WO2023100744A1 - Method for manufacturing glass substrate, method for manufacturing pedestal, glass substrate, and pedestal - Google Patents

Method for manufacturing glass substrate, method for manufacturing pedestal, glass substrate, and pedestal Download PDF

Info

Publication number
WO2023100744A1
WO2023100744A1 PCT/JP2022/043422 JP2022043422W WO2023100744A1 WO 2023100744 A1 WO2023100744 A1 WO 2023100744A1 JP 2022043422 W JP2022043422 W JP 2022043422W WO 2023100744 A1 WO2023100744 A1 WO 2023100744A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
pedestal
manufacturing
shape
glass substrate
Prior art date
Application number
PCT/JP2022/043422
Other languages
French (fr)
Japanese (ja)
Inventor
亮一 飯田
丈彰 小野
勲 齋藤
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023100744A1 publication Critical patent/WO2023100744A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock

Definitions

  • the present invention relates to a method for manufacturing a glass substrate, a method for manufacturing a pedestal, a glass substrate, and a pedestal.
  • Patent Document 1 discloses a technique for correcting a deviation that occurs between a curved plate and a table when the curved plate is placed on the table surface.
  • the present invention has been made in view of the above problems, and manufactures a glass substrate that can reduce the internal stress generated in the glass plate when the glass plate is fixed to the surface of the pedestal and can suppress the development of microcracks.
  • the purpose is to provide a method.
  • Another object of the present invention is to provide a method for manufacturing a pedestal used for manufacturing a glass substrate, and the pedestal. Another object of the present invention is to provide a glass substrate in which propagation of microcracks is suppressed.
  • At least a portion of a glass plate having a main surface having a curved surface with a plurality of radii of curvature is fixed to the surface of a pedestal, and the glass plate has a predetermined curvature.
  • the surface of the pedestal has substantially the same shape as at least part of the curved shape of the main surface itself of the glass plate.
  • a glass plate having a main surface having a curved surface with a plurality of radii of curvature is fixed in close contact with the surface of a base, and the glass plate is fixed by the fixation.
  • the generated internal stress is 10 MPa or less, and a method for manufacturing a glass substrate is provided in which the glass plate is fixed to the surface of the pedestal and subjected to a predetermined processing.
  • a method for manufacturing a pedestal for fixing a glass plate wherein the glass plate has a principal surface having a curved surface having a plurality of radii of curvature, and the pedestal
  • a method for manufacturing a pedestal is provided in which at least part of the surface is modeled in substantially the same shape as at least part of the curved shape of the main surface itself of the glass plate.
  • a method of manufacturing a pedestal for fixing a glass plate wherein the glass plate has a principal surface having a curved surface having a plurality of radii of curvature, and the principal surface is measured with a 3D scanner, and based on the acquired shape data, at least a portion of the surface of the pedestal is formed.
  • a method for manufacturing a pedestal for fixing a glass plate wherein the glass plate has a principal surface having a curved surface having a plurality of radii of curvature, and the pedestal has , a method for manufacturing a pedestal, including a thermoplastic resin, and hardening the thermoplastic resin by pressing at least a portion of the main surface against a surface of the thermoplastic resin in a softened state.
  • the main surface is provided with a curved surface having a plurality of radii of curvature, and at least one end surface that connects the opposing main surfaces includes an edge surface and the edge surface.
  • a glass substrate is provided having a chamfered surface located between each major surface, the chamfered surface having a concave surface.
  • a pedestal for fixing a glass plate wherein the glass plate has a main surface having a curved surface having a plurality of radii of curvature, and at least a surface of the pedestal A pedestal is provided, a portion of which has the curved shape of the main surface itself.
  • a pedestal for fixing a glass plate wherein at least part of the surface of the pedestal is two or more tangential axes that intersect at an arbitrary point on the surface.
  • a pedestal is provided having a non-flattable shape with a radius of curvature about an axis.
  • a method for manufacturing a glass substrate that can reduce the internal stress generated in the glass plate when the glass plate is fixed to the surface of the pedestal and suppress the development of microcracks, and a method for producing microcracks.
  • a glass substrate with reduced growth is provided.
  • ADVANTAGE OF THE INVENTION According to one aspect of the present invention, a method for manufacturing a pedestal provided with a surface modeled on the principal surface of a glass plate, and the pedestal are provided simply and with high accuracy.
  • FIG. 1A is a schematic diagram for explaining a problem of a conventional glass substrate manufacturing method.
  • FIG. 1B is a schematic diagram for explaining a problem of the conventional glass substrate manufacturing method.
  • FIG. 1C is a schematic diagram for explaining a problem of the conventional glass substrate manufacturing method.
  • FIG. 2A is a schematic diagram for explaining a method for manufacturing a glass substrate according to one embodiment of the present invention.
  • FIG. 2B is a schematic diagram for explaining a method for manufacturing a glass substrate according to one embodiment of the present invention.
  • FIG. 2C is a schematic diagram for explaining a method for manufacturing a glass substrate according to one embodiment of the present invention.
  • FIG. 3A is a schematic diagram showing an example of a shape processing process for the glass plate fixed to the surface of the pedestal.
  • FIG. 3A is a schematic diagram showing an example of a shape processing process for the glass plate fixed to the surface of the pedestal.
  • FIG. 3B is a schematic diagram showing an example of a shape processing process for the glass plate fixed to the surface of the pedestal.
  • FIG. 3C is a schematic diagram showing an example of a shape processing process for the glass plate fixed to the surface of the pedestal.
  • FIG. 4A is a schematic diagram showing a cuttable internal stress confirmation test when compressive stress is applied to the surface of a glass plate for cutting with a cutter.
  • FIG. 4B is a schematic diagram showing a cuttable internal stress confirmation test when a tensile stress is applied to the surface of a glass plate for cutting with a cutter.
  • FIG. 5A is a schematic diagram showing a cuttable internal stress confirmation test when applying compressive stress to the surface of a glass plate for laser cutting.
  • FIG. 5B is a schematic diagram showing a cuttable internal stress confirmation test when a tensile stress is applied to the surface of the glass plate for laser cutting.
  • FIG. 6A is a cross-sectional view for explaining a method of manufacturing a pedestal according to one embodiment of the present invention.
  • FIG. 6B is a cross-sectional view for explaining a method of manufacturing a pedestal according to one embodiment of the present invention.
  • FIG. 7A is a cross-sectional view for explaining a method of manufacturing a pedestal according to an embodiment different from FIGS. 6A and 6B.
  • FIG. 7B is a cross-sectional view for explaining a method of manufacturing a pedestal according to an embodiment different from FIGS. 6A and 6B.
  • FIG. 7C is a cross-sectional view for explaining a method of manufacturing a pedestal according to an embodiment different from FIGS. 6A and 6B.
  • FIG. 8 is a perspective view of the glass substrate of one embodiment of the present invention.
  • FIG. 9A is a plan view of a glass substrate according to one embodiment of the invention.
  • FIG. 9B is a front view of the glass substrate of one embodiment of the invention.
  • FIG. 9C is a side view of the glass substrate of one embodiment of the invention.
  • FIG. 10 is a partially enlarged sectional view enlarging the end surface of the glass substrate in one embodiment of the present invention.
  • FIG. 11A is a partially enlarged sectional view enlarging an end surface of a conventional glass substrate.
  • FIG. 11B is a perspective view for explaining a conventional shaping process of the end surface of the glass substrate.
  • FIG. 12A is a perspective view of a pedestal manufactured by the method shown in FIGS. 6A and 6B.
  • FIG. 12B is a graph showing the height difference between the surface of the pedestal of Example 1 as an embodiment shown in FIG. 12A and the pedestal of Example 2 as a conventional example.
  • a shape processing process applied to a glass plate having a curved main surface and additional processing such as printing and coating are performed while the glass plate is fixed to a base.
  • additional processing such as printing and coating
  • the shape processing process since a processing load is applied to the glass plate, a pedestal that can adhere and fix the main surface of the glass plate in order to prevent chattering and displacement is required.
  • the pedestal has been produced in accordance with the designed shape of the glass substrate. Problems of the conventional glass substrate manufacturing method will be described with reference to FIGS. 1A to 1C.
  • FIG. 1A is a cross-sectional view schematically showing a glass plate 1 in which principal surfaces 1a and 1b are curved surfaces having a plurality of radii of curvature.
  • the "principal surface” refers to the surface having the largest area.
  • the main surfaces correspond to the front and back surfaces of the glass plate 1 facing each other. Both the front and back surfaces of the glass plate 1 have the same curved surface shape or a similar shape. The same applies to FIG. 2 and subsequent figures.
  • FIG. 1A is a cross-sectional view schematically showing a glass plate 1 in which principal surfaces 1a and 1b are curved surfaces having a plurality of radii of curvature.
  • the "principal surface” refers to the surface having the largest area.
  • the main surfaces correspond to the front and back surfaces of the glass plate 1 facing each other. Both the front and back surfaces of the glass plate 1 have the same curved surface shape or a similar shape. The same applies to FIG. 2 and subsequent figures.
  • FIG. 1A is
  • FIG. 1B is a cross-sectional view schematically showing a pedestal 2 in which a surface 2a is formed with a curved surface having a plurality of radii of curvature based on the shape design values of the main surfaces 1a and 1b of the glass plate 1.
  • FIG. 1C the shape processing process and the additional processing process described above are performed while the glass plate 1 shown in FIG. 1A is fixed to the surface 2a of the pedestal 2 shown in FIG. 1B.
  • the inventors of the present invention have invented a method for manufacturing a glass substrate that can reduce the internal stress generated when the glass plate is fixed to the surface of the pedestal and that can suppress the development of microcracks. rice field.
  • FIG. 2A is a cross-sectional view schematically showing a glass plate 4 in which principal surfaces 4a and 4b are curved surfaces having a plurality of radii of curvature.
  • the shape of each main surface 4a, 4b is, for example, a rectangular shape in plan view.
  • the shape of the main surfaces 4a and 4b may be trapezoidal, circular, or elliptical in plan view, and is not particularly limited.
  • FIG. 2B is a cross-sectional view schematically showing the pedestal 5 formed by the manufacturing method of this embodiment. At least part of the surface 5a of the base 5 is formed in the curved surface shape of the main surface 4b itself of the glass plate 4 shown in FIG. 2A.
  • the main surface 4b is a surface that contacts the surface 5a of the base 5. As shown in FIG. It is preferable that the entire surface 5a of the pedestal 5 is formed in the curved surface shape of the main surface 4b of the glass plate 4 itself. A specific example of the method for manufacturing the pedestal 5 will be described later.
  • FIG. 2C at least part of the glass plate 4 shown in FIG. 2A is fixed in close contact with the surface 5a of the pedestal 5 shown in FIG. 2B. It is preferable to fix the entire glass plate 4 to the surface 5 a of the base 5 . Although the fixing method is not limited, it is preferable to adsorb and fix the glass plate 4 to the pedestal 5 by negative pressure.
  • the main surface 4b of the glass plate 4 can be brought into contact with the surface 5a of the base 5 in the stage prior to fixing the glass plate 4 to the surface 5a of the base 5. There can be no gap in between, or the gap can be very small.
  • the "curved shape of the main surface 4b itself of the glass plate 4" and the "substantially the same shape as the main surface” mean that the shape error between the main surface 4a of the glass plate 4 and the surface 5a of the pedestal 5 is It refers to a curved shape that is 1.0 mm or less. Therefore, the gap between the glass plate 4 and the pedestal 5 can be made 1.0 mm or less, and the internal stress generated in the glass plate 4 when the glass plate 4 is fixed to the pedestal 5 can be reduced.
  • the shape error is preferably 0.5 mm or less, more preferably 0.3 mm or less.
  • the "shape error" is the maximum gap between the surface 5a of the pedestal 5 and the main surface 4b of the glass plate 4 facing the pedestal 5 when the glass plate 4 is arranged on the surface 5a of the pedestal 5. Point to value.
  • an elastic sheet may be attached to the surface 5a of the base 5.
  • the elastic sheet can absorb part of the external force when the glass plate 4 is fixed to the surface 5a of the base 5, and the internal stress generated in the glass plate 4 can be reduced more effectively.
  • the absorption thickness of the elastic sheet is preferably about 0.2 mm.
  • the glass plate 4 is processed in a predetermined manner.
  • predetermined processing is not limited, for example, cutting the edge of the glass plate 4 described in FIG. do.
  • shape processing such as forming a through hole in the glass plate 4 can be proposed.
  • additional processing such as printing and coating can be applied.
  • the glass plate 4 is fixed to the surface 5a of the pedestal 5, the internal stress generated in the glass plate 4 can be reduced. can be suppressed.
  • the material of the glass plate 4 is not limited in this embodiment. That is, alkali-free glass and alkali glass can be used without distinction.
  • the glass plate 4 is, for example, soda-lime glass, alkali-free glass, alkali glass, or the like.
  • the alkali glass may be glass for chemical strengthening. Glass for chemical strengthening is used, for example, as a cover glass after being chemically strengthened.
  • the glass plate 4 may be air-cooled tempered glass. In this embodiment, even if the glass plate 4 is alkali glass, it can be appropriately processed into a predetermined shape while suppressing the development of microcracks.
  • the thickness of the glass plate 4 is not particularly limited, it is usually preferably 5 mm or less, more preferably 3 mm or less, in order to effectively perform the chemical strengthening treatment. Further, when the glass plate 4 is used as a cover glass for an in-vehicle display device such as a car navigation system, the thickness of the glass plate 4 is preferably 0.2 mm or more, more preferably 0.8 mm or more, more preferably 1 mm or more, from the viewpoint of strength. The above is more preferable.
  • the dimensions of the glass plate 4 can be appropriately selected according to the application.
  • the length of the short side is, for example, 50 mm or more and 500 mm or less, which is preferable. is 100 mm or more and 300 mm or less
  • the length of the long side is, for example, 50 mm or more and 1500 mm or less, preferably 100 mm or more and 1200 mm or less.
  • even a glass plate having a relatively large size as described above can be processed appropriately.
  • 3A to 3C are schematic diagrams showing an example of a shape processing process for the glass plate 4 fixed to the surface 5a of the pedestal 5.
  • FIG. 3A to 3C are schematic diagrams showing an example of a shape processing process for the glass plate 4 fixed to the surface 5a of the pedestal 5.
  • the pedestal 5 is provided with grooves 7 extending in the thickness direction from the surface 5a at positions inside the end surfaces 5b, 5b.
  • This groove 7 is formed with a length that crosses the edge of the glass plate 4 .
  • both ends of the glass plate 4 are cut by, for example, a laser beam L along the grooves 7 provided in the base 5 .
  • the end surface 4c of the cut glass plate 4 is chamfered using a ball grindstone 8, for example.
  • FIG. 3C is a perspective view of the vicinity of the edge of the glass plate 4 showing chamfering by the ball grindstone 8.
  • FIG. 3C for example, the corner of the upper side between the main surface 4a on the upper surface side and the end surface 4c is chamfered with a ball grindstone 8, and then the main surface 4b on the lower surface side and the end surface 4c are chamfered. The corners of the lower side between are chamfered with a ball grindstone 8.
  • the main surfaces 4a and 4b are shown as planes in FIG. 3C, they are actually curved surfaces.
  • the method for manufacturing a glass substrate according to the present embodiment is a glass having principal surfaces 4a and 4b which have curvature radii around two or more tangential axes intersecting at an arbitrary point on the principal surface 4a and which cannot be developed on a plane. It can be preferably applied to the plate 4.
  • a specific example of a complicated shape that cannot be developed on a plane will be described in detail in the section [Description of a glass substrate according to an embodiment of the present invention] below.
  • the main surfaces 4a and 4b have a complicated shape, if a gap occurs between the glass plate 4 and the base 5, it is difficult to fill the gap even if an external force is applied. It is easy to cause a gap between 5 and the like.
  • shape processing such as cutting or drilling is performed in a state in which such a deviation has occurred, shape processing cannot be performed with high accuracy. Further, when the glass plate 4 is brought into close contact with the surface 5a of the base 5 by increasing the external force, the internal stress generated in the glass plate 4 becomes stronger, causing defects such as the development of microcracks. Therefore, when the main surface 4a of the glass plate 4 has a complicated shape, the glass plate 4 is fixed in close contact with the surface 5a of the pedestal 5, and the internal stress generated by the fixation is reduced. It becomes possible to apply highly accurate shape processing to.
  • FIG. 4A is a schematic diagram showing a cuttable internal stress confirmation test when compressive stress is applied to the surface of the glass plate 13 for cutting with a cutter.
  • FIG. 4B is a schematic diagram showing a cuttable internal stress confirmation test when tensile stress is applied to the surface of the glass plate 13 for cutting with a cutter.
  • Both ends of the lower surface of the flat glass plate 13 were supported by fixing members 9, and a strain gauge 10 was installed in the center of the lower surface of the glass plate 13. Then, as shown in FIG. 4A, on the upper surface side of the glass plate 13, a weight 11 was installed at a position inside the fixing member 9 to apply an external force downward to the glass plate 13. As shown in FIG. Thereby, a compressive stress can be applied to the upper surface of the glass plate 13 on the cutting side. Then, the cutter 12 cut the glass plate 13 along the center of the upper surface of the glass plate 13 while changing the magnitude of the external force. The internal stress generated in the glass plate 13 can be obtained based on the output of the strain gauge 10. FIG. However, the installation of the strain gauge 10 is not essential, and it is possible to obtain the internal stress from the force applied to the glass plate 13 and the cross-sectional area.
  • the center of the lower surface of the flat glass plate 13 is supported by a pin-shaped fixing member 9, and as shown in FIG. rice field. Thereby, a compressive stress can be applied to the upper surface of the glass plate 13 on the cutting side. Then, the cutter 12 cut the glass plate 13 along the center of the upper surface of the glass plate 13 while changing the magnitude of the external force.
  • FIG. 5A is a schematic diagram showing a cuttable internal stress confirmation test when applying a compressive stress to the surface of the glass plate 15 for laser cutting.
  • FIG. 5B is a schematic diagram showing a cuttable internal stress confirmation test when applying tensile stress to the surface of the glass plate 15 for laser cutting.
  • the top view of FIG. 5A is a plan view
  • the bottom view of FIG. 5A is a cross-sectional view.
  • a jig 24 having a concavely curved surface 24 a was prepared, and a flat glass plate 15 was placed on the surface 24 a of the jig 24 .
  • An external force was applied to the glass plate 15 by a weight (not shown) to follow the surface 24a of the jig 24 as shown in FIG. 5A.
  • a compressive stress was applied to the upper surface of the glass plate 15 on the cutting side.
  • the glass plate 15 was cut by the laser beam 16 so as to vertically cut through the center of the upper surface thereof.
  • the top view of FIG. 5B is a plan view, and the bottom view is a cross-sectional view.
  • a jig 17 having a convex curved surface 17 a was prepared, and a flat glass plate 18 was placed on the surface 17 a of the jig 17 .
  • An external force was applied to the glass plate 18 by a weight (not shown) to follow the surface 17a of the jig 17 as shown in FIG. 5B.
  • a tensile stress was applied to the upper surface of the glass plate 18 on the cutting side.
  • the glass plate 18 was cut by the laser beam 16 so as to vertically cut through the center of the upper surface thereof.
  • Table 1 below summarizes the upper limit values of the internal stress that can be processed, which are obtained from the above experiments.
  • the values of the internal stress shown in Table 1 are the limit values at which defects such as microcrack progress and chipping are not observed on the cut surface of the glass substrate subjected to the predetermined shape processing.
  • the upper limit of workability was 2 MPa when cutting with a cutter while compressive stress was applied to the surface of the cut side of the glass plate. Further, when the glass plate was cut with a cutter while tensile stress was acting on the surface of the glass plate, the upper limit of workability was 3 MPa. In addition, when laser cutting was performed with compressive stress acting on the surface of the glass plate, the upper limit of workability was 18 MPa. Further, when laser cutting was performed in a state in which tensile stress was applied to the surface of the glass plate, the upper limit of workability was 10 MPa.
  • Internal stress can be measured using, for example, a digital image correlation method.
  • the glass plate 4 it is preferable to fix the glass plate 4 so that the internal stress generated in it is 2 MPa or less.
  • cutter cutting can be selected as the "predetermined processing". That is, by adjusting the internal stress to 2 MPa or less, cutting can be performed regardless of laser cutting or cutter cutting. By adjusting the internal stress to 2 MPa or less in this way, it is possible to suppress the development of microcracks and the occurrence of defects such as chipping that occur during shape processing regardless of the type of cutting.
  • the pedestal 5 used in the method for manufacturing a glass substrate of the present embodiment is preferably a pedestal 5 manufactured by the method described below, but is not limited to a pedestal manufactured by the following manufacturing method. .
  • the method of manufacturing the pedestal 5 is not limited as long as the pedestal 5 can keep the internal stress generated in the glass plate 4 within the above numerical range when the glass plate 4 is fixed to the pedestal 5 .
  • the glass plate has a main surface having a curved surface with a plurality of radii of curvature, and at least part of the surface of the base has the curved shape of the main surface itself. More preferably, the entire surface of the pedestal is modeled after the curved shape of the main surface itself.
  • the following method can be given as an example of the method of modeling the surface of the base in the shape of the main surface of the glass plate.
  • FIG. 6A and 6B are cross-sectional views for explaining the method of manufacturing the pedestal 5 according to this embodiment.
  • a glass plate 4 is formed in which the main surfaces 4a, 4b are curved with multiple radii of curvature.
  • FIG. 6A is a cross-sectional view schematically showing the glass plate 4.
  • An existing product can be used for the 3D scanner 19 .
  • FIG. 6B based on the shape data acquired from the 3D scanner 19, at least part of the surface 5a of the base 5 is formed into a curved shape having, for example, multiple radii of curvature. It is preferable to form the entire surface 5a of the pedestal 5 in the curved shape based on the shape data.
  • FIG. 6B is a cross-sectional view schematically showing the pedestal 5. As shown in FIG. By forming the pedestal 5 using a 3D printer, it is possible to manufacture the pedestal 5 that accurately reproduces the curved surface shape of the main surface 4a of the glass plate 4 .
  • the material of the pedestal 5 manufactured by the method described using FIGS. 6A and 6B is not limited, for example, thermoplastic resin can be presented.
  • thermoplastic resin 14 having a predetermined thickness is prepared.
  • the surface 14a of the thermoplastic resin 14 is planar.
  • the thermoplastic resin 14 is softened by heating.
  • thermoplastic resin for example, "Hapra Freele” manufactured by Polysys Co., Ltd. can be used.
  • a glass plate 4 having curved main surfaces 4a and 4b with a plurality of radii of curvature is pressed against a surface 14a of a softened thermoplastic resin 14 heated to a softening point or higher. Then, while the glass plate 4 is being pressed against it, it is cooled to the curing temperature to cure the thermoplastic resin 14 . Thereafter, as shown in FIG. 7C, the glass plate 4 is removed from the surface 14a of the hardened thermoplastic resin 14. Then, as shown in FIG. Thereby, the pedestal 5 whose surface 5a has the same curved surface shape as the main surface 4b of the glass plate 4 can be precisely formed.
