WO2023100746A1 - Working medium - Google Patents

Working medium Download PDF

Info

Publication number
WO2023100746A1
WO2023100746A1 PCT/JP2022/043431 JP2022043431W WO2023100746A1 WO 2023100746 A1 WO2023100746 A1 WO 2023100746A1 JP 2022043431 W JP2022043431 W JP 2022043431W WO 2023100746 A1 WO2023100746 A1 WO 2023100746A1
Authority
WO
WIPO (PCT)
Prior art keywords
propane
content
hfo
mass
working medium
Prior art date
Application number
PCT/JP2022/043431
Other languages
French (fr)
Japanese (ja)
Inventor
洋輝 速水
正人 福島
秀一 岡本
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023100746A1 publication Critical patent/WO2023100746A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa

Definitions

  • the present disclosure relates to working media.
  • CFCs chlorofluorocarbons
  • HCFCs hydrochlorofluorocarbons
  • HFC-32 difluoromethane
  • HFC-125 pentafluoroethane
  • HFC-125 hydrofluorocarbons
  • R410A a quasi-azeotropic mixture of HFC-32 and HFC-125 at a mass ratio of 1:1
  • HFCs may cause global warming.
  • R410A Due to its high refrigeration capacity, R410A has been widely used in ordinary air conditioning equipment such as so-called packaged air conditioners and room air conditioners. However, R410A has a high global warming potential (GWP) of 2088. Therefore, development of low GWP refrigerants is required. At this time, there is a demand for the development of a refrigerant on the premise of simply replacing R410A and continuing to use the devices that have been used as they are.
  • GWP global warming potential
  • HFO hydrofluoroolefins
  • HFO-1123 1,1,2-trifluoroethylene
  • HFO-1132 E-1,2-difluoroethylene
  • Techniques are disclosed. For HFO-1123 and HFO-1132(E), it is effective to combine other media such as HFC and HFO to form a working medium for the purpose of enhancing the cycle performance of these components.
  • propane which has a low GWP and excellent performance as a refrigerant
  • propane which has a low GWP and excellent performance as a refrigerant
  • development of a working medium containing propane is desired.
  • One aspect of the present disclosure has been made in view of the above-described conventional circumstances, and an object thereof is to provide a working medium containing propane and having excellent performance as a refrigerant.
  • Concrete means for achieving the above object are as follows. ⁇ 1> with propane; at least one of 1,1,2-trifluoroethylene and (E)-1,2-difluoroethylene; 2,3,3,3-tetrafluoro-1-propene, (E)-1,3,3,3-tetrafluoropropene, difluoromethane, CO 2 , CF 3 I, (Z)-1-chloro-2 , 3,3,3-tetrafluoropropene, (E)-1-chloro-2,3,3,3-tetrafluoropropene, (E)-1-chloro-3,3,3-trifluoropropene, ( E)-1,1,1,4,4,4-hexafluoro-2-butene, (Z)-1,2,3,3,3-pentafluoropropene, and (E)-1,2,3 , and at least one third component selected from the group consisting of 3,3-pentafluoropropene, A working medium having a heat of
  • ⁇ 2> containing propane, 1,1,2-trifluoroethylene, and 2,3,3,3-tetrafluoro-1-propene
  • the mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 5:95 to 29:71
  • the content of 2,3,3,3-tetrafluoro-1-propene is the total content of propane, 1,1,2-trifluoroethylene, and 2,3,3,3-tetrafluoro-1-propene 10.5 to 25.0% by mass with respect to
  • the total content of propane, 1,1,2-trifluoroethylene, and 2,3,3,3-tetrafluoro-1-propene is 80% by mass or more relative to the total amount of the working medium, ⁇ 1>
  • the working medium according to .
  • ⁇ 3> containing propane, 1,1,2-trifluoroethylene, and difluoromethane;
  • the mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 18:82 to 22:78,
  • ⁇ 4> containing propane, 1,1,2-trifluoroethylene, and difluoromethane;
  • the mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 5:95 to 23:77,
  • ⁇ 5> containing propane, 1,1,2-trifluoroethylene, and difluoromethane;
  • the mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 18.9:81.1 to 23:77,
  • ⁇ 6> containing propane, 1,1,2-trifluoroethylene, and (E)-1,3,3,3-tetrafluoropropene
  • the propane content is 25.0% by mass or less with respect to the total content of propane and 1,1,2-trifluoroethylene
  • (E)-1,3,3,3-tetrafluoropropene content is the sum of propane, 1,1,2-trifluoroethylene
  • the working medium according to ⁇ 1> wherein the total content is 78.5% by mass or more relative to the total amount of the working medium.
  • ⁇ 7> containing propane, 1,1,2-trifluoroethylene, and (E)-1,3,3,3-tetrafluoropropene
  • the propane content is 10% by mass or less with respect to the total content of propane and 1,1,2-trifluoroethylene
  • (E)-1,3,3,3-tetrafluoropropene content is the sum of propane, 1,1,2-trifluoroethylene
  • (E)-1,3,3,3-tetrafluoropropene The working medium according to ⁇ 1>, wherein the content is 15.0% by mass or less.
  • ⁇ 8> containing propane, 1,1,2-trifluoroethylene, and (E)-1,3,3,3-tetrafluoropropene
  • the propane content is 20.0% by mass or less with respect to the total content of propane and 1,1,2-trifluoroethylene
  • (E)-1,3,3,3-tetrafluoropropene content is the sum of propane, 1,1,2-trifluoroethylene
  • the working medium according to ⁇ 1> having a content of 9.0% by mass or less.
  • ⁇ 9> containing propane, 1,1,2-trifluoroethylene, and CO2 ,
  • the content of 1,1,2-trifluoroethylene with respect to the total content of propane, 1,1,2-trifluoroethylene, and CO 2 is X 1 % by mass, and the content of CO 2 with respect to the above total content is Y
  • X 1 and Y 1 satisfy the following formula (1),
  • ⁇ 11> containing propane, 1,1,2-trifluoroethylene, and CF 3 I
  • X 2 and Y 2 satisfy the following formula (2A)
  • the working medium according to ⁇ 1> which contains propane, (E)-1,2-difluoroethylene, and a third component, and has a combustion heat quantity of less than 15.250 MJ/kg.
  • ⁇ 14> containing propane, (E)-1,2-difluoroethylene, and a third component,
  • ⁇ 15> containing propane, 1,1,2-trifluoroethylene, 2,3,3,3-tetrafluoro-1-propene, and difluoromethane;
  • the content of difluoromethane with respect to the total content of propane, 1,1,2-trifluoroethylene, 2,3,3,3-tetrafluoro-1-propene, and difluoromethane is A mass%, with respect to the total content
  • the content of 2,3,3,3-tetrafluoro-1-propene is B% by mass
  • the content of propane with respect to the above total content is C% by mass
  • 1,1,2-trifluoroethylene with respect to the above total content
  • the content of difluoromethane with respect to the total content of propane, 1,1,2-trifluoroethylene, (E)-1,3,3,3-tetrafluoropropene, and difluoromethane is E mass%, the above total content
  • the content of difluoromethane with respect to the total content of propane, 1,1,2-trifluoroethylene, CO 2 and difluoromethane is J mass%
  • the content of CO 2 with respect to the above total content is K mass%
  • the above total When the content of propane with respect to the content is L mass%, and the content of 1,1,2-trifluoroethylene with respect to the total content is M mass%
  • J, K, L, and M are represented by the following formula ( The working medium according to ⁇ 1>, which satisfies 5A) to (5D).
  • the working medium according to ⁇ 1> containing propane, 1,1,2-trifluoroethylene, CF 3 I, and difluoromethane.
  • ⁇ 19> containing propane, 1,1,2-trifluoroethylene, and 2,3,3,3-tetrafluoro-1-propene,
  • the content of 2,3,3,3-tetrafluoro-1-propene is the total content of propane, 1,1,2-trifluoroethylene, and 2,3,3,3-tetrafluoro-1-propene 25.0 to 70.0% by mass with respect to
  • the propane content is 9.0% by mass or less with respect to the total content
  • the working medium according to ⁇ 1> wherein the total content is 78.5% by mass or more relative to the total amount of the working medium.
  • a working medium containing propane and having excellent performance as a refrigerant is provided.
  • FIG. 1 is a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1234yf.
  • FIG. 2 shows a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1234ze(E).
  • FIG. 3 is a ternary diagram of the ternary system of propane, HFO-1123 and HFC-32.
  • FIG. 4 is a ternary diagram of the ternary system of propane, HFO-1123 and CO 2 .
  • FIG. 5 is a ternary diagram of the propane, HFO-1123 and CF 3 I ternary system.
  • FIG. 6 is a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1132(E).
  • FIG. 1 is a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1234yf.
  • FIG. 2 shows a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1234ze(
  • FIG. 7 is a ternary diagram of the ternary system of propane, HFO-1132(E) and HFO-1234yf.
  • FIG. 8 is a ternary diagram of the ternary system of propane, HFO-1132(E) and HFO-1234ze(E).
  • FIG. 9 is a ternary diagram of the ternary system of propane, HFO-1132(E) and HFC-32.
  • FIG. 10 is a ternary diagram of the ternary system of propane, HFO-1132(E) and CO 2 .
  • FIG. 11 is a ternary diagram of the ternary system of propane, HFO-1132(E) and CF 3 I.
  • FIG. 12 is a schematic configuration diagram showing an example of a refrigeration cycle system.
  • FIG. 13 is a cycle diagram showing changes in the state of the working medium in the refrigeration cycle system on a pressure-enthalpy diagram.
  • FIG. 14 is a cycle diagram showing changes in the state of the working medium in the refrigeration cycle system on
  • a numerical range indicated using “to” means a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step.
  • upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
  • the amount of each component in the composition is the total amount of the multiple substances present in the composition unless otherwise specified. means. In the present disclosure, a combination of two or more preferred aspects is a more preferred aspect.
  • the working medium of the present disclosure comprises propane, at least one of HFO-1123 and HFO-1132 (E), and 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), (E)-1 , 3,3,3-tetrafluoropropene (HFO-1234ze(E)), HFC-32, CO 2 , CF 3 I, (Z)-1-chloro-2,3,3,3-tetrafluoropropene ( HCFO-1224yd(Z)), (E)-1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd(E)), (E)-1-chloro-3,3,3- Trifluoropropene (HFO-1233zd(E)), (E)-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz(E)), (Z)-1,2 , 3,3,3-pentafluoropropene (HFO-1234y
  • the working medium means a medium that carries heat, and is a concept that includes refrigerant compositions and heat medium compositions.
  • the refrigerant composition is a medium mainly responsible for cooling the heat source, but may also be used as a medium responsible for heating at the same time.
  • the heat transfer medium composition is a medium mainly responsible for heating, but may also be used as a medium responsible for cooling the heat source at the same time.
  • the working medium of the present disclosure includes propane together with at least one of HFO-1123 and HFO-1132(E), HFO-1234yf, HFO-1234ze(E), HFC-32, CO 2 , CF 3 I, HCFO-1224yd ( Z), HCFO-1224yd (E), HFO-1233zd (E), HFO-1336mzz (E), HFO-1225ye (Z), and at least one selected from the group consisting of HFO-1225ye (E)
  • propane can be effectively used as a refrigerant.
  • HFO-1234yf, HFO-1234ze (E), HFC-32, CO 2 , CF 3 I, HCFO-1224yd (Z), HCFO-1224yd (E), HFO-1233zd (E), HFO-1336mzz ( E), HFO-1225ye (Z), and at least one selected from the group consisting of HFO-1225ye (E)" is also referred to as a third component.
  • the third component preferably has a boiling point of 0°C or less, more preferably -5°C or less, and comes out at -10°C. is more preferred, and -15°C or lower is particularly preferred.
  • the lower limit of the boiling point is not particularly limited, and is -80°C, for example.
  • the working medium of the present disclosure comprises propane, at least one of HFO-1123 and HFO-1132(E), HFO-1234yf, HFO-1234ze(E), HFC-32, CO 2 and CF and at least one selected from the group consisting of 3I .
  • the working medium of the present disclosure consists of propane, at least one of HFO-1123 and HFO-1132(E), and HFO-1234yf, HFO-1234ze(E), and HFC-32. It is further preferable to contain at least one selected from the group.
  • the working fluid of the present disclosure preferably contains HFO-1123 because of its slow burning rate and low heat of combustion.
  • HFO-1123 does not have isomers, it does not cause isomerization reaction during use of the working medium, and has excellent stability. That is, the working medium of the present disclosure includes propane, HFO-1123, HFO-1234yf, HFO-1234ze (E), HFC-32, CO 2 , CF 3 I, HCFO-1224yd (Z), HCFO-1224yd ( E), HFO-1233zd (E), HFO-1336mzz (E), HFO-1225ye (Z), and at least one selected from the group consisting of HFO-1225ye (E).
  • the working medium of the present disclosure includes at least one selected from the group consisting of propane, HFO-1123, HFO-1234yf, HFO-1234ze(E), HFC-32, CO 2 and CF 3 I. , is more preferred. Further, the working medium of the present disclosure further contains propane, HFO-1123, and at least one selected from the group consisting of HFO-1234yf, HFO-1234ze(E), and HFC-32. preferable.
  • the content of propane in the working medium of the present disclosure is not particularly limited as long as the amount of combustion heat of the working medium as a whole is within the range of less than 19.000 MJ/kg.
  • the content of propane is preferably 1.0% by mass or more, more preferably 3.0% by mass or more, relative to the total amount of the working medium. , more preferably 5.0% by mass or more.
  • the propane content may be 40.0% by mass or less relative to the total amount of the working medium.
  • the content of propane is preferably 1.0 to 30.0% by mass with respect to the total amount of the working medium from the viewpoint of making the combustion heat amount of the working medium as a whole less than 19.000 MJ / kg. 0 to 25.0% by mass, and even more preferably 1.0 to 23.0% by mass.
  • the content of at least one of HFO-1123 and HFO-1132 (E) in the working medium of the present disclosure is particularly limited as long as the amount of heat of combustion of the working medium as a whole is within the range of less than 19.000 MJ / kg. not to be From the viewpoint of improving the performance of the working medium as a refrigerant, the content of at least one of HFO-1123 and HFO-1132 (E) is preferably 20.0% by mass or more with respect to the total amount of the working medium, It is more preferably 30.0% by mass or more, further preferably 40.0% by mass or more, particularly preferably 50.0% by mass or more, and most preferably 55.0% by mass or more. preferable.
  • the content of at least one of HFO-1123 and HFO-1132(E) may be 90.0% by mass or less, or may be 85% by mass or less, relative to the total amount of the working medium.
  • the content of at least one of HFO-1123 and HFO-1132(E) means the content of one component when the working medium contains HFO-1123 or HFO-1132(E), When the medium contains HFO-1123 and HFO-1132(E), it means the total content of each component.
  • the third component may be used singly or in combination of two or more.
  • the content of the main component in the third component is not particularly limited as long as the amount of combustion heat of the working medium as a whole is within the range of less than 19.000 MJ / kg. do not have.
  • the content of the main component in the third component is preferably 1.0% by mass or more with respect to the total amount of the working medium, and 5.0% by mass. It is more preferably 10.0% by mass or more, and more preferably 10.0% by mass or more.
  • the content of the main component in the third component is preferably 35.0% by mass or less with respect to the total amount of the working medium, and 30.0% by mass. It is more preferably 25.0% by mass or more, and more preferably 25.0% by mass or more.
  • the main component in the third component means the component when the working medium contains only one component as the third component, and when the working medium contains a plurality of components as the third component. , means the component with the highest content among the third components.
  • the total content of propane, at least one of HFO-1123 and HFO-1132 (E), and the main component in the third component is the total amount of the working medium from the viewpoint of reducing GWP It is preferably 80% by mass or more, more preferably 85% by mass or more.
  • the upper limit of the total content is not particularly limited, and may be 100% by mass.
  • the total content may be less than 95% by mass or less than 90% by mass with respect to the total amount of the working medium. That is, the working medium of the present disclosure may contain propane, at least one of HFO-1123 and HFO-1132(E), and components other than the third component, and the third component may include a plurality of good too.
  • the content of HFC-32 is 22.0% by mass or less with respect to the total amount of the working medium from the viewpoint of making the GWP of the entire working medium 150 or less. It may be present, may be 19.0% by mass or less, or may be 15.0% by mass or less.
  • the content of HFC-32 may be 1.0% by mass or more relative to the total amount of the working medium.
  • the content of CO2 may be 15.0% by mass or less with respect to the total amount of the working medium, and may be 10.0% by mass. % or less, or 8.0% by mass or less.
  • the content of CO 2 may be 1.0% by weight or more, relative to the total amount of working medium.
  • the content of HFO-1234yf is preferably 30.0% by mass or less with respect to the total amount of the working medium from the viewpoint of reducing temperature glide and pressure loss. It is preferably 25.0% by mass or less, and more preferably 25.0% by mass or less. From the viewpoint of lowering the condensation pressure, the content of HFO-1234yf is preferably 10.5% by mass or more, more preferably 15.0% by mass or more, relative to the total amount of the working medium.
  • the working medium of the present disclosure contains HCFO-1224yd(Z), HCFO-1224yd(E), HFO-1233zd(E), HFO-1336mzz(E), HFO-1225ye(Z), or HFO-1225ye(E)
  • the content of each component may be 15.0% by mass or less, 10.0% by mass or less, or 5.0% by mass or less with respect to the total amount of the working medium. good too.
  • the content of each component may be 1.0% by mass or more relative to the total amount of the working medium.
  • combustion heat quantity per mass is defined by the American Society of Heating, Refrigeration and Air-conditioning Engineers (ASHRAE) Standard 34 as an index for determining the combustibility of refrigerants.
  • ASHRAE American Society of Heating, Refrigeration and Air-conditioning Engineers
  • This standard defines a substance with a calorific value of 19.000 MJ/kg or more as one of the indicators of a "highly flammable" refrigerant.
  • the amount of combustion heat is represented by the difference between the sum of the enthalpy of formation of the products in the combustion reaction formula and the enthalpy of formation of the compounds in the reaction system.
  • the enthalpy of formation is described in handbooks of chemistry, international standards (see Reference A), various handbooks, and the like.
  • the enthalpy of formation of a novel compound can be determined by Benson's group additivity rule (see reference B) or by a computational chemical method.
  • concept of the combustion reaction formula for compounds containing halogen is specified in international standards (see references A and C).
  • Reference A ANSI/ASHRAE Standard 34 (2016), Designation and Safety Classification of Refrigerants.
  • Reference B S.M. Benson, Thermo chemical kinetics, 2nd Ed. , Wiley Interscience, New York (1976).
  • Reference C ISO 817 (2014), Refrigerant: Designation and Safety Classification. In this standard, the heat of combustion is considered positive for exothermic reactions.
  • the combustion heat quantity of the working medium is obtained by converting the value of the combustion heat quantity obtained by stoichiometrically burning 1 mol of the working medium with oxygen completely into the value of the combustion heat quantity per 1 kg of the working medium. It is a theoretical value calculated under the following assumptions.
  • the compounds of the product and reaction systems are assumed to be gases.
  • the products of combustion are HF (g), CO2 (g), COF2 (g) and H2O (g).
  • nitrogen and iodine are part of the molecular structure of the substance, N 2 (g) or I 2 (g) are added as combustion products.
  • each compound contained in the working medium is decomposed into atoms constituting each compound, and a virtual substance containing each atom is set in consideration of the molar ratio in the working medium.
  • the combustion heat quantity is calculated using the combustion reaction formula of the virtual substance.
  • CqHrFs in the following formula corresponds to a virtual substance.
  • the combustion reaction formula is defined by the number of H atoms (r) and the number of F atoms (s) in a substance, and when the number of H atoms (r) ⁇ the number of F atoms (s), the combustion reaction formula is , the following formula is used:
  • the content of each component contained in the working fluid is within a specific range, so that the combustion heat quantity is low and the heat cycle performance is excellent.
  • HFO-1123 or HFO-1132(E) When HFO-1123 or HFO-1132(E) is combined with propane, the latent heat of vaporization tends to increase, and the pressure loss becomes smaller than when HFO-1123 or HFO-1132(E) is used alone. . Further, by combining propane, at least one of HFO-1123 and HFO-1132(E), and a third component, cycle performance such as discharge temperature, condensing pressure, CAP, and temperature glide is improved.
  • the first aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFO-1234yf from the viewpoint of improving the performance of the working medium as a refrigerant, and the propane content and HFO-1123
  • the mass ratio with the content (propane: HFO-1123) is 5: 95 to 29: 71
  • the content of HFO-1234yf is relative to the total content of propane, HFO-1123, and HFO-1234yf 10.5 to 25.0% by mass
  • the total content of propane, HFO-1123, and HFO-1234yf is preferably 80% by mass or more relative to the total amount of the working medium.
  • the condensation pressure is lowered.
  • the ratio of the propane content to the total content of propane and HFO-1123 is 29% by mass or less, the combustion heat quantity decreases.
  • the mass ratio of the propane content and the HFO-1123 content is preferably 10:90 to 29:71, more preferably 15:85 to 29:71.
  • 20:80 to 29:71 are more preferred
  • 22:78 to 29:71 are particularly preferred
  • 22:78 to 27:73 are very preferred.
  • the content of HFO-1234yf is preferably 12% by mass or more with respect to the total content of propane, HFO-1123, and HFO-1234yf, and 15% by mass. It is more preferable to be above.
  • the GWP is lowered.
  • the total content of propane, HFO-1123 and HFO-1234yf is more preferably 85% by mass or more.
  • the upper limit of the total content is not particularly limited, and may be 100% by mass.
  • the total content may be less than 95% by mass or less than 90% by mass with respect to the total amount of the working medium.
  • a second embodiment of the working medium of the present disclosure contains propane, HFO-1123, and HFC-32, and the mass ratio of the propane content to the HFO-1123 content (propane:HFO-1123) is 18:82 to 22:78, and the content of HFC-32 is 5.5 to 19.5% by mass with respect to the total content of propane, HFO-1123, and HFC-32 preferable.
  • the discharge temperature and condensation pressure are lowered.
  • the proportion of the propane content in the total content of propane and HFO-1123 is 22% by mass or less, the combustion heat quantity is lowered, the CAP is improved, and the temperature glide and pressure loss are reduced.
  • the mass ratio of the propane content and the HFO-1123 content is preferably 19:81 to 21:79, and 19.5:80.5 to 20.5:79. 5 is more preferred.
  • the content of HFC-32 is preferably 6.0% by mass or more with respect to the total content of propane, HFO-1123, and HFC-32, and 8.0 mass % or more is more preferable. From the viewpoint of further lowering the discharge temperature and condensation pressure, the content of HFC-32 is preferably 19.0% by mass or less with respect to the total content of propane, HFO-1123, and HFC-32. 0% by mass or less, and even more preferably 15.0% by mass or less.
  • the total content of propane, HFO-1123, and HFC-32 is preferably 80% by mass or more with respect to the total amount of the working medium, and 85% by mass. % or more is more preferable.
  • the upper limit of the total content is not particularly limited, and may be 100% by mass. Moreover, the total content may be less than 95% by mass or less than 90% by mass with respect to the total amount of the working medium.
  • a third aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFC-32, and the mass ratio of the propane content to the HFO-1123 content (propane:HFO-1123) is 5:95 to 23:77, and the content of HFC-32 is 20.1 to 21.9% by mass with respect to the total content of propane, HFO-1123, and HFC-32 preferable.
  • the discharge temperature is lowered.
  • the ratio of the propane content to the total content of propane and HFO-1123 is 23% by mass or less, the CAP is improved.
  • the total content of propane, HFO-1123, and HFC-32 is preferably 80% by mass or more with respect to the total amount of the working medium, and 85% by mass. % or more is more preferable.
  • the upper limit of the total content is not particularly limited, and may be 100% by mass.
  • the total content may be less than 95% by mass or less than 90% by mass with respect to the total amount of the working medium.
  • a fourth aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFC-32, and the mass ratio of the propane content to the HFO-1123 content (propane:HFO-1123) is 18.9:81.1 to 23:77, and the content of HFC-32 is 12.5 to 21.5% by mass with respect to the total content of propane, HFO-1123, and HFC-32 is preferably
  • the discharge temperature is lowered.
  • the ratio of the propane content to the total content of propane and HFO-1123 is 23% by mass or less, the CAP is improved.
  • the content of HFC-32 should be 15.0 to 21.5% by mass with respect to the total content of propane, HFO-1123, and HFC-32. is preferred, and 18.0 to 21.5% by mass is more preferred.
  • the total content of propane, HFO-1123, and HFC-32 is preferably 80% by mass or more with respect to the total amount of the working medium, and 85% by mass. % or more is preferable.
  • the upper limit of the total content is not particularly limited, and may be 100% by mass.
  • the total content may be less than 95% by mass or less than 90% by mass with respect to the total amount of the working medium.
  • a fifth aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFO-1234ze(E), and the content of propane is 25% relative to the total content of propane and HFO-1123. .0% by mass or less, and the content of HFO-1234ze (E) is 11.0 to 25.0% by mass with respect to the total content of propane, HFO-1123, and HFO-1234ze (E) , the total content is preferably 78.5% by mass or more with respect to the total amount of the working medium.
  • the amount of combustion heat can be reduced.
  • the propane content is more preferably 20.0% by mass or less, and even more preferably 15.0% by mass or less.
  • the lower limit of the propane content is not particularly limited, but from the viewpoint of latent heat of vaporization, it is preferably 2.0% by mass, more preferably 3.0% by mass, and 4.0% by mass. is more preferable, and 5.0% by mass is particularly preferable.
  • the condensation pressure decreases. and can achieve 1.12 or less.
  • the content of HFO-1234ze (E) is 25.0% by mass or less with respect to the total content of propane, HFO-1123, and HFO-1234ze (E)
  • the temperature glide becomes small, A temperature glide of less than °C can be achieved.
  • the content of HFO-1234ze (E) is more preferably 12.0% by mass or more, more preferably 13.0% by mass or more, with respect to the total content, from the viewpoint of further lowering the condensation pressure.
  • HFO-1234ze (E) is more preferably 14.0% by mass or more, particularly preferably 15.0% by mass or more, and most preferably 15.0% by mass or more.
  • the content of HFO-1234ze (E) is more preferably 24.0% by mass or less, more preferably 23.0% by mass or less, relative to the total content, from the viewpoint of further reducing the temperature glide. 22.0% by mass or less is particularly preferable, and 21.0% by mass or less is most preferable.
  • the total content of propane, HFO-1123, and HFO-1234ze (E) is more preferably 85% by mass or more with respect to the total amount of the working medium, It is more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
  • a sixth aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFO-1234ze(E), wherein the content of propane is 10% relative to the total content of propane and HFO-1123. % by mass or less, and the content of HFO-1234ze(E) is preferably 15.0% by mass or less with respect to the total content of propane, HFO-1123, and HFO-1234ze(E).
  • the amount of combustion heat can be reduced.
  • the propane content is more preferably 8.0% by mass or less, and even more preferably 6.0% by mass or less.
  • the lower limit of the propane content is not particularly limited, it is preferably 2.0% by mass from the viewpoint of the latent heat of vaporization.
  • the temperature glide is small. and a temperature glide of 5°C or less can be achieved.
  • the content of HFO-1234ze (E) is more preferably 14.0% by mass or less, more preferably 13.0% by mass or less, relative to the total content. It is more preferably 12.0% by mass or less, particularly preferably 11.0% by mass or less, and most preferably 11.0% by mass or less.
  • the content of HFO-1234ze(E) is not particularly limited, and is, for example, 1.0% by mass.
  • the total content of propane, HFO-1123, and HFO-1234ze (E) is 85% by mass or more with respect to the total amount of the working medium. is more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
  • a seventh aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFO-1234ze(E), and the content of propane is 20% relative to the total content of propane and HFO-1123. 0% by mass or less, and the content of HFO-1234ze(E) is preferably 9.0% by mass or less with respect to the total content of propane, HFO-1123, and HFO-1234ze(E). .
  • the amount of combustion heat can be reduced.
  • the propane content is more preferably 15.0% by mass or less, and even more preferably 10.0% by mass or less.
  • the lower limit of the propane content is not particularly limited, it is preferably 2.0% by mass from the viewpoint of the latent heat of vaporization.
  • the temperature glide is small. and a temperature glide of 4°C or less can be achieved.
  • the content of HFO-1234ze (E) is more preferably 8.0% by mass or less, more preferably 7.0% by mass or less, relative to the total content. More preferably, it is particularly preferably 6.0% by mass or less.
  • the content of HFO-1234ze(E) is not particularly limited, and is, for example, 1.0% by mass.
  • the total content of propane, HFO-1123, and HFO-1234ze (E) is 85% by mass or more with respect to the total amount of the working medium. is more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
  • An eighth embodiment of the working medium of the present disclosure contains propane, HFO-1123 and CO2 , wherein the content of HFO-1123 with respect to the total content of propane, HFO-1123 and CO2 is X 1
  • X 1 and Y 1 satisfy the following formula (1)
  • propane the above total content is the total amount of the working medium It is preferably 78.5% by mass or more. ⁇ 0.00115X 1 3 +0.13537X 1 2 ⁇ 6.20662X 1 +151.14664 ⁇ Y 1 ⁇ 59 (1)
  • the temperature glide becomes small and a temperature glide of 7 ° C. or less is achieved. can.
  • Z 1 and Y 1 satisfy the following formula (1A) when the content of propane with respect to the total content is Z 1 % by mass.
  • Z 1 and Y 1 when Z 1 is 1.0 to 23.3, Z 1 and Y 1 satisfy formula (1A), and when Z 1 is more than 23.3 and 24.84 or less, Z 1 and Y 1 preferably satisfies the following formula (1Aa). 3.33333Z 1 ⁇ 77.66667 ⁇ Y 1 ⁇ 0.00288Z 1 3 ⁇ 0.14523Z 1 2 +0.75794Z 1 +31.5 (1Aa)
  • the total content of propane, HFO-1123, and CO2 is more preferably 85% by mass or more, more preferably 90% by mass or more, relative to the total amount of the working medium. More preferably, it is more preferably 95% by mass or more.
  • the upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
  • the content of CO 2 is preferably 20.0% by mass or less, more preferably 15.0% by mass or less, relative to the total content. It is preferably 10.0% by mass or less, and more preferably 10.0% by mass or less.
  • the lower limit of the CO 2 content is not particularly limited, and is, for example, 2.0% by mass. If the content of CO 2 is 20.0% by mass or less with respect to the above total content, the condensation pressure will decrease and 1.7 or less can be achieved.
  • a ninth aspect of the working medium of the present disclosure contains propane, HFO-1123, and CF 3 I, wherein the content of propane relative to the total content of propane, HFO-1123, and CF 3 I is X 2
  • X 2 and Y 2 satisfy the following formula (2A)
  • the total content is relative to the total amount of the working medium is preferably 78.5% by mass or more.
  • the temperature glide becomes small, and a temperature glide of 5 ° C. or less is achieved. can.
  • X 2 and Y 2 when X 2 is 1.0 to 23.3, X 2 and Y 2 satisfy formula (2A), and when X 2 is more than 23.3 and 25.91 or less, X 2 and Y 2 preferably satisfy the following formula (2Aa). 3.83055X 2 ⁇ 89.44721 ⁇ Y 2 ⁇ 1.125X 2 +39 (2Aa)
  • X 2 and Y 2 further satisfy the following formula (2B). Y 2 ⁇ 0.05994X 2 2 + 0.23676X 2 + 11.85165 (2B)
  • the tenth aspect of the working fluid of the present disclosure preferably contains propane, HFO-1132 (E), and the third component, and has a combustion heat quantity of less than 15.250 MJ/kg.
  • the tenth aspect more preferably contains propane, HFO-1132(E), and HFO-1234yf.
  • the combustion heat quantity is more preferably less than 14.0 MJ/kg, even more preferably less than 12.0 MJ/kg.
  • the propane content is preferably 30.0% by mass or less, more preferably 20% by mass or less, relative to the total content of propane and HFO-1132 (E). It is more preferably 0.0% by mass or less, and particularly preferably 8.0% by mass or less. When the propane content is 30.0% by mass or less, the amount of combustion heat can be further reduced. Although the lower limit of the propane content is not particularly limited, it is, for example, 2.0% by mass.
  • the total content of propane, HFO-1132 (E), and the third component is 85% by mass or more with respect to the total amount of the working medium. It is more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
  • An eleventh aspect of the working medium of the present disclosure contains propane, HFO-1132(E), and the third component, and the content of propane is the total content of propane and HFO-1132(E) It is preferably 10.0% by mass or less with respect to
  • the eleventh aspect more preferably contains propane, HFO-1132(E), and HFO-1234yf.
  • the combustion heat quantity can be further reduced. More preferably, the content of propane is 8.0% by mass or less with respect to the total content of propane and HFO-1132(E). Although the lower limit of the propane content is not particularly limited, it is, for example, 2.0% by mass.
  • the total content of propane, HFO-1132 (E), and the third component is 85% by mass or more with respect to the total amount of the working medium. It is more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
  • a twelfth aspect of the working medium of the present disclosure contains propane, HFO-1123, HFO-1234yf, and HFC-32, with a total content of propane, HFO-1123, HFO-1234yf, and HFC-32
  • the content of HFC-32 with respect to the amount is A mass%
  • the content of HFO-1234yf with respect to the total content is B mass%
  • the content of propane with respect to the total content is C mass%
  • HFO with respect to the total content - When the content of 1123 is D mass %
  • A, B, C, and D preferably satisfy the following formulas (3A) to (3D).
  • the condensing pressure can be reduced to less than 1.2122 and the compression ratio can be reduced to 0.2122. Less than 9453 can be achieved.
  • the total content is more preferably 85% by mass or more, more preferably 90% by mass or more, relative to the total amount of the working medium. More preferably, it is particularly preferably 95% by mass or more.
  • the upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
  • a thirteenth aspect of the working medium of the present disclosure contains propane, HFO-1123, HFO-1234ze(E), and HFC-32, wherein propane, HFO-1123, HFO-1234ze(E), and The content of HFC-32 with respect to the total content of HFC-32 is E mass%, the content of HFO-1234ze (E) with respect to the total content is F mass%, and the content of propane with respect to the total content is G mass. %, and the content of HFO-1123 with respect to the above total content is H% by mass, E, F, G, and H preferably satisfy the following formulas (4A) to (4D).
  • the total content is more preferably 85% by mass or more, more preferably 90% by mass or more, relative to the total amount of the working medium. More preferably, it is particularly preferably 95% by mass or more.
  • the upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
  • a fourteenth aspect of the working medium of the present disclosure contains propane, HFO-1123, CO 2 and HFC-32, and the total propane, HFO-1123, CO 2 and HFC-32 content
  • the content of HFC-32 is J% by mass
  • the content of CO 2 is K% by mass with respect to the total content
  • the content of propane is L% by mass with respect to the total content
  • the content of HFO-1123 with respect to the total content J, K, L, and M preferably satisfy the following formulas (5A) to (5D), where the amount is M mass %.
  • the condensing pressure can be reduced to less than 1.48789, and the pressure loss can be reduced to 0.48789. Less than 92297 can be achieved.
  • the total content is more preferably 85% by mass or more, more preferably 90% by mass or more, relative to the total amount of the working medium. More preferably, it is particularly preferably 95% by mass or more.
  • the upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
  • the fifteenth aspect of the working medium of the present disclosure preferably contains propane, HFO-1123, CF 3 I, and HFC-32.
  • the combustion calorific value decreases.
  • the total content of propane, HFO-1123, CF 3 I, and HFC-32 is 85% by mass or more with respect to the total amount of the working medium. It is more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
  • a sixteenth aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFO-1234yf, and the content of HFO-1234yf is the total content of propane, HFO-1123, and HFO-1234yf is 25.0 to 70.0% by mass, the content of propane is 9.0% by mass or less with respect to the total content, and the total content is relative to the total amount of the working medium It is preferably at least 78.5% by mass.
  • the content of HFO-1234yf is 25.0 to 43.0% by mass, or 62.0 to 70.0% by mass with respect to the above total content. is preferably
  • the combustion heat quantity is reduced.
  • the lower limit of the propane content is not particularly limited, it is preferably 2.0% by mass from the viewpoint of increasing the latent heat of vaporization.
  • the content of HFO-1123 is appropriately adjusted by the content of propane and the content of HFO-1234yf. From the viewpoint of further lowering the condensation pressure, the content of HFO-1123 is preferably 73% by mass or less with respect to the above total content. Also, from the viewpoint of further reducing CAP, the content of HFO-1123 is preferably 21% by mass or more with respect to the above total content.
  • the total content of propane, HFO-1123, and HFO-1234yf is 78.5% by mass or more with respect to the total amount of the working medium
  • performance such as combustion heat amount, condensation pressure, and CAP is balanced.
  • the total content is preferably 85% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and 99% by mass or more with respect to the total amount of the working medium. It is particularly preferred to have
  • the upper limit of the total content is not particularly limited, and may be 100% by mass.
  • the working medium of the present disclosure may contain any component other than propane, at least one of HFO-1123 and HFO-1132(E), and the third component within the range that does not impair the effects of the present disclosure.
  • Optional components include, for example, HFCs and HFOs other than HFO-1123, HFO-1132(E), and a third component.
  • Optional components may be used singly or in combination of two or more.
  • Optional components include, for example, HFCs such as 1,1-difluoroethane (HFC-152a), trifluoroethane, 1,1,2,2-tetrafluoroethane (HFC-134), pentafluoropropane, hexafluoro Propane, heptafluoropropane, pentafluorobutane, and heptafluorocyclopentane.
  • HFOs include 2-fluoropropene (HFO-1261yf), 1,1,2-trifluoropropene (HFO-1243yc), and 3,3,3-trifluoropropene (HFO-1243zf).
  • Examples of compounds other than HFCs and HFOs include hydrocarbons such as propylene, cyclopropane, butane, isobutane, pentane, and isopentane; 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya ), 1,3-dichloro-1,2,3,3-tetrafluoropropene (CFO-1214yb), 1,2-dichloro-1,2-difluoroethylene (CFO-1112) and other chlorofluoroolefins (CFO) and hydrochlorofluoroolefins (HCFO) such as 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd) and 1-chloro-1,2-difluoroethylene (HCFO-1122).
  • the optional component is preferably a component that has less impact on the ozone layer and less impact on global warming.
  • the total content of the optional components is preferably less than 10% by mass, more preferably 8% by mass or less, relative to the total amount of the working medium. , 5% by mass or less.
  • the lower limit of the total content of arbitrary components is not particularly limited, and may be 0% by mass.
  • the method for producing a working medium of the present disclosure comprises propane, at least one of HFO-1123 and HFO-1132(E), HFO-1234yf, HFO-1234ze(E), HFC-32, CO 2 and CF 3 I calculating the combustion heat quantity of the working medium containing at least one selected from the group consisting of; is a manufacturing method for preparing According to the method for producing a working medium of the present disclosure, it is possible to easily produce a working medium containing propane and having excellent performance as a refrigerant.
  • propane, at least one of HFO-1123 and HFO-1132 (E), a third component, and optionally other components are appropriately selected to form a virtual mixture is set, and the heat of combustion for the mixture is calculated by the method described above.
  • the content of the third component is fixed, and the combustion heat of the mixture is calculated while changing the content of propane and HFO-1123 or HFO-1132(E).
  • a working medium can be obtained by determining a desired composition as a working medium from and preparing a mixture of the determined composition.
  • the combustion heat quantity for one example of the working medium of the present disclosure is shown.
  • the composition ratio of each component indicates the content on a mass basis (% by mass).
  • the unit of heat of combustion is (MJ/kg).
  • X indicates that the combustion heat quantity is 19.000 MJ/kg or more, and O indicates that it is less than 19.000 MJ/kg.
  • Examples 1, 2, etc., which are specific examples of the working medium, are expressed as Case 1, Case 2, etc. in the table. It also shows the GWP of the working medium.
  • GWP is used as an index for measuring the impact of working media on global warming.
  • GWP is the 100-year value of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (2013) unless otherwise specified. Specifically, they are HFC-32(677), CO 2 (1.0), HFO-1234yf ( ⁇ 1.0), HFO-1234ze(E) ( ⁇ 1.0).
  • IPCC Intergovernmental Panel on climate Change
  • GWP in a mixture is a weighted average by composition mass. When considering the GWP in a mixture, those with a GWP of 1 or less are treated as 1 in the calculation.
  • Table 1 shows the composition, heat of combustion and GWP of the two-component working medium of propane and HFO-1123.
  • Tables 2-10 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1123 and HFO-1234yf.
  • FIG. 1 also shows a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1234yf.
  • FIG. 1 shows a straight line connecting (23.3, 76.7, 0.0) and (22.0, 0.0, 78.0) for (propane, HFO-1123, HFO-1234yf). ing.
  • the low propane concentration region including this straight line indicates the region where the combustion calorific value for the three-component system of propane, HFO-1123 and HFO-1234yf is less than 19.000 MJ / kg, and the region where the propane concentration is higher than this straight line , propane, HFO-1123 and HFO-1234yf, the combustion calorific value is 19.000 MJ/kg or more.
  • Tables 11-19 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1123 and HFO-1234ze(E).
  • FIG. 2 shows a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1234ze(E).
  • (propane, HFO-1123, HFO-1234ze (E)) is a straight line connecting (23.3, 76.7, 0.0) and (23.3, 0.0, 76.7) It is shown.
  • the low propane concentration region including this straight line indicates the region where the combustion calorific value for the three-component system of propane, HFO-1123 and HFO-1234ze (E) is less than 19.000 MJ / kg, and the propane concentration is higher than this straight line.
  • Tables 20-23 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1123 and HFC-32.
  • FIG. 3 shows a ternary diagram of the ternary system of propane, HFO-1123 and HFC-32.
  • FIG. 3 shows a straight line connecting (23.3, 76.7, 0.0) and (25.6, 0.0, 74.4) for (propane, HFO-1123, HFC-32). ing.
  • Tables 24-26 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1123 and CO 2 .
  • FIG. 4 Also shown in FIG. 4 is a ternary diagram of the ternary system of propane, HFO-1123 and CO 2 .
  • FIG. 4 shows a straight line for (propane, HFO-1123, CO 2 ) connecting (23.3, 76.7, 0) and (41.0, 0, 59.0).
  • Tables 27-35 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1123 and CF 3 I.
  • FIG. 5 shows a ternary diagram of the ternary system of propane, HFO-1123 and CF 3 I.
  • FIG. 5 shows a straight line connecting (23.3, 76.7, 0.0) and (39.2, 0.0, 60.8) for (propane, HFO-1123, CF 3 I). ing.
  • the low propane concentration region including this straight line indicates the region where the combustion calorific value for the ternary system of propane, HFO-1123 and CF 3 I is less than 19.000 MJ/kg, and the region where the propane concentration is higher than this straight line.
  • Tables 36 to 57 show the composition, heat of combustion and GWP of four-component working media of propane, HFO-1123, HFO-1234yf and HFO-1234ze(E).
  • Tables 58 to 82 show the composition, heat of combustion and GWP for four-component working fluids of propane, HFO-1123, HFO-1234yf and HFC-32.
  • Tables 83-103 show the composition, heat of combustion and GWP for quaternary working fluids of propane, HFO-1123, HFO-1234yf and CO2 .
  • Tables 104-120 show the composition, heat of combustion and GWP for quaternary working fluids of propane, HFO-1123, HFO-1234yf and CF 3 I.
  • Tables 121 to 144 show the composition, heat of combustion and GWP for four-component working fluids of propane, HFO-1123, HFO-1234ze (E) and HFC-32.
  • Tables 145-165 show the composition, heat of combustion and GWP for propane, HFO-1123, HFO-1234ze(E) and CO2 quaternary working media.
  • Tables 166-181 show the composition, heat of combustion and GWP for propane, HFO-1123, HFO-1234ze(E) and CF 3 I quaternary working media.
  • Tables 182-191 show the composition, heat of combustion and GWP for quaternary working fluids of propane, HFO-1123, HFC-32 and CO2 .
  • Tables 192-202 show the composition, heat of combustion and GWP for the propane, HFO-1123, HFC-32 and CF 3 I quaternary working fluids.
  • Tables 203-212 show the composition, heat of combustion and GWP for the propane, HFO-1123, CO 2 and CF 3 I quaternary working fluids.
  • Table 213 shows the composition, heat of combustion and GWP for the propane and HFO-1132 (E) binary working fluid.
  • Tables 214-234 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1123 and HFO-1132(E).
  • FIG. 6 shows a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1132(E).
  • propane, HFO-1123, HFO-1132 (E)) is a straight line connecting (23.3, 76.7, 0.0) and (9.1, 0.0, 90.9) It is shown.
  • the low propane concentration region including this straight line indicates the region where the combustion heat value for the three-component system of propane, HFO-1123 and HFO-1132 (E) is less than 19.000 MJ / kg, and the propane concentration is higher than this straight line.
  • Tables 235-257 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1132(E) and HFO-1234yf.
  • FIG. 7 shows a ternary diagram of the ternary system of propane, HFO-1132(E) and HFO-1234yf.
  • (propane, HFO-1132 (E), HFO-1234yf) is a straight line connecting (9.1, 90.9, 0.0) and (22.0, 0.0, 78.0) It is shown.
  • the low propane concentration region including this straight line indicates the region where the combustion calorific value for the three-component system of propane, HFO-1132 (E) and HFO-1234yf is less than 19.000 MJ / kg, and the propane concentration is higher than this straight line.
  • a high region indicates a region where the heat of combustion for the ternary system of propane, HFO-1132(E) and HFO-1234yf is 19.000 MJ/kg or more.
  • Tables 258-263 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1132(E) and HFO-1234ze(E). Also, FIG. 8 shows a ternary diagram of the ternary system of propane, HFO-1132(E) and HFO-1234ze(E). In FIG.
  • a straight line connecting The low propane concentration region including this straight line indicates the region where the combustion calorific value for the ternary system of propane, HFO-1132 (E) and HFO-1234ze (E) is less than 19.000 MJ / kg, and is lower than this straight line.
  • a region with a high propane concentration indicates a region where the combustion calorific value for the ternary system of propane, HFO-1132(E) and HFO-1234ze(E) is 19.000 MJ/kg or more. Further, if the straight line in FIG.
  • Tables 264-265 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1132(E) and HFC-32.
  • FIG. 9 shows a ternary diagram of the ternary system of propane, HFO-1132(E) and HFC-32.
  • (propane, HFO-1132 (E), HFC-32) is a straight line connecting (9.1, 90.9, 0.0) and (25.6, 0.0, 74.4) It is shown.
  • the low propane concentration region including this straight line indicates the region where the combustion heat quantity for the three-component system of propane, HFO-1132 (E) and HFC-32 is less than 19.000 MJ / kg, and the propane concentration is higher than this straight line.
  • Tables 266-267 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1132(E) and CO2 .
  • FIG. 10 Also shown in FIG. 10 is a ternary diagram of the ternary system of propane, HFO-1132(E) and CO 2 .
  • (propane, HFO-1132 (E), CO 2 ) has a straight line connecting (9.1, 90.9, 0.0) and (41.0, 0.0, 59.0) It is shown.
  • the low propane concentration region including this straight line indicates the region where the combustion calorific value for the ternary system of propane, HFO-1132 (E) and CO 2 is less than 19.000 MJ / kg, and the propane concentration is higher than this straight line.
  • Tables 268-274 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1132(E) and CF 3 I.
  • FIG. 11 shows a ternary diagram of the ternary system of propane, HFO-1132(E) and CF 3 I.
  • FIG. 11 shows that (propane, HFO-1132(E), CF 3 I) is a straight line connecting (9.1, 90.9, 0.0) and (39.2, 0.0, 60.8). It is shown.
  • the low propane concentration region including this straight line indicates the region where the combustion calorific value for the ternary system of propane, HFO-1132 (E) and CF 3 I is less than 19.000 MJ/kg, and the propane concentration is higher than this straight line.
  • Tables 275 to 296 show the composition, heat of combustion and GWP of four-component working media of propane, HFO-1132(E), HFO-1234yf and HFO-1234ze(E).
  • Tables 297 to 320 show the composition, heat of combustion and GWP of four-component working fluids of propane, HFO-1132(E), HFO-1234yf and HFC-32.
  • Tables 321-342 show the composition, heat of combustion and GWP for quaternary working media of propane, HFO-1132(E), HFO-1234yf and CO2 .
  • Tables 343-358 show the composition, heat of combustion and GWP for propane, HFO-1132(E), HFO-1234yf and CF 3 I quaternary working fluids.
  • Tables 359 to 382 show the composition, heat of combustion and GWP for four-component working media of propane, HFO-1132 (E), HFO-1234ze (E) and HFC-32.
  • Tables 383-403 show the composition, heat of combustion and GWP for quaternary working media of propane, HFO-1132(E), HFO-1234ze(E) and CO2 .
  • Tables 404-419 show the composition, heat of combustion and GWP for propane, HFO-1132(E), HFO-1234ze(E) and CF 3 I quaternary working fluids.
  • Tables 420-428 show the composition, heat of combustion and GWP for quaternary working fluids of propane, HFO-1132(E), HFC-32 and CO2 .
  • Tables 429-439 show the composition, heat of combustion and GWP for the propane, HFO-1132(E), HFC-32 and CF 3 I quaternary working fluids.
  • Tables 440-449 show the composition, heat of combustion and GWP for the propane, HFO-1132(E), CO 2 and CF 3 I quaternary working fluids.
  • Tables 450 to 458 show the composition, heat of combustion and GWP for four-component working media of propane, HFO-1123, HFO-1132(E) and HFO-1234yf.
  • Tables 459 to 467 show the composition, heat of combustion and GWP for four-component working media of propane, HFO-1123, HFO-1132 (E) and HFO-1234ze (E).
  • Tables 468 to 480 show the composition, heat of combustion and GWP for four-component working fluids of propane, HFO-1123, HFO-1132(E) and HFC-32.
  • Tables 481-492 show the composition, heat of combustion and GWP for quaternary working fluids of propane, HFO-1123, HFO-1132(E) and CO2 .
  • Tables 493-502 show the composition, heat of combustion and GWP for propane, HFO-1123, HFO-1132(E) and CF 3 I quaternary working fluids.
  • the cycle performance which is the property required when applying the working fluid to the heat cycle system, is the coefficient of performance (also referred to as “COP” in the present disclosure) and per unit volume (compressor suction volume) ability (also referred to as “CAP” in the present disclosure).
  • the capacity is refrigeration capacity.
  • each item is measured by the method described later, for example, using the reference refrigerating cycle with the temperature conditions shown below.
  • the discharge temperature, condensing pressure, evaporating pressure, and compression ratio are based on the HFC-32 values
  • the temperature glide, CAP, COP, and pressure loss are based on the R410A values. Evaluate by converting to a standard difference and relative value.
  • Temperature glide is an index that measures the difference in composition between the liquid phase and the gas phase in the working medium of the mixture. Temperature glide is defined as the property of a heat exchanger, eg, evaporating in an evaporator or condensing in a condenser, to have different starting and finishing temperatures. In azeotropic media, the temperature glide is zero, and in pseudo-azeotropes such as R410A the temperature gradient is very close to zero.
  • the inlet temperature in the evaporator will drop, which will increase the possibility of frost formation, which is a problem.
  • the working medium flowing through the heat exchanger and the heat source fluid such as water or air flow countercurrently, and this is the case in a stable operating state. Due to the small temperature difference of the heat source fluid, it is difficult to obtain an energy efficient thermal cycle system in the case of a non-azeotropic mixed medium with a large temperature glide. For this reason, a working medium with a suitable temperature glide is desired when using a mixture as a working medium.
  • non-azeotropic mixed media have the problem of causing composition changes when they are filled from a pressure vessel into a refrigerating and air-conditioning equipment. Furthermore, when refrigerant leaks from the refrigerating and air-conditioning equipment, it is highly possible that the refrigerant composition in the refrigerating and air-conditioning equipment will change, and it is difficult to restore the refrigerant composition to the initial state.
  • an azeotropic or pseudo-azeotropic mixed medium can avoid the above problems.
  • the compression ratio is represented by condensation pressure Pc (MPa)/evaporation pressure Pe (MPa) in the refrigeration cycle.
  • the compression ratio decreases as the condensing pressure in the refrigeration cycle decreases and as the evaporating pressure increases.
  • the smaller the compression ratio the higher the volumetric efficiency of the compressor, which increases the amount of refrigerant circulated and improves the equipment performance.
  • compression ratios are shown as relative compression ratios with respect to HFC-32.
  • the critical point is the end point of the saturated liquid line and the saturated vapor line on the high pressure and high temperature side.
  • the temperature at this point is the critical temperature.
  • Above the critical point there is neither evaporation nor liquefaction, the liquid and gas phases are indistinguishable, and there is no phase change.
  • a refrigeration cycle system will be described as an example of a heat cycle system.
  • a refrigeration cycle system is a system in which a working medium removes heat energy from a load fluid in an evaporator, thereby cooling the load fluid to a lower temperature.
  • FIG. 12 is a schematic configuration diagram showing an example of the refrigeration cycle system of the present disclosure.
  • the refrigeration cycle system 10 includes a compressor 11 that compresses a working medium vapor A into a high-temperature, high-pressure working medium vapor B, and a low-temperature, high-pressure operation by cooling and liquefying the working medium vapor B discharged from the compressor 11.
  • It is a system roughly configured comprising an evaporator 14 that produces a high-temperature, low-pressure working medium vapor A, a pump 15 that supplies a load fluid E to the evaporator 14, and a pump 16 that supplies a fluid F to the condenser 12.
  • the working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to form a low-temperature, low-pressure working medium D (hereinafter referred to as "CD process”).
  • the working medium D discharged from the expansion valve 13 is heated by the load fluid E in the evaporator 14 to produce a high-temperature, low-pressure working medium vapor A. At this time, the load fluid E is cooled to become a load fluid E' and discharged from the evaporator 14 (hereinafter referred to as "DA process").
  • the refrigeration cycle system 10 is a cycle system consisting of adiabatic/isentropic change, isenthalpic change, and isobaric change. If the state change of the working medium is described on the pressure-enthalpy line (curve) diagram shown in FIG. 13, it can be represented as a trapezoid with A, B, C, and D as vertices.
  • the AB process is a process in which the compressor 11 performs adiabatic compression to convert the low-temperature, low-pressure working medium vapor A into the high-temperature, high-pressure working medium vapor B, and is indicated by line AB in FIG.
  • the working medium vapor A is introduced into the compressor 11 in a superheated state, and the resulting working medium vapor B is also in a superheated state.
  • the compressor suction saturated gas density is the density ( ⁇ s) in the state A in FIG.
  • the compressor discharge gas temperature (discharge temperature) is the temperature (Tx) in state B in FIG. 13, which is the highest temperature in the refrigeration cycle.
  • the compressor discharge pressure (discharge pressure) is the pressure (Px) in state B in FIG. 13, which is the maximum pressure in the refrigeration cycle. Since the BC process is isobaric cooling, the discharge pressure shows the same value as the condensation pressure. Therefore, in FIG. 13, the condensing pressure is indicated as Px for convenience.
  • the BC process is a process in which isobaric cooling is performed in the condenser 12 to convert the high-temperature, high-pressure working medium vapor B into the low-temperature, high-pressure working medium C, and is indicated by the BC line in FIG.
  • the pressure at this time is the condensation pressure.
  • the intersection point T1 on the high enthalpy side is the condensation temperature
  • the intersection point T2 on the low enthalpy side is the condensation boiling temperature.
  • the temperature gradient when the working medium is a non-azeotropic mixed medium is shown as the difference between T1 and T2.
  • the CD process is a process in which the expansion valve 13 performs isenthalpic expansion to convert the low-temperature, high-pressure working medium C into a low-temperature, low-pressure working medium D, and is indicated by line CD in FIG. If the temperature of the low-temperature, high-pressure working medium C is denoted by T3, T2-T3 is the degree of supercooling (SC) of the working medium in the cycles (i) to (iv).
  • the DA process is a process in which isobaric heating is performed in the evaporator 14 and the low-temperature, low-pressure working medium D is returned to the high-temperature, low-pressure working medium vapor A, which is indicated by the DA line in FIG.
  • the pressure at this time is the evaporation pressure.
  • T6 on the high enthalpy side is the evaporation temperature.
  • T7-T6 is the superheat (SH) of the working medium in the cycles (i) to (iv).
  • T4 indicates the temperature of the working medium D.
  • the CAP and COP of the working medium are in each state of the working medium A (low temperature and low pressure after evaporation), B (high temperature and high pressure after compression), C (low temperature and high pressure after condensation), and D (low temperature and low pressure after expansion).
  • A low temperature and low pressure after evaporation
  • B high temperature and high pressure after compression
  • C low temperature and high pressure after condensation
  • D low temperature and low pressure after expansion
  • the working medium vapor B′ after the AB step is expressed by the following equation using hA, hB, ⁇ .
  • hB' hA+(hB-hA)/ ⁇
  • thermodynamic properties required to calculate the cycle performance of the working medium are found in the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (REFPROP 10.0) and the principle of corresponding states. based on the generalized equation of state (Soave - Redlich-Kwong equation) and thermodynamic equations.
  • CAP (hA ⁇ hD) ⁇ s (11)
  • Q qmr(hA ⁇ hD) (13)
  • P qmr(hB ⁇ hA) (14)
  • COP and P are given by the following equations.
  • P qmr(hB'-hA) (16)
  • the change in state of the working medium can be represented as shown in FIG. 14 by describing it on the temperature-entropy diagram.
  • Pressure loss increases the condensation pressure in the refrigeration cycle and decreases the evaporation pressure, which is a factor that lowers the performance.
  • the pressure loss is caused by the friction in the flow in the condenser, evaporator, and connecting pipes in the refrigeration cycle, and the coefficient of friction f (-), length L (m), diameter d (m), evaporator capacity Using ⁇ 0 (kW), latent heat of vaporization W r (kJ/kg), and specific volume ⁇ s (m 3 /kg), it is expressed by the following equation.
  • the values in parentheses in the first half of the formula are determined by the specifications of the dimensions and performance of the parts that make up the refrigeration cycle.
  • the values in the latter half of the parentheses are determined by the thermal properties of the refrigerant, the values in the latter half of the parentheses should be taken into consideration when the device specifications and device performance are the same. Therefore, the pressure loss decreases as the specific volume of the refrigerant decreases and the latent heat of vaporization increases, and increases as the specific volume of the refrigerant increases and the latent heat of vaporization decreases. The smaller the pressure loss, the smaller the work loss, so the equipment performance is improved. In the present disclosure, pressure loss is shown in parentheses in the latter half of the formula, and is shown as relative pressure loss with respect to R410A.
  • the working medium of the present disclosure is a refrigerant for refrigerators, a refrigerant for air conditioners, a working medium for power generation systems (waste heat recovery power generation, etc.), a working medium for latent heat transport devices (heat pipes, etc.), a heat cycle such as a secondary cooling medium It can be suitably used as a working medium for systems.
  • composition for heat cycle system When applied to a heat cycle system, the working medium of the present disclosure can be used as a composition for a heat cycle system, usually by being mixed with a lubricating oil.
  • a composition for a thermal cycle system of the present disclosure includes a working medium of the present disclosure and lubricating oil.
  • the composition for a thermal cycle system of the present disclosure may further contain known additives such as stabilizers and leak detection substances in addition to the working medium and lubricating oil of the present disclosure.
  • the type of lubricating oil is not particularly limited, but it is preferable to select a lubricating oil that does not greatly change the solubility of propane, HFO-1123, and the third component contained in the working medium. Specifically, when the working medium contacts the lubricating oil and some of the components contained in the working medium dissolve in the lubricating oil, each component (propane, HFO- 1123, third component, etc.) is preferably within ⁇ 5% by mass of the content of each component in the working medium.
  • Lubricating oils include known lubricating oils used in thermal cycle systems.
  • the lubricating oil is contained in the heat cycle system composition together with the working medium, circulates in the heat cycle system, and particularly functions as a lubricating oil in the compressor in the heat cycle system.
  • the lubricating oil has sufficient compatibility with the working medium under low-temperature conditions while ensuring lubricity and airtightness of the compressor.
  • the kinematic viscosity of the lubricating oil at 40° C. is preferably 1 to 750 mm 2 /sec, more preferably 1 to 400 mm 2 /sec.
  • the kinematic viscosity at 100° C. is preferably 1 to 100 mm 2 /sec, more preferably 1 to 50 mm 2 /sec.
  • lubricating oils examples include ester-based lubricating oils, ether-based lubricating oils, fluorine-based lubricating oils, hydrocarbon-based synthetic oils, and mineral oils.
  • Ester-based lubricating oil is an oily ester compound with an ester bond in the molecule.
  • Ester-based lubricating oils include, for example, dibasic acid esters, polyol esters, complex esters, and polyol carbonates.
  • the dibasic acid ester includes, for example, a dibasic acid having 5 to 10 carbon atoms (glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.) and a linear or branched alkyl group.
  • monohydric alcohol having 1 to 15 carbon atoms methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, 2-ethylhexanol , isodecyl alcohol, 3-ethyl-3-hexanol, etc.) are preferred.
  • ditridecyl glutarate di(2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, and di(3-ethyl-3-hexyl) sebacate.
  • a polyol ester is an ester synthesized from a polyol and a fatty acid (monohydric aliphatic carboxylic acid).
  • Polyol esters include diols (ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 1,5-pentadiol, neopentyl glycol, 1,7-heptanediol, , 1,12-dodecanediol, etc.) or a polyol having 3 to 20 hydroxyl groups (trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, glycerin, sorbitol, sorbitan, sorbitol glycerin condensate, etc.) and a carbon number 6 to 20 fatty acids (straight or branched fatty acids such as hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, pelargonic acid, decan
  • Polyol esters are esters of hindered alcohols (e.g., neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, etc.), specifically trimethylolpropane tripelargonate, pentaerythritol 2 - Ethylhexanoate or pentaerythritol tetrapelargonate is more preferred.
  • hindered alcohols e.g., neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, etc.
  • trimethylolpropane tripelargonate pentaerythritol 2 - Ethylhexanoate or pentaerythritol tetrapelargonate is more preferred.
  • a complex ester is a combination (complex) of several esters.
  • Complex esters are mixtures of esters synthesized from at least one of fatty acids and dibasic acids and at least one of monohydric alcohols and polyols. Examples of fatty acids, dibasic acids, monohydric alcohols and polyols include the same as those exemplified for the above dibasic acid esters and polyol esters.
  • a polyol carbonate is an ester of carbonic acid and a polyol, or a ring-opening polymer of a cyclic alkylene carbonate.
  • Examples of the polyol include the same ones as those mentioned in the above polyol ester.
  • Ether-based lubricating oil is an oily ether compound with an ether bond in the molecule.
  • Ether-based lubricating oils include, for example, polyalkylene glycols and polyvinyl ethers.
  • polyalkylene glycols examples include polyalkylene polyols and compounds obtained by alkyl-etherifying some or all of the hydroxyl groups of polyalkylene polyols.
  • Polyalkylene glycol can be obtained, for example, by polymerizing an alkylene oxide having 2 to 4 carbon atoms (eg, ethylene oxide, propylene oxide, etc.) using water, an alkanemonool, a diol, or a polyol as an initiator.
  • the number of oxyalkylene units in one polyalkylene glycol molecule may be one, or two or more.
  • the polyalkylene glycol is preferably a compound containing at least oxypropylene units in one molecule, more preferably polypropylene glycol or polypropylene glycol dialkyl ether.
  • a polyvinyl ether is a polymer having at least a structural unit derived from a vinyl ether monomer.
  • polyvinyl ether examples include polymers of vinyl ether monomers, copolymers of vinyl ether monomers and hydrocarbon monomers having unsaturated double bonds, and copolymers of vinyl ether monomers and vinyl ether monomers having a polyalkylene oxide chain. are mentioned. Ethylene oxide or propylene oxide is preferred as the alkylene oxide contained in the polyalkylene oxide chain.
  • the polymer may be either a block copolymer or a random copolymer.
  • the vinyl ether monomer is an alkyl vinyl ether.
  • the alkyl group contained in the alkyl vinyl ether is preferably an alkyl group having 6 or less carbon atoms.
  • the vinyl ether monomers may be used singly or in combination of two or more.
  • Hydrocarbon monomers having unsaturated double bonds include ethylene, propylene, various butenes, various pentenes, various hexenes, various heptenes, various octenes, diisobutylene, triisobutylene, styrene, ⁇ -methylstyrene, and various alkyl-substituted styrenes. is mentioned.
  • the hydrocarbon monomers having unsaturated double bonds may be used singly or in combination of two or more.
  • a fluorine-based lubricating oil is an oily compound that has a fluorine atom in its molecule.
  • fluorine-based lubricating oils mineral oils or hydrocarbon-based synthetic oils (e.g., poly- ⁇ -olefins, alkylbenzenes, alkylnaphthalenes, etc.) described below in which hydrogen atoms are substituted with fluorine atoms, perfluoropolyether oils, and fluorinated A silicone oil is mentioned.
  • mineral oils or hydrocarbon-based synthetic oils e.g., poly- ⁇ -olefins, alkylbenzenes, alkylnaphthalenes, etc.
  • Mineral oil is a lubricating oil fraction obtained by atmospheric distillation or vacuum distillation of crude oil, and is subjected to refining treatment (e.g., solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrogenation Refining, white clay treatment, etc.) are combined as appropriate.
  • Mineral oils include, for example, paraffinic mineral oils and naphthenic mineral oils.
  • a hydrocarbon-based synthetic oil is an oily synthetic compound whose molecules are composed only of carbon and hydrogen atoms.
  • Hydrocarbon synthetic oils include, for example, poly ⁇ -olefins, alkylbenzenes, and alkylnaphthalenes.
  • Lubricating oils may be used singly or in combination of two or more.
  • the lubricating oil is preferably one or both of a polyol ester and a polyalkylene glycol from the viewpoint of compatibility with the working medium, and more preferably a polyalkylene glycol from the viewpoint that a significant antioxidant effect can be obtained by the stabilizer.
  • the content of the lubricating oil in the composition for a heat cycle system may be within a range that does not significantly reduce the effects of the present disclosure, and is preferably 10 to 100 parts by mass, preferably 20 to 50 parts by mass, relative to 100 parts by mass of the working medium. part is more preferred.
  • Stabilizers are ingredients that improve the stability of the working medium against heat and oxidation. Stabilizers include, for example, oxidation resistance improvers, heat resistance improvers, and metal deactivators.
  • the oxidation resistance improver is a stabilizer that stabilizes the working medium by suppressing decomposition of the working medium mainly by oxygen under conditions where the working medium is repeatedly compressed and heated in a thermal cycle system.
  • a heat resistance improver is a stabilizer that stabilizes the working medium by suppressing decomposition of the working medium mainly due to heat under conditions where the working medium is repeatedly compressed and heated in a thermal cycle system.
  • oxidation resistance improvers and heat resistance improvers examples include N,N'-diphenylphenylenediamine, p-octyldiphenylamine, p,p'-dioctyldiphenylamine, N-phenyl-1-naphthylamine, and N-phenyl-2.
  • oxidation resistance improver and the heat resistance improver may be used alone, or two or more thereof may be used in combination.
  • the metal deactivator is used for the purpose of preventing the metal materials in the thermal cycle system from adversely affecting the working medium and lubricating oil, or for the purpose of protecting the metal materials from the working medium and lubricating oil.
  • Specific examples include agents that form a film on the surface of the metal material.
  • metal deactivators examples include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimercaptothiadiazole, salicyridin-propylenediamine, pyrazole, benzotriazole, tolyltriazole, 2-methylbenzimidazole, 3,5 organic acids or their esters; primary, secondary or tertiary aliphatic amines; amine salts of organic or inorganic acids; heterocyclic nitrogen-containing compounds, alkyl acids. Amine salts of phosphates or derivatives thereof may be mentioned.
  • the content of the stabilizer with respect to the total amount (100% by mass) of the working medium is not particularly limited as long as it does not significantly reduce the effects of the present disclosure, but is preferably 5% by mass or less. % by mass or less is more preferable.
  • a leak detection substance is a substance added for the purpose of facilitating detection by odor, color, etc. when a working medium or the like leaks from a thermal cycle system.
  • Leak detection materials include, for example, ultraviolet fluorescent dyes, odorous gases, and odor masking agents.
  • ultraviolet fluorescent dyes include, for example, US Pat. known ultraviolet fluorescent dyes such as those described above.
  • Odor masking agents refer to substances added for the purpose of improving the fragrance.
  • Examples of the odor masking agent include known perfumes such as those described in JP-A-2008-500437 and JP-A-2008-531836.
  • solubilizer that improves the solubility of the leak detection substance in the working medium may be used.
  • solubilizers include those described in JP-T-2007-511645, JP-T-2008-500437, and JP-T-2008-531836.
  • the content of the leak detection substance relative to the total amount (100% by mass) of the working medium in the composition for a heat cycle system is not particularly limited as long as it does not significantly reduce the effects of the present disclosure, but is preferably 2% by mass or less, 0.5% by mass or less is more preferable.
  • the heat cycle system of the present disclosure is a heat cycle system using the working fluid of the present disclosure or the composition for heat cycle system of the present disclosure.
  • the heat cycle system of the present disclosure may be a heat pump system that uses hot heat obtained from a condenser, or a refrigeration cycle system that uses cold heat obtained from an evaporator.
  • the heat cycle system of the present disclosure include freezing/refrigerating equipment, air conditioning equipment, power generation systems, heat transport devices, and secondary coolers. Above all, the heat cycle system of the present disclosure can stably and safely exhibit heat cycle performance even in a higher temperature operating environment, so it is preferably used as an air conditioner that is often installed outdoors. Also, the heat cycle system of the present disclosure is preferably used as a freezer/refrigerator.
  • air conditioning equipment include room air conditioners, package air conditioners (package air conditioners for stores, package air conditioners for buildings, package air conditioners for facilities, etc.), gas engine heat pumps, air conditioners for trains, and air conditioners for automobiles.
  • freezing/refrigerating equipment include showcases (built-in showcases, separate showcases, etc.), commercial freezers/refrigerators, vending machines, and ice machines.
  • a power generation system based on the Rankine cycle system is preferable.
  • the working medium is heated by geothermal energy, solar heat, waste heat in a medium to high temperature range of 50 ° C to 200 ° C in an evaporator, etc., and the working medium becomes steam in a high temperature and high pressure state. is adiabatically expanded by an expander, and the work generated by the adiabatic expansion drives a generator to generate power.
  • a latent heat transport device is preferable as a heat transport device.
  • latent heat transport devices include heat pipes and two-phase closed thermosiphon devices that transport latent heat using phenomena such as evaporation, boiling, and condensation of a working medium enclosed in the device.
  • a heat pipe is applied to a relatively small cooling device such as a cooling device for a semiconductor device or a heat-generating part of an electronic device.
  • the two-phase closed thermosiphon device does not require a wig and has a simple structure, so it is widely used for gas-to-gas heat exchangers, promoting snow melting on roads, and preventing freezing.
  • a method of preserving the composition of the present disclosure includes propane, at least one of HFO-1123 and HFO-1132(E), HFO-1234yf, HFO-1234ze(E), HFC-32, CO 2 , CF 3 I, at least selected from the group consisting of HCFO-1224yd(Z), HCFO-1224yd(E), HFO-1233zd(E), HFO-1336mzz(E), HFO-1225ye(Z), and HFO-1225ye(E)
  • compositions are the same as the preferred aspects of the working medium described above.
  • the method of filling the container with the composition is not particularly limited, and generally known methods can be used.
  • the mixed composition may be introduced into a container.
  • each component contained in the composition may be individually introduced into a container and mixed in the container.
  • only some of the components contained in the composition may be mixed, the mixed components and the remaining components may be separately introduced into a container, and the components may be mixed in the container.
  • Methods of making the composition liquid include a method of cooling the composition and a method of pressurizing the composition.
  • "filling a liquid composition into a container” means not only the mode of introducing the liquid composition into the container, but also each component contained in the composition (however, even if some components are mixed in advance) (good) is separately introduced into a container to obtain a liquid composition in the container.
  • the container for storing the composition is not particularly limited as long as it can store the composition in a gas-liquid state under internal pressure.
  • containers include pressure-resistant containers such as storage tanks that are fixed storage containers, filled cylinders used for transportation, and secondary filled cylinders (service cans).
  • the container may be a simple container for temporary storage.
  • the material of the container is not particularly limited, and examples include glass, carbon steel, manganese steel, chrome molybdenum steel, stainless steel, and aluminum alloy. Also, the inner wall of the container may be lined with resin or the like.
  • the concentration of oxygen in the gas phase at 25° C. is kept below 3000 ppm by volume. If the oxygen concentration in the gas phase is 3000 ppm by volume or less, the polymerization reaction of the composition can be suppressed.
  • the storage method of the present disclosure can suppress polymerization reactions and the like even when the oxygen concentration is as high as 3000 ppm by volume. The reason for this is presumed as follows. Polymerization of HFO-1123 with oxygen proceeds through by-products such as peroxides generated by the reaction of oxygen with unsaturated bonds, and radical active species act as starting points for polymerization, and HFO-1123 undergoes a chain reaction. It is thought that it progresses by doing.
  • the polymerization chain reaction is terminated. Since the composition in the storage method of the present disclosure contains propane together with HFO-1123, it is thought that even if the oxygen concentration is as high as 3000 ppm by volume, the polymerization reaction and the like can be suppressed.
  • the concentration of oxygen in the gas phase at 25 ° C. is preferably 1 to 3000 volume ppm, more preferably 3 to 1000 volume ppm, even more preferably 3 to 300 volume ppm, 3 to 50 volume ppm ppm is particularly preferred.
  • Productivity improves that the concentration of oxygen is 1 volume ppm or more.
  • the concentration of oxygen in the gas phase can be measured by gas chromatography.
  • the method for storing the composition of the present disclosure it is preferable to fill the container with the liquid composition after degassing the inside of the container.
  • the method for degassing the inside of the container is not particularly limited, and a commonly known method can be used.
  • Oxygen in the container is removed by degassing the container.
  • a container having a reduced concentration of oxygen is filled with a composition in liquid form, the space within the container is quickly saturated with vapor from the liquid. Then, the concentration of oxygen in the gas phase filled with saturated steam is 3000 ppm by volume or less.
  • non-condensable gases such as nitrogen are also removed together with oxygen. ppm) or less.
  • the pressure and temperature during storage must be maintained below the prescribed level according to the design pressure and temperature of the container.
  • the temperature during storage is preferably 60° C. or lower, more preferably 50° C. or lower, more preferably 40° C. or lower, and even more preferably 30° C. or lower, from the viewpoint of safety.
  • the lower limit of the temperature during storage is not particularly limited, but when the temperature is below the boiling point of the composition, the inside of the container becomes negative pressure, and air, moisture, etc. may be mixed, so the temperature during storage is - 30° C. or higher is preferred, ⁇ 15° C. or higher is more preferred, and 0° C. or higher is even more preferred.
  • composition can be stored, for example, in a well-ventilated environment without direct sunlight. You may preserve
  • the quality can be maintained so that the composition satisfies one or more of the following (1) to (4) during or after storage. Two or more of the following (1) to (4) are preferably satisfied, three or more are more preferable, and all of them are most preferable.
  • Moisture content is 500 ppm or less.
  • Evaporation residue is 100 ppm or less.
  • Acid content is 1 ppm or less. (4) Colorless and transparent in hue.
  • the polymerization reaction and the like of the composition filled in the container in a gas-liquid state is suppressed, so the purity and refrigerant performance of the composition can be maintained.
  • the composition since no solid polymerized product is generated in the container, there is no risk of blockage of valves or contamination of the refrigerant system.
  • the composition can be stored at low cost.
  • the composition can be stably stored for a long period of time.
  • the composition may be stored in the container for 1 week or more, 1 month or more, 3 months or more, 6 months or more, or 1 year or more.
  • One aspect of the storage container of the composition of the present disclosure is propane, at least one of HFO-1123 and HFO-1132(E), and HFO-1234yf and HFO-1234ze in a state where a gas phase and a liquid phase coexist.
  • kg, and the concentration of oxygen in the gas phase at a temperature of 25° C. is 3000 ppm by volume or less.
  • the concentration of oxygen in the gas phase at 25 ° C. is preferably 1 to 3000 volume ppm, more preferably 3 to 1000 volume ppm, even more preferably 3 to 300 volume ppm, 3 to 50 volume ppm ppm is particularly preferred.
  • Productivity improves that the concentration of oxygen is 1 volume ppm or more.
  • Preferred aspects of the components contained in the composition are the same as preferred aspects of the components contained in the working medium.
  • Preferred aspects of the storage container are the same as the preferred aspects of the container used in the storage method described above.
  • Another aspect of the storage container of the composition of the present disclosure is propane, at least one of HFO-1123 and HFO-1132(E), HFO-1234yf, HFO-1234ze(E), HFC-32, from CO 2 , CF 3 I, HCFO-1224yd(Z), HCFO-1224yd(E), HFO-1233zd(E), HFO-1336mzz(E), HFO-1225ye(Z), and HFO-1225ye(E)
  • the water content is preferably 100 mass ppm or less, more preferably 50 ppm or less, relative to the total amount of the composition.
  • the lower limit of water content is not particularly limited.
  • the water content is measured by Karl Fischer coulometric titration by sending the sample to the Karl Fischer reagent.
  • Preferred embodiments of the components other than water contained in the composition are the same as the preferred embodiments of the components contained in the working medium.
  • Preferred aspects of the storage container are the same as the preferred aspects of the container used in the storage method described above.
  • the water content during storage is 500 ppm or less, quality deterioration due to storage of the composition is suppressed.
  • (Appendix 5) The working medium according to appendix 1, wherein the propane content is 1.0% by mass or more relative to the total amount of the working medium.
  • (Appendix 6) containing the difluoromethane, The working medium according to appendix 1, wherein the content of the difluoromethane is 22.0% by mass or less with respect to the total amount of the working medium.
  • (Appendix 7) containing said CO2 , The working medium according to appendix 1, wherein the CO 2 content is 15.0% by mass or less with respect to the total amount of the working medium.
  • the mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 5:95 to 29:71
  • the content of the 2,3,3,3-tetrafluoro-1-propene is the propane, the 1,1,2-trifluoroethylene, and the 2,3,3,3-tetrafluoro-1-propene 10.5 to 25.0% by mass with respect to the total content of
  • the total content of propane, 1,1,2-trifluoroethylene, and 2,3,3,3-tetrafluoro-1-propene is 80% by mass or more relative to the total amount of the working medium.
  • (Appendix 9) containing the propane, the 1,1,2-trifluoroethylene, and the difluoromethane;
  • the mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 18:82 to 22:78,
  • the content of the difluoromethane is 5.5 to 19.5% by mass with respect to the total content of the propane, the 1,1,2-trifluoroethylene, and the difluoromethane. working medium.
  • the mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 18.9:81.1 to 23:77,
  • the content of the difluoromethane is 12.5 to 21.5% by mass with respect to the total content of the propane, the 1,1,2-trifluoroethylene, and the difluoromethane. working medium.
  • (Appendix 12) containing the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene The propane content is 25.0% by mass or less with respect to the total content of the propane and the 1,1,2-trifluoroethylene, The content of the (E)-1,3,3,3-tetrafluoropropene is the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene. 11.0 to 25.0% by mass with respect to the total content of fluoropropene, The working medium according to appendix 1, wherein the total content is 78.5% by mass or more with respect to the total amount of the working medium.
  • (Appendix 13) containing the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene The propane content is 10.0% by mass or less with respect to the total content of the propane and the 1,1,2-trifluoroethylene,
  • the content of the (E)-1,3,3,3-tetrafluoropropene is the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene.
  • (Appendix 14) containing the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene The propane content is 20.0% by mass or less with respect to the total content of the propane and the 1,1,2-trifluoroethylene, The content of the (E)-1,3,3,3-tetrafluoropropene is the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene.
  • the propane content with respect to the total content of the propane, the 1,1,2-trifluoroethylene, and the CF 3 I is X 2 % by mass, and the CF 3 I content with respect to the total content is Y 2
  • the X 2 and the Y 2 satisfy the following formula (2A)
  • the content of the difluoromethane with respect to the total content of the propane, the 1,1,2-trifluoroethylene, the 2,3,3,3-tetrafluoro-1-propene, and the difluoromethane is A% by mass
  • the content of 2,3,3,3-tetrafluoro-1-propene with respect to the total content is B% by mass
  • the content of propane with respect to the total content is C% by mass
  • the content of 1 with respect to the total content where the content of 1,2-trifluoroethylene is D mass%
  • the A, the B, the C, and the D satisfy the following formulas (3A) to (3D).
  • (3D) (Appendix 22) containing the propane, the 1,1,2-trifluoroethylene, the (E)-1,3,3,3-tetrafluoropropene, and the difluoromethane;
  • the content of the difluoromethane with respect to the total content of the propane, the 1,1,2-trifluoroethylene, the (E)-1,3,3,3-tetrafluoropropene, and the difluoromethane is E% by mass.
  • the content of (E)-1,3,3,3-tetrafluoropropene with respect to the total content is F mass%
  • the content of propane with respect to the total content is G mass%
  • the total content is
  • the content of the 1,1,2-trifluoroethylene is H mass%
  • the E, the F, the G, and the H satisfy the following formulas (4A) to (4D).
  • (4D) (Appendix 23) containing the propane, the 1,1,2-trifluoroethylene, the CO2 , and the difluoromethane;
  • the content of the difluoromethane with respect to the total content of the propane, the 1,1,2-trifluoroethylene, the CO 2 and the difluoromethane is J% by mass, and the content of the CO 2 with respect to the total content is K% by mass, L% by mass for the content of propane relative to the total content, and M% by mass for the content of 1,1,2-trifluoroethylene relative to the total content.
  • Appendix 26 A composition for a thermal cycle system, comprising the working medium according to any one of appendices 1 to 25, and lubricating oil.
  • Appendix 27 A heat cycle system using the working medium according to any one of appendices 1 to 25.
  • Discharge Temperature (Difference) of the working medium (Relative) Condensing Pressure, (Relative) Evaporating Pressure, CAP (Relative) Capacity and COP (performance A coefficient (Relative Coefficient of Performance) was obtained by the method described above. Also, the temperature glide (Difference) was obtained by the following method. The results obtained are shown in Tables 503-713. "-" in the table indicates that the evaluation was not performed. In the table, the unit of discharge temperature (Difference) and temperature glide (Difference) is "°C".
  • temperature glide was calculated as the difference between the temperature at which evaporation begins and the temperature at which evaporation completes in the evaporator. This disclosure shows the difference from R410A.
  • CAP which is the refrigerating capacity per unit volume of the evaporator
  • CAP which is the refrigerating capacity per unit volume
  • the present disclosure provides relative coefficients of performance for R410A.
  • -COP- COP is a value obtained by dividing the output Q (kW) by the power P (kW) consumed to obtain the output Q (kW), and corresponds to energy consumption efficiency. The higher the COP value, the greater output can be obtained with less input.
  • the present disclosure provides relative coefficients of performance for R410A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The working medium contains propane, at least one of 1,1,2-trifluoroethylene and (E)-1,2-difluoroethylene, and at least one selected from the group consisting of 2,3,3,3-tetrafluoro-1-propene, (E)-1,3,3,3-tetrafluoropropene, difluoromethane, CO2, CF3I, (Z)-1-chloro-2,3,3,3-tetrafluoropropene, (E)-1-chloro-2,3,3,3-tetrafluoropropene, (E)-1-chloro-3,3,3-trifluoropropene, (E)-1,1,1,4,4,4-hexafluoro-2-butene, (Z)-1,2,3,3,3-pentafluoropropene, and (E)-1,2,3,3,3-pentafluoropropene, and the heat of combustion is less than 19.000 MJ/kg.

