS had a number average degree of polymerization of 45.
[1.3 ミセルの合成]
 PCL-CTAもしくはPS-CTAとV-501(開始剤)を丸底フラスコに添加し、ジメチルスルホキシド(DMSO)に溶解したトレハロースメタクリレート、SPBモノマー溶液を一滴ずつ滴下した。反応液は窒素雰囲気下にて70℃24時間放置することで反応を進行させた。反応液は透析膜(MWCO 100kDa)で蒸留水に対して透析を行い、未反応物、SPBホモポリマーなどを除去した。このようにしてミセルとして、PCLミセル3種類(表1のM1~M3)、PSミセル1種類(表2のM4)を合成した。この合成の手順を、図3A及び図3Bに示す。合成されたこれらのミセルの特性を表1及び表2に示す。
[1.3 Synthesis of Micelle]
PCL-CTA or PS-CTA and V-501 (initiator) were added to a round bottom flask, and trehalose methacrylate, SPB monomer solution dissolved in dimethylsulfoxide (DMSO) was added dropwise. The reaction solution was allowed to proceed at 70° C. for 24 hours under a nitrogen atmosphere. The reaction solution was dialyzed against distilled water with a dialysis membrane (MWCO 100 kDa) to remove unreacted substances, SPB homopolymer and the like. In this manner, three types of PCL micelles (M1 to M3 in Table 1) and one type of PS micelles (M4 in Table 2) were synthesized as micelles. The procedure for this synthesis is shown in FIGS. 3A and 3B. The properties of these micelles synthesized are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表1において、RはPCL-RAFT Agentであり、すなわちPCL-CTAである。C1はPoly-SPB(スルホベタインポリマー)である。C2はTrMA(トレハロースメタクリレート)である。 In Table 1, R is PCL-RAFT Agent, ie PCL-CTA. C1 is Poly-SPB (sulfobetaine polymer). C2 is TrMA (trehalose methacrylate).
 表2において、RはPS-RAFT Agentであり、すなわちPS-CTAである。C1はPoly-SPB(スルホベタインポリマー)である。C2はTrMA(トレハロースメタクリレート)である。 In Table 2, R is PS-RAFT Agent, ie PS-CTA. C1 is Poly-SPB (sulfobetaine polymer). C2 is TrMA (trehalose methacrylate).
 表1に示すように、M1はPCLブロックに対してSPBとトレハロースがランダムにそれぞれ100量体重合したものであり、M2はPCLブロックに対してSPBが200量体、トレハロースが100量体重合したものであり、M3はPCLブロックに対してSPBが100量体、トレハロースが500量体重合したものである。 As shown in Table 1, M1 is obtained by randomly polymerizing 100-mers of SPB and trehalose with respect to the PCL block, and M2 is obtained by polymerizing 200-mers of SPB and 100-mers of trehalose with respect to the PCL block. M3 is obtained by polymerizing 100 mers of SPB and 500 mers of trehalose with respect to the PCL block.
[実験例2]
[2. タンパク質凝集抑制効果実験]
[LDH(乳酸脱水素酵素)凝集抑制]
[各ミセル及びポリマーを対比したLDH凝集の時間変化]
 0.2mg/mLのLDH(PBS溶液)に所定濃度のミセルもしくは高分子を混合し、37℃で30分間撹拌しながら350nmの吸光度を紫外可視分光光度計(UV-1800、島津)で測定した。これによって凝集によって生じる吸光度の上昇を評価した。対照群として、SPBホモポリマーを用いた。
[Experimental example 2]
[2. Protein aggregation inhibitory effect experiment]
[LDH (lactate dehydrogenase) aggregation suppression]
[Time change of LDH aggregation comparing each micelle and polymer]
0.2 mg/mL LDH (PBS solution) was mixed with micelles or polymers at a predetermined concentration, and the absorbance at 350 nm was measured with an ultraviolet-visible spectrophotometer (UV-1800, Shimadzu) while stirring at 37°C for 30 minutes. . This assessed the increase in absorbance caused by aggregation. SPB homopolymer was used as a control group.
 この結果を図4に示す。図4は、LDH溶液のUV吸収の時間変化を示すグラフである。ポリマーまたはミセルの濃度は2mg/mLとした。 The results are shown in Figure 4. FIG. 4 is a graph showing changes in UV absorption of LDH solutions over time. The polymer or micelle concentration was 2 mg/mL.
 図4に示されるように、対照群とポリマー無添加の系では、凝集による吸光度の上昇が確認された。一方で、M1,M2,M3のすべてのミセルにおいて吸光度の上昇が見られなかった。初期の吸光度がミセル系において高いのはミセルが白濁しているためである。 As shown in Fig. 4, an increase in absorbance due to aggregation was confirmed in the control group and the system to which no polymer was added. On the other hand, no increase in absorbance was observed in any of the micelles M1, M2 and M3. The reason why the initial absorbance is high in the micellar system is that the micelles are cloudy.
[各ミセル及びポリマーのLDH凝集抑制能の対比]
 図5は、各添加物のLDH凝集抑制能(2mg/mL)を示すグラフである。図5には、2mg/mLの濃度で各ポリマーおよびトレハロースをLDHに添加した系の凝集率をUV吸光度の上昇率から算出した結果を示す。M1において凝集率は0.02%、M2,M3でそれぞれ22.7%、32.4%と特にM1において非常に高い活性が見られた。
[Comparison of LDH aggregation inhibitory ability of each micelle and polymer]