  • the surface 5a of the pedestal 5 is formed using the curved shape of the main surface itself of the molded glass plate 4. . Therefore, the curved shape of the main surface 4a of the glass plate 4 can be transferred to the surface 5a of the base 5 with high accuracy.
  • the pedestal 5 manufactured by the method described using FIGS. 6A, 6B, and 7A to 7C has a surface 5a having a curved shape of the main surfaces 4a and 4b of the molded glass plate 4 itself. are doing. Therefore, as shown in FIG. 2C, when the glass plate 4 is placed on the surface 5a of the pedestal 5, no gap is generated between the main surface 4b of the glass plate 4 and the surface 5a of the pedestal 5, or the gap is formed. can be made very small. Therefore, when the glass plate 4 is fixed to the pedestal 5, the internal stress generated in the glass plate 4 can be suppressed to 10 MPa or less, preferably 2 MPa or less.
  • the main surface 4a of the glass plate 4 is formed into a complex shape having a radius of curvature around two or more tangential axes that intersect at an arbitrary point on the main surface. It can be preferably applied.
  • the internal stress generated in the glass plate 4 can be suppressed to 10 MPa or less when the glass plate 4 is fixed to the pedestal 5. preferably, it can be suppressed to 2 MPa or less.
  • the main surface 4b of the glass plate 4 can be brought into contact with the surface 5a of the pedestal 5 without any gap.
  • FIG. 8 is a perspective view of the glass substrate 20 of this embodiment.
  • 9A is a plan view of the glass substrate 20 shown in FIG. 8
  • FIG. 9B is a front view of the glass substrate 20
  • FIG. 9C is a side view of the glass substrate 20.
  • FIG. FIG. 10 is a partially enlarged cross-sectional view showing the vicinity of the end surface of the glass substrate 20. As shown in FIG.
  • the glass substrate 20 of this embodiment has a first main surface 20a on the upper surface side and a second main surface 20b on the lower surface side. 20b face each other in the thickness direction.
  • the opposing main surfaces 20a and 20b are connected by an end surface 20c.
  • the two directions orthogonal to each other in the plane direction are the X direction and the Y direction
  • the height direction orthogonal to the X direction and the Y direction is the Z direction.
  • the glass substrate 20 preferably has an elongated shape extending longer in the X direction than in the Y direction, as shown in FIGS. 8 and 9A.
  • the glass substrate 20 is curved in the Z direction in the long direction extending in the X direction and curved in the Z direction in the short direction extending in the Y direction. preferably.
  • the first major surface 20a is a first plane parallel to the X direction perpendicular to the center point A as an arbitrary point on the first major surface 20a, for example.
  • a second tangent line C parallel to the Y-direction, and have a shape that cannot be developed on a plane having radii of curvature around each axis.
  • the first radius of curvature around the axis of the first tangent line B is the radius of curvature of a curved surface that extends in the Y direction and curves in the Z direction in the short direction
  • the second radius of curvature around the axis of the second tangent line C The radius is the radius of curvature of a curved surface that extends in the X direction and curves in the Z direction.
  • the first radius of curvature is preferably smaller than the second radius of curvature.
  • the first curvature radius is 5 mm or more and 3000 mm or less
  • the second curvature radius is 600 mm or more and 14000 mm or less.
  • the principal surfaces 20a and 20b have bent portions 21 bent with a radius of curvature smaller than the second radius of curvature on both sides in the longitudinal direction.
  • the bent portions 21 on both sides are bent to the same side, but they may be bent in different directions.
  • the glass substrate 20 of this embodiment has a principal surface having a curved surface with multiple radii of curvature. At least one end surface 20c connecting the opposing main surfaces has an edge surface 22 and a chamfered surface 23 positioned between the edge surface 22 and the main surfaces 20a and 20b. has a concave surface.
  • the edge surface 22 is orthogonal to the main surfaces 20 a and 20 b or the surface of the bent portion 21 .
  • the edge surface 22 is, for example, a cut surface cut by the laser beam L shown in FIG. 3A, and the chamfered surface 23 of the present embodiment is, for example, a surface chamfered by the ball grindstone 8 shown in FIG. 3C. .
  • the maximum height Sz of the surface roughness of the edge surface 22 and the chamfered surface 23 is not limited, but can be, for example, 10 ⁇ m or less.
  • the maximum height Sz of surface roughness is a value measured according to JIS B 0601:2001.
  • a laser microscope manufactured by Olympus Corporation: LEXT OLS5000, for example, can be used to measure the maximum height Sz of surface roughness.
  • the maximum height Sz of the chamfered surface 23 can be made smaller than the maximum height Sz of the edge surface 22 .
  • the maximum height Sz can be 10 ⁇ m or less, preferably 8 ⁇ m or less, more preferably 7 ⁇ m or less.
  • the maximum height Sz of the edge surface 22 can be set to approximately 6 to 8 ⁇ m.
  • the maximum height Sz of the chamfered surface 23, which is the polishing surface of the ball grindstone 8 can be 5 ⁇ m or less.
  • FIG. 11A is a partially enlarged cross-sectional view of an edge face 30 of a conventional glass substrate, and FIG.
  • the end surface 30 has an edge surface 30a and a chamfered surface 30b, and the chamfered surface 30b is a linearly inclined surface.
  • the chamfered surface 30b is a so-called C-plane.
  • the end surface 30 can be formed using a grindstone 31 that can be processed into the shape of the edge surface 30a and the chamfered surface 30b.
  • both the chamfered surface 30b and the edge surface 30a of the end surface 30 are surfaces finished by the grindstone 31.
  • the maximum height Sz from the edge surface 30a to the chamfered surface 30b is substantially the same.
  • the end surface 20c of the glass substrate 20 of the present embodiment has better visibility of the end surface, the processing load during chamfering can be reduced, and the processing work can be shortened. can. Furthermore, the variation width of the chamfer width T1 can be reduced.
  • the chamfered surface 23 concave, the visibility of the end surface 20c can be improved compared to the C surface (chamfered surface 30b) shown in FIG. 11A.
  • the ball grindstone 8 chamfers only the corners between the main surfaces 20a, 20b and the end surface 20c. Therefore, the edge surface 22 is left as a cut surface, and the processing load can be reduced compared to the conventional example in which the entire end surface is processed with a grindstone, and the working time can be shortened.
  • the variation width of the chamfer width T1 can be reduced, and the variation width of the chamfer width T1 on at least one end face can be suppressed to 20 ⁇ m or less.
  • the chamfered width T1 of the chamfered surface 23 on all the end faces has a variation width of 20 ⁇ m or less.
  • the glass substrate 20 in this embodiment can be formed through the steps described with reference to FIGS. 2A to 2C and FIGS. 3A to 3C.
  • the glass plate 4 can be fixed in close contact with the surface of the pedestal 5 during shape processing.
  • the internal stress generated in the glass plate 4 can be suppressed to 10 MPa or less.
  • the laser cutting shown in FIG. 3A and the chamfering by the ball grindstone 8 shown in FIGS. 3B and 3C can be performed with high accuracy, and the end surface shape shown in FIG. 10 can be formed with high accuracy and small variations.
  • the end face 20c located at the end of the glass substrate 20 in the X direction was used for explanation, but the end faces 20d located on both sides in the Y direction are also chamfered concavely with the edge face 22 shown in FIG. 23. All the end faces 20c and 20d may be formed with the end face shape shown in FIG. 10, or at least one end face may be formed with the end face shape shown in FIG.
  • the curved surface shape of the main surfaces 20a and 20b of the glass substrate 20 of the present embodiment is not limited to the shape shown in FIG. A glass substrate made of a curved glass plate 4 may be used.
  • the first main surface 20a is aligned with the first tangent line B parallel to the X direction perpendicular to the central point A on the first main surface 20a.
  • the second tangent line C parallel to the Y direction, and have a shape that cannot be developed on a plane with a radius of curvature around each axis.
  • the glass plate 4 having the main surfaces 4a and 4b having a complicated shape that cannot be developed on a plane is closely attached and fixed to the pedestal 5 and subjected to shape processing, as shown in FIG. 2C.
  • the internal stress generated by the fixation can be reduced, and it is possible to perform highly accurate shape processing on complex shapes.
  • the glass substrate 20 in which the development of microcracks and defects such as chipping are suppressed in the end faces 20c, 20d, etc., which are the shaped surfaces.
  • the glass substrate 20 of the present embodiment can be applied to, for example, automobile instrument panels, automobile windows, cover glasses of touch panel displays of tablets, notebook PCs, smartphones, etc., and cover glasses of PC monitors, etc.
  • the glass substrate 20 of the present embodiment is particularly suitable as a glass substrate for an in-vehicle display.
  • the pedestal 5 of the present embodiment is a pedestal 5 for fixing the glass plate 4, and at least part of the surface 5a of the pedestal 5 is a curved surface of the main surface itself having a curved surface having a plurality of radii of curvature of the glass plate 4. have a shape.
  • the pedestal 5 can be manufactured by the manufacturing method described with reference to FIGS. 6A, 6B, and 7A to 7C. At least part of the surface 5a of the pedestal 5 formed by these manufacturing methods has the shape of the main surface 4b of the glass plate 4 itself. In addition, it is preferable that the entire surface 5a is formed in the shape of the main surface 4b of the glass plate 4 itself. Thereby, as shown in FIG.
  • the internal stress generated in the glass plate 4 can be effectively reduced when fixing the glass plate 4.
  • the internal stress generated in the glass plate 4 is 10 MPa or less, preferably 2 MPa. can be reduced to the following. Therefore, when the main surfaces 4a and 4b of the glass plate 4 are subjected to a predetermined processing while the glass plate 4 is fixed to the base 5, the development of microcracks and the occurrence of defects such as chipping during shape processing can be effectively prevented. can be suppressed.
  • the base 5 of the present embodiment has a complex shape in which at least a portion of the surface 5a of the base 5 has curvature radii around two or more tangential axes that intersect at an arbitrary point on the surface 5a.
  • the entire surface 5a preferably has the complex shape.
  • the complex shape on the surface 5a of the base 5 has tangential directions parallel to the mutually orthogonal X and Y directions, as shown in FIG. 9A.
  • This pedestal 5 is a pedestal used for manufacturing the glass substrate 20 shown in FIG. Thereby, when the glass plate 4 is fixed to the surface 5a of the base 5, the glass plate 4 can be brought into close contact with the base 5 appropriately. Therefore, the internal stress generated in the glass plate 4 can be appropriately suppressed.
  • the pedestal 5 of the present embodiment it is possible to effectively suppress the development of microcracks and the occurrence of defects such as chipping that occur during shape processing of the glass plate 4 having the main surfaces 4a and 4b having a complicated shape. .
  • the features of the above embodiment are summarized below.
  • One aspect of the present embodiment is a glass plate 4 having principal surfaces 4a and 4b having curved surfaces with a plurality of radii of curvature.
  • a method for manufacturing a glass substrate is provided, in which at least a part of the glass plate is fixed to the surface 5a of 5 and subjected to a predetermined processing.
  • the entire surface 5a of the base 5 has a curved surface shape of the main surface of the glass plate 4 itself. According to this configuration, especially when the main surface of the glass plate 4 is laser-cut, it is possible to effectively suppress the development of microcracks and the occurrence of defects such as chipping.
  • the glass plate 4 having the main surfaces 4a and 4b having curved surfaces with a plurality of radii of curvature is formed on the surface of the pedestal 5 by at least a portion of the glass plate 4. 5a, the internal stress generated in the glass plate 4 by the fixation is 10 MPa or less, and the glass plate 4 is subjected to a predetermined processing while the glass plate 4 is fixed to the surface 5a of the pedestal 5.
  • the glass plate 4 when the glass plate 4 is fixed to the base 5, the internal stress generated in the glass plate 4 can be extremely reduced. can be effectively suppressed.
  • the main surfaces 4a and 4b of the glass plate 4 are laser-cut or cut with a cutter while the glass plate 4 is fixed to the pedestal 5, the development of microcracks and the occurrence of defects such as chipping can be effectively suppressed.
  • one aspect of the present embodiment is a method for manufacturing a pedestal 5 for fixing a glass plate 4, wherein the glass plate 4 has main surfaces 4a and 4b having curved surfaces having a plurality of radii of curvature.
  • a method for manufacturing a pedestal is provided in which at least a portion of the surface 5a of the pedestal 5 is shaped to substantially the same shape as at least a portion of the curved shape of the main surface itself. It is preferable that the entire surface 5a of the pedestal 5 is modeled after the curved shape of the main surface itself.
  • one aspect of the present embodiment is a method for manufacturing a pedestal 5 for fixing a glass plate 4, wherein the glass plate 4 has main surfaces 4a and 4b having curved surfaces having a plurality of radii of curvature.
  • a method for manufacturing a pedestal is provided in which the main surfaces 4a and 4b of the pedestal are measured by a 3D scanner 19 and at least a part of the surface 5a of the pedestal 5 is formed based on the obtained shape data. It is preferable to form the entire surface 5a of the base 5 based on the acquired shape data.
  • one aspect of the present embodiment is a method for manufacturing a pedestal 5 for fixing a glass plate 4, wherein the glass plate 4 has main surfaces 4a and 4b having curved surfaces having a plurality of radii of curvature.
  • the pedestal 5 contains a thermoplastic resin, and at least part of the main surface of the glass plate 4 is pressed against the surface of the thermoplastic resin in a softened state to harden the thermoplastic resin. provide a way. It is preferable to press the entire surface 5a of the pedestal 5 against the glass plate 4 to form it.
  • the pedestal 5 having the surface 5a following the curved shape of the main surface of the glass plate 4 can be manufactured with high precision. Moreover, even if the main surfaces 4a and 4b of the glass plate 4 have a complicated shape that cannot be expanded on a plane, the base 5 having the surface 5a similarly having a complicated shape can be formed easily and accurately.
  • the glass plate 4 is fixed to the surface 5a of the base 5 formed by the manufacturing method described above, and the main surfaces 4a and 4b of the glass plate 4 are provided with predetermined to provide a method for manufacturing a glass substrate.
  • the curved surface shape of the surface 5a of the pedestal 5 follows the curved surface shape of the main surface of the glass plate 4. Therefore, when the glass plate 4 is placed on the surface 5a of the pedestal 5, the glass plate 4 and the pedestal are separated from each other. 5, or the gap can be made extremely small.
  • alkali glass can be used for the glass plate 4 .
  • the main surface of the glass plate 4 cannot be developed into a plane having a radius of curvature around two or more tangential axes that intersect at an arbitrary point on the main surface.
  • a method for manufacturing a glass substrate having a shape can be provided.
  • the first curvature radius can be 5 mm or more and 3000 mm or less
  • the second curvature radius can be 600 mm or more and 14000 mm or less.
  • the internal stress generated in the glass plate 4 can be suppressed, and defects such as microcrack development and chipping that occur during shape processing of the glass plate 4 can occur. can be effectively suppressed.
  • the glass plate 4 is fixed to the surface 5a of the pedestal 5 by suction under negative pressure.
  • the shape error between the main surface shape of the glass plate 4 and the surface shape of the pedestal 5 is 1.0 mm or less. More preferably, the shape error is 0.3 mm or less.
  • the shape error between the glass plate 4 and the pedestal 5 can be reduced, so that the gap generated when the glass plate 4 is fixed to the pedestal 5 can be made very small. Therefore, the internal stress generated in the glass plate 4 when the glass plate 4 is fixed can be reduced, and the development of microcracks and defects such as chipping that occur when the glass plate 4 is shaped can be effectively suppressed.
  • the predetermined processing internal processing of the glass plate using laser light can be exemplified as the predetermined processing. Further, as the predetermined processing, chamfering processing of the end surface of the glass plate using a grindstone can be exemplified. Through these processing steps, the shape of the end face of the glass substrate of the present embodiment can be formed with high accuracy and small variations.
  • one aspect of the present embodiment is provided with main surfaces 20a and 20b having curved surfaces having a plurality of radii of curvature, and at least one end surface 20c and 20d connecting the opposing main surfaces is an edge surface 22 and a chamfered surface 23 located between the edge surface and each principal surface, the chamfered surface 23 having a concave surface.
  • the visibility of the end face can be improved, the processing load during chamfering can be reduced, and the processing work can be shortened.
  • the variation width of the chamfer width T1 can be reduced.
  • the maximum height Sz of the surface roughness of the edge surface 22 and the chamfered surface 23 is preferably 10 ⁇ m or less. Further, in the present embodiment, the variation width of the chamfered width T1 of the chamfered surface 23 on at least one of the end faces can be set to 20 ⁇ m or less. In this manner, the maximum height Sz of the edge surface 22 and the chamfered surface 23 can be reduced, variation in the chamfered shape can be reduced, and the end surface shape can be formed with high accuracy.
  • the main surface 20a of the glass substrate 20 has a shape that cannot be expanded on a plane and has a radius of curvature around two or more tangential axes that intersect at an arbitrary point on the main surface. It is preferable to have As described above, in the present embodiment, the main surface of the glass substrate 20 can be formed to have a complicated shape that cannot be developed on a plane, and the internal stress generated by fixing to the pedestal during shape processing can be reduced. It is possible to effectively suppress the development of cracks and the occurrence of defects such as chipping. Moreover, the glass substrate 20 of this embodiment can be preferably used for an in-vehicle display, for example.
  • one aspect of the present embodiment is a pedestal 5 for fixing the glass plate 4,
  • the glass plate has a main surface having a curved surface having a plurality of radii of curvature, and the surface 5a of the pedestal 5 at least part of which has a curved surface shape of the main surface itself of the glass plate. It is preferable that the entire surface 5a of the pedestal 5 is formed in the curved shape of the main surface of the glass plate 4 itself. According to this configuration, when the glass plate 4 is installed on the surface 5 a of the base 5 , the glass plate 4 and the base 5 can be appropriately brought into contact with each other.
  • the internal stress generated in the glass plate 4 can be suppressed to 10 MPa or less, preferably 2 MPa or less. Therefore, when the glass plate 4 is fixed to the base 5 and the main surface of the glass plate 4 is subjected to a predetermined processing, it is possible to effectively suppress the development of microcracks and the occurrence of defects such as chipping that occur during shape processing.
  • one aspect of the present embodiment is a pedestal 5 for fixing the glass plate 4, wherein at least part of the surface 5a of the pedestal 5 is two tangential axes that intersect at any point on the surface.
  • a pedestal having a shape that cannot be developed on a plane and has a radius of curvature around the above axis.
  • the entire surface 5a of the pedestal 5 has a shape that cannot be developed on a plane. According to this configuration, even if at least a part of the surface 5a has a complicated shape that cannot be developed on a plane, when the glass plate 4 is placed on the surface 5a of the pedestal 5, a gap is formed between the glass plate 4 and the pedestal 5. or the gap can be made extremely small.
  • the internal stress generated in the glass plate 4 can be suppressed, and the development of microcracks and the occurrence of defects such as chipping that occur during shape processing of the glass plate 4 can be suppressed. can be effectively suppressed.
  • a method for manufacturing a glass substrate wherein at least part of a glass plate having a main surface having a curved surface with a plurality of radii of curvature is fixed to the surface of a pedestal, and the glass plate is subjected to a predetermined process.
  • At least a portion of a glass plate having a main surface having a curved surface with multiple radii of curvature is brought into close contact with and fixed to the surface of the pedestal;
  • the internal stress generated in the glass plate by the fixation is 10 MPa or less,
  • a method for manufacturing a pedestal for fixing a glass plate comprising: The glass plate has a main surface having a curved surface with a plurality of radii of curvature, A method of manufacturing a pedestal, wherein at least part of the surface of the pedestal is modeled to have substantially the same shape as at least part of the curved shape of the main surface itself of the glass plate.
  • a method for manufacturing a pedestal for fixing a glass plate comprising: The glass plate has a main surface having a curved surface with a plurality of radii of curvature, A method of manufacturing a pedestal, comprising measuring the main surface with a 3D scanner and forming at least a part of the surface of the pedestal based on the acquired shape data.
  • a method for manufacturing a pedestal for fixing a glass plate comprising: The glass plate has a main surface having a curved surface with a plurality of radii of curvature, The pedestal includes a thermoplastic resin, A method of manufacturing a pedestal, wherein at least part of the main surface is pressed against a surface of the thermoplastic resin in a softened state to harden the thermoplastic resin. [6] At least part of the glass plate is fixed to the surface of the pedestal formed by the method for manufacturing a pedestal according to any one of [3] to [5], A method for manufacturing a glass substrate, wherein the main surface of the glass plate is subjected to a predetermined process.
  • [7] The method for producing a glass substrate according to [1], [2], or [6], wherein the glass plate is alkali glass.
  • the main surface of the glass plate has a shape that cannot be developed on a plane and has a radius of curvature around two or more tangential axes that intersect at an arbitrary point on the main surface, [1], [2]. , [6], or the method for manufacturing a glass substrate according to [7].
  • [14] comprising a principal surface having a curved surface with a plurality of radii of curvature; glass, wherein at least one end surface connecting the opposing main surfaces has an edge surface and a chamfered surface positioned between the edge surface and each of the main surfaces, the chamfered surface having a concave surface; substrate.
  • the maximum height Sz of the surface roughness of the edge surface and the chamfered surface is 10 ⁇ m or less.
  • the main surface of the glass substrate has a shape that cannot be developed on a plane and has a radius of curvature around two or more tangential axes that intersect at an arbitrary point on the main surface, [14] to [16].
  • the glass substrate according to any one of. [18] The glass substrate according to any one of [14] to [17], which is for an in-vehicle display.
  • a pedestal for fixing a glass plate The glass plate has a main surface having a curved surface with a plurality of radii of curvature, A pedestal, wherein at least part of the surface of the pedestal has a curved surface shape of the main surface itself.
  • a pedestal for fixing a glass plate A pedestal, wherein at least a part of the surface of the pedestal has a shape that cannot be developed on a plane and has radii of curvature about two or more tangential axes that intersect at an arbitrary point on the surface.
  • Example 1 a glass plate 35 whose main surface has a curved shape that cannot be developed on a plane was measured with a 3D scanner, and a pedestal 36 was produced based on the obtained shape data.
  • a perspective view of the fabricated pedestal 36 is shown in FIG. 12A.
  • Example 2 is the case where the surface of the pedestal is formed according to the design value of the glass plate.
  • Example 1 is an example and Example 2 is a comparative example.
  • 12B is a graph showing the height difference between the surface of the pedestal 36 in Example 1 and the surface of the pedestal in Example 2.
  • FIG. As can be seen from the vertical scale on the right axis of FIG. 12B, the height difference between the surfaces of the pedestals of Examples 1 and 2 was about 0.7 mm at maximum. Thus, it was found that when the pedestal was manufactured based on the design values, the shape error with the molded glass plate increased. On the other hand, in Example 1, the shape error could be made very small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The present invention pertains to a method which is for manufacturing a glass substrate and which involves: fixing, to the surface of a pedestal, at least a part of a glass plate provided with a main face having a curved surface that has a plurality of curvature radii; and performing a prescribed process on the glass plate. The surface of the pedestal has a shape substantially identical to at least a part of the curved shape of the main face of the glass plate.