Description

作動媒体working medium
 本開示は、作動媒体に関する。 The present disclosure relates to working media.
 従来、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動媒体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の熱サイクルシステム用の作動媒体としては、クロロトリフルオロメタン、ジクロロジフルオロメタン等のクロロフルオロカーボン(CFC)、クロロジフルオロメタン等のヒドロクロロフルオロカーボン(HCFC)が用いられてきた。しかし、CFC及びHCFCは、成層圏のオゾン層への影響が指摘され、現在、規制の対象となっている。 Conventionally, refrigerants for refrigerators, refrigerants for air conditioners, working fluids for power generation systems (waste heat recovery power generation, etc.), working fluids for latent heat transport devices (heat pipes, etc.), working fluids for heat cycle systems such as secondary cooling media As such, chlorofluorocarbons (CFCs) such as chlorotrifluoromethane and dichlorodifluoromethane, and hydrochlorofluorocarbons (HCFCs) such as chlorodifluoromethane have been used. However, CFCs and HCFCs have been pointed out to affect the ozone layer in the stratosphere, and are currently subject to regulation.
 このような経緯から、熱サイクルシステム用作動媒体としては、CFCやHCFCに代えて、オゾン層への影響が少ない、ジフルオロメタン(HFC-32)、テトラフルオロエタン、ペンタフルオロエタン(HFC-125)等のヒドロフルオロカーボン(HFC)が用いられるようになった。例えば、R410A(HFC-32とHFC-125との質量比1:1の擬似共沸混合冷媒)等は従来から広く使用されてきた冷媒である。しかし、HFCは、地球温暖化の原因となる可能性が指摘されている。 From this background, instead of CFCs and HCFCs, difluoromethane (HFC-32), tetrafluoroethane, and pentafluoroethane (HFC-125), which have less impact on the ozone layer, have been selected as working fluids for heat cycle systems. Hydrofluorocarbons (HFCs) such as HFCs have come to be used. For example, R410A (a quasi-azeotropic mixture of HFC-32 and HFC-125 at a mass ratio of 1:1) is a refrigerant that has been widely used. However, it has been pointed out that HFCs may cause global warming.
 R410Aは、冷凍能力の高さからいわゆるパッケージエアコンやルームエアコンと言われる通常の空調機器等に広く用いられてきた。しかし、R410Aの地球温暖化係数(GWP)は2088と高い。そのため、低GWPの冷媒の開発が求められている。この際、R410Aを単に置き換えて、これまで用いられてきた機器をそのまま使用し続けることを前提にした冷媒の開発が求められている。 Due to its high refrigeration capacity, R410A has been widely used in ordinary air conditioning equipment such as so-called packaged air conditioners and room air conditioners. However, R410A has a high global warming potential (GWP) of 2088. Therefore, development of low GWP refrigerants is required. At this time, there is a demand for the development of a refrigerant on the premise of simply replacing R410A and continuing to use the devices that have been used as they are.
 オゾン層への影響が少なく、かつ地球温暖化への影響が少ない冷媒として、最近、ヒドロフルオロオレフィン(HFO)に期待が集まっている。HFOは、炭素-炭素二重結合を有するHFCであり、炭素-炭素二重結合は大気中のOHラジカルによって分解されやすい。本開示においては、特に断りのない限り、飽和のHFCをHFCといい、HFOとは区別して用いる。 Recently, expectations are high for hydrofluoroolefins (HFOs) as refrigerants that have little impact on the ozone layer and have little impact on global warming. HFO is an HFC with carbon-carbon double bonds, which are easily decomposed by atmospheric OH radicals. In the present disclosure, saturated HFCs are referred to as HFCs and are used to distinguish them from HFOs, unless otherwise specified.
 HFOを用いた冷媒として、例えば、国際公開第2012/157764号には上記特性を有するとともに、優れたサイクル性能が得られる1,1,2-トリフルオロエチレン(HFO-1123)を用いた冷媒に係る技術が開示されている。
 さらに、例えば、特開2021-167428号公報には上記特性を有するとともに、優れたサイクル性能が得られる(E)-1,2-ジフルオロエチレン(HFO-1132(E))を用いた冷媒に係る技術が開示されている。
 HFO-1123及びHFO-1132(E)に対しては、該成分のサイクル性能等を高める目的で、HFC、HFO等のその他の媒体を組み合わせた作動媒体とすることが有効である。
As a refrigerant using HFO, for example, International Publication No. 2012/157764 discloses a refrigerant using 1,1,2-trifluoroethylene (HFO-1123), which has the above characteristics and provides excellent cycle performance. Such technology is disclosed.
Further, for example, Japanese Patent Application Laid-Open No. 2021-167428 relates to a refrigerant using (E)-1,2-difluoroethylene (HFO-1132 (E)), which has the above characteristics and provides excellent cycle performance. Techniques are disclosed.
For HFO-1123 and HFO-1132(E), it is effective to combine other media such as HFC and HFO to form a working medium for the purpose of enhancing the cycle performance of these components.
 その他の媒体の一例として、低GWPであり、且つ、冷媒としての性能に優れるプロパンは有効な媒体として挙げられる。そのため、プロパンを含む作動媒体の開発が望まれている。
 本開示の一態様は、上記従来の事情に鑑みてなされたものであり、プロパンを含有し冷媒としての性能に優れた作動媒体の提供を目的とする。
As an example of another medium, propane, which has a low GWP and excellent performance as a refrigerant, can be cited as an effective medium. Therefore, development of a working medium containing propane is desired.
One aspect of the present disclosure has been made in view of the above-described conventional circumstances, and an object thereof is to provide a working medium containing propane and having excellent performance as a refrigerant.
 上記課題を達成するための具体的手段は以下の通りである。
<1>
 プロパンと、
 1,1,2-トリフルオロエチレン及び(E)-1,2-ジフルオロエチレンの少なくとも一方と、
 2,3,3,3-テトラフルオロ-1-プロペン、(E)-1,3,3,3-テトラフルオロプロペン、ジフルオロメタン、CO、CFI、(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン、(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン、(E)-1-クロロ-3,3,3-トリフルオロプロペン、(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン、(Z)-1,2,3,3,3-ペンタフルオロプロペン、及び(E)-1,2,3,3,3-ペンタフルオロプロペンからなる群より選択される少なくとも1種の第3成分と、を含有し、
 燃焼熱量が、19.000MJ/kg未満である作動媒体。
<2>
 プロパンと、1,1,2-トリフルオロエチレンと、2,3,3,3-テトラフルオロ-1-プロペンと、を含有し、
 プロパンの含有量と1,1,2-トリフルオロエチレンの含有量との質量比が、5:95~29:71であり、
 2,3,3,3-テトラフルオロ-1-プロペンの含有量が、プロパン、1,1,2-トリフルオロエチレン、及び2,3,3,3-テトラフルオロ-1-プロペンの合計含有量に対して10.5~25.0質量%であり、
 プロパン、1,1,2-トリフルオロエチレン、及び2,3,3,3-テトラフルオロ-1-プロペンの合計含有量が、作動媒体の全量に対して80質量%以上である、<1>に記載の作動媒体。
<3>
 プロパンと、1,1,2-トリフルオロエチレンと、ジフルオロメタンと、を含有し、
 プロパンの含有量と1,1,2-トリフルオロエチレンの含有量との質量比が、18:82~22:78であり、
 ジフルオロメタンの含有量が、プロパン、1,1,2-トリフルオロエチレン、及びジフルオロメタンの合計含有量に対して5.5~19.5質量%である、<1>に記載の作動媒体。
<4>
 プロパンと、1,1,2-トリフルオロエチレンと、ジフルオロメタンと、を含有し、
 プロパンの含有量と1,1,2-トリフルオロエチレンの含有量との質量比が、5:95~23:77であり、
 ジフルオロメタンの含有量が、プロパン、1,1,2-トリフルオロエチレン、及びジフルオロメタンの合計含有量に対して20.1~21.9質量%である、<1>に記載の作動媒体。
<5>
 プロパンと、1,1,2-トリフルオロエチレンと、ジフルオロメタンと、を含有し、
 プロパンの含有量と1,1,2-トリフルオロエチレンの含有量との質量比が、18.9:81.1~23:77であり、
 ジフルオロメタンの含有量が、プロパン、1,1,2-トリフルオロエチレン、及びジフルオロメタンの合計含有量に対して12.5~21.5質量%である、<1>に記載の作動媒体。
<6>
 プロパンと、1,1,2-トリフルオロエチレンと、(E)-1,3,3,3-テトラフルオロプロペンと、を含有し、
 プロパンの含有量が、プロパン及び1,1,2-トリフルオロエチレンの合計含有量に対して25.0質量%以下であり、
 (E)-1,3,3,3-テトラフルオロプロペンの含有量が、プロパン、1,1,2-トリフルオロエチレン、及び(E)-1,3,3,3-テトラフルオロプロペンの合計含有量に対して11.0~25.0質量%であり、
 上記合計含有量が、作動媒体の全量に対して78.5質量%以上である、<1>に記載の作動媒体。
<7>
 プロパンと、1,1,2-トリフルオロエチレンと、(E)-1,3,3,3-テトラフルオロプロペンと、を含有し、
 プロパンの含有量が、プロパン及び1,1,2-トリフルオロエチレンの合計含有量に対して10質量%以下であり、
 (E)-1,3,3,3-テトラフルオロプロペンの含有量が、プロパン、1,1,2-トリフルオロエチレン、及び(E)-1,3,3,3-テトラフルオロプロペンの合計含有量に対して15.0質量%以下である、<1>に記載の作動媒体。
<8>
 プロパンと、1,1,2-トリフルオロエチレンと、(E)-1,3,3,3-テトラフルオロプロペンと、を含有し、
 プロパンの含有量が、プロパン及び1,1,2-トリフルオロエチレンの合計含有量に対して20.0質量%以下であり、
 (E)-1,3,3,3-テトラフルオロプロペンの含有量が、プロパン、1,1,2-トリフルオロエチレン、及び(E)-1,3,3,3-テトラフルオロプロペンの合計含有量に対して9.0質量%以下である、<1>に記載の作動媒体。
<9>
 プロパンと、1,1,2-トリフルオロエチレンと、COと、を含有し、
 プロパン、1,1,2-トリフルオロエチレン、及びCOの合計含有量に対する1,1,2-トリフルオロエチレンの含有量をX質量%、上記合計含有量に対するCOの含有量をY質量%とした場合に、X及びYが下記式(1)を満たし、
 上記合計含有量が、作動媒体の全量に対して78.5質量%以上である、<1>に記載の作動媒体。
 -0.00115X +0.13537X -6.20662X+151.14664≦Y≦59 …(1)
<10>
 COの含有量が、上記合計含有量に対して20.0質量%以下である、<9>に記載の作動媒体。
<11>
 プロパンと、1,1,2-トリフルオロエチレンと、CFIと、を含有し、
 プロパン、1,1,2-トリフルオロエチレン、及びCFIの合計含有量に対するプロパンの含有量をX質量%、上記合計含有量に対するCFIの含有量をY質量%とした場合に、X及びYが下記式(2A)を満たし、
 上記合計含有量が、作動媒体の全量に対して78.5質量%以上である、<1>に記載の作動媒体。
 Y≦-1.125X+39 …(2A)
<12>
 さらに、X及びYが下記式(2B)を満たす、<11>に記載の作動媒体。
 Y≦0.05994X +0.23676X+11.85165 …(2B)
<13>
 プロパンと、(E)-1,2-ジフルオロエチレンと、第3成分と、を含有し、燃焼熱量が、15.250MJ/kg未満である、<1>に記載の作動媒体。
<14>
 プロパンと、(E)-1,2-ジフルオロエチレンと、第3成分と、を含有し、
 プロパンの含有量が、プロパン及び(E)-1,2-ジフルオロエチレンの合計含有量に対して10.0質量%以下である、<1>に記載の作動媒体。
<15>
 プロパンと、1,1,2-トリフルオロエチレンと、2,3,3,3-テトラフルオロ-1-プロペンと、ジフルオロメタンと、を含有し、
 プロパン、1,1,2-トリフルオロエチレン、2,3,3,3-テトラフルオロ-1-プロペン、及びジフルオロメタンの合計含有量に対するジフルオロメタンの含有量をA質量%、上記合計含有量に対する2,3,3,3-テトラフルオロ-1-プロペンの含有量をB質量%、上記合計含有量に対するプロパンの含有量をC質量%、上記合計含有量に対する1,1,2-トリフルオロエチレンの含有量をD質量%とした場合に、A、B、C、及びDが下記式(3A)~(3D)を満たす、<1>に記載の作動媒体。
 19≦A≦22 …(3A)
 0.1562A-5.88147A+56.79≦B≦-0.1444A+4.9917A-0.9609 …(3B)
 3≦C≦-0.0168B+0.032A+23.365 …(3C)
 (0.0006A+0.0103A-2.6844)C+(0.1143A-5.4982A+133.96)≦D≦(0.00025A+0.0213)C+(-0.0003A-0.0055A-1.1287)C+(-1.0639A+92.613) …(3D)
<16>
 プロパンと、1,1,2-トリフルオロエチレンと、(E)-1,3,3,3-テトラフルオロプロペンと、ジフルオロメタンと、を含有し、
 プロパン、1,1,2-トリフルオロエチレン、(E)-1,3,3,3-テトラフルオロプロペン、及びジフルオロメタンの合計含有量に対するジフルオロメタンの含有量をE質量%、上記合計含有量に対する(E)-1,3,3,3-テトラフルオロプロペンの含有量をF質量%、上記合計含有量に対するプロパンの含有量をG質量%、上記合計含有量に対する1,1,2-トリフルオロエチレンの含有量をH質量%とした場合に、E、F、G、及びHが下記式(4A)~(4D)を満たす、<1>に記載の作動媒体。
 19≦E≦22 …(4A)
 -0.0577E+2.595E-25.794≦F≦-0.453E+43.836 …(4B)
 2≦G≦0.030E+23.40 …(4C)
 (0.0053E-0.1950E-0.0880)G+(-0.0044E-0.6605E+83.7959)≦H≦0.0255G+(-0.0042E+0.1577E-2.8414)G+(-1.059E+91.6916) …(4D)
<17>
 プロパンと、1,1,2-トリフルオロエチレンと、COと、ジフルオロメタンと、を含有し、
 プロパン、1,1,2-トリフルオロエチレン、CO、及びジフルオロメタンの合計含有量に対するジフルオロメタンの含有量をJ質量%、上記合計含有量に対するCOの含有量をK質量%、上記合計含有量に対するプロパンの含有量をL質量%、上記合計含有量に対する1,1,2-トリフルオロエチレンの含有量をM質量%とした場合に、J、K、L、及びMが下記式(5A)~(5D)を満たす、<1>に記載の作動媒体。
 19≦J≦22 …(5A)
 0.074J-3.2047J-37.862≦K≦0.055J-2.2893J+42.055 …(5B)
 1≦L≦0.2985K+23.9 …(5C)
 (-0.00015J+0.0055J-0.0637)L+(0.0031J-0.1025J-0.0673)L+(-0.0017J-1.0368J+91.439)≦M≦(-0.000054J+0.00165J-0.00500)L+(0.0029J-0.1040J-0.1186)L+(-0.1221J+4.1517J+39.5) …(5D)
<18>
 プロパンと、1,1,2-トリフルオロエチレンと、CFIと、ジフルオロメタンと、を含有する、<1>に記載の作動媒体。
<19>
 プロパンと、1,1,2-トリフルオロエチレンと、2,3,3,3-テトラフルオロ-1-プロペンと、を含有し、
 2,3,3,3-テトラフルオロ-1-プロペンの含有量が、プロパン、1,1,2-トリフルオロエチレン、及び2,3,3,3-テトラフルオロ-1-プロペンの合計含有量に対して25.0~70.0質量%であり、
 プロパンの含有量が、上記合計含有量に対して9.0質量%以下であり、
 上記合計含有量が作動媒体の全量に対して78.5質量%以上である、<1>に記載の作動媒体。
Concrete means for achieving the above object are as follows.
<1>
with propane;
at least one of 1,1,2-trifluoroethylene and (E)-1,2-difluoroethylene;
2,3,3,3-tetrafluoro-1-propene, (E)-1,3,3,3-tetrafluoropropene, difluoromethane, CO 2 , CF 3 I, (Z)-1-chloro-2 , 3,3,3-tetrafluoropropene, (E)-1-chloro-2,3,3,3-tetrafluoropropene, (E)-1-chloro-3,3,3-trifluoropropene, ( E)-1,1,1,4,4,4-hexafluoro-2-butene, (Z)-1,2,3,3,3-pentafluoropropene, and (E)-1,2,3 , and at least one third component selected from the group consisting of 3,3-pentafluoropropene,
A working medium having a heat of combustion of less than 19.000 MJ/kg.
<2>
containing propane, 1,1,2-trifluoroethylene, and 2,3,3,3-tetrafluoro-1-propene,
The mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 5:95 to 29:71,
The content of 2,3,3,3-tetrafluoro-1-propene is the total content of propane, 1,1,2-trifluoroethylene, and 2,3,3,3-tetrafluoro-1-propene 10.5 to 25.0% by mass with respect to
The total content of propane, 1,1,2-trifluoroethylene, and 2,3,3,3-tetrafluoro-1-propene is 80% by mass or more relative to the total amount of the working medium, <1> The working medium according to .
<3>
containing propane, 1,1,2-trifluoroethylene, and difluoromethane;
The mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 18:82 to 22:78,
The working medium according to <1>, wherein the content of difluoromethane is 5.5 to 19.5% by mass with respect to the total content of propane, 1,1,2-trifluoroethylene, and difluoromethane.
<4>
containing propane, 1,1,2-trifluoroethylene, and difluoromethane;
The mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 5:95 to 23:77,
The working medium according to <1>, wherein the content of difluoromethane is 20.1 to 21.9% by mass with respect to the total content of propane, 1,1,2-trifluoroethylene, and difluoromethane.
<5>
containing propane, 1,1,2-trifluoroethylene, and difluoromethane;
The mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 18.9:81.1 to 23:77,
The working medium according to <1>, wherein the content of difluoromethane is 12.5 to 21.5% by mass with respect to the total content of propane, 1,1,2-trifluoroethylene, and difluoromethane.
<6>
containing propane, 1,1,2-trifluoroethylene, and (E)-1,3,3,3-tetrafluoropropene,
The propane content is 25.0% by mass or less with respect to the total content of propane and 1,1,2-trifluoroethylene,
(E)-1,3,3,3-tetrafluoropropene content is the sum of propane, 1,1,2-trifluoroethylene, and (E)-1,3,3,3-tetrafluoropropene 11.0 to 25.0% by mass with respect to the content,
The working medium according to <1>, wherein the total content is 78.5% by mass or more relative to the total amount of the working medium.
<7>
containing propane, 1,1,2-trifluoroethylene, and (E)-1,3,3,3-tetrafluoropropene,
The propane content is 10% by mass or less with respect to the total content of propane and 1,1,2-trifluoroethylene,
(E)-1,3,3,3-tetrafluoropropene content is the sum of propane, 1,1,2-trifluoroethylene, and (E)-1,3,3,3-tetrafluoropropene The working medium according to <1>, wherein the content is 15.0% by mass or less.
<8>
containing propane, 1,1,2-trifluoroethylene, and (E)-1,3,3,3-tetrafluoropropene,
The propane content is 20.0% by mass or less with respect to the total content of propane and 1,1,2-trifluoroethylene,
(E)-1,3,3,3-tetrafluoropropene content is the sum of propane, 1,1,2-trifluoroethylene, and (E)-1,3,3,3-tetrafluoropropene The working medium according to <1>, having a content of 9.0% by mass or less.
<9>
containing propane, 1,1,2-trifluoroethylene, and CO2 ,
The content of 1,1,2-trifluoroethylene with respect to the total content of propane, 1,1,2-trifluoroethylene, and CO 2 is X 1 % by mass, and the content of CO 2 with respect to the above total content is Y When 1 % by mass, X 1 and Y 1 satisfy the following formula (1),
The working medium according to <1>, wherein the total content is 78.5% by mass or more relative to the total amount of the working medium.
−0.00115X 1 3 +0.13537X 1 2 −6.20662X 1 +151.14664≦Y 1 ≦59 (1)
<10>
The working medium according to <9>, wherein the content of CO 2 is 20.0% by mass or less with respect to the total content.
<11>
containing propane, 1,1,2-trifluoroethylene, and CF 3 I,
When the content of propane with respect to the total content of propane, 1,1,2-trifluoroethylene, and CF 3 I is X 2 % by mass, and the content of CF 3 I with respect to the above total content is Y 2 % by mass , X 2 and Y 2 satisfy the following formula (2A),
The working medium according to <1>, wherein the total content is 78.5% by mass or more relative to the total amount of the working medium.
Y 2 ≦−1.125X 2 +39 (2A)
<12>
Furthermore, the working medium according to <11>, wherein X 2 and Y 2 satisfy the following formula (2B).
Y 2 ≤ 0.05994X 2 2 + 0.23676X 2 + 11.85165 (2B)
<13>
The working medium according to <1>, which contains propane, (E)-1,2-difluoroethylene, and a third component, and has a combustion heat quantity of less than 15.250 MJ/kg.
<14>
containing propane, (E)-1,2-difluoroethylene, and a third component,
The working medium according to <1>, wherein the content of propane is 10.0% by mass or less with respect to the total content of propane and (E)-1,2-difluoroethylene.
<15>
containing propane, 1,1,2-trifluoroethylene, 2,3,3,3-tetrafluoro-1-propene, and difluoromethane;
The content of difluoromethane with respect to the total content of propane, 1,1,2-trifluoroethylene, 2,3,3,3-tetrafluoro-1-propene, and difluoromethane is A mass%, with respect to the total content The content of 2,3,3,3-tetrafluoro-1-propene is B% by mass, the content of propane with respect to the above total content is C% by mass, and 1,1,2-trifluoroethylene with respect to the above total content The working medium according to <1>, wherein A, B, C, and D satisfy the following formulas (3A) to (3D), where the content of is D% by mass.
19≦A≦22 (3A)
0.1562A2-5.88147A +56.79≤B≤-0.1444A2+4.9917A-0.9609 ( 3B )
3≤C≤-0.0168B+0.032A+23.365 (3C)
(0.0006A 2 + 0.0103A - 2.6844) C + (0.1143A 2 - 5.4982A + 133.96) ≤ D ≤ (0.00025A + 0.0213) C 2 + (- 0.0003A 2 - 0.0055A- 1.1287) C + (-1.0639 A + 92.613) ... (3D)
<16>
containing propane, 1,1,2-trifluoroethylene, (E)-1,3,3,3-tetrafluoropropene, and difluoromethane;
The content of difluoromethane with respect to the total content of propane, 1,1,2-trifluoroethylene, (E)-1,3,3,3-tetrafluoropropene, and difluoromethane is E mass%, the above total content The content of (E)-1,3,3,3-tetrafluoropropene for the above F mass%, the propane content relative to the total content G mass%, the total content 1,1,2-tri The working medium according to <1>, wherein E, F, G, and H satisfy the following formulas (4A) to (4D), where H mass% is the content of fluoroethylene.
19≦E≦22 (4A)
−0.0577E 2 +2.595E−25.794≦F≦−0.453E+43.836 (4B)
2≤G≤0.030E+23.40 (4C)
(0.0053E 2 -0.1950E-0.0880) G + (-0.0044E 2 -0.6605E + 83.7959) ≤ H ≤ 0.0255G 2 + (-0.0042E 2 + 0.1577E-2.8414) G + (-1.059E + 91.6916) ... (4D)
<17>
containing propane, 1,1,2-trifluoroethylene, CO 2 and difluoromethane;
The content of difluoromethane with respect to the total content of propane, 1,1,2-trifluoroethylene, CO 2 and difluoromethane is J mass%, the content of CO 2 with respect to the above total content is K mass%, and the above total When the content of propane with respect to the content is L mass%, and the content of 1,1,2-trifluoroethylene with respect to the total content is M mass%, J, K, L, and M are represented by the following formula ( The working medium according to <1>, which satisfies 5A) to (5D).
19≦J≦22 (5A)
0.074J2-3.2047J -37.862≤K≤0.055J2-2.2893J+42.055 ( 5B )
1≦L≦0.2985K+23.9 (5C)
(-0.00015J 2 +0.0055J-0.0637) L 2 + (0.0031J 2 -0.1025J-0.0673) L + (-0.0017J 2 -1.0368J + 91.439) ≤ M ≤ (- 0.000054J 2 + 0.00165J - 0.00500) L 2 + (0.0029J 2 - 0.1040J - 0.1186) L + (- 0.1221J 2 + 4.1517J + 39.5) ... (5D)
<18>
The working medium according to <1>, containing propane, 1,1,2-trifluoroethylene, CF 3 I, and difluoromethane.
<19>
containing propane, 1,1,2-trifluoroethylene, and 2,3,3,3-tetrafluoro-1-propene,
The content of 2,3,3,3-tetrafluoro-1-propene is the total content of propane, 1,1,2-trifluoroethylene, and 2,3,3,3-tetrafluoro-1-propene 25.0 to 70.0% by mass with respect to
The propane content is 9.0% by mass or less with respect to the total content,
The working medium according to <1>, wherein the total content is 78.5% by mass or more relative to the total amount of the working medium.
 本開示の一態様によれば、プロパンを含有し冷媒としての性能に優れた作動媒体が提供される。 According to one aspect of the present disclosure, a working medium containing propane and having excellent performance as a refrigerant is provided.
図1は、プロパン、HFO-1123及びHFO-1234yfの3成分系の三角図である。FIG. 1 is a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1234yf. 図2は、プロパン、HFO-1123及びHFO-1234ze(E)の3成分系の三角図を示す。FIG. 2 shows a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1234ze(E). 図3は、プロパン、HFO-1123及びHFC-32の3成分系の三角図である。FIG. 3 is a ternary diagram of the ternary system of propane, HFO-1123 and HFC-32. 図4は、プロパン、HFO-1123及びCOの3成分系の三角図である。FIG. 4 is a ternary diagram of the ternary system of propane, HFO-1123 and CO 2 . 図5は、プロパン、HFO-1123及びCFIの3成分系の三角図である。FIG. 5 is a ternary diagram of the propane, HFO-1123 and CF 3 I ternary system. 図6は、プロパン、HFO-1123及びHFO-1132(E)の3成分系の三角図である。FIG. 6 is a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1132(E). 図7は、プロパン、HFO-1132(E)及びHFO-1234yfの3成分系の三角図である。FIG. 7 is a ternary diagram of the ternary system of propane, HFO-1132(E) and HFO-1234yf. 図8は、プロパン、HFO-1132(E)及びHFO-1234ze(E)の3成分系の三角図である。FIG. 8 is a ternary diagram of the ternary system of propane, HFO-1132(E) and HFO-1234ze(E). 図9は、プロパン、HFO-1132(E)及びHFC-32の3成分系の三角図である。FIG. 9 is a ternary diagram of the ternary system of propane, HFO-1132(E) and HFC-32. 図10は、プロパン、HFO-1132(E)及びCOの3成分系の三角図である。FIG. 10 is a ternary diagram of the ternary system of propane, HFO-1132(E) and CO 2 . 図11は、プロパン、HFO-1132(E)及びCFIの3成分系の三角図である。FIG. 11 is a ternary diagram of the ternary system of propane, HFO-1132(E) and CF 3 I. 図12は、冷凍サイクルシステムの一例を示す概略構成図である。FIG. 12 is a schematic configuration diagram showing an example of a refrigeration cycle system. 図13は、冷凍サイクルシステムにおける作動媒体の状態変化を圧力-エンタルピ線図上に記載したサイクル図である。FIG. 13 is a cycle diagram showing changes in the state of the working medium in the refrigeration cycle system on a pressure-enthalpy diagram. 図14は、冷凍サイクルシステムにおける作動媒体の状態変化を温度-エントロピ線図上に記載したサイクル図である。FIG. 14 is a cycle diagram showing changes in the state of the working medium in the refrigeration cycle system on a temperature-entropy diagram.
 以下、本開示の実施形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 Hereinafter, embodiments of the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, which do not limit the present disclosure.
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
In the present disclosure, a numerical range indicated using "to" means a range including the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step. In addition, in the numerical ranges described in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
In the present disclosure, when there are multiple substances corresponding to each component in the composition, the amount of each component in the composition is the total amount of the multiple substances present in the composition unless otherwise specified. means.
In the present disclosure, a combination of two or more preferred aspects is a more preferred aspect.
<作動媒体>
 本開示の作動媒体は、プロパンと、HFO-1123及びHFO-1132(E)の少なくとも一方と、2,3,3,3-テトラフルオロ-1-プロペン(HFO-1234yf)、(E)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、HFC-32、CO、CFI、(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(Z))、(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(E))、(E)-1-クロロ-3,3,3-トリフルオロプロペン(HFO-1233zd(E))、(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(E))、(Z)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、及び(E)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))からなる群より選択される少なくとも1種と、を含有し、燃焼熱量が、19.000MJ/kg未満である。
<Working medium>
The working medium of the present disclosure comprises propane, at least one of HFO-1123 and HFO-1132 (E), and 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), (E)-1 , 3,3,3-tetrafluoropropene (HFO-1234ze(E)), HFC-32, CO 2 , CF 3 I, (Z)-1-chloro-2,3,3,3-tetrafluoropropene ( HCFO-1224yd(Z)), (E)-1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd(E)), (E)-1-chloro-3,3,3- Trifluoropropene (HFO-1233zd(E)), (E)-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz(E)), (Z)-1,2 , 3,3,3-pentafluoropropene (HFO-1225ye(Z)), and (E)-1,2,3,3,3-pentafluoropropene (HFO-1225ye(E)) and a combustion heat quantity of less than 19.000 MJ/kg.
 本開示において、作動媒体とは、熱を運ぶ媒体を意味し、冷媒組成物及び熱媒組成物を包含する概念である。なお、冷媒組成物は、主に熱源の冷却を担う媒体であるが、同時に加熱を担う媒体として用いられてもよい。また、熱媒組成物は、主に加熱を担う媒体であるが、同時に熱源の冷却を担う媒体として用いられてもよい。 In the present disclosure, the working medium means a medium that carries heat, and is a concept that includes refrigerant compositions and heat medium compositions. The refrigerant composition is a medium mainly responsible for cooling the heat source, but may also be used as a medium responsible for heating at the same time. In addition, the heat transfer medium composition is a medium mainly responsible for heating, but may also be used as a medium responsible for cooling the heat source at the same time.
 本開示の作動媒体は、プロパンと共にHFO-1123及びHFO-1132(E)の少なくとも一方と、HFO-1234yf、HFO-1234ze(E)、HFC-32、CO、CFI、HCFO-1224yd(Z)、HCFO-1224yd(E)、HFO-1233zd(E)、HFO-1336mzz(E)、HFO-1225ye(Z)、及びHFO-1225ye(E)からなる群より選択される少なくとも1種とを選択的に組み合わせたうえで、燃焼熱量を19.000MJ/kg未満とすることで、プロパンを冷媒として有益に使いこなすことが可能となる。以下、「HFO-1234yf、HFO-1234ze(E)、HFC-32、CO、CFI、HCFO-1224yd(Z)、HCFO-1224yd(E)、HFO-1233zd(E)、HFO-1336mzz(E)、HFO-1225ye(Z)、及びHFO-1225ye(E)からなる群より選択される少なくとも1種」を第3成分ともいう。 The working medium of the present disclosure includes propane together with at least one of HFO-1123 and HFO-1132(E), HFO-1234yf, HFO-1234ze(E), HFC-32, CO 2 , CF 3 I, HCFO-1224yd ( Z), HCFO-1224yd (E), HFO-1233zd (E), HFO-1336mzz (E), HFO-1225ye (Z), and at least one selected from the group consisting of HFO-1225ye (E) By selectively combining them and setting the combustion heat quantity to less than 19.000 MJ/kg, propane can be effectively used as a refrigerant. Hereinafter, "HFO-1234yf, HFO-1234ze (E), HFC-32, CO 2 , CF 3 I, HCFO-1224yd (Z), HCFO-1224yd (E), HFO-1233zd (E), HFO-1336mzz ( E), HFO-1225ye (Z), and at least one selected from the group consisting of HFO-1225ye (E)" is also referred to as a third component.
 第3成分は、HFO-1123及びHFO-1132(E)と共沸しやすくする観点から、沸点が0℃以下であることが好ましく、-5℃以下であることがより好ましく、-10℃出ることがさらに好ましく、-15℃以下であることが特に好ましい。沸点の下限値は特に限定されず、例えば、-80℃である。 From the viewpoint of azeotroping easily with HFO-1123 and HFO-1132 (E), the third component preferably has a boiling point of 0°C or less, more preferably -5°C or less, and comes out at -10°C. is more preferred, and -15°C or lower is particularly preferred. The lower limit of the boiling point is not particularly limited, and is -80°C, for example.
 沸点の観点から、本開示の作動媒体は、プロパンと、HFO-1123及びHFO-1132(E)の少なくとも一方と、HFO-1234yf、HFO-1234ze(E)、HFC-32、CO、及びCFIからなる群より選択される少なくとも1種と、を含有することがより好ましい。 From a boiling point point of view, the working medium of the present disclosure comprises propane, at least one of HFO-1123 and HFO-1132(E), HFO-1234yf, HFO-1234ze(E), HFC-32, CO 2 and CF and at least one selected from the group consisting of 3I .
 共沸混合物とする観点から、本開示の作動媒体は、プロパンと、HFO-1123及びHFO-1132(E)の少なくとも一方と、HFO-1234yf、HFO-1234ze(E)、及びHFC-32からなる群より選択される少なくとも1種と、を含有することがさらに好ましい。 From an azeotropic point of view, the working medium of the present disclosure consists of propane, at least one of HFO-1123 and HFO-1132(E), and HFO-1234yf, HFO-1234ze(E), and HFC-32. It is further preferable to contain at least one selected from the group.
 燃焼速度が遅く、燃焼熱量が小さいという特性を有することから、本開示の作動媒体は、HFO-1123を含有することが好ましい。また、HFO-1123は、異性体が存在しないことから、作動媒体の使用中に、異性化反応が生じることがなく、安定性に優れる。すなわち、本開示の作動媒体は、プロパンと、HFO-1123と、HFO-1234yf、HFO-1234ze(E)、HFC-32、CO、CFI、HCFO-1224yd(Z)、HCFO-1224yd(E)、HFO-1233zd(E)、HFO-1336mzz(E)、HFO-1225ye(Z)、及びHFO-1225ye(E)からなる群より選択される少なくとも1種と、を含有することが好ましい。
 また、本開示の作動媒体は、プロパンと、HFO-1123と、HFO-1234yf、HFO-1234ze(E)、HFC-32、CO、及びCFIからなる群より選択される少なくとも1種と、を含有することがより好ましい。
 また、本開示の作動媒体は、プロパンと、HFO-1123と、HFO-1234yf、HFO-1234ze(E)、及びHFC-32からなる群より選択される少なくとも1種と、を含有することがさらに好ましい。
The working fluid of the present disclosure preferably contains HFO-1123 because of its slow burning rate and low heat of combustion. In addition, since HFO-1123 does not have isomers, it does not cause isomerization reaction during use of the working medium, and has excellent stability. That is, the working medium of the present disclosure includes propane, HFO-1123, HFO-1234yf, HFO-1234ze (E), HFC-32, CO 2 , CF 3 I, HCFO-1224yd (Z), HCFO-1224yd ( E), HFO-1233zd (E), HFO-1336mzz (E), HFO-1225ye (Z), and at least one selected from the group consisting of HFO-1225ye (E).
In addition, the working medium of the present disclosure includes at least one selected from the group consisting of propane, HFO-1123, HFO-1234yf, HFO-1234ze(E), HFC-32, CO 2 and CF 3 I. , is more preferred.
Further, the working medium of the present disclosure further contains propane, HFO-1123, and at least one selected from the group consisting of HFO-1234yf, HFO-1234ze(E), and HFC-32. preferable.
 本開示の作動媒体中、プロパンの含有量は、作動媒体全体としての燃焼熱量が19.000MJ/kg未満の範囲内となる量であれば特に限定されるものではない。作動媒体の冷媒としての性能を向上させる観点から、プロパンの含有量は、作動媒体の全量に対して1.0質量%以上であることが好ましく、3.0質量%以上であることがより好ましく、5.0質量%以上であることがさらに好ましい。プロパンの含有量は、作動媒体の全量に対して40.0質量%以下であってもよい。 The content of propane in the working medium of the present disclosure is not particularly limited as long as the amount of combustion heat of the working medium as a whole is within the range of less than 19.000 MJ/kg. From the viewpoint of improving the performance of the working medium as a refrigerant, the content of propane is preferably 1.0% by mass or more, more preferably 3.0% by mass or more, relative to the total amount of the working medium. , more preferably 5.0% by mass or more. The propane content may be 40.0% by mass or less relative to the total amount of the working medium.
 中でも、作動媒体全体としての燃焼熱量を19.000MJ/kg未満とする観点から、プロパンの含有量は、作動媒体の全量に対して1.0~30.0質量%であることが好ましく、1.0~25.0質量%であることがより好ましく、1.0~23.0質量%であることがさらに好ましい。 Among them, the content of propane is preferably 1.0 to 30.0% by mass with respect to the total amount of the working medium from the viewpoint of making the combustion heat amount of the working medium as a whole less than 19.000 MJ / kg. 0 to 25.0% by mass, and even more preferably 1.0 to 23.0% by mass.
 本開示の作動媒体中、HFO-1123及びHFO-1132(E)の少なくとも一方の含有量は、作動媒体全体としての燃焼熱量が19.000MJ/kg未満の範囲内となる量であれば特に限定されるものではない。作動媒体の冷媒としての性能を向上させる観点から、HFO-1123及びHFO-1132(E)の少なくとも一方の含有量は、作動媒体の全量に対して20.0質量%以上であることが好ましく、30.0質量%以上であることがより好ましく、40.0質量%以上であることがさらに好ましく、50.0質量%以上であることが特に好ましく、55.0質量%以上であることが最も好ましい。HFO-1123及びHFO-1132(E)の少なくとも一方の含有量は、作動媒体の全量に対して90.0質量%以下であってもよく、85質量%以下であってもよい。
 なお、HFO-1123及びHFO-1132(E)の少なくとも一方の含有量とは、作動媒体がHFO-1123又はHFO-1132(E)を含む場合には、一成分の含有量を意味し、作動媒体がHFO-1123及びHFO-1132(E)を含む場合には、各成分の合計含有量を意味する。
The content of at least one of HFO-1123 and HFO-1132 (E) in the working medium of the present disclosure is particularly limited as long as the amount of heat of combustion of the working medium as a whole is within the range of less than 19.000 MJ / kg. not to be From the viewpoint of improving the performance of the working medium as a refrigerant, the content of at least one of HFO-1123 and HFO-1132 (E) is preferably 20.0% by mass or more with respect to the total amount of the working medium, It is more preferably 30.0% by mass or more, further preferably 40.0% by mass or more, particularly preferably 50.0% by mass or more, and most preferably 55.0% by mass or more. preferable. The content of at least one of HFO-1123 and HFO-1132(E) may be 90.0% by mass or less, or may be 85% by mass or less, relative to the total amount of the working medium.
The content of at least one of HFO-1123 and HFO-1132(E) means the content of one component when the working medium contains HFO-1123 or HFO-1132(E), When the medium contains HFO-1123 and HFO-1132(E), it means the total content of each component.
 本開示の作動媒体中、上記第3成分は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本開示の作動媒体中、上記第3成分の中の主成分の含有量は、作動媒体全体としての燃焼熱量が19.000MJ/kg未満の範囲内となる量であれば特に限定されるものではない。作動媒体の冷媒としての性能を向上させる観点から、第3成分の中の主成分の含有量は、作動媒体の全量に対して1.0質量%以上であることが好ましく、5.0質量%以上であることがより好ましく、10.0質量%以上であることがさらに好ましい。作動媒体の冷媒としての性能を向上させる観点から、第3成分の中の主成分の含有量は、作動媒体の全量に対して35.0質量%以下であることが好ましく、30.0質量%以下であることがより好ましく、25.0質量%以上であることがさらに好ましい。
 なお、第3成分の中の主成分とは、作動媒体が第3成分として1成分のみを含む場合には、当該成分を意味し、作動媒体が第3成分として複数の成分を含む場合には、第3成分の中で最も含有量の多い成分を意味する。
In the working medium of the present disclosure, the third component may be used singly or in combination of two or more.
In the working medium of the present disclosure, the content of the main component in the third component is not particularly limited as long as the amount of combustion heat of the working medium as a whole is within the range of less than 19.000 MJ / kg. do not have. From the viewpoint of improving the performance of the working medium as a refrigerant, the content of the main component in the third component is preferably 1.0% by mass or more with respect to the total amount of the working medium, and 5.0% by mass. It is more preferably 10.0% by mass or more, and more preferably 10.0% by mass or more. From the viewpoint of improving the performance of the working medium as a refrigerant, the content of the main component in the third component is preferably 35.0% by mass or less with respect to the total amount of the working medium, and 30.0% by mass. It is more preferably 25.0% by mass or more, and more preferably 25.0% by mass or more.
In addition, the main component in the third component means the component when the working medium contains only one component as the third component, and when the working medium contains a plurality of components as the third component. , means the component with the highest content among the third components.
 本開示の作動媒体中、プロパン、HFO-1123及びHFO-1132(E)の少なくとも一方、並びに、第3成分の中の主成分の合計含有量は、GWPを低下させる観点から、作動媒体の全量に対して80質量%以上であることが好ましく、85質量%以上であることよりが好ましい。上記合計含有量の上限値は特に限定されず、100質量%であってもよい。また、上記合計含有量は、作動媒体の全量に対して95質量%未満であってもよく、90質量%未満であってもよい。すなわち、本開示の作動媒体は、プロパン、HFO-1123及びHFO-1132(E)の少なくとも一方、並びに、第3成分以外の他の成分を含んでいてもよく、第3成分が複数であってもよい。 In the working medium of the present disclosure, the total content of propane, at least one of HFO-1123 and HFO-1132 (E), and the main component in the third component is the total amount of the working medium from the viewpoint of reducing GWP It is preferably 80% by mass or more, more preferably 85% by mass or more. The upper limit of the total content is not particularly limited, and may be 100% by mass. Moreover, the total content may be less than 95% by mass or less than 90% by mass with respect to the total amount of the working medium. That is, the working medium of the present disclosure may contain propane, at least one of HFO-1123 and HFO-1132(E), and components other than the third component, and the third component may include a plurality of good too.
 本開示の作動媒体がHFC-32を含有する場合、作動媒体全体としてのGWPを150以下とする観点から、HFC-32の含有量は、作動媒体の全量に対して22.0質量%以下であってもよく、19.0質量%以下であってもよく、15.0質量%以下であってもよい。HFC-32の含有量は、作動媒体の全量に対して1.0質量%以上であってもよい。 When the working medium of the present disclosure contains HFC-32, the content of HFC-32 is 22.0% by mass or less with respect to the total amount of the working medium from the viewpoint of making the GWP of the entire working medium 150 or less. It may be present, may be 19.0% by mass or less, or may be 15.0% by mass or less. The content of HFC-32 may be 1.0% by mass or more relative to the total amount of the working medium.
 また、本開示の作動媒体がCOを含有する場合、圧力の観点から、COの含有量は、作動媒体の全量に対して15.0質量%以下であってもよく、10.0質量%以下であってもよく、8.0質量%以下であってもよい。COの含有量は、作動媒体の全量に対して1.0質量%以上であってもよい。 In addition, when the working medium of the present disclosure contains CO2 , from the viewpoint of pressure, the content of CO2 may be 15.0% by mass or less with respect to the total amount of the working medium, and may be 10.0% by mass. % or less, or 8.0% by mass or less. The content of CO 2 may be 1.0% by weight or more, relative to the total amount of working medium.
 本開示の作動媒体がHFO-1234yfを含有する場合、温度グライド及び圧力損失を小さくする観点から、HFO-1234yfの含有量は、作動媒体の全量に対して30.0質量%以下であることが好ましく、25.0質量%以下であることがより好ましい。凝縮圧力を低下させる観点から、HFO-1234yfの含有量は、作動媒体の全量に対して10.5質量%以上であることが好ましく、15.0質量%以上であることがより好ましい。 When the working medium of the present disclosure contains HFO-1234yf, the content of HFO-1234yf is preferably 30.0% by mass or less with respect to the total amount of the working medium from the viewpoint of reducing temperature glide and pressure loss. It is preferably 25.0% by mass or less, and more preferably 25.0% by mass or less. From the viewpoint of lowering the condensation pressure, the content of HFO-1234yf is preferably 10.5% by mass or more, more preferably 15.0% by mass or more, relative to the total amount of the working medium.
 本開示の作動媒体がHCFO-1224yd(Z)、HCFO-1224yd(E)、HFO-1233zd(E)、HFO-1336mzz(E)、HFO-1225ye(Z)、又はHFO-1225ye(E)を含有する場合、各成分の含有量は、作動媒体の全量に対して15.0質量%以下であってもよく、10.0質量%以下であってもよく、5.0質量%以下であってもよい。各成分の含有量は、作動媒体の全量に対して1.0質量%以上であってもよい。 The working medium of the present disclosure contains HCFO-1224yd(Z), HCFO-1224yd(E), HFO-1233zd(E), HFO-1336mzz(E), HFO-1225ye(Z), or HFO-1225ye(E) In that case, the content of each component may be 15.0% by mass or less, 10.0% by mass or less, or 5.0% by mass or less with respect to the total amount of the working medium. good too. The content of each component may be 1.0% by mass or more relative to the total amount of the working medium.
 ここで、質量当たりの燃焼熱量(MJ/kg)は、American Society of Heating, Refrigeration and Air-conditioning Engineers(ASHRAE)規格34によって、冷媒の燃焼性を決める指標として定義されている。本規格では、19.000MJ/kg以上の発熱量の物質を”強燃性”の冷媒の指標の一つと定義している。
 燃焼熱量は、燃焼反応式における生成系の生成物の生成エンタルピの総和と、反応系の化合物の生成エンタルピとの差で表わされる。
 生成エンタルピについては、化学便覧、国際標準(参考文献A参照)、各種ハンドブック等に記載されている。
 また、新規の化合物についての生成エンタルピは、Bensonのグループ加成性則(参考文献B参照)や、計算化学的手法で求めることができる。
 また、ハロゲンを含む化合物の燃焼反応式の考え方は国際標準に規定されている(参考文献A、C参照)。
参考文献A:ANSI/ASHRAE Standard 34(2016),Designation and Safety Classification of Refrigerants.
参考文献B:S.Benson,Thermo chemical kinetics,2nd Ed.,Wiley Interscience,New York(1976).
参考文献C:ISO 817(2014),Refrigerant:Designation and Safety Classification.
 本規格では、発熱反応については燃焼熱を正とする。
Here, the combustion heat quantity per mass (MJ/kg) is defined by the American Society of Heating, Refrigeration and Air-conditioning Engineers (ASHRAE) Standard 34 as an index for determining the combustibility of refrigerants. This standard defines a substance with a calorific value of 19.000 MJ/kg or more as one of the indicators of a "highly flammable" refrigerant.
The amount of combustion heat is represented by the difference between the sum of the enthalpy of formation of the products in the combustion reaction formula and the enthalpy of formation of the compounds in the reaction system.
The enthalpy of formation is described in handbooks of chemistry, international standards (see Reference A), various handbooks, and the like.
In addition, the enthalpy of formation of a novel compound can be determined by Benson's group additivity rule (see reference B) or by a computational chemical method.
In addition, the concept of the combustion reaction formula for compounds containing halogen is specified in international standards (see references A and C).
Reference A: ANSI/ASHRAE Standard 34 (2016), Designation and Safety Classification of Refrigerants.
Reference B: S.M. Benson, Thermo chemical kinetics, 2nd Ed. , Wiley Interscience, New York (1976).
Reference C: ISO 817 (2014), Refrigerant: Designation and Safety Classification.
In this standard, the heat of combustion is considered positive for exothermic reactions.
 本開示において、作動媒体の燃焼熱量は、1molの作動媒体を化学量論的に酸素と完全燃焼させて得られた燃焼熱量の値を作動媒体1kgあたりの燃焼熱量の値に換算して得られた値とし、下記仮定のもとで計算された理論値をいう。
 生成系及び反応系の化合物は、気体であると仮定する。
 燃焼生成物は、HF(g)、CO(g)、COF(g)及びHO(g)とする。また、窒素、ヨウ素が物質の分子構造の一部である場合は、燃焼生成物としてN(g)又はI(g)が追加される。
 作動媒体の燃焼熱量を求める場合、作動媒体に含まれる各化合物を、各化合物を構成する原子に分解し、作動媒体中のモル比を考慮して、各原子を含む仮想物質を設定する。燃焼熱量は、その仮想物質の燃焼反応式を用いて計算される。なお、下記式におけるCが、仮想物質に該当する。
 例えば、燃焼反応式は、物質中のH原子数(r)とF原子数(s)との大小で定義され、H原子数(r)≧F原子数(s)の場合の燃焼反応式は、下記式が用いられる。
In the present disclosure, the combustion heat quantity of the working medium is obtained by converting the value of the combustion heat quantity obtained by stoichiometrically burning 1 mol of the working medium with oxygen completely into the value of the combustion heat quantity per 1 kg of the working medium. It is a theoretical value calculated under the following assumptions.