FIG. 5 is a graph showing the LDH aggregation inhibitory ability (2 mg/mL) of each additive. FIG. 5 shows the results of calculating the aggregation rate of a system in which each polymer and trehalose were added to LDH at a concentration of 2 mg/mL from the rate of increase in UV absorbance. Aggregation rate was 0.02% for M1, and 22.7% and 32.4% for M2 and M3, respectively, indicating very high activity especially for M1.
 図5に示されるように、これらのミセルM1~M3は、Poly-SPB及びトレハロースと比較して、いずれも優れた凝集抑制特性を示した。特に、M1は、非常に優れた凝集抑制特性、言い換えればLDH保護効果を示した。これらの凝集抑制特性は、わずか0.2%(2mg/mL)という超低濃度の添加によって、効果を発揮していた。 As shown in FIG. 5, these micelles M1 to M3 all exhibited superior aggregation inhibitory properties compared to Poly-SPB and trehalose. In particular, M1 showed a very good anti-aggregation property, in other words an LDH protective effect. These aggregation-inhibiting properties were effective even at an ultra-low concentration of only 0.2% (2 mg/mL).
[M1ミセルのLDH凝集抑制能の濃度依存性]
 図6は、M1のLDH凝集抑制能の濃度依存性を示すグラフである。M1ミセル濃度以外の条件は、上記図5と同様にして行った。1mg/mLにおいても16.6%と高い凝集抑制活性を持っていることが分かった。また、M1は、0.2%(2mg/mL)添加した場合には、ほぼ完全に凝集を抑制するという、LDH凝集抑制能を示した。
[Concentration dependence of LDH aggregation inhibitory ability of M1 micelles]
FIG. 6 is a graph showing the concentration dependence of the ability of M1 to suppress LDH aggregation. Conditions other than the M1 micelle concentration were the same as in FIG. It was found to have a high aggregation inhibitory activity of 16.6% even at 1 mg/mL. Moreover, when M1 was added at 0.2% (2 mg/mL), it exhibited LDH aggregation-inhibiting ability, in which aggregation was almost completely suppressed.
[各ミセルによるLDH活性維持]
 200μLのNADH(63mM)PBS溶液と500μLのピルビン酸ナトリウム(10mM)PBS溶液を混合し、50mLにメスアップしてpH7.0の基質ストック溶液を作成した。次に、所定濃度のミセルを20.7mU/mLのLDH溶液(PBS)に混合、37℃で1時間インキュベートした。この溶液を5μL取り、96wellプレート上で基質ストック溶液195μLと混合し、340nmの吸光度を20分間マイクロプレートリーダー(Tecan Infinite 200 PRO M Nano+)で測定し、吸光度の減少速度から酵素活性を算出し、未処理の場合を100%として残存酵素活性率を計算した。この結果を、図7A及び図7Bに示す。
[Maintenance of LDH activity by each micelle]
200 μL of NADH (63 mM) PBS solution and 500 μL of sodium pyruvate (10 mM) PBS solution were mixed and brought up to 50 mL to make a pH 7.0 substrate stock solution. Next, micelles of a predetermined concentration were mixed with a 20.7 mU/mL LDH solution (PBS) and incubated at 37° C. for 1 hour. Take 5 μL of this solution, mix with 195 μL of the substrate stock solution on a 96-well plate, measure the absorbance at 340 nm for 20 minutes with a microplate reader (Tecan Infinite 200 PRO M Nano+), calculate the enzyme activity from the rate of decrease in absorbance, The residual enzyme activity was calculated with the untreated case as 100%. The results are shown in FIGS. 7A and 7B.
 図7Aは、各濃度の各ミセルによるLDH活性維持を対比したグラフである。図7Aでは、それぞれの濃度ごとに、M1(左端)、M2(中央)、M3(右端)の値が示されている。図7Aに示すように、1~2mg/mLという非常に低い濃度においても、M1~M3いずれにおいても高い残存活性を示すことが分かった。図7Aに示すように、いずれの濃度においても高い残存活性を示すことが分かった。特にM1は、0.5mg/mLにおいては60%、0.75mg/mLにおいては66%、1mg/mLにおいては76%、1.5mg/mLにおいては88%、2mg/mLにおいては94%という高い残存活性率を示した。またM2は、0.5mg/mLにおいては63%、0.75mg/mLにおいては68%、1mg/mLにおいては73%、1.5mg/mLにおいては87%、2mg/mLにおいては89%という高い残存活性率を示した。またM3は、0.75mg/mLにおいては50%、1mg/mLにおいては63%、1.5mg/mLにおいては75%、2mg/mLにおいては82%という高い残存活性率を示した。 FIG. 7A is a graph comparing LDH activity maintenance by each micelle at each concentration. In FIG. 7A, the values of M1 (left end), M2 (middle), and M3 (right end) are shown for each density. As shown in FIG. 7A, even at very low concentrations of 1-2 mg/mL, all of M1-M3 exhibited high residual activity. As shown in FIG. 7A, it was found that high residual activity was exhibited at any concentration. Specifically, M1 was 60% at 0.5 mg/mL, 66% at 0.75 mg/mL, 76% at 1 mg/mL, 88% at 1.5 mg/mL, and 94% at 2 mg/mL. It showed a high residual activity rate. M2 was 63% at 0.5 mg/mL, 68% at 0.75 mg/mL, 73% at 1 mg/mL, 87% at 1.5 mg/mL, and 89% at 2 mg/mL. It showed a high residual activity rate. M3 also showed a high residual activity rate of 50% at 0.75 mg/mL, 63% at 1 mg/mL, 75% at 1.5 mg/mL, and 82% at 2 mg/mL.