Description

ガラス基板の製造方法、台座の製造方法、ガラス基板、並びに、台座Method for manufacturing glass substrate, method for manufacturing base, glass substrate, and base
 本発明は、ガラス基板の製造方法、台座の製造方法、ガラス基板、並びに、台座に関する。 The present invention relates to a method for manufacturing a glass substrate, a method for manufacturing a pedestal, a glass substrate, and a pedestal.
 ガラス基板の生産工程において、主面が曲面状のガラス板に対して形状加工を施すプロセス、及び印刷、コーティング等の付加加工を施すプロセスが知られている。 In the production process of glass substrates, a process of applying shape processing to a glass plate whose main surface is curved, and a process of applying additional processing such as printing and coating are known.
 これらプロセスは、ガラス板を台座上に固定して行う。例えば、特許文献1に示すように、台座としてのテーブルの表面に、湾曲板を設置する。テーブルの表面は、湾曲板に倣って湾曲している。特許文献1には、湾曲板をテーブル表面に設置したとき、湾曲板とテーブルとの間に生じるずれを補正する技術が開示されている。 These processes are performed by fixing the glass plate on the pedestal. For example, as shown in Patent Document 1, a curved plate is installed on the surface of a table as a base. The surface of the table is curved following the curved plate. Patent Literature 1 discloses a technique for correcting a deviation that occurs between a curved plate and a table when the curved plate is placed on the table surface.
日本国特開2015-229232号公報Japanese Patent Application Laid-Open No. 2015-229232
 このように、主面が曲面を有するガラス板と台座との間には隙間が生じた。そこで、ガラス板を台座上に固定する際、隙間を無くすように、外力を加えてガラス板を台座の表面に強制的に倣わせた。しかしながら、このとき、ガラス板に内部応力が生じることで、形状加工中に発生するマイクロクラックが進展したり、チッピングが生じる問題があった。 In this way, a gap was created between the glass plate whose main surface was curved and the pedestal. Therefore, when fixing the glass plate on the pedestal, an external force was applied to force the glass plate to follow the surface of the pedestal so as to eliminate the gap. However, at this time, internal stress is generated in the glass sheet, which causes problems such as the development of microcracks generated during shaping and the occurrence of chipping.
 特に、ガラス板の主面が平面展開できない複雑形状であるとき、外力を加えてガラス板を台座に押さえつけても隙間を無くすことができず適切に固定できなかった。また、外力が強くなることで、上記したように、ガラス板に生じる内部応力により、形状加工中に発生するマイクロクラックの進展等の欠陥が問題となった。 In particular, when the main surface of the glass plate had a complicated shape that could not be developed flat, even if an external force was applied to press the glass plate against the pedestal, the gap could not be eliminated and it could not be fixed properly. In addition, as the external force becomes stronger, as described above, the internal stress generated in the glass sheet causes defects such as the development of microcracks that occur during shape processing.
 本発明は、上記課題に鑑みてなされたものであって、ガラス板を台座の表面に固定した際に、ガラス板に生じる内部応力を小さくでき、マイクロクラックの進展等を抑制できるガラス基板の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and manufactures a glass substrate that can reduce the internal stress generated in the glass plate when the glass plate is fixed to the surface of the pedestal and can suppress the development of microcracks. The purpose is to provide a method.
 また、本発明は、ガラス基板の製造に使用する台座の製造方法、及び、台座の提供を目的とする。更には、本発明は、マイクロクラックの進展等が抑制されたガラス基板の提供を目的とする。 Another object of the present invention is to provide a method for manufacturing a pedestal used for manufacturing a glass substrate, and the pedestal. Another object of the present invention is to provide a glass substrate in which propagation of microcracks is suppressed.
 上記課題を解決するため、本発明の一態様によれば、複数の曲率半径を有する曲面を有する主面を備えたガラス板の少なくとも一部を、台座の表面に固定し、前記ガラス板に所定の加工を施す、ガラス基板の製造方法であって、前記台座の表面は、前記ガラス板の前記主面そのものの曲面形状の少なくとも一部と実質的に同じ形状を有する、ガラス基板の製造方法が提供される。 In order to solve the above problems, according to one aspect of the present invention, at least a portion of a glass plate having a main surface having a curved surface with a plurality of radii of curvature is fixed to the surface of a pedestal, and the glass plate has a predetermined curvature. wherein the surface of the pedestal has substantially the same shape as at least part of the curved shape of the main surface itself of the glass plate. provided.
 また、本発明の一態様によれば、複数の曲率半径を有する曲面を有する主面を備えたガラス板の少なくとも一部を、台座の表面に密着させて固定し、該固定により前記ガラス板に発生する内部応力は10MPa以下であり、前記ガラス板を前記台座の表面に固定した状態で、前記ガラス板に所定の加工を施す、ガラス基板の製造方法が提供される。 Further, according to one aspect of the present invention, at least part of a glass plate having a main surface having a curved surface with a plurality of radii of curvature is fixed in close contact with the surface of a base, and the glass plate is fixed by the fixation. The generated internal stress is 10 MPa or less, and a method for manufacturing a glass substrate is provided in which the glass plate is fixed to the surface of the pedestal and subjected to a predetermined processing.
 また、本発明の一態様によれば、ガラス板を固定するための台座の製造方法であって、前記ガラス板は、複数の曲率半径を有する曲面を有する主面を備えており、前記台座の表面の少なくとも一部を、前記ガラス板の前記主面そのものの曲面形状の少なくとも一部と実質的に同じ形状にかたどる、台座の製造方法が提供される。 Further, according to one aspect of the present invention, there is provided a method for manufacturing a pedestal for fixing a glass plate, wherein the glass plate has a principal surface having a curved surface having a plurality of radii of curvature, and the pedestal A method for manufacturing a pedestal is provided in which at least part of the surface is modeled in substantially the same shape as at least part of the curved shape of the main surface itself of the glass plate.
 また、本発明の一態様によれば、ガラス板を固定するための台座の製造方法であって、前記ガラス板は、複数の曲率半径を有する曲面を有する主面を備えており、前記主面を3Dスキャナで測定し、取得した形状データに基づいて、前記台座の表面の少なくとも一部を形成する、台座の製造方法が提供される。 Further, according to one aspect of the present invention, there is provided a method of manufacturing a pedestal for fixing a glass plate, wherein the glass plate has a principal surface having a curved surface having a plurality of radii of curvature, and the principal surface is measured with a 3D scanner, and based on the acquired shape data, at least a portion of the surface of the pedestal is formed.
 また、本発明の一態様によれば、ガラス板を固定するための台座の製造方法であって、前記ガラス板は、複数の曲率半径を有する曲面を有する主面を備えており、前記台座は、熱可塑性樹脂を含み、軟化状態の前記熱可塑性樹脂の表面に、前記主面の少なくとも一部を押し当てて前記熱可塑性樹脂を硬化する、台座の製造方法が提供される。 Further, according to one aspect of the present invention, there is provided a method for manufacturing a pedestal for fixing a glass plate, wherein the glass plate has a principal surface having a curved surface having a plurality of radii of curvature, and the pedestal has , a method for manufacturing a pedestal, including a thermoplastic resin, and hardening the thermoplastic resin by pressing at least a portion of the main surface against a surface of the thermoplastic resin in a softened state.
 また、本発明の一態様によれば、複数の曲率半径を有する曲面を有する主面を備えており、相対向する前記主面間を繋ぐ少なくとも一つの端面は、コバ面と、前記コバ面と各主面との間に位置する面取面とを有し、前記面取面は凹面を有する、ガラス基板が提供される。 Further, according to one aspect of the present invention, the main surface is provided with a curved surface having a plurality of radii of curvature, and at least one end surface that connects the opposing main surfaces includes an edge surface and the edge surface. A glass substrate is provided having a chamfered surface located between each major surface, the chamfered surface having a concave surface.
 また、本発明の一態様によれば、ガラス板を固定するための台座であって、前記ガラス板は、複数の曲率半径を有する曲面を有する主面を備えており、前記台座の表面の少なくとも一部が、前記主面そのものの曲面形状を有する、台座が提供される。 Further, according to one aspect of the present invention, there is provided a pedestal for fixing a glass plate, wherein the glass plate has a main surface having a curved surface having a plurality of radii of curvature, and at least a surface of the pedestal A pedestal is provided, a portion of which has the curved shape of the main surface itself.
 また、本発明の一態様によれば、ガラス板を固定するための台座であって、前記台座の表面の少なくとも一部が、前記表面上の任意の点において交差する接線方向の2軸以上の軸回りに曲率半径を有する平面展開できない形状を有する、台座が提供される。 Further, according to one aspect of the present invention, there is provided a pedestal for fixing a glass plate, wherein at least part of the surface of the pedestal is two or more tangential axes that intersect at an arbitrary point on the surface. A pedestal is provided having a non-flattable shape with a radius of curvature about an axis.
 本発明の一態様によれば、ガラス板を台座の表面に固定した際に、ガラス板に発生する内部応力を小さくでき、マイクロクラックの進展を抑制できるガラス基板の製造方法、及び、マイクロクラックの進展が抑制されたガラス基板が提供される。
 本発明の一態様によれば、簡単且つ高精度に、ガラス板の主面をかたどった表面を備えた台座の製造方法、及び台座が提供される。
According to one aspect of the present invention, there is provided a method for manufacturing a glass substrate that can reduce the internal stress generated in the glass plate when the glass plate is fixed to the surface of the pedestal and suppress the development of microcracks, and a method for producing microcracks. A glass substrate with reduced growth is provided.
ADVANTAGE OF THE INVENTION According to one aspect of the present invention, a method for manufacturing a pedestal provided with a surface modeled on the principal surface of a glass plate, and the pedestal are provided simply and with high accuracy.
図1Aは、従来例のガラス基板の製造方法の課題を説明するための模式図である。FIG. 1A is a schematic diagram for explaining a problem of a conventional glass substrate manufacturing method. 図1Bは、従来例のガラス基板の製造方法の課題を説明するための模式図である。FIG. 1B is a schematic diagram for explaining a problem of the conventional glass substrate manufacturing method. 図1Cは、従来例のガラス基板の製造方法の課題を説明するための模式図である。FIG. 1C is a schematic diagram for explaining a problem of the conventional glass substrate manufacturing method. 図2Aは、本発明の一実施形態のガラス基板の製造方法を説明するための模式図である。FIG. 2A is a schematic diagram for explaining a method for manufacturing a glass substrate according to one embodiment of the present invention. 図2Bは、本発明の一実施形態のガラス基板の製造方法を説明するための模式図である。FIG. 2B is a schematic diagram for explaining a method for manufacturing a glass substrate according to one embodiment of the present invention. 図2Cは、本発明の一実施形態のガラス基板の製造方法を説明するための模式図である。FIG. 2C is a schematic diagram for explaining a method for manufacturing a glass substrate according to one embodiment of the present invention. 図3Aは、台座の表面に固定されたガラス板に対する形状加工プロセスの一例を示す模式図である。FIG. 3A is a schematic diagram showing an example of a shape processing process for the glass plate fixed to the surface of the pedestal. 図3Bは、台座の表面に固定されたガラス板に対する形状加工プロセスの一例を示す模式図である。FIG. 3B is a schematic diagram showing an example of a shape processing process for the glass plate fixed to the surface of the pedestal. 図3Cは、台座の表面に固定されたガラス板に対する形状加工プロセスの一例を示す模式図である。FIG. 3C is a schematic diagram showing an example of a shape processing process for the glass plate fixed to the surface of the pedestal. 図4Aは、ガラス板の表面に圧縮応力を作用させてカッター切断する際の、切断可能な内部応力確認試験を示す模式図である。FIG. 4A is a schematic diagram showing a cuttable internal stress confirmation test when compressive stress is applied to the surface of a glass plate for cutting with a cutter. 図4Bは、ガラス板の表面に引張応力を作用させてカッター切断する際の、切断可能な内部応力確認試験を示す模式図である。FIG. 4B is a schematic diagram showing a cuttable internal stress confirmation test when a tensile stress is applied to the surface of a glass plate for cutting with a cutter. 図5Aは、ガラス板の表面に圧縮応力を作用させてレーザー切断する際の、切断可能な内部応力確認試験を示す模式図である。FIG. 5A is a schematic diagram showing a cuttable internal stress confirmation test when applying compressive stress to the surface of a glass plate for laser cutting. 図5Bは、ガラス板の表面に引張応力を作用させてレーザー切断する際の、切断可能な内部応力確認試験を示す模式図である。FIG. 5B is a schematic diagram showing a cuttable internal stress confirmation test when a tensile stress is applied to the surface of the glass plate for laser cutting. 図6Aは、本発明の一実施形態による台座の製造方法を説明するための断面図である。FIG. 6A is a cross-sectional view for explaining a method of manufacturing a pedestal according to one embodiment of the present invention. 図6Bは、本発明の一実施形態による台座の製造方法を説明するための断面図である。FIG. 6B is a cross-sectional view for explaining a method of manufacturing a pedestal according to one embodiment of the present invention. 図7Aは、図6A及び6Bとは別の実施形態による台座の製造方法を説明するための断面図である。FIG. 7A is a cross-sectional view for explaining a method of manufacturing a pedestal according to an embodiment different from FIGS. 6A and 6B. 図7Bは、図6A及び6Bとは別の実施形態による台座の製造方法を説明するための断面図である。FIG. 7B is a cross-sectional view for explaining a method of manufacturing a pedestal according to an embodiment different from FIGS. 6A and 6B. 図7Cは、図6A及び6Bとは別の実施形態による台座の製造方法を説明するための断面図である。FIG. 7C is a cross-sectional view for explaining a method of manufacturing a pedestal according to an embodiment different from FIGS. 6A and 6B. 図8は、本発明の一実施形態のガラス基板の斜視図である。FIG. 8 is a perspective view of the glass substrate of one embodiment of the present invention. 図9Aは、本発明の一実施形態のガラス基板の平面図である。FIG. 9A is a plan view of a glass substrate according to one embodiment of the invention. 図9Bは、本発明の一実施形態のガラス基板の正面図である。FIG. 9B is a front view of the glass substrate of one embodiment of the invention. 図9Cは、本発明の一実施形態のガラス基板の側面図である。FIG. 9C is a side view of the glass substrate of one embodiment of the invention. 図10は、本発明の一実施形態におけるガラス基板の端面を拡大した部分拡大断面図である。FIG. 10 is a partially enlarged sectional view enlarging the end surface of the glass substrate in one embodiment of the present invention. 図11Aは、従来のガラス基板の端面を拡大した部分拡大断面図である。FIG. 11A is a partially enlarged sectional view enlarging an end surface of a conventional glass substrate. 図11Bは、従来のガラス基板の端面の形状加工プロセスを説明するための斜視図である。FIG. 11B is a perspective view for explaining a conventional shaping process of the end surface of the glass substrate. 図12Aは、図6A及び図6Bに示す方法で製造した台座の斜視図である。FIG. 12A is a perspective view of a pedestal manufactured by the method shown in FIGS. 6A and 6B. 図12Bは、図12Aに示す実施例としての例1の台座と、従来例としての例2における台座との表面の高低差を示すグラフである。FIG. 12B is a graph showing the height difference between the surface of the pedestal of Example 1 as an embodiment shown in FIG. 12A and the pedestal of Example 2 as a conventional example.
 以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して説明を省略する。
 用語の定義に関しては、明細書中に適宜説明を加えた。特に説明をしていない用語に関しては、広く一般的に知られている意味で解釈される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In each drawing, the same or corresponding configurations are denoted by the same or corresponding reference numerals, and description thereof is omitted.
Definitions of terms are appropriately explained in the specification. Terms that are not specifically explained are to be interpreted with their commonly known meanings.
[本実施形態に至る経緯]
 曲面状の主面を有するガラス板に施す形状加工プロセスや、印刷及びコーティングなどの付加加工プロセスは、ガラス板を台座に固定して行う。特に、形状加工プロセスでは、ガラス板に加工負荷が加わるために、ビビリ防止やズレ防止のためにガラス板の主面を密着し固定できる台座が必要であった。
 従来においては、台座をガラス基板の設計形状に合わせて作製していた。図1A~図1Cを用いて、従来例のガラス基板の製造方法の課題について説明する。
[Background leading up to the present embodiment]
A shape processing process applied to a glass plate having a curved main surface and additional processing such as printing and coating are performed while the glass plate is fixed to a base. In particular, in the shape processing process, since a processing load is applied to the glass plate, a pedestal that can adhere and fix the main surface of the glass plate in order to prevent chattering and displacement is required.
Conventionally, the pedestal has been produced in accordance with the designed shape of the glass substrate. Problems of the conventional glass substrate manufacturing method will be described with reference to FIGS. 1A to 1C.
 図1Aは、主面1a、1bが複数の曲率半径を有する曲面で成形されたガラス板1を模式図的に示した断面図である。ここで、「主面」とは、最も広い面積を有する面を指す。図1Aに示すように、主面は、ガラス板1の相対向する表面及び裏面に該当する。ガラス板1の表面及び裏面は、双方において同じ曲面形状或いは相似形状である。図2以降においても同様である。図1Bは、ガラス板1の主面1a、1bの形状設計値を基に、表面2aを複数の曲率半径を有する曲面で形成した台座2を模式図的に示した断面図である。上記した形状加工プロセスや付加加工プロセスは、図1Cに示すように、図1Aに示すガラス板1を、図1Bに示す台座2の表面2aに固定した状態で行う。 FIG. 1A is a cross-sectional view schematically showing a glass plate 1 in which principal surfaces 1a and 1b are curved surfaces having a plurality of radii of curvature. Here, the "principal surface" refers to the surface having the largest area. As shown in FIG. 1A, the main surfaces correspond to the front and back surfaces of the glass plate 1 facing each other. Both the front and back surfaces of the glass plate 1 have the same curved surface shape or a similar shape. The same applies to FIG. 2 and subsequent figures. FIG. 1B is a cross-sectional view schematically showing a pedestal 2 in which a surface 2a is formed with a curved surface having a plurality of radii of curvature based on the shape design values of the main surfaces 1a and 1b of the glass plate 1. As shown in FIG. As shown in FIG. 1C, the shape processing process and the additional processing process described above are performed while the glass plate 1 shown in FIG. 1A is fixed to the surface 2a of the pedestal 2 shown in FIG. 1B.
 しかしながら、図1Cに示すように、ガラス板1を台座2の表面2aに設置したとき、ガラス板1と台座2との間に隙間3が生じた。すなわち、台座2の表面2aの設計形状が、実際に成形されたガラス板1の主面1aの曲面形状からずれて形状誤差が生じた。このように、ガラス板1と台座2との間に隙間3が生じていると、ガラス板1に外力を加えて、強制的に台座2の表面2aの形状に倣わせて固定することが必要であった。 However, as shown in FIG. 1C, when the glass plate 1 was placed on the surface 2a of the pedestal 2, a gap 3 was created between the glass plate 1 and the pedestal 2. That is, the designed shape of the surface 2a of the base 2 deviated from the curved surface shape of the main surface 1a of the actually formed glass plate 1, resulting in a shape error. Thus, when the gap 3 is generated between the glass plate 1 and the pedestal 2, it is necessary to apply an external force to the glass plate 1 to forcibly follow the shape of the surface 2a of the pedestal 2 and fix it. Met.
 このとき、ガラス板1に強い外力が加わることで、ガラス板1に内部応力が発生する。この内部応力が大きくなると、形状加工中に生じるマイクロクラックが進展し、チッピング等の欠陥が発生した。 At this time, internal stress is generated in the glass plate 1 by applying a strong external force to the glass plate 1 . When this internal stress increased, microcracks generated during shaping progressed and defects such as chipping occurred.
 また、ガラス板1の主面1a、1bが平面展開できない複雑な曲面形状であるとき、ガラス板1に外力を加えても、台座2の表面2aに倣わない。そのため、ガラス板1を台座2の表面2aに適切に固定できない問題があった。 Further, when the main surfaces 1a and 1b of the glass plate 1 have a complicated curved surface shape that cannot be expanded on a plane, even if an external force is applied to the glass plate 1, the surface 2a of the pedestal 2 is not followed. Therefore, there is a problem that the glass plate 1 cannot be properly fixed to the surface 2a of the pedestal 2. FIG.
 そこで本発明者らは、鋭意研究を重ねた結果、ガラス板を台座の表面に固定した際に生じる内部応力を小さくでき、マイクロクラックの進展を抑制できるガラス基板の製造方法等を発明するに至った。 As a result of extensive research, the inventors of the present invention have invented a method for manufacturing a glass substrate that can reduce the internal stress generated when the glass plate is fixed to the surface of the pedestal and that can suppress the development of microcracks. rice field.
[本発明の一実施形態によるガラス基板の製造方法の概要説明]
 本発明の一実施形態によるガラス基板の製造方法の概要について説明する。図2Aは、主面4a、4bが複数の曲率半径を有する曲面で成形されたガラス板4を模式図的に示した断面図である。各主面4a、4bの形状は、平面視にて、例えば、矩形状である。なお、主面4a、4bの形状は、平面視にて、台形状、円形状、又は楕円形状などであってもよく、特に限定されない。
[Outline description of a method for manufacturing a glass substrate according to an embodiment of the present invention]
An outline of a method for manufacturing a glass substrate according to one embodiment of the present invention will be described. FIG. 2A is a cross-sectional view schematically showing a glass plate 4 in which principal surfaces 4a and 4b are curved surfaces having a plurality of radii of curvature. The shape of each main surface 4a, 4b is, for example, a rectangular shape in plan view. The shape of the main surfaces 4a and 4b may be trapezoidal, circular, or elliptical in plan view, and is not particularly limited.
 図2Bは、本実施形態の製造方法により形成された台座5を模式図的に示した断面図である。台座5の表面5aの少なくとも一部は、図2Aに示すガラス板4の主面4bそのものの曲面形状で形成されている。主面4bは、台座5の表面5aと接触する側の面である。台座5の表面5aの全体が、ガラス板4の主面4bそのものの曲面形状で形成されることが好ましい。台座5の製造方法の具体例については、後述する。 FIG. 2B is a cross-sectional view schematically showing the pedestal 5 formed by the manufacturing method of this embodiment. At least part of the surface 5a of the base 5 is formed in the curved surface shape of the main surface 4b itself of the glass plate 4 shown in FIG. 2A. The main surface 4b is a surface that contacts the surface 5a of the base 5. As shown in FIG. It is preferable that the entire surface 5a of the pedestal 5 is formed in the curved surface shape of the main surface 4b of the glass plate 4 itself. A specific example of the method for manufacturing the pedestal 5 will be described later.
 図2Cでは、図2Aに示すガラス板4の少なくとも一部を、図2Bに示す台座5の表面5aに密着して固定する。ガラス板4の全体を、台座5の表面5aに固定することが好ましい。固定方法を限定するものではないが、負圧によりガラス板4を台座5に吸着固定させることが好ましい。 In FIG. 2C, at least part of the glass plate 4 shown in FIG. 2A is fixed in close contact with the surface 5a of the pedestal 5 shown in FIG. 2B. It is preferable to fix the entire glass plate 4 to the surface 5 a of the base 5 . Although the fixing method is not limited, it is preferable to adsorb and fix the glass plate 4 to the pedestal 5 by negative pressure.
 本実施形態では、ガラス板4を台座5の表面5aに固定する前段階にて、ガラス板4の主面4bを台座5の表面5aに接触させることができ、ガラス板4と台座5との間に隙間を無くすことができる、或いは、隙間を非常に小さくできる。
 本実施形態における「ガラス板4の主面4bそのものの曲面形状」及び「当該主面と実質的に同じ形状」とは、ガラス板4の主面4aと台座5の表面5aとの形状誤差が1.0mm以下である曲面形状のことを指す。このため、ガラス板4と台座5との間の隙間を1.0mm以下にでき、ガラス板4を台座5に固定した際に、ガラス板4に発生する内部応力を低減できる。形状誤差は、好ましくは0.5mm以下、さらに好ましくは0.3mm以下である。
 なお、「形状誤差」とは、ガラス板4を台座5の表面5aに配置する際に、ガラス板4の台座5と対向する主面4bと台座5の表面5aとの間に生じる間隔の最大値を指す。
In the present embodiment, the main surface 4b of the glass plate 4 can be brought into contact with the surface 5a of the base 5 in the stage prior to fixing the glass plate 4 to the surface 5a of the base 5. There can be no gap in between, or the gap can be very small.
In the present embodiment, the "curved shape of the main surface 4b itself of the glass plate 4" and the "substantially the same shape as the main surface" mean that the shape error between the main surface 4a of the glass plate 4 and the surface 5a of the pedestal 5 is It refers to a curved shape that is 1.0 mm or less. Therefore, the gap between the glass plate 4 and the pedestal 5 can be made 1.0 mm or less, and the internal stress generated in the glass plate 4 when the glass plate 4 is fixed to the pedestal 5 can be reduced. The shape error is preferably 0.5 mm or less, more preferably 0.3 mm or less.
Note that the "shape error" is the maximum gap between the surface 5a of the pedestal 5 and the main surface 4b of the glass plate 4 facing the pedestal 5 when the glass plate 4 is arranged on the surface 5a of the pedestal 5. Point to value.
 なお、図示しないが、台座5の表面5aに弾性シートを貼り付けてもよい。これにより、ガラス板4を台座5の表面5aに固定した際の外力の一部を弾性シートで吸収でき、より効果的に、ガラス板4に発生する内部応力を低減できる。なお、限定されるものではないが、弾性シートの吸収厚は0.2mm程度であることが好ましい。 Although not shown, an elastic sheet may be attached to the surface 5a of the base 5. As a result, the elastic sheet can absorb part of the external force when the glass plate 4 is fixed to the surface 5a of the base 5, and the internal stress generated in the glass plate 4 can be reduced more effectively. In addition, although not limited, the absorption thickness of the elastic sheet is preferably about 0.2 mm.