The compounds of the product and reaction systems are assumed to be gases.
The products of combustion are HF (g), CO2 (g), COF2 (g) and H2O (g). Also, when nitrogen and iodine are part of the molecular structure of the substance, N 2 (g) or I 2 (g) are added as combustion products.
When calculating the combustion heat of the working medium, each compound contained in the working medium is decomposed into atoms constituting each compound, and a virtual substance containing each atom is set in consideration of the molar ratio in the working medium. The combustion heat quantity is calculated using the combustion reaction formula of the virtual substance. Note that CqHrFs in the following formula corresponds to a virtual substance.
For example, the combustion reaction formula is defined by the number of H atoms (r) and the number of F atoms (s) in a substance, and when the number of H atoms (r) ≥ the number of F atoms (s), the combustion reaction formula is , the following formula is used:
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 一方、H原子数(r)<F原子数(s)の場合の燃焼反応式は、下記式が用いられる。 On the other hand, when the number of H atoms (r)<the number of F atoms (s), the following equation is used as the combustion reaction formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 以下、本開示の作動媒体の好ましい態様について説明する。下記第1態様~第16態様では、作動媒体に含まれる各成分の含有量が特定の範囲内であることにより、燃焼熱量が低く、かつ、熱サイクル性能に優れる。 Preferred embodiments of the working medium of the present disclosure will be described below. In the following first to sixteenth aspects, the content of each component contained in the working fluid is within a specific range, so that the combustion heat quantity is low and the heat cycle performance is excellent.
 HFO-1123又はHFO-1132(E)をプロパンと組み合わせると、蒸発潜熱が上昇する傾向にあり、HFO-1123又はHFO-1132(E)を単体で用いた場合と比較して圧力損失が小さくなる。また、プロパンと、HFO-1123及びHFO-1132(E)の少なくとも一方と、さらに、第3成分を組み合わせることにより、吐出温度、凝縮圧力、CAP、温度グライド等のサイクル性能も向上する。 When HFO-1123 or HFO-1132(E) is combined with propane, the latent heat of vaporization tends to increase, and the pressure loss becomes smaller than when HFO-1123 or HFO-1132(E) is used alone. . Further, by combining propane, at least one of HFO-1123 and HFO-1132(E), and a third component, cycle performance such as discharge temperature, condensing pressure, CAP, and temperature glide is improved.
(第1態様)
 本開示の作動媒体の第1態様は、作動媒体の冷媒としての性能を向上させる観点から、プロパンと、HFO-1123と、HFO-1234yfと、を含有し、プロパンの含有量とHFO-1123の含有量との質量比(プロパン:HFO-1123)が、5:95~29:71であり、HFO-1234yfの含有量が、プロパン、HFO-1123、及びHFO-1234yfの合計含有量に対して10.5~25.0質量%であり、プロパン、HFO-1123、及びHFO-1234yfの合計含有量が、作動媒体の全量に対して80質量%以上であることが好ましい。
(First aspect)
The first aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFO-1234yf from the viewpoint of improving the performance of the working medium as a refrigerant, and the propane content and HFO-1123 The mass ratio with the content (propane: HFO-1123) is 5: 95 to 29: 71, and the content of HFO-1234yf is relative to the total content of propane, HFO-1123, and HFO-1234yf 10.5 to 25.0% by mass, and the total content of propane, HFO-1123, and HFO-1234yf is preferably 80% by mass or more relative to the total amount of the working medium.
 第1態様において、プロパン及びHFO-1123の合計含有量に占めるプロパンの含有量の割合が5質量%以上であると、凝縮圧力が低下する。一方、プロパン及びHFO-1123の合計含有量に占めるプロパンの含有量の割合が29質量%以下であると、燃焼熱量が低下する。 In the first aspect, when the proportion of the propane content in the total content of propane and HFO-1123 is 5% by mass or more, the condensation pressure is lowered. On the other hand, when the ratio of the propane content to the total content of propane and HFO-1123 is 29% by mass or less, the combustion heat quantity decreases.
 作動媒体の冷媒としての性能を向上させる観点から、プロパンの含有量とHFO-1123の含有量との質量比は、10:90~29:71が好ましく、15:85~29:71がより好ましく、20:80~29:71がさらに好ましく、22:78~29:71が特に好ましく、22:78~27:73が極めて好ましい。 From the viewpoint of improving the performance of the working medium as a refrigerant, the mass ratio of the propane content and the HFO-1123 content is preferably 10:90 to 29:71, more preferably 15:85 to 29:71. , 20:80 to 29:71 are more preferred, 22:78 to 29:71 are particularly preferred, and 22:78 to 27:73 are very preferred.
 第1態様において、HFO-1234yfの含有量が、プロパン、HFO-1123、及びHFO-1234yfの合計含有量に対して10.5質量%以上であると、燃焼熱量及び凝縮圧力が低下する。一方、HFO-1234yfの含有量が、プロパン、HFO-1123、及びHFO-1234yfの合計含有量に対して25.0質量%以下であると、温度グライド及び圧力損失が小さくなる。 In the first aspect, when the content of HFO-1234yf is 10.5% by mass or more with respect to the total content of propane, HFO-1123, and HFO-1234yf, the combustion heat quantity and condensation pressure decrease. On the other hand, when the content of HFO-1234yf is 25.0% by mass or less with respect to the total content of propane, HFO-1123, and HFO-1234yf, temperature glide and pressure loss are reduced.
 燃焼熱量及び凝縮圧力をより低下させる観点から、HFO-1234yfの含有量は、プロパン、HFO-1123、及びHFO-1234yfの合計含有量に対して12質量%以上であることが好ましく、15質量%以上であることがより好ましい。 From the viewpoint of further reducing the combustion heat quantity and condensation pressure, the content of HFO-1234yf is preferably 12% by mass or more with respect to the total content of propane, HFO-1123, and HFO-1234yf, and 15% by mass. It is more preferable to be above.
 第1態様において、プロパン、HFO-1123、及びHFO-1234yfの合計含有量が、作動媒体の全量に対して80質量%以上であると、GWPが低下する。 In the first aspect, when the total content of propane, HFO-1123, and HFO-1234yf is 80% by mass or more with respect to the total amount of the working medium, the GWP is lowered.
 GWPをより低下させる観点から、プロパン、HFO-1123、及びHFO-1234yfの合計含有量は、85質量%以上であることがより好ましい。上記合計含有量の上限値は特に限定されず、100質量%であってもよい。また、上記合計含有量は、作動媒体の全量に対して95質量%未満であってもよく、90質量%未満であってもよい。 From the viewpoint of lowering the GWP, the total content of propane, HFO-1123 and HFO-1234yf is more preferably 85% by mass or more. The upper limit of the total content is not particularly limited, and may be 100% by mass. Moreover, the total content may be less than 95% by mass or less than 90% by mass with respect to the total amount of the working medium.
(第2態様)
 本開示の作動媒体の第2態様は、プロパンと、HFO-1123と、HFC-32と、を含有し、プロパンの含有量とHFO-1123の含有量との質量比(プロパン:HFO-1123)が、18:82~22:78であり、HFC-32の含有量が、プロパン、HFO-1123、及びHFC-32の合計含有量に対して5.5~19.5質量%であることが好ましい。
(Second aspect)
A second embodiment of the working medium of the present disclosure contains propane, HFO-1123, and HFC-32, and the mass ratio of the propane content to the HFO-1123 content (propane:HFO-1123) is 18:82 to 22:78, and the content of HFC-32 is 5.5 to 19.5% by mass with respect to the total content of propane, HFO-1123, and HFC-32 preferable.
 第2態様において、プロパン及びHFO-1123の合計含有量に占めるプロパンの含有量の割合が18質量%以上であると、吐出温度及び凝縮圧力が低下する。一方、プロパン及びHFO-1123の合計含有量に占めるプロパンの含有量の割合が22質量%以下であると、燃焼熱量が低下し、CAPが向上し、温度グライド及び圧力損失が小さくなる。 In the second aspect, when the proportion of the propane content in the total content of propane and HFO-1123 is 18% by mass or more, the discharge temperature and condensation pressure are lowered. On the other hand, when the proportion of the propane content in the total content of propane and HFO-1123 is 22% by mass or less, the combustion heat quantity is lowered, the CAP is improved, and the temperature glide and pressure loss are reduced.
 熱サイクル性能を向上させる観点から、プロパンの含有量とHFO-1123の含有量との質量比は、19:81~21:79が好ましく、19.5:80.5~20.5:79.5がより好ましい。 From the viewpoint of improving heat cycle performance, the mass ratio of the propane content and the HFO-1123 content is preferably 19:81 to 21:79, and 19.5:80.5 to 20.5:79. 5 is more preferred.
 第2態様において、HFC-32の含有量が、プロパン、HFO-1123、及びHFC-32の合計含有量に対して5.5質量%以上であると、燃焼熱量が低下し、CAPが向上し、温度グライド及び圧力損失が小さくなる。一方、HFC-32の含有量が、プロパン、HFO-1123、及びHFC-32の合計含有量に対して19.5質量%以下であると、吐出温度及び凝縮圧力が低下する。 In the second aspect, when the content of HFC-32 is 5.5% by mass or more with respect to the total content of propane, HFO-1123, and HFC-32, the combustion heat is reduced and the CAP is improved. , lower temperature glide and lower pressure drop. On the other hand, when the content of HFC-32 is 19.5% by mass or less with respect to the total content of propane, HFO-1123 and HFC-32, the discharge temperature and condensation pressure decrease.
 燃焼熱量をより低下させる観点から、HFC-32の含有量は、プロパン、HFO-1123、及びHFC-32の合計含有量に対して6.0質量%以上であることが好ましく、8.0質量%以上であることがより好ましい。吐出温度及び凝縮圧力をより低下させる観点から、HFC-32の含有量は、プロパン、HFO-1123、及びHFC-32の合計含有量に対して19.0質量%以下であることが好ましく、17.0質量%以下であることがより好ましく、15.0質量%以下であることがさらに好ましい。 From the viewpoint of further reducing the combustion heat quantity, the content of HFC-32 is preferably 6.0% by mass or more with respect to the total content of propane, HFO-1123, and HFC-32, and 8.0 mass % or more is more preferable. From the viewpoint of further lowering the discharge temperature and condensation pressure, the content of HFC-32 is preferably 19.0% by mass or less with respect to the total content of propane, HFO-1123, and HFC-32. 0% by mass or less, and even more preferably 15.0% by mass or less.
 また、第2態様において、GWPをより低下させる観点から、プロパン、HFO-1123、及びHFC-32の合計含有量は、作動媒体の全量に対して80質量%以上であることが好ましく、85質量%以上であることがより好ましい。上記合計含有量の上限値は特に限定されず、100質量%であってもよい。また、上記合計含有量は、作動媒体の全量に対して95質量%未満であってもよく、90質量%未満であってもよい。 In the second aspect, from the viewpoint of further lowering the GWP, the total content of propane, HFO-1123, and HFC-32 is preferably 80% by mass or more with respect to the total amount of the working medium, and 85% by mass. % or more is more preferable. The upper limit of the total content is not particularly limited, and may be 100% by mass. Moreover, the total content may be less than 95% by mass or less than 90% by mass with respect to the total amount of the working medium.
(第3態様)
 本開示の作動媒体の第3態様は、プロパンと、HFO-1123と、HFC-32と、を含有し、プロパンの含有量とHFO-1123の含有量との質量比(プロパン:HFO-1123)が、5:95~23:77であり、HFC-32の含有量が、プロパン、HFO-1123、及びHFC-32の合計含有量に対して20.1~21.9質量%であることが好ましい。
(Third aspect)
A third aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFC-32, and the mass ratio of the propane content to the HFO-1123 content (propane:HFO-1123) is 5:95 to 23:77, and the content of HFC-32 is 20.1 to 21.9% by mass with respect to the total content of propane, HFO-1123, and HFC-32 preferable.
 第3態様において、プロパン及びHFO-1123の合計含有量に占めるプロパンの含有量の割合が5質量%以上であると、吐出温度が低下する。一方、プロパン及びHFO-1123の合計含有量に占めるプロパンの含有量の割合が23質量%以下であると、CAPが向上する。 In the third aspect, when the proportion of the propane content in the total content of propane and HFO-1123 is 5% by mass or more, the discharge temperature is lowered. On the other hand, when the ratio of the propane content to the total content of propane and HFO-1123 is 23% by mass or less, the CAP is improved.
 第3態様において、HFC-32の含有量が、プロパン、HFO-1123、及びHFC-32の合計含有量に対して20.1質量%以上であると、CAPが向上する。一方、HFC-32の含有量が、プロパン、HFO-1123、及びHFC-32の合計含有量に対して21.9質量%以下であると、吐出温度が低下する。 In the third aspect, when the content of HFC-32 is 20.1% by mass or more with respect to the total content of propane, HFO-1123, and HFC-32, CAP is improved. On the other hand, when the content of HFC-32 is 21.9% by mass or less with respect to the total content of propane, HFO-1123 and HFC-32, the discharge temperature decreases.
 また、第3態様において、GWPをより低下させる観点から、プロパン、HFO-1123、及びHFC-32の合計含有量は、作動媒体の全量に対して80質量%以上であることが好ましく、85質量%以上であることがより好ましい。上記合計含有量の上限値は特に限定されず、100質量%であってもよい。また、上記合計含有量は、作動媒体の全量に対して95質量%未満であってもよく、90質量%未満であってもよい。 Further, in the third aspect, from the viewpoint of further lowering the GWP, the total content of propane, HFO-1123, and HFC-32 is preferably 80% by mass or more with respect to the total amount of the working medium, and 85% by mass. % or more is more preferable. The upper limit of the total content is not particularly limited, and may be 100% by mass. Moreover, the total content may be less than 95% by mass or less than 90% by mass with respect to the total amount of the working medium.
(第4態様)
 本開示の作動媒体の第4態様は、プロパンと、HFO-1123と、HFC-32と、を含有し、プロパンの含有量とHFO-1123の含有量との質量比(プロパン:HFO-1123)が、18.9:81.1~23:77であり、HFC-32の含有量が、プロパン、HFO-1123、及びHFC-32の合計含有量に対して12.5~21.5質量%であることが好ましい。
(Fourth mode)
A fourth aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFC-32, and the mass ratio of the propane content to the HFO-1123 content (propane:HFO-1123) is 18.9:81.1 to 23:77, and the content of HFC-32 is 12.5 to 21.5% by mass with respect to the total content of propane, HFO-1123, and HFC-32 is preferably
 第4態様において、プロパン及びHFO-1123の合計含有量に占めるプロパンの含有量の割合が18.9質量%以上であると、吐出温度が低下する。一方、プロパン及びHFO-1123の合計含有量に占めるプロパンの含有量の割合が23質量%以下であると、CAPが向上する。 In the fourth aspect, when the proportion of the propane content in the total content of propane and HFO-1123 is 18.9% by mass or more, the discharge temperature is lowered. On the other hand, when the ratio of the propane content to the total content of propane and HFO-1123 is 23% by mass or less, the CAP is improved.
 第4態様において、HFC-32の含有量が、プロパン、HFO-1123、及びHFC-32の合計含有量に対して12.5質量%以上であると、CAPが向上する。一方、HFC-32の含有量が、プロパン、HFO-1123、及びHFC-32の合計含有量に対して21.5質量%以下であると、吐出温度が低下する。 In the fourth aspect, when the content of HFC-32 is 12.5% by mass or more with respect to the total content of propane, HFO-1123 and HFC-32, CAP is improved. On the other hand, when the content of HFC-32 is 21.5% by mass or less with respect to the total content of propane, HFO-1123 and HFC-32, the discharge temperature decreases.
 作動媒体の冷媒としての性能を向上させる観点から、HFC-32の含有量は、プロパン、HFO-1123、及びHFC-32の合計含有量に対して15.0~21.5質量%であることが好ましく、18.0~21.5質量%であることがより好ましい。 From the viewpoint of improving the performance of the working medium as a refrigerant, the content of HFC-32 should be 15.0 to 21.5% by mass with respect to the total content of propane, HFO-1123, and HFC-32. is preferred, and 18.0 to 21.5% by mass is more preferred.
 また、第4態様において、GWPをより低下させる観点から、プロパン、HFO-1123、及びHFC-32の合計含有量は、作動媒体の全量に対して80質量%以上であることが好ましく、85質量%以上であることよりが好ましい。上記合計含有量の上限値は特に限定されず、100質量%であってもよい。また、上記合計含有量は、作動媒体の全量に対して95質量%未満であってもよく、90質量%未満であってもよい。 Further, in the fourth aspect, from the viewpoint of further lowering the GWP, the total content of propane, HFO-1123, and HFC-32 is preferably 80% by mass or more with respect to the total amount of the working medium, and 85% by mass. % or more is preferable. The upper limit of the total content is not particularly limited, and may be 100% by mass. Moreover, the total content may be less than 95% by mass or less than 90% by mass with respect to the total amount of the working medium.
(第5態様)
 本開示の作動媒体の第5態様は、プロパンと、HFO-1123と、HFO-1234ze(E)と、を含有し、プロパンの含有量が、プロパン及びHFO-1123の合計含有量に対して25.0質量%以下であり、HFO-1234ze(E)の含有量が、プロパン、HFO-1123、及びHFO-1234ze(E)の合計含有量に対して11.0~25.0質量%であり、上記合計含有量が、作動媒体の全量に対して78.5質量%以上であることが好ましい。
(Fifth aspect)
A fifth aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFO-1234ze(E), and the content of propane is 25% relative to the total content of propane and HFO-1123. .0% by mass or less, and the content of HFO-1234ze (E) is 11.0 to 25.0% by mass with respect to the total content of propane, HFO-1123, and HFO-1234ze (E) , the total content is preferably 78.5% by mass or more with respect to the total amount of the working medium.
 第5態様において、プロパンの含有量が、プロパン及びHFO-1123の合計含有量に対して25.0質量%以下であると、燃焼熱量を低下させることができる。燃焼熱量をより低下させる観点から、プロパンの含有量は、20.0質量%以下であることがより好ましく、15.0質量%以下であることがさらに好ましい。プロパンの含有量の下限値は特に限定されないが、蒸発潜熱の観点から、2.0質量%であることが好ましく、3.0質量%であることがより好ましく、4.0質量%であることがさらに好ましく、5.0質量%であることが特に好ましい。 In the fifth aspect, when the content of propane is 25.0% by mass or less with respect to the total content of propane and HFO-1123, the amount of combustion heat can be reduced. From the viewpoint of further reducing the amount of combustion heat, the propane content is more preferably 20.0% by mass or less, and even more preferably 15.0% by mass or less. The lower limit of the propane content is not particularly limited, but from the viewpoint of latent heat of vaporization, it is preferably 2.0% by mass, more preferably 3.0% by mass, and 4.0% by mass. is more preferable, and 5.0% by mass is particularly preferable.
 第5態様において、HFO-1234ze(E)の含有量が、プロパン、HFO-1123、及びHFO-1234ze(E)の合計含有量に対して11.0質量%以上であると、凝縮圧力が低下し、1.12以下を達成できる。一方、HFO-1234ze(E)の含有量が、プロパン、HFO-1123、及びHFO-1234ze(E)の合計含有量に対して25.0質量%以下であると、温度グライドが小さくなり、7℃以下の温度グライドを達成できる。HFO-1234ze(E)の含有量は、凝縮圧力をより低下させる観点から、上記合計含有量に対して12.0質量%以上であることがより好ましく、13.0質量%以上であることがさらに好ましく、14.0質量%以上であることが特に好ましく、15.0質量%以上であることが最も好ましい。また、HFO-1234ze(E)の含有量は、温度グライドをより小さくする観点から、上記合計含有量に対して24.0質量%以下であることがより好ましく、23.0質量%以下であることがさらに好ましく、22.0質量%以下であることが特に好ましく、21.0質量%以下であることが最も好ましい。 In the fifth aspect, when the content of HFO-1234ze(E) is 11.0% by mass or more with respect to the total content of propane, HFO-1123, and HFO-1234ze(E), the condensation pressure decreases. and can achieve 1.12 or less. On the other hand, when the content of HFO-1234ze (E) is 25.0% by mass or less with respect to the total content of propane, HFO-1123, and HFO-1234ze (E), the temperature glide becomes small, A temperature glide of less than °C can be achieved. The content of HFO-1234ze (E) is more preferably 12.0% by mass or more, more preferably 13.0% by mass or more, with respect to the total content, from the viewpoint of further lowering the condensation pressure. It is more preferably 14.0% by mass or more, particularly preferably 15.0% by mass or more, and most preferably 15.0% by mass or more. In addition, the content of HFO-1234ze (E) is more preferably 24.0% by mass or less, more preferably 23.0% by mass or less, relative to the total content, from the viewpoint of further reducing the temperature glide. 22.0% by mass or less is particularly preferable, and 21.0% by mass or less is most preferable.
 作動媒体の冷媒としての性能を向上させる観点から、プロパン、HFO-1123、及びHFO-1234ze(E)の合計含有量は、作動媒体の全量に対して85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。上記合計含有量の上限値は特に限定されず、上記合計含有量は100質量%であってもよい。 From the viewpoint of improving the performance of the working medium as a refrigerant, the total content of propane, HFO-1123, and HFO-1234ze (E) is more preferably 85% by mass or more with respect to the total amount of the working medium, It is more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
(第6態様)
 本開示の作動媒体の第6態様は、プロパンと、HFO-1123と、HFO-1234ze(E)と、を含有し、プロパンの含有量が、プロパン及びHFO-1123の合計含有量に対して10質量%以下であり、HFO-1234ze(E)の含有量が、プロパン、HFO-1123、及びHFO-1234ze(E)の合計含有量に対して15.0質量%以下であることが好ましい。
(Sixth aspect)
A sixth aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFO-1234ze(E), wherein the content of propane is 10% relative to the total content of propane and HFO-1123. % by mass or less, and the content of HFO-1234ze(E) is preferably 15.0% by mass or less with respect to the total content of propane, HFO-1123, and HFO-1234ze(E).
 第6態様において、プロパンの含有量が、プロパン及びHFO-1123の合計含有量に対して10.0質量%以下であると、燃焼熱量を低下させることができる。燃焼熱量をより低下させる観点から、プロパンの含有量は、8.0質量%以下であることがより好ましく、6.0質量%以下であることがさらに好ましい。プロパンの含有量の下限値は特に限定されないが、蒸発潜熱の観点から、2.0質量%であることが好ましい。 In the sixth aspect, when the content of propane is 10.0% by mass or less with respect to the total content of propane and HFO-1123, the amount of combustion heat can be reduced. From the viewpoint of further reducing the amount of combustion heat, the propane content is more preferably 8.0% by mass or less, and even more preferably 6.0% by mass or less. Although the lower limit of the propane content is not particularly limited, it is preferably 2.0% by mass from the viewpoint of the latent heat of vaporization.
 第6態様において、HFO-1234ze(E)の含有量が、プロパン、HFO-1123、及びHFO-1234ze(E)の合計含有量に対して15.0質量%以下であると、温度グライドが小さくなり、5℃以下の温度グライドを達成できる。温度グライドをより小さくさせる観点から、HFO-1234ze(E)の含有量は、上記合計含有量に対して14.0質量%以下であることがより好ましく、13.0質量%以下であることがさらに好ましく、12.0質量%以下であることが特に好ましく、11.0質量%以下であることが最も好ましい。HFO-1234ze(E)の含有量は特に限定されず、例えば、1.0質量%である。 In the sixth aspect, when the content of HFO-1234ze (E) is 15.0% by mass or less with respect to the total content of propane, HFO-1123, and HFO-1234ze (E), the temperature glide is small. and a temperature glide of 5°C or less can be achieved. From the viewpoint of further reducing the temperature glide, the content of HFO-1234ze (E) is more preferably 14.0% by mass or less, more preferably 13.0% by mass or less, relative to the total content. It is more preferably 12.0% by mass or less, particularly preferably 11.0% by mass or less, and most preferably 11.0% by mass or less. The content of HFO-1234ze(E) is not particularly limited, and is, for example, 1.0% by mass.
 第6態様では、作動媒体の冷媒としての性能を向上させる観点から、プロパン、HFO-1123、及びHFO-1234ze(E)の合計含有量は、作動媒体の全量に対して85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。上記合計含有量の上限値は特に限定されず、上記合計含有量は100質量%であってもよい。 In the sixth aspect, from the viewpoint of improving the performance of the working medium as a refrigerant, the total content of propane, HFO-1123, and HFO-1234ze (E) is 85% by mass or more with respect to the total amount of the working medium. is more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
(第7態様)
 本開示の作動媒体の第7態様は、プロパンと、HFO-1123と、HFO-1234ze(E)と、を含有し、プロパンの含有量が、プロパン及びHFO-1123の合計含有量に対して20.0質量%以下であり、HFO-1234ze(E)の含有量が、プロパン、HFO-1123、及びHFO-1234ze(E)の合計含有量に対して9.0質量%以下であることが好ましい。
(Seventh aspect)
A seventh aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFO-1234ze(E), and the content of propane is 20% relative to the total content of propane and HFO-1123. 0% by mass or less, and the content of HFO-1234ze(E) is preferably 9.0% by mass or less with respect to the total content of propane, HFO-1123, and HFO-1234ze(E). .
 第7態様において、プロパンの含有量が、プロパン及びHFO-1123の合計含有量に対して20.0質量%以下であると、燃焼熱量を低下させることができる。燃焼熱量をより低下させる観点から、プロパンの含有量は、15.0質量%以下であることがより好ましく、10.0質量%以下であることがさらに好ましい。プロパンの含有量の下限値は特に限定されないが、蒸発潜熱の観点から、2.0質量%であることが好ましい。 In the seventh aspect, when the content of propane is 20.0% by mass or less with respect to the total content of propane and HFO-1123, the amount of combustion heat can be reduced. From the viewpoint of further reducing the amount of combustion heat, the propane content is more preferably 15.0% by mass or less, and even more preferably 10.0% by mass or less. Although the lower limit of the propane content is not particularly limited, it is preferably 2.0% by mass from the viewpoint of the latent heat of vaporization.
 第7態様において、HFO-1234ze(E)の含有量が、プロパン、HFO-1123、及びHFO-1234ze(E)の合計含有量に対して9.0質量%以下であると、温度グライドが小さくなり、4℃以下の温度グライドを達成できる。温度グライドをより小さくさせる観点から、HFO-1234ze(E)の含有量は、上記合計含有量に対して8.0質量%以下であることがより好ましく、7.0質量%以下であることがさらに好ましく、6.0質量%以下であることが特に好ましい。HFO-1234ze(E)の含有量は特に限定されず、例えば、1.0質量%である。 In the seventh aspect, when the content of HFO-1234ze (E) is 9.0% by mass or less with respect to the total content of propane, HFO-1123, and HFO-1234ze (E), the temperature glide is small. and a temperature glide of 4°C or less can be achieved. From the viewpoint of further reducing the temperature glide, the content of HFO-1234ze (E) is more preferably 8.0% by mass or less, more preferably 7.0% by mass or less, relative to the total content. More preferably, it is particularly preferably 6.0% by mass or less. The content of HFO-1234ze(E) is not particularly limited, and is, for example, 1.0% by mass.
 第7態様では、作動媒体の冷媒としての性能を向上させる観点から、プロパン、HFO-1123、及びHFO-1234ze(E)の合計含有量は、作動媒体の全量に対して85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。上記合計含有量の上限値は特に限定されず、上記合計含有量は100質量%であってもよい。 In the seventh aspect, from the viewpoint of improving the performance of the working medium as a refrigerant, the total content of propane, HFO-1123, and HFO-1234ze (E) is 85% by mass or more with respect to the total amount of the working medium. is more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
(第8態様)
 本開示の作動媒体の第8態様は、プロパンと、HFO-1123と、COと、を含有し、プロパン、HFO-1123、及びCOの合計含有量に対するHFO-1123の含有量をX質量%、上記合計含有量に対するCOの含有量をY質量%とした場合に、X及びYが下記式(1)を満たし、プロパン、上記合計含有量が、作動媒体の全量に対して78.5質量%以上であることが好ましい。
 -0.00115X +0.13537X -6.20662X+151.14664≦Y≦59 …(1)
(Eighth aspect)
An eighth embodiment of the working medium of the present disclosure contains propane, HFO-1123 and CO2 , wherein the content of HFO-1123 with respect to the total content of propane, HFO-1123 and CO2 is X 1 When the content of CO 2 with respect to the above total content is Y 1 % by mass, X 1 and Y 1 satisfy the following formula (1), propane, the above total content is the total amount of the working medium It is preferably 78.5% by mass or more.
−0.00115X 1 3 +0.13537X 1 2 −6.20662X 1 +151.14664≦Y 1 ≦59 (1)
 第8態様において、作動媒体の燃焼熱量が19.000MJ/Kg未満であり、かつ、X及びYが式(1)を満たすと、温度グライドが小さくなり、7℃以下の温度グライドを達成できる。 In the eighth aspect, when the combustion heat quantity of the working medium is less than 19.000 MJ/Kg and X 1 and Y 1 satisfy the formula (1), the temperature glide becomes small and a temperature glide of 7 ° C. or less is achieved. can.
 具体的には、Xが27.44~62.69の場合に、X及びYが式(1)を満たし、Xが62.69超の場合には、X及びYが下記式(1a)を満たすことが好ましい。
 -0.76902X+58.98353≦Y≦59 …(1a)
Specifically, when X 1 is 27.44 to 62.69, X 1 and Y 1 satisfy formula (1), and when X 1 is greater than 62.69, X 1 and Y 1 are It is preferable to satisfy the following formula (1a).
−0.76902X 1 +58.98353≦Y 1 ≦59 (1a)
 温度グライドをより小さくする観点から、上記合計含有量に対するプロパンの含有量をZ質量%とした場合に、Z及びYが下記式(1A)を満たすことがより好ましい。
 Y≦0.00288Z -0.14523Z +0.75794Z+31.5 …(1A)
From the viewpoint of further reducing the temperature glide, it is more preferable that Z 1 and Y 1 satisfy the following formula (1A) when the content of propane with respect to the total content is Z 1 % by mass.
Y 1 ≦0.00288Z 1 3 −0.14523Z 1 2 +0.75794Z 1 +31.5 (1A)
 作動媒体の燃焼熱量が19.000MJ/Kg未満であり、かつ、Z及びYが式(1A)を満たすと、温度グライドが小さくなり、5℃以下の温度グライドを達成できる。 When the combustion heat quantity of the working medium is less than 19.000 MJ/Kg and Z 1 and Y 1 satisfy formula (1A), the temperature glide becomes small, and a temperature glide of 5° C. or less can be achieved.
 具体的には、Zが1.0~23.3の場合に、Z及びYが式(1A)を満たし、Zが23.3超24.84以下の場合に、Z及びYが下記式(1Aa)を満たすことが好ましい。
 3.33333Z-77.66667≦Y≦0.00288Z -0.14523Z +0.75794Z+31.5 …(1Aa)
Specifically, when Z 1 is 1.0 to 23.3, Z 1 and Y 1 satisfy formula (1A), and when Z 1 is more than 23.3 and 24.84 or less, Z 1 and Y 1 preferably satisfies the following formula (1Aa).
3.33333Z 1 −77.66667≦Y 1 ≦0.00288Z 1 3 −0.14523Z 1 2 +0.75794Z 1 +31.5 (1Aa)
 作動媒体の冷媒としての性能を向上させる観点から、プロパン、HFO-1123、及びCOの合計含有量は、作動媒体の全量に対して85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。上記合計含有量の上限値は特に限定されず、上記合計含有量は100質量%であってもよい。 From the viewpoint of improving the performance of the working medium as a refrigerant, the total content of propane, HFO-1123, and CO2 is more preferably 85% by mass or more, more preferably 90% by mass or more, relative to the total amount of the working medium. More preferably, it is more preferably 95% by mass or more. The upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
 第8態様において、凝縮圧力を低下させる観点から、COの含有量は、上記合計含有量に対して20.0質量%以下であることが好ましく、15.0質量%以下であることがより好ましく、10.0質量%以下であることがさらに好ましい。COの含有量の下限値は特に限定されず、例えば、2.0質量%である。COの含有量が上記合計含有量に対して20.0質量%以下であると、凝縮圧力が低下し、1.7以下を達成できる。 In the eighth aspect, from the viewpoint of reducing the condensation pressure, the content of CO 2 is preferably 20.0% by mass or less, more preferably 15.0% by mass or less, relative to the total content. It is preferably 10.0% by mass or less, and more preferably 10.0% by mass or less. The lower limit of the CO 2 content is not particularly limited, and is, for example, 2.0% by mass. If the content of CO 2 is 20.0% by mass or less with respect to the above total content, the condensation pressure will decrease and 1.7 or less can be achieved.
(第9態様)
 本開示の作動媒体の第9態様は、プロパンと、HFO-1123と、CFIと、を含有し、プロパン、HFO-1123、及びCFIの合計含有量に対するプロパンの含有量をX質量%、上記合計含有量に対するCFIの含有量をY質量%とした場合に、X及びYが下記式(2A)を満たし、上記合計含有量が、作動媒体の全量に対して78.5質量%以上であることが好ましい。
 Y≦-1.125X+39 …(2A)
(Ninth aspect)
A ninth aspect of the working medium of the present disclosure contains propane, HFO-1123, and CF 3 I, wherein the content of propane relative to the total content of propane, HFO-1123, and CF 3 I is X 2 When the content of CF 3 I with respect to the total content is Y 2 % by mass, X 2 and Y 2 satisfy the following formula (2A), and the total content is relative to the total amount of the working medium is preferably 78.5% by mass or more.
Y 2 ≦−1.125X 2 +39 (2A)
 第9態様において、作動媒体の燃焼熱量が19.000MJ/Kg未満であり、かつ、X及びYが式(2A)を満たすと、温度グライドが小さくなり、5℃以下の温度グライドを達成できる。 In the ninth aspect, when the combustion heat quantity of the working medium is less than 19.000 MJ/Kg, and X 2 and Y 2 satisfy the formula (2A), the temperature glide becomes small, and a temperature glide of 5 ° C. or less is achieved. can.
 具体的には、Xが1.0~23.3の場合に、X及びYが式(2A)を満たし、Xが23.3超25.91以下の場合には、X及びYが下記式(2Aa)を満たすことが好ましい。
 3.83055X-89.44721≦Y≦-1.125X+39 …(2Aa)
Specifically, when X 2 is 1.0 to 23.3, X 2 and Y 2 satisfy formula (2A), and when X 2 is more than 23.3 and 25.91 or less, X 2 and Y 2 preferably satisfy the following formula (2Aa).
3.83055X 2 −89.44721≦Y 2 ≦−1.125X 2 +39 (2Aa)
 圧力損失を低下させる観点から、さらに、X及びYが下記式(2B)を満たすことが好ましい。
 Y≦0.05994X +0.23676X+11.85165 …(2B)
From the viewpoint of reducing pressure loss, it is preferable that X 2 and Y 2 further satisfy the following formula (2B).
Y 2 ≤ 0.05994X 2 2 + 0.23676X 2 + 11.85165 (2B)
 作動媒体の燃焼熱量が19.000MJ/Kg未満であり、かつ、X及びYが式(2A)及び式(2B)を満たすと、圧力損失が低下し、1.4以下を達成できる。 When the combustion heat quantity of the working medium is less than 19.000 MJ/Kg and X 2 and Y 2 satisfy the formulas (2A) and (2B), the pressure loss is reduced and 1.4 or less can be achieved.
(第10態様)
 本開示の作動媒体の第10態様は、プロパンと、HFO-1132(E)と、上記第3成分と、を含有し、燃焼熱量が、15.250MJ/kg未満であることが好ましい。
(Tenth aspect)
The tenth aspect of the working fluid of the present disclosure preferably contains propane, HFO-1132 (E), and the third component, and has a combustion heat quantity of less than 15.250 MJ/kg.
 第10態様では、プロパンと、HFO-1132(E)と、HFO-1234yfと、を含有することがより好ましい。 The tenth aspect more preferably contains propane, HFO-1132(E), and HFO-1234yf.
 第10態様において、燃焼熱量は、14.0MJ/kg未満がより好ましく、12.0MJ/kg未満がさらに好ましい。 In the tenth aspect, the combustion heat quantity is more preferably less than 14.0 MJ/kg, even more preferably less than 12.0 MJ/kg.
 第10態様において、プロパンの含有量は、プロパン及びHFO-1132(E)の合計含有量に対して30.0質量%以下であることが好ましく、20質量%以下であることがより好ましく、10.0質量%以下であることがさらに好ましく、8.0質量%以下であることが特に好ましい。プロパンの含有量が30.0質量%以下であると、燃焼熱量をより低下させることができる。プロパンの含有量の下限値は特に限定されないが、例えば、2.0質量%である。 In the tenth aspect, the propane content is preferably 30.0% by mass or less, more preferably 20% by mass or less, relative to the total content of propane and HFO-1132 (E). It is more preferably 0.0% by mass or less, and particularly preferably 8.0% by mass or less. When the propane content is 30.0% by mass or less, the amount of combustion heat can be further reduced. Although the lower limit of the propane content is not particularly limited, it is, for example, 2.0% by mass.
 第10態様では、作動媒体の冷媒としての性能を向上させる観点から、プロパン、HFO-1132(E)、及び上記第3成分の合計含有量は、作動媒体の全量に対して85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。上記合計含有量の上限値は特に限定されず、上記合計含有量は100質量%であってもよい。 In the tenth aspect, from the viewpoint of improving the performance of the working medium as a refrigerant, the total content of propane, HFO-1132 (E), and the third component is 85% by mass or more with respect to the total amount of the working medium. It is more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
(第11態様)
 本開示の作動媒体の第11態様は、プロパンと、HFO-1132(E)と、上記第3成分と、を含有し、プロパンの含有量が、プロパン及びHFO-1132(E)の合計含有量に対して10.0質量%以下であることが好ましい。
(11th aspect)
An eleventh aspect of the working medium of the present disclosure contains propane, HFO-1132(E), and the third component, and the content of propane is the total content of propane and HFO-1132(E) It is preferably 10.0% by mass or less with respect to
 第11態様では、プロパンと、HFO-1132(E)と、HFO-1234yfと、を含有することがより好ましい。 The eleventh aspect more preferably contains propane, HFO-1132(E), and HFO-1234yf.
 第11態様において、プロパンの含有量が10.0質量%以下であると、燃焼熱量をより低下させることができる。プロパンの含有量は、プロパン及びHFO-1132(E)の合計含有量に対して8.0質量%以下であることがより好ましい。プロパンの含有量の下限値は特に限定されないが、例えば、2.0質量%である。 In the eleventh aspect, if the propane content is 10.0% by mass or less, the combustion heat quantity can be further reduced. More preferably, the content of propane is 8.0% by mass or less with respect to the total content of propane and HFO-1132(E). Although the lower limit of the propane content is not particularly limited, it is, for example, 2.0% by mass.
 第11態様では、作動媒体の冷媒としての性能を向上させる観点から、プロパン、HFO-1132(E)、及び上記第3成分の合計含有量は、作動媒体の全量に対して85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。上記合計含有量の上限値は特に限定されず、上記合計含有量は100質量%であってもよい。 In the eleventh aspect, from the viewpoint of improving the performance of the working medium as a refrigerant, the total content of propane, HFO-1132 (E), and the third component is 85% by mass or more with respect to the total amount of the working medium. It is more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
(第12態様)
 本開示の作動媒体の第12態様は、プロパンと、HFO-1123と、HFO-1234yfと、HFC-32と、を含有し、プロパン、HFO-1123、HFO-1234yf、及びHFC-32の合計含有量に対するHFC-32の含有量をA質量%、上記合計含有量に対するHFO-1234yfの含有量をB質量%、上記合計含有量に対するプロパンの含有量をC質量%、上記合計含有量に対するHFO-1123の含有量をD質量%とした場合に、A、B、C、及びDが下記式(3A)~(3D)を満たすことが好ましい。
 19≦A≦22 …(3A)
 0.1562A-5.88147A+56.79≦B≦-0.1444A+4.9917A-0.9609 …(3B)
 3≦C≦-0.0168B+0.032A+23.365 …(3C)
 (0.0006A+0.0103A-2.6844)C+(0.1143A-5.4982A+133.96)≦D≦(0.00025A+0.0213)C+(-0.0003A-0.0055A-1.1287)C+(-1.0639A+92.613) …(3D)
(12th aspect)
A twelfth aspect of the working medium of the present disclosure contains propane, HFO-1123, HFO-1234yf, and HFC-32, with a total content of propane, HFO-1123, HFO-1234yf, and HFC-32 The content of HFC-32 with respect to the amount is A mass%, the content of HFO-1234yf with respect to the total content is B mass%, the content of propane with respect to the total content is C mass%, HFO with respect to the total content - When the content of 1123 is D mass %, A, B, C, and D preferably satisfy the following formulas (3A) to (3D).
19≦A≦22 (3A)
0.1562A2-5.88147A +56.79≤B≤-0.1444A2+4.9917A-0.9609 ( 3B )
3≤C≤-0.0168B+0.032A+23.365 (3C)
(0.0006A 2 + 0.0103A - 2.6844) C + (0.1143A 2 - 5.4982A + 133.96) ≤ D ≤ (0.00025A + 0.0213) C 2 + (- 0.0003A 2 - 0.0055A- 1.1287) C + (-1.0639 A + 92.613) ... (3D)
 第12態様では、A、B、C、及びDが式(3A)~(3D)を満たすため、凝縮圧力が低下し、1.2122未満を実現でき、かつ、圧縮比が低下し、0.9453未満を実現できる。 In the twelfth aspect, since A, B, C, and D satisfy the formulas (3A) to (3D), the condensing pressure can be reduced to less than 1.2122 and the compression ratio can be reduced to 0.2122. Less than 9453 can be achieved.
 第12態様では、作動媒体の冷媒としての性能を向上させる観点から、上記合計含有量は、作動媒体の全量に対して85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。上記合計含有量の上限値は特に限定されず、上記合計含有量は100質量%であってもよい。 In the twelfth aspect, from the viewpoint of improving the performance of the working medium as a refrigerant, the total content is more preferably 85% by mass or more, more preferably 90% by mass or more, relative to the total amount of the working medium. More preferably, it is particularly preferably 95% by mass or more. The upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
(第13態様)
 本開示の作動媒体の第13態様は、プロパンと、HFO-1123と、HFO-1234ze(E)と、HFC-32と、を含有し、プロパン、HFO-1123、HFO-1234ze(E)、及びHFC-32の合計含有量に対するHFC-32の含有量をE質量%、上記合計含有量に対するHFO-1234ze(E)の含有量をF質量%、上記合計含有量に対するプロパンの含有量をG質量%、上記合計含有量に対するHFO-1123の含有量をH質量%とした場合に、E、F、G、及びHが下記式(4A)~(4D)を満たすことが好ましい。
 19≦E≦22 …(4A)
 -0.0577E+2.595E-25.794≦F≦-0.453E+43.836 …(4B)
 2≦G≦0.030E+23.40 …(4C)
 (0.0053E-0.1950E-0.0880)G+(-0.0044E-0.6605E+83.7959)≦H≦0.0255G+(-0.0042E+0.1577E-2.8414)G+(-1.059E+91.6916) …(4D)
(13th aspect)
A thirteenth aspect of the working medium of the present disclosure contains propane, HFO-1123, HFO-1234ze(E), and HFC-32, wherein propane, HFO-1123, HFO-1234ze(E), and The content of HFC-32 with respect to the total content of HFC-32 is E mass%, the content of HFO-1234ze (E) with respect to the total content is F mass%, and the content of propane with respect to the total content is G mass. %, and the content of HFO-1123 with respect to the above total content is H% by mass, E, F, G, and H preferably satisfy the following formulas (4A) to (4D).
19≦E≦22 (4A)
−0.0577E 2 +2.595E−25.794≦F≦−0.453E+43.836 (4B)
2≤G≤0.030E+23.40 (4C)
(0.0053E 2 -0.1950E-0.0880) G + (-0.0044E 2 -0.6605E + 83.7959) ≤ H ≤ 0.0255G 2 + (-0.0042E 2 + 0.1577E-2.8414) G + (-1.059E + 91.6916) ... (4D)
 第13態様では、E、F、G、及びHが式(4A)~(4D)を満たすため、凝縮圧力が低下し、1.1993未満を実現でき、かつ、圧縮比が低下し、0.9553未満を実現できる。 In the thirteenth aspect, since E, F, G, and H satisfy the formulas (4A) to (4D), the condensing pressure is lowered, less than 1.1993 can be achieved, and the compression ratio is lowered to 0.1993. Less than 9553 can be achieved.
 第13態様では、作動媒体の冷媒としての性能を向上させる観点から、上記合計含有量は、作動媒体の全量に対して85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。上記合計含有量の上限値は特に限定されず、上記合計含有量は100質量%であってもよい。 In the thirteenth aspect, from the viewpoint of improving the performance of the working medium as a refrigerant, the total content is more preferably 85% by mass or more, more preferably 90% by mass or more, relative to the total amount of the working medium. More preferably, it is particularly preferably 95% by mass or more. The upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
(第14態様)
 本開示の作動媒体の第14態様は、プロパンと、HFO-1123と、COと、HFC-32と、を含有し、プロパン、HFO-1123、CO、及びHFC-32の合計含有量に対するHFC-32の含有量をJ質量%、上記合計含有量に対するCOの含有量をK質量%、上記合計含有量に対するプロパンの含有量をL質量%、上記合計含有量に対するHFO-1123の含有量をM質量%とした場合に、J、K、L、及びMが下記式(5A)~(5D)を満たすことが好ましい。
 19≦J≦22 …(5A)
 0.074J-3.2047J-37.862≦K≦0.055J-2.2893J+42.055 …(5B)
 1≦L≦0.2985K+23.9 …(5C)
 (-0.00015J+0.0055J-0.0637)L+(0.0031J-0.1025J-0.0673)L+(-0.0017J-1.0368J+91.439)≦M≦(-0.000054J+0.00165J-0.00500)L+(0.0029J-0.1040J-0.1186)L+(-0.1221J+4.1517J+39.5) …(5D)
(14th aspect)
A fourteenth aspect of the working medium of the present disclosure contains propane, HFO-1123, CO 2 and HFC-32, and the total propane, HFO-1123, CO 2 and HFC-32 content The content of HFC-32 is J% by mass, the content of CO 2 is K% by mass with respect to the total content, the content of propane is L% by mass with respect to the total content, and the content of HFO-1123 with respect to the total content. J, K, L, and M preferably satisfy the following formulas (5A) to (5D), where the amount is M mass %.
19≦J≦22 (5A)
0.074J2-3.2047J -37.862≤K≤0.055J2-2.2893J+42.055 ( 5B )
1≦L≦0.2985K+23.9 (5C)
(-0.00015J 2 +0.0055J-0.0637) L 2 + (0.0031J 2 -0.1025J-0.0673) L + (-0.0017J 2 -1.0368J + 91.439) ≤ M ≤ (- 0.000054J 2 + 0.00165J - 0.00500) L 2 + (0.0029J 2 - 0.1040J - 0.1186) L + (- 0.1221J 2 + 4.1517J + 39.5) ... (5D)