 図7Bは、各濃度のPSミセル(M4)によるLDH活性維持を対比したグラフである。図7Bに示すように、いずれの濃度においても高い残存活性を示すことが分かった。特に、0.75mg/mLにおいては61%、1mg/mLにおいては72%という高い残存活性率を示した。 FIG. 7B is a graph comparing LDH activity maintenance by each concentration of PS micelles (M4). As shown in FIG. 7B, it was found that high residual activity was exhibited at any concentration. In particular, it showed a high residual activity rate of 61% at 0.75 mg/mL and 72% at 1 mg/mL.
[CDスペクトル測定]
 LDHの2次構造変化を評価するためCDスペクトル測定を行った。
 最終濃度0.1mg/mL(PBS)のLDH溶液へ、各ミセルを濃度2mg/mLで添加して、JASCO-820分光器のセルに導入し、30分間窒素ガス雰囲気下15℃に保ったのち、37℃1時間インキュベーションし、測定を行った。その結果を、図8A及び図8Bに示す。
[CD spectrum measurement]
CD spectrum was measured to evaluate the secondary structure change of LDH.
Each micelle was added to an LDH solution with a final concentration of 0.1 mg/mL (PBS) at a concentration of 2 mg/mL, introduced into a JASCO-820 spectrometer cell, and kept at 15° C. under a nitrogen gas atmosphere for 30 minutes. , 37° C. for 1 hour, and then measured. The results are shown in FIGS. 8A and 8B.
 図8Aは、各ミセルとともに37℃加熱したLDHのCDスペクトルのグラフである。図8Bは、CDスペクトルから評価したLDHの2次構造の維持の結果を示すグラフである。Incubated LDHは、ミセル不添加で同様にインキュベーションした実験の結果を示す。Native LDHは、ミセル不添加で、37℃1時間インキュベーションしなかった実験の結果を示す。 FIG. 8A is a graph of the CD spectrum of LDH heated at 37° C. together with each micelle. FIG. 8B is a graph showing the results of maintaining the secondary structure of LDH evaluated from the CD spectrum. Incubated LDH shows the results of the same incubation experiment without the addition of micelles. Native LDH indicates the results of an experiment in which micelles were not added and incubation was not performed at 37°C for 1 hour.
 図8Bは、CDスペクトル測定の結果に基づいて作成した各構造の含有割合を示す棒グラフである。図8Bでは、各カラムの上から1番目の区分が「Unordered」、2番目の区分が「Turns」、3番目の区分が「Strand」、4番目(各カラムの一番下)の区分が「Helix」の含有割合を示している。 FIG. 8B is a bar graph showing the content ratio of each structure created based on the results of CD spectrum measurement. In FIG. 8B, the first section from the top of each column is "Unordered", the second section is "Turns", the third section is "Strand", and the fourth (bottom of each column) section is " Helix" content.
 図8A及び図8Bに示されるように、無添加系のLDHに比べ、ミセル添加系は無添加系に比べて熱処理後も処理前の構造をほぼ維持していることが分かった。 As shown in FIGS. 8A and 8B, it was found that the micelle-added system substantially maintained the structure before the treatment even after the heat treatment, compared to the additive-free LDH.
[各ミセルの分離性の検討]
 各ミセル(2mg/mL)存在下でLDH溶液(LDH 0.2mg/mL)を37℃30分間インキュベートした後、16000回転(13100g)で90分遠心分離し、上清と沈殿に分けた。
[Examination of separability of each micelle]
After incubating an LDH solution (LDH 0.2 mg/mL) in the presence of each micelle (2 mg/mL) at 37° C. for 30 minutes, it was centrifuged at 16000 rpm (13100 g) for 90 minutes to separate the supernatant and the precipitate.
 上清中のタンパク質濃度をブラッドフォード法で測定したところ、M1で91.55 ± 2.83%、M2で92.75 ± 1.87%、M3で94.87 ± 1.29%の回収率であり、ミセルへの吸着によるタンパクの消失はほぼ見られなかった。 When the protein concentration in the supernatant was measured by the Bradford method, the recoveries were 91.55 ± 2.83% for M1, 92.75 ± 1.87% for M2, and 94.87 ± 1.29% for M3. , and almost no loss of protein due to adsorption to micelles was observed.
 また、回収したミセルは再利用可能であった。回収した上清のLDHは再度37℃で1時間インキュベートすることで凝集することも確認した。これらを後述の実験によって確認した。 In addition, the collected micelles were reusable. It was also confirmed that LDH in the collected supernatant aggregated by incubating again at 37° C. for 1 hour. These were confirmed by experiments described later.
[遠心分離したミセルの再分散性]
 図9に、PCLのミセルを用いて行った遠心分離実験による、遠心分離前の溶液の外観の画像(図9の左側)、遠心分離後の溶液(上清及び沈殿)外観の画像(図9の中央)、遠心分離後に再分散させた溶液の外観の画像(図9の右側)を示す。図9の右側の画像に示されるように、ミセルの分散性は高く、遠心後も再度分散させることが可能であった。
[Redispersibility of centrifuged micelles]