 図2Cに示すように、ガラス板4を台座5の表面5aに固定した状態で、ガラス板4に所定の加工を施す。「所定の加工」を限定するものではないが、例えば、図3Aで説明するガラス板4の端部をレーザー光などで切断したり、図3B、図3Cに示すボール砥石8で研磨加工したりする。又は、ガラス板4に貫通孔を形成する等の形状加工を提示できる。また、形状加工以外に、印刷、コーティング等の付加加工を施すことができる。本実施形態では、ガラス板4を台座5の表面5aに固定した際に、ガラス板4に発生する内部応力を小さくできるため、特に、形状加工に伴うマイクロクラックの進展や、チッピング等の欠陥発生を抑制可能である。 As shown in FIG. 2C, while the glass plate 4 is fixed to the surface 5a of the pedestal 5, the glass plate 4 is processed in a predetermined manner. Although the "predetermined processing" is not limited, for example, cutting the edge of the glass plate 4 described in FIG. do. Alternatively, shape processing such as forming a through hole in the glass plate 4 can be proposed. In addition to shape processing, additional processing such as printing and coating can be applied. In this embodiment, when the glass plate 4 is fixed to the surface 5a of the pedestal 5, the internal stress generated in the glass plate 4 can be reduced. can be suppressed.
 本実施形態では、ガラス板4の材質を限定するものではない。すなわち、無アルカリガラス及びアルカリガラスを区別することなく用いることができる。ガラス板4は、例えばソーダライムガラス、無アルカリガラス、アルカリガラスなどである。アルカリガラスは、化学強化用ガラスであっても良い。化学強化用ガラスは、化学強化処理された後、例えばカバーガラスとして用いられる。ガラス板4は、風冷強化用ガラスであってもよい。本実施形態では、ガラス板4は、アルカリガラスであっても、マイクロクラックの進展を抑えて、所定形状に適切に加工できる。 The material of the glass plate 4 is not limited in this embodiment. That is, alkali-free glass and alkali glass can be used without distinction. The glass plate 4 is, for example, soda-lime glass, alkali-free glass, alkali glass, or the like. The alkali glass may be glass for chemical strengthening. Glass for chemical strengthening is used, for example, as a cover glass after being chemically strengthened. The glass plate 4 may be air-cooled tempered glass. In this embodiment, even if the glass plate 4 is alkali glass, it can be appropriately processed into a predetermined shape while suppressing the development of microcracks.
 ガラス板4の厚みは、特に制限されるものではないが、化学強化処理を効果的に行うために、通常は5mm以下が好ましく、3mm以下がより好ましい。また、ガラス板4をカーナビゲーション等の車載用ディスプレイ装置のカバーガラスに用いる場合には、強度の観点から、ガラス板4の厚みは0.2mm以上が好ましく、0.8mm以上がより好ましく、1mm以上が更に好ましい。 Although the thickness of the glass plate 4 is not particularly limited, it is usually preferably 5 mm or less, more preferably 3 mm or less, in order to effectively perform the chemical strengthening treatment. Further, when the glass plate 4 is used as a cover glass for an in-vehicle display device such as a car navigation system, the thickness of the glass plate 4 is preferably 0.2 mm or more, more preferably 0.8 mm or more, more preferably 1 mm or more, from the viewpoint of strength. The above is more preferable.
 また、ガラス板4の寸法は、用途に応じて適宜選択でき、例えばガラス板4を車載用表示装置のカバーガラスとして使用する場合は、短辺の長さが例えば50mm以上500mm以下であり、好ましくは100mm以上300mm以下であり、長辺の長さが例えば50mm以上1500mm以下であり、好ましくは100mm以上1200mm以下である。本実施形態では、上記のように比較的大きな寸法のガラス板であっても、適切に加工できる。 In addition, the dimensions of the glass plate 4 can be appropriately selected according to the application. For example, when the glass plate 4 is used as a cover glass for an in-vehicle display device, the length of the short side is, for example, 50 mm or more and 500 mm or less, which is preferable. is 100 mm or more and 300 mm or less, and the length of the long side is, for example, 50 mm or more and 1500 mm or less, preferably 100 mm or more and 1200 mm or less. In this embodiment, even a glass plate having a relatively large size as described above can be processed appropriately.
 図3A~図3Cは、台座5の表面5aに固定したガラス板4に対する、形状加工プロセスの一例を示す模式図である。 3A to 3C are schematic diagrams showing an example of a shape processing process for the glass plate 4 fixed to the surface 5a of the pedestal 5. FIG.
 図3Aに示すように、台座5には、両端面5b、5bより内側の位置に、表面5aから厚み方向に向かう溝7が設けられている。この溝7は、ガラス板4の端部を横切る長さで形成されている。そして、ガラス板4を台座5の表面5aに固定した状態で、台座5に設けられた溝7に沿って、ガラス板4の両端を、例えば、レーザー光Lにより切断する。
 次に、図3Bに示すように、切断されたガラス板4の端面4cを、例えば、ボール砥石8を用いて面取加工する。
As shown in FIG. 3A, the pedestal 5 is provided with grooves 7 extending in the thickness direction from the surface 5a at positions inside the end surfaces 5b, 5b. This groove 7 is formed with a length that crosses the edge of the glass plate 4 . Then, while the glass plate 4 is fixed to the surface 5 a of the base 5 , both ends of the glass plate 4 are cut by, for example, a laser beam L along the grooves 7 provided in the base 5 .
Next, as shown in FIG. 3B, the end surface 4c of the cut glass plate 4 is chamfered using a ball grindstone 8, for example.
 図3Cは、ボール砥石8による面取加工を示すガラス板4の端部付近の斜視図である。図3Cに示すように、例えば、上面側の主面4aと端面4cとの間の上辺の角部を、ボール砥石8により面取加工し、続いて、下面側の主面4bと端面4cとの間の下辺の角部を、ボール砥石8により面取加工する。なお、図3Cでは、主面4a、4bを平面で図示したが、実際は曲面状である。
 以上の工程を経ることで、所定の形状に加工されたガラス基板を製造できる。
FIG. 3C is a perspective view of the vicinity of the edge of the glass plate 4 showing chamfering by the ball grindstone 8. FIG. As shown in FIG. 3C, for example, the corner of the upper side between the main surface 4a on the upper surface side and the end surface 4c is chamfered with a ball grindstone 8, and then the main surface 4b on the lower surface side and the end surface 4c are chamfered. The corners of the lower side between are chamfered with a ball grindstone 8. As shown in FIG. Although the main surfaces 4a and 4b are shown as planes in FIG. 3C, they are actually curved surfaces.
Through the above steps, a glass substrate processed into a predetermined shape can be manufactured.
 本実施形態では、ガラス板4を台座5の表面5aに固定した際、固定によりガラス板4に発生する内部応力を小さくできる。このため、図3A及び3Bに示すレーザー光を用いたガラス板4の内部加工や、図3Cに示す砥石を用いたガラス板4の端面の面取加工等の形状加工を容易に且つ精度よく行うことができる。 In this embodiment, when the glass plate 4 is fixed to the surface 5a of the pedestal 5, the internal stress generated in the glass plate 4 by fixing can be reduced. Therefore, shape processing such as internal processing of the glass plate 4 using the laser beam shown in FIGS. 3A and 3B and chamfering of the end face of the glass plate 4 using the grindstone shown in FIG. 3C can be performed easily and accurately. be able to.
 特に、本実施形態のガラス基板の製造方法は、主面4a上の任意の点において交差する接線方向の2軸以上の軸回りに曲率半径を有する平面展開できない主面4a、4bを備えたガラス板4に好ましく適用できる。なお、平面展開できない複雑形状の具体例については、後述の[本発明の一実施形態のガラス基板の説明]欄で詳しく説明する。このように、主面4a、4bが複雑形状である場合、ガラス板4と台座5との間に隙間が生じると、外力を加えても隙間を埋めることが困難であり、ガラス板4と台座5との間にズレなどが生じやすい。このようなズレが生じた状態で、切断や穴あけなどの形状加工を施すと、精度よく形状加工を施せない。また、外力を強めて、ガラス板4を台座5の表面5aに密着させると、ガラス板4に発生する内部応力が強くなり、マイクロクラックの進展などの欠陥が生じる。したがって、ガラス板4の主面4aが複雑形状である場合は、特に、ガラス板4を台座5の表面5aに密着して固定し、該固定により発生する内部応力を小さくすることで、複雑形状に対して高精度な形状加工を施すことが可能になる。 In particular, the method for manufacturing a glass substrate according to the present embodiment is a glass having principal surfaces 4a and 4b which have curvature radii around two or more tangential axes intersecting at an arbitrary point on the principal surface 4a and which cannot be developed on a plane. It can be preferably applied to the plate 4. A specific example of a complicated shape that cannot be developed on a plane will be described in detail in the section [Description of a glass substrate according to an embodiment of the present invention] below. As described above, when the main surfaces 4a and 4b have a complicated shape, if a gap occurs between the glass plate 4 and the base 5, it is difficult to fill the gap even if an external force is applied. It is easy to cause a gap between 5 and the like. If shape processing such as cutting or drilling is performed in a state in which such a deviation has occurred, shape processing cannot be performed with high accuracy. Further, when the glass plate 4 is brought into close contact with the surface 5a of the base 5 by increasing the external force, the internal stress generated in the glass plate 4 becomes stronger, causing defects such as the development of microcracks. Therefore, when the main surface 4a of the glass plate 4 has a complicated shape, the glass plate 4 is fixed in close contact with the surface 5a of the pedestal 5, and the internal stress generated by the fixation is reduced. It becomes possible to apply highly accurate shape processing to.
 <ガラス基板に対する切断可能な内部応力試験>
 ガラス板4の主面4aにカッター切断、及びレーザー切断を施した際の、切断可能な内部応力試験を行った。
<Cuttable Internal Stress Test for Glass Substrate>
A cuttable internal stress test was performed when the main surface 4a of the glass plate 4 was cut with a cutter and laser cut.
 図4Aは、ガラス板13の表面に圧縮応力を作用させてカッター切断する際の、切断可能な内部応力確認試験を示す模式図である。図4Bは、ガラス板13の表面に引張応力を作用させてカッター切断する際の、切断可能な内部応力確認試験を示す模式図である。 FIG. 4A is a schematic diagram showing a cuttable internal stress confirmation test when compressive stress is applied to the surface of the glass plate 13 for cutting with a cutter. FIG. 4B is a schematic diagram showing a cuttable internal stress confirmation test when tensile stress is applied to the surface of the glass plate 13 for cutting with a cutter.
 平板状のガラス板13の下面両端を固定部材9で支え、また、ガラス板13の下面中央にひずみゲージ10を設置した。そして、図4Aに示すように、ガラス板13の上面側には、固定部材9よりも内側の位置に錘11を設置してガラス板13に下方向への外力を加えた。これにより、ガラス板13の切断側である上面に圧縮応力を加えることができる。そして、外力の大きさを変えながら、ガラス板13の上面中央を縦断するようにカッター12によりガラス板13を切断した。なお、ガラス板13に発生する内部応力は、ひずみゲージ10の出力に基づいて求めることができる。ただし、ひずみゲージ10の設置は必須でなく、ガラス板13に加わる力と断面積から内部応力を求めることも可能である。 Both ends of the lower surface of the flat glass plate 13 were supported by fixing members 9, and a strain gauge 10 was installed in the center of the lower surface of the glass plate 13. Then, as shown in FIG. 4A, on the upper surface side of the glass plate 13, a weight 11 was installed at a position inside the fixing member 9 to apply an external force downward to the glass plate 13. As shown in FIG. Thereby, a compressive stress can be applied to the upper surface of the glass plate 13 on the cutting side. Then, the cutter 12 cut the glass plate 13 along the center of the upper surface of the glass plate 13 while changing the magnitude of the external force. The internal stress generated in the glass plate 13 can be obtained based on the output of the strain gauge 10. FIG. However, the installation of the strain gauge 10 is not essential, and it is possible to obtain the internal stress from the force applied to the glass plate 13 and the cross-sectional area.
 平板状のガラス板13の下面中央をピン形状の固定部材9で支え、図4Bに示すように、ガラス板13の上面両端に錘11を設置してガラス板13に下方向への外力を加えた。これにより、ガラス板13の切断側である上面に圧縮応力を加えることができる。そして、外力の大きさを変えながら、ガラス板13の上面中央を縦断するようにカッター12によりガラス板13を切断した。 The center of the lower surface of the flat glass plate 13 is supported by a pin-shaped fixing member 9, and as shown in FIG. rice field. Thereby, a compressive stress can be applied to the upper surface of the glass plate 13 on the cutting side. Then, the cutter 12 cut the glass plate 13 along the center of the upper surface of the glass plate 13 while changing the magnitude of the external force.
 図5Aは、ガラス板15の表面に圧縮応力を作用させてレーザー切断する際の、切断可能な内部応力確認試験を示す模式図である。図5Bは、ガラス板15の表面に引張応力を作用させてレーザー切断する際の、切断可能な内部応力確認試験を示す模式図である。 FIG. 5A is a schematic diagram showing a cuttable internal stress confirmation test when applying a compressive stress to the surface of the glass plate 15 for laser cutting. FIG. 5B is a schematic diagram showing a cuttable internal stress confirmation test when applying tensile stress to the surface of the glass plate 15 for laser cutting.
 図5Aの上図は平面図であり、図5Aの下図は断面図である。表面24aが凹曲面である治具24を用意し、治具24の表面24aに、平板状のガラス板15を設置した。図示しない錘によりガラス板15上に外力を加えて、図5Aに示すように、治具24の表面24aに倣わせた。これにより、ガラス板15の切断側である上面に圧縮応力を加えた。実験では、治具24の凹曲面の曲率半径を変えながら、ガラス板15の上面中央を縦断するようにレーザー光16により切断した。 The top view of FIG. 5A is a plan view, and the bottom view of FIG. 5A is a cross-sectional view. A jig 24 having a concavely curved surface 24 a was prepared, and a flat glass plate 15 was placed on the surface 24 a of the jig 24 . An external force was applied to the glass plate 15 by a weight (not shown) to follow the surface 24a of the jig 24 as shown in FIG. 5A. As a result, a compressive stress was applied to the upper surface of the glass plate 15 on the cutting side. In the experiment, while changing the radius of curvature of the concave curved surface of the jig 24, the glass plate 15 was cut by the laser beam 16 so as to vertically cut through the center of the upper surface thereof.
 図5Bの上図は平面図であり、下図は断面図である。表面17aが凸曲面である治具17を用意し、治具17の表面17aに、平板状のガラス板18を設置した。図示しない錘によりガラス板18上に外力を加えて、図5Bに示すように、治具17の表面17aに倣わせた。これにより、ガラス板18の切断側である上面に引張応力を加えた。実験では、治具17の凸曲面の曲率半径を変えながら、ガラス板18の上面中央を縦断するようにレーザー光16により切断した。
 上記した実験により得られた加工可能な内部応力の上限値を、以下の表1にまとめた。
The top view of FIG. 5B is a plan view, and the bottom view is a cross-sectional view. A jig 17 having a convex curved surface 17 a was prepared, and a flat glass plate 18 was placed on the surface 17 a of the jig 17 . An external force was applied to the glass plate 18 by a weight (not shown) to follow the surface 17a of the jig 17 as shown in FIG. 5B. As a result, a tensile stress was applied to the upper surface of the glass plate 18 on the cutting side. In the experiment, while changing the radius of curvature of the convex curved surface of the jig 17, the glass plate 18 was cut by the laser beam 16 so as to vertically cut through the center of the upper surface thereof.
Table 1 below summarizes the upper limit values of the internal stress that can be processed, which are obtained from the above experiments.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、表1に示す内部応力の値は、所定の形状加工が施されたガラス基板の切断面に、マイクロクラックの進展やチッピング等の欠陥が見られない限界値である。 Here, the values of the internal stress shown in Table 1 are the limit values at which defects such as microcrack progress and chipping are not observed on the cut surface of the glass substrate subjected to the predetermined shape processing.
 表1に示すように、ガラス板の切断側の表面に圧縮応力が作用した状態でカッター切断したとき、加工可能な上限値は2MPaであった。またガラス板の表面に引張応力が作用した状態でカッター切断したとき、加工可能な上限値は3MPaであった。また、ガラス板の表面に圧縮応力が作用した状態でレーザー切断したとき、加工可能な上限値は18MPaであった。またガラス板の表面に引張応力が作用した状態でレーザー切断したとき、加工可能な上限値は10MPaであった。 As shown in Table 1, the upper limit of workability was 2 MPa when cutting with a cutter while compressive stress was applied to the surface of the cut side of the glass plate. Further, when the glass plate was cut with a cutter while tensile stress was acting on the surface of the glass plate, the upper limit of workability was 3 MPa. In addition, when laser cutting was performed with compressive stress acting on the surface of the glass plate, the upper limit of workability was 18 MPa. Further, when laser cutting was performed in a state in which tensile stress was applied to the surface of the glass plate, the upper limit of workability was 10 MPa.
[内部応力試験に基づく本発明の一実施形態のガラス基板の製造方法]
 本実施形態では、図2Cに示すように、複数の曲率半径を有する曲面を有する主面4a、4bを有するガラス板4の少なくとも一部を、前記主面4bに沿った曲面形状を有する台座5の表面5aに固定した際、ガラス板4に発生する内部応力は、10MPa以下である。そして、ガラス板4を台座5の表面5aに固定した状態で、所定の加工を施す。ここで、「所定の加工」には、レーザー切断を選択できる。すなわち、ガラス板4にレーザー切断を施すとき、ガラス板4に発生する内部応力を10MPa以下に調整することで、形状加工中に発生するマイクロクラックの進展やチッピング等の欠陥発生を抑制できる。なお、内部応力は、例えば、デジタル画像相関法を用いて測定可能である。
[Method for producing glass substrate according to one embodiment of the present invention based on internal stress test]
In this embodiment, as shown in FIG. 2C, at least a portion of a glass plate 4 having main surfaces 4a and 4b having curved surfaces with a plurality of radii of curvature is placed on a pedestal 5 having a curved surface shape along the main surface 4b. When fixed to the surface 5a of the glass plate 4, the internal stress generated in the glass plate 4 is 10 MPa or less. Then, in a state where the glass plate 4 is fixed to the surface 5a of the pedestal 5, predetermined processing is performed. Here, laser cutting can be selected as the "predetermined processing". That is, by adjusting the internal stress generated in the glass plate 4 to 10 MPa or less when the glass plate 4 is subjected to laser cutting, it is possible to suppress the development of microcracks and the occurrence of defects such as chipping during shape processing. Internal stress can be measured using, for example, a digital image correlation method.
 また、本実施形態では、ガラス板4に発生する内部応力が2MPa以下になるように固定することが好ましい。これにより、「所定の加工」に、カッター切断を選択可能になる。すなわち、内部応力を2MPa以下に調整することで、切断は、レーザー切断及びカッター切断の別を問わずに実行できる。このように、内部応力を2MPa以下に調整することで、切断の種類を問うことなく、形状加工中に発生するマイクロクラックの進展やチッピング等の欠陥発生を抑制できる。 Further, in this embodiment, it is preferable to fix the glass plate 4 so that the internal stress generated in it is 2 MPa or less. As a result, cutter cutting can be selected as the "predetermined processing". That is, by adjusting the internal stress to 2 MPa or less, cutting can be performed regardless of laser cutting or cutter cutting. By adjusting the internal stress to 2 MPa or less in this way, it is possible to suppress the development of microcracks and the occurrence of defects such as chipping that occur during shape processing regardless of the type of cutting.
 なお、本実施形態のガラス基板の製造方法に使用する台座5は、次に説明する方法により製造された台座5であることが好ましいが、下記製造方法で製造された台座に限定するものではない。ガラス板4を台座5に固定した際に、ガラス板4に発生する内部応力を上記の数値範囲に収めることが可能な台座5であれば、台座5の製造方法を限定するものではない。 The pedestal 5 used in the method for manufacturing a glass substrate of the present embodiment is preferably a pedestal 5 manufactured by the method described below, but is not limited to a pedestal manufactured by the following manufacturing method. . The method of manufacturing the pedestal 5 is not limited as long as the pedestal 5 can keep the internal stress generated in the glass plate 4 within the above numerical range when the glass plate 4 is fixed to the pedestal 5 .
[本発明の一実施形態の台座の製造方法]
 本実施形態では、ガラス板は、複数の曲率半径を有する曲面を有する主面を備え、台座の表面の少なくとも一部は、前記主面そのものの曲面形状を有する。台座の表面の全体を、該主面そのものの曲面形状にかたどることがより好ましい。台座の表面を、ガラス板の主面形状にかたどる方法は、例えば、以下の方法を例に挙げることができる。
[Method for manufacturing a pedestal according to an embodiment of the present invention]
In this embodiment, the glass plate has a main surface having a curved surface with a plurality of radii of curvature, and at least part of the surface of the base has the curved shape of the main surface itself. More preferably, the entire surface of the pedestal is modeled after the curved shape of the main surface itself. The following method can be given as an example of the method of modeling the surface of the base in the shape of the main surface of the glass plate.
 図6A、図6Bは、本実施形態による台座5の製造方法を説明するための断面図である。図6Aでは、主面4a、4bが複数の曲率半径を有する曲面を有するガラス板4を成形する。図6Aは、ガラス板4を模式図的に示した断面図である。そして、少なくとも台座5と対向する側のガラス板4の主面4bを、3Dスキャナ19で測定する。3Dスキャナ19には、既存製品を使用できる。 6A and 6B are cross-sectional views for explaining the method of manufacturing the pedestal 5 according to this embodiment. In FIG. 6A, a glass plate 4 is formed in which the main surfaces 4a, 4b are curved with multiple radii of curvature. FIG. 6A is a cross-sectional view schematically showing the glass plate 4. FIG. Then, at least the main surface 4 b of the glass plate 4 facing the base 5 is measured by the 3D scanner 19 . An existing product can be used for the 3D scanner 19 .
 図6Bでは、3Dスキャナ19より取得した形状データに基づいて、台座5の表面5aの少なくとも一部を、例えば、複数の曲率半径を有する曲面形状に形成する。該形状データに基づいて、台座5の表面5aの全体を、該曲面形状で形成することが好ましい。図6Bは、台座5を模式図的に示した断面図である。3Dプリンターを用いて台座5を形成することで、精密に、ガラス板4の主面4aの曲面形状を再現した台座5の製造が可能である。
 図6A及び図6Bを用いて説明される方法により製造された台座5の材質を限定するものではないが、例えば、熱可塑性樹脂などを提示できる。
In FIG. 6B, based on the shape data acquired from the 3D scanner 19, at least part of the surface 5a of the base 5 is formed into a curved shape having, for example, multiple radii of curvature. It is preferable to form the entire surface 5a of the pedestal 5 in the curved shape based on the shape data. FIG. 6B is a cross-sectional view schematically showing the pedestal 5. As shown in FIG. By forming the pedestal 5 using a 3D printer, it is possible to manufacture the pedestal 5 that accurately reproduces the curved surface shape of the main surface 4a of the glass plate 4 .
Although the material of the pedestal 5 manufactured by the method described using FIGS. 6A and 6B is not limited, for example, thermoplastic resin can be presented.
 図7A~図7Cは、図6A及び6Bとは別の実施形態による台座の製造方法を説明するための断面図である。例えば所定の厚みを有する平板状の熱可塑性樹脂14を用意する。この場合、熱可塑性樹脂14の表面14aは、平面状である。熱可塑性樹脂14を加熱により軟化させる。熱可塑性樹脂には、例えば、株式会社ポリシス製の「ハプラフリーレ」を用いることができる。 7A to 7C are cross-sectional views for explaining a method of manufacturing a pedestal according to another embodiment than FIGS. 6A and 6B. For example, a tabular thermoplastic resin 14 having a predetermined thickness is prepared. In this case, the surface 14a of the thermoplastic resin 14 is planar. The thermoplastic resin 14 is softened by heating. For the thermoplastic resin, for example, "Hapra Freele" manufactured by Polysys Co., Ltd. can be used.
 図7Bに示すように、主面4a、4bが複数の曲率半径を有する曲面を有するガラス板4を、軟化点以上に加熱された軟化状態の熱可塑性樹脂14の表面14aに押し当てる。そして、ガラス板4を押し当てた状態で、硬化温度まで冷却し、熱可塑性樹脂14を硬化させる。その後、図7Cに示すように、硬化した熱可塑性樹脂14の表面14aからガラス板4を取り外す。これにより、表面5aが、ガラス板4の主面4bと同じ曲面形状を有する台座5を精密に形成できる。 As shown in FIG. 7B, a glass plate 4 having curved main surfaces 4a and 4b with a plurality of radii of curvature is pressed against a surface 14a of a softened thermoplastic resin 14 heated to a softening point or higher. Then, while the glass plate 4 is being pressed against it, it is cooled to the curing temperature to cure the thermoplastic resin 14 . Thereafter, as shown in FIG. 7C, the glass plate 4 is removed from the surface 14a of the hardened thermoplastic resin 14. Then, as shown in FIG. Thereby, the pedestal 5 whose surface 5a has the same curved surface shape as the main surface 4b of the glass plate 4 can be precisely formed.
 図6A、図6B、及び、図7A~図7Cを用いて説明される台座5の製造方法では、成形されたガラス板4の主面そのものの曲面形状を利用し台座5の表面5aを形成する。このため、ガラス板4の主面4aの曲面形状を、高精度に、台座5の表面5aに転写できる。 6A, 6B, and 7A to 7C, the surface 5a of the pedestal 5 is formed using the curved shape of the main surface itself of the molded glass plate 4. . Therefore, the curved shape of the main surface 4a of the glass plate 4 can be transferred to the surface 5a of the base 5 with high accuracy.
 [本発明の一実施形態の方法により製造した台座を用いたガラス基板の製造方法]
 図6A、図6B、及び、図7A~図7Cを用いて説明される方法により製造された台座5は、成形されたガラス板4の主面4a、4bそのものの曲面形状を有する表面5aを有している。したがって、図2Cに示すように、ガラス板4を台座5の表面5aに設置した際に、ガラス板4の主面4bと台座5の表面5aとの間に隙間が生じず、或いは、隙間を極力小さくできる。このため、ガラス板4を台座5に固定した際、ガラス板4に生じる内部応力を10MPa以下に抑えることができ、好ましくは、2MPa以下に抑えることができる。
[Method for manufacturing a glass substrate using a pedestal manufactured by the method of one embodiment of the present invention]
The pedestal 5 manufactured by the method described using FIGS. 6A, 6B, and 7A to 7C has a surface 5a having a curved shape of the main surfaces 4a and 4b of the molded glass plate 4 itself. are doing. Therefore, as shown in FIG. 2C, when the glass plate 4 is placed on the surface 5a of the pedestal 5, no gap is generated between the main surface 4b of the glass plate 4 and the surface 5a of the pedestal 5, or the gap is formed. can be made very small. Therefore, when the glass plate 4 is fixed to the pedestal 5, the internal stress generated in the glass plate 4 can be suppressed to 10 MPa or less, preferably 2 MPa or less.