 第14態様では、J、K、L、及びMが式(5A)~(5D)を満たすため、凝縮圧力が低下し、1.48789未満を実現でき、かつ、圧力損失が低下し、0.92297未満を実現できる。 In the 14th aspect, since J, K, L, and M satisfy the formulas (5A) to (5D), the condensing pressure can be reduced to less than 1.48789, and the pressure loss can be reduced to 0.48789. Less than 92297 can be achieved.
 第14態様では、作動媒体の冷媒としての性能を向上させる観点から、上記合計含有量は、作動媒体の全量に対して85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。上記合計含有量の上限値は特に限定されず、上記合計含有量は100質量%であってもよい。 In the fourteenth aspect, from the viewpoint of improving the performance of the working medium as a refrigerant, the total content is more preferably 85% by mass or more, more preferably 90% by mass or more, relative to the total amount of the working medium. More preferably, it is particularly preferably 95% by mass or more. The upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
(第15態様)
 本開示の作動媒体の第15態様は、プロパンと、HFO-1123と、CFIと、HFC-32と、を含有することが好ましい。
(15th aspect)
The fifteenth aspect of the working medium of the present disclosure preferably contains propane, HFO-1123, CF 3 I, and HFC-32.
 第15態様では、プロパン、HFO-1123、CFI、及びHFC-32の4成分を含むことにより、プロパン、HFO-1123、及びHFC-32の3成分を含む場合と比較して、燃焼熱量が低下する。 In the fifteenth aspect, by including four components of propane, HFO-1123, CF 3 I, and HFC-32, compared to the case of including three components of propane, HFO-1123, and HFC-32, the combustion calorific value decreases.
 第15態様では、作動媒体の冷媒としての性能を向上させる観点から、プロパン、HFO-1123、CFI、及びHFC-32の合計含有量は、作動媒体の全量に対して85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。上記合計含有量の上限値は特に限定されず、上記合計含有量は100質量%であってもよい。 In the fifteenth aspect, from the viewpoint of improving the performance of the working medium as a refrigerant, the total content of propane, HFO-1123, CF 3 I, and HFC-32 is 85% by mass or more with respect to the total amount of the working medium. It is more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The upper limit of the total content is not particularly limited, and the total content may be 100% by mass.
(第16態様)
 本開示の作動媒体の第16態様は、プロパンと、HFO-1123と、HFO-1234yfと、を含有し、HFO-1234yfの含有量が、プロパン、HFO-1123、及びHFO-1234yfの合計含有量に対して25.0~70.0質量%であり、プロパンの含有量が、上記合計含有量に対して9.0質量%以下であり、上記合計含有量が、作動媒体の全量に対して78.5質量%以上であることが好ましい。
(16th aspect)
A sixteenth aspect of the working medium of the present disclosure contains propane, HFO-1123, and HFO-1234yf, and the content of HFO-1234yf is the total content of propane, HFO-1123, and HFO-1234yf is 25.0 to 70.0% by mass, the content of propane is 9.0% by mass or less with respect to the total content, and the total content is relative to the total amount of the working medium It is preferably at least 78.5% by mass.
 第16態様において、HFO-1234yfの含有量が、プロパン、HFO-1123、及びHFO-1234yfの合計含有量に対して25.0質量%以上であると、凝縮圧力が低下する。一方、HFO-1234yfの含有量が、プロパン、HFO-1123、及びHFO-1234yfの合計含有量に対して70.0質量%以下であると、CAPが向上する。 In the sixteenth aspect, when the content of HFO-1234yf is 25.0% by mass or more with respect to the total content of propane, HFO-1123, and HFO-1234yf, the condensation pressure is lowered. On the other hand, when the content of HFO-1234yf is 70.0% by mass or less with respect to the total content of propane, HFO-1123, and HFO-1234yf, CAP is improved.
 温度グライドを7℃以下にする観点から、HFO-1234yfの含有量は、上記合計含有量に対して25.0~43.0質量%であるか、又は、62.0~70.0質量%であることが好ましい。 From the viewpoint of making the temperature glide 7 ° C. or less, the content of HFO-1234yf is 25.0 to 43.0% by mass, or 62.0 to 70.0% by mass with respect to the above total content. is preferably
 第16態様において、プロパンの含有量が、上記合計含有量に対して9.0質量%以下であると、燃焼熱量が低下する。プロパンの含有量の下限値は特に限定されないが、蒸発潜熱を高める観点から、2.0質量%であることが好ましい。 In the sixteenth aspect, if the content of propane is 9.0% by mass or less with respect to the total content, the combustion heat quantity is reduced. Although the lower limit of the propane content is not particularly limited, it is preferably 2.0% by mass from the viewpoint of increasing the latent heat of vaporization.
 第16態様において、HFO-1123の含有量は、プロパンの含有量及びHFO-1234yfの含有量によって適宜調整される。凝縮圧力をより低下させる観点から、HFO-1123の含有量は、上記合計含有量に対して73質量%以下であることが好ましい。また、CAPをより低下させる観点から、HFO-1123の含有量は、上記合計含有量に対して21質量%以上であることが好ましい。 In the sixteenth aspect, the content of HFO-1123 is appropriately adjusted by the content of propane and the content of HFO-1234yf. From the viewpoint of further lowering the condensation pressure, the content of HFO-1123 is preferably 73% by mass or less with respect to the above total content. Also, from the viewpoint of further reducing CAP, the content of HFO-1123 is preferably 21% by mass or more with respect to the above total content.
 第16態様において、プロパン、HFO-1123、及びHFO-1234yfの合計含有量が、作動媒体の全量に対して78.5質量%以上であると、燃焼熱量、凝縮圧力、CAP等の性能をバランス良く達成することができる。上記合計含有量は、作動媒体の全量に対して85質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、99質量%以上であることが特に好ましい。上記合計含有量の上限値は特に限定されず、100質量%であってもよい。 In the sixteenth aspect, when the total content of propane, HFO-1123, and HFO-1234yf is 78.5% by mass or more with respect to the total amount of the working medium, performance such as combustion heat amount, condensation pressure, and CAP is balanced. can be achieved well. The total content is preferably 85% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and 99% by mass or more with respect to the total amount of the working medium. It is particularly preferred to have The upper limit of the total content is not particularly limited, and may be 100% by mass.
 本開示の作動媒体は、本開示の効果を損なわない範囲で、プロパン、HFO-1123及びHFO-1132(E)の少なくとも一方、並びに、第3成分以外の任意の成分を含有してもよい。任意の成分としては、例えば、HFO-1123、HFO-1132(E)、及び第3成分以外の、HFC及びHFOが挙げられる。任意の成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The working medium of the present disclosure may contain any component other than propane, at least one of HFO-1123 and HFO-1132(E), and the third component within the range that does not impair the effects of the present disclosure. Optional components include, for example, HFCs and HFOs other than HFO-1123, HFO-1132(E), and a third component. Optional components may be used singly or in combination of two or more.
 任意の成分としては、例えば、HFCとしては、1,1-ジフルオロエタン(HFC-152a)、トリフルオロエタン、1,1,2,2-テトラフルオロエタン(HFC-134)、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、及びヘプタフルオロシクロペンタンが挙げられる。HFOとしては、2-フルオロプロペン(HFO-1261yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、及び3,3,3-トリフルオロプロペン(HFO-1243zf)が挙げられる。 Optional components include, for example, HFCs such as 1,1-difluoroethane (HFC-152a), trifluoroethane, 1,1,2,2-tetrafluoroethane (HFC-134), pentafluoropropane, hexafluoro Propane, heptafluoropropane, pentafluorobutane, and heptafluorocyclopentane. HFOs include 2-fluoropropene (HFO-1261yf), 1,1,2-trifluoropropene (HFO-1243yc), and 3,3,3-trifluoropropene (HFO-1243zf).
 上記HFC及びHFO以外の化合物としては、例えば、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等の炭化水素;1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)、1,3-ジクロロ-1,2,3,3-テトラフルオロプロペン(CFO-1214yb)、1,2-ジクロロ-1,2-ジフルオロエチレン(CFO-1112)等のクロロフルオロオレフィン(CFO);及び、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)、1-クロロ-1,2-ジフルオロエチレン(HCFO-1122)等のヒドロクロロフルオロオレフィン(HCFO)が挙げられる。任意の成分はオゾン層への影響が少なく、かつ、地球温暖化への影響が小さい成分が好ましい。 Examples of compounds other than HFCs and HFOs include hydrocarbons such as propylene, cyclopropane, butane, isobutane, pentane, and isopentane; 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya ), 1,3-dichloro-1,2,3,3-tetrafluoropropene (CFO-1214yb), 1,2-dichloro-1,2-difluoroethylene (CFO-1112) and other chlorofluoroolefins (CFO) and hydrochlorofluoroolefins (HCFO) such as 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd) and 1-chloro-1,2-difluoroethylene (HCFO-1122). be done. The optional component is preferably a component that has less impact on the ozone layer and less impact on global warming.
 本開示の作動媒体が任意の成分を含有する場合、任意の成分の合計含有量は、作動媒体の全量に対して10質量%未満であることが好ましく、8質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。任意の成分の合計含有量の下限値は特に限定されず、0質量%であってもよい。 When the working medium of the present disclosure contains optional components, the total content of the optional components is preferably less than 10% by mass, more preferably 8% by mass or less, relative to the total amount of the working medium. , 5% by mass or less. The lower limit of the total content of arbitrary components is not particularly limited, and may be 0% by mass.
<作動媒体の製造方法>
 本開示の作動媒体の製造方法は、プロパンと、HFO-1123及びHFO-1132(E)の少なくとも一方と、HFO-1234yf、HFO-1234ze(E)、HFC-32、CO及びCFIからなる群より選択される少なくとも1種と、を含有する作動媒体についての燃焼熱量を算出して作動媒体の燃焼熱量が19.000MJ/kg未満となる組成を決定し、決定された組成の作動媒体を調製する製造方法である。
 本開示の作動媒体の製造方法によれば、プロパンを含有し冷媒としての性能に優れた作動媒体を容易に製造可能となる。
<Method for producing working medium>
The method for producing a working medium of the present disclosure comprises propane, at least one of HFO-1123 and HFO-1132(E), HFO-1234yf, HFO-1234ze(E), HFC-32, CO 2 and CF 3 I calculating the combustion heat quantity of the working medium containing at least one selected from the group consisting of; is a manufacturing method for preparing
According to the method for producing a working medium of the present disclosure, it is possible to easily produce a working medium containing propane and having excellent performance as a refrigerant.
 本開示の作動媒体の製造方法では、プロパンと、HFO-1123及びHFO-1132(E)の少なくとも一方と、第3成分と、場合によってはその他の成分と、を適宜選択して仮想的な混合物を設定し、当該混合物についての燃焼熱量を上述の方法で算出する。この場合、例えば、第3成分の含有量を固定し、プロパンとHFO-1123又はHFO-1132(E)との含有量を変化させながら混合物についての燃焼熱量を算出する。算出された燃焼熱量が19.000MJ/kg以上であるか19.000MJ/kg未満であるかを三角図に表して燃焼熱量が19.000MJ/kg未満の領域を確定し、確定された領域内から作動媒体として望ましい組成を決定し、決定された組成の混合物を調製することで、作動媒体が得られる。 In the method for producing a working medium of the present disclosure, propane, at least one of HFO-1123 and HFO-1132 (E), a third component, and optionally other components are appropriately selected to form a virtual mixture is set, and the heat of combustion for the mixture is calculated by the method described above. In this case, for example, the content of the third component is fixed, and the combustion heat of the mixture is calculated while changing the content of propane and HFO-1123 or HFO-1132(E). Determine whether the calculated combustion heat quantity is 19.000 MJ / kg or more or less than 19.000 MJ / kg in a ternary diagram, determine the region where the combustion heat quantity is less than 19.000 MJ / kg, and within the determined region A working medium can be obtained by determining a desired composition as a working medium from and preparing a mixture of the determined composition.
 以下に、本開示の作動媒体の一例についての燃焼熱量を示す。下記表において、各成分の組成比は、質量基準(質量%)の含有量を示す。また、燃焼熱量(Heat of Combustion)の単位は、(MJ/kg)である。下記表中の判定(Evaluation)の欄では、燃焼熱量が19.000MJ/kg以上の場合をXと、19.000MJ/kg未満の場合をOと表記する。作動媒体の具体例である例1、例2等を、表中ではCase 1, Case 2等と表す。
 併せて、作動媒体のGWPを示す。本開示において、作動媒体の地球温暖化への影響をはかる指標として、GWPを用いる。本開示において、GWPは、特に断りのない限り気候変動に関する政府間パネル(IPCC)第5次評価報告書(2013年)の100年の値とする。具体的には、HFC-32(677)、CO(1.0)、HFO-1234yf(<1.0)、HFO-1234ze(E)(<1.0)である。プロパンについては、Scientific Assessment of Ozone Depletion 2018より、GWP<1を採用した。HFO-1123、HFO-1132(E)については、J. Phys. Chem. A 2018, 122, 4593-4600より、GWP=0.0054(HFO-1123),0.0059(HFO-1132(E))を採用した。CFIについては、EPA Greenhouse Gas Reporting Program: Addition of Global Warming Potentials2014より、GWP=0.4を採用した。
 混合物におけるGWPは、組成質量による加重平均とする。混合物におけるGWPを考えるうえでは、GWP1以下のものは1として、計算する。
Below, the combustion heat quantity for one example of the working medium of the present disclosure is shown. In the table below, the composition ratio of each component indicates the content on a mass basis (% by mass). The unit of heat of combustion is (MJ/kg). In the evaluation column of the table below, X indicates that the combustion heat quantity is 19.000 MJ/kg or more, and O indicates that it is less than 19.000 MJ/kg. Examples 1, 2, etc., which are specific examples of the working medium, are expressed as Case 1, Case 2, etc. in the table.
It also shows the GWP of the working medium. In the present disclosure, GWP is used as an index for measuring the impact of working media on global warming. In this disclosure, GWP is the 100-year value of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (2013) unless otherwise specified. Specifically, they are HFC-32(677), CO 2 (1.0), HFO-1234yf (<1.0), HFO-1234ze(E) (<1.0). For propane, GWP<1 was adopted from Scientific Assessment of Ozone Depletion 2018. HFO-1123 and HFO-1132(E) are described in J. Am. Phys. Chem. A 2018, 122, 4593-4600, GWP = 0.0054 (HFO-1123) and 0.0059 (HFO-1132 (E)) were adopted. For CF 3 I, GWP=0.4 was adopted from EPA Greenhouse Gas Reporting Program: Addition of Global Warming Potentials 2014.
GWP in a mixture is a weighted average by composition mass. When considering the GWP in a mixture, those with a GWP of 1 or less are treated as 1 in the calculation.
 表1は、プロパン及びHFO-1123の2成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Table 1 shows the composition, heat of combustion and GWP of the two-component working medium of propane and HFO-1123.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2~10は、プロパン、HFO-1123及びHFO-1234yfの3成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。
 また、図1に、プロパン、HFO-1123及びHFO-1234yfの3成分系の三角図を示す。図1には、(プロパン,HFO-1123,HFO-1234yf)が(23.3,76.7,0.0)と(22.0,0.0,78.0)を結ぶ直線が示されている。この直線を含むプロパン濃度の低い領域が、プロパン、HFO-1123及びHFO-1234yfの3成分系についての燃焼熱量が19.000MJ/kg未満の領域を示し、この直線よりもプロパン濃度が高い領域が、プロパン、HFO-1123及びHFO-1234yfの3成分系についての燃焼熱量が19.000MJ/kg以上の領域を示す。
 また、図1の直線は、(Propane,HFO-1123,HFO-1234yf)=(X,Y,Z)とすると、
(X,Y,Z)=(0.01706Y+22.03843,Y,77.96157-1.01706Y)
※Y≦76.7
とも表される。
Tables 2-10 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1123 and HFO-1234yf.
FIG. 1 also shows a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1234yf. FIG. 1 shows a straight line connecting (23.3, 76.7, 0.0) and (22.0, 0.0, 78.0) for (propane, HFO-1123, HFO-1234yf). ing. The low propane concentration region including this straight line indicates the region where the combustion calorific value for the three-component system of propane, HFO-1123 and HFO-1234yf is less than 19.000 MJ / kg, and the region where the propane concentration is higher than this straight line , propane, HFO-1123 and HFO-1234yf, the combustion calorific value is 19.000 MJ/kg or more.
Further, if the straight line in FIG. 1 is (Propane, HFO-1123, HFO-1234yf) = (X, Y, Z),
(X, Y, Z) = (0.01706Y + 22.03843, Y, 77.96157 - 1.01706Y)
*Y≤76.7
is also represented.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表11~19は、プロパン、HFO-1123及びHFO-1234ze(E)の3成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。
 また、図2に、プロパン、HFO-1123及びHFO-1234ze(E)の3成分系の三角図を示す。図2には、(プロパン,HFO-1123,HFO-1234ze(E))が(23.3,76.7,0.0)と(23.3,0.0,76.7)を結ぶ直線が示されている。この直線を含むプロパン濃度の低い領域が、プロパン、HFO-1123及びHFO-1234ze(E)の3成分系についての燃焼熱量が19.000MJ/kg未満の領域を示し、この直線よりもプロパン濃度が高い領域が、プロパン、HFO-1123及びHFO-1234ze(E)の3成分系についての燃焼熱量が19.000MJ/kg以上の領域を示す。
 また、図2の直線は、(Propane,HFO-1123,HFO-1234ze(E))=(X,Y,Z)とすると、
(X,Y,Z)=(23.3,Y,76.7-Y)
※Y≦76.7
とも表される。
Tables 11-19 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1123 and HFO-1234ze(E).
Also, FIG. 2 shows a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1234ze(E). In FIG. 2, (propane, HFO-1123, HFO-1234ze (E)) is a straight line connecting (23.3, 76.7, 0.0) and (23.3, 0.0, 76.7) It is shown. The low propane concentration region including this straight line indicates the region where the combustion calorific value for the three-component system of propane, HFO-1123 and HFO-1234ze (E) is less than 19.000 MJ / kg, and the propane concentration is higher than this straight line. A high region indicates a region where the heat of combustion for the ternary system of propane, HFO-1123 and HFO-1234ze(E) is 19.000 MJ/kg or more.
Further, if the straight line in FIG. 2 is (Propane, HFO-1123, HFO-1234ze (E)) = (X, Y, Z),
(X, Y, Z) = (23.3, Y, 76.7 - Y)
*Y≤76.7
is also represented.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表20~23は、プロパン、HFO-1123及びHFC-32の3成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。
 また、図3に、プロパン、HFO-1123及びHFC-32の3成分系の三角図を示す。図3には、(プロパン,HFO-1123,HFC-32)が(23.3,76.7,0.0)と(25.6,0.0,74.4)を結ぶ直線が示されている。この直線を含むプロパン濃度の低い領域が、プロパン、HFO-1123及びHFC-32の3成分系についての燃焼熱量が19.000MJ/kg未満の領域を示し、この直線よりもプロパン濃度が高い領域が、プロパン、HFO-1123及びHFC-32の3成分系についての燃焼熱量が19.000MJ/kg以上の領域を示す。
 また、図1の直線は、(Propane,HFO-1123,HFC-32)=(X,Y,Z)とすると、
(X,Y,Z)=(-0.029356Y+25.6,Y,74.4-0.970644Y)
※Y≦76.7
とも表される。
Tables 20-23 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1123 and HFC-32.
Also, FIG. 3 shows a ternary diagram of the ternary system of propane, HFO-1123 and HFC-32. FIG. 3 shows a straight line connecting (23.3, 76.7, 0.0) and (25.6, 0.0, 74.4) for (propane, HFO-1123, HFC-32). ing. The low propane concentration region including this straight line indicates the region where the combustion calorific value for the ternary system of propane, HFO-1123 and HFC-32 is less than 19.000 MJ / kg, and the region where the propane concentration is higher than this straight line , propane, HFO-1123 and HFC-32, the combustion calorific value is 19.000 MJ/kg or more.
Further, if the straight line in FIG. 1 is (Propane, HFO-1123, HFC-32) = (X, Y, Z),
(X, Y, Z) = (-0.029356Y+25.6, Y, 74.4-0.970644Y)
*Y≤76.7
is also represented.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表24~26は、プロパン、HFO-1123及びCOの3成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。
 また、図4に、プロパン、HFO-1123及びCOの3成分系の三角図を示す。図4には、(プロパン,HFO-1123,CO)が(23.3,76.7,0)と(41.0,0,59.0)を結ぶ直線が示されている。この直線を含むプロパン濃度の低い領域が、プロパン、HFO-1123及びCOの3成分系についての燃焼熱量が19.000MJ/kg未満の領域を示し、この直線よりもプロパン濃度が高い領域が、プロパン、HFO-1123及びCOの3成分系についての燃焼熱量が19.000MJ/kg以上の領域を示す。
 また、図4の直線は、(Propane,HFO-1123,CO)=(X,Y,Z)とすると、
(X,Y,Z)=(-0.230769Y+41.0,Y,59.0-0.769231Y)
※Y≦76.7
とも表される。
Tables 24-26 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1123 and CO 2 .
Also shown in FIG. 4 is a ternary diagram of the ternary system of propane, HFO-1123 and CO 2 . FIG. 4 shows a straight line for (propane, HFO-1123, CO 2 ) connecting (23.3, 76.7, 0) and (41.0, 0, 59.0). The low propane concentration region including this straight line indicates the region where the combustion heat quantity for the ternary system of propane, HFO-1123 and CO 2 is less than 19.000 MJ / kg, and the region where the propane concentration is higher than this line is The combustion calorific value for the ternary system of propane, HFO-1123 and CO 2 is 19.000 MJ/kg or more.
Further, if the straight line in FIG. 4 is (Propane, HFO-1123, CO 2 )=(X, Y, Z),
(X, Y, Z) = (-0.230769Y+41.0, Y, 59.0-0.769231Y)
*Y≤76.7
is also represented.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表27~35は、プロパン、HFO-1123及びCFIの3成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。
 また、図5に、プロパン、HFO-1123及びCFIの3成分系の三角図を示す。図5には、(プロパン,HFO-1123,CFI)が(23.3,76.7,0.0)と(39.2,0.0,60.8)を結ぶ直線が示されている。この直線を含むプロパン濃度の低い領域が、プロパン、HFO-1123及びCFIの3成分系についての燃焼熱量が19.000MJ/kg未満の領域を示し、この直線よりもプロパン濃度が高い領域が、プロパン、HFO-1123及びCFIの3成分系についての燃焼熱量が19.000MJ/kg以上の領域を示す。
 また、図5の直線は、(Propane,HFO-1123,CFI)=(X,Y,Z)とすると、
(X,Y,Z)=(-0.206665Y+39.2,Y,60.8-0.793335Y)
※Y≦76.7
とも表される。
Tables 27-35 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1123 and CF 3 I.
Also, FIG. 5 shows a ternary diagram of the ternary system of propane, HFO-1123 and CF 3 I. FIG. 5 shows a straight line connecting (23.3, 76.7, 0.0) and (39.2, 0.0, 60.8) for (propane, HFO-1123, CF 3 I). ing. The low propane concentration region including this straight line indicates the region where the combustion calorific value for the ternary system of propane, HFO-1123 and CF 3 I is less than 19.000 MJ/kg, and the region where the propane concentration is higher than this straight line. , propane, HFO-1123 and CF 3 I show a region where the heat of combustion is 19.000 MJ/kg or more.
Further, if the straight line in FIG. 5 is (Propane, HFO-1123, CF 3 I)=(X, Y, Z),
(X, Y, Z) = (-0.206665Y+39.2, Y, 60.8-0.793335Y)
*Y≤76.7
is also represented.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 表36~57は、プロパン、HFO-1123、HFO-1234yf及びHFO-1234ze(E)の4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 36 to 57 show the composition, heat of combustion and GWP of four-component working media of propane, HFO-1123, HFO-1234yf and HFO-1234ze(E).
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 表58~82は、プロパン、HFO-1123、HFO-1234yf及びHFC-32の4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 58 to 82 show the composition, heat of combustion and GWP for four-component working fluids of propane, HFO-1123, HFO-1234yf and HFC-32.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000084
 表83~103は、プロパン、HFO-1123、HFO-1234yf及びCOの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 83-103 show the composition, heat of combustion and GWP for quaternary working fluids of propane, HFO-1123, HFO-1234yf and CO2 .
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000105
 表104~120は、プロパン、HFO-1123、HFO-1234yf及びCFIの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 104-120 show the composition, heat of combustion and GWP for quaternary working fluids of propane, HFO-1123, HFO-1234yf and CF 3 I.
Figure JPOXMLDOC01-appb-T000106
Figure JPOXMLDOC01-appb-T000106
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000108
Figure JPOXMLDOC01-appb-T000108
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000122
 表121~144は、プロパン、HFO-1123、HFO-1234ze(E)及びHFC-32の4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 121 to 144 show the composition, heat of combustion and GWP for four-component working fluids of propane, HFO-1123, HFO-1234ze (E) and HFC-32.
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000127
Figure JPOXMLDOC01-appb-T000127
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000136
Figure JPOXMLDOC01-appb-T000136
Figure JPOXMLDOC01-appb-T000137
Figure JPOXMLDOC01-appb-T000137
Figure JPOXMLDOC01-appb-T000138
Figure JPOXMLDOC01-appb-T000138
Figure JPOXMLDOC01-appb-T000139
Figure JPOXMLDOC01-appb-T000139
Figure JPOXMLDOC01-appb-T000140
Figure JPOXMLDOC01-appb-T000140
Figure JPOXMLDOC01-appb-T000141
Figure JPOXMLDOC01-appb-T000141
Figure JPOXMLDOC01-appb-T000142
Figure JPOXMLDOC01-appb-T000142
Figure JPOXMLDOC01-appb-T000143
Figure JPOXMLDOC01-appb-T000143
Figure JPOXMLDOC01-appb-T000144
Figure JPOXMLDOC01-appb-T000144
Figure JPOXMLDOC01-appb-T000145
Figure JPOXMLDOC01-appb-T000145
Figure JPOXMLDOC01-appb-T000146
Figure JPOXMLDOC01-appb-T000146
 表145~165は、プロパン、HFO-1123、HFO-1234ze(E)及びCOの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 145-165 show the composition, heat of combustion and GWP for propane, HFO-1123, HFO-1234ze(E) and CO2 quaternary working media.
Figure JPOXMLDOC01-appb-T000147
Figure JPOXMLDOC01-appb-T000147
Figure JPOXMLDOC01-appb-T000148
Figure JPOXMLDOC01-appb-T000148
Figure JPOXMLDOC01-appb-T000149
Figure JPOXMLDOC01-appb-T000149
Figure JPOXMLDOC01-appb-T000150
Figure JPOXMLDOC01-appb-T000150
Figure JPOXMLDOC01-appb-T000151
Figure JPOXMLDOC01-appb-T000151
Figure JPOXMLDOC01-appb-T000152
Figure JPOXMLDOC01-appb-T000152
Figure JPOXMLDOC01-appb-T000153
Figure JPOXMLDOC01-appb-T000153
Figure JPOXMLDOC01-appb-T000154
Figure JPOXMLDOC01-appb-T000154
Figure JPOXMLDOC01-appb-T000155
Figure JPOXMLDOC01-appb-T000155
Figure JPOXMLDOC01-appb-T000156
Figure JPOXMLDOC01-appb-T000156
Figure JPOXMLDOC01-appb-T000157
Figure JPOXMLDOC01-appb-T000157
Figure JPOXMLDOC01-appb-T000158
Figure JPOXMLDOC01-appb-T000158
Figure JPOXMLDOC01-appb-T000159
Figure JPOXMLDOC01-appb-T000159
Figure JPOXMLDOC01-appb-T000160
Figure JPOXMLDOC01-appb-T000160
Figure JPOXMLDOC01-appb-T000161
Figure JPOXMLDOC01-appb-T000161
Figure JPOXMLDOC01-appb-T000162
Figure JPOXMLDOC01-appb-T000162
Figure JPOXMLDOC01-appb-T000163
Figure JPOXMLDOC01-appb-T000163
Figure JPOXMLDOC01-appb-T000164
Figure JPOXMLDOC01-appb-T000164
Figure JPOXMLDOC01-appb-T000165
Figure JPOXMLDOC01-appb-T000165
Figure JPOXMLDOC01-appb-T000166
Figure JPOXMLDOC01-appb-T000166
Figure JPOXMLDOC01-appb-T000167
Figure JPOXMLDOC01-appb-T000167
 表166~181は、プロパン、HFO-1123、HFO-1234ze(E)及びCFIの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 166-181 show the composition, heat of combustion and GWP for propane, HFO-1123, HFO-1234ze(E) and CF 3 I quaternary working media.
Figure JPOXMLDOC01-appb-T000168
Figure JPOXMLDOC01-appb-T000168
Figure JPOXMLDOC01-appb-T000169
Figure JPOXMLDOC01-appb-T000169
Figure JPOXMLDOC01-appb-T000170
Figure JPOXMLDOC01-appb-T000170
Figure JPOXMLDOC01-appb-T000171
Figure JPOXMLDOC01-appb-T000171
Figure JPOXMLDOC01-appb-T000172
Figure JPOXMLDOC01-appb-T000172
Figure JPOXMLDOC01-appb-T000173
Figure JPOXMLDOC01-appb-T000173
Figure JPOXMLDOC01-appb-T000174
Figure JPOXMLDOC01-appb-T000174
Figure JPOXMLDOC01-appb-T000175
Figure JPOXMLDOC01-appb-T000175
Figure JPOXMLDOC01-appb-T000176
Figure JPOXMLDOC01-appb-T000176
Figure JPOXMLDOC01-appb-T000177
Figure JPOXMLDOC01-appb-T000177
Figure JPOXMLDOC01-appb-T000178
Figure JPOXMLDOC01-appb-T000178
Figure JPOXMLDOC01-appb-T000179
Figure JPOXMLDOC01-appb-T000179
Figure JPOXMLDOC01-appb-T000180
Figure JPOXMLDOC01-appb-T000180
Figure JPOXMLDOC01-appb-T000181
Figure JPOXMLDOC01-appb-T000181
Figure JPOXMLDOC01-appb-T000182
Figure JPOXMLDOC01-appb-T000182
Figure JPOXMLDOC01-appb-T000183
Figure JPOXMLDOC01-appb-T000183
 表182~191は、プロパン、HFO-1123、HFC-32及びCOの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 182-191 show the composition, heat of combustion and GWP for quaternary working fluids of propane, HFO-1123, HFC-32 and CO2 .
Figure JPOXMLDOC01-appb-T000184
Figure JPOXMLDOC01-appb-T000184
Figure JPOXMLDOC01-appb-T000185
Figure JPOXMLDOC01-appb-T000185
Figure JPOXMLDOC01-appb-T000186
Figure JPOXMLDOC01-appb-T000186
Figure JPOXMLDOC01-appb-T000187
Figure JPOXMLDOC01-appb-T000187
Figure JPOXMLDOC01-appb-T000188
Figure JPOXMLDOC01-appb-T000188
Figure JPOXMLDOC01-appb-T000189
Figure JPOXMLDOC01-appb-T000189
Figure JPOXMLDOC01-appb-T000190
Figure JPOXMLDOC01-appb-T000190
Figure JPOXMLDOC01-appb-T000191
Figure JPOXMLDOC01-appb-T000191
Figure JPOXMLDOC01-appb-T000192
Figure JPOXMLDOC01-appb-T000192
Figure JPOXMLDOC01-appb-T000193
Figure JPOXMLDOC01-appb-T000193
 表192~202は、プロパン、HFO-1123、HFC-32及びCFIの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 192-202 show the composition, heat of combustion and GWP for the propane, HFO-1123, HFC-32 and CF 3 I quaternary working fluids.
Figure JPOXMLDOC01-appb-T000194
Figure JPOXMLDOC01-appb-T000194
Figure JPOXMLDOC01-appb-T000195
Figure JPOXMLDOC01-appb-T000195
Figure JPOXMLDOC01-appb-T000196
Figure JPOXMLDOC01-appb-T000196
Figure JPOXMLDOC01-appb-T000197
Figure JPOXMLDOC01-appb-T000197
Figure JPOXMLDOC01-appb-T000198
Figure JPOXMLDOC01-appb-T000198
Figure JPOXMLDOC01-appb-T000199
Figure JPOXMLDOC01-appb-T000199
Figure JPOXMLDOC01-appb-T000200
Figure JPOXMLDOC01-appb-T000200
Figure JPOXMLDOC01-appb-T000201
Figure JPOXMLDOC01-appb-T000201
Figure JPOXMLDOC01-appb-T000202
Figure JPOXMLDOC01-appb-T000202
Figure JPOXMLDOC01-appb-T000203
Figure JPOXMLDOC01-appb-T000203
Figure JPOXMLDOC01-appb-T000204
Figure JPOXMLDOC01-appb-T000204
 表203~212は、プロパン、HFO-1123、CO及びCFIの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 203-212 show the composition, heat of combustion and GWP for the propane, HFO-1123, CO 2 and CF 3 I quaternary working fluids.
Figure JPOXMLDOC01-appb-T000205
Figure JPOXMLDOC01-appb-T000205
Figure JPOXMLDOC01-appb-T000206
Figure JPOXMLDOC01-appb-T000206
Figure JPOXMLDOC01-appb-T000207
Figure JPOXMLDOC01-appb-T000207
Figure JPOXMLDOC01-appb-T000208
Figure JPOXMLDOC01-appb-T000208
Figure JPOXMLDOC01-appb-T000209
Figure JPOXMLDOC01-appb-T000209
Figure JPOXMLDOC01-appb-T000210
Figure JPOXMLDOC01-appb-T000210
Figure JPOXMLDOC01-appb-T000211
Figure JPOXMLDOC01-appb-T000211
Figure JPOXMLDOC01-appb-T000212
Figure JPOXMLDOC01-appb-T000212
Figure JPOXMLDOC01-appb-T000213
Figure JPOXMLDOC01-appb-T000213
Figure JPOXMLDOC01-appb-T000214
Figure JPOXMLDOC01-appb-T000214
 表213は、プロパン及びHFO-1132(E)の2成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Table 213 shows the composition, heat of combustion and GWP for the propane and HFO-1132 (E) binary working fluid.
Figure JPOXMLDOC01-appb-T000215
Figure JPOXMLDOC01-appb-T000215
 表214~234は、プロパン、HFO-1123及びHFO-1132(E)の3成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。
 また、図6に、プロパン、HFO-1123及びHFO-1132(E)の3成分系の三角図を示す。図6には、(プロパン,HFO-1123,HFO-1132(E))が(23.3,76.7,0.0)と(9.1,0.0,90.9)を結ぶ直線が示されている。この直線を含むプロパン濃度の低い領域が、プロパン、HFO-1123及びHFO-1132(E)の3成分系についての燃焼熱量が19.000MJ/kg未満の領域を示し、この直線よりもプロパン濃度が高い領域が、プロパン、HFO-1123及びHFO-1132(E)の3成分系についての燃焼熱量が19.000MJ/kg以上の領域を示す。
 また、図6の直線は、(Propane,HFO-1123,HFO-1132(E))=(X,Y,Z)とすると、
(X,Y,Z)=(0.18605Y+9.07645,Y,90.92355-1.18605Y)
※Y≦76.7
とも表される。
Tables 214-234 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1123 and HFO-1132(E).
Also, FIG. 6 shows a ternary diagram of the ternary system of propane, HFO-1123 and HFO-1132(E). In FIG. 6, (propane, HFO-1123, HFO-1132 (E)) is a straight line connecting (23.3, 76.7, 0.0) and (9.1, 0.0, 90.9) It is shown. The low propane concentration region including this straight line indicates the region where the combustion heat value for the three-component system of propane, HFO-1123 and HFO-1132 (E) is less than 19.000 MJ / kg, and the propane concentration is higher than this straight line. A high region indicates a region where the heat of combustion for the ternary system of propane, HFO-1123 and HFO-1132(E) is 19.000 MJ/kg or more.
Further, if the straight line in FIG. 6 is (Propane, HFO-1123, HFO-1132 (E)) = (X, Y, Z),
(X, Y, Z) = (0.18605Y + 9.07645, Y, 90.92355 - 1.18605Y)
*Y≤76.7
is also represented.
Figure JPOXMLDOC01-appb-T000216
Figure JPOXMLDOC01-appb-T000216
Figure JPOXMLDOC01-appb-T000217
Figure JPOXMLDOC01-appb-T000217
Figure JPOXMLDOC01-appb-T000218
Figure JPOXMLDOC01-appb-T000218
Figure JPOXMLDOC01-appb-T000219
Figure JPOXMLDOC01-appb-T000219
Figure JPOXMLDOC01-appb-T000220
Figure JPOXMLDOC01-appb-T000220
Figure JPOXMLDOC01-appb-T000221
Figure JPOXMLDOC01-appb-T000221
Figure JPOXMLDOC01-appb-T000222
Figure JPOXMLDOC01-appb-T000222
Figure JPOXMLDOC01-appb-T000223
Figure JPOXMLDOC01-appb-T000223
Figure JPOXMLDOC01-appb-T000224
Figure JPOXMLDOC01-appb-T000224
Figure JPOXMLDOC01-appb-T000225
Figure JPOXMLDOC01-appb-T000225
Figure JPOXMLDOC01-appb-T000226
Figure JPOXMLDOC01-appb-T000226
Figure JPOXMLDOC01-appb-T000227
Figure JPOXMLDOC01-appb-T000227
Figure JPOXMLDOC01-appb-T000228
Figure JPOXMLDOC01-appb-T000228
Figure JPOXMLDOC01-appb-T000229
Figure JPOXMLDOC01-appb-T000229
Figure JPOXMLDOC01-appb-T000230
Figure JPOXMLDOC01-appb-T000230
Figure JPOXMLDOC01-appb-T000231
Figure JPOXMLDOC01-appb-T000231
Figure JPOXMLDOC01-appb-T000232
Figure JPOXMLDOC01-appb-T000232
Figure JPOXMLDOC01-appb-T000233
Figure JPOXMLDOC01-appb-T000233
Figure JPOXMLDOC01-appb-T000234
Figure JPOXMLDOC01-appb-T000234
Figure JPOXMLDOC01-appb-T000235
Figure JPOXMLDOC01-appb-T000235
Figure JPOXMLDOC01-appb-T000236
Figure JPOXMLDOC01-appb-T000236
 表235~257は、プロパン、HFO-1132(E)及びHFO-1234yfの3成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。
 また、図7に、プロパン、HFO-1132(E)及びHFO-1234yfの3成分系の三角図を示す。図7には、(プロパン,HFO-1132(E),HFO-1234yf)が(9.1,90.9,0.0)と(22.0,0.0,78.0)を結ぶ直線が示されている。この直線を含むプロパン濃度の低い領域が、プロパン、HFO-1132(E)及びHFO-1234yfの3成分系についての燃焼熱量が19.000MJ/kg未満の領域を示し、この直線よりもプロパン濃度が高い領域が、プロパン、HFO-1132(E)及びHFO-1234yfの3成分系についての燃焼熱量が19.000MJ/kg以上の領域を示す。
 また、図7の直線は、(Propane,HFO-1132(E),HFO-1234yf)=(-0.141904Y+22.0,Y,78.0-0.858096Y)
※Y≦90.9
とも表される。
Tables 235-257 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1132(E) and HFO-1234yf.
Also, FIG. 7 shows a ternary diagram of the ternary system of propane, HFO-1132(E) and HFO-1234yf. In FIG. 7, (propane, HFO-1132 (E), HFO-1234yf) is a straight line connecting (9.1, 90.9, 0.0) and (22.0, 0.0, 78.0) It is shown. The low propane concentration region including this straight line indicates the region where the combustion calorific value for the three-component system of propane, HFO-1132 (E) and HFO-1234yf is less than 19.000 MJ / kg, and the propane concentration is higher than this straight line. A high region indicates a region where the heat of combustion for the ternary system of propane, HFO-1132(E) and HFO-1234yf is 19.000 MJ/kg or more.
Further, the straight line in FIG. 7 is (Propane, HFO-1132 (E), HFO-1234yf) = (-0.141904Y + 22.0, Y, 78.0-0.858096Y)
*Y≤90.9
is also represented.
Figure JPOXMLDOC01-appb-T000237
Figure JPOXMLDOC01-appb-T000237
Figure JPOXMLDOC01-appb-T000238
Figure JPOXMLDOC01-appb-T000238
Figure JPOXMLDOC01-appb-T000239
Figure JPOXMLDOC01-appb-T000239
Figure JPOXMLDOC01-appb-T000240
Figure JPOXMLDOC01-appb-T000240
Figure JPOXMLDOC01-appb-T000241
Figure JPOXMLDOC01-appb-T000241
Figure JPOXMLDOC01-appb-T000242
Figure JPOXMLDOC01-appb-T000242
Figure JPOXMLDOC01-appb-T000243
Figure JPOXMLDOC01-appb-T000243
Figure JPOXMLDOC01-appb-T000244
Figure JPOXMLDOC01-appb-T000244
Figure JPOXMLDOC01-appb-T000245
Figure JPOXMLDOC01-appb-T000245
Figure JPOXMLDOC01-appb-T000246
Figure JPOXMLDOC01-appb-T000246
Figure JPOXMLDOC01-appb-T000247
Figure JPOXMLDOC01-appb-T000247
Figure JPOXMLDOC01-appb-T000248
Figure JPOXMLDOC01-appb-T000248
Figure JPOXMLDOC01-appb-T000249
Figure JPOXMLDOC01-appb-T000249
Figure JPOXMLDOC01-appb-T000250
Figure JPOXMLDOC01-appb-T000250
Figure JPOXMLDOC01-appb-T000251
Figure JPOXMLDOC01-appb-T000251
Figure JPOXMLDOC01-appb-T000252
Figure JPOXMLDOC01-appb-T000252
Figure JPOXMLDOC01-appb-T000253
Figure JPOXMLDOC01-appb-T000253
Figure JPOXMLDOC01-appb-T000254
Figure JPOXMLDOC01-appb-T000254
Figure JPOXMLDOC01-appb-T000255
Figure JPOXMLDOC01-appb-T000255
Figure JPOXMLDOC01-appb-T000256
Figure JPOXMLDOC01-appb-T000256
Figure JPOXMLDOC01-appb-T000257
Figure JPOXMLDOC01-appb-T000257
Figure JPOXMLDOC01-appb-T000258
Figure JPOXMLDOC01-appb-T000258
Figure JPOXMLDOC01-appb-T000259
Figure JPOXMLDOC01-appb-T000259
 表258~263は、プロパン、HFO-1132(E)及びHFO-1234ze(E)の3成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。
 また、図8に、プロパン、HFO-1132(E)及びHFO-1234ze(E)の3成分系の三角図を示す。図8には、(プロパン,HFO-1132(E),HFO-1234ze(E))が(9.1,90.9,0.0)と(23.3,0.0,76.7)を結ぶ直線が示されている。この直線を含むプロパン濃度の低い領域が、プロパン、HFO-1132(E)及びHFO-1234ze(E)の3成分系についての燃焼熱量が19.000MJ/kg未満の領域を示し、この直線よりもプロパン濃度が高い領域が、プロパン、HFO-1132(E)及びHFO-1234ze(E)の3成分系についての燃焼熱量が19.000MJ/kg以上の領域を示す。
 また、図8の直線は、(Propane,HFO-1132(E),HFO-1234ze(E))=(X,Y,Z)とすると、
(X,Y,Z)=(-0.156020Y+23.3,Y,76.7-0.84398Y)
※Y≦90.9
とも表される。
Tables 258-263 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1132(E) and HFO-1234ze(E).
Also, FIG. 8 shows a ternary diagram of the ternary system of propane, HFO-1132(E) and HFO-1234ze(E). In FIG. 8, (propane, HFO-1132 (E), HFO-1234ze (E)) are (9.1, 90.9, 0.0) and (23.3, 0.0, 76.7) A straight line connecting The low propane concentration region including this straight line indicates the region where the combustion calorific value for the ternary system of propane, HFO-1132 (E) and HFO-1234ze (E) is less than 19.000 MJ / kg, and is lower than this straight line. A region with a high propane concentration indicates a region where the combustion calorific value for the ternary system of propane, HFO-1132(E) and HFO-1234ze(E) is 19.000 MJ/kg or more.
Further, if the straight line in FIG. 8 is (Propane, HFO-1132 (E), HFO-1234ze (E)) = (X, Y, Z),
(X, Y, Z) = (-0.156020Y+23.3, Y, 76.7-0.84398Y)
*Y≤90.9
is also represented.
Figure JPOXMLDOC01-appb-T000260
Figure JPOXMLDOC01-appb-T000260
Figure JPOXMLDOC01-appb-T000261
Figure JPOXMLDOC01-appb-T000261
Figure JPOXMLDOC01-appb-T000262
Figure JPOXMLDOC01-appb-T000262
Figure JPOXMLDOC01-appb-T000263
Figure JPOXMLDOC01-appb-T000263
Figure JPOXMLDOC01-appb-T000264
Figure JPOXMLDOC01-appb-T000264
Figure JPOXMLDOC01-appb-T000265
Figure JPOXMLDOC01-appb-T000265
 表264~265は、プロパン、HFO-1132(E)及びHFC-32の3成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。
 また、図9に、プロパン、HFO-1132(E)及びHFC-32の3成分系の三角図を示す。図9には、(プロパン,HFO-1132(E),HFC-32)が(9.1,90.9,0.0)と(25.6,0.0,74.4)を結ぶ直線が示されている。この直線を含むプロパン濃度の低い領域が、プロパン、HFO-1132(E)及びHFC-32の3成分系についての燃焼熱量が19.000MJ/kg未満の領域を示し、この直線よりもプロパン濃度が高い領域が、プロパン、HFO-1132(E)及びHFC-32の3成分系についての燃焼熱量が19.000MJ/kg以上の領域を示す。
 また、図9の直線は、(Propane,HFO-1132(E),HFC-32)=(X,Y,Z)とすると、
(X,Y,Z)=(-0.181687Y+25.6,Y,74.4-0.818313Y)
※Y≦90.9
とも表される。
Tables 264-265 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1132(E) and HFC-32.
Also, FIG. 9 shows a ternary diagram of the ternary system of propane, HFO-1132(E) and HFC-32. In FIG. 9, (propane, HFO-1132 (E), HFC-32) is a straight line connecting (9.1, 90.9, 0.0) and (25.6, 0.0, 74.4) It is shown. The low propane concentration region including this straight line indicates the region where the combustion heat quantity for the three-component system of propane, HFO-1132 (E) and HFC-32 is less than 19.000 MJ / kg, and the propane concentration is higher than this straight line. A high region indicates a region where the heat of combustion for the ternary system of propane, HFO-1132(E) and HFC-32 is 19.000 MJ/kg or more.
Further, if the straight line in FIG. 9 is (Propane, HFO-1132 (E), HFC-32) = (X, Y, Z),
(X, Y, Z) = (-0.181687Y+25.6, Y, 74.4-0.818313Y)
*Y≤90.9
is also represented.
Figure JPOXMLDOC01-appb-T000266
Figure JPOXMLDOC01-appb-T000266
Figure JPOXMLDOC01-appb-T000267
Figure JPOXMLDOC01-appb-T000267
 表266~267は、プロパン、HFO-1132(E)及びCOの3成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。
 また、図10に、プロパン、HFO-1132(E)及びCOの3成分系の三角図を示す。図10には、(プロパン,HFO-1132(E),CO)が(9.1,90.9,0.0)と(41.0,0.0,59.0)を結ぶ直線が示されている。この直線を含むプロパン濃度の低い領域が、プロパン、HFO-1132(E)及びCOの3成分系についての燃焼熱量が19.000MJ/kg未満の領域を示し、この直線よりもプロパン濃度が高い領域が、プロパン、HFO-1132(E)及びCOの3成分系についての燃焼熱量が19.000MJ/kg以上の領域を示す。
 また、図10の直線は、(Propane,HFO-1132(E),CO)=(X,Y,Z)とすると、
(X,Y,Z)=(-0.351087Y+41.0,Y,59.0-0.648913Y)
※Y≦90.9
とも表される。
Tables 266-267 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1132(E) and CO2 .
Also shown in FIG. 10 is a ternary diagram of the ternary system of propane, HFO-1132(E) and CO 2 . In FIG. 10, (propane, HFO-1132 (E), CO 2 ) has a straight line connecting (9.1, 90.9, 0.0) and (41.0, 0.0, 59.0) It is shown. The low propane concentration region including this straight line indicates the region where the combustion calorific value for the ternary system of propane, HFO-1132 (E) and CO 2 is less than 19.000 MJ / kg, and the propane concentration is higher than this straight line. The region indicates the region where the heat of combustion for the ternary system of propane, HFO-1132(E) and CO 2 is 19.000 MJ/kg or more.