FIG. 9 shows an image of the appearance of the solution before centrifugation (left side of FIG. 9) and an image of the appearance of the solution (supernatant and precipitate) after centrifugation (FIG. 9) from the centrifugation experiment using PCL micelles. middle), and an image of the appearance of the redispersed solution after centrifugation (right side of FIG. 9). As shown in the image on the right side of FIG. 9, the micelles were highly dispersible and could be dispersed again after centrifugation.
[遠心分離して回収したLDHの凝集能の維持]
 遠心分離して回収した上清中のLDHは、再度37℃でインキュベートすることで白濁することから凝集能は残存していることが分かった。この実験結果を図10に示す。
[Maintenance of aggregation ability of LDH recovered by centrifugation]
LDH in the supernatant recovered by centrifugation became cloudy when incubated again at 37°C, indicating that the aggregation ability remained. The results of this experiment are shown in FIG.
 図10は、各ミセルへ吸着した後に、遠心分離して回収した上清を、再度37℃でインキュベートして再凝縮させた場合のUV吸光度(350nm)の変化を示すグラフである。図10のグラフの上側の曲線は遠心分離して回収した上清のLDHによる吸光度の変化を示し、図10のグラフの下側の曲線はそれまでに37℃インキュベーション処理をしたことがないLDHによる吸光度の変化を示す。 FIG. 10 is a graph showing the change in UV absorbance (350 nm) when the supernatant collected by centrifugation after adsorption to each micelle is reincubated at 37° C. and recondensed. The upper curve of the graph in FIG. 10 shows the change in absorbance due to LDH in the supernatant collected by centrifugation, and the lower curve of the graph in FIG. Shows change in absorbance.
[遠心分離して回収したLDHの酵素活性]
 37℃でインキュベートした後に、遠心分離して回収した上清中のLDHの酵素活性を、確認した。実験は、各ミセルによるLDH活性維持の実験と同様の条件で行った。この結果を図11に示す。
[Enzyme activity of LDH recovered by centrifugation]
After incubating at 37° C., the enzymatic activity of LDH in the supernatant recovered by centrifugation was confirmed. The experiment was conducted under the same conditions as the experiment for maintaining LDH activity with each micelle. The results are shown in FIG.
 図11は、37℃でインキュベートした後に、遠心分離して回収した上清中のLDHの酵素活性を示すグラフである。図11の横軸は、それぞれPCLミセルの濃度を示す。図11の縦軸はLDHの酵素活性の残存量であり、非加熱のLDH活性を100%とした場合の相対値となっている。図11のグラフは、PCLミセルのそれぞれの濃度ごとに、M1(左端)、M2(中央)、M3(右端)をミセルとして使用した場合のLDH酵素活性を示している。図11に示されるように、すべてのミセルでLDHは高い残存活性を示した。 FIG. 11 is a graph showing the enzymatic activity of LDH in the supernatant recovered by centrifugation after incubation at 37°C. The horizontal axis in FIG. 11 indicates the concentration of PCL micelles. The vertical axis of FIG. 11 represents the residual amount of LDH enzymatic activity, which is a relative value when the unheated LDH activity is taken as 100%. The graph in FIG. 11 shows the LDH enzymatic activity when M1 (leftmost), M2 (middle) and M3 (rightmost) are used as micelles for each concentration of PCL micelles. As shown in FIG. 11, LDH showed high residual activity in all micelles.
[実験例3]
[LDHの凍結による凝集に対する抑制効果]
 所定濃度のミセルを20.7mU/mLのLDH溶液(PBS)に混合し、-20℃の冷凍庫に24時間放置して凍結させ、室温にて解凍する作業を、15回繰り返した。この溶液を5μL取り、96wellプレート上で基質ストック溶液195μLと混合し、340nmの吸光度を20分間マイクロプレートリーダー(Tecan Infinite 200 PRO M Nano+)で測定し、吸光度の減少速度から酵素活性を算出し、未処理の場合を100%として残存酵素活性率を計算した。その結果を図12に示す。
[Experimental example 3]
[Inhibitory effect on aggregation due to freezing of LDH]
A micelle of a predetermined concentration was mixed with a 20.7 mU/mL LDH solution (PBS), left in a −20° C. freezer for 24 hours to freeze, and then thawed at room temperature, which was repeated 15 times. Take 5 μL of this solution, mix with 195 μL of the substrate stock solution on a 96-well plate, measure the absorbance at 340 nm for 20 minutes with a microplate reader (Tecan Infinite 200 PRO M Nano+), calculate the enzyme activity from the rate of decrease in absorbance, The residual enzyme activity was calculated with the untreated case as 100%. The results are shown in FIG.