 したがって、図6A、図6B、及び、図7A~図7Cを用いて説明される方法で製造した台座5に、ガラス板4を固定した状態で、ガラス板4の主面4a、4bに所定の加工を施した際、形状加工時に生じるマイクロクラックの進展やチッピング等の欠陥発生を効果的に抑制できる。 Therefore, in a state where the glass plate 4 is fixed to the pedestal 5 manufactured by the method described with reference to FIGS. When processed, it is possible to effectively suppress the development of microcracks and the occurrence of defects such as chipping that occur during shape processing.
 本実施形態におけるガラス基板の製造方法は、ガラス板4の主面4aが、主面上の任意の点において交差する接線方向の2軸以上の軸回りに曲率半径を有する複雑形状に、特に、好ましく適用できる。 In the method for manufacturing a glass substrate according to the present embodiment, the main surface 4a of the glass plate 4 is formed into a complex shape having a radius of curvature around two or more tangential axes that intersect at an arbitrary point on the main surface. It can be preferably applied.
 すなわち、本実施形態では、ガラス板4の主面4a、4bが複雑形状であっても、ガラス板4を台座5に固定した際、ガラス板4に発生する内部応力を10MPa以下に抑えることができ、好ましくは、2MPa以下に抑えることができる。或いは、ガラス板4を台座5に固定した際、ガラス板4の主面4bを、台座5の表面5aに隙間なく接触させることができる。これにより、ガラス板4の主面4aに所定の加工を施した際、形状加工時に生じるマイクロクラックの進展やチッピング等の欠陥発生を効果的に抑制できる。 That is, in the present embodiment, even if the main surfaces 4a and 4b of the glass plate 4 have a complicated shape, the internal stress generated in the glass plate 4 can be suppressed to 10 MPa or less when the glass plate 4 is fixed to the pedestal 5. preferably, it can be suppressed to 2 MPa or less. Alternatively, when the glass plate 4 is fixed to the pedestal 5, the main surface 4b of the glass plate 4 can be brought into contact with the surface 5a of the pedestal 5 without any gap. As a result, when the main surface 4a of the glass plate 4 is processed in a predetermined manner, it is possible to effectively suppress the development of microcracks and the occurrence of defects such as chipping that occur during shape processing.
[本発明の一実施形態のガラス基板の説明]
 図8は、本実施形態のガラス基板20の斜視図である。図9Aは、図8に示すガラス基板20の平面図であり、図9Bは、ガラス基板20の正面図であり、図9Cは、ガラス基板20の側面図である。図10は、ガラス基板20の端面付近を示す部分拡大断面図である。
[Description of the glass substrate of one embodiment of the present invention]
FIG. 8 is a perspective view of the glass substrate 20 of this embodiment. 9A is a plan view of the glass substrate 20 shown in FIG. 8, FIG. 9B is a front view of the glass substrate 20, and FIG. 9C is a side view of the glass substrate 20. FIG. FIG. 10 is a partially enlarged cross-sectional view showing the vicinity of the end surface of the glass substrate 20. As shown in FIG.
 図8及び、図9Bに示すように、本実施形態のガラス基板20は、上面側の第1の主面20aと、下面側の第2の主面20bとを有し、各主面20a、20bは厚み方向に相対向している。
 図8、図9A、図9Bに示すように、相対向する各主面20a、20bの間は、端面20cにより接続されている。
 ここで、平面方向にて直交する2方向をX方向、及びY方向とし、X方向及びY方向に直交する高さ方向をZ方向とする。
 限定するものではないが、図8及び図9Aに示すように、ガラス基板20は、Y方向よりもX方向に長く延出する長尺形状であることが好ましい。
As shown in FIGS. 8 and 9B, the glass substrate 20 of this embodiment has a first main surface 20a on the upper surface side and a second main surface 20b on the lower surface side. 20b face each other in the thickness direction.
As shown in FIGS. 8, 9A and 9B, the opposing main surfaces 20a and 20b are connected by an end surface 20c.
Here, the two directions orthogonal to each other in the plane direction are the X direction and the Y direction, and the height direction orthogonal to the X direction and the Y direction is the Z direction.
Although not limited, the glass substrate 20 preferably has an elongated shape extending longer in the X direction than in the Y direction, as shown in FIGS. 8 and 9A.
 図8、図9B、図9Cに示すように、ガラス基板20は、X方向に延出する長尺方向をZ方向に湾曲させるとともに、Y方向に延出する短尺方向をZ方向に湾曲させていることが好ましい。換言すれば、図8及び図9Aに示すように、第1の主面20aは、第1の主面20a上の例えば、任意の点としての中央点Aにおいて直交するX方向に平行な第1の接線Bと、Y方向に平行な第2の接線Cの、各軸回りに曲率半径を有する平面展開できない形状を有することが好ましい。 As shown in FIGS. 8, 9B, and 9C, the glass substrate 20 is curved in the Z direction in the long direction extending in the X direction and curved in the Z direction in the short direction extending in the Y direction. preferably. In other words, as shown in FIGS. 8 and 9A, the first major surface 20a is a first plane parallel to the X direction perpendicular to the center point A as an arbitrary point on the first major surface 20a, for example. , and a second tangent line C parallel to the Y-direction, and have a shape that cannot be developed on a plane having radii of curvature around each axis.
 第1の接線Bの軸回りの第1の曲率半径は、Y方向に延出する短尺方向をZ方向に湾曲した曲面の曲率半径であり、第2の接線Cの軸回りの第2の曲率半径は、X方向に延出する長尺方向をZ方向に湾曲した曲面の曲率半径である。そして、第1の曲率半径は、第2の曲率半径よりも小さいことが好ましい。例えば、第1の曲率半径は、5mm以上3000mm以下であり、第2の曲率半径は、600mm以上14000mm以下である。 The first radius of curvature around the axis of the first tangent line B is the radius of curvature of a curved surface that extends in the Y direction and curves in the Z direction in the short direction, and the second radius of curvature around the axis of the second tangent line C The radius is the radius of curvature of a curved surface that extends in the X direction and curves in the Z direction. The first radius of curvature is preferably smaller than the second radius of curvature. For example, the first curvature radius is 5 mm or more and 3000 mm or less, and the second curvature radius is 600 mm or more and 14000 mm or less.
 図8及び図9Bに示すように、主面20a、20bは、長尺方向の両側が、第2の曲率半径よりも小さい曲率半径にて屈曲した屈曲部21を有している。この実施形態では、両側の屈曲部21が同じ側に屈曲しているが、異なる方向に屈曲してもよい。 As shown in FIGS. 8 and 9B, the principal surfaces 20a and 20b have bent portions 21 bent with a radius of curvature smaller than the second radius of curvature on both sides in the longitudinal direction. In this embodiment, the bent portions 21 on both sides are bent to the same side, but they may be bent in different directions.
 図10に示すように、本実施形態のガラス基板20は、複数の曲率半径を有する曲面を有する主面を備える。相対向する前記主面間を繋ぐ少なくとも一つの端面20cは、コバ面22と、コバ面22と各主面20a、20bとの間に位置する面取面23とを有し、面取面23は凹面を有する。コバ面22は、主面20a、20b、或いは屈曲部21の表面に対して直交する。 As shown in FIG. 10, the glass substrate 20 of this embodiment has a principal surface having a curved surface with multiple radii of curvature. At least one end surface 20c connecting the opposing main surfaces has an edge surface 22 and a chamfered surface 23 positioned between the edge surface 22 and the main surfaces 20a and 20b. has a concave surface. The edge surface 22 is orthogonal to the main surfaces 20 a and 20 b or the surface of the bent portion 21 .
 コバ面22は、例えば、図3Aに示すレーザー光Lにて切断した切断面であり、本実施形態の面取面23は、例えば、図3Cに示すボール砥石8により面取り仕上げされた面である。 The edge surface 22 is, for example, a cut surface cut by the laser beam L shown in FIG. 3A, and the chamfered surface 23 of the present embodiment is, for example, a surface chamfered by the ball grindstone 8 shown in FIG. 3C. .
 本実施形態では、コバ面22及び面取面23の表面粗さの最大高さSzは限定されないが、例えば、10μm以下にできる。
 表面粗さの最大高さSzは、JIS B 0601:2001に準拠して測定した値である。表面粗さの最大高さSzの測定に、例えば、レーザー顕微鏡(オリンパス株式会社製:LEXT OLS5000)を使用することができる。本実施形態では、面取面23の最大高さSzを、コバ面22の最大高さSzより小さくできる。コバ面22は、レーザー光Lによる切断面であるため、最大高さSzを10μm以下、好ましくは8μm以下、より好ましくは7μm以下にできる。例えば、コバ面22の最大高さSzを6~8μm程度にできる。本実施形態では、ボール砥石8の研磨面である面取面23においても最大高さSzを5μm以下にできる。
 一方、図11Aは、従来のガラス基板の端面30の部分拡大断面図であり、図11Bは、端面30の面取り加工を説明するための斜視図である。
In this embodiment, the maximum height Sz of the surface roughness of the edge surface 22 and the chamfered surface 23 is not limited, but can be, for example, 10 μm or less.
The maximum height Sz of surface roughness is a value measured according to JIS B 0601:2001. A laser microscope (manufactured by Olympus Corporation: LEXT OLS5000), for example, can be used to measure the maximum height Sz of surface roughness. In this embodiment, the maximum height Sz of the chamfered surface 23 can be made smaller than the maximum height Sz of the edge surface 22 . Since the edge surface 22 is a surface cut by the laser beam L, the maximum height Sz can be 10 μm or less, preferably 8 μm or less, more preferably 7 μm or less. For example, the maximum height Sz of the edge surface 22 can be set to approximately 6 to 8 μm. In this embodiment, the maximum height Sz of the chamfered surface 23, which is the polishing surface of the ball grindstone 8, can be 5 μm or less.
On the other hand, FIG. 11A is a partially enlarged cross-sectional view of an edge face 30 of a conventional glass substrate, and FIG.
 図11Aでは、端面30が、コバ面30aと面取面30bとを有し、面取面30bは直線的に傾斜した面である。面取面30bは、いわゆるC面である。図11Bに示すように、端面30を、コバ面30a及び面取面30bの形状に加工できる砥石31を使用して形成できる。図11A及び図11Bに示す従来例では、端面30は、面取面30bもコバ面30aも、砥石31による仕上げ面である。このため、コバ面30aから面取面30bにかけて最大高さSzは、ほぼ同じである。 In FIG. 11A, the end surface 30 has an edge surface 30a and a chamfered surface 30b, and the chamfered surface 30b is a linearly inclined surface. The chamfered surface 30b is a so-called C-plane. As shown in FIG. 11B, the end surface 30 can be formed using a grindstone 31 that can be processed into the shape of the edge surface 30a and the chamfered surface 30b. In the conventional example shown in FIGS. 11A and 11B, both the chamfered surface 30b and the edge surface 30a of the end surface 30 are surfaces finished by the grindstone 31. In FIG. Therefore, the maximum height Sz from the edge surface 30a to the chamfered surface 30b is substantially the same.
 本実施形態のガラス基板20の端面20cでは、図11Aに示す従来例の端面30に比べて、端面の視認性が良く、面取り時の加工負荷を小さくでき、加工作業の短縮化を図ることができる。更に、面取り幅T1のばらつき幅を低減できる。 Compared with the end surface 30 of the conventional example shown in FIG. 11A, the end surface 20c of the glass substrate 20 of the present embodiment has better visibility of the end surface, the processing load during chamfering can be reduced, and the processing work can be shortened. can. Furthermore, the variation width of the chamfer width T1 can be reduced.
 すなわち、本実施形態では、面取面23を凹面にできることで、端面20cの視認性を、図11Aに示すC面(面取面30b)に比べて向上させることができる。また、本実施形態では、ボール砥石8により、各主面20a、20bと端面20cとの間の角部のみ面取りする。このため、コバ面22は、切断面のまま残されており、端面全体を砥石で加工する従来例に比べて加工負担を小さくでき、ひいては作業時間の短縮化を図ることができる。また、面取り幅T1のばらつき幅を小さくでき、少なくとも一つの端面における面取り幅T1のばらつき幅を、20μm以下に抑えることができる。本実施形態では、全ての端面における面取面23の面取り幅T1のばらつき幅が、20μm以下であることが好ましい。 That is, in the present embodiment, by making the chamfered surface 23 concave, the visibility of the end surface 20c can be improved compared to the C surface (chamfered surface 30b) shown in FIG. 11A. Further, in the present embodiment, the ball grindstone 8 chamfers only the corners between the main surfaces 20a, 20b and the end surface 20c. Therefore, the edge surface 22 is left as a cut surface, and the processing load can be reduced compared to the conventional example in which the entire end surface is processed with a grindstone, and the working time can be shortened. In addition, the variation width of the chamfer width T1 can be reduced, and the variation width of the chamfer width T1 on at least one end face can be suppressed to 20 μm or less. In the present embodiment, it is preferable that the chamfered width T1 of the chamfered surface 23 on all the end faces has a variation width of 20 μm or less.
 本実施形態におけるガラス基板20は、図2A~2C及び図3A~3Cを用いて説明される工程を経て形成できる。本実施形態では、形状加工の際、ガラス板4を台座5の表面に密着して固定できる。特に、ガラス板4を台座5の表面に固定した際に、ガラス板4に生じる内部応力を10MPa以下に抑えることができる。これにより、図3Aに示すレーザー切断や、図3B及び図3Cに示すボール砥石8による面取り加工を精度よく行うことができ、図10に示す端面形状を精度よく、小さいばらつきで形成できる。 The glass substrate 20 in this embodiment can be formed through the steps described with reference to FIGS. 2A to 2C and FIGS. 3A to 3C. In this embodiment, the glass plate 4 can be fixed in close contact with the surface of the pedestal 5 during shape processing. In particular, when the glass plate 4 is fixed to the surface of the pedestal 5, the internal stress generated in the glass plate 4 can be suppressed to 10 MPa or less. As a result, the laser cutting shown in FIG. 3A and the chamfering by the ball grindstone 8 shown in FIGS. 3B and 3C can be performed with high accuracy, and the end surface shape shown in FIG. 10 can be formed with high accuracy and small variations.
 なお図8では、ガラス基板20のX方向の端部に位置する端面20cを用いて説明したが、Y方向の両側に位置する端面20dも、図10に示すコバ面22と凹面の面取面23とを有してもよい。全ての端面20c、20dが、図10に示す端面形状で形成されていてもよいし、少なくとも一つの端面のみが図10に示す端面形状で形成されていてもよい。 In FIG. 8, the end face 20c located at the end of the glass substrate 20 in the X direction was used for explanation, but the end faces 20d located on both sides in the Y direction are also chamfered concavely with the edge face 22 shown in FIG. 23. All the end faces 20c and 20d may be formed with the end face shape shown in FIG. 10, or at least one end face may be formed with the end face shape shown in FIG.
 また、本実施形態のガラス基板20の主面20a、20bの曲面形状は、図8に示す形状に限定されるものではなく、複数の曲率半径を有する曲面であれば、図3Bに示すような曲面形状のガラス板4から成るガラス基板であってもよい。ただし、本実施形態では、図8及び図9Aに示すように、第1の主面20aは、第1の主面20a上の中央点Aにおいて直交するX方向に平行な第1の接線Bと、Y方向に平行な第2の接線Cの、各軸回りに曲率半径を有する平面展開できない形状を有することが好ましい。このように平面展開できない複雑形状を有する主面4a、4bを有するガラス板4では、特に、図2Cに示すように、台座5に密着し固定して、形状加工を行う。これにより、該固定により発生する内部応力を小さくでき、複雑形状に対して高精度な形状加工を施すことが可能になる。 Further, the curved surface shape of the main surfaces 20a and 20b of the glass substrate 20 of the present embodiment is not limited to the shape shown in FIG. A glass substrate made of a curved glass plate 4 may be used. However, in the present embodiment, as shown in FIGS. 8 and 9A, the first main surface 20a is aligned with the first tangent line B parallel to the X direction perpendicular to the central point A on the first main surface 20a. , and the second tangent line C parallel to the Y direction, and have a shape that cannot be developed on a plane with a radius of curvature around each axis. In particular, the glass plate 4 having the main surfaces 4a and 4b having a complicated shape that cannot be developed on a plane is closely attached and fixed to the pedestal 5 and subjected to shape processing, as shown in FIG. 2C. As a result, the internal stress generated by the fixation can be reduced, and it is possible to perform highly accurate shape processing on complex shapes.
 以上により、本実施形態によれば、形状加工面である端面20c、20d等において、マイクロクラックの進展やチッピング等の欠陥が抑制されたガラス基板20を得ることができる。 As described above, according to the present embodiment, it is possible to obtain the glass substrate 20 in which the development of microcracks and defects such as chipping are suppressed in the end faces 20c, 20d, etc., which are the shaped surfaces.
 本実施形態のガラス基板20は、例えば、自動車用インパネ、自動車の窓、更には、タブレット、ノートPC、スマートフォン等のタッチパネルディスプレイのカバーガラスや、PCモニタ等のカバーガラス等に適用できる。このうち、本実施形態のガラス基板20は、特に、車載ディスプレイ用のガラス基板に適している。 The glass substrate 20 of the present embodiment can be applied to, for example, automobile instrument panels, automobile windows, cover glasses of touch panel displays of tablets, notebook PCs, smartphones, etc., and cover glasses of PC monitors, etc. Among these, the glass substrate 20 of the present embodiment is particularly suitable as a glass substrate for an in-vehicle display.
 [本発明の一実施形態の台座の説明]
 本実施形態の台座5は、ガラス板4を固定するための台座5であり、台座5の表面5aの少なくとも一部が、ガラス板4の複数の曲率半径を有する曲面を有する主面そのものの曲面形状を有する。例えば、図6A、図6Bや図7A~図7Cを用いて説明した製造方法により台座5を製造できる。これらの製造方法で形成された台座5は、その表面5aの少なくとも一部が、ガラス板4の主面4bそのものの形状を有する。なお、表面5a全体が、ガラス板4の主面4bそのものの形状で形成されることが好ましい。これにより、図2Cに示すように、台座5の表面5aに、ガラス板4を固定した際に、ガラス板4と台座5を適切に密着できる。したがって、本実施形態では、ガラス板4の固定の際に、ガラス板4に生じる内部応力を効果的に小さくでき、具体的には、ガラス板4に生じる内部応力を10MPa以下、好ましくは、2MPa以下に抑えることができる。よって、ガラス板4を台座5に固定した状態で、ガラス板4の主面4a、4bに所定の加工を施した際、形状加工時に生じるマイクロクラックの進展やチッピング等の欠陥発生を効果的に抑制できる。
[Description of the pedestal of one embodiment of the present invention]
The pedestal 5 of the present embodiment is a pedestal 5 for fixing the glass plate 4, and at least part of the surface 5a of the pedestal 5 is a curved surface of the main surface itself having a curved surface having a plurality of radii of curvature of the glass plate 4. have a shape. For example, the pedestal 5 can be manufactured by the manufacturing method described with reference to FIGS. 6A, 6B, and 7A to 7C. At least part of the surface 5a of the pedestal 5 formed by these manufacturing methods has the shape of the main surface 4b of the glass plate 4 itself. In addition, it is preferable that the entire surface 5a is formed in the shape of the main surface 4b of the glass plate 4 itself. Thereby, as shown in FIG. 2C, when the glass plate 4 is fixed to the surface 5a of the base 5, the glass plate 4 and the base 5 can be brought into close contact with each other. Therefore, in this embodiment, the internal stress generated in the glass plate 4 can be effectively reduced when fixing the glass plate 4. Specifically, the internal stress generated in the glass plate 4 is 10 MPa or less, preferably 2 MPa. can be reduced to the following. Therefore, when the main surfaces 4a and 4b of the glass plate 4 are subjected to a predetermined processing while the glass plate 4 is fixed to the base 5, the development of microcracks and the occurrence of defects such as chipping during shape processing can be effectively prevented. can be suppressed.
 また、本実施形態の台座5は、台座5の表面5aの少なくとも一部が、表面5a上の任意の点において交差する接線方向の2軸以上の軸回りに曲率半径を有する複雑形状を有する。表面5aの全体が、該複雑形状であることが好ましい。例えば、台座5の表面5aにおける複雑形状は、図9Aで示されるように、接線方向が、互いに直交するX方向及びY方向に平行である。この台座5は、図8に示すガラス基板20を製造するために用いる台座である。これにより、台座5の表面5aにガラス板4を固定した際に、ガラス板4を適切に台座5に密着させることができる。したがって、ガラス板4に発生する内部応力を適切に抑制できる。以上により、本実施形態の台座5を用いることで、主面4a、4bが複雑形状を有するガラス板4の形状加工時に発生するマイクロクラックの進展やチッピング等の欠陥発生を、効果的に抑制できる。
 下記に、上記の実施形態における特徴点を整理する。
Moreover, the base 5 of the present embodiment has a complex shape in which at least a portion of the surface 5a of the base 5 has curvature radii around two or more tangential axes that intersect at an arbitrary point on the surface 5a. The entire surface 5a preferably has the complex shape. For example, the complex shape on the surface 5a of the base 5 has tangential directions parallel to the mutually orthogonal X and Y directions, as shown in FIG. 9A. This pedestal 5 is a pedestal used for manufacturing the glass substrate 20 shown in FIG. Thereby, when the glass plate 4 is fixed to the surface 5a of the base 5, the glass plate 4 can be brought into close contact with the base 5 appropriately. Therefore, the internal stress generated in the glass plate 4 can be appropriately suppressed. As described above, by using the pedestal 5 of the present embodiment, it is possible to effectively suppress the development of microcracks and the occurrence of defects such as chipping that occur during shape processing of the glass plate 4 having the main surfaces 4a and 4b having a complicated shape. .
The features of the above embodiment are summarized below.
 本実施形態の一態様は、複数の曲率半径を有する曲面を有する主面4a、4bを備えたガラス板4を、前記主面そのものの曲面形状の少なくとも一部と実質的に同じ形状を有する台座5の表面5aに、前記ガラス板の少なくとも一部を固定し、所定の加工を施す、ガラス基板の製造方法を提供する。なお、台座5の表面5aの全体が、ガラス板4の主面そのものの曲面形状であることが好ましい。この構成によれば、特に、ガラス板4の主面をレーザー切断した際に、マイクロクラックの進展やチッピング等の欠陥発生を効果的に抑制できる。 One aspect of the present embodiment is a glass plate 4 having principal surfaces 4a and 4b having curved surfaces with a plurality of radii of curvature. A method for manufacturing a glass substrate is provided, in which at least a part of the glass plate is fixed to the surface 5a of 5 and subjected to a predetermined processing. In addition, it is preferable that the entire surface 5a of the base 5 has a curved surface shape of the main surface of the glass plate 4 itself. According to this configuration, especially when the main surface of the glass plate 4 is laser-cut, it is possible to effectively suppress the development of microcracks and the occurrence of defects such as chipping.
 また、本実施形態のガラス基板の製造方法によれば、複数の曲率半径を有する曲面を有する主面4a、4bを備えたガラス板4を、前記ガラス板4の少なくとも一部を台座5の表面5aに密着させて固定し、該固定により前記ガラス板4に発生する内部応力は10MPa以下であり、前記ガラス板4を前記台座5の表面5aに固定した状態で、ガラス板4に所定の加工を施す、ガラス基板の製造方法を提供する。本実施形態では、ガラス板4に発生する内部応力が2MPa以下になるように固定することが好ましい。このように、ガラス板4を台座5に固定した際に、ガラス板4に生じる内部応力を非常に小さくでき、様々な形状加工に対しても、マイクロクラックの進展やチッピング等の欠陥発生を効果的に抑制できる。特に、ガラス板4を台座5に固定した状態で、ガラス板4の主面4a、4bをレーザー切断やカッター切断した際に、マイクロクラックの進展やチッピング等の欠陥発生を効果的に抑制できる。 Further, according to the method for manufacturing a glass substrate of the present embodiment, the glass plate 4 having the main surfaces 4a and 4b having curved surfaces with a plurality of radii of curvature is formed on the surface of the pedestal 5 by at least a portion of the glass plate 4. 5a, the internal stress generated in the glass plate 4 by the fixation is 10 MPa or less, and the glass plate 4 is subjected to a predetermined processing while the glass plate 4 is fixed to the surface 5a of the pedestal 5. to provide a method for manufacturing a glass substrate. In this embodiment, it is preferable to fix the glass plate 4 so that the internal stress generated in the glass plate 4 is 2 MPa or less. In this way, when the glass plate 4 is fixed to the base 5, the internal stress generated in the glass plate 4 can be extremely reduced. can be effectively suppressed. In particular, when the main surfaces 4a and 4b of the glass plate 4 are laser-cut or cut with a cutter while the glass plate 4 is fixed to the pedestal 5, the development of microcracks and the occurrence of defects such as chipping can be effectively suppressed.
 また、本実施形態の一態様は、ガラス板4を固定するための台座5の製造方法であって、前記ガラス板4は、複数の曲率半径を有する曲面を有する主面4a、4bを備えており、前記台座5の表面5aの少なくとも一部を、前記主面そのものの曲面形状の少なくとも一部と実質的に同じ形状にかたどる、台座の製造方法を提供する。台座5の表面5aの全体を、該主面そのものの曲面形状にかたどることが好ましい。 Further, one aspect of the present embodiment is a method for manufacturing a pedestal 5 for fixing a glass plate 4, wherein the glass plate 4 has main surfaces 4a and 4b having curved surfaces having a plurality of radii of curvature. A method for manufacturing a pedestal is provided in which at least a portion of the surface 5a of the pedestal 5 is shaped to substantially the same shape as at least a portion of the curved shape of the main surface itself. It is preferable that the entire surface 5a of the pedestal 5 is modeled after the curved shape of the main surface itself.
 また、本実施形態の一態様は、ガラス板4を固定するための台座5の製造方法であって、前記ガラス板4は、複数の曲率半径を有する曲面を有する主面4a、4bを備えており、主面4a、4bを3Dスキャナ19で測定し、取得した形状データに基づいて、前記台座5の表面5aの少なくとも一部を形成する、台座の製造方法を提供する。台座5の表面5aの全体を、取得した形状データに基づいて、形成することが好ましい。 Further, one aspect of the present embodiment is a method for manufacturing a pedestal 5 for fixing a glass plate 4, wherein the glass plate 4 has main surfaces 4a and 4b having curved surfaces having a plurality of radii of curvature. A method for manufacturing a pedestal is provided in which the main surfaces 4a and 4b of the pedestal are measured by a 3D scanner 19 and at least a part of the surface 5a of the pedestal 5 is formed based on the obtained shape data. It is preferable to form the entire surface 5a of the base 5 based on the acquired shape data.