Further, the straight line in FIG. 10 is (Propane, HFO-1132 (E), CO 2 )=(X, Y, Z),
(X, Y, Z) = (-0.351087Y+41.0, Y, 59.0-0.648913Y)
*Y≤90.9
is also represented.
Figure JPOXMLDOC01-appb-T000268
Figure JPOXMLDOC01-appb-T000268
Figure JPOXMLDOC01-appb-T000269
Figure JPOXMLDOC01-appb-T000269
 表268~274は、プロパン、HFO-1132(E)及びCFIの3成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。
 また、図11に、プロパン、HFO-1132(E)及びCFIの3成分系の三角図を示す。図11には、(プロパン,HFO-1132(E),CFI)が(9.1,90.9,0.0)と(39.2,0.0,60.8)を結ぶ直線が示されている。この直線を含むプロパン濃度の低い領域が、プロパン、HFO-1132(E)及びCFIの3成分系についての燃焼熱量が19.000MJ/kg未満の領域を示し、この直線よりもプロパン濃度が高い領域が、プロパン、HFO-1132(E)及びCFIの3成分系についての燃焼熱量が19.000MJ/kg以上の領域を示す。
 また、図11の直線は、(Propane,HFO-1132(E),CFI)=(X,Y,Z)とすると、
(X,Y,Z)=(-0.331123Y+39.2,Y,60.8-0.6689Y)※Y≦90.9
とも表される。
Tables 268-274 show the composition, heat of combustion and GWP for ternary working fluids of propane, HFO-1132(E) and CF 3 I.
Also, FIG. 11 shows a ternary diagram of the ternary system of propane, HFO-1132(E) and CF 3 I. FIG. 11 shows that (propane, HFO-1132(E), CF 3 I) is a straight line connecting (9.1, 90.9, 0.0) and (39.2, 0.0, 60.8). It is shown. The low propane concentration region including this straight line indicates the region where the combustion calorific value for the ternary system of propane, HFO-1132 (E) and CF 3 I is less than 19.000 MJ/kg, and the propane concentration is higher than this straight line. A high region indicates a region where the heat of combustion for the ternary system of propane, HFO-1132(E) and CF 3 I is 19.000 MJ/kg or more.
Further, the straight line in FIG. 11 is (Propane, HFO-1132 (E), CF 3 I) = (X, Y, Z),
(X, Y, Z) = (-0.331123Y + 39.2, Y, 60.8-0.6689Y) * Y ≤ 90.9
is also represented.
Figure JPOXMLDOC01-appb-T000270
Figure JPOXMLDOC01-appb-T000270
Figure JPOXMLDOC01-appb-T000271
Figure JPOXMLDOC01-appb-T000271
Figure JPOXMLDOC01-appb-T000272
Figure JPOXMLDOC01-appb-T000272
Figure JPOXMLDOC01-appb-T000273
Figure JPOXMLDOC01-appb-T000273
Figure JPOXMLDOC01-appb-T000274
Figure JPOXMLDOC01-appb-T000274
Figure JPOXMLDOC01-appb-T000275
Figure JPOXMLDOC01-appb-T000275
Figure JPOXMLDOC01-appb-T000276
Figure JPOXMLDOC01-appb-T000276
 表275~296は、プロパン、HFO-1132(E)、HFO-1234yf及びHFO-1234ze(E)の4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 275 to 296 show the composition, heat of combustion and GWP of four-component working media of propane, HFO-1132(E), HFO-1234yf and HFO-1234ze(E).
Figure JPOXMLDOC01-appb-T000277
Figure JPOXMLDOC01-appb-T000277
Figure JPOXMLDOC01-appb-T000278
Figure JPOXMLDOC01-appb-T000278
Figure JPOXMLDOC01-appb-T000279
Figure JPOXMLDOC01-appb-T000279
Figure JPOXMLDOC01-appb-T000280
Figure JPOXMLDOC01-appb-T000280
Figure JPOXMLDOC01-appb-T000281
Figure JPOXMLDOC01-appb-T000281
Figure JPOXMLDOC01-appb-T000282
Figure JPOXMLDOC01-appb-T000282
Figure JPOXMLDOC01-appb-T000283
Figure JPOXMLDOC01-appb-T000283
Figure JPOXMLDOC01-appb-T000284
Figure JPOXMLDOC01-appb-T000284
Figure JPOXMLDOC01-appb-T000285
Figure JPOXMLDOC01-appb-T000285
Figure JPOXMLDOC01-appb-T000286
Figure JPOXMLDOC01-appb-T000286
Figure JPOXMLDOC01-appb-T000287
Figure JPOXMLDOC01-appb-T000287
Figure JPOXMLDOC01-appb-T000288
Figure JPOXMLDOC01-appb-T000288
Figure JPOXMLDOC01-appb-T000289
Figure JPOXMLDOC01-appb-T000289
Figure JPOXMLDOC01-appb-T000290
Figure JPOXMLDOC01-appb-T000290
Figure JPOXMLDOC01-appb-T000291
Figure JPOXMLDOC01-appb-T000291
Figure JPOXMLDOC01-appb-T000292
Figure JPOXMLDOC01-appb-T000292
Figure JPOXMLDOC01-appb-T000293
Figure JPOXMLDOC01-appb-T000293
Figure JPOXMLDOC01-appb-T000294
Figure JPOXMLDOC01-appb-T000294
Figure JPOXMLDOC01-appb-T000295
Figure JPOXMLDOC01-appb-T000295
Figure JPOXMLDOC01-appb-T000296
Figure JPOXMLDOC01-appb-T000296
Figure JPOXMLDOC01-appb-T000297
Figure JPOXMLDOC01-appb-T000297
Figure JPOXMLDOC01-appb-T000298
Figure JPOXMLDOC01-appb-T000298
 表297~320は、プロパン、HFO-1132(E)、HFO-1234yf及びHFC-32の4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 297 to 320 show the composition, heat of combustion and GWP of four-component working fluids of propane, HFO-1132(E), HFO-1234yf and HFC-32.
Figure JPOXMLDOC01-appb-T000299
Figure JPOXMLDOC01-appb-T000299
Figure JPOXMLDOC01-appb-T000300
Figure JPOXMLDOC01-appb-T000300
Figure JPOXMLDOC01-appb-T000301
Figure JPOXMLDOC01-appb-T000301
Figure JPOXMLDOC01-appb-T000302
Figure JPOXMLDOC01-appb-T000302
Figure JPOXMLDOC01-appb-T000303
Figure JPOXMLDOC01-appb-T000303
Figure JPOXMLDOC01-appb-T000304
Figure JPOXMLDOC01-appb-T000304
Figure JPOXMLDOC01-appb-T000305
Figure JPOXMLDOC01-appb-T000305
Figure JPOXMLDOC01-appb-T000306
Figure JPOXMLDOC01-appb-T000306
Figure JPOXMLDOC01-appb-T000307
Figure JPOXMLDOC01-appb-T000307
Figure JPOXMLDOC01-appb-T000308
Figure JPOXMLDOC01-appb-T000308
Figure JPOXMLDOC01-appb-T000309
Figure JPOXMLDOC01-appb-T000309
Figure JPOXMLDOC01-appb-T000310
Figure JPOXMLDOC01-appb-T000310
Figure JPOXMLDOC01-appb-T000311
Figure JPOXMLDOC01-appb-T000311
Figure JPOXMLDOC01-appb-T000312
Figure JPOXMLDOC01-appb-T000312
Figure JPOXMLDOC01-appb-T000313
Figure JPOXMLDOC01-appb-T000313
Figure JPOXMLDOC01-appb-T000314
Figure JPOXMLDOC01-appb-T000314
Figure JPOXMLDOC01-appb-T000315
Figure JPOXMLDOC01-appb-T000315
Figure JPOXMLDOC01-appb-T000316
Figure JPOXMLDOC01-appb-T000316
Figure JPOXMLDOC01-appb-T000317
Figure JPOXMLDOC01-appb-T000317
Figure JPOXMLDOC01-appb-T000318
Figure JPOXMLDOC01-appb-T000318
Figure JPOXMLDOC01-appb-T000319
Figure JPOXMLDOC01-appb-T000319
Figure JPOXMLDOC01-appb-T000320
Figure JPOXMLDOC01-appb-T000320
Figure JPOXMLDOC01-appb-T000321
Figure JPOXMLDOC01-appb-T000321
Figure JPOXMLDOC01-appb-T000322
Figure JPOXMLDOC01-appb-T000322
 表321~342は、プロパン、HFO-1132(E)、HFO-1234yf及びCOの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 321-342 show the composition, heat of combustion and GWP for quaternary working media of propane, HFO-1132(E), HFO-1234yf and CO2 .
Figure JPOXMLDOC01-appb-T000323
Figure JPOXMLDOC01-appb-T000323
Figure JPOXMLDOC01-appb-T000324
Figure JPOXMLDOC01-appb-T000324
Figure JPOXMLDOC01-appb-T000325
Figure JPOXMLDOC01-appb-T000325
Figure JPOXMLDOC01-appb-T000326
Figure JPOXMLDOC01-appb-T000326
Figure JPOXMLDOC01-appb-T000327
Figure JPOXMLDOC01-appb-T000327
Figure JPOXMLDOC01-appb-T000328
Figure JPOXMLDOC01-appb-T000328
Figure JPOXMLDOC01-appb-T000329
Figure JPOXMLDOC01-appb-T000329
Figure JPOXMLDOC01-appb-T000330
Figure JPOXMLDOC01-appb-T000330
Figure JPOXMLDOC01-appb-T000331
Figure JPOXMLDOC01-appb-T000331
Figure JPOXMLDOC01-appb-T000332
Figure JPOXMLDOC01-appb-T000332
Figure JPOXMLDOC01-appb-T000333
Figure JPOXMLDOC01-appb-T000333
Figure JPOXMLDOC01-appb-T000334
Figure JPOXMLDOC01-appb-T000334
Figure JPOXMLDOC01-appb-T000335
Figure JPOXMLDOC01-appb-T000335
Figure JPOXMLDOC01-appb-T000336
Figure JPOXMLDOC01-appb-T000336
Figure JPOXMLDOC01-appb-T000337
Figure JPOXMLDOC01-appb-T000337
Figure JPOXMLDOC01-appb-T000338
Figure JPOXMLDOC01-appb-T000338
Figure JPOXMLDOC01-appb-T000339
Figure JPOXMLDOC01-appb-T000339
Figure JPOXMLDOC01-appb-T000340
Figure JPOXMLDOC01-appb-T000340
Figure JPOXMLDOC01-appb-T000341
Figure JPOXMLDOC01-appb-T000341
Figure JPOXMLDOC01-appb-T000342
Figure JPOXMLDOC01-appb-T000342
Figure JPOXMLDOC01-appb-T000343
Figure JPOXMLDOC01-appb-T000343
Figure JPOXMLDOC01-appb-T000344
Figure JPOXMLDOC01-appb-T000344
 表343~358は、プロパン、HFO-1132(E)、HFO-1234yf及びCFIの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 343-358 show the composition, heat of combustion and GWP for propane, HFO-1132(E), HFO-1234yf and CF 3 I quaternary working fluids.
Figure JPOXMLDOC01-appb-T000345
Figure JPOXMLDOC01-appb-T000345
Figure JPOXMLDOC01-appb-T000346
Figure JPOXMLDOC01-appb-T000346
Figure JPOXMLDOC01-appb-T000347
Figure JPOXMLDOC01-appb-T000347
Figure JPOXMLDOC01-appb-T000348
Figure JPOXMLDOC01-appb-T000348
Figure JPOXMLDOC01-appb-T000349
Figure JPOXMLDOC01-appb-T000349
Figure JPOXMLDOC01-appb-T000350
Figure JPOXMLDOC01-appb-T000350
Figure JPOXMLDOC01-appb-T000351
Figure JPOXMLDOC01-appb-T000351
Figure JPOXMLDOC01-appb-T000352
Figure JPOXMLDOC01-appb-T000352
Figure JPOXMLDOC01-appb-T000353
Figure JPOXMLDOC01-appb-T000353
Figure JPOXMLDOC01-appb-T000354
Figure JPOXMLDOC01-appb-T000354
Figure JPOXMLDOC01-appb-T000355
Figure JPOXMLDOC01-appb-T000355
Figure JPOXMLDOC01-appb-T000356
Figure JPOXMLDOC01-appb-T000356
Figure JPOXMLDOC01-appb-T000357
Figure JPOXMLDOC01-appb-T000357
Figure JPOXMLDOC01-appb-T000358
Figure JPOXMLDOC01-appb-T000358
Figure JPOXMLDOC01-appb-T000359
Figure JPOXMLDOC01-appb-T000359
Figure JPOXMLDOC01-appb-T000360
Figure JPOXMLDOC01-appb-T000360
 表359~382は、プロパン、HFO-1132(E)、HFO-1234ze(E)及びHFC-32の4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 359 to 382 show the composition, heat of combustion and GWP for four-component working media of propane, HFO-1132 (E), HFO-1234ze (E) and HFC-32.
Figure JPOXMLDOC01-appb-T000361
Figure JPOXMLDOC01-appb-T000361
Figure JPOXMLDOC01-appb-T000362
Figure JPOXMLDOC01-appb-T000362
Figure JPOXMLDOC01-appb-T000363
Figure JPOXMLDOC01-appb-T000363
Figure JPOXMLDOC01-appb-T000364
Figure JPOXMLDOC01-appb-T000364
Figure JPOXMLDOC01-appb-T000365
Figure JPOXMLDOC01-appb-T000365
Figure JPOXMLDOC01-appb-T000366
Figure JPOXMLDOC01-appb-T000366
Figure JPOXMLDOC01-appb-T000367
Figure JPOXMLDOC01-appb-T000367
Figure JPOXMLDOC01-appb-T000368
Figure JPOXMLDOC01-appb-T000368
Figure JPOXMLDOC01-appb-T000369
Figure JPOXMLDOC01-appb-T000369
Figure JPOXMLDOC01-appb-T000370
Figure JPOXMLDOC01-appb-T000370
Figure JPOXMLDOC01-appb-T000371
Figure JPOXMLDOC01-appb-T000371
Figure JPOXMLDOC01-appb-T000372
Figure JPOXMLDOC01-appb-T000372
Figure JPOXMLDOC01-appb-T000373
Figure JPOXMLDOC01-appb-T000373
Figure JPOXMLDOC01-appb-T000374
Figure JPOXMLDOC01-appb-T000374
Figure JPOXMLDOC01-appb-T000375
Figure JPOXMLDOC01-appb-T000375
Figure JPOXMLDOC01-appb-T000376
Figure JPOXMLDOC01-appb-T000376
Figure JPOXMLDOC01-appb-T000377
Figure JPOXMLDOC01-appb-T000377
Figure JPOXMLDOC01-appb-T000378
Figure JPOXMLDOC01-appb-T000378
Figure JPOXMLDOC01-appb-T000379
Figure JPOXMLDOC01-appb-T000379
Figure JPOXMLDOC01-appb-T000380
Figure JPOXMLDOC01-appb-T000380
Figure JPOXMLDOC01-appb-T000381
Figure JPOXMLDOC01-appb-T000381
Figure JPOXMLDOC01-appb-T000382
Figure JPOXMLDOC01-appb-T000382
Figure JPOXMLDOC01-appb-T000383
Figure JPOXMLDOC01-appb-T000383
Figure JPOXMLDOC01-appb-T000384
Figure JPOXMLDOC01-appb-T000384
 表383~403は、プロパン、HFO-1132(E)、HFO-1234ze(E)及びCOの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 383-403 show the composition, heat of combustion and GWP for quaternary working media of propane, HFO-1132(E), HFO-1234ze(E) and CO2 .
Figure JPOXMLDOC01-appb-T000385
Figure JPOXMLDOC01-appb-T000385
Figure JPOXMLDOC01-appb-T000386
Figure JPOXMLDOC01-appb-T000386
Figure JPOXMLDOC01-appb-T000387
Figure JPOXMLDOC01-appb-T000387
Figure JPOXMLDOC01-appb-T000388
Figure JPOXMLDOC01-appb-T000388
Figure JPOXMLDOC01-appb-T000389
Figure JPOXMLDOC01-appb-T000389
Figure JPOXMLDOC01-appb-T000390
Figure JPOXMLDOC01-appb-T000390
Figure JPOXMLDOC01-appb-T000391
Figure JPOXMLDOC01-appb-T000391
Figure JPOXMLDOC01-appb-T000392
Figure JPOXMLDOC01-appb-T000392
Figure JPOXMLDOC01-appb-T000393
Figure JPOXMLDOC01-appb-T000393
Figure JPOXMLDOC01-appb-T000394
Figure JPOXMLDOC01-appb-T000394
Figure JPOXMLDOC01-appb-T000395
Figure JPOXMLDOC01-appb-T000395
Figure JPOXMLDOC01-appb-T000396
Figure JPOXMLDOC01-appb-T000396
Figure JPOXMLDOC01-appb-T000397
Figure JPOXMLDOC01-appb-T000397
Figure JPOXMLDOC01-appb-T000398
Figure JPOXMLDOC01-appb-T000398
Figure JPOXMLDOC01-appb-T000399
Figure JPOXMLDOC01-appb-T000399
Figure JPOXMLDOC01-appb-T000400
Figure JPOXMLDOC01-appb-T000400
Figure JPOXMLDOC01-appb-T000401
Figure JPOXMLDOC01-appb-T000401
Figure JPOXMLDOC01-appb-T000402
Figure JPOXMLDOC01-appb-T000402
Figure JPOXMLDOC01-appb-T000403
Figure JPOXMLDOC01-appb-T000403
Figure JPOXMLDOC01-appb-T000404
Figure JPOXMLDOC01-appb-T000404
Figure JPOXMLDOC01-appb-T000405
Figure JPOXMLDOC01-appb-T000405
 表404~419は、プロパン、HFO-1132(E)、HFO-1234ze(E)及びCFIの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 404-419 show the composition, heat of combustion and GWP for propane, HFO-1132(E), HFO-1234ze(E) and CF 3 I quaternary working fluids.
Figure JPOXMLDOC01-appb-T000406
Figure JPOXMLDOC01-appb-T000406
Figure JPOXMLDOC01-appb-T000407
Figure JPOXMLDOC01-appb-T000407
Figure JPOXMLDOC01-appb-T000408
Figure JPOXMLDOC01-appb-T000408
Figure JPOXMLDOC01-appb-T000409
Figure JPOXMLDOC01-appb-T000409
Figure JPOXMLDOC01-appb-T000410
Figure JPOXMLDOC01-appb-T000410
Figure JPOXMLDOC01-appb-T000411
Figure JPOXMLDOC01-appb-T000411
Figure JPOXMLDOC01-appb-T000412
Figure JPOXMLDOC01-appb-T000412
Figure JPOXMLDOC01-appb-T000413
Figure JPOXMLDOC01-appb-T000413
Figure JPOXMLDOC01-appb-T000414
Figure JPOXMLDOC01-appb-T000414
Figure JPOXMLDOC01-appb-T000415
Figure JPOXMLDOC01-appb-T000415
Figure JPOXMLDOC01-appb-T000416
Figure JPOXMLDOC01-appb-T000416
Figure JPOXMLDOC01-appb-T000417
Figure JPOXMLDOC01-appb-T000417
Figure JPOXMLDOC01-appb-T000418
Figure JPOXMLDOC01-appb-T000418
Figure JPOXMLDOC01-appb-T000419
Figure JPOXMLDOC01-appb-T000419
Figure JPOXMLDOC01-appb-T000420
Figure JPOXMLDOC01-appb-T000420
Figure JPOXMLDOC01-appb-T000421
Figure JPOXMLDOC01-appb-T000421
 表420~428は、プロパン、HFO-1132(E)、HFC-32及びCOの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 420-428 show the composition, heat of combustion and GWP for quaternary working fluids of propane, HFO-1132(E), HFC-32 and CO2 .
Figure JPOXMLDOC01-appb-T000422
Figure JPOXMLDOC01-appb-T000422
Figure JPOXMLDOC01-appb-T000423
Figure JPOXMLDOC01-appb-T000423
Figure JPOXMLDOC01-appb-T000424
Figure JPOXMLDOC01-appb-T000424
Figure JPOXMLDOC01-appb-T000425
Figure JPOXMLDOC01-appb-T000425
Figure JPOXMLDOC01-appb-T000426
Figure JPOXMLDOC01-appb-T000426
Figure JPOXMLDOC01-appb-T000427
Figure JPOXMLDOC01-appb-T000427
Figure JPOXMLDOC01-appb-T000428
Figure JPOXMLDOC01-appb-T000428
Figure JPOXMLDOC01-appb-T000429
Figure JPOXMLDOC01-appb-T000429
Figure JPOXMLDOC01-appb-T000430
Figure JPOXMLDOC01-appb-T000430
 表429~439は、プロパン、HFO-1132(E)、HFC-32及びCFIの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 429-439 show the composition, heat of combustion and GWP for the propane, HFO-1132(E), HFC-32 and CF 3 I quaternary working fluids.
Figure JPOXMLDOC01-appb-T000431
Figure JPOXMLDOC01-appb-T000431
Figure JPOXMLDOC01-appb-T000432
Figure JPOXMLDOC01-appb-T000432
Figure JPOXMLDOC01-appb-T000433
Figure JPOXMLDOC01-appb-T000433
Figure JPOXMLDOC01-appb-T000434
Figure JPOXMLDOC01-appb-T000434
Figure JPOXMLDOC01-appb-T000435
Figure JPOXMLDOC01-appb-T000435
Figure JPOXMLDOC01-appb-T000436
Figure JPOXMLDOC01-appb-T000436
Figure JPOXMLDOC01-appb-T000437
Figure JPOXMLDOC01-appb-T000437
Figure JPOXMLDOC01-appb-T000438
Figure JPOXMLDOC01-appb-T000438
Figure JPOXMLDOC01-appb-T000439
Figure JPOXMLDOC01-appb-T000439
Figure JPOXMLDOC01-appb-T000440
Figure JPOXMLDOC01-appb-T000440
Figure JPOXMLDOC01-appb-T000441
Figure JPOXMLDOC01-appb-T000441
 表440~449は、プロパン、HFO-1132(E)、CO及びCFIの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 440-449 show the composition, heat of combustion and GWP for the propane, HFO-1132(E), CO 2 and CF 3 I quaternary working fluids.
Figure JPOXMLDOC01-appb-T000442
Figure JPOXMLDOC01-appb-T000442
Figure JPOXMLDOC01-appb-T000443
Figure JPOXMLDOC01-appb-T000443
Figure JPOXMLDOC01-appb-T000444
Figure JPOXMLDOC01-appb-T000444
Figure JPOXMLDOC01-appb-T000445
Figure JPOXMLDOC01-appb-T000445
Figure JPOXMLDOC01-appb-T000446
Figure JPOXMLDOC01-appb-T000446
Figure JPOXMLDOC01-appb-T000447
Figure JPOXMLDOC01-appb-T000447
Figure JPOXMLDOC01-appb-T000448
Figure JPOXMLDOC01-appb-T000448
Figure JPOXMLDOC01-appb-T000449
Figure JPOXMLDOC01-appb-T000449
Figure JPOXMLDOC01-appb-T000450
Figure JPOXMLDOC01-appb-T000450
Figure JPOXMLDOC01-appb-T000451
Figure JPOXMLDOC01-appb-T000451
 表450~458は、プロパン、HFO-1123、HFO-1132(E)及びHFO-1234yfの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 450 to 458 show the composition, heat of combustion and GWP for four-component working media of propane, HFO-1123, HFO-1132(E) and HFO-1234yf.
Figure JPOXMLDOC01-appb-T000452
Figure JPOXMLDOC01-appb-T000452
Figure JPOXMLDOC01-appb-T000453
Figure JPOXMLDOC01-appb-T000453
Figure JPOXMLDOC01-appb-T000454
Figure JPOXMLDOC01-appb-T000454
Figure JPOXMLDOC01-appb-T000455
Figure JPOXMLDOC01-appb-T000455
Figure JPOXMLDOC01-appb-T000456
Figure JPOXMLDOC01-appb-T000456
Figure JPOXMLDOC01-appb-T000457
Figure JPOXMLDOC01-appb-T000457
Figure JPOXMLDOC01-appb-T000458
Figure JPOXMLDOC01-appb-T000458
Figure JPOXMLDOC01-appb-T000459
Figure JPOXMLDOC01-appb-T000459
Figure JPOXMLDOC01-appb-T000460
Figure JPOXMLDOC01-appb-T000460
 表459~467は、プロパン、HFO-1123、HFO-1132(E)及びHFO-1234ze(E)の4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 459 to 467 show the composition, heat of combustion and GWP for four-component working media of propane, HFO-1123, HFO-1132 (E) and HFO-1234ze (E).
Figure JPOXMLDOC01-appb-T000461
Figure JPOXMLDOC01-appb-T000461
Figure JPOXMLDOC01-appb-T000462
Figure JPOXMLDOC01-appb-T000462
Figure JPOXMLDOC01-appb-T000463
Figure JPOXMLDOC01-appb-T000463
Figure JPOXMLDOC01-appb-T000464
Figure JPOXMLDOC01-appb-T000464
Figure JPOXMLDOC01-appb-T000465
Figure JPOXMLDOC01-appb-T000465
Figure JPOXMLDOC01-appb-T000466
Figure JPOXMLDOC01-appb-T000466
Figure JPOXMLDOC01-appb-T000467
Figure JPOXMLDOC01-appb-T000467
Figure JPOXMLDOC01-appb-T000468
Figure JPOXMLDOC01-appb-T000468
Figure JPOXMLDOC01-appb-T000469
Figure JPOXMLDOC01-appb-T000469
 表468~480は、プロパン、HFO-1123、HFO-1132(E)及びHFC-32の4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 468 to 480 show the composition, heat of combustion and GWP for four-component working fluids of propane, HFO-1123, HFO-1132(E) and HFC-32.
Figure JPOXMLDOC01-appb-T000470
Figure JPOXMLDOC01-appb-T000470
Figure JPOXMLDOC01-appb-T000471
Figure JPOXMLDOC01-appb-T000471
Figure JPOXMLDOC01-appb-T000472
Figure JPOXMLDOC01-appb-T000472
Figure JPOXMLDOC01-appb-T000473
Figure JPOXMLDOC01-appb-T000473
Figure JPOXMLDOC01-appb-T000474
Figure JPOXMLDOC01-appb-T000474
Figure JPOXMLDOC01-appb-T000475
Figure JPOXMLDOC01-appb-T000475
Figure JPOXMLDOC01-appb-T000476
Figure JPOXMLDOC01-appb-T000476
Figure JPOXMLDOC01-appb-T000477
Figure JPOXMLDOC01-appb-T000477
Figure JPOXMLDOC01-appb-T000478
Figure JPOXMLDOC01-appb-T000478
Figure JPOXMLDOC01-appb-T000479
Figure JPOXMLDOC01-appb-T000479
Figure JPOXMLDOC01-appb-T000480
Figure JPOXMLDOC01-appb-T000480
Figure JPOXMLDOC01-appb-T000481
Figure JPOXMLDOC01-appb-T000481
Figure JPOXMLDOC01-appb-T000482
Figure JPOXMLDOC01-appb-T000482
 表481~492は、プロパン、HFO-1123、HFO-1132(E)及びCOの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 481-492 show the composition, heat of combustion and GWP for quaternary working fluids of propane, HFO-1123, HFO-1132(E) and CO2 .
Figure JPOXMLDOC01-appb-T000483
Figure JPOXMLDOC01-appb-T000483
Figure JPOXMLDOC01-appb-T000484
Figure JPOXMLDOC01-appb-T000484
Figure JPOXMLDOC01-appb-T000485
Figure JPOXMLDOC01-appb-T000485
Figure JPOXMLDOC01-appb-T000486
Figure JPOXMLDOC01-appb-T000486
Figure JPOXMLDOC01-appb-T000487
Figure JPOXMLDOC01-appb-T000487
Figure JPOXMLDOC01-appb-T000488
Figure JPOXMLDOC01-appb-T000488
Figure JPOXMLDOC01-appb-T000489
Figure JPOXMLDOC01-appb-T000489
Figure JPOXMLDOC01-appb-T000490
Figure JPOXMLDOC01-appb-T000490
Figure JPOXMLDOC01-appb-T000491
Figure JPOXMLDOC01-appb-T000491
Figure JPOXMLDOC01-appb-T000492
Figure JPOXMLDOC01-appb-T000492
Figure JPOXMLDOC01-appb-T000493
Figure JPOXMLDOC01-appb-T000493
Figure JPOXMLDOC01-appb-T000494
Figure JPOXMLDOC01-appb-T000494
 表493~502は、プロパン、HFO-1123、HFO-1132(E)及びCFIの4成分系の作動媒体についての組成、燃焼熱量及びGWPを示す。 Tables 493-502 show the composition, heat of combustion and GWP for propane, HFO-1123, HFO-1132(E) and CF 3 I quaternary working fluids.
Figure JPOXMLDOC01-appb-T000495
Figure JPOXMLDOC01-appb-T000495
Figure JPOXMLDOC01-appb-T000496
Figure JPOXMLDOC01-appb-T000496
Figure JPOXMLDOC01-appb-T000497
Figure JPOXMLDOC01-appb-T000497
Figure JPOXMLDOC01-appb-T000498
Figure JPOXMLDOC01-appb-T000498
Figure JPOXMLDOC01-appb-T000499
Figure JPOXMLDOC01-appb-T000499
Figure JPOXMLDOC01-appb-T000500
Figure JPOXMLDOC01-appb-T000500
Figure JPOXMLDOC01-appb-T000501
Figure JPOXMLDOC01-appb-T000501
Figure JPOXMLDOC01-appb-T000502
Figure JPOXMLDOC01-appb-T000502
Figure JPOXMLDOC01-appb-T000503
Figure JPOXMLDOC01-appb-T000503
Figure JPOXMLDOC01-appb-T000504
Figure JPOXMLDOC01-appb-T000504
<サイクル性能>
 ここで、作動媒体を熱サイクルシステムに適用する際に必要とされる性質であるサイクル性能は、成績係数(本開示において、「COP」ともいう。)及び単位体積(圧縮機の吸い込み容積)当たりの能力(本開示において、「CAP」ともいう。)で評価できる。熱サイクルシステムが冷凍サイクルシステムの場合、能力は冷凍能力である。作動媒体を冷凍サイクルシステムに適用した場合の評価項目として、上記サイクル性能の他に蒸発器における温度勾配(本開示において、「温度グライド」ともいう。)、吐出温度、凝縮圧力、蒸発圧力、及び圧力損失がさらに挙げられる。具体的には、以下に示す温度条件の基準冷凍サイクルを用いて、例えば、後述の方法で各項目について測定する。得られた測定値について、代替の対象として吐出温度、凝縮圧力、蒸発圧力、及び圧縮比についてはHFC-32の値を基準とし、温度グライド、CAP、COP、及び圧力損失についてはR410Aの値を基準とした差分及び相対値に換算して評価する。
<Cycle performance>
Here, the cycle performance, which is the property required when applying the working fluid to the heat cycle system, is the coefficient of performance (also referred to as “COP” in the present disclosure) and per unit volume (compressor suction volume) ability (also referred to as “CAP” in the present disclosure). If the heat cycle system is a refrigeration cycle system, the capacity is refrigeration capacity. As evaluation items when the working medium is applied to a refrigeration cycle system, in addition to the above cycle performance, the temperature gradient in the evaporator (also referred to as "temperature glide" in the present disclosure), discharge temperature, condensing pressure, evaporating pressure, and Further mention is made of pressure loss. Specifically, each item is measured by the method described later, for example, using the reference refrigerating cycle with the temperature conditions shown below. For the measured values obtained, the discharge temperature, condensing pressure, evaporating pressure, and compression ratio are based on the HFC-32 values, and the temperature glide, CAP, COP, and pressure loss are based on the R410A values. Evaluate by converting to a standard difference and relative value.
(基準冷凍サイクルの温度条件)
蒸発温度;5℃(ただし、非共沸混合物の場合は、蒸発開始温度と蒸発完了温度の平均温度)
凝縮完了温度;40℃(ただし、非共沸混合物の場合は、凝縮開始温度と凝縮完了温度の平均温度)
過冷却度(SC);5℃
過熱度(SH);5℃
圧縮機効率;0.7
(Temperature conditions of standard refrigerating cycle)
Evaporation temperature; 5 ° C. (however, in the case of a non-azeotropic mixture, the average temperature of the evaporation start temperature and the evaporation completion temperature)
Condensation completion temperature; 40 ° C. (However, in the case of a non-azeotropic mixture, the average temperature of the condensation start temperature and the condensation completion temperature)
Degree of supercooling (SC); 5°C
Superheat (SH); 5°C
Compressor efficiency; 0.7
<温度グライド(温度勾配)>
 温度グライドは、混合物の作動媒体における液相、気相での組成の差異を測る指標である。温度グライドは、熱交換器、例えば、蒸発器における蒸発の、又は凝縮器における凝縮の、開始温度と完了温度が異なる性質、と定義される。共沸混合媒体においては、温度グライドは0であり、R410Aのような擬似共沸混合物では温度勾配は極めて0に近い。 
<Temperature glide (temperature gradient)>
The temperature glide is an index that measures the difference in composition between the liquid phase and the gas phase in the working medium of the mixture. Temperature glide is defined as the property of a heat exchanger, eg, evaporating in an evaporator or condensing in a condenser, to have different starting and finishing temperatures. In azeotropic media, the temperature glide is zero, and in pseudo-azeotropes such as R410A the temperature gradient is very close to zero.
 温度グライドが大きいと、例えば、蒸発器における入口温度が低下することで着霜の可能性が大きくなり問題である。さらに、熱サイクルシステムにおいては、熱交換効率の向上をはかるために熱交換器を流れる作動媒体と水や空気等の熱源流体を対向流にすることが一般的であり、安定運転状態においては該熱源流体の温度差が小さいことから、温度グライドの大きい非共沸混合媒体の場合、エネルギー効率のよい熱サイクルシステムを得ることが困難である。このため、混合物を作動媒体として使用する場合は適切な温度グライドを有する作動媒体が望まれる。  If the temperature glide is large, for example, the inlet temperature in the evaporator will drop, which will increase the possibility of frost formation, which is a problem. Furthermore, in the heat cycle system, in order to improve the heat exchange efficiency, it is common to make the working medium flowing through the heat exchanger and the heat source fluid such as water or air flow countercurrently, and this is the case in a stable operating state. Due to the small temperature difference of the heat source fluid, it is difficult to obtain an energy efficient thermal cycle system in the case of a non-azeotropic mixed medium with a large temperature glide. For this reason, a working medium with a suitable temperature glide is desired when using a mixture as a working medium. 
 さらに、非共沸混合媒体は、圧力容器から冷凍空調機器へ充填される際に組成変化を生じる問題点を有している。さらに、冷凍空調機器からの冷媒漏えいが生じた場合、冷凍空調機器内の冷媒組成が変化する可能が極めて大きく、初期状態への冷媒組成の復元が困難である。一方、共沸又は擬似共沸の混合媒体であれば上記問題が回避できる。 Furthermore, non-azeotropic mixed media have the problem of causing composition changes when they are filled from a pressure vessel into a refrigerating and air-conditioning equipment. Furthermore, when refrigerant leaks from the refrigerating and air-conditioning equipment, it is highly possible that the refrigerant composition in the refrigerating and air-conditioning equipment will change, and it is difficult to restore the refrigerant composition to the initial state. On the other hand, an azeotropic or pseudo-azeotropic mixed medium can avoid the above problems.
<圧縮比>
 圧縮比は冷凍サイクルにおける、凝縮圧力Pc(MPa)/蒸発圧力Pe(MPa)で表わされる。
 圧縮比は、冷凍サイクルにおける凝縮圧力が小さいほど、また蒸発圧力が大きいほど、小さくなる。圧縮比が小さいほど、圧縮機の体積効率は大きくなるため、冷媒循環量が増加し、機器性能は向上する。
 なお、本開示において、圧縮比はHFC-32に対する相対圧縮比にて示す。
<Compression ratio>
The compression ratio is represented by condensation pressure Pc (MPa)/evaporation pressure Pe (MPa) in the refrigeration cycle.
The compression ratio decreases as the condensing pressure in the refrigeration cycle decreases and as the evaporating pressure increases. The smaller the compression ratio, the higher the volumetric efficiency of the compressor, which increases the amount of refrigerant circulated and improves the equipment performance.
In the present disclosure, compression ratios are shown as relative compression ratios with respect to HFC-32.
<臨界温度>
 臨界点は、飽和液体線と飽和蒸気線の高圧・高温側の終点である。この点における温度が臨界温度である。臨界点以上では蒸発現象も液化現象もなく、液相と気相の区別はつかなくなり、相変化は存在しない。
 本開示の作動媒体を冷凍サイクル装置に用いた場合、凝縮器を冷却する空気の温度が比較的高い温度条件の際、熱交換後の冷媒温度が臨界温度よりも低温側で臨界温度に接近したり、臨界温度を超えたりするため、作動媒体を液化(凝縮)することができず、冷房性能が低下するという課題が生じる。そのため、作動媒体の臨界温度は高いほうがより好ましい。
<Critical temperature>
The critical point is the end point of the saturated liquid line and the saturated vapor line on the high pressure and high temperature side. The temperature at this point is the critical temperature. Above the critical point, there is neither evaporation nor liquefaction, the liquid and gas phases are indistinguishable, and there is no phase change.
When the working medium of the present disclosure is used in a refrigeration cycle device, when the temperature of the air cooling the condenser is relatively high, the temperature of the refrigerant after heat exchange approaches the critical temperature on the lower temperature side than the critical temperature. or exceeds the critical temperature, the working medium cannot be liquefied (condensed), resulting in a problem of reduced cooling performance. Therefore, it is more preferable that the critical temperature of the working medium is higher.
(冷凍サイクルシステム)
 熱サイクルシステムの一例として、冷凍サイクルシステムについて説明する。
 冷凍サイクルシステムとは、蒸発器において作動媒体が負荷流体より熱エネルギーを除去することにより、負荷流体を冷却し、より低い温度に冷却するシステムである。
(refrigeration cycle system)
A refrigeration cycle system will be described as an example of a heat cycle system.
A refrigeration cycle system is a system in which a working medium removes heat energy from a load fluid in an evaporator, thereby cooling the load fluid to a lower temperature.
 図12は、本開示の冷凍サイクルシステムの一例を示す概略構成図である。冷凍サイクルシステム10は、作動媒体蒸気Aを圧縮して高温高圧の作動媒体蒸気Bとする圧縮機11と、圧縮機11から排出された作動媒体蒸気Bを冷却し、液化して低温高圧の作動媒体Cとする凝縮器12と、凝縮器12から排出された作動媒体Cを膨張させて低温低圧の作動媒体Dとする膨張弁13と、膨張弁13から排出された作動媒体Dを加熱して高温低圧の作動媒体蒸気Aとする蒸発器14と、蒸発器14に負荷流体Eを供給するポンプ15と、凝縮器12に流体Fを供給するポンプ16とを具備して概略構成されるシステムである。 FIG. 12 is a schematic configuration diagram showing an example of the refrigeration cycle system of the present disclosure. The refrigeration cycle system 10 includes a compressor 11 that compresses a working medium vapor A into a high-temperature, high-pressure working medium vapor B, and a low-temperature, high-pressure operation by cooling and liquefying the working medium vapor B discharged from the compressor 11. A condenser 12 as a medium C, an expansion valve 13 for expanding the working medium C discharged from the condenser 12 into a low-temperature and low-pressure working medium D, and heating the working medium D discharged from the expansion valve 13 It is a system roughly configured comprising an evaporator 14 that produces a high-temperature, low-pressure working medium vapor A, a pump 15 that supplies a load fluid E to the evaporator 14, and a pump 16 that supplies a fluid F to the condenser 12. be.
 冷凍サイクルシステム10においては、以下の(i)~(iv)のサイクルが繰り返される。
(i)蒸発器14から排出された作動媒体蒸気Aを圧縮機11にて圧縮して高温高圧の作動媒体蒸気Bとする(以下、「AB過程」という。)。
(ii)圧縮機11から排出された作動媒体蒸気Bを凝縮器12にて流体Fによって冷却し、液化して低温高圧の作動媒体Cとする。この際、流体Fは加熱されて流体F’となり、凝縮器12から排出される(以下、「BC過程」という。)。
(iii)凝縮器12から排出された作動媒体Cを膨張弁13にて膨張させて低温低圧の作動媒体Dとする(以下、「CD過程」という。)。
(iv)膨張弁13から排出された作動媒体Dを蒸発器14にて負荷流体Eによって加熱して高温低圧の作動媒体蒸気Aとする。この際、負荷流体Eは冷却されて負荷流体E’となり、蒸発器14から排出される(以下、「DA過程」という。)。
In the refrigeration cycle system 10, the following cycles (i) to (iv) are repeated.
(i) The working medium vapor A discharged from the evaporator 14 is compressed by the compressor 11 into a high-temperature, high-pressure working medium vapor B (hereinafter referred to as "AB process").
(ii) The working medium vapor B discharged from the compressor 11 is cooled by the fluid F in the condenser 12 and liquefied to form a low-temperature, high-pressure working medium C. At this time, the fluid F is heated to become a fluid F' and discharged from the condenser 12 (hereinafter referred to as "BC process").
(iii) The working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to form a low-temperature, low-pressure working medium D (hereinafter referred to as "CD process").
(iv) The working medium D discharged from the expansion valve 13 is heated by the load fluid E in the evaporator 14 to produce a high-temperature, low-pressure working medium vapor A. At this time, the load fluid E is cooled to become a load fluid E' and discharged from the evaporator 14 (hereinafter referred to as "DA process").
 冷凍サイクルシステム10は、断熱・等エントロピ変化、等エンタルピ変化及び等圧変化からなるサイクルシステムである。作動媒体の状態変化を、図13に示される圧力-エンタルピ線(曲線)図上に記載すると、A、B、C、Dを頂点とする台形として表すことができる。 The refrigeration cycle system 10 is a cycle system consisting of adiabatic/isentropic change, isenthalpic change, and isobaric change. If the state change of the working medium is described on the pressure-enthalpy line (curve) diagram shown in FIG. 13, it can be represented as a trapezoid with A, B, C, and D as vertices.
 AB過程は、圧縮機11で断熱圧縮を行い、低温低圧の作動媒体蒸気Aを高温高圧の作動媒体蒸気Bとする過程であり、図13においてAB線で示される。後述のとおり、作動媒体蒸気Aは過熱状態で圧縮機11に導入され、得られる作動媒体蒸気Bも過熱状態の蒸気である。圧縮機吸入飽和ガス密度は、図13においてAの状態の密度(ρs)である。圧縮機吐出ガス温度(吐出温度)は、図13においてBの状態の温度(Tx)であり、冷凍サイクルにおける最高温度である。圧縮機吐出圧力(吐出圧力)は、図13においてBの状態の圧力(Px)であり、冷凍サイクルにおける最高圧力である。なお、BC過程は等圧冷却であることから吐出圧力は凝縮圧力と同じ値を示す。よって、図13においては、便宜上、凝縮圧力をPxと示している。 The AB process is a process in which the compressor 11 performs adiabatic compression to convert the low-temperature, low-pressure working medium vapor A into the high-temperature, high-pressure working medium vapor B, and is indicated by line AB in FIG. As will be described later, the working medium vapor A is introduced into the compressor 11 in a superheated state, and the resulting working medium vapor B is also in a superheated state. The compressor suction saturated gas density is the density (ρs) in the state A in FIG. The compressor discharge gas temperature (discharge temperature) is the temperature (Tx) in state B in FIG. 13, which is the highest temperature in the refrigeration cycle. The compressor discharge pressure (discharge pressure) is the pressure (Px) in state B in FIG. 13, which is the maximum pressure in the refrigeration cycle. Since the BC process is isobaric cooling, the discharge pressure shows the same value as the condensation pressure. Therefore, in FIG. 13, the condensing pressure is indicated as Px for convenience.
 BC過程は、凝縮器12で等圧冷却を行い、高温高圧の作動媒体蒸気Bを低温高圧の作動媒体Cとする過程であり、図13においてBC線で示される。この際の圧力が凝縮圧力である。圧力-エンタルピ線とBC線の交点のうち高エンタルピ側の交点T1が凝縮温度であり、低エンタルピ側の交点T2が凝縮沸点温度である。ここで、作動媒体が非共沸混合媒体である場合の温度勾配は、T1とT2の差として示される。 The BC process is a process in which isobaric cooling is performed in the condenser 12 to convert the high-temperature, high-pressure working medium vapor B into the low-temperature, high-pressure working medium C, and is indicated by the BC line in FIG. The pressure at this time is the condensation pressure. Among the intersection points of the pressure-enthalpy line and the BC line, the intersection point T1 on the high enthalpy side is the condensation temperature, and the intersection point T2 on the low enthalpy side is the condensation boiling temperature. Here, the temperature gradient when the working medium is a non-azeotropic mixed medium is shown as the difference between T1 and T2.
CD過程は、膨張弁13で等エンタルピ膨張を行い、低温高圧の作動媒体Cを低温低圧の作動媒体Dとする過程であり、図13においてCD線で示される。なお、低温高圧の作動媒体Cにおける温度をT3で示せば、T2-T3が(i)~(iv)のサイクルにおける作動媒体の過冷却度(SC)となる。 The CD process is a process in which the expansion valve 13 performs isenthalpic expansion to convert the low-temperature, high-pressure working medium C into a low-temperature, low-pressure working medium D, and is indicated by line CD in FIG. If the temperature of the low-temperature, high-pressure working medium C is denoted by T3, T2-T3 is the degree of supercooling (SC) of the working medium in the cycles (i) to (iv).
 DA過程は、蒸発器14で等圧加熱を行い、低温低圧の作動媒体Dを高温低圧の作動媒体蒸気Aに戻す過程であり、図13においてDA線で示される。この際の圧力が蒸発圧力である。圧力-エンタルピ線とDA線の交点のうち高エンタルピ側の交点T6は蒸発温度である。作動媒体蒸気Aの温度をT7で示せば、T7-T6が(i)~(iv)のサイクルにおける作動媒体の過熱度(SH)となる。なお、T4は作動媒体Dの温度を示す。 The DA process is a process in which isobaric heating is performed in the evaporator 14 and the low-temperature, low-pressure working medium D is returned to the high-temperature, low-pressure working medium vapor A, which is indicated by the DA line in FIG. The pressure at this time is the evaporation pressure. Among the intersections of the pressure-enthalpy line and the DA line, the intersection T6 on the high enthalpy side is the evaporation temperature. Denoting the temperature of the working medium vapor A by T7, T7-T6 is the superheat (SH) of the working medium in the cycles (i) to (iv). Note that T4 indicates the temperature of the working medium D.
 作動媒体のCAP及びCOPは、作動媒体のA(蒸発後、低温低圧)、B(圧縮後、高温高圧)、C(凝縮後、低温高圧)、D(膨張後、低温低圧)の各状態における各エンタルピ、hA、hB、hC、hD、及び冷媒質量循環量qmrを用いると、下式(11)、(12)、(13)、(14)からそれぞれ求められる。配管、熱交換器における圧力損失はないものとする。 The CAP and COP of the working medium are in each state of the working medium A (low temperature and low pressure after evaporation), B (high temperature and high pressure after compression), C (low temperature and high pressure after condensation), and D (low temperature and low pressure after expansion). Using each enthalpy, hA, hB, hC, hD, and refrigerant mass circulation quantity qmr, they can be obtained from the following equations (11), (12), (13), and (14). It is assumed that there is no pressure loss in piping and heat exchangers.
 圧縮機の損失仕事が熱として作動媒体に加えられる場合、圧縮機効率ηを用いて、AB工程後の作動媒体蒸気B’はhA、hB、ηを用いて下式で表される。
hB’=hA+(hB-hA)/η
When the work loss of the compressor is added to the working medium as heat, using the compressor efficiency η, the working medium vapor B′ after the AB step is expressed by the following equation using hA, hB, η.
hB'=hA+(hB-hA)/η
 作動媒体のサイクル性能の算出に必要となる熱力学性質は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(REFPROP 10.0)、対応状態原理に基づく一般化状態方程式(Soave-Redlich-Kwong式)、及び熱力学諸関係式に基づき算出できる。
CAP=(hA-hD)×ρs…(11)
COP=Q/P=qmr(hA-hD)/qmr(hB-hA)=(hA-hD)/(hB-hA)…(12)
Q=qmr(hA-hD)…(13)
P=qmr(hB-hA)…(14)
 なお、圧縮機効率を考慮するとCOP及びPは下式となる。
COP=Q/P=(hA-hD)/(hB’-hA)…(15)
P=qmr(hB’-hA)…(16)
The thermodynamic properties required to calculate the cycle performance of the working medium are found in the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (REFPROP 10.0) and the principle of corresponding states. based on the generalized equation of state (Soave - Redlich-Kwong equation) and thermodynamic equations.
CAP=(hA−hD)×ρs (11)
COP=Q/P=qmr(hA-hD)/qmr(hB-hA)=(hA-hD)/(hB-hA) (12)
Q=qmr(hA−hD) (13)
P=qmr(hB−hA) (14)
Considering the efficiency of the compressor, COP and P are given by the following equations.
COP=Q/P=(hA-hD)/(hB'-hA) (15)
P=qmr(hB'-hA) (16)
 同様に、作動媒体の状態変化を温度-エントロピ線図上に記載すると図14のように表すことができる。 Similarly, the change in state of the working medium can be represented as shown in FIG. 14 by describing it on the temperature-entropy diagram.
<圧力損失>
 圧力損失は冷凍サイクルにおける凝縮圧力を上げ、蒸発圧力を下げることで性能を低下させる要因である。圧力損失は、冷凍サイクル内の凝縮器、蒸発器及び接続配管内の管内流れにおける摩擦から生じており、摩擦係数f(-)、長さL(m)、直径d(m)、蒸発器能力Φ0(kW)、蒸発潜熱W(kJ/kg)、比体積ν(m/kg)を用いて、下式で表される。
<Pressure loss>
Pressure loss increases the condensation pressure in the refrigeration cycle and decreases the evaporation pressure, which is a factor that lowers the performance. The pressure loss is caused by the friction in the flow in the condenser, evaporator, and connecting pipes in the refrigeration cycle, and the coefficient of friction f (-), length L (m), diameter d (m), evaporator capacity Using Φ 0 (kW), latent heat of vaporization W r (kJ/kg), and specific volume ν s (m 3 /kg), it is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000505