 図12は、各濃度の各ミセルによるLDH活性維持を対比したグラフである。図12では、それぞれの濃度ごとに、M1(左端)、M2(中央)、M3(右端)の値が示されている。図12に示すように、ミセルを添加しない系(0mg/mL)ではほぼ活性が失われるのに対し、1~2mg/mLという非常に低い濃度においても、M1~M3いずれにおいても高い残存活性を示すことが分かった。 FIG. 12 is a graph comparing LDH activity maintenance by each micelle at each concentration. In FIG. 12, the values of M1 (left end), M2 (middle), and M3 (right end) are shown for each density. As shown in FIG. 12, the system without the addition of micelles (0 mg/mL) almost lost the activity, whereas even at a very low concentration of 1 to 2 mg/mL, high residual activity was observed in all of M1 to M3. found to show.
[実験例4]
[インスリンの凝集に対する抑制効果]
 図13は、各ミセルとともに37℃で1時間加熱したインスリン(100μM)の凝集率である。最終濃度が図13の横軸の濃度となるように各ミセルを混合して1mLとした。図13では、それぞれの濃度ごとに、M1(左端)、M2(中央)、M3(右端)の値が示されている。図13に示すように、ミセルを添加しない系(0mg/mL)ではほぼ100%凝集しているのに対し、0.25~2mg/mLという非常に低い濃度においても、M1~M3いずれにおいても高い抑制能を示すことが分かった。
[Experimental example 4]
[Inhibitory effect on insulin aggregation]
FIG. 13 is the aggregation rate of insulin (100 μM) heated at 37° C. for 1 hour with each micelle. Each micelle was mixed so that the final concentration was the concentration on the horizontal axis of FIG. 13 to make 1 mL. In FIG. 13, the values of M1 (left end), M2 (middle), and M3 (right end) are shown for each density. As shown in FIG. 13, the system without the addition of micelles (0 mg/mL) showed almost 100% aggregation, whereas even at extremely low concentrations of 0.25-2 mg/mL, any of M1-M3 It was found to exhibit high inhibitory ability.
 図14は各ミセル(2mg/mL)とともに37℃加熱したインスリン(10μM)のCDスペクトルのグラフである。Insulin-heatは、ミセル不添加で同様にインキュベーションした実験の結果を示す。Insulin Nativeは、ミセル不添加で、37℃1時間インキュベーションしなかった実験の結果を示す。Insulin-heatでは高次構造を示す曲線が大きく変化しているのに対し、M1-M3添加系ではInsulin Nativeに近い構造を有していることがわかる。 FIG. 14 is a CD spectrum graph of insulin (10 μM) heated at 37° C. together with each micelle (2 mg/mL). Insulin-heat shows the results of the same incubation experiment without the addition of micelles. Insulin Native indicates the results of an experiment in which micelles were not added and incubation was not performed at 37°C for 1 hour. Insulin-heat shows a large change in the curve showing the higher-order structure, whereas the M1-M3 addition system has a structure close to that of insulin native.
[実験例5]
[毒性試験]
 マウス線維芽細胞L929を使って各ミセルの細胞毒性を調べた。L929は10%血清入りダルベッコ変法イーグル培地(DMEM)にて37℃、5%CO環境下で培養した。96wellプレートに1000個の細胞を播種し、72時間培養後、各ミセルを所定濃度となるように培地中に添加した。24時間後、100μg/mLとなるように3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT)を添加し、4時間後に培地を捨て、100μLのジメチルスルホキシドを添加して色素を抽出し、540nmの吸光度を測定した。ミセルを添加しなかった系の吸光度を生存率100%として、各濃度における吸光度から生存率を算出した。
[Experimental example 5]
[Toxicity test]
Cytotoxicity of each micelle was examined using mouse fibroblast L929. L929 was cultured in 10% serum-containing Dulbecco's Modified Eagle's Medium (DMEM) at 37° C. under 5% CO 2 environment. 1,000 cells were seeded in a 96-well plate, cultured for 72 hours, and each micelle was added to the medium at a predetermined concentration. After 24 hours, 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was added to 100 μg/mL, the medium was discarded after 4 hours, and 100 μL of dimethyl sulfoxide was added. The dye was extracted by addition and the absorbance at 540 nm was measured. The survival rate was calculated from the absorbance at each concentration, assuming that the absorbance of the system to which micelles were not added was 100%.
 図15はそれぞれの濃度ごとに、M1(左端)、M2(中央)、M3(右端)の値が示されている。凝集抑制効果の高かった2mg/mLよりも5倍濃度である10mg/mLにおいても細胞の生存率は高く維持されており、ミセルの低毒性が示された。 FIG. 15 shows the values of M1 (left end), M2 (middle), and M3 (right end) for each density. Even at 10 mg/mL, which is five times the concentration of 2 mg/mL at which the anticoagulant effect was high, the survival rate of the cells was maintained at a high level, indicating low toxicity of the micelles.
 本発明は、新規なタンパク質凝集抑制剤を提供する。本発明は産業上有用な発明である。 The present invention provides a novel protein aggregation inhibitor. The present invention is an industrially useful invention.