 また、本実施形態の一態様は、ガラス板4を固定するための台座5の製造方法であって、前記ガラス板4は、複数の曲率半径を有する曲面を有する主面4a、4bを備えており、前記台座5は、熱可塑性樹脂を含み、軟化状態の前記熱可塑性樹脂の表面に、前記ガラス板4の主面の少なくとも一部を押し当てて前記熱可塑性樹脂を硬化する、台座の製造方法を提供する。台座5の表面5aの全体を、ガラス板4に押し当てて、形成することが好ましい。 Further, one aspect of the present embodiment is a method for manufacturing a pedestal 5 for fixing a glass plate 4, wherein the glass plate 4 has main surfaces 4a and 4b having curved surfaces having a plurality of radii of curvature. The pedestal 5 contains a thermoplastic resin, and at least part of the main surface of the glass plate 4 is pressed against the surface of the thermoplastic resin in a softened state to harden the thermoplastic resin. provide a way. It is preferable to press the entire surface 5a of the pedestal 5 against the glass plate 4 to form it.
 これらの台座5の製造方法によれば、ガラス板4の主面の曲面形状に倣った表面5aを有する台座5を高精度に製造できる。また、ガラス板4の主面4a、4bが、平面展開できない複雑形状を有しても、同じく複雑形状を有する表面5aを有する台座5を、簡単且つ精度よく、形成できる。 According to these methods for manufacturing the pedestal 5, the pedestal 5 having the surface 5a following the curved shape of the main surface of the glass plate 4 can be manufactured with high precision. Moreover, even if the main surfaces 4a and 4b of the glass plate 4 have a complicated shape that cannot be expanded on a plane, the base 5 having the surface 5a similarly having a complicated shape can be formed easily and accurately.
 また、本実施形態の一態様は、上記に記載の製造方法により形成した台座5の表面5aに、前記ガラス板4の少なくとも一部を固定し、前記ガラス板4の主面4a、4bに所定の加工を施すガラス基板の製造方法を提供する。この構成によれば、台座5の表面5aの曲面形状は、ガラス板4の主面の曲面形状に倣っているため、ガラス板4を台座5の表面5aに設置した際、ガラス板4と台座5との間に隙間が生じず、或いは隙間を極めて小さくできる。したがって、ガラス板4を台座5の表面5aに固定した際に、ガラス板4に発生する内部応力を抑制でき、ガラス板4の形状加工の際に発生するマイクロクラックの進展やチッピング等の欠陥発生を効果的に抑制できる。
 また、本実施形態のガラス基板の製造方法では、ガラス板4に、アルカリガラスを用いることができる。
Further, in one aspect of the present embodiment, at least a part of the glass plate 4 is fixed to the surface 5a of the base 5 formed by the manufacturing method described above, and the main surfaces 4a and 4b of the glass plate 4 are provided with predetermined to provide a method for manufacturing a glass substrate. According to this configuration, the curved surface shape of the surface 5a of the pedestal 5 follows the curved surface shape of the main surface of the glass plate 4. Therefore, when the glass plate 4 is placed on the surface 5a of the pedestal 5, the glass plate 4 and the pedestal are separated from each other. 5, or the gap can be made extremely small. Therefore, when the glass plate 4 is fixed to the surface 5a of the pedestal 5, the internal stress generated in the glass plate 4 can be suppressed, and the development of microcracks and the occurrence of defects such as chipping that occur during shape processing of the glass plate 4. can be effectively suppressed.
Further, in the method for manufacturing a glass substrate of the present embodiment, alkali glass can be used for the glass plate 4 .
 また、本実施形態のガラス基板の製造方法では、前記ガラス板4の主面は、前記主面上の任意の点において交差する接線方向の2軸以上の軸回りに曲率半径を有する平面展開できない形状を有する、ガラス基板の製造方法を提供できる。このとき、例えば、第1の曲率半径を、5mm以上3000mm以下に、第2の曲率半径を、600mm以上14000mm以下にできる。本実施形態では、主面が平面展開できない複雑形状を有しても、ガラス板4を台座5の表面に設置した際、ガラス板4と台座5との間に隙間が生じず、或いは隙間を極めて小さくできる。したがって、ガラス板4を台座5の表面5aに固定した際に、ガラス板4に発生する内部応力を抑制でき、ガラス板4の形状加工の際に発生するマイクロクラックの進展やチッピング等の欠陥発生を効果的に抑制できる。 Further, in the method for manufacturing a glass substrate of the present embodiment, the main surface of the glass plate 4 cannot be developed into a plane having a radius of curvature around two or more tangential axes that intersect at an arbitrary point on the main surface. A method for manufacturing a glass substrate having a shape can be provided. At this time, for example, the first curvature radius can be 5 mm or more and 3000 mm or less, and the second curvature radius can be 600 mm or more and 14000 mm or less. In the present embodiment, even if the main surface has a complicated shape that cannot be developed on a plane, when the glass plate 4 is placed on the surface of the pedestal 5, no gap is generated between the glass plate 4 and the pedestal 5, or a gap is formed. can be made extremely small. Therefore, when the glass plate 4 is fixed to the surface 5a of the pedestal 5, the internal stress generated in the glass plate 4 can be suppressed, and defects such as microcrack development and chipping that occur during shape processing of the glass plate 4 can occur. can be effectively suppressed.
 また、本実施形態のガラス基板の製造方法において、前記ガラス板4を前記台座5の表面5aに負圧により吸着固定することが好ましい。本実施形態では、ガラス板4と台座5との間に隙間が生じず、或いは隙間を極めて小さくできるため、確実かつ簡単に、負圧による吸着固定を実行できる。 In addition, in the method of manufacturing a glass substrate according to the present embodiment, it is preferable that the glass plate 4 is fixed to the surface 5a of the pedestal 5 by suction under negative pressure. In this embodiment, there is no gap between the glass plate 4 and the pedestal 5, or the gap can be made extremely small, so that suction and fixation by negative pressure can be performed reliably and easily.
 また、本実施形態のガラス基板の製造方法において、前記ガラス板4の主面形状と、前記台座5の表面形状との形状誤差が1.0mm以下であることが好ましい。形状誤差は、0.3mm以下であることがより好ましい。このように、本実施形態では、ガラス板4と台座5との形状誤差を小さくでき、したがって、ガラス板4を台座5に固定した際に生じる隙間を非常に小さくできる。よって、ガラス板4の固定の際にガラス板4に生じる内部応力を小さくでき、ガラス板4の形状加工の際に発生するマイクロクラックの進展やチッピング等の欠陥発生を効果的に抑制できる。 Further, in the method for manufacturing a glass substrate of the present embodiment, it is preferable that the shape error between the main surface shape of the glass plate 4 and the surface shape of the pedestal 5 is 1.0 mm or less. More preferably, the shape error is 0.3 mm or less. Thus, in this embodiment, the shape error between the glass plate 4 and the pedestal 5 can be reduced, so that the gap generated when the glass plate 4 is fixed to the pedestal 5 can be made very small. Therefore, the internal stress generated in the glass plate 4 when the glass plate 4 is fixed can be reduced, and the development of microcracks and defects such as chipping that occur when the glass plate 4 is shaped can be effectively suppressed.
 また、本実施形態のガラス基板の製造方法において、前記所定の加工として、レーザー光を用いたガラス板の内部加工を例示できる。また、前記所定の加工として、砥石を用いた前記ガラス板の端面の面取加工を例示できる。これらの加工工程を経ることで、本実施形態のガラス基板の端面形状を高精度に且つ小さいばらつきにて形成できる。 Further, in the method for manufacturing a glass substrate of the present embodiment, internal processing of the glass plate using laser light can be exemplified as the predetermined processing. Further, as the predetermined processing, chamfering processing of the end surface of the glass plate using a grindstone can be exemplified. Through these processing steps, the shape of the end face of the glass substrate of the present embodiment can be formed with high accuracy and small variations.
 また、本実施形態の一態様は、複数の曲率半径を有する曲面を有する主面20a、20bを備えており、相対向する前記主面間を繋ぐ少なくとも一つの端面20c、20dは、コバ面22と、前記コバ面と各主面との間に位置する面取面23とを有し、前記面取面23は凹面を有する、ガラス基板20を提供する。これにより、端面の視認性を良くでき、面取り時の加工負荷を小さくでき、加工作業の短縮化を図ることができる。更に、面取り幅T1のばらつき幅を低減できる。 In addition, one aspect of the present embodiment is provided with main surfaces 20a and 20b having curved surfaces having a plurality of radii of curvature, and at least one end surface 20c and 20d connecting the opposing main surfaces is an edge surface 22 and a chamfered surface 23 located between the edge surface and each principal surface, the chamfered surface 23 having a concave surface. As a result, the visibility of the end face can be improved, the processing load during chamfering can be reduced, and the processing work can be shortened. Furthermore, the variation width of the chamfer width T1 can be reduced.
 また、本実施形態において、前記コバ面22及び前記面取面23の表面粗さの最大高さSzは、10μm以下であることが好ましい。また、本実施形態において、少なくとも一つの前記端面における前記面取面23の面取り幅T1のばらつき幅を、20μm以下にできる。このように、コバ面22及び面取面23の最大高さSzを小さくでき、また面取形状のばらつきを小さくでき、端面形状を高精度に形成できる。 Further, in the present embodiment, the maximum height Sz of the surface roughness of the edge surface 22 and the chamfered surface 23 is preferably 10 μm or less. Further, in the present embodiment, the variation width of the chamfered width T1 of the chamfered surface 23 on at least one of the end faces can be set to 20 μm or less. In this manner, the maximum height Sz of the edge surface 22 and the chamfered surface 23 can be reduced, variation in the chamfered shape can be reduced, and the end surface shape can be formed with high accuracy.
 また、本実施形態のガラス基板では、前記ガラス基板20の主面20aは、前記主面上の任意の点において交差する接線方向の2軸以上の軸回りに曲率半径を有する平面展開できない形状を有することが好ましい。このように、本実施形態では、ガラス基板20の主面を、平面展開できない複雑形状を有するように形成できるとともに、形状加工の際に台座への固定により発生する内部応力を小さくできるから、マイクロクラックの進展やチッピング等の欠陥発生を効果的に抑制できる。
 また、本実施形態のガラス基板20は、例えば、車載ディスプレイ用に好ましく使用できる。
In addition, in the glass substrate of the present embodiment, the main surface 20a of the glass substrate 20 has a shape that cannot be expanded on a plane and has a radius of curvature around two or more tangential axes that intersect at an arbitrary point on the main surface. It is preferable to have As described above, in the present embodiment, the main surface of the glass substrate 20 can be formed to have a complicated shape that cannot be developed on a plane, and the internal stress generated by fixing to the pedestal during shape processing can be reduced. It is possible to effectively suppress the development of cracks and the occurrence of defects such as chipping.
Moreover, the glass substrate 20 of this embodiment can be preferably used for an in-vehicle display, for example.
 また、本実施形態の一態様は、ガラス板4を固定するための台座5であって、前記ガラス板は、複数の曲率半径を有する曲面を有する主面を備えており、台座5の表面5aの少なくとも一部が、前記ガラス板の前記主面そのものの曲面形状を有する、台座を提供する。台座5の表面5aの全体が、ガラス板4の主面そのものの曲面形状で形成されることが好ましい。この構成によれば、台座5の表面5aに、ガラス板4を設置した際に、ガラス板4と台座5を適切に接触させることができる。これにより、ガラス板4を台座5に固定した際、ガラス板4に生じる内部応力を10MPa以下、好ましくは、2MPa以下に抑えることができる。したがって、ガラス板4を台座5に固定した状態で、ガラス板4の主面に所定の加工を施した際、形状加工時に生じるマイクロクラックの進展やチッピング等の欠陥発生を効果的に抑制できる。 Further, one aspect of the present embodiment is a pedestal 5 for fixing the glass plate 4, the glass plate has a main surface having a curved surface having a plurality of radii of curvature, and the surface 5a of the pedestal 5 at least part of which has a curved surface shape of the main surface itself of the glass plate. It is preferable that the entire surface 5a of the pedestal 5 is formed in the curved shape of the main surface of the glass plate 4 itself. According to this configuration, when the glass plate 4 is installed on the surface 5 a of the base 5 , the glass plate 4 and the base 5 can be appropriately brought into contact with each other. Thereby, when the glass plate 4 is fixed to the pedestal 5, the internal stress generated in the glass plate 4 can be suppressed to 10 MPa or less, preferably 2 MPa or less. Therefore, when the glass plate 4 is fixed to the base 5 and the main surface of the glass plate 4 is subjected to a predetermined processing, it is possible to effectively suppress the development of microcracks and the occurrence of defects such as chipping that occur during shape processing.
 また、本実施形態の一態様は、ガラス板4を固定するための台座5であって、台座5の表面5aの少なくとも一部が、前記表面上の任意の点において交差する接線方向の2軸以上の軸回りに曲率半径を有する平面展開できない形状を有する、台座を提供する。本実施形態では、台座5の表面5aの全体が、該平面展開できない形状であることが好ましい。この構成によれば、表面5aの少なくとも一部が平面展開できない複雑形状を有しても、ガラス板4を台座5の表面5aに設置した際、ガラス板4と台座5との間に隙間が生じず、或いは隙間を極めて小さくできる。したがって、ガラス板4を台座5の表面に固定した際に、ガラス板4に発生する内部応力を抑制でき、ガラス板4の形状加工の際に発生するマイクロクラックの進展やチッピング等の欠陥発生を効果的に抑制できる。 Further, one aspect of the present embodiment is a pedestal 5 for fixing the glass plate 4, wherein at least part of the surface 5a of the pedestal 5 is two tangential axes that intersect at any point on the surface. Provided is a pedestal having a shape that cannot be developed on a plane and has a radius of curvature around the above axis. In this embodiment, it is preferable that the entire surface 5a of the pedestal 5 has a shape that cannot be developed on a plane. According to this configuration, even if at least a part of the surface 5a has a complicated shape that cannot be developed on a plane, when the glass plate 4 is placed on the surface 5a of the pedestal 5, a gap is formed between the glass plate 4 and the pedestal 5. or the gap can be made extremely small. Therefore, when the glass plate 4 is fixed to the surface of the pedestal 5, the internal stress generated in the glass plate 4 can be suppressed, and the development of microcracks and the occurrence of defects such as chipping that occur during shape processing of the glass plate 4 can be suppressed. can be effectively suppressed.
 上記で説明したように、本明細書には以下の構成が開示されている。
[1]複数の曲率半径を有する曲面を有する主面を備えたガラス板の少なくとも一部を、台座の表面に固定し、前記ガラス板に所定の加工を施す、ガラス基板の製造方法であって、
 前記台座の表面は、前記ガラス板の前記主面そのものの曲面形状の少なくとも一部と実質的に同じ形状を有する、ガラス基板の製造方法。
[2]複数の曲率半径を有する曲面を有する主面を備えたガラス板の少なくとも一部を、台座の表面に密着させて固定し、
 該固定により前記ガラス板に発生する内部応力は10MPa以下であり、
 前記ガラス板を前記台座の表面に固定した状態で、前記ガラス板に所定の加工を施す、ガラス基板の製造方法。
[3]ガラス板を固定するための台座の製造方法であって、
 前記ガラス板は、複数の曲率半径を有する曲面を有する主面を備えており、
 前記台座の表面の少なくとも一部を、前記ガラス板の前記主面そのものの曲面形状の少なくとも一部と実質的に同じ形状にかたどる、台座の製造方法。
[4]ガラス板を固定するための台座の製造方法であって、
 前記ガラス板は、複数の曲率半径を有する曲面を有する主面を備えており、
 前記主面を3Dスキャナで測定し、取得した形状データに基づいて、前記台座の表面の少なくとも一部を形成する、台座の製造方法。
[5]ガラス板を固定するための台座の製造方法であって、
 前記ガラス板は、複数の曲率半径を有する曲面を有する主面を備えており、
 前記台座は、熱可塑性樹脂を含み、
 軟化状態の前記熱可塑性樹脂の表面に、前記主面の少なくとも一部を押し当てて前記熱可塑性樹脂を硬化する、台座の製造方法。
[6][3]から[5]のいずれか1つに記載の台座の製造方法により形成した台座の表面に、前記ガラス板の少なくとも一部を固定し、
 前記ガラス板の主面に所定の加工を施す、ガラス基板の製造方法。
[7]前記ガラス板は、アルカリガラスである、[1]、[2]、又は、[6]に記載の、ガラス基板の製造方法。
[8]前記ガラス板の主面は、前記主面上の任意の点において交差する接線方向の2軸以上の軸回りに曲率半径を有する平面展開できない形状を有する、[1]、[2]、[6]、又は、[7]に記載の、ガラス基板の製造方法。
[9]第1の曲率半径が、5mm以上3000mm以下であり、第2の曲率半径が、600mm以上14000mm以下である、[8]に記載のガラス基板の製造方法。
[10]前記ガラス板を前記台座の表面に負圧により吸着固定する、[1]、[2]、および[6]から[9]のいずれか1つに記載の、ガラス基板の製造方法。
[11]前記ガラス板の主面形状と、前記台座の表面形状との形状誤差が1.0mm以下である、[1]、[2]、および[6]から[10]のいずれか1つに記載の、ガラス基板の製造方法。
[12]前記所定の加工が、レーザー光を用いた前記ガラス板の内部加工を含む、[1]、[2]、および[6]から[11]のいずれか1つに記載の、ガラス基板の製造方法。
[13]前記所定の加工が、砥石を用いた前記ガラス板の端面の面取加工を含む、[1]、[2]、および[6]から[12]のいずれか1つに記載の、ガラス基板の製造方法。
[14]複数の曲率半径を有する曲面を有する主面を備えており、
 相対向する前記主面間を繋ぐ少なくとも一つの端面は、コバ面と、前記コバ面と各主面との間に位置する面取面とを有し、前記面取面は凹面を有する、ガラス基板。
[15]前記コバ面及び前記面取面の表面粗さの最大高さSzは、10μm以下である、[14]に記載のガラス基板。
[16]少なくとも一つの前記端面における前記面取面の面取り幅のばらつき幅が、20μm以下である、[14]又は[15]に記載のガラス基板。
[17]前記ガラス基板の主面は、前記主面上の任意の点において交差する接線方向の2軸以上の軸回りに曲率半径を有する平面展開できない形状を有する、[14]から[16]のいずれか1つに記載のガラス基板。
[18]前記ガラス基板は、車載ディスプレイ用である、[14]から[17]のいずれか1つに記載のガラス基板。
[19]ガラス板を固定するための台座であって、
 前記ガラス板は、複数の曲率半径を有する曲面を有する主面を備えており、
 前記台座の表面の少なくとも一部が、前記主面そのものの曲面形状を有する、台座。
[20]ガラス板を固定するための台座であって、
 前記台座の表面の少なくとも一部が、前記表面上の任意の点において交差する接線方向の2軸以上の軸回りに曲率半径を有する平面展開できない形状を有する、台座。
As explained above, the following configurations are disclosed in this specification.
[1] A method for manufacturing a glass substrate, wherein at least part of a glass plate having a main surface having a curved surface with a plurality of radii of curvature is fixed to the surface of a pedestal, and the glass plate is subjected to a predetermined process. ,
The method for producing a glass substrate, wherein the surface of the base has substantially the same shape as at least part of the curved shape of the main surface itself of the glass plate.
[2] At least a portion of a glass plate having a main surface having a curved surface with multiple radii of curvature is brought into close contact with and fixed to the surface of the pedestal;
The internal stress generated in the glass plate by the fixation is 10 MPa or less,
A method of manufacturing a glass substrate, wherein the glass plate is fixed to the surface of the pedestal and then subjected to a predetermined process.
[3] A method for manufacturing a pedestal for fixing a glass plate, comprising:
The glass plate has a main surface having a curved surface with a plurality of radii of curvature,
A method of manufacturing a pedestal, wherein at least part of the surface of the pedestal is modeled to have substantially the same shape as at least part of the curved shape of the main surface itself of the glass plate.
[4] A method for manufacturing a pedestal for fixing a glass plate, comprising:
The glass plate has a main surface having a curved surface with a plurality of radii of curvature,
A method of manufacturing a pedestal, comprising measuring the main surface with a 3D scanner and forming at least a part of the surface of the pedestal based on the acquired shape data.
[5] A method for manufacturing a pedestal for fixing a glass plate, comprising:
The glass plate has a main surface having a curved surface with a plurality of radii of curvature,
The pedestal includes a thermoplastic resin,
A method of manufacturing a pedestal, wherein at least part of the main surface is pressed against a surface of the thermoplastic resin in a softened state to harden the thermoplastic resin.
[6] At least part of the glass plate is fixed to the surface of the pedestal formed by the method for manufacturing a pedestal according to any one of [3] to [5],
A method for manufacturing a glass substrate, wherein the main surface of the glass plate is subjected to a predetermined process.
[7] The method for producing a glass substrate according to [1], [2], or [6], wherein the glass plate is alkali glass.
[8] The main surface of the glass plate has a shape that cannot be developed on a plane and has a radius of curvature around two or more tangential axes that intersect at an arbitrary point on the main surface, [1], [2]. , [6], or the method for manufacturing a glass substrate according to [7].
[9] The method for producing a glass substrate according to [8], wherein the first radius of curvature is 5 mm or more and 3000 mm or less, and the second radius of curvature is 600 mm or more and 14000 mm or less.
[10] The method for manufacturing a glass substrate according to any one of [1], [2], and [6] to [9], wherein the glass plate is fixed to the surface of the pedestal by suction with negative pressure.
[11] Any one of [1], [2], and [6] to [10], wherein the shape error between the main surface shape of the glass plate and the surface shape of the pedestal is 1.0 mm or less. The method for producing a glass substrate according to .
[12] The glass substrate according to any one of [1], [2], and [6] to [11], wherein the predetermined processing includes internal processing of the glass plate using a laser beam. manufacturing method.
[13] Any one of [1], [2], and [6] to [12], wherein the predetermined processing includes chamfering the end surface of the glass plate using a grindstone, A method for manufacturing a glass substrate.
[14] comprising a principal surface having a curved surface with a plurality of radii of curvature;
glass, wherein at least one end surface connecting the opposing main surfaces has an edge surface and a chamfered surface positioned between the edge surface and each of the main surfaces, the chamfered surface having a concave surface; substrate.
[15] The glass substrate according to [14], wherein the maximum height Sz of the surface roughness of the edge surface and the chamfered surface is 10 µm or less.
[16] The glass substrate according to [14] or [15], wherein the chamfered width of the chamfered surface on at least one of the end surfaces has a variation width of 20 μm or less.
[17] The main surface of the glass substrate has a shape that cannot be developed on a plane and has a radius of curvature around two or more tangential axes that intersect at an arbitrary point on the main surface, [14] to [16]. The glass substrate according to any one of.
[18] The glass substrate according to any one of [14] to [17], which is for an in-vehicle display.
[19] A pedestal for fixing a glass plate,
The glass plate has a main surface having a curved surface with a plurality of radii of curvature,
A pedestal, wherein at least part of the surface of the pedestal has a curved surface shape of the main surface itself.
[20] A pedestal for fixing a glass plate,
A pedestal, wherein at least a part of the surface of the pedestal has a shape that cannot be developed on a plane and has radii of curvature about two or more tangential axes that intersect at an arbitrary point on the surface.
 以下、本発明の実施例及び比較例により本発明の効果を説明する。なお、本発明は、以下の実施例によって何ら限定されるものではない。 The effects of the present invention will be described below with reference to examples and comparative examples of the present invention. In addition, the present invention is not limited at all by the following examples.
 実験では例1として、主面が平面展開できない曲面形状からなるガラス板35を3Dスキャナで測定し、得られた形状データに基づいて台座36を作製した。作製した台座36の斜視図を、図12Aに示す。 In the experiment, as Example 1, a glass plate 35 whose main surface has a curved shape that cannot be developed on a plane was measured with a 3D scanner, and a pedestal 36 was produced based on the obtained shape data. A perspective view of the fabricated pedestal 36 is shown in FIG. 12A.
 また、台座の表面を、ガラス板の設計値にて形成したものを例2とした。例1は、実施例であり、例2は、比較例である。
 図12Bは、例1における台座36の表面と、例2における台座の表面の高低差を示すグラフである。図12Bの右軸の縦スケールで見てわかるように、例1と例2との台座の表面の高低差は最大で約0.7mmあった。このように、設計値を基に台座を作製すると、成形したガラス板との形状誤差が広がることがわかった。一方、例1では形状誤差を非常に小さくできた。
Further, Example 2 is the case where the surface of the pedestal is formed according to the design value of the glass plate. Example 1 is an example and Example 2 is a comparative example.
12B is a graph showing the height difference between the surface of the pedestal 36 in Example 1 and the surface of the pedestal in Example 2. FIG. As can be seen from the vertical scale on the right axis of FIG. 12B, the height difference between the surfaces of the pedestals of Examples 1 and 2 was about 0.7 mm at maximum. Thus, it was found that when the pedestal was manufactured based on the design values, the shape error with the molded glass plate increased. On the other hand, in Example 1, the shape error could be made very small.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2021年11月30日出願の日本特許出願(特願2021-193950)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2021-193950) filed on November 30, 2021, the content of which is hereby incorporated by reference.
1、4、13、15、18、35:ガラス板
1a  :主面
1b  :主面
2、36:台座
2a  :表面
3   :隙間
4   :ガラス板
4a、4b:主面
4c  :端面
5a  :表面
7   :溝
8   :ボール砥石
12  :カッター
14  :熱可塑性樹脂
16  :レーザー光
19  :3Dスキャナ
20  :ガラス基板
20a :第1の主面
20b :第2の主面
20c、20d:端面
21  :屈曲部
22  :コバ面
23  :面取面
A   :中央点
B   :第1の接線
C   :第2の接線
L   :レーザー光
T1  :面取り幅
1, 4, 13, 15, 18, 35: glass plate 1a: main surface 1b: main surface 2, 36: pedestal 2a: surface 3: gap 4: glass plates 4a, 4b: main surface 4c: end surface 5a: surface 7 : Groove 8 : Ball grindstone 12 : Cutter 14 : Thermoplastic resin 16 : Laser beam 19 : 3D scanner 20 : Glass substrate 20a : First main surface 20b : Second main surface 20c, 20d : End surface 21 : Bending portion 22 : Edge surface 23 : Chamfered surface A : Center point B : First tangent line C : Second tangent line L : Laser beam T1 : Chamfer width