 
 ここで式の前半の括弧内は、冷凍サイクルを構成する部品寸法、性能の仕様によって決まる。一方、後半の括弧内は、冷媒の熱物性で決まるため、機器仕様、機器性能が同一である場合は、後半の括弧内について考慮すべきである。よって、圧力損失は冷媒の比体積が小さく、蒸発潜熱が大きいほど小さくなり、冷媒の比体積が大きくなり、蒸発潜熱が小さいほど大きくなる。圧力損失が小さいほど、仕事損失が小さくなるため、機器性能が向上する。
 なお、本開示において、圧力損失は、式の後半の括弧内を示し、R410Aに対する相対圧力損失にて示す。
Figure JPOXMLDOC01-appb-M000505


Here, the values in parentheses in the first half of the formula are determined by the specifications of the dimensions and performance of the parts that make up the refrigeration cycle. On the other hand, since the values in the latter half of the parentheses are determined by the thermal properties of the refrigerant, the values in the latter half of the parentheses should be taken into consideration when the device specifications and device performance are the same. Therefore, the pressure loss decreases as the specific volume of the refrigerant decreases and the latent heat of vaporization increases, and increases as the specific volume of the refrigerant increases and the latent heat of vaporization decreases. The smaller the pressure loss, the smaller the work loss, so the equipment performance is improved.
In the present disclosure, pressure loss is shown in parentheses in the latter half of the formula, and is shown as relative pressure loss with respect to R410A.
 本開示の作動媒体は、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動媒体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の熱サイクルシステム用の作動媒体として好適に使用可能である。 The working medium of the present disclosure is a refrigerant for refrigerators, a refrigerant for air conditioners, a working medium for power generation systems (waste heat recovery power generation, etc.), a working medium for latent heat transport devices (heat pipes, etc.), a heat cycle such as a secondary cooling medium It can be suitably used as a working medium for systems.
<熱サイクルシステム用組成物>
 本開示の作動媒体は、熱サイクルシステムへの適用に際して、通常、潤滑油と混合して熱サイクルシステム用組成物として使用することができる。本開示の熱サイクルシステム用組成物は、本開示の作動媒体と、潤滑油と、を含む。本開示の熱サイクルシステム用組成物は、本開示の作動媒体、及び、潤滑油以外に、さらに、安定剤、漏れ検出物質等の公知の添加剤を含有してもよい。
<Composition for heat cycle system>
When applied to a heat cycle system, the working medium of the present disclosure can be used as a composition for a heat cycle system, usually by being mixed with a lubricating oil. A composition for a thermal cycle system of the present disclosure includes a working medium of the present disclosure and lubricating oil. The composition for a thermal cycle system of the present disclosure may further contain known additives such as stabilizers and leak detection substances in addition to the working medium and lubricating oil of the present disclosure.
(潤滑油)
 潤滑油の種類は特に限定されないが、作動媒体に含まれるプロパン、HFO-1123、及び第3成分に対する溶解性が大きく変化しない潤滑油を選択することが好ましい。具体的には、作動媒体が潤滑油と接触して、作動媒体に含まれる成分の一部が潤滑油に溶解した際に、溶解せずに残存する作動媒体中の各成分(プロパン、HFO-1123、第3成分等)の含有量が、作動媒体中の各成分の含有量に対して±5質量%以内であることが好ましい。
(Lubricant)
The type of lubricating oil is not particularly limited, but it is preferable to select a lubricating oil that does not greatly change the solubility of propane, HFO-1123, and the third component contained in the working medium. Specifically, when the working medium contacts the lubricating oil and some of the components contained in the working medium dissolve in the lubricating oil, each component (propane, HFO- 1123, third component, etc.) is preferably within ±5% by mass of the content of each component in the working medium.
 潤滑油としては、熱サイクルシステムに用いられる公知の潤滑油が挙げられる。潤滑油は、熱サイクルシステム用組成物に、上記作動媒体とともに含有され、熱サイクルシステム内を循環し、特に、熱サイクルシステム内の圧縮機において潤滑油として機能する。熱サイクルシステムにおいて、潤滑油は、潤滑性、及び、圧縮機の密閉性を確保しつつ、低温条件下で作動媒体に対して相溶性が充分あるものが好ましい。このような観点から、潤滑油の40℃における動粘度は1~750mm/secが好ましく、1~400mm/secがより好ましい。また、100℃における動粘度は1~100mm/secが好ましく、1~50mm/secであることがより好ましい。 Lubricating oils include known lubricating oils used in thermal cycle systems. The lubricating oil is contained in the heat cycle system composition together with the working medium, circulates in the heat cycle system, and particularly functions as a lubricating oil in the compressor in the heat cycle system. In the heat cycle system, it is preferable that the lubricating oil has sufficient compatibility with the working medium under low-temperature conditions while ensuring lubricity and airtightness of the compressor. From this point of view, the kinematic viscosity of the lubricating oil at 40° C. is preferably 1 to 750 mm 2 /sec, more preferably 1 to 400 mm 2 /sec. Also, the kinematic viscosity at 100° C. is preferably 1 to 100 mm 2 /sec, more preferably 1 to 50 mm 2 /sec.
 潤滑油としては、例えば、エステル系潤滑油、エーテル系潤滑油、フッ素系潤滑油、炭化水素系合成油、及び鉱物油が挙げられる。 Examples of lubricating oils include ester-based lubricating oils, ether-based lubricating oils, fluorine-based lubricating oils, hydrocarbon-based synthetic oils, and mineral oils.
 エステル系潤滑油は、分子内にエステル結合を有する油状のエステル化合物である。エステル系潤滑油としては、例えば、二塩基酸エステル、ポリオールエステル、コンプレックスエステル、及びポリオール炭酸エステルが挙げられる。 Ester-based lubricating oil is an oily ester compound with an ester bond in the molecule. Ester-based lubricating oils include, for example, dibasic acid esters, polyol esters, complex esters, and polyol carbonates.
 二塩基酸エステルとしては、例えば、炭素数5~10の二塩基酸(グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等)と、直鎖アルキル基又は分枝アルキル基を有する炭素数1~15の一価アルコール(メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、2-エチルヘキサノール、イソデシルアルコール、3-エチル-3-ヘキサノール等)とのエステルが好ましい。具体的には、グルタル酸ジトリデシル、アジピン酸ジ(2-エチルヘキシル)、アジピン酸ジイソデシル、アジピン酸ジトリデシル、及びセバシン酸ジ(3-エチル3-ヘキシル)が挙げられる。 The dibasic acid ester includes, for example, a dibasic acid having 5 to 10 carbon atoms (glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.) and a linear or branched alkyl group. monohydric alcohol having 1 to 15 carbon atoms (methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, 2-ethylhexanol , isodecyl alcohol, 3-ethyl-3-hexanol, etc.) are preferred. Specific examples include ditridecyl glutarate, di(2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, and di(3-ethyl-3-hexyl) sebacate.
 ポリオールエステルとは、ポリオールと脂肪酸(1価の脂肪族カルボン酸)とから合成されるエステルである。 A polyol ester is an ester synthesized from a polyol and a fatty acid (monohydric aliphatic carboxylic acid).
 ポリオールエステルは、ジオール(エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、1,5-ペンタジオール、ネオペンチルグリコール、1,7-ヘプタンジオール、1,12-ドデカンジオール等)又は水酸基を3~20個有するポリオール(トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスリトール、グリセリン、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物等)と、炭素数6~20の脂肪酸(ヘキサン酸、ヘプタン酸、オクタン酸、2-エチルヘキサン酸、ペラルゴン酸、デカン酸、ウンデカン酸、ドデカン酸、エイコサン酸、オレイン酸等の直鎖又は分枝の脂肪酸、もしくはα炭素原子が4級である脂肪酸等)とのエステルであることが好ましい。
 ポリオールエステルは、遊離の水酸基を有していてもよい。
Polyol esters include diols (ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 1,5-pentadiol, neopentyl glycol, 1,7-heptanediol, , 1,12-dodecanediol, etc.) or a polyol having 3 to 20 hydroxyl groups (trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, glycerin, sorbitol, sorbitan, sorbitol glycerin condensate, etc.) and a carbon number 6 to 20 fatty acids (straight or branched fatty acids such as hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, pelargonic acid, decanoic acid, undecanoic acid, dodecanoic acid, eicosanoic acid, oleic acid, or α Esters with quaternary carbon atoms, such as fatty acids, are preferred.
The polyol ester may have free hydroxyl groups.
 ポリオールエステルは、ヒンダードアルコール(例えば、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスルトール等)のエステル、具体的には、トリメチロールプロパントリペラルゴネート、ペンタエリスリトール2-エチルヘキサノエート、又はペンタエリスリトールテトラペラルゴネートであることがより好ましい。 Polyol esters are esters of hindered alcohols (e.g., neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, etc.), specifically trimethylolpropane tripelargonate, pentaerythritol 2 - Ethylhexanoate or pentaerythritol tetrapelargonate is more preferred.
 コンプレックスエステルとは、数種のエステルを組み合わせた(コンプレックス化した)ものである。コンプレックスエステルは、脂肪酸及び二塩基酸の少なくとも一方と、一価アルコール及びポリオールの少なくとも一方とから合成されるエステルの混合物である。脂肪酸、二塩基酸、一価アルコール及びポリオールとしては、上記二塩基酸エステル及びポリオールエステルで挙げたものと同様のものが挙げられる。 A complex ester is a combination (complex) of several esters. Complex esters are mixtures of esters synthesized from at least one of fatty acids and dibasic acids and at least one of monohydric alcohols and polyols. Examples of fatty acids, dibasic acids, monohydric alcohols and polyols include the same as those exemplified for the above dibasic acid esters and polyol esters.
 ポリオール炭酸エステルとは、炭酸とポリオールとのエステル、又は、環状アルキレンカーボネートの開環重合体である。
 ポリオールとしては、上記ポリオールエステルで挙げたものと同様のものが挙げられる。
A polyol carbonate is an ester of carbonic acid and a polyol, or a ring-opening polymer of a cyclic alkylene carbonate.
Examples of the polyol include the same ones as those mentioned in the above polyol ester.
 エーテル系潤滑油とは、分子内にエーテル結合を有する油状のエーテル化合物である。エーテル系潤滑油としては、例えば、ポリアルキレングリコール及びポリビニルエーテルが挙げられる。 Ether-based lubricating oil is an oily ether compound with an ether bond in the molecule. Ether-based lubricating oils include, for example, polyalkylene glycols and polyvinyl ethers.
 ポリアルキレングリコールとしては、例えば、ポリアルキレンポリオール、及び、ポリアルキレンポリオールの水酸基の一部又は全部をアルキルエーテル化した化合物が挙げられる。ポリアルキレングリコールは、例えば、炭素数2~4のアルキレンオキシド(例えば、エチレンオキシド、プロピレンオキシド等)を、水、アルカンモノオール、ジオール、又はポリオールを開始剤として重合させることにより得られる。 Examples of polyalkylene glycols include polyalkylene polyols and compounds obtained by alkyl-etherifying some or all of the hydroxyl groups of polyalkylene polyols. Polyalkylene glycol can be obtained, for example, by polymerizing an alkylene oxide having 2 to 4 carbon atoms (eg, ethylene oxide, propylene oxide, etc.) using water, an alkanemonool, a diol, or a polyol as an initiator.
 ポリアルキレングリコール1分子中のオキシアルキレン単位は、1種であってもよく、2種以上であってもよい。ポリアルキレングリコールは、1分子中に少なくともオキシプロピレン単位が含まれる化合物が好ましく、ポリプロピレングリコール又はポリプロピレングリコールジアルキルエーテルがより好ましい。 The number of oxyalkylene units in one polyalkylene glycol molecule may be one, or two or more. The polyalkylene glycol is preferably a compound containing at least oxypropylene units in one molecule, more preferably polypropylene glycol or polypropylene glycol dialkyl ether.
 ポリビニルエーテルとは、少なくともビニルエーテルモノマーに由来する構成単位を有する重合体である。 A polyvinyl ether is a polymer having at least a structural unit derived from a vinyl ether monomer.
 ポリビニルエーテルとしては、例えば、ビニルエーテルモノマーの重合体、ビニルエーテルモノマーと不飽和二重結合を有する炭化水素モノマーとの共重合体、及び、ビニルエーテルモノマーとポリアルキレンオキシド鎖を有するビニルエーテルモノマーとの共重合体が挙げられる。ポリアルキレンオキシド鎖に含まれるアルキレンオキシドとしては、エチレンオキシド又はプロピレンオキシドが好ましい。重合体は、ブロック共重合体及びランダム共重合体のいずれであってもよい。 Examples of polyvinyl ether include polymers of vinyl ether monomers, copolymers of vinyl ether monomers and hydrocarbon monomers having unsaturated double bonds, and copolymers of vinyl ether monomers and vinyl ether monomers having a polyalkylene oxide chain. are mentioned. Ethylene oxide or propylene oxide is preferred as the alkylene oxide contained in the polyalkylene oxide chain. The polymer may be either a block copolymer or a random copolymer.
 ビニルエーテルモノマーはアルキルビニルエーテルが好ましい。アルキルビニルエーテに含まれるアルキル基は、炭素数6以下のアルキル基が好ましい。また、ビニルエーテルモノマーは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 不飽和二重結合を有する炭化水素モノマーとしては、エチレン、プロピレン、各種ブテン、各種ペンテン、各種ヘキセン、各種ヘプテン、各種オクテン、ジイソブチレン、トリイソブチレン、スチレン、α-メチルスチレン、及び各種アルキル置換スチレンが挙げられる。不飽和二重結合を有する炭化水素モノマーは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Preferably, the vinyl ether monomer is an alkyl vinyl ether. The alkyl group contained in the alkyl vinyl ether is preferably an alkyl group having 6 or less carbon atoms. Also, the vinyl ether monomers may be used singly or in combination of two or more.
Hydrocarbon monomers having unsaturated double bonds include ethylene, propylene, various butenes, various pentenes, various hexenes, various heptenes, various octenes, diisobutylene, triisobutylene, styrene, α-methylstyrene, and various alkyl-substituted styrenes. is mentioned. The hydrocarbon monomers having unsaturated double bonds may be used singly or in combination of two or more.
 フッ素系潤滑油とは、分子内にフッ素原子を有する油状の化合物である。 A fluorine-based lubricating oil is an oily compound that has a fluorine atom in its molecule.
 フッ素系潤滑油としては、後述の鉱物油又は炭化水素系合成油(例えば、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等)の水素原子をフッ素原子に置換した化合物、ペルフルオロポリエーテル油、及びフッ素化シリコーン油が挙げられる。 As fluorine-based lubricating oils, mineral oils or hydrocarbon-based synthetic oils (e.g., poly-α-olefins, alkylbenzenes, alkylnaphthalenes, etc.) described below in which hydrogen atoms are substituted with fluorine atoms, perfluoropolyether oils, and fluorinated A silicone oil is mentioned.
 鉱物油とは、原油を常圧蒸留又は減圧蒸留して得られた潤滑油留分を、精製処理(例えば、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、白土処理等)を適宜組み合わせて精製したものである。鉱物油としては、例えば、パラフィン系鉱物油、及び、ナフテン系鉱物油が挙げられる。 Mineral oil is a lubricating oil fraction obtained by atmospheric distillation or vacuum distillation of crude oil, and is subjected to refining treatment (e.g., solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrogenation Refining, white clay treatment, etc.) are combined as appropriate. Mineral oils include, for example, paraffinic mineral oils and naphthenic mineral oils.
 炭化水素系合成油とは、分子が炭素原子と水素原子のみで構成され、油状の合成された化合物である。炭化水素系合成油としては、例えば、ポリα-オレフィン、アルキルベンゼン、及びアルキルナフタレンが挙げられる。 A hydrocarbon-based synthetic oil is an oily synthetic compound whose molecules are composed only of carbon and hydrogen atoms. Hydrocarbon synthetic oils include, for example, polyα-olefins, alkylbenzenes, and alkylnaphthalenes.
 潤滑油は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 潤滑油は、作動媒体との相溶性の点から、ポリオールエステル及びポリアルキレングリコールの一方又は両方が好ましく、安定化剤によって顕著な酸化防止効果が得られる点から、ポリアルキレングリコールがより好ましい。
Lubricating oils may be used singly or in combination of two or more.
The lubricating oil is preferably one or both of a polyol ester and a polyalkylene glycol from the viewpoint of compatibility with the working medium, and more preferably a polyalkylene glycol from the viewpoint that a significant antioxidant effect can be obtained by the stabilizer.
 熱サイクルシステム用組成物中、潤滑油の含有量は、本開示の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、10~100質量部が好ましく、20~50質量部がより好ましい。 The content of the lubricating oil in the composition for a heat cycle system may be within a range that does not significantly reduce the effects of the present disclosure, and is preferably 10 to 100 parts by mass, preferably 20 to 50 parts by mass, relative to 100 parts by mass of the working medium. part is more preferred.
(安定剤)
 安定剤は、熱及び酸化に対する作動媒体の安定性を向上させる成分である。安定剤としては、例えば、耐酸化性向上剤、耐熱性向上剤、及び金属不活性剤が挙げられる。
(stabilizer)
Stabilizers are ingredients that improve the stability of the working medium against heat and oxidation. Stabilizers include, for example, oxidation resistance improvers, heat resistance improvers, and metal deactivators.
 耐酸化性向上剤は、熱サイクルシステムにおいて、作動媒体の圧縮及び加熱が繰り返し行われる条件下で、主に酸素による作動媒体の分解を抑制することで作動媒体を安定化させる安定剤である。 The oxidation resistance improver is a stabilizer that stabilizes the working medium by suppressing decomposition of the working medium mainly by oxygen under conditions where the working medium is repeatedly compressed and heated in a thermal cycle system.
 耐熱性向上剤は、熱サイクルシステムにおいて、作動媒体の圧縮及び加熱が繰り返し行われる条件下で、主に熱による作動媒体の分解を抑制することで作動媒体を安定化させる安定剤である。 A heat resistance improver is a stabilizer that stabilizes the working medium by suppressing decomposition of the working medium mainly due to heat under conditions where the working medium is repeatedly compressed and heated in a thermal cycle system.
 耐酸化性向上剤及び耐熱性向上剤としては、例えば、N,N’-ジフェニルフェニレンジアミン、p-オクチルジフェニルアミン、p,p’-ジオクチルジフェニルアミン、N-フェニル-1-ナフチルアミン、N-フェニル-2-ナフチルアミン、N-(p-ドデシル)フェニル-2-ナフチルアミン、ジ-1-ナフチルアミン、ジ-2-ナフチルアミン、N-アルキルフェノチアジン、6-(t-ブチル)フェノール、2,6-ジ-(t-ブチル)フェノール、4-メチル-2,6-ジ-(t-ブチル)フェノール、及び4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)が挙げられる。耐酸化性向上剤及び耐熱性向上剤はそれぞれ、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of oxidation resistance improvers and heat resistance improvers include N,N'-diphenylphenylenediamine, p-octyldiphenylamine, p,p'-dioctyldiphenylamine, N-phenyl-1-naphthylamine, and N-phenyl-2. -naphthylamine, N-(p-dodecyl)phenyl-2-naphthylamine, di-1-naphthylamine, di-2-naphthylamine, N-alkylphenothiazine, 6-(t-butyl)phenol, 2,6-di-(t -butyl)phenol, 4-methyl-2,6-di-(t-butyl)phenol, and 4,4'-methylenebis(2,6-di-t-butylphenol). Each of the oxidation resistance improver and the heat resistance improver may be used alone, or two or more thereof may be used in combination.
 金属不活性剤は、熱サイクルシステム内の金属材料が作動媒体及び潤滑油に悪影響を及ぼさないようにする目的、又は、作動媒体及び潤滑油から上記金属材料を保護する目的で用いられる。具体的には、金属材料の表面に被膜を形成する薬剤等が挙げられる。 The metal deactivator is used for the purpose of preventing the metal materials in the thermal cycle system from adversely affecting the working medium and lubricating oil, or for the purpose of protecting the metal materials from the working medium and lubricating oil. Specific examples include agents that form a film on the surface of the metal material.
 金属不活性剤としては、例えば、イミダゾール、ベンズイミダゾール、2-メルカプトベンズチアゾール、2,5-ジメルカプトチアジアゾール、サリシリジン-プロピレンジアミン、ピラゾール、ベンゾトリアゾール、トリルトリアゾール、2-メチルベンズイミダゾール、3,5-ジメチルピラゾール、メチレンビス-ベンゾトリアゾール;有機酸又はそれらのエステル;第1級、第2級又は第3級の脂肪族アミン;有機酸又は無機酸のアミン塩;複素環式窒素含有化合物、アルキル酸ホスフェートのアミン塩又はそれらの誘導体が挙げられる。 Examples of metal deactivators include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimercaptothiadiazole, salicyridin-propylenediamine, pyrazole, benzotriazole, tolyltriazole, 2-methylbenzimidazole, 3,5 organic acids or their esters; primary, secondary or tertiary aliphatic amines; amine salts of organic or inorganic acids; heterocyclic nitrogen-containing compounds, alkyl acids. Amine salts of phosphates or derivatives thereof may be mentioned.
 熱サイクルシステム用組成物中、作動媒体の全量(100質量%)に対する安定剤の含有量は、本開示の効果を著しく低下させない範囲であれば特に限定されないが、5質量%以下が好ましく、1質量%以下がより好ましい。 In the composition for a heat cycle system, the content of the stabilizer with respect to the total amount (100% by mass) of the working medium is not particularly limited as long as it does not significantly reduce the effects of the present disclosure, but is preferably 5% by mass or less. % by mass or less is more preferable.
(漏れ検出物質等の公知の添加剤)
 漏れ検出物質とは、熱サイクルシステムから作動媒体等が漏れた場合に、臭い、色等で検出しやすいようにする目的で添加される物質をいう。
(Known additives such as leak detection substances)
A leak detection substance is a substance added for the purpose of facilitating detection by odor, color, etc. when a working medium or the like leaks from a thermal cycle system.
 漏れ検出物質としては、例えば、紫外線蛍光染料、臭気ガス、及び臭いマスキング剤が挙げられる。
 紫外線蛍光染料としては、例えば、米国特許第4249412号明細書、特表平10-502737号公報、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、公知の紫外線蛍光染料が挙げられる。
Leak detection materials include, for example, ultraviolet fluorescent dyes, odorous gases, and odor masking agents.
Examples of ultraviolet fluorescent dyes include, for example, US Pat. known ultraviolet fluorescent dyes such as those described above.
 臭いマスキング剤とは、芳香を改善する目的で添加される物質をいう。
 臭いマスキング剤としては、例えば、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、公知の香料が挙げられる。
Odor masking agents refer to substances added for the purpose of improving the fragrance.
Examples of the odor masking agent include known perfumes such as those described in JP-A-2008-500437 and JP-A-2008-531836.
 漏れ検出物質を用いる場合には、作動媒体への漏れ検出物質の溶解性を向上させる可溶化剤を用いてもよい。
 可溶化剤としては、例えば、特表2007-511645号公報、特表2008-500437号公報、及び特表2008-531836号公報に記載されたものが挙げられる。
When a leak detection substance is used, a solubilizer that improves the solubility of the leak detection substance in the working medium may be used.
Examples of solubilizers include those described in JP-T-2007-511645, JP-T-2008-500437, and JP-T-2008-531836.
 熱サイクルシステム用組成物中、作動媒体の全量(100質量%)に対する漏れ検出物質の含有量は、本開示の効果を著しく低下させない範囲であれば特に限定されないが、2質量%以下が好ましく、0.5質量%以下がより好ましい。 The content of the leak detection substance relative to the total amount (100% by mass) of the working medium in the composition for a heat cycle system is not particularly limited as long as it does not significantly reduce the effects of the present disclosure, but is preferably 2% by mass or less, 0.5% by mass or less is more preferable.
<熱サイクルシステム>
 本開示の熱サイクルシステムは、本開示の作動媒体、又は、本開示の熱サイクルシステム用組成物を用いた熱サイクルシステムである。
<Heat cycle system>
The heat cycle system of the present disclosure is a heat cycle system using the working fluid of the present disclosure or the composition for heat cycle system of the present disclosure.
 本開示の熱サイクルシステムは、凝縮器で得られる温熱を利用するヒートポンプシステムであってもよく、蒸発器で得られる冷熱を利用する冷凍サイクルシステムであってもよい。 The heat cycle system of the present disclosure may be a heat pump system that uses hot heat obtained from a condenser, or a refrigeration cycle system that uses cold heat obtained from an evaporator.
 本開示の熱サイクルシステムとして、具体的には、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置、及び二次冷却機が挙げられる。中でも、本開示の熱サイクルシステムは、より高温の作動環境でも安定してかつ安全に熱サイクル性能を発揮できるため、屋外等に設置されることが多い空調機器として用いられることが好ましい。また、本開示の熱サイクルシステムは、冷凍・冷蔵機器として用いられることも好ましい。 Specific examples of the heat cycle system of the present disclosure include freezing/refrigerating equipment, air conditioning equipment, power generation systems, heat transport devices, and secondary coolers. Above all, the heat cycle system of the present disclosure can stably and safely exhibit heat cycle performance even in a higher temperature operating environment, so it is preferably used as an air conditioner that is often installed outdoors. Also, the heat cycle system of the present disclosure is preferably used as a freezer/refrigerator.
 空調機器として、具体的には、ルームエアコン、パッケージエアコン(店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン等)、ガスエンジンヒートポンプ、列車用空調装置、及び自動車用空調装置が挙げられる。 Specific examples of air conditioning equipment include room air conditioners, package air conditioners (package air conditioners for stores, package air conditioners for buildings, package air conditioners for facilities, etc.), gas engine heat pumps, air conditioners for trains, and air conditioners for automobiles.
 冷凍・冷蔵機器として、具体的には、ショーケース(内蔵型ショーケース、別置型ショーケース等)、業務用冷凍・冷蔵庫、自動販売機、及び製氷機が挙げられる。 Specific examples of freezing/refrigerating equipment include showcases (built-in showcases, separate showcases, etc.), commercial freezers/refrigerators, vending machines, and ice machines.
 発電システムとしては、ランキンサイクルシステムによる発電システムが好ましい。発電システムとして、具体的には、蒸発器において地熱エネルギー、太陽熱、50℃以上200℃以下程度の中~高温度域廃熱等により作動媒体を加熱し、高温高圧状態の蒸気となった作動媒体を膨張機にて断熱膨張させ、該断熱膨張によって発生する仕事によって発電機を駆動させ、発電を行うシステムが例示される。 As a power generation system, a power generation system based on the Rankine cycle system is preferable. Specifically, as a power generation system, the working medium is heated by geothermal energy, solar heat, waste heat in a medium to high temperature range of 50 ° C to 200 ° C in an evaporator, etc., and the working medium becomes steam in a high temperature and high pressure state. is adiabatically expanded by an expander, and the work generated by the adiabatic expansion drives a generator to generate power.
 熱輸送装置としては、潜熱輸送装置が好ましい。潜熱輸送装置としては、装置内に封入された作動媒体の蒸発、沸騰、凝縮等の現象を利用して潜熱輸送を行うヒートパイプ及び二相密閉型熱サイフォン装置が挙げられる。ヒートパイプは、半導体素子又は電子機器の発熱部の冷却装置等、比較的小型の冷却装置に適用される。二相密閉型熱サイフォン装置は、ウィッグを必要とせず構造が簡単であることから、ガス-ガス型熱交換器、道路の融雪促進、及び凍結防止に広く利用される。 A latent heat transport device is preferable as a heat transport device. Examples of latent heat transport devices include heat pipes and two-phase closed thermosiphon devices that transport latent heat using phenomena such as evaporation, boiling, and condensation of a working medium enclosed in the device. A heat pipe is applied to a relatively small cooling device such as a cooling device for a semiconductor device or a heat-generating part of an electronic device. The two-phase closed thermosiphon device does not require a wig and has a simple structure, so it is widely used for gas-to-gas heat exchangers, promoting snow melting on roads, and preventing freezing.
<組成物の保存方法>
 本開示の組成物の保存方法は、プロパンと、HFO-1123及びHFO-1132(E)の少なくとも一方と、HFO-1234yf、HFO-1234ze(E)、HFC-32、CO、CFI、HCFO-1224yd(Z)、HCFO-1224yd(E)、HFO-1233zd(E)、HFO-1336mzz(E)、HFO-1225ye(Z)、及びHFO-1225ye(E)からなる群より選択される少なくとも1種と、を含有する組成物を容器に充填し、容器を密閉し、容器内で気相と液相とが共存する気液状態で組成物を保存する保存方法であって、組成物の燃焼熱量は、19.000MJ/kg未満であり、気相の、温度25℃における酸素の濃度を3000体積ppm以下に保持する。
<How to store the composition>
A method of preserving the composition of the present disclosure includes propane, at least one of HFO-1123 and HFO-1132(E), HFO-1234yf, HFO-1234ze(E), HFC-32, CO 2 , CF 3 I, at least selected from the group consisting of HCFO-1224yd(Z), HCFO-1224yd(E), HFO-1233zd(E), HFO-1336mzz(E), HFO-1225ye(Z), and HFO-1225ye(E) A storage method of filling a container with a composition containing the above, sealing the container, and storing the composition in a gas-liquid state in which a gas phase and a liquid phase coexist in the container, wherein the composition is The heat of combustion is less than 19.000 MJ/kg, and the concentration of oxygen in the gas phase at a temperature of 25° C. is kept below 3000 ppm by volume.
 組成物の好ましい態様は、上記作動媒体の好ましい態様と同様である。 Preferred aspects of the composition are the same as the preferred aspects of the working medium described above.
 組成物を容器に充填する方法は特に限定されず、通常公知の方法を用いることができる。例えば、組成物に含まれる全ての成分を混合した後、混合された組成物を容器に導入してもよい。また、組成物に含まれる各成分を個別に容器に導入し、容器内で各成分を混合させてもよい。また、組成物に含まれる成分のうち、一部の成分のみを混合し、混合した成分と残りの成分とを個別に容器に導入し、容器内で各成分を混合させてもよい。 The method of filling the container with the composition is not particularly limited, and generally known methods can be used. For example, after all ingredients of the composition are mixed, the mixed composition may be introduced into a container. Alternatively, each component contained in the composition may be individually introduced into a container and mixed in the container. Alternatively, only some of the components contained in the composition may be mixed, the mixed components and the remaining components may be separately introduced into a container, and the components may be mixed in the container.
 本開示の組成物の保存方法では、液状の組成物を容器に充填することが好ましい。組成物を液状にする方法としては、組成物を冷却する方法、及び、組成物を加圧する方法が挙げられる。なお、「液状の組成物を容器に充填する」とは、液状の組成物を容器に導入する態様だけでなく、組成物に含まれる各成分(ただし、一部の成分をあらかじめ混合してもよい)を個別に容器に導入して容器内で液状の組成物を得る態様も包含する。 In the method for storing the composition of the present disclosure, it is preferable to fill the container with the liquid composition. Methods of making the composition liquid include a method of cooling the composition and a method of pressurizing the composition. In addition, "filling a liquid composition into a container" means not only the mode of introducing the liquid composition into the container, but also each component contained in the composition (however, even if some components are mixed in advance) (good) is separately introduced into a container to obtain a liquid composition in the container.
 組成物を保存するための容器は、内部圧力下において気液状態で組成物を保存可能な容器であれば特に限定されない。容器としては、例えば、固定した保存容器である貯蔵タンク、輸送に使用される充填ボンベ、2次充填ボンベ(サービス缶)等の耐圧容器が挙げられる。また、容器は、一時的に保存するための簡易な容器であってもよい。 The container for storing the composition is not particularly limited as long as it can store the composition in a gas-liquid state under internal pressure. Examples of containers include pressure-resistant containers such as storage tanks that are fixed storage containers, filled cylinders used for transportation, and secondary filled cylinders (service cans). Also, the container may be a simple container for temporary storage.
 容器の材質は特に限定されず、例えば、ガラス、炭素鋼、マンガン鋼、クロムモリブデン鋼、ステンレス鋼、及びアルミニウム合金が挙げられる。また、容器の内壁には樹脂等のライニングが施されていてもよい。 The material of the container is not particularly limited, and examples include glass, carbon steel, manganese steel, chrome molybdenum steel, stainless steel, and aluminum alloy. Also, the inner wall of the container may be lined with resin or the like.
 気相の25℃における酸素の濃度は、3000体積ppm以下に保持される。気相における酸素の濃度が3000体積ppm以下であれば、組成物の重合反応等を抑制することができる。例えば、HFO-1123単体の保存方法と比較して、本開示の保存方法では、酸素の濃度が3000体積ppmと高くても重合反応等を抑制することができる。この理由は、以下のように推測される。
 HFO-1123の酸素による重合は、不飽和結合に酸素が反応することで生じる過酸化物等の副生物を経由し、ラジカル活性種が重合の起点となって、HFO-1123が連鎖的に反応することにより進行すると考えられる。しかし、プロパンのような水素原子を多く含む炭化水素が連鎖移動剤としてラジカル活性種の末端を不活化すると、重合の連鎖反応が停止する。本開示の保存方法における組成物には、HFO-1123と共にプロパンが含まれるため、酸素の濃度が3000体積ppmと高くても重合反応等を抑制することができると考えられる。
The concentration of oxygen in the gas phase at 25° C. is kept below 3000 ppm by volume. If the oxygen concentration in the gas phase is 3000 ppm by volume or less, the polymerization reaction of the composition can be suppressed. For example, compared to the storage method of HFO-1123 alone, the storage method of the present disclosure can suppress polymerization reactions and the like even when the oxygen concentration is as high as 3000 ppm by volume. The reason for this is presumed as follows.
Polymerization of HFO-1123 with oxygen proceeds through by-products such as peroxides generated by the reaction of oxygen with unsaturated bonds, and radical active species act as starting points for polymerization, and HFO-1123 undergoes a chain reaction. It is thought that it progresses by doing. However, when a hydrocarbon containing many hydrogen atoms such as propane acts as a chain transfer agent to inactivate the terminal of the radical active species, the polymerization chain reaction is terminated. Since the composition in the storage method of the present disclosure contains propane together with HFO-1123, it is thought that even if the oxygen concentration is as high as 3000 ppm by volume, the polymerization reaction and the like can be suppressed.
 気相の25℃における酸素の濃度は、1~3000体積ppmであることが好ましく、3~1000体積ppmであることがより好ましく、3~300体積ppmであることがさらに好ましく、3~50体積ppmであることが特に好ましい。酸素の濃度が1体積ppm以上であると、生産性が向上する。
 気相における酸素の濃度は、ガスクロマトグラフィーにより測定できる。
The concentration of oxygen in the gas phase at 25 ° C. is preferably 1 to 3000 volume ppm, more preferably 3 to 1000 volume ppm, even more preferably 3 to 300 volume ppm, 3 to 50 volume ppm ppm is particularly preferred. Productivity improves that the concentration of oxygen is 1 volume ppm or more.
The concentration of oxygen in the gas phase can be measured by gas chromatography.
 本開示の組成物の保存方法では、容器内を脱気した後、液状の組成物を容器に充填することが好ましい。容器内を脱気する方法は特に限定されず、通常公知の方法を用いることができる。 In the method for storing the composition of the present disclosure, it is preferable to fill the container with the liquid composition after degassing the inside of the container. The method for degassing the inside of the container is not particularly limited, and a commonly known method can be used.
 容器内を脱気することにより、容器内の酸素が除去される。酸素の濃度が低減された容器に、液状の組成物を充填すると、容器内の空間は、液体からの蒸気によって速やかに飽和される。そして、飽和蒸気により満たされた気相における酸素の濃度は3000体積ppm以下となる。
 なお、容器を脱気する際には、酸素とともに窒素等の非凝縮性気体も除去されるが、非凝縮性気体の合計含有量は、25℃で気相の1.5体積%(15000体積ppm)以下とすることが好ましい。
Oxygen in the container is removed by degassing the container. When a container having a reduced concentration of oxygen is filled with a composition in liquid form, the space within the container is quickly saturated with vapor from the liquid. Then, the concentration of oxygen in the gas phase filled with saturated steam is 3000 ppm by volume or less.
When the container is degassed, non-condensable gases such as nitrogen are also removed together with oxygen. ppm) or less.
 本開示の組成物の保存方法では、保存時の圧力及び温度は、容器の設計圧力及び温度に応じて、規定以下の状態に維持する必要がある。特に規定が無い場合は、安全性の観点から、保存時の温度は、60℃以下が好ましく、50℃以下がより好ましく、40℃以下がより好ましく、30℃以下がさらに好ましい。保存時の温度の下限値は特に限定されないが、組成物の沸点以下の場合に容器内が負圧になり、空気、水分等が混入する可能性があることから、保存時の温度は、-30℃以上が好ましく、-15℃以上がより好ましく、0℃以上がさらに好ましい。 In the method for storing the composition of the present disclosure, the pressure and temperature during storage must be maintained below the prescribed level according to the design pressure and temperature of the container. Unless otherwise specified, the temperature during storage is preferably 60° C. or lower, more preferably 50° C. or lower, more preferably 40° C. or lower, and even more preferably 30° C. or lower, from the viewpoint of safety. The lower limit of the temperature during storage is not particularly limited, but when the temperature is below the boiling point of the composition, the inside of the container becomes negative pressure, and air, moisture, etc. may be mixed, so the temperature during storage is - 30° C. or higher is preferred, −15° C. or higher is more preferred, and 0° C. or higher is even more preferred.
 組成物は、例えば、直射日光が当たらない風通しのよい環境で保存できる。必要に応じて冷蔵設備を用いて保存してもよい。 The composition can be stored, for example, in a well-ventilated environment without direct sunlight. You may preserve|save using refrigeration equipment as needed.
 本開示の組成物の保存方法によれば、組成物の保存による品質劣化が抑えられる。
 例えば、保存中又は保存後の組成物が下記(1)~(4)のうちの1以上を満たすように品質を維持できる。下記(1)~(4)の2以上を満たすことが好ましく、3以上を満たすことがより好ましく、全部を満たすことが最も好ましい。(1)水分が500ppm以下。(2)蒸発残分が100ppm以下。(3)酸分が1ppm以下。(4)色相が無色透明。
According to the method for storing the composition of the present disclosure, quality deterioration due to storage of the composition is suppressed.
For example, the quality can be maintained so that the composition satisfies one or more of the following (1) to (4) during or after storage. Two or more of the following (1) to (4) are preferably satisfied, three or more are more preferable, and all of them are most preferable. (1) Moisture content is 500 ppm or less. (2) Evaporation residue is 100 ppm or less. (3) Acid content is 1 ppm or less. (4) Colorless and transparent in hue.
 本開示の組成物の保存方法によれば、気液状態で容器内に充填された組成物の重合反応等が抑制されるので、組成物の純度及び冷媒性能を維持することができる。また、容器内に、例えば、固体状の重合生成物が生じないので、バルブ等の閉塞、冷媒システムへの異物混入が生じるおそれがない。また、低コストで組成物を保存することができる。 According to the composition storage method of the present disclosure, the polymerization reaction and the like of the composition filled in the container in a gas-liquid state is suppressed, so the purity and refrigerant performance of the composition can be maintained. In addition, since no solid polymerized product is generated in the container, there is no risk of blockage of valves or contamination of the refrigerant system. Also, the composition can be stored at low cost.
 本開示の組成物の保存方法によれば、組成物を長期間安定して保存できる。例えば、組成物を容器中で1週間以上、1か月以上、3か月以上、6か月以上、又は1年以上にわたって保存してもよい。 According to the method for storing the composition of the present disclosure, the composition can be stably stored for a long period of time. For example, the composition may be stored in the container for 1 week or more, 1 month or more, 3 months or more, 6 months or more, or 1 year or more.
<組成物の保存容器>
 本開示の組成物の保存容器の一態様は、気相と液相とが共存する状態で、プロパンと、HFO-1123及びHFO-1132(E)の少なくとも一方と、HFO-1234yf、HFO-1234ze(E)、HFC-32、CO、CFI、HCFO-1224yd(Z)、HCFO-1224yd(E)、HFO-1233zd(E)、HFO-1336mzz(E)、HFO-1225ye(Z)、及びHFO-1225ye(E)からなる群より選択される少なくとも1種と、を含有する組成物が充填されている、密閉された保存容器であって、組成物の燃焼熱量は、19.000MJ/kg未満であり、気相の、温度25℃における酸素の濃度が3000体積ppm以下である。
<Storage container for composition>
One aspect of the storage container of the composition of the present disclosure is propane, at least one of HFO-1123 and HFO-1132(E), and HFO-1234yf and HFO-1234ze in a state where a gas phase and a liquid phase coexist. (E), HFC-32, CO 2 , CF 3 I, HCFO-1224yd (Z), HCFO-1224yd (E), HFO-1233zd (E), HFO-1336mzz (E), HFO-1225ye (Z), and at least one selected from the group consisting of HFO-1225ye (E). kg, and the concentration of oxygen in the gas phase at a temperature of 25° C. is 3000 ppm by volume or less.
 気相の25℃における酸素の濃度は、1~3000体積ppmであることが好ましく、3~1000体積ppmであることがより好ましく、3~300体積ppmであることがさらに好ましく、3~50体積ppmであることが特に好ましい。酸素の濃度が1体積ppm以上であると、生産性が向上する。 The concentration of oxygen in the gas phase at 25 ° C. is preferably 1 to 3000 volume ppm, more preferably 3 to 1000 volume ppm, even more preferably 3 to 300 volume ppm, 3 to 50 volume ppm ppm is particularly preferred. Productivity improves that the concentration of oxygen is 1 volume ppm or more.
 組成物に含まれる成分の好ましい態様は、上記作動媒体に含まれる成分の好ましい態様と同様である。 Preferred aspects of the components contained in the composition are the same as preferred aspects of the components contained in the working medium.
 保存容器の好ましい態様は、上記保存方法で用いられる容器の好ましい態様と同様である。 Preferred aspects of the storage container are the same as the preferred aspects of the container used in the storage method described above.
 また、本開示の組成物の保存容器の別の一態様は、プロパンと、HFO-1123及びHFO-1132(E)の少なくとも一方と、HFO-1234yf、HFO-1234ze(E)、HFC-32、CO、CFI、HCFO-1224yd(Z)、HCFO-1224yd(E)、HFO-1233zd(E)、HFO-1336mzz(E)、HFO-1225ye(Z)、及びHFO-1225ye(E)からなる群より選択される少なくとも1種と、水と、を含有する組成物が充填されている、密閉された保存容器であって、組成物の燃焼熱量は、19.000MJ/kg未満であり、水の含有量は、組成物の全量に対して500質量ppm以下である。 Another aspect of the storage container of the composition of the present disclosure is propane, at least one of HFO-1123 and HFO-1132(E), HFO-1234yf, HFO-1234ze(E), HFC-32, from CO 2 , CF 3 I, HCFO-1224yd(Z), HCFO-1224yd(E), HFO-1233zd(E), HFO-1336mzz(E), HFO-1225ye(Z), and HFO-1225ye(E) A sealed storage container filled with a composition containing at least one selected from the group consisting of and water, wherein the combustion heat of the composition is less than 19.000 MJ/kg, The content of water is 500 mass ppm or less based on the total amount of the composition.
 水の含有量は、組成物の全量に対して100質量ppm以下であることが好ましく、50ppm以下であることがより好ましい。水の含有量の下限値は特に限定されない。 The water content is preferably 100 mass ppm or less, more preferably 50 ppm or less, relative to the total amount of the composition. The lower limit of water content is not particularly limited.
 水の含有量は、試料をカールフィッシャー試薬に送り、カールフィッシャー電量滴定によって測定される。 The water content is measured by Karl Fischer coulometric titration by sending the sample to the Karl Fischer reagent.
 組成物に含まれる水以外の成分の好ましい態様は、上記作動媒体に含まれる成分の好ましい態様と同様である。 Preferred embodiments of the components other than water contained in the composition are the same as the preferred embodiments of the components contained in the working medium.
 保存容器の好ましい態様は、上記保存方法で用いられる容器の好ましい態様と同様である。 Preferred aspects of the storage container are the same as the preferred aspects of the container used in the storage method described above.
 本開示の組成物の保存容器では、保存時における水の含有量が500ppm以下であるため、組成物の保存による品質劣化が抑えられる。 In the storage container of the composition of the present disclosure, since the water content during storage is 500 ppm or less, quality deterioration due to storage of the composition is suppressed.
<付記>
 本開示の作動媒体の好ましい態様について付記する。
(付記1)
 プロパンと、
 1,1,2-トリフルオロエチレン及び(E)-1,2-ジフルオロエチレンの少なくとも一方と、
 2,3,3,3-テトラフルオロ-1-プロペン、(E)-1,3,3,3-テトラフルオロプロペン、ジフルオロメタン、CO、CFI、(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン、(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン、(E)-1-クロロ-3,3,3-トリフルオロプロペン、(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン、(Z)-1,2,3,3,3-ペンタフルオロプロペン、及び(E)-1,2,3,3,3-ペンタフルオロプロペンからなる群より選択される少なくとも1種と、を含有し、
 燃焼熱量が、19.000MJ/kg未満である作動媒体。
(付記2)
 前記2,3,3,3-テトラフルオロ-1-プロペン、前記(E)-1,3,3,3-テトラフルオロプロペン、前記ジフルオロメタン、前記CO、及び前記CFIからなる群より選択される少なくとも1種を含有する、付記1に記載の作動媒体。
(付記3)
 前記2,3,3,3-テトラフルオロ-1-プロペン、前記(E)-1,3,3,3-テトラフルオロプロペン、及び前記ジフルオロメタンからなる群より選択される少なくとも1種を含有する、付記1に記載の作動媒体。
(付記4)
 前記1,1,2-トリフルオロエチレンを含有する、付記1に記載の作動媒体。
(付記5)
 前記プロパンの含有量が、前記作動媒体の全量に対して1.0質量%以上である、付記1に記載の作動媒体。
(付記6)
 前記ジフルオロメタンを含有し、
 前記ジフルオロメタンの含有量が、前記作動媒体の全量に対して22.0質量%以下である、付記1に記載の作動媒体。
(付記7)
 前記COを含有し、
 前記COの含有量が、前記作動媒体の全量に対して15.0質量%以下である、付記1に記載の作動媒体。
(付記8)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記2,3,3,3-テトラフルオロ-1-プロペンと、を含有し、
 前記プロパンの含有量と前記1,1,2-トリフルオロエチレンの含有量との質量比が、5:95~29:71であり、
 前記2,3,3,3-テトラフルオロ-1-プロペンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記2,3,3,3-テトラフルオロ-1-プロペンの合計含有量に対して10.5~25.0質量%であり、
 前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記2,3,3,3-テトラフルオロ-1-プロペンの合計含有量が、前記作動媒体の全量に対して80質量%以上である、付記1に記載の作動媒体。
(付記9)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記ジフルオロメタンと、を含有し、
 前記プロパンの含有量と前記1,1,2-トリフルオロエチレンの含有量との質量比が、18:82~22:78であり、
 前記ジフルオロメタンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記ジフルオロメタンの合計含有量に対して5.5~19.5質量%である、付記1に記載の作動媒体。
(付記10)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記ジフルオロメタンと、を含有し、
 前記プロパンの含有量と前記1,1,2-トリフルオロエチレンの含有量との質量比が、5:95~23:77であり、
 前記ジフルオロメタンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記ジフルオロメタンの合計含有量に対して20.1~21.9質量%である、付記1に記載の作動媒体。
(付記11)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記ジフルオロメタンと、を含有し、
 前記プロパンの含有量と前記1,1,2-トリフルオロエチレンの含有量との質量比が、18.9:81.1~23:77であり、
 前記ジフルオロメタンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記ジフルオロメタンの合計含有量に対して12.5~21.5質量%である、付記1に記載の作動媒体。
(付記12)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記(E)-1,3,3,3-テトラフルオロプロペンと、を含有し、
 前記プロパンの含有量が、前記プロパン及び前記1,1,2-トリフルオロエチレンの合計含有量に対して25.0質量%以下であり、
 前記(E)-1,3,3,3-テトラフルオロプロペンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記(E)-1,3,3,3-テトラフルオロプロペンの合計含有量に対して11.0~25.0質量%であり、
 前記合計含有量が、前記作動媒体の全量に対して78.5質量%以上である、付記1に記載の作動媒体。
(付記13)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記(E)-1,3,3,3-テトラフルオロプロペンと、を含有し、
 前記プロパンの含有量が、前記プロパン及び前記1,1,2-トリフルオロエチレンの合計含有量に対して10.0質量%以下であり、
 前記(E)-1,3,3,3-テトラフルオロプロペンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記(E)-1,3,3,3-テトラフルオロプロペンの合計含有量に対して15.0質量%以下である、付記1に記載の作動媒体。
(付記14)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記(E)-1,3,3,3-テトラフルオロプロペンと、を含有し、
 前記プロパンの含有量が、前記プロパン及び前記1,1,2-トリフルオロエチレンの合計含有量に対して20.0質量%以下であり、
 前記(E)-1,3,3,3-テトラフルオロプロペンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記(E)-1,3,3,3-テトラフルオロプロペンの合計含有量に対して9.0質量%以下である、付記1に記載の作動媒体。
(付記15)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記COと、を含有し、
 前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記COの合計含有量に対する前記1,1,2-トリフルオロエチレンの含有量をX質量%、前記合計含有量に対する前記COの含有量をY質量%とした場合に、前記X及び前記Yが下記式(1)を満たし、
 前記合計含有量が、前記作動媒体の全量に対して78.5質量%以上である、付記1に記載の作動媒体。
 -0.00115X +0.13537X -6.20662X+151.14664≦Y≦59 …(1)
(付記16)
 前記COの含有量が、前記合計含有量に対して20.0質量%以下である、付記15に記載の作動媒体。
(付記17)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記CFIと、を含有し、
 前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記CFIの合計含有量に対する前記プロパンの含有量をX質量%、前記合計含有量に対する前記CFIの含有量をY質量%とした場合に、前記X及び前記Yが下記式(2A)を満たし、
 前記合計含有量が、前記作動媒体の全量に対して78.5質量%以上である、付記1に記載の作動媒体。
 Y≦-1.125X+39 …(2A)
(付記18)
 さらに、前記X及び前記Yが下記式(2B)を満たす、付記17に記載の作動媒体。
 Y≦0.05994X +0.23676X+11.85165 …(2B)
(付記19)
 前記プロパンと、前記(E)-1,2-ジフルオロエチレンと、前記第3成分と、を含有し、前記燃焼熱量が、15.250MJ/kg未満である、付記1に記載の作動媒体。
(付記20)
 前記プロパンと、前記(E)-1,2-ジフルオロエチレンと、前記第3成分と、を含有し、
 前記プロパンの含有量が、前記プロパン及び前記(E)-1,2-ジフルオロエチレンの合計含有量に対して10.0質量%以下である、付記1に記載の作動媒体。
(付記21)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記2,3,3,3-テトラフルオロ-1-プロペンと、前記ジフルオロメタンと、を含有し、
 前記プロパン、前記1,1,2-トリフルオロエチレン、前記2,3,3,3-テトラフルオロ-1-プロペン、及び前記ジフルオロメタンの合計含有量に対する前記ジフルオロメタンの含有量をA質量%、前記合計含有量に対する前記2,3,3,3-テトラフルオロ-1-プロペンの含有量をB質量%、前記合計含有量に対する前記プロパンの含有量をC質量%、前記合計含有量に対する前記1,1,2-トリフルオロエチレンの含有量をD質量%とした場合に、前記A、前記B、前記C、及び前記Dが下記式(3A)~(3D)を満たす、付記1に記載の作動媒体。
 19≦A≦22 …(3A)
 0.1562A-5.88147A+56.79≦B≦-0.1444A+4.9917A-0.9609 …(3B)
 3≦C≦-0.0168B+0.032A+23.365 …(3C)
 (0.0006A+0.0103A-2.6844)C+(0.1143A-5.4982A+133.96)≦D≦(0.00025A+0.0213)C+(-0.0003A-0.0055A-1.1287)C+(-1.0639A+92.613) …(3D)
(付記22)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記(E)-1,3,3,3-テトラフルオロプロペンと、前記ジフルオロメタンと、を含有し、
 前記プロパン、前記1,1,2-トリフルオロエチレン、前記(E)-1,3,3,3-テトラフルオロプロペン、及び前記ジフルオロメタンの合計含有量に対する前記ジフルオロメタンの含有量をE質量%、前記合計含有量に対する前記(E)-1,3,3,3-テトラフルオロプロペンの含有量をF質量%、前記合計含有量に対する前記プロパンの含有量をG質量%、前記合計含有量に対する前記1,1,2-トリフルオロエチレンの含有量をH質量%とした場合に、前記E、前記F、前記G、及び前記Hが下記式(4A)~(4D)を満たす、付記1に記載の作動媒体。
 19≦E≦22 …(4A)
 -0.0577E+2.595E-25.794≦F≦-0.453E+43.836 …(4B)
 2≦G≦0.030E+23.40 …(4C)
 (0.0053E-0.1950E-0.0880)G+(-0.0044E-0.6605E+83.7959)≦H≦0.0255G+(-0.0042E+0.1577E-2.8414)G+(-1.059E+91.6916) …(4D)
(付記23)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記COと、前記ジフルオロメタンと、を含有し、
 前記プロパン、前記1,1,2-トリフルオロエチレン、前記CO、及び前記ジフルオロメタンの合計含有量に対する前記ジフルオロメタンの含有量をJ質量%、前記合計含有量に対する前記COの含有量をK質量%、前記合計含有量に対する前記プロパンの含有量をL質量%、前記合計含有量に対する前記1,1,2-トリフルオロエチレンの含有量をM質量%とした場合に、前記J、前記K、前記L、及び前記Mが下記式(5A)~(5D)を満たす、付記1に記載の作動媒体。
 19≦J≦22 …(5A)
 0.074J-3.2047J-37.862≦K≦0.055J-2.2893J+42.055 …(5B)
 1≦L≦0.2985K+23.9 …(5C)
 (-0.00015J+0.0055J-0.0637)L+(0.0031J-0.1025J-0.0673)L+(-0.0017J-1.0368J+91.439)≦M≦(-0.000054J+0.00165J-0.00500)L+(0.0029J-0.1040J-0.1186)L+(-0.1221J+4.1517J+39.5) …(5D)
(付記24)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記CFIと、前記ジフルオロメタンと、を含有する、付記1に記載の作動媒体。
(付記25)
 前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記2,3,3,3-テトラフルオロ-1-プロペンと、を含有し、
 前記2,3,3,3-テトラフルオロ-1-プロペンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記2,3,3,3-テトラフルオロ-1-プロペンの合計含有量に対して25.0~70.0質量%であり、
 前記プロパンの含有量が、前記合計含有量に対して9.0質量%以下であり、
 前記合計含有量が、前記作動媒体の全量に対して78.5質量%以上である、付記1に記載の作動媒体。
(付記26)
 付記1~付記25のいずれか1つに記載の作動媒体と、潤滑油と、を含む熱サイクルシステム用組成物。
(付記27)
 付記1~付記25のいずれか1つに記載の作動媒体を用いた熱サイクルシステム。
(付記28)
 気相と液相とが共存する状態で、プロパンと、1,1,2-トリフルオロエチレン及び(E)-1,2-ジフルオロエチレンの少なくとも一方と、2,3,3,3-テトラフルオロ-1-プロペン、(E)-1,3,3,3-テトラフルオロプロペン、ジフルオロメタン、CO、CFI、(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン、(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン、(E)-1-クロロ-3,3,3-トリフルオロプロペン、(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン、(Z)-1,2,3,3,3-ペンタフルオロプロペン、及び(E)-1,2,3,3,3-ペンタフルオロプロペンからなる群より選択される少なくとも1種と、を含有する組成物が充填されている、密閉された保存容器であって、
 前記組成物の燃焼熱量は、19.000MJ/kg未満であり、
 前記気相の、温度25℃における酸素の濃度が3000体積ppm以下である、組成物の保存容器。
(付記26)
 プロパンと、1,1,2-トリフルオロエチレン及び(E)-1,2-ジフルオロエチレンの少なくとも一方と、2,3,3,3-テトラフルオロ-1-プロペン、(E)-1,3,3,3-テトラフルオロプロペン、ジフルオロメタン、CO、CFI、(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン、(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン、(E)-1-クロロ-3,3,3-トリフルオロプロペン、(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン、(Z)-1,2,3,3,3-ペンタフルオロプロペン、及び(E)-1,2,3,3,3-ペンタフルオロプロペンからなる群より選択される少なくとも1種と、水と、を含有する組成物が充填されている、密閉された保存容器であって、
 前記組成物の燃焼熱量は、19.000MJ/kg未満であり、
 前記水の含有量は、前記組成物の全量に対して500質量ppm以下である、組成物の保存容器。
<Appendix>
Preferred aspects of the working medium of the present disclosure are added.
(Appendix 1)
with propane;
at least one of 1,1,2-trifluoroethylene and (E)-1,2-difluoroethylene;
2,3,3,3-tetrafluoro-1-propene, (E)-1,3,3,3-tetrafluoropropene, difluoromethane, CO 2 , CF 3 I, (Z)-1-chloro-2 , 3,3,3-tetrafluoropropene, (E)-1-chloro-2,3,3,3-tetrafluoropropene, (E)-1-chloro-3,3,3-trifluoropropene, ( E)-1,1,1,4,4,4-hexafluoro-2-butene, (Z)-1,2,3,3,3-pentafluoropropene, and (E)-1,2,3 , and at least one selected from the group consisting of 3,3-pentafluoropropene,
A working medium having a heat of combustion of less than 19.000 MJ/kg.
(Appendix 2)
from the group consisting of said 2,3,3,3-tetrafluoro-1-propene, said (E)-1,3,3,3-tetrafluoropropene, said difluoromethane, said CO 2 and said CF 3 I The working medium according to appendix 1, containing at least one selected.
(Appendix 3)
containing at least one selected from the group consisting of the 2,3,3,3-tetrafluoro-1-propene, the (E)-1,3,3,3-tetrafluoropropene, and the difluoromethane A working medium according to claim 1.
(Appendix 4)
The working medium according to Appendix 1, containing the 1,1,2-trifluoroethylene.
(Appendix 5)
The working medium according to appendix 1, wherein the propane content is 1.0% by mass or more relative to the total amount of the working medium.
(Appendix 6)
containing the difluoromethane,
The working medium according to appendix 1, wherein the content of the difluoromethane is 22.0% by mass or less with respect to the total amount of the working medium.
(Appendix 7)
containing said CO2 ,
The working medium according to appendix 1, wherein the CO 2 content is 15.0% by mass or less with respect to the total amount of the working medium.
(Appendix 8)
containing the propane, the 1,1,2-trifluoroethylene, and the 2,3,3,3-tetrafluoro-1-propene,
The mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 5:95 to 29:71,
The content of the 2,3,3,3-tetrafluoro-1-propene is the propane, the 1,1,2-trifluoroethylene, and the 2,3,3,3-tetrafluoro-1-propene 10.5 to 25.0% by mass with respect to the total content of
The total content of propane, 1,1,2-trifluoroethylene, and 2,3,3,3-tetrafluoro-1-propene is 80% by mass or more relative to the total amount of the working medium. A working medium according to claim 1.
(Appendix 9)
containing the propane, the 1,1,2-trifluoroethylene, and the difluoromethane;
The mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 18:82 to 22:78,
The content of the difluoromethane is 5.5 to 19.5% by mass with respect to the total content of the propane, the 1,1,2-trifluoroethylene, and the difluoromethane. working medium.
(Appendix 10)
containing the propane, the 1,1,2-trifluoroethylene, and the difluoromethane;
The mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 5:95 to 23:77,
The content of the difluoromethane is 20.1 to 21.9% by mass with respect to the total content of the propane, the 1,1,2-trifluoroethylene, and the difluoromethane. working medium.
(Appendix 11)
containing the propane, the 1,1,2-trifluoroethylene, and the difluoromethane;
The mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 18.9:81.1 to 23:77,
The content of the difluoromethane is 12.5 to 21.5% by mass with respect to the total content of the propane, the 1,1,2-trifluoroethylene, and the difluoromethane. working medium.