Claims (15)

  1.  式Iで表されるトリチオカルボネート化合物と、式IIで表される糖モノマー化合物と、式IIIで表される双性イオンモノマー化合物を、重合反応させて、式IVで表されるポリマー化合物を製造する方法:

    R1-S-(C=S)-S-R2  (式I)

    R3-R7-C(R4)=CH  (式II)

    CH=C(R6)-R8―R5  (式III)

     (式IV)
    Figure JPOXMLDOC01-appb-I000001

    (式Iにおいて、
     R1は、修飾又は被修飾のポリエチレン構造を有するポリマー鎖、修飾又は被修飾のポリスチレン構造を有するポリマー鎖、又は修飾又は被修飾のポリカプロラクトン構造を有するポリマー鎖の一価基であり、
     R2は、C6~C24のアルキル基であり、
     式IIにおいて、
     R3は、還元性又は非還元性の、単糖類又は二糖類の一価基であり、
     R4は、水素原子、又はメチル基であり、
     式IIIにおいて、
     R5は、第四級アンモニウムカチオン及びスルホン酸基を有する双性イオン化合物の一価基であり、
     R6は、水素原子、又はメチル基であり、
     R7は、-(C=O)-O-、-(C=O)-NH―、及び-(O=S=O)―から選択された二価基であり(ただし、R3とは、-(C=O)-O-R3、-(C=O)-NH―R3、及び-(O=S=O)―R3の位置で結合する)、
     R8は、-(C=O)-O-、-(C=O)-NH―、及び-(O=S=O)―から選択された二価基であり(ただし、R5とは、-(C=O)-O-R5、-(C=O)-NH―R5、及び-(O=S=O)―R5の位置で結合する)、
     式IVにおいて、
     R1、R3、R4、R5、R6、R7、R8は、いずれも上述の基であり、
     xは、繰り返し単位の平均重合度であって、10~500であり、
     yは、繰り返し単位の平均重合度であって、10~1000であり、
     -r-は、-r-の両側に記載された繰り返し単位が、ランダム共重合してランダム共重合体となっていることを示し、
     -b-は、-b-の両側に記載された繰り返し単位が、ブロック共重合してブロック共重合体となっていることを示し、
     mは、繰り返し単位の繰り返し数であって、1である)。
    A trithiocarbonate compound represented by Formula I, a sugar monomer compound represented by Formula II, and a zwitterionic monomer compound represented by Formula III are polymerized to obtain a polymer compound represented by Formula IV. How to manufacture:

    R1-S-(C=S)-S-R2 (Formula I)

    R3-R7-C(R4)= CH2 (Formula II)

    CH2 =C(R6)-R8-R5 (Formula III)

    (Formula IV)
    Figure JPOXMLDOC01-appb-I000001

    (In Formula I,
    R1 is a monovalent group of a polymer chain having a modified or unmodified polyethylene structure, a polymer chain having a modified or unmodified polystyrene structure, or a polymer chain having a modified or unmodified polycaprolactone structure;
    R2 is a C6-C24 alkyl group,
    In formula II,
    R3 is a reducing or non-reducing, mono- or disaccharide monovalent group;
    R4 is a hydrogen atom or a methyl group,
    In formula III,
    R5 is a monovalent radical of a zwitterionic compound having a quaternary ammonium cation and a sulfonic acid group;
    R6 is a hydrogen atom or a methyl group,
    R7 is a divalent group selected from -(C=O)-O-, -(C=O)-NH-, and -(O=S=O)-, where R3 is - (C=O)-O-R, -(C=O)-NH-R, and -(O=S=O)-R3),
    R8 is a divalent group selected from -(C=O)-O-, -(C=O)-NH-, and -(O=S=O)-, where R5 is - (C=O)-O-R5, -(C=O)-NH-R5, and -(O=S=O)-R5),
    In formula IV,
    R1, R3, R4, R5, R6, R7, and R8 are all the groups described above,
    x is the average degree of polymerization of the repeating unit and is 10 to 500,
    y is the average degree of polymerization of the repeating unit and is 10 to 1000,
    -r- indicates that the repeating units described on both sides of -r- are randomly copolymerized to form a random copolymer,
    -b- indicates that the repeating units described on both sides of -b- are block copolymerized to form a block copolymer,
    m is the repeating number of the repeating unit and is 1).
  2.  式Iで表されるトリチオカルボネート化合物が、次の式Ia又は式Ibで表される化合物である、請求項1に記載の製造方法:
     式Ia:
    Figure JPOXMLDOC01-appb-I000002
     式Ib:
    Figure JPOXMLDOC01-appb-I000003
    (式Iaにおいて、
     nは、繰り返し単位の平均重合度であって、10~100であり、
     R2は、式IにおけるR2と同じ基であり、
     式Ibにおいて、
     lは、繰り返し単位の平均重合度であって、10~100であり、
     R2は、式IにおけるR2と同じ基である)。
    2. The process according to claim 1, wherein the trithiocarbonate compound of Formula I is a compound of Formula Ia or Formula Ib:
    Formula Ia:
    Figure JPOXMLDOC01-appb-I000002
    Formula Ib:
    Figure JPOXMLDOC01-appb-I000003
    (In Formula Ia,
    n is the average degree of polymerization of the repeating unit and is 10 to 100,
    R2 is the same group as R2 in formula I,
    In Formula Ib,
    l is the average degree of polymerization of the repeating unit and is 10 to 100,
    R2 is the same group as R2 in Formula I).
  3.  式IIで表される糖モノマー化合物が、次の式IIaで表される化合物である、請求項1~2のいずれかに記載の製造方法:
     式IIa:
    Figure JPOXMLDOC01-appb-I000004
    The production method according to any one of claims 1 and 2, wherein the sugar monomer compound represented by formula II is a compound represented by the following formula IIa:
    Formula IIa:
    Figure JPOXMLDOC01-appb-I000004
  4.  式IIIで表される双性イオンモノマー化合物が、次の式IIIaで表される化合物である、請求項1~3のいずれかに記載の製造方法:
     式IIIa:
    CH=CH-(C=O)-NH―R51-[N(R52)-R53-SO

    (式IIIaにおいて、
     R51は、C1~C4のアルキレン基であり、
     R52は、C1~C4のアルキル基であり、
     R53は、C1~C4のアルキレン基である)。
    A process according to any one of claims 1 to 3, wherein the zwitterionic monomeric compound of formula III is a compound of formula IIIa:
    Formula IIIa:
    CH 2 =CH-(C=O)-NH-R51-[N(R52) 2 ] + -R53-SO 3 -