Claims (20)

  1.  複数の曲率半径を有する曲面を有する主面を備えたガラス板の少なくとも一部を、台座の表面に固定し、前記ガラス板に所定の加工を施す、ガラス基板の製造方法であって、
     前記台座の表面は、前記ガラス板の前記主面そのものの曲面形状の少なくとも一部と実質的に同じ形状を有する、ガラス基板の製造方法。
    A method for manufacturing a glass substrate, comprising fixing at least part of a glass plate having a main surface having a curved surface with a plurality of radii of curvature to the surface of a pedestal, and subjecting the glass plate to a predetermined process,
    The method for producing a glass substrate, wherein the surface of the base has substantially the same shape as at least part of the curved shape of the main surface itself of the glass plate.
  2.  複数の曲率半径を有する曲面を有する主面を備えたガラス板の少なくとも一部を、台座の表面に密着させて固定し、
     該固定により前記ガラス板に発生する内部応力は10MPa以下であり、
     前記ガラス板を前記台座の表面に固定した状態で、前記ガラス板に所定の加工を施す、ガラス基板の製造方法。
    At least a portion of a glass plate having a main surface having a curved surface with multiple radii of curvature is brought into close contact with and fixed to the surface of the pedestal;
    The internal stress generated in the glass plate by the fixation is 10 MPa or less,
    A method of manufacturing a glass substrate, wherein the glass plate is fixed to the surface of the pedestal and then subjected to a predetermined process.
  3.  ガラス板を固定するための台座の製造方法であって、
     前記ガラス板は、複数の曲率半径を有する曲面を有する主面を備えており、
     前記台座の表面の少なくとも一部を、前記ガラス板の前記主面そのものの曲面形状の少なくとも一部と実質的に同じ形状にかたどる、台座の製造方法。
    A method for manufacturing a pedestal for fixing a glass plate, comprising:
    The glass plate has a main surface having a curved surface with a plurality of radii of curvature,
    A method of manufacturing a pedestal, wherein at least part of the surface of the pedestal is modeled to have substantially the same shape as at least part of the curved shape of the main surface itself of the glass plate.
  4.  ガラス板を固定するための台座の製造方法であって、
     前記ガラス板は、複数の曲率半径を有する曲面を有する主面を備えており、
     前記主面を3Dスキャナで測定し、取得した形状データに基づいて、前記台座の表面の少なくとも一部を形成する、台座の製造方法。
    A method for manufacturing a pedestal for fixing a glass plate, comprising:
    The glass plate has a main surface having a curved surface with a plurality of radii of curvature,
    A method of manufacturing a pedestal, comprising measuring the main surface with a 3D scanner and forming at least a part of the surface of the pedestal based on the acquired shape data.
  5.  ガラス板を固定するための台座の製造方法であって、
     前記ガラス板は、複数の曲率半径を有する曲面を有する主面を備えており、
     前記台座は、熱可塑性樹脂を含み、
     軟化状態の前記熱可塑性樹脂の表面に、前記主面の少なくとも一部を押し当てて前記熱可塑性樹脂を硬化する、台座の製造方法。
    A method for manufacturing a pedestal for fixing a glass plate, comprising:
    The glass plate has a main surface having a curved surface with a plurality of radii of curvature,
    The pedestal includes a thermoplastic resin,
    A method of manufacturing a pedestal, wherein at least part of the main surface is pressed against a surface of the thermoplastic resin in a softened state to harden the thermoplastic resin.
  6.  請求項3から請求項5のいずれか1項に記載の台座の製造方法により形成した台座の表面に、前記ガラス板の少なくとも一部を固定し、
     前記ガラス板の主面に所定の加工を施す、ガラス基板の製造方法。
    At least part of the glass plate is fixed to the surface of the pedestal formed by the method for manufacturing the pedestal according to any one of claims 3 to 5,
    A method for manufacturing a glass substrate, wherein the main surface of the glass plate is subjected to a predetermined process.
  7.  前記ガラス板は、アルカリガラスである、請求項1又は請求項2に記載の、ガラス基板の製造方法。 The method for manufacturing a glass substrate according to claim 1 or claim 2, wherein the glass plate is alkali glass.
  8.  前記ガラス板の主面は、前記主面上の任意の点において交差する接線方向の2軸以上の軸回りに曲率半径を有する平面展開できない形状を有する、請求項1又は請求項2に記載の、ガラス基板の製造方法。 3. The main surface of the glass plate according to claim 1 or 2, wherein the main surface has a shape that cannot be expanded on a plane and has curvature radii around two or more tangential axes that intersect at an arbitrary point on the main surface. , a method for manufacturing a glass substrate.
  9.  第1の曲率半径が、5mm以上3000mm以下であり、第2の曲率半径が、600mm以上14000mm以下である、請求項8に記載のガラス基板の製造方法。 The method for manufacturing a glass substrate according to claim 8, wherein the first radius of curvature is 5 mm or more and 3000 mm or less, and the second radius of curvature is 600 mm or more and 14000 mm or less.
  10.  前記ガラス板を前記台座の表面に負圧により吸着固定する、請求項1又は請求項2に記載の、ガラス基板の製造方法。 The method for manufacturing a glass substrate according to claim 1 or claim 2, wherein the glass plate is fixed by suction to the surface of the pedestal by means of negative pressure.
  11.  前記ガラス板の主面形状と、前記台座の表面形状との形状誤差が1.0mm以下である、請求項1又は請求項2に記載の、ガラス基板の製造方法。 The method for manufacturing a glass substrate according to claim 1 or 2, wherein a shape error between the main surface shape of the glass plate and the surface shape of the pedestal is 1.0 mm or less.
  12.  前記所定の加工が、レーザー光を用いた前記ガラス板の内部加工を含む、請求項1又は請求項2に記載の、ガラス基板の製造方法。 The method for manufacturing a glass substrate according to claim 1 or claim 2, wherein the predetermined processing includes internal processing of the glass plate using laser light.
  13.  前記所定の加工が、砥石を用いた前記ガラス板の端面の面取加工を含む、請求項1又は請求項2に記載の、ガラス基板の製造方法。 The method for manufacturing a glass substrate according to claim 1 or claim 2, wherein the predetermined processing includes chamfering the end surface of the glass plate using a grindstone.
  14.  複数の曲率半径を有する曲面を有する主面を備えており、
     相対向する前記主面間を繋ぐ少なくとも一つの端面は、コバ面と、前記コバ面と各主面との間に位置する面取面とを有し、前記面取面は凹面を有する、ガラス基板。
    comprising a principal surface having a curved surface with multiple radii of curvature;
    glass, wherein at least one end surface connecting the opposing main surfaces has an edge surface and a chamfered surface positioned between the edge surface and each of the main surfaces, the chamfered surface having a concave surface; substrate.
  15.  前記コバ面及び前記面取面の表面粗さの最大高さSzは、10μm以下である、請求項14に記載のガラス基板。 15. The glass substrate according to claim 14, wherein the maximum height Sz of the surface roughness of the edge surface and the chamfered surface is 10 μm or less.
  16.  少なくとも一つの前記端面における前記面取面の面取り幅のばらつき幅が、20μm以下である、請求項14又は請求項15に記載のガラス基板。 16. The glass substrate according to claim 14 or 15, wherein the chamfered width of the chamfered surface on at least one of the end faces has a variation width of 20 μm or less.
  17.  前記ガラス基板の主面は、前記主面上の任意の点において交差する接線方向の2軸以上の軸回りに曲率半径を有する平面展開できない形状を有する、請求項14又は請求項15に記載のガラス基板。 16. The main surface of the glass substrate according to claim 14 or 15, wherein the main surface has a shape that cannot be expanded on a plane and has curvature radii around two or more tangential axes that intersect at an arbitrary point on the main surface. glass substrate.
  18.  前記ガラス基板は、車載ディスプレイ用である、請求項14又は請求項15に記載のガラス基板。 The glass substrate according to claim 14 or 15, which is for an in-vehicle display.
  19.  ガラス板を固定するための台座であって、
     前記ガラス板は、複数の曲率半径を有する曲面を有する主面を備えており、
     前記台座の表面の少なくとも一部が、前記主面そのものの曲面形状を有する、台座。
    A pedestal for fixing a glass plate,
    The glass plate has a main surface having a curved surface with a plurality of radii of curvature,
    A pedestal, wherein at least part of the surface of the pedestal has a curved surface shape of the main surface itself.
  20.  ガラス板を固定するための台座であって、
     前記台座の表面の少なくとも一部が、前記表面上の任意の点において交差する接線方向の2軸以上の軸回りに曲率半径を有する平面展開できない形状を有する、台座。
    A pedestal for fixing a glass plate,
    A pedestal, wherein at least part of the surface of the pedestal has a shape that cannot be developed on a plane and has radii of curvature about two or more tangential axes that intersect at an arbitrary point on the surface.
PCT/JP2022/043422 2021-11-30 2022-11-24 Method for manufacturing glass substrate, method for manufacturing pedestal, glass substrate, and pedestal WO2023100744A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021193950 2021-11-30
JP2021-193950 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100744A1 true WO2023100744A1 (en) 2023-06-08