(Appendix 12)
containing the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene,
The propane content is 25.0% by mass or less with respect to the total content of the propane and the 1,1,2-trifluoroethylene,
The content of the (E)-1,3,3,3-tetrafluoropropene is the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene. 11.0 to 25.0% by mass with respect to the total content of fluoropropene,
The working medium according to appendix 1, wherein the total content is 78.5% by mass or more with respect to the total amount of the working medium.
(Appendix 13)
containing the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene,
The propane content is 10.0% by mass or less with respect to the total content of the propane and the 1,1,2-trifluoroethylene,
The content of the (E)-1,3,3,3-tetrafluoropropene is the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene. The working medium according to appendix 1, which is 15.0% by mass or less relative to the total content of fluoropropene.
(Appendix 14)
containing the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene,
The propane content is 20.0% by mass or less with respect to the total content of the propane and the 1,1,2-trifluoroethylene,
The content of the (E)-1,3,3,3-tetrafluoropropene is the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene. The working medium according to appendix 1, which is 9.0% by mass or less relative to the total content of fluoropropene.
(Appendix 15)
containing the propane, the 1,1,2-trifluoroethylene, and the CO2 ,
The content of the 1,1,2-trifluoroethylene with respect to the total content of the propane, the 1,1,2-trifluoroethylene, and the CO 2 is X 1 % by mass, and the CO 2 with respect to the total content When the content of Y is 1 % by mass, the X 1 and the Y 1 satisfy the following formula (1),
The working medium according to appendix 1, wherein the total content is 78.5% by mass or more with respect to the total amount of the working medium.
−0.00115X 1 3 +0.13537X 1 2 −6.20662X 1 +151.14664≦Y 1 ≦59 (1)
(Appendix 16)
16. The working medium according to appendix 15, wherein the content of CO2 is 20.0% by mass or less with respect to the total content.
(Appendix 17)
containing the propane, the 1,1,2-trifluoroethylene, and the CF 3 I,
The propane content with respect to the total content of the propane, the 1,1,2-trifluoroethylene, and the CF 3 I is X 2 % by mass, and the CF 3 I content with respect to the total content is Y 2 When expressed as % by mass, the X 2 and the Y 2 satisfy the following formula (2A),
The working medium according to appendix 1, wherein the total content is 78.5% by mass or more with respect to the total amount of the working medium.
Y 2 ≦−1.125X 2 +39 (2A)
(Appendix 18)
18. The working medium according to appendix 17, wherein the X2 and the Y2 further satisfy the following formula (2B).
Y 2 ≤ 0.05994X 2 2 + 0.23676X 2 + 11.85165 (2B)
(Appendix 19)
The working medium according to Appendix 1, containing the propane, the (E)-1,2-difluoroethylene, and the third component, and wherein the combustion heat quantity is less than 15.250 MJ/kg.
(Appendix 20)
containing the propane, the (E)-1,2-difluoroethylene, and the third component,
The working medium according to Appendix 1, wherein the propane content is 10.0% by mass or less with respect to the total content of the propane and the (E)-1,2-difluoroethylene.
(Appendix 21)
containing the propane, the 1,1,2-trifluoroethylene, the 2,3,3,3-tetrafluoro-1-propene, and the difluoromethane;
The content of the difluoromethane with respect to the total content of the propane, the 1,1,2-trifluoroethylene, the 2,3,3,3-tetrafluoro-1-propene, and the difluoromethane is A% by mass, The content of 2,3,3,3-tetrafluoro-1-propene with respect to the total content is B% by mass, the content of propane with respect to the total content is C% by mass, and the content of 1 with respect to the total content , where the content of 1,2-trifluoroethylene is D mass%, the A, the B, the C, and the D satisfy the following formulas (3A) to (3D). working medium.
19≦A≦22 (3A)
0.1562A2-5.88147A +56.79≤B≤-0.1444A2+4.9917A-0.9609 ( 3B )
3≤C≤-0.0168B+0.032A+23.365 (3C)
(0.0006A 2 + 0.0103A - 2.6844) C + (0.1143A 2 - 5.4982A + 133.96) ≤ D ≤ (0.00025A + 0.0213) C 2 + (- 0.0003A 2 - 0.0055A- 1.1287) C + (-1.0639 A + 92.613) ... (3D)
(Appendix 22)
containing the propane, the 1,1,2-trifluoroethylene, the (E)-1,3,3,3-tetrafluoropropene, and the difluoromethane;
The content of the difluoromethane with respect to the total content of the propane, the 1,1,2-trifluoroethylene, the (E)-1,3,3,3-tetrafluoropropene, and the difluoromethane is E% by mass. , the content of (E)-1,3,3,3-tetrafluoropropene with respect to the total content is F mass%, the content of propane with respect to the total content is G mass%, and the total content is When the content of the 1,1,2-trifluoroethylene is H mass%, the E, the F, the G, and the H satisfy the following formulas (4A) to (4D). Working medium as described.
19≦E≦22 (4A)
−0.0577E 2 +2.595E−25.794≦F≦−0.453E+43.836 (4B)
2≤G≤0.030E+23.40 (4C)
(0.0053E 2 -0.1950E-0.0880) G + (-0.0044E 2 -0.6605E + 83.7959) ≤ H ≤ 0.0255G 2 + (-0.0042E 2 + 0.1577E-2.8414) G + (-1.059E + 91.6916) ... (4D)
(Appendix 23)
containing the propane, the 1,1,2-trifluoroethylene, the CO2 , and the difluoromethane;
The content of the difluoromethane with respect to the total content of the propane, the 1,1,2-trifluoroethylene, the CO 2 and the difluoromethane is J% by mass, and the content of the CO 2 with respect to the total content is K% by mass, L% by mass for the content of propane relative to the total content, and M% by mass for the content of 1,1,2-trifluoroethylene relative to the total content. The working medium according to Appendix 1, wherein K, L, and M satisfy the following formulas (5A) to (5D).
19≦J≦22 (5A)
0.074J2-3.2047J -37.862≤K≤0.055J2-2.2893J+42.055 ( 5B )
1≦L≦0.2985K+23.9 (5C)
(-0.00015J 2 +0.0055J-0.0637) L 2 + (0.0031J 2 -0.1025J-0.0673) L + (-0.0017J 2 -1.0368J + 91.439) ≤ M ≤ (- 0.000054J 2 + 0.00165J - 0.00500) L 2 + (0.0029J 2 - 0.1040J - 0.1186) L + (- 0.1221J 2 + 4.1517J + 39.5) ... (5D)
(Appendix 24)
The working medium according to appendix 1, containing the propane, the 1,1,2-trifluoroethylene, the CF 3 I, and the difluoromethane.
(Appendix 25)
containing the propane, the 1,1,2-trifluoroethylene, and the 2,3,3,3-tetrafluoro-1-propene,
The content of the 2,3,3,3-tetrafluoro-1-propene is the propane, the 1,1,2-trifluoroethylene, and the 2,3,3,3-tetrafluoro-1-propene 25.0 to 70.0% by mass with respect to the total content of
The propane content is 9.0% by mass or less with respect to the total content,
The working medium according to appendix 1, wherein the total content is 78.5% by mass or more with respect to the total amount of the working medium.
(Appendix 26)
A composition for a thermal cycle system, comprising the working medium according to any one of appendices 1 to 25, and lubricating oil.
(Appendix 27)
A heat cycle system using the working medium according to any one of appendices 1 to 25.
(Appendix 28)
Propane, at least one of 1,1,2-trifluoroethylene and (E)-1,2-difluoroethylene, and 2,3,3,3-tetrafluoro, in a state where a gas phase and a liquid phase coexist -1-propene, (E)-1,3,3,3-tetrafluoropropene, difluoromethane, CO 2 , CF 3 I, (Z)-1-chloro-2,3,3,3-tetrafluoropropene , (E)-1-chloro-2,3,3,3-tetrafluoropropene, (E)-1-chloro-3,3,3-trifluoropropene, (E)-1,1,1,4 ,4,4-hexafluoro-2-butene, (Z)-1,2,3,3,3-pentafluoropropene, and (E)-1,2,3,3,3-pentafluoropropene A sealed storage container filled with a composition containing at least one selected from the group
The combustion calorie of the composition is less than 19.000 MJ/kg,
A storage container for a composition, wherein the gas phase has an oxygen concentration of 3000 ppm by volume or less at a temperature of 25°C.
(Appendix 26)
Propane, at least one of 1,1,2-trifluoroethylene and (E)-1,2-difluoroethylene, 2,3,3,3-tetrafluoro-1-propene, (E)-1,3 , 3,3-tetrafluoropropene, difluoromethane, CO 2 , CF 3 I, (Z)-1-chloro-2,3,3,3-tetrafluoropropene, (E)-1-chloro-2,3 ,3,3-tetrafluoropropene, (E)-1-chloro-3,3,3-trifluoropropene, (E)-1,1,1,4,4,4-hexafluoro-2-butene, At least one selected from the group consisting of (Z)-1,2,3,3,3-pentafluoropropene and (E)-1,2,3,3,3-pentafluoropropene, and water A sealed storage container filled with a composition containing
The combustion calorie of the composition is less than 19.000 MJ/kg,
A storage container for a composition, wherein the water content is 500 ppm by mass or less relative to the total amount of the composition.
 以下、上記実施形態を実験例により具体的に説明するが、上記実施形態はこれらの実験例に限定されない。なお、各実験例の組成は、上述の通りである。 Although the above embodiment will be specifically described below with reference to experimental examples, the above embodiment is not limited to these experimental examples. The composition of each experimental example is as described above.
 作動媒体の吐出温度(Discharge Temperature (Difference))、凝縮圧力((Relative) Condensing Pressure)、蒸発圧力((Relative) Evaporating Pressure)、CAP(単位体積当たりの能力、(Relative) Capacity)及びCOP(成績係数、(Relative) Coefficient of Performance)を上述の方法により求めた。また、温度グライド(Temperature Glide (Difference))を下記方法により求めた。得られた結果を表503~713に示す。表中「-」は評価が実施されていないことを示す。
 表中、吐出温度(Discharge Temperature (Difference))及び温度グライド(Temperature Glide (Difference))の単位は「℃」である。
Discharge Temperature (Difference) of the working medium, (Relative) Condensing Pressure, (Relative) Evaporating Pressure, CAP (Relative) Capacity and COP (performance A coefficient (Relative Coefficient of Performance) was obtained by the method described above. Also, the temperature glide (Difference) was obtained by the following method. The results obtained are shown in Tables 503-713. "-" in the table indicates that the evaluation was not performed.
In the table, the unit of discharge temperature (Difference) and temperature glide (Difference) is "°C".
-温度グライド-
 本開示において、「温度グライド」は、蒸発器における蒸発開始温度と完了温度の差異として算出した。本開示ではR410Aとの差分を示した。
-Temperature Glide-
In this disclosure, "temperature glide" was calculated as the difference between the temperature at which evaporation begins and the temperature at which evaporation completes in the evaporator. This disclosure shows the difference from R410A.
-CAP-
 蒸発器の単位体積当たりの冷凍能力であるCAPは、圧縮機吸入飽和ガス密度と蒸発潜熱の積として算出した。なお、単位体積当たりの冷凍能力であるCAPは、サイクルシステムにおける出力である。本開示ではR410Aに対する相対成績係数を示した。
-CAP-
The CAP, which is the refrigerating capacity per unit volume of the evaporator, was calculated as the product of the compressor intake saturated gas density and the latent heat of vaporization. Note that CAP, which is the refrigerating capacity per unit volume, is the output in the cycle system. The present disclosure provides relative coefficients of performance for R410A.
-COP-
 COPは、出力Q(kW)を得るのに消費された動力P(kW)で、該出力Q(kW)を除した値であり、エネルギー消費効率に相当する。COPの値が高いほど、少ない入力により大きな出力を得ることができる。本開示ではR410Aに対する相対成績係数を示した。
-COP-
COP is a value obtained by dividing the output Q (kW) by the power P (kW) consumed to obtain the output Q (kW), and corresponds to energy consumption efficiency. The higher the COP value, the greater output can be obtained with less input. The present disclosure provides relative coefficients of performance for R410A.
Figure JPOXMLDOC01-appb-T000506
Figure JPOXMLDOC01-appb-T000506
Figure JPOXMLDOC01-appb-T000507
Figure JPOXMLDOC01-appb-T000507
Figure JPOXMLDOC01-appb-T000508
Figure JPOXMLDOC01-appb-T000508
Figure JPOXMLDOC01-appb-T000509
Figure JPOXMLDOC01-appb-T000509
Figure JPOXMLDOC01-appb-T000510
Figure JPOXMLDOC01-appb-T000510
Figure JPOXMLDOC01-appb-T000511
Figure JPOXMLDOC01-appb-T000511
Figure JPOXMLDOC01-appb-T000512
Figure JPOXMLDOC01-appb-T000512
Figure JPOXMLDOC01-appb-T000513
Figure JPOXMLDOC01-appb-T000513
Figure JPOXMLDOC01-appb-T000514
Figure JPOXMLDOC01-appb-T000514
Figure JPOXMLDOC01-appb-T000515
Figure JPOXMLDOC01-appb-T000515
Figure JPOXMLDOC01-appb-T000516
Figure JPOXMLDOC01-appb-T000516
Figure JPOXMLDOC01-appb-T000517
Figure JPOXMLDOC01-appb-T000517
Figure JPOXMLDOC01-appb-T000518
Figure JPOXMLDOC01-appb-T000518
Figure JPOXMLDOC01-appb-T000519
Figure JPOXMLDOC01-appb-T000519
Figure JPOXMLDOC01-appb-T000520
Figure JPOXMLDOC01-appb-T000520
Figure JPOXMLDOC01-appb-T000521
Figure JPOXMLDOC01-appb-T000521
Figure JPOXMLDOC01-appb-T000522
Figure JPOXMLDOC01-appb-T000522
Figure JPOXMLDOC01-appb-T000523
Figure JPOXMLDOC01-appb-T000523
Figure JPOXMLDOC01-appb-T000524
Figure JPOXMLDOC01-appb-T000524
Figure JPOXMLDOC01-appb-T000525
Figure JPOXMLDOC01-appb-T000525
Figure JPOXMLDOC01-appb-T000526
Figure JPOXMLDOC01-appb-T000526
Figure JPOXMLDOC01-appb-T000527
Figure JPOXMLDOC01-appb-T000527
Figure JPOXMLDOC01-appb-T000528
Figure JPOXMLDOC01-appb-T000528
Figure JPOXMLDOC01-appb-T000529
Figure JPOXMLDOC01-appb-T000529
Figure JPOXMLDOC01-appb-T000530
Figure JPOXMLDOC01-appb-T000530
Figure JPOXMLDOC01-appb-T000531
Figure JPOXMLDOC01-appb-T000531
Figure JPOXMLDOC01-appb-T000532
Figure JPOXMLDOC01-appb-T000532
Figure JPOXMLDOC01-appb-T000533
Figure JPOXMLDOC01-appb-T000533
Figure JPOXMLDOC01-appb-T000534
Figure JPOXMLDOC01-appb-T000534
Figure JPOXMLDOC01-appb-T000535
Figure JPOXMLDOC01-appb-T000535
Figure JPOXMLDOC01-appb-T000536
Figure JPOXMLDOC01-appb-T000536
Figure JPOXMLDOC01-appb-T000537
Figure JPOXMLDOC01-appb-T000537
Figure JPOXMLDOC01-appb-T000538
Figure JPOXMLDOC01-appb-T000538
Figure JPOXMLDOC01-appb-T000539
Figure JPOXMLDOC01-appb-T000539
Figure JPOXMLDOC01-appb-T000540
Figure JPOXMLDOC01-appb-T000540
Figure JPOXMLDOC01-appb-T000541
Figure JPOXMLDOC01-appb-T000541
Figure JPOXMLDOC01-appb-T000542
Figure JPOXMLDOC01-appb-T000542
Figure JPOXMLDOC01-appb-T000543
Figure JPOXMLDOC01-appb-T000543
Figure JPOXMLDOC01-appb-T000544
Figure JPOXMLDOC01-appb-T000544
Figure JPOXMLDOC01-appb-T000545
Figure JPOXMLDOC01-appb-T000545
Figure JPOXMLDOC01-appb-T000546
Figure JPOXMLDOC01-appb-T000546
Figure JPOXMLDOC01-appb-T000547
Figure JPOXMLDOC01-appb-T000547
Figure JPOXMLDOC01-appb-T000548
Figure JPOXMLDOC01-appb-T000548
Figure JPOXMLDOC01-appb-T000549
Figure JPOXMLDOC01-appb-T000549
Figure JPOXMLDOC01-appb-T000550
Figure JPOXMLDOC01-appb-T000550
Figure JPOXMLDOC01-appb-T000551
Figure JPOXMLDOC01-appb-T000551
Figure JPOXMLDOC01-appb-T000552
Figure JPOXMLDOC01-appb-T000552
Figure JPOXMLDOC01-appb-T000553
Figure JPOXMLDOC01-appb-T000553
Figure JPOXMLDOC01-appb-T000554
Figure JPOXMLDOC01-appb-T000554
Figure JPOXMLDOC01-appb-T000555
Figure JPOXMLDOC01-appb-T000555
Figure JPOXMLDOC01-appb-T000556
Figure JPOXMLDOC01-appb-T000556
Figure JPOXMLDOC01-appb-T000557
Figure JPOXMLDOC01-appb-T000557
Figure JPOXMLDOC01-appb-T000558
Figure JPOXMLDOC01-appb-T000558
Figure JPOXMLDOC01-appb-T000559
Figure JPOXMLDOC01-appb-T000559
Figure JPOXMLDOC01-appb-T000560
Figure JPOXMLDOC01-appb-T000560
Figure JPOXMLDOC01-appb-T000561
Figure JPOXMLDOC01-appb-T000561
Figure JPOXMLDOC01-appb-T000562
Figure JPOXMLDOC01-appb-T000562
Figure JPOXMLDOC01-appb-T000563
Figure JPOXMLDOC01-appb-T000563
Figure JPOXMLDOC01-appb-T000564
Figure JPOXMLDOC01-appb-T000564
Figure JPOXMLDOC01-appb-T000565
Figure JPOXMLDOC01-appb-T000565
Figure JPOXMLDOC01-appb-T000566
Figure JPOXMLDOC01-appb-T000566
Figure JPOXMLDOC01-appb-T000567
Figure JPOXMLDOC01-appb-T000567
Figure JPOXMLDOC01-appb-T000568
Figure JPOXMLDOC01-appb-T000568
Figure JPOXMLDOC01-appb-T000569
Figure JPOXMLDOC01-appb-T000569
Figure JPOXMLDOC01-appb-T000570
Figure JPOXMLDOC01-appb-T000570
Figure JPOXMLDOC01-appb-T000571
Figure JPOXMLDOC01-appb-T000571
Figure JPOXMLDOC01-appb-T000572
Figure JPOXMLDOC01-appb-T000572
Figure JPOXMLDOC01-appb-T000573
Figure JPOXMLDOC01-appb-T000573
Figure JPOXMLDOC01-appb-T000574
Figure JPOXMLDOC01-appb-T000574
Figure JPOXMLDOC01-appb-T000575
Figure JPOXMLDOC01-appb-T000575
Figure JPOXMLDOC01-appb-T000576
Figure JPOXMLDOC01-appb-T000576
Figure JPOXMLDOC01-appb-T000577
Figure JPOXMLDOC01-appb-T000577
Figure JPOXMLDOC01-appb-T000578
Figure JPOXMLDOC01-appb-T000578
Figure JPOXMLDOC01-appb-T000579
Figure JPOXMLDOC01-appb-T000579
Figure JPOXMLDOC01-appb-T000580
Figure JPOXMLDOC01-appb-T000580
Figure JPOXMLDOC01-appb-T000581
Figure JPOXMLDOC01-appb-T000581
Figure JPOXMLDOC01-appb-T000582
Figure JPOXMLDOC01-appb-T000582
Figure JPOXMLDOC01-appb-T000583
Figure JPOXMLDOC01-appb-T000583
Figure JPOXMLDOC01-appb-T000584
Figure JPOXMLDOC01-appb-T000584
Figure JPOXMLDOC01-appb-T000585
Figure JPOXMLDOC01-appb-T000585
Figure JPOXMLDOC01-appb-T000586
Figure JPOXMLDOC01-appb-T000586
Figure JPOXMLDOC01-appb-T000587
Figure JPOXMLDOC01-appb-T000587
Figure JPOXMLDOC01-appb-T000588
Figure JPOXMLDOC01-appb-T000588
Figure JPOXMLDOC01-appb-T000589
Figure JPOXMLDOC01-appb-T000589
Figure JPOXMLDOC01-appb-T000590
Figure JPOXMLDOC01-appb-T000590
Figure JPOXMLDOC01-appb-T000591
Figure JPOXMLDOC01-appb-T000591
Figure JPOXMLDOC01-appb-T000592
Figure JPOXMLDOC01-appb-T000592
Figure JPOXMLDOC01-appb-T000593
Figure JPOXMLDOC01-appb-T000593
Figure JPOXMLDOC01-appb-T000594
Figure JPOXMLDOC01-appb-T000594
Figure JPOXMLDOC01-appb-T000595
Figure JPOXMLDOC01-appb-T000595
Figure JPOXMLDOC01-appb-T000596
Figure JPOXMLDOC01-appb-T000596
Figure JPOXMLDOC01-appb-T000597
Figure JPOXMLDOC01-appb-T000597
Figure JPOXMLDOC01-appb-T000598
Figure JPOXMLDOC01-appb-T000598
Figure JPOXMLDOC01-appb-T000599
Figure JPOXMLDOC01-appb-T000599
Figure JPOXMLDOC01-appb-T000600
Figure JPOXMLDOC01-appb-T000600
Figure JPOXMLDOC01-appb-T000601
Figure JPOXMLDOC01-appb-T000601
Figure JPOXMLDOC01-appb-T000602
Figure JPOXMLDOC01-appb-T000602
Figure JPOXMLDOC01-appb-T000603
Figure JPOXMLDOC01-appb-T000603
Figure JPOXMLDOC01-appb-T000604
Figure JPOXMLDOC01-appb-T000604
Figure JPOXMLDOC01-appb-T000605
Figure JPOXMLDOC01-appb-T000605
Figure JPOXMLDOC01-appb-T000606
Figure JPOXMLDOC01-appb-T000606
Figure JPOXMLDOC01-appb-T000607
Figure JPOXMLDOC01-appb-T000607
Figure JPOXMLDOC01-appb-T000608
Figure JPOXMLDOC01-appb-T000608
Figure JPOXMLDOC01-appb-T000609
Figure JPOXMLDOC01-appb-T000609
Figure JPOXMLDOC01-appb-T000610
Figure JPOXMLDOC01-appb-T000610
Figure JPOXMLDOC01-appb-T000611
Figure JPOXMLDOC01-appb-T000611
Figure JPOXMLDOC01-appb-T000612
Figure JPOXMLDOC01-appb-T000612
Figure JPOXMLDOC01-appb-T000613
Figure JPOXMLDOC01-appb-T000613
Figure JPOXMLDOC01-appb-T000614
Figure JPOXMLDOC01-appb-T000614
Figure JPOXMLDOC01-appb-T000615
Figure JPOXMLDOC01-appb-T000615
Figure JPOXMLDOC01-appb-T000616
Figure JPOXMLDOC01-appb-T000616
Figure JPOXMLDOC01-appb-T000617
Figure JPOXMLDOC01-appb-T000617
Figure JPOXMLDOC01-appb-T000618
Figure JPOXMLDOC01-appb-T000618
Figure JPOXMLDOC01-appb-T000619
Figure JPOXMLDOC01-appb-T000619
Figure JPOXMLDOC01-appb-T000620
Figure JPOXMLDOC01-appb-T000620
Figure JPOXMLDOC01-appb-T000621
Figure JPOXMLDOC01-appb-T000621
Figure JPOXMLDOC01-appb-T000622
Figure JPOXMLDOC01-appb-T000622
Figure JPOXMLDOC01-appb-T000623
Figure JPOXMLDOC01-appb-T000623
Figure JPOXMLDOC01-appb-T000624
Figure JPOXMLDOC01-appb-T000624
Figure JPOXMLDOC01-appb-T000625
Figure JPOXMLDOC01-appb-T000625
Figure JPOXMLDOC01-appb-T000626
Figure JPOXMLDOC01-appb-T000626
Figure JPOXMLDOC01-appb-T000627
Figure JPOXMLDOC01-appb-T000627
Figure JPOXMLDOC01-appb-T000628
Figure JPOXMLDOC01-appb-T000628
Figure JPOXMLDOC01-appb-T000629
Figure JPOXMLDOC01-appb-T000629
Figure JPOXMLDOC01-appb-T000630
Figure JPOXMLDOC01-appb-T000630
Figure JPOXMLDOC01-appb-T000631
Figure JPOXMLDOC01-appb-T000631
Figure JPOXMLDOC01-appb-T000632
Figure JPOXMLDOC01-appb-T000632
Figure JPOXMLDOC01-appb-T000633
Figure JPOXMLDOC01-appb-T000633
Figure JPOXMLDOC01-appb-T000634
Figure JPOXMLDOC01-appb-T000634
Figure JPOXMLDOC01-appb-T000635
Figure JPOXMLDOC01-appb-T000635
Figure JPOXMLDOC01-appb-T000636
Figure JPOXMLDOC01-appb-T000636
Figure JPOXMLDOC01-appb-T000637
Figure JPOXMLDOC01-appb-T000637
Figure JPOXMLDOC01-appb-T000638
Figure JPOXMLDOC01-appb-T000638
Figure JPOXMLDOC01-appb-T000639
Figure JPOXMLDOC01-appb-T000639
Figure JPOXMLDOC01-appb-T000640
Figure JPOXMLDOC01-appb-T000640
Figure JPOXMLDOC01-appb-T000641
Figure JPOXMLDOC01-appb-T000641
Figure JPOXMLDOC01-appb-T000642
Figure JPOXMLDOC01-appb-T000642
Figure JPOXMLDOC01-appb-T000643
Figure JPOXMLDOC01-appb-T000643
Figure JPOXMLDOC01-appb-T000644
Figure JPOXMLDOC01-appb-T000644
Figure JPOXMLDOC01-appb-T000645
Figure JPOXMLDOC01-appb-T000645
Figure JPOXMLDOC01-appb-T000646
Figure JPOXMLDOC01-appb-T000646
Figure JPOXMLDOC01-appb-T000647
Figure JPOXMLDOC01-appb-T000647
Figure JPOXMLDOC01-appb-T000648
Figure JPOXMLDOC01-appb-T000648
Figure JPOXMLDOC01-appb-T000649
Figure JPOXMLDOC01-appb-T000649
Figure JPOXMLDOC01-appb-T000650
Figure JPOXMLDOC01-appb-T000650
Figure JPOXMLDOC01-appb-T000651
Figure JPOXMLDOC01-appb-T000651
Figure JPOXMLDOC01-appb-T000652
Figure JPOXMLDOC01-appb-T000652
Figure JPOXMLDOC01-appb-T000653
Figure JPOXMLDOC01-appb-T000653
Figure JPOXMLDOC01-appb-T000654
Figure JPOXMLDOC01-appb-T000654
Figure JPOXMLDOC01-appb-T000655
Figure JPOXMLDOC01-appb-T000655
Figure JPOXMLDOC01-appb-T000656
Figure JPOXMLDOC01-appb-T000656
Figure JPOXMLDOC01-appb-T000657
Figure JPOXMLDOC01-appb-T000657
Figure JPOXMLDOC01-appb-T000658
Figure JPOXMLDOC01-appb-T000658
Figure JPOXMLDOC01-appb-T000659
Figure JPOXMLDOC01-appb-T000659
Figure JPOXMLDOC01-appb-T000660
Figure JPOXMLDOC01-appb-T000660
Figure JPOXMLDOC01-appb-T000661
Figure JPOXMLDOC01-appb-T000661
Figure JPOXMLDOC01-appb-T000662
Figure JPOXMLDOC01-appb-T000662
Figure JPOXMLDOC01-appb-T000663
Figure JPOXMLDOC01-appb-T000663
Figure JPOXMLDOC01-appb-T000664
Figure JPOXMLDOC01-appb-T000664
Figure JPOXMLDOC01-appb-T000665
Figure JPOXMLDOC01-appb-T000665
Figure JPOXMLDOC01-appb-T000666
Figure JPOXMLDOC01-appb-T000666
Figure JPOXMLDOC01-appb-T000667
Figure JPOXMLDOC01-appb-T000667
Figure JPOXMLDOC01-appb-T000668
Figure JPOXMLDOC01-appb-T000668
Figure JPOXMLDOC01-appb-T000669
Figure JPOXMLDOC01-appb-T000669
Figure JPOXMLDOC01-appb-T000670
Figure JPOXMLDOC01-appb-T000670
Figure JPOXMLDOC01-appb-T000671
Figure JPOXMLDOC01-appb-T000671
Figure JPOXMLDOC01-appb-T000672
Figure JPOXMLDOC01-appb-T000672
Figure JPOXMLDOC01-appb-T000673
Figure JPOXMLDOC01-appb-T000673
Figure JPOXMLDOC01-appb-T000674
Figure JPOXMLDOC01-appb-T000674
Figure JPOXMLDOC01-appb-T000675
Figure JPOXMLDOC01-appb-T000675
Figure JPOXMLDOC01-appb-T000676
Figure JPOXMLDOC01-appb-T000676
Figure JPOXMLDOC01-appb-T000677
Figure JPOXMLDOC01-appb-T000677
Figure JPOXMLDOC01-appb-T000678
Figure JPOXMLDOC01-appb-T000678
Figure JPOXMLDOC01-appb-T000679
Figure JPOXMLDOC01-appb-T000679
Figure JPOXMLDOC01-appb-T000680
Figure JPOXMLDOC01-appb-T000680
Figure JPOXMLDOC01-appb-T000681
Figure JPOXMLDOC01-appb-T000681
Figure JPOXMLDOC01-appb-T000682
Figure JPOXMLDOC01-appb-T000682
Figure JPOXMLDOC01-appb-T000683
Figure JPOXMLDOC01-appb-T000683
Figure JPOXMLDOC01-appb-T000684
Figure JPOXMLDOC01-appb-T000684
Figure JPOXMLDOC01-appb-T000685
Figure JPOXMLDOC01-appb-T000685
Figure JPOXMLDOC01-appb-T000686
Figure JPOXMLDOC01-appb-T000686
Figure JPOXMLDOC01-appb-T000687
Figure JPOXMLDOC01-appb-T000687
Figure JPOXMLDOC01-appb-T000688
Figure JPOXMLDOC01-appb-T000688
Figure JPOXMLDOC01-appb-T000689
Figure JPOXMLDOC01-appb-T000689
Figure JPOXMLDOC01-appb-T000690
Figure JPOXMLDOC01-appb-T000690
Figure JPOXMLDOC01-appb-T000691
Figure JPOXMLDOC01-appb-T000691
Figure JPOXMLDOC01-appb-T000692
Figure JPOXMLDOC01-appb-T000692
Figure JPOXMLDOC01-appb-T000693
Figure JPOXMLDOC01-appb-T000693
Figure JPOXMLDOC01-appb-T000694
Figure JPOXMLDOC01-appb-T000694
Figure JPOXMLDOC01-appb-T000695
Figure JPOXMLDOC01-appb-T000695
Figure JPOXMLDOC01-appb-T000696
Figure JPOXMLDOC01-appb-T000696
Figure JPOXMLDOC01-appb-T000697
Figure JPOXMLDOC01-appb-T000697
Figure JPOXMLDOC01-appb-T000698
Figure JPOXMLDOC01-appb-T000698
Figure JPOXMLDOC01-appb-T000699
Figure JPOXMLDOC01-appb-T000699
Figure JPOXMLDOC01-appb-T000700
Figure JPOXMLDOC01-appb-T000700
Figure JPOXMLDOC01-appb-T000701
Figure JPOXMLDOC01-appb-T000701
Figure JPOXMLDOC01-appb-T000702
Figure JPOXMLDOC01-appb-T000702
Figure JPOXMLDOC01-appb-T000703
Figure JPOXMLDOC01-appb-T000703
Figure JPOXMLDOC01-appb-T000704
Figure JPOXMLDOC01-appb-T000704
Figure JPOXMLDOC01-appb-T000705
Figure JPOXMLDOC01-appb-T000705
Figure JPOXMLDOC01-appb-T000706
Figure JPOXMLDOC01-appb-T000706
Figure JPOXMLDOC01-appb-T000707
Figure JPOXMLDOC01-appb-T000707
Figure JPOXMLDOC01-appb-T000708
Figure JPOXMLDOC01-appb-T000708
Figure JPOXMLDOC01-appb-T000709
Figure JPOXMLDOC01-appb-T000709
Figure JPOXMLDOC01-appb-T000710
Figure JPOXMLDOC01-appb-T000710
Figure JPOXMLDOC01-appb-T000711
Figure JPOXMLDOC01-appb-T000711
Figure JPOXMLDOC01-appb-T000712
Figure JPOXMLDOC01-appb-T000712
Figure JPOXMLDOC01-appb-T000713
Figure JPOXMLDOC01-appb-T000713
Figure JPOXMLDOC01-appb-T000714
Figure JPOXMLDOC01-appb-T000714
Figure JPOXMLDOC01-appb-T000715
Figure JPOXMLDOC01-appb-T000715
Figure JPOXMLDOC01-appb-T000716
Figure JPOXMLDOC01-appb-T000716
[Ex1-1~Ex1-57]
 Ex1-1~Ex1-57では、プロパンと、HFO-1123と、HFO-1234yfとを、表714及び表715に示す組成で混合した作動媒体を作製した。作動媒体について、燃焼熱量(表中、「HOC」と記す)、吐出温度(表中、「Td」と記す)、凝縮圧力(表中、「Pc」と記す)、CAP、温度グライド(表中、「TG」と記す)、及び圧力損失(表中、「dP」と記す)を測定した。燃焼熱量、吐出温度、凝縮圧力、CAP、及び温度グライドの測定方法は、上記のとおりである。圧力損失は、後述の方法で測定した。測定結果を、作動媒体の組成と併せて、表714及び表715に示す。判定の欄では、燃焼熱量が19.000MJ/kg以上の場合をXと、19.000MJ/kg未満の場合をOと表記する。表中、吐出温度及び温度グライドの単位は「℃」である。なお、Ex1-1~Ex1-17は実施例であり、Ex1-18~Ex1-57は比較例である。
[Ex1-1 to Ex1-57]
In Ex1-1 to Ex1-57, propane, HFO-1123, and HFO-1234yf were mixed with compositions shown in Tables 714 and 715 to prepare working media. Regarding the working medium, combustion heat quantity (indicated as "HOC" in the table), discharge temperature (indicated as "Td" in the table), condensation pressure (indicated as "Pc" in the table), CAP, temperature glide (indicated in the table , “TG”), and pressure drop (“dP” in the table) were measured. The methods of measuring heat of combustion, discharge temperature, condensing pressure, CAP, and temperature glide are described above. Pressure loss was measured by the method described later. The measurement results are shown in Tables 714 and 715 together with the composition of the working medium. In the judgment column, X indicates that the combustion heat quantity is 19.000 MJ/kg or more, and O indicates that it is less than 19.000 MJ/kg. In the table, the unit of discharge temperature and temperature glide is "°C". Ex1-1 to Ex1-17 are examples, and Ex1-18 to Ex1-57 are comparative examples.
-圧力損失-
 圧力損失は、摩擦係数f(-)、長さL(m)、直径d(m)、蒸発器能力Φ0(kW)、蒸発潜熱W(kJ/kg)、比体積ν(m/kg)を用いて、下式で表される。なお、本開示において、圧力損失は、式の後半の括弧内を示し、R410Aに対する相対圧力損失にて示す。
- Pressure loss -
Pressure loss is coefficient of friction f (-), length L (m), diameter d (m), evaporator capacity Φ 0 (kW), latent heat of vaporization W r (kJ/kg), specific volume ν s (m 3 / kg), it is represented by the following formula. In the present disclosure, pressure loss is shown in parentheses in the latter half of the formula, and is shown as relative pressure loss with respect to R410A.
Figure JPOXMLDOC01-appb-M000717
Figure JPOXMLDOC01-appb-M000717
Figure JPOXMLDOC01-appb-T000718
Figure JPOXMLDOC01-appb-T000718
Figure JPOXMLDOC01-appb-T000719
Figure JPOXMLDOC01-appb-T000719
 Ex1-1~Ex1-17では、プロパンと、HFO-1123と、HFO-1234yfとを、含有し、燃焼熱量が、19.000MJ/kg未満であることから、冷媒としての性能に優れることが分かった。 Ex1-1 to Ex1-17 contain propane, HFO-1123, and HFO-1234yf, and the combustion heat quantity is less than 19.000 MJ/kg, so it is found that the performance as a refrigerant is excellent. rice field.
[Ex2-1~Ex2-10]
 Ex2-1~Ex2-10では、プロパンと、HFO-1123と、HFC-32とを、表716に示す組成で混合した作動媒体を作製した。作動媒体について、燃焼熱量(表中、「HOC」と記す)、吐出温度(表中、「Td」と記す)、凝縮圧力(表中、「Pc」と記す)、CAP、温度グライド(表中、「TG」と記す)、及び圧力損失(表中、「dP」と記す)を測定した。燃焼熱量、吐出温度、凝縮圧力、CAP、温度グライド、及び圧力損失の測定方法は、上記のとおりである。測定結果を、作動媒体の組成と併せて、表716に示す。なお、Ex2-1~Ex2-7は実施例であり、Ex2-8~Ex2-10は比較例である。
[Ex2-1 to Ex2-10]
For Ex2-1 to Ex2-10, a working medium was prepared by mixing propane, HFO-1123, and HFC-32 with the composition shown in Table 716. Regarding the working medium, combustion heat quantity (indicated as "HOC" in the table), discharge temperature (indicated as "Td" in the table), condensation pressure (indicated as "Pc" in the table), CAP, temperature glide (indicated in the table , “TG”), and pressure drop (“dP” in the table) were measured. The methods of measuring heat of combustion, discharge temperature, condensing pressure, CAP, temperature glide, and pressure loss are as described above. The measurement results are shown in Table 716 together with the composition of the working medium. Ex2-1 to Ex2-7 are examples, and Ex2-8 to Ex2-10 are comparative examples.
Figure JPOXMLDOC01-appb-T000720
Figure JPOXMLDOC01-appb-T000720
 Ex2-1~Ex2-7では、プロパンと、HFO-1123と、HFC-32とを含有し、燃焼熱量が、19.000MJ/kg未満であることから、冷媒としての性能に優れることが分かった。 Ex2-1 to Ex2-7 contain propane, HFO-1123, and HFC-32, and the combustion heat quantity is less than 19.000 MJ/kg, so it was found that the performance as a refrigerant is excellent. .
[Ex3-1~Ex3-24]
 Ex3-1~Ex3-24では、プロパンと、HFO-1123と、HFO-1234Ze(E)とを、表717に示す組成で混合した作動媒体を作製した。作動媒体について、燃焼熱量(表中、「HOC」と記す)、吐出温度(表中、「Td」と記す)、凝縮圧力(表中、「Pc」と記す)、温度グライド(表中、「TG」と記す)、CAP、及びCOPを測定した。燃焼熱量、吐出温度、凝縮圧力、温度グライド、CAP、及びCOPの測定方法は、上記のとおりである。測定結果を、作動媒体の組成と併せて、表717に示す。なお、Ex3-1~Ex3-22は実施例であり、Ex3-23~Ex3-24は比較例である。
 特に、Ex3-10~Ex3~14、Ex3-16~Ex3~20では、HFO-1234Ze(E)の含有量が、プロパン、HFO-1123、及びHFO-1234Ze(E)の合計含有量に対して11.0~25.0質量%であり、上記合計含有量が、作動媒体の全量に対して78.5質量%以上であるため、凝縮圧力1.12以下、かつ、7℃以下の温度グライドを達成できる。
 また、Ex3-1~Ex3~5、Ex3-15では、プロパンの含有量が、プロパン及びHFO-1123の合計含有量に対して10質量%以下であり、HFO-1234Ze(E)の含有量が、プロパン、HFO-1123、及びHFO-1234Ze(E)の合計含有量に対して15.0質量%以下であるため、燃焼熱量がより低く、かつ、5℃以下の温度グライドを達成できる。
 また、Ex3-6~Ex3-9では、プロパンの含有量が、プロパン及びHFO-1123の合計含有量に対して20.0質量%以下であり、HFO-1234Ze(E)の含有量が、プロパン、HFO-1123、及びHFO-1234Ze(E)の合計含有量に対して9.0質量%以下であるため、燃焼熱量がより低く、かつ、4℃以下の温度グライドを達成できた。
[Ex3-1 to Ex3-24]
For Ex3-1 to Ex3-24, propane, HFO-1123, and HFO-1234Ze(E) were mixed with the composition shown in Table 717 to prepare a working medium. Regarding the working medium, combustion heat quantity (indicated as "HOC" in the table), discharge temperature (indicated as "Td" in the table), condensation pressure (indicated as "Pc" in the table), temperature glide (indicated as " TG”), CAP, and COP were measured. The methods of measuring heat of combustion, discharge temperature, condensing pressure, temperature glide, CAP, and COP are as described above. The measurement results are shown in Table 717 together with the composition of the working medium. Ex3-1 to Ex3-22 are examples, and Ex3-23 to Ex3-24 are comparative examples.
In particular, in Ex3-10 to Ex3-14 and Ex3-16 to Ex3-20, the content of HFO-1234Ze (E) is 11.0 to 25.0% by mass, and the total content is 78.5% by mass or more with respect to the total amount of the working medium, so that the condensation pressure is 1.12 or less and the temperature glide is 7 ° C. or less. can be achieved.
In Ex3-1 to Ex3 to 5 and Ex3-15, the propane content is 10% by mass or less with respect to the total content of propane and HFO-1123, and the content of HFO-1234Ze (E) is , propane, HFO-1123, and HFO-1234Ze (E) is 15.0% by mass or less with respect to the total content of (E), so the combustion heat quantity is lower and a temperature glide of 5° C. or less can be achieved.
In Ex3-6 to Ex3-9, the propane content is 20.0% by mass or less with respect to the total content of propane and HFO-1123, and the content of HFO-1234Ze (E) is less than propane , HFO-1123, and HFO-1234Ze (E) were 9.0% by mass or less based on the total content, so the combustion heat quantity was lower and a temperature glide of 4°C or less could be achieved.
Figure JPOXMLDOC01-appb-T000721
Figure JPOXMLDOC01-appb-T000721
 Ex3-1~Ex3-22では、プロパンと、HFO-1123と、HFO-1234Ze(E)とを含有し、燃焼熱量が、19.000MJ/kg未満であることから、冷媒としての性能に優れることが分かった。 Ex3-1 to Ex3-22 contain propane, HFO-1123, and HFO-1234Ze (E), and have a combustion heat of less than 19.000 MJ/kg, so they have excellent performance as refrigerants. I found out.
[Ex4-1~Ex4-37]
 Ex4-1~Ex4-37では、プロパンと、HFO-1123と、COとを、表718に示す組成で混合した作動媒体を作製した。作動媒体について、燃焼熱量(表中、「HOC」と記す)、吐出温度(表中、「Td」と記す)、凝縮圧力(表中、「Pc」と記す)、温度グライド(表中、「TG」と記す)、CAP、及びCOPを測定した。燃焼熱量、吐出温度、凝縮圧力、温度グライド、CAP、及びCOPの測定方法は、上記のとおりである。測定結果を、作動媒体の組成と併せて、表718に示す。なお、Ex4-1~Ex4-35は実施例であり、Ex4-36~Ex4-37は比較例である。
[Ex4-1 to Ex4-37]
For Ex4-1 to Ex4-37, a working medium was prepared by mixing propane, HFO-1123, and CO 2 with the composition shown in Table 718. Regarding the working medium, combustion heat quantity (indicated as "HOC" in the table), discharge temperature (indicated as "Td" in the table), condensation pressure (indicated as "Pc" in the table), temperature glide (indicated as " TG”), CAP, and COP were measured. The methods of measuring heat of combustion, discharge temperature, condensing pressure, temperature glide, CAP, and COP are as described above. The measurement results are shown in Table 718 together with the composition of the working medium. Ex4-1 to Ex4-35 are examples, and Ex4-36 to Ex4-37 are comparative examples.
Figure JPOXMLDOC01-appb-T000722
Figure JPOXMLDOC01-appb-T000722
 Ex4-1~Ex4-35では、プロパンと、HFO-1123と、COとを含有し、燃焼熱量が、19.000MJ/kg未満であることから、冷媒としての性能に優れることが分かった。
 特に、Ex4-1~Ex4-34では、プロパン、HFO-1123、及びCOの合計含有量に対するHFO-1123の含有量をX質量%、上記合計含有量に対するCOの含有量をY質量%とした場合に、X及びYが式(1)を満たし、プロパン、上記合計含有量が、作動媒体の全量に対して78.5質量%以上であるため、7℃以下の温度グライドを達成できた。
Ex4-1 to Ex4-35 contained propane, HFO-1123 and CO 2 and had a combustion heat of less than 19.000 MJ/kg, indicating that they had excellent performance as refrigerants.
In particular, in Ex4-1 to Ex4-34, the content of HFO-1123 with respect to the total content of propane, HFO-1123, and CO2 is X 1 % by mass, and the content of CO2 with respect to the above total content is Y 1 When expressed as % by mass, X 1 and Y 1 satisfy the formula (1), and the total content of propane is 78.5% by mass or more with respect to the total amount of the working medium, so the temperature of 7 ° C. or less Glide was achieved.
[Ex5-1~Ex5-19]
 Ex5-1~Ex5-17では、プロパンと、HFO-1123と、CFIとを、表718に示す組成で混合した作動媒体を作製した。作動媒体について、燃焼熱量(表中、「HOC」と記す)、吐出温度(表中、「Td」と記す)、凝縮圧力(表中、「Pc」と記す)、温度グライド(表中、「TG」と記す)、CAP、COP、及び圧力損失(表中、「dP」と記す)を測定した。燃焼熱量、吐出温度、凝縮圧力、温度グライド、CAP、COP、及びdPの測定方法は、上記のとおりである。測定結果を、作動媒体の組成と併せて、表719に示す。なお、Ex5-1~Ex5-17は実施例であり、Ex5-18~Ex5-19は比較例である。
[Ex5-1 to Ex5-19]
In Ex5-1 to Ex5-17, propane, HFO-1123, and CF 3 I were mixed with the composition shown in Table 718 to prepare a working medium. Regarding the working medium, combustion heat quantity (indicated as "HOC" in the table), discharge temperature (indicated as "Td" in the table), condensation pressure (indicated as "Pc" in the table), temperature glide (indicated as " TG”), CAP, COP, and pressure loss (denoted as “dP” in the table) were measured. The methods of measuring heat of combustion, discharge temperature, condensing pressure, temperature glide, CAP, COP, and dP are described above. The measurement results are shown in Table 719 together with the composition of the working medium. Ex5-1 to Ex5-17 are examples, and Ex5-18 to Ex5-19 are comparative examples.
Figure JPOXMLDOC01-appb-T000723
Figure JPOXMLDOC01-appb-T000723
 Ex5-1~Ex5-17では、プロパンと、HFO-1123と、CFIとを含有し、燃焼熱量が、19.000MJ/kg未満であることから、冷媒としての性能に優れることが分かった。
 特に、Ex5-1~Ex5-15では、プロパン、HFO-1123、及びCFIの合計含有量に対するプロパンの含有量をX質量%、上記合計含有量に対するCFIの含有量をY質量%とした場合に、X及びYが式(2A)を満たし、上記合計含有量が、作動媒体の全量に対して78.5質量%以上であるため、5℃以下の温度グライドを達成できた。
Ex5-1 to Ex5-17 contain propane, HFO-1123, and CF 3 I, and have a combustion heat quantity of less than 19.000 MJ/kg. .
In particular, in Ex5-1 to Ex5-15, the content of propane with respect to the total content of propane, HFO-1123, and CF 3 I is X 2 % by mass, and the content of CF 3 I with respect to the total content is Y 2 %, X 2 and Y 2 satisfy the formula (2A), and the total content is 78.5% by mass or more with respect to the total amount of the working medium, so that a temperature glide of 5 ° C. or less is obtained. Achieved.
[Ex6-1~Ex6-84]
 Ex6-1~Ex6-84では、プロパンと、HFO-1123と、HFC-32と、HFO-1234yfとを、表720~表723に示す組成で混合した作動媒体を作製した。作動媒体について、燃焼熱量(表中、「HOC」と記す)、吐出温度(表中、「Td」と記す)、凝縮圧力(表中、「Pc」と記す)、蒸発圧力(表中、「Pe」と記す)、温度グライド(表中、「TG」と記す)、CAP、COP、及び圧縮比(表中、「Pc/Pe」と記す)を測定した。燃焼熱量、吐出温度、凝縮圧力、蒸発圧力、温度グライド、CAP、COP、及び圧縮比の測定方法は、上記のとおりである。表中、吐出温度及び温度グライドの単位は「℃」である。測定結果を、作動媒体の組成と併せて、表720~表723に示す。
[Ex6-1 to Ex6-84]
In Ex6-1 to Ex6-84, propane, HFO-1123, HFC-32, and HFO-1234yf were mixed with compositions shown in Tables 720 to 723 to produce working media. Regarding the working medium, combustion heat quantity (indicated as "HOC" in the table), discharge temperature (indicated as "Td" in the table), condensation pressure (indicated as "Pc" in the table), evaporating pressure (indicated as "Pe"), temperature glide (denoted as "TG" in the table), CAP, COP, and compression ratio (denoted as "Pc/Pe" in the table) were measured. The methods of measuring heat of combustion, discharge temperature, condensing pressure, evaporating pressure, temperature glide, CAP, COP, and compression ratio are as described above. In the table, the unit of discharge temperature and temperature glide is "°C". The measurement results are shown in Tables 720 to 723 together with the composition of the working medium.
Figure JPOXMLDOC01-appb-T000724
Figure JPOXMLDOC01-appb-T000724
Figure JPOXMLDOC01-appb-T000725
Figure JPOXMLDOC01-appb-T000725
Figure JPOXMLDOC01-appb-T000726
Figure JPOXMLDOC01-appb-T000726
Figure JPOXMLDOC01-appb-T000727
Figure JPOXMLDOC01-appb-T000727
 Ex6-1~Ex6-84では、プロパンと、HFO-1123と、HFC-32と、HFO-1234yfとを含有し、燃焼熱量が、19.000MJ/kg未満であることから、冷媒としての性能に優れることが分かった。
 特に、Ex6-1~Ex6-18、Ex6-22~Ex6-39、Ex6-43~Ex6-60、Ex6-64~Ex6-81では、プロパン、HFO-1123、HFO-1234yf、及びHFC-32の合計含有量に対するHFC-32の含有量をA質量%、上記合計含有量に対するHFO-1234yfの含有量をB質量%、上記合計含有量に対するプロパンの含有量をC質量%、上記合計含有量に対するHFO-1123の含有量をD質量%とした場合に、A、B、C、及びDが式(3A)~(3D)を満たすため、凝縮圧力1.2122未満を実現でき、かつ、圧縮比0.9453未満を実現できた。
Ex6-1 to Ex6-84 contain propane, HFO-1123, HFC-32, and HFO-1234yf, and the combustion heat is less than 19.000 MJ / kg, so the performance as a refrigerant I found it to be excellent.
In particular, in Ex6-1 to Ex6-18, Ex6-22 to Ex6-39, Ex6-43 to Ex6-60, Ex6-64 to Ex6-81, propane, HFO-1123, HFO-1234yf, and HFC-32 The content of HFC-32 with respect to the total content is A mass%, the content of HFO-1234yf with respect to the total content is B mass%, the content of propane with respect to the total content is C mass%, with respect to the total content When the content of HFO-1123 is D mass%, A, B, C, and D satisfy formulas (3A) to (3D), so a condensation pressure of less than 1.2122 can be achieved, and a compression ratio A value of less than 0.9453 could be achieved.
[Ex7-1~Ex7-76]
 Ex7-1~Ex7-76では、プロパンと、HFO-1123と、HFC-32と、HFO-1234ze(E)とを、表724~表727に示す組成で混合した作動媒体を作製した。作動媒体について、燃焼熱量(表中、「HOC」と記す)、吐出温度(表中、「Td」と記す)、凝縮圧力(表中、「Pc」と記す)、蒸発圧力(表中、「Pe」と記す)、温度グライド(表中、「TG」と記す)、CAP、COP、及び圧縮比(表中、「Pc/Pe」と記す)を測定した。燃焼熱量、吐出温度、凝縮圧力、蒸発圧力、温度グライド、CAP、COP、及び圧縮比の測定方法は、上記のとおりである。表中、吐出温度及び温度グライドの単位は「℃」である。測定結果を、作動媒体の組成と併せて、表724~表727に示す。
[Ex7-1 to Ex7-76]
In Ex7-1 to Ex7-76, propane, HFO-1123, HFC-32, and HFO-1234ze (E) were mixed with the compositions shown in Tables 724 to 727 to prepare working media. Regarding the working medium, combustion heat quantity (indicated as "HOC" in the table), discharge temperature (indicated as "Td" in the table), condensation pressure (indicated as "Pc" in the table), evaporating pressure (indicated as "Pe"), temperature glide (denoted as "TG" in the table), CAP, COP, and compression ratio (denoted as "Pc/Pe" in the table) were measured. The methods of measuring heat of combustion, discharge temperature, condensing pressure, evaporating pressure, temperature glide, CAP, COP, and compression ratio are as described above. In the table, the unit of discharge temperature and temperature glide is "°C". The measurement results are shown in Tables 724 to 727 together with the composition of the working medium.
Figure JPOXMLDOC01-appb-T000728
Figure JPOXMLDOC01-appb-T000728
Figure JPOXMLDOC01-appb-T000729
Figure JPOXMLDOC01-appb-T000729
Figure JPOXMLDOC01-appb-T000730
Figure JPOXMLDOC01-appb-T000730
Figure JPOXMLDOC01-appb-T000731
Figure JPOXMLDOC01-appb-T000731
 Ex7-1~Ex7-76では、プロパンと、HFO-1123と、HFC-32と、HFO-1234ze(E)とを含有し、燃焼熱量が、19.000MJ/kg未満であることから、冷媒としての性能に優れることが分かった。
 特に、Ex7-1~Ex7-16、Ex7-20~Ex7-35、Ex7-39~Ex7-54、Ex7-58~Ex7-73では、プロパン、HFO-1123、HFO-1234ze(E)、及びHFC-32の合計含有量に対するHFC-32の含有量をE質量%、上記合計含有量に対するHFO-1234ze(E)の含有量をF質量%、上記合計含有量に対するプロパンの含有量をG質量%、上記合計含有量に対するHFO-1123の含有量をH質量%とした場合に、E、F、G、及びHが式(4A)~(4D)を満たすため、凝縮圧力1.1993未満を実現でき、かつ、圧縮比0.9553未満を実現できた。
Ex7-1 to Ex7-76 contain propane, HFO-1123, HFC-32, and HFO-1234ze (E), and the heat of combustion is less than 19.000 MJ / kg, so as a refrigerant It was found that the performance of
In particular, for Ex7-1 to Ex7-16, Ex7-20 to Ex7-35, Ex7-39 to Ex7-54, Ex7-58 to Ex7-73, propane, HFO-1123, HFO-1234ze(E), and HFC The content of HFC-32 with respect to the total content of -32 is E mass%, the content of HFO-1234ze (E) with respect to the total content is F mass%, and the content of propane with respect to the total content is G mass%. , When the content of HFO-1123 with respect to the above total content is H mass%, E, F, G, and H satisfy formulas (4A) to (4D), so a condensation pressure of less than 1.1993 is realized. Moreover, a compression ratio of less than 0.9553 was achieved.
[Ex8-1~Ex8-80]
 Ex8-1~Ex8-80では、プロパンと、HFO-1123と、HFC-32と、COとを、表728~表731に示す組成で混合した作動媒体を作製した。作動媒体について、燃焼熱量(表中、「HOC」と記す)、吐出温度(表中、「Td」と記す)、凝縮圧力(表中、「Pc」と記す)、蒸発圧力(表中、「Pe」と記す)、温度グライド(表中、「TG」と記す)、CAP、COP、及び圧力損失(表中、「dP」と記す)を測定した。燃焼熱量、吐出温度、凝縮圧力、蒸発圧力、温度グライド、CAP、COP、及び圧力損失の測定方法は、上記のとおりである。表中、吐出温度及び温度グライドの単位は「℃」である。測定結果を、作動媒体の組成と併せて、表728~表731に示す。
[Ex8-1 to Ex8-80]
For Ex8-1 to Ex8-80, working media were prepared by mixing propane, HFO-1123, HFC-32, and CO 2 with the compositions shown in Tables 728 to 731. Regarding the working medium, combustion heat quantity (indicated as "HOC" in the table), discharge temperature (indicated as "Td" in the table), condensation pressure (indicated as "Pc" in the table), evaporating pressure (indicated as " Pe”), temperature glide (denoted as “TG” in the table), CAP, COP, and pressure drop (denoted as “dP” in the table) were measured. The methods for measuring heat of combustion, discharge temperature, condensing pressure, evaporating pressure, temperature glide, CAP, COP, and pressure loss are as described above. In the table, the unit of discharge temperature and temperature glide is "°C". The measurement results are shown in Tables 728 to 731 together with the composition of the working medium.
Figure JPOXMLDOC01-appb-T000732
Figure JPOXMLDOC01-appb-T000732
Figure JPOXMLDOC01-appb-T000733
Figure JPOXMLDOC01-appb-T000733
Figure JPOXMLDOC01-appb-T000734
Figure JPOXMLDOC01-appb-T000734
Figure JPOXMLDOC01-appb-T000735
Figure JPOXMLDOC01-appb-T000735
 Ex8-1~Ex8-80では、プロパンと、HFO-1123と、HFC-32と、COとを含有し、燃焼熱量が、19.000MJ/kg未満であることから、冷媒としての性能に優れることが分かった。
 特に、Ex8-1~Ex8-16、Ex8-20~Ex8-37、Ex8-41~Ex8-57、Ex8-61~Ex8-77では、プロパン、HFO-1123、CO、及びHFC-32の合計含有量に対するHFC-32の含有量をJ質量%、上記合計含有量に対するCOの含有量をK質量%、上記合計含有量に対するプロパンの含有量をL質量%、上記合計含有量に対するHFO-1123の含有量をM質量%とした場合に、J、K、L、及びMが下記式(5A)~(5D)を満たすため、凝縮圧力1.48789未満を実現でき、かつ、圧力損失0.92297未満を実現できた。
Ex8-1 to Ex8-80 contain propane, HFO-1123, HFC-32, and CO 2 , and have a combustion heat of less than 19.000 MJ / kg, so they have excellent performance as refrigerants. I found out.
In particular, in Ex8-1 to Ex8-16, Ex8-20 to Ex8-37, Ex8-41 to Ex8-57, Ex8-61 to Ex8-77, the sum of propane, HFO-1123, CO 2 and HFC-32 The content of HFC-32 to the content is J mass%, the content of CO 2 to the above total content is K mass%, the content of propane to the above total content is L mass%, HFO to the above total content- When the content of 1123 is M% by mass, J, K, L, and M satisfy the following formulas (5A) to (5D), so a condensation pressure of less than 1.48789 can be achieved, and the pressure loss is 0 A value of less than .92297 was achieved.
[Ex9-1~Ex9-57]
 Ex9-1~Ex9-57では、プロパンと、HFO-1123と、HFC-32と、場合によってCFIとを、表732及び表733に示す組成で混合した作動媒体を作製した。作動媒体について、燃焼熱量(表中、「HOC」と記す)を測定した。燃焼熱量の測定方法は、上記のとおりである。測定結果を、作動媒体の組成と併せて、表732及び表733に示す。
[Ex9-1 to Ex9-57]
In Ex9-1 to Ex9-57, working media were prepared by mixing propane, HFO-1123, HFC-32, and optionally CF 3 I with the compositions shown in Tables 732 and 733. Combustion heat quantity (denoted as "HOC" in the table) was measured for the working medium. The method for measuring the heat of combustion is as described above. The measurement results are shown in Tables 732 and 733 together with the composition of the working medium.
Figure JPOXMLDOC01-appb-T000736
Figure JPOXMLDOC01-appb-T000736
Figure JPOXMLDOC01-appb-T000737
Figure JPOXMLDOC01-appb-T000737
 Ex9-1~Ex9-57では、プロパンと、HFO-1123と、HFC-32と、場合によってCFIとを含有し、燃焼熱量が、19.000MJ/kg未満であることから、冷媒としての性能に優れることが分かった。
 特に、プロパン、HFO-1123、HFC-32、及びCFIの4成分を含む場合に、プロパン、HFO-1123、及びHFC-32の3成分を含む場合と比較して、燃焼熱量が低下することが分かった。
Ex9-1 to Ex9-57 contain propane, HFO-1123, HFC-32, and optionally CF 3 I, and have a combustion heat of less than 19.000 MJ/kg. It was found to have excellent performance.
In particular, when the four components of propane, HFO-1123, HFC-32, and CF 3 I are included, the combustion heat quantity is reduced compared to when the three components of propane, HFO-1123, and HFC-32 are included. I found out.
[Ex10-1~Ex10-15]
 Ex10-1~Ex10-15では、プロパンと、HFO-1123と、HFO-1234yfとを、表734に示す組成で混合した作動媒体を作製した。作動媒体について、燃焼熱量(表中、「HOC」と記す)、吐出温度(表中、「Td」と記す)、凝縮圧力(表中、「Pc」と記す)、CAP、及びグライド(表中、「TG」と記す)を測定した。表中、吐出温度及び温度グライドの単位は「℃」である。燃焼熱量、吐出温度、凝縮圧力、CAP、及び温度グライドの測定方法は、上記のとおりである。測定結果を、作動媒体の組成と併せて、表734に示す。
[Ex10-1 to Ex10-15]
In Ex10-1 to Ex10-15, working media were prepared by mixing propane, HFO-1123, and HFO-1234yf with the composition shown in Table 734. Regarding the working medium, combustion heat quantity (indicated as "HOC" in the table), discharge temperature (indicated as "Td" in the table), condensation pressure (indicated as "Pc" in the table), CAP, and glide (indicated in the table , denoted as “TG”) were measured. In the table, the unit of discharge temperature and temperature glide is "°C". The methods of measuring heat of combustion, discharge temperature, condensing pressure, CAP, and temperature glide are described above. The measurement results are shown in Table 734 together with the composition of the working medium.
Figure JPOXMLDOC01-appb-T000738
Figure JPOXMLDOC01-appb-T000738
 Ex10-1~Ex10-15では、プロパンと、HFO-1123と、HFO-1234yfとを含有し、燃焼熱量が、19.000MJ/kg未満であることから、冷媒としての性能に優れることが分かった。
 特に、Ex10-1~Ex10-12では、HFO-1234yfの含有量が、プロパン、HFO-1123、及びHFO-1234yfの合計含有量に対して25.0~70.0質量%であり、プロパンの含有量が、上記合計含有量に対して9.0質量%以下であり、上記合計含有量が、作動媒体の全量に対して78.5質量%以上であるため、燃焼熱量がより低く、凝縮圧力1.0以下、CAP0.65以上を実現できた。
Ex10-1 to Ex10-15 contain propane, HFO-1123, and HFO-1234yf, and the combustion heat quantity is less than 19.000 MJ/kg, so it was found that the performance as a refrigerant is excellent. .
In particular, in Ex10-1 to Ex10-12, the content of HFO-1234yf is 25.0 to 70.0% by mass with respect to the total content of propane, HFO-1123, and HFO-1234yf. The content is 9.0% by mass or less with respect to the total content, and the total content is 78.5% by mass or more with respect to the total amount of the working medium, so that the combustion heat amount is lower and condensation A pressure of 1.0 or less and a CAP of 0.65 or more could be realized.
 なお、2021年12月03日に出願された日本国特許出願2021-197399号、2022年4月15日に出願された日本国特許出願2022-067936号、及び、2022年10月7日に出願された日本国特許出願2022-162767号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 In addition, Japanese Patent Application No. 2021-197399 filed on December 03, 2021, Japanese Patent Application No. 2022-067936 filed on April 15, 2022, and filed on October 7, 2022 The disclosure of Japanese Patent Application No. 2022-162767 filed is incorporated herein by reference in its entirety. In addition, all publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. , incorporated herein by reference.