    (In Formula IIIa,
    R51 is a C1-C4 alkylene group,
    R52 is a C1-C4 alkyl group,
    R53 is a C1-C4 alkylene group).
  5.  式IIIで表される双性イオンモノマー化合物が、次の式IIIbで表される化合物である、請求項1~4のいずれかに記載の製造方法:
     式IIIb:
    Figure JPOXMLDOC01-appb-I000005
    A process according to any one of claims 1 to 4, wherein the zwitterionic monomeric compound of formula III is a compound of formula IIIb:
    Formula IIIb:
    Figure JPOXMLDOC01-appb-I000005
  6.  式IVで表されるポリマー化合物が、次の式IVaで表される化合物である、請求項1~5のいずれかに記載の製造方法:
     式IVa:
    Figure JPOXMLDOC01-appb-I000006

    (式IVaにおいて、
     R1、x、y、m、-b-、―r-は、いずれも式IVにおけるR1、x、y、m、-b-、―r-と同じである)。
    A process according to any one of claims 1 to 5, wherein the polymeric compound of formula IV is a compound of formula IVa:
    Formula IVa:
    Figure JPOXMLDOC01-appb-I000006

    (In Formula IVa,
    R1, x, y, m, -b- and -r- are all the same as R1, x, y, m, -b- and -r- in formula IV).
  7.  式IVで表されるポリマー化合物が、次の式IVb又は式IVcで表される化合物である、請求項1~6のいずれかに記載の製造方法:
     式IVb:
    Figure JPOXMLDOC01-appb-I000007

     式IVc:
    Figure JPOXMLDOC01-appb-I000008

    (式IVbにおいて、
     nは、繰り返し単位の平均重合度であって、10~100であり、
     x、y、m、-b-、―r-は、いずれも式IVにおけるx、y、m、-b-、―r-と同じであり、
     式IVcにおいて、
     lは、繰り返し単位の平均重合度であって、10~100であり、
     x、y、m、-b-、―r-は、いずれも式IVにおけるx、y、m、-b-、―r-と同じである)。
    The process according to any one of claims 1 to 6, wherein the polymeric compound represented by formula IV is a compound represented by formula IVb or formula IVc:
    Formula IVb:
    Figure JPOXMLDOC01-appb-I000007

    Formula IVc:
    Figure JPOXMLDOC01-appb-I000008

    (In formula IVb,
    n is the average degree of polymerization of the repeating unit and is 10 to 100,
    x, y, m, -b-, -r- are all the same as x, y, m, -b-, -r- in formula IV,
    In Formula IVc,
    l is the average degree of polymerization of the repeating unit and is 10 to 100,
    x, y, m, -b- and -r- are all the same as x, y, m, -b- and -r- in Formula IV).
  8.  請求項1~7のいずれかに記載の製造方法によって製造された式IVで表されるポリマー化合物を、水溶液中に分散することによって、式IVで表されるポリマー化合物からなるミセルを製造する方法。 A method for producing micelles comprising a polymer compound represented by Formula IV by dispersing the polymer compound represented by Formula IV produced by the production method according to any one of claims 1 to 7 in an aqueous solution. .
  9.  請求項1に記載の式IV、請求項6に記載の式IVa、又は請求項7に記載の式IVb又は式IVcで表されるポリマー化合物。 A polymer compound represented by Formula IV according to claim 1, Formula IVa according to claim 6, or Formula IVb or Formula IVc according to claim 7.
  10.  請求項9に記載のポリマー化合物からなるミセル。 A micelle made of the polymer compound according to claim 9.
  11.  請求項9に記載のポリマー化合物、又は請求項10に記載のポリマー化合物からなるミセルを含んでなる、タンパク質凝集抑制剤。 A protein aggregation inhibitor comprising a micelle comprising the polymer compound according to claim 9 or the polymer compound according to claim 10.
  12.  タンパク質凝集抑制剤が、保護対象タンパク質へ混合して凝集抑制した後に保護対象タンパク質から分離可能なタンパク質凝集抑制剤である、請求項11に記載のタンパク質凝集抑制剤。 The protein aggregation inhibitor according to claim 11, which is a protein aggregation inhibitor that can be separated from the protein to be protected after being mixed with the protein to be protected to inhibit aggregation.
  13.  請求項9に記載のポリマー化合物、又は請求項10に記載のポリマー化合物からなるミセルを、タンパク質水溶液と混合する工程、を含む、タンパク質の凝集を抑制する方法。 A method for inhibiting protein aggregation, comprising the step of mixing the polymer compound according to claim 9 or a micelle comprising the polymer compound according to claim 10 with an aqueous protein solution.
  14.  請求項9に記載のポリマー化合物、又は請求項10に記載のポリマー化合物からなるミセルを、タンパク質水溶液と混合する工程、を含む、凝集抑制されたタンパク質水溶液を製造する方法。 A method for producing an aggregation-suppressed aqueous protein solution, comprising the step of mixing the polymer compound according to claim 9 or a micelle comprising the polymer compound according to claim 10 with an aqueous protein solution.
  15.  請求項14に記載の製造方法によって製造された凝集抑制されたタンパク質水溶液から、上記ポリマー化合物又はポリマー化合物からなるミセルを分離することによって、タンパク質水溶液を得る工程、
    を含む、タンパク質水溶液を製造する方法。
    A step of obtaining an aqueous protein solution by separating the polymer compound or micelles comprising the polymer compound from the aggregation-inhibited aqueous protein solution produced by the production method according to claim 14;
    A method for producing an aqueous protein solution, comprising:
PCT/JP2022/043739 2021-11-30 2022-11-28 Protein aggregation inhibitor WO2023100795A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023564953A JPWO2023100795A1 (en) 2021-11-30 2022-11-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-194747 2021-11-30
JP2021194747 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100795A1 true WO2023100795A1 (en) 2023-06-08