Family

ID=86612117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043422 WO2023100744A1 (en) 2021-11-30 2022-11-24 Method for manufacturing glass substrate, method for manufacturing pedestal, glass substrate, and pedestal

Country Status (2)

Country Link
TW (1) TW202330158A (en)
WO (1) WO2023100744A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139843A (en) * 2014-01-29 2015-08-03 中村留精密工業株式会社 Plate edge processing whetstone and chamfer device
JP2017132684A (en) * 2016-01-22 2017-08-03 旭硝子株式会社 Apparatus and method for processing curved surface glass
JP2021531187A (en) * 2018-07-16 2021-11-18 コーニング インコーポレイテッド Vehicle interior system with cold bent glass substrate and its formation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139843A (en) * 2014-01-29 2015-08-03 中村留精密工業株式会社 Plate edge processing whetstone and chamfer device
JP2017132684A (en) * 2016-01-22 2017-08-03 旭硝子株式会社 Apparatus and method for processing curved surface glass
JP2021531187A (en) * 2018-07-16 2021-11-18 コーニング インコーポレイテッド Vehicle interior system with cold bent glass substrate and its formation method

Also Published As

Publication number Publication date
TW202330158A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
KR101395054B1 (en) Cutting method and stage for cutting of tempered glass
KR20190086019A (en) Methods for reducing warpage in tempered glass-based products and tempered glass-based products
KR102200636B1 (en) Manufacturing method for curved laminated glass and curved laminated glass manufactured by the same
EP2855388B1 (en) Cover glass article
CN110407460B (en) Chemically strengthened glass plate, method for producing same, and portable information terminal
US6402004B1 (en) Cutting method for plate glass mother material
CN106458693B (en) Method and apparatus for cutting multiple radii in flexible thin glass
CN109455906B (en) 3D cover glass, mold for molding same, and method for manufacturing 3D cover glass
JP7071806B2 (en) Cover window and manufacturing method of cover window
JP2012031018A (en) Tempered glass substrate, method for grooving tempered glass substrate, and method for cutting tempered glass substrate
KR101323678B1 (en) Method for breaking brittle material substrate
JP7006534B2 (en) Manufacturing method of chemically strengthened glass plate, mobile information terminal and chemically strengthened glass plate
KR20170033209A (en) Curved Tempered Glass And Method For Manufacturing The Same
WO2023100744A1 (en) Method for manufacturing glass substrate, method for manufacturing pedestal, glass substrate, and pedestal
KR20170033208A (en) Curved Tempered Glass And Method For Manufacturing The Same
JP7418512B2 (en) Method and apparatus for separating glass sheets
US10829412B2 (en) Carriers for microelectronics fabrication
JP4640643B2 (en) Optical fiber array substrate and manufacturing method thereof
CN113727809B (en) Glass or glass ceramic plate and method for manufacturing such a plate
KR20170033210A (en) Curved Tempered Glass And Method For Manufacturing The Same
CN112876056A (en) Dividing method and dividing device
JP2000066001A (en) Production of grooved planar glass preform, production of glass blank and production of glass optical element
KR20230020747A (en) Cover window for flexible diplay
CN108046577B (en) Manufacturing process of heating plate for hot bending 3D glass
WO2023171217A1 (en) Glass substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023564922

Country of ref document: JP

Kind code of ref document: A