Claims (19)

  1.  プロパンと、
     1,1,2-トリフルオロエチレン及び(E)-1,2-ジフルオロエチレンの少なくとも一方と、
     2,3,3,3-テトラフルオロ-1-プロペン、(E)-1,3,3,3-テトラフルオロプロペン、ジフルオロメタン、CO、CFI、(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン、(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン、(E)-1-クロロ-3,3,3-トリフルオロプロペン、(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン、(Z)-1,2,3,3,3-ペンタフルオロプロペン、及び(E)-1,2,3,3,3-ペンタフルオロプロペンからなる群より選択される少なくとも1種の第3成分と、を含有し、
     燃焼熱量が、19.000MJ/kg未満である作動媒体。
    with propane;
    at least one of 1,1,2-trifluoroethylene and (E)-1,2-difluoroethylene;
    2,3,3,3-tetrafluoro-1-propene, (E)-1,3,3,3-tetrafluoropropene, difluoromethane, CO 2 , CF 3 I, (Z)-1-chloro-2 , 3,3,3-tetrafluoropropene, (E)-1-chloro-2,3,3,3-tetrafluoropropene, (E)-1-chloro-3,3,3-trifluoropropene, ( E)-1,1,1,4,4,4-hexafluoro-2-butene, (Z)-1,2,3,3,3-pentafluoropropene, and (E)-1,2,3 , and at least one third component selected from the group consisting of 3,3-pentafluoropropene,
    A working medium having a heat of combustion of less than 19.000 MJ/kg.
  2.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記2,3,3,3-テトラフルオロ-1-プロペンと、を含有し、
     前記プロパンの含有量と前記1,1,2-トリフルオロエチレンの含有量との質量比が、5:95~29:71であり、
     前記2,3,3,3-テトラフルオロ-1-プロペンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記2,3,3,3-テトラフルオロ-1-プロペンの合計含有量に対して10.5~25.0質量%であり、
     前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記2,3,3,3-テトラフルオロ-1-プロペンの合計含有量が、前記作動媒体の全量に対して80質量%以上である、請求項1に記載の作動媒体。
    containing the propane, the 1,1,2-trifluoroethylene, and the 2,3,3,3-tetrafluoro-1-propene,
    The mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 5:95 to 29:71,
    The content of the 2,3,3,3-tetrafluoro-1-propene is the propane, the 1,1,2-trifluoroethylene, and the 2,3,3,3-tetrafluoro-1-propene 10.5 to 25.0% by mass with respect to the total content of
    The total content of propane, 1,1,2-trifluoroethylene, and 2,3,3,3-tetrafluoro-1-propene is 80% by mass or more relative to the total amount of the working medium. A working medium according to claim 1.
  3.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記ジフルオロメタンと、を含有し、
     前記プロパンの含有量と前記1,1,2-トリフルオロエチレンの含有量との質量比が、18:82~22:78であり、
     前記ジフルオロメタンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記ジフルオロメタンの合計含有量に対して5.5~19.5質量%である、請求項1に記載の作動媒体。
    containing the propane, the 1,1,2-trifluoroethylene, and the difluoromethane;
    The mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 18:82 to 22:78,
    2. The content of said difluoromethane is 5.5 to 19.5% by mass with respect to the total content of said propane, said 1,1,2-trifluoroethylene and said difluoromethane, according to claim 1 working medium.
  4.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記ジフルオロメタンと、を含有し、
     前記プロパンの含有量と前記1,1,2-トリフルオロエチレンの含有量との質量比が、5:95~23:77であり、
     前記ジフルオロメタンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記ジフルオロメタンの合計含有量に対して20.1~21.9質量%である、請求項1に記載の作動媒体。
    containing the propane, the 1,1,2-trifluoroethylene, and the difluoromethane;
    The mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 5:95 to 23:77,
    2. The content of said difluoromethane is 20.1 to 21.9% by mass with respect to the total content of said propane, said 1,1,2-trifluoroethylene and said difluoromethane, according to claim 1 working medium.
  5.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記ジフルオロメタンと、を含有し、
     前記プロパンの含有量と前記1,1,2-トリフルオロエチレンの含有量との質量比が、18.9:81.1~23:77であり、
     前記ジフルオロメタンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記ジフルオロメタンの合計含有量に対して12.5~21.5質量%である、請求項1に記載の作動媒体。
    containing the propane, the 1,1,2-trifluoroethylene, and the difluoromethane;
    The mass ratio of the propane content to the 1,1,2-trifluoroethylene content is 18.9:81.1 to 23:77,
    2. The content of said difluoromethane is 12.5 to 21.5 mass % with respect to the total content of said propane, said 1,1,2-trifluoroethylene and said difluoromethane, according to claim 1 working medium.
  6.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記(E)-1,3,3,3-テトラフルオロプロペンと、を含有し、
     前記プロパンの含有量が、前記プロパン及び前記1,1,2-トリフルオロエチレンの合計含有量に対して25.0質量%以下であり、
     前記(E)-1,3,3,3-テトラフルオロプロペンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記(E)-1,3,3,3-テトラフルオロプロペンの合計含有量に対して11.0~25.0質量%であり、
     前記合計含有量が、前記作動媒体の全量に対して78.5質量%以上である、請求項1に記載の作動媒体。
    containing the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene,
    The propane content is 25.0% by mass or less with respect to the total content of the propane and the 1,1,2-trifluoroethylene,
    The content of the (E)-1,3,3,3-tetrafluoropropene is the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene. 11.0 to 25.0% by mass with respect to the total content of fluoropropene,
    2. The working medium according to claim 1, wherein the total content is 78.5% by mass or more relative to the total amount of the working medium.
  7.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記(E)-1,3,3,3-テトラフルオロプロペンと、を含有し、
     前記プロパンの含有量が、前記プロパン及び前記1,1,2-トリフルオロエチレンの合計含有量に対して10.0質量%以下であり、
     前記(E)-1,3,3,3-テトラフルオロプロペンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記(E)-1,3,3,3-テトラフルオロプロペンの合計含有量に対して15.0質量%以下である、請求項1に記載の作動媒体。
    containing the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene,
    The propane content is 10.0% by mass or less with respect to the total content of the propane and the 1,1,2-trifluoroethylene,
    The content of the (E)-1,3,3,3-tetrafluoropropene is the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene. 2. The working medium according to claim 1, which is 15.0% by mass or less relative to the total content of fluoropropene.
  8.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記(E)-1,3,3,3-テトラフルオロプロペンと、を含有し、
     前記プロパンの含有量が、前記プロパン及び前記1,1,2-トリフルオロエチレンの合計含有量に対して20.0質量%以下であり、
     前記(E)-1,3,3,3-テトラフルオロプロペンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記(E)-1,3,3,3-テトラフルオロプロペンの合計含有量に対して9.0質量%以下である、請求項1に記載の作動媒体。
    containing the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene,
    The propane content is 20.0% by mass or less with respect to the total content of the propane and the 1,1,2-trifluoroethylene,
    The content of the (E)-1,3,3,3-tetrafluoropropene is the propane, the 1,1,2-trifluoroethylene, and the (E)-1,3,3,3-tetrafluoropropene. 2. The working medium according to claim 1, which is 9.0% by mass or less relative to the total fluoropropene content.
  9.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記COと、を含有し、
     前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記COの合計含有量に対する前記1,1,2-トリフルオロエチレンの含有量をX質量%、前記合計含有量に対する前記COの含有量をY質量%とした場合に、前記X及び前記Yが下記式(1)を満たし、
     前記合計含有量が、前記作動媒体の全量に対して78.5質量%以上である、請求項1に記載の作動媒体。
     -0.00115X +0.13537X -6.20662X+151.14664≦Y≦59 …(1)
    containing the propane, the 1,1,2-trifluoroethylene, and the CO2 ,
    The content of the 1,1,2-trifluoroethylene with respect to the total content of the propane, the 1,1,2-trifluoroethylene, and the CO 2 is X 1 % by mass, and the CO 2 with respect to the total content When the content of Y is 1 % by mass, the X 1 and the Y 1 satisfy the following formula (1),
    2. The working medium according to claim 1, wherein the total content is 78.5% by mass or more relative to the total amount of the working medium.
    −0.00115X 1 3 +0.13537X 1 2 −6.20662X 1 +151.14664≦Y 1 ≦59 (1)
  10.  前記COの含有量が、前記合計含有量に対して20.0質量%以下である、請求項9に記載の作動媒体。 10. The working medium according to claim 9, wherein the CO2 content is less than or equal to 20.0% by weight relative to the total content.
  11.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記CFIと、を含有し、
     前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記CFIの合計含有量に対する前記プロパンの含有量をX質量%、前記合計含有量に対する前記CFIの含有量をY質量%とした場合に、前記X及び前記Yが下記式(2A)を満たし、
     前記合計含有量が、前記作動媒体の全量に対して78.5質量%以上である、請求項1に記載の作動媒体。
     Y≦-1.125X+39 …(2A)
    containing the propane, the 1,1,2-trifluoroethylene, and the CF 3 I,
    The propane content with respect to the total content of the propane, the 1,1,2-trifluoroethylene, and the CF 3 I is X 2 % by mass, and the CF 3 I content with respect to the total content is Y 2 When expressed as % by mass, the X 2 and the Y 2 satisfy the following formula (2A),
    2. The working medium according to claim 1, wherein the total content is 78.5% by mass or more relative to the total amount of the working medium.
    Y 2 ≦−1.125X 2 +39 (2A)
  12.  さらに、X及びYが下記式(2B)を満たす、請求項11に記載の作動媒体。
     Y≦0.05994X +0.23676X+11.85165 …(2B)
    12. The working medium according to claim 11, wherein X2 and Y2 further satisfy the following formula (2B).
    Y 2 ≤ 0.05994X 2 2 + 0.23676X 2 + 11.85165 (2B)
  13.  前記プロパンと、前記(E)-1,2-ジフルオロエチレンと、前記第3成分と、を含有し、前記燃焼熱量が、15.250MJ/kg未満である、請求項1に記載の作動媒体。 The working medium according to claim 1, comprising said propane, said (E)-1,2-difluoroethylene, and said third component, and said combustion heat quantity is less than 15.250 MJ/kg.
  14.  前記プロパンと、前記(E)-1,2-ジフルオロエチレンと、前記第3成分と、を含有し、
     前記プロパンの含有量が、前記プロパン及び前記(E)-1,2-ジフルオロエチレンの合計含有量に対して10.0質量%以下である、請求項1に記載の作動媒体。
    containing the propane, the (E)-1,2-difluoroethylene, and the third component,
    2. The working medium according to claim 1, wherein the propane content is 10.0% by mass or less with respect to the total content of the propane and the (E)-1,2-difluoroethylene.
  15.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記2,3,3,3-テトラフルオロ-1-プロペンと、前記ジフルオロメタンと、を含有し、
     前記プロパン、前記1,1,2-トリフルオロエチレン、前記2,3,3,3-テトラフルオロ-1-プロペン、及び前記ジフルオロメタンの合計含有量に対する前記ジフルオロメタンの含有量をA質量%、前記合計含有量に対する前記2,3,3,3-テトラフルオロ-1-プロペンの含有量をB質量%、前記合計含有量に対する前記プロパンの含有量をC質量%、前記合計含有量に対する前記1,1,2-トリフルオロエチレンの含有量をD質量%とした場合に、前記A、前記B、前記C、及び前記Dが下記式(3A)~(3D)を満たす、請求項1に記載の作動媒体。
     19≦A≦22 …(3A)
     0.1562A-5.88147A+56.79≦B≦-0.1444A+4.9917A-0.9609 …(3B)
     3≦C≦-0.0168B+0.032A+23.365 …(3C)
     (0.0006A+0.0103A-2.6844)C+(0.1143A-5.4982A+133.96)≦D≦(0.00025A+0.0213)C+(-0.0003A-0.0055A-1.1287)C+(-1.0639A+92.613) …(3D)
    containing the propane, the 1,1,2-trifluoroethylene, the 2,3,3,3-tetrafluoro-1-propene, and the difluoromethane;
    The content of the difluoromethane with respect to the total content of the propane, the 1,1,2-trifluoroethylene, the 2,3,3,3-tetrafluoro-1-propene, and the difluoromethane is A% by mass, The content of 2,3,3,3-tetrafluoro-1-propene with respect to the total content is B% by mass, the content of propane with respect to the total content is C% by mass, and the content of 1 with respect to the total content , 1,2-trifluoroethylene according to claim 1, wherein said A, said B, said C, and said D satisfy the following formulas (3A) to (3D), where D is the content of 1,2-trifluoroethylene. working medium.
    19≦A≦22 (3A)
    0.1562A2-5.88147A +56.79≤B≤-0.1444A2+4.9917A-0.9609 ( 3B )
    3≤C≤-0.0168B+0.032A+23.365 (3C)
    (0.0006A 2 + 0.0103A - 2.6844) C + (0.1143A 2 - 5.4982A + 133.96) ≤ D ≤ (0.00025A + 0.0213) C 2 + (- 0.0003A 2 - 0.0055A- 1.1287) C + (-1.0639 A + 92.613) ... (3D)
  16.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記(E)-1,3,3,3-テトラフルオロプロペンと、前記ジフルオロメタンと、を含有し、
     前記プロパン、前記1,1,2-トリフルオロエチレン、前記(E)-1,3,3,3-テトラフルオロプロペン、及び前記ジフルオロメタンの合計含有量に対する前記ジフルオロメタンの含有量をE質量%、前記合計含有量に対する前記(E)-1,3,3,3-テトラフルオロプロペンの含有量をF質量%、前記合計含有量に対する前記プロパンの含有量をG質量%、前記合計含有量に対する前記1,1,2-トリフルオロエチレンの含有量をH質量%とした場合に、前記E、前記F、前記G、及び前記Hが下記式(4A)~(4D)を満たす、請求項1に記載の作動媒体。
     19≦E≦22 …(4A)
     -0.0577E+2.595E-25.794≦F≦-0.453E+43.836 …(4B)
     2≦G≦0.030E+23.40 …(4C)
     (0.0053E-0.1950E-0.0880)G+(-0.0044E-0.6605E+83.7959)≦H≦0.0255G+(-0.0042E+0.1577E-2.8414)G+(-1.059E+91.6916) …(4D)
    containing the propane, the 1,1,2-trifluoroethylene, the (E)-1,3,3,3-tetrafluoropropene, and the difluoromethane;
    The content of the difluoromethane with respect to the total content of the propane, the 1,1,2-trifluoroethylene, the (E)-1,3,3,3-tetrafluoropropene, and the difluoromethane is E% by mass. , the content of (E)-1,3,3,3-tetrafluoropropene with respect to the total content is F mass%, the content of propane with respect to the total content is G mass%, and the total content is Claim 1, wherein the E, the F, the G, and the H satisfy the following formulas (4A) to (4D) when the content of the 1,1,2-trifluoroethylene is H mass%. The working medium according to .
    19≦E≦22 (4A)
    −0.0577E 2 +2.595E−25.794≦F≦−0.453E+43.836 (4B)
    2≤G≤0.030E+23.40 (4C)
    (0.0053E 2 -0.1950E-0.0880) G + (-0.0044E 2 -0.6605E + 83.7959) ≤ H ≤ 0.0255G 2 + (-0.0042E 2 + 0.1577E-2.8414) G + (-1.059E + 91.6916) ... (4D)
  17.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記COと、前記ジフルオロメタンと、を含有し、
     前記プロパン、前記1,1,2-トリフルオロエチレン、前記CO、及び前記ジフルオロメタンの合計含有量に対する前記ジフルオロメタンの含有量をJ質量%、前記合計含有量に対する前記COの含有量をK質量%、前記合計含有量に対する前記プロパンの含有量をL質量%、前記合計含有量に対する前記1,1,2-トリフルオロエチレンの含有量をM質量%とした場合に、前記J、前記K、前記L、及び前記Mが下記式(5A)~(5D)を満たす、請求項1に記載の作動媒体。
     19≦J≦22 …(5A)
     0.074J-3.2047J-37.862≦K≦0.055J-2.2893J+42.055 …(5B)
     1≦L≦0.2985K+23.9 …(5C)
     (-0.00015J+0.0055J-0.0637)L+(0.0031J-0.1025J-0.0673)L+(-0.0017J-1.0368J+91.439)≦M≦(-0.000054J+0.00165J-0.00500)L+(0.0029J-0.1040J-0.1186)L+(-0.1221J+4.1517J+39.5) …(5D)
    containing the propane, the 1,1,2-trifluoroethylene, the CO2 , and the difluoromethane;
    The content of the difluoromethane with respect to the total content of the propane, the 1,1,2-trifluoroethylene, the CO 2 and the difluoromethane is J% by mass, and the content of the CO 2 with respect to the total content is K% by mass, L% by mass for the content of propane relative to the total content, and M% by mass for the content of 1,1,2-trifluoroethylene relative to the total content. The working medium according to claim 1, wherein K, said L, and said M satisfy the following formulas (5A) to (5D).
    19≦J≦22 (5A)
    0.074J2-3.2047J -37.862≤K≤0.055J2-2.2893J+42.055 ( 5B )
    1≦L≦0.2985K+23.9 (5C)
    (-0.00015J 2 +0.0055J-0.0637) L 2 + (0.0031J 2 -0.1025J-0.0673) L + (-0.0017J 2 -1.0368J + 91.439) ≤ M ≤ (- 0.000054J 2 + 0.00165J - 0.00500) L 2 + (0.0029J 2 - 0.1040J - 0.1186) L + (- 0.1221J 2 + 4.1517J + 39.5) ... (5D)
  18.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記CFIと、前記ジフルオロメタンと、を含有する、請求項1に記載の作動媒体。 The working medium according to claim 1, comprising said propane, said 1,1,2-trifluoroethylene, said CF 3 I, and said difluoromethane.
  19.  前記プロパンと、前記1,1,2-トリフルオロエチレンと、前記2,3,3,3-テトラフルオロ-1-プロペンと、を含有し、
     前記2,3,3,3-テトラフルオロ-1-プロペンの含有量が、前記プロパン、前記1,1,2-トリフルオロエチレン、及び前記2,3,3,3-テトラフルオロ-1-プロペンの合計含有量に対して25.0~70.0質量%であり、
     前記プロパンの含有量が、前記合計含有量に対して9.0質量%以下であり、
     前記合計含有量が、前記作動媒体の全量に対して78.5質量%以上である、請求項1に記載の作動媒体。
    containing the propane, the 1,1,2-trifluoroethylene, and the 2,3,3,3-tetrafluoro-1-propene,
    The content of the 2,3,3,3-tetrafluoro-1-propene is the propane, the 1,1,2-trifluoroethylene, and the 2,3,3,3-tetrafluoro-1-propene 25.0 to 70.0% by mass with respect to the total content of
    The propane content is 9.0% by mass or less with respect to the total content,
    2. The working medium according to claim 1, wherein the total content is 78.5% by mass or more relative to the total amount of the working medium.
PCT/JP2022/043431 2021-12-03 2022-11-24 Working medium WO2023100746A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021197399 2021-12-03
JP2021-197399 2021-12-03
JP2022-067936 2022-04-15
JP2022067936 2022-04-15
JP2022162767 2022-10-07
JP2022-162767 2022-10-07

Publications (1)

Publication Number Publication Date
WO2023100746A1 true WO2023100746A1 (en) 2023-06-08

Family

ID=86612119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043431 WO2023100746A1 (en) 2021-12-03 2022-11-24 Working medium

Country Status (1)

Country Link
WO (1) WO2023100746A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157765A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
WO2012157764A1 (en) 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
WO2016194847A1 (en) * 2015-06-01 2016-12-08 旭硝子株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
WO2018047816A1 (en) * 2016-09-07 2018-03-15 旭硝子株式会社 Working medium for thermal cycling, composition for thermal cycling system, and thermal cycling system
WO2020071380A1 (en) * 2018-10-01 2020-04-09 Agc株式会社 Composition for heat cycle system, and heat cycle system
JP2021167428A (en) 2018-06-22 2021-10-21 ダイキン工業株式会社 Composition containing refrigerant, use thereof, refrigerator having the same, and operation method for the refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157765A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
WO2012157764A1 (en) 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
WO2016194847A1 (en) * 2015-06-01 2016-12-08 旭硝子株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
WO2018047816A1 (en) * 2016-09-07 2018-03-15 旭硝子株式会社 Working medium for thermal cycling, composition for thermal cycling system, and thermal cycling system
JP2021167428A (en) 2018-06-22 2021-10-21 ダイキン工業株式会社 Composition containing refrigerant, use thereof, refrigerator having the same, and operation method for the refrigerator
WO2020071380A1 (en) * 2018-10-01 2020-04-09 Agc株式会社 Composition for heat cycle system, and heat cycle system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. PHYS. CHEM. A, vol. 122, 2018, pages 4593 - 4600
S. BENSON: "Thermo chemical kinetics", 1976, WILEY INTERSCIENCE

Similar Documents

Publication Publication Date Title
JP7173189B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
JP7131579B2 (en) COMPOSITION FOR THERMAL CYCLING SYSTEM AND THERMAL CYCLING SYSTEM
JP7173253B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
JP6409595B2 (en) Composition for thermal cycle system and thermal cycle system
WO2020071380A1 (en) Composition for heat cycle system, and heat cycle system
JP5783341B1 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
WO2015186557A1 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
WO2016171264A1 (en) Composition for use in heat cycle system, and heat cycle system
JPWO2015141678A1 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
WO2023100746A1 (en) Working medium
CN118355089A (en) Working medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023564924

Country of ref document: JP

Kind code of ref document: A