Family

ID=86612225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043739 WO2023100795A1 (en) 2021-11-30 2022-11-28 Protein aggregation inhibitor

Country Status (2)

Country Link
JP (1) JPWO2023100795A1 (en)
WO (1) WO2023100795A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110281934A1 (en) * 2008-11-06 2011-11-17 Phaserx, Inc. Micelles of hydrophilically shielded membrane-destabilizing copolymers
JP2017524790A (en) * 2014-08-13 2017-08-31 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Biodegradable trehalose glycopolymer
US20200281855A1 (en) * 2017-09-18 2020-09-10 Texas Tech University System Polymer Nanodiscs for Biotechnology and Medical Applications
JP2021003020A (en) * 2019-06-25 2021-01-14 日油株式会社 Protein stabilizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110281934A1 (en) * 2008-11-06 2011-11-17 Phaserx, Inc. Micelles of hydrophilically shielded membrane-destabilizing copolymers
JP2017524790A (en) * 2014-08-13 2017-08-31 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Biodegradable trehalose glycopolymer
US20200281855A1 (en) * 2017-09-18 2020-09-10 Texas Tech University System Polymer Nanodiscs for Biotechnology and Medical Applications
JP2021003020A (en) * 2019-06-25 2021-01-14 日油株式会社 Protein stabilizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN JIUCUN, LIU MINGZHU: "Amphiphilic block copolymer micelles with fluorescence as nano-carriers for doxorubicin delivery", RSC ADVANCES, vol. 4, no. 19, 1 January 2014 (2014-01-01), pages 9684, XP093070112, DOI: 10.1039/c3ra47026a *

Also Published As

Publication number Publication date
JPWO2023100795A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
Zhang et al. RAFT-mediated one-pot aqueous emulsion polymerization of methyl methacrylate in presence of poly (methacrylic acid-co-poly (ethylene oxide) methacrylate) trithiocarbonate macromolecular chain transfer agent
Roy et al. Sugar-responsive block copolymers by direct RAFT polymerization of unprotected boronic acid monomers
Donovan et al. Sulfobetaine‐containing diblock and triblock copolymers via reversible addition‐fragmentation chain transfer polymerization in aqueous media
Shi et al. Synthesis of Hyperbranched Polyethylene Amphiphiles by Chain Walking Polymerization in Tandem with RAFT Polymerization and Supramolecular Self‐Assembly Vesicles
Wenn et al. Efficient multiblock star polymer synthesis from photo-induced copper-mediated polymerization with up to 21 arms
Lenoir et al. New antibacterial cationic surfactants prepared by atom transfer radical polymerization
Deng et al. Novel well‐defined glycopolymers synthesized via the reversible addition fragmentation chain transfer process in aqueous media
Dai et al. Synthesis, self‐assembly and recognition properties of biomimetic star‐shaped poly (ε‐caprolactone)‐b‐glycopolymer block copolymers
León et al. Well‐controlled amphiphilic block glycopolymers and their molecular recognition with lectins
Xiao et al. Brush macro‐RAFT agent mediated dispersion polymerization of styrene in the alcohol/water mixture
Song et al. Graphene/tri-block copolymer composites prepared via RAFT polymerizations for dual controlled drug delivery via pH stimulation and biodegradation
Li et al. Multiple morphologies of aggregates from block copolymers containing glycopolymer segments
Qu et al. Synthesis of block copolymer nano-assemblies via ICAR ATRP and RAFT dispersion polymerization: how ATRP and RAFT lead to differences
Lee et al. Synthesis and characterization of thermosensitive chitosan copolymer as a novel biomaterial
JP6593931B2 (en) Poly (ethylene glycol) -b-poly (halomethylstyrene), derivatives thereof and production
US6767968B1 (en) ABA-type block copolymers having a random block of hydrophobic and hydrophilic monomers and methods of making same
Zhang et al. Thermo‐responsive fluorescent micelles from amphiphilic A3B miktoarm star copolymers prepared via a combination of SET‐LRP and RAFT polymerization
JP5897581B2 (en) Controlled free radical polymerization of N-vinyl lactam in aqueous media
Qian et al. A new visible light and temperature responsive diblock copolymer
Qi et al. Emulsion and controlled miniemulsion polymerization of the renewable monomer γ‐methyl‐α‐methylene‐γ‐butyrolactone
WO2023100795A1 (en) Protein aggregation inhibitor
Xin et al. Synthesis of zwitterionic block copolymers via RAFT polymerization
Pafiti et al. High‐molecular‐weight symmetrical multiblock copolymers: Synthesis by RAFT polymerization and characterization
Mori et al. Controlled synthesis of sulfonated block copolymers having thermoresponsive property by RAFT polymerization of vinyl sulfonate esters
Abbasian et al. Synthesis of Chitosan-Graft-Poly (Acrylic Acid) Using 4-Cyano-4-[(Phenylcarbothioyl) Sulfanyl] Pentanoic Acid to Serve as RAFT Agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023564953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE