WO2023100469A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2023100469A1
WO2023100469A1 PCT/JP2022/037235 JP2022037235W WO2023100469A1 WO 2023100469 A1 WO2023100469 A1 WO 2023100469A1 JP 2022037235 W JP2022037235 W JP 2022037235W WO 2023100469 A1 WO2023100469 A1 WO 2023100469A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lateral acceleration
hands
control
curve
Prior art date
Application number
PCT/JP2022/037235
Other languages
French (fr)
Japanese (ja)
Inventor
忠嗣 大町
真浩 横井
光紀 諏訪部
雄貴 手塚
晨宇 王
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2023100469A1 publication Critical patent/WO2023100469A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/072Curvature of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/109Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to a vehicle control device.
  • a vehicle information processing device capable of automatic driving and manual driving is known.
  • the point at which the automatic operation was switched to the manual operation is stored in advance in the map information as the point where the automatic operation is unsatisfactory. Then, the driver is notified that the vehicle has approached the point of failure.
  • a configuration is assumed in which a hands-on request for switching from a hands-off state in which the driver does not hold the steering wheel to a hands-on state in which the driver holds the steering wheel is issued.
  • hands-on requests are uniformly issued based on pre-stored map information, so unnecessary hands-on requests may be issued depending on the actual driving conditions of the vehicle. For example, when driving on a curve that has been registered as a trouble spot in advance, even if the driver's safety and comfort are not impaired even in the hands-off state because the lateral acceleration that occurs in the vehicle is small, such as when driving at low speed in traffic jams, the hands-on system can be used. Making a request can happen. In this case, the driver is forced to perform useless operations. Therefore, there is a demand for a vehicle control device that can issue a hands-on request when necessary while avoiding issuing a hands-on request when the vehicle is traveling on a curve.
  • a vehicle control device is provided.
  • This vehicle control device is provided in a vehicle capable of automatic operation and manual operation, and includes a travel route setting unit that sets a target travel route of the vehicle, and a curve in the direction in which the vehicle travels.
  • a lateral acceleration calculator that calculates a future lateral acceleration occurring in the vehicle based on the curvature and the vehicle speed of the vehicle; and a state in which the driver of the vehicle does not hold the steering wheel during the execution of the automatic driving a notification unit for notifying a hands-on request requesting switching from a hands-off state to a hands-on state in which the driver holds the steering wheel by a notification device; and a control determination unit that determines the content of control.
  • the control determination unit determines the control details as the A notification unit determines control to notify the hands-on request, and when the lateral acceleration is equal to or less than the threshold value, determines control to continue the hands-off state as the control content.
  • the control determination unit when the vehicle travels on a curve in the hands-off state, the control determination unit notifies the hands-on request if the lateral acceleration calculated by the lateral acceleration calculation unit is greater than a predetermined threshold value. Control is determined, and if the lateral acceleration is equal to or less than the threshold, control to continue the hands-off state is determined. For example, when the lateral acceleration generated in the vehicle is small, such as when the vehicle is traveling at low speed in a traffic jam, the driver's safety and comfort are not impaired even in the hands-off state, and there is no problem in continuing the hands-off state. In such a case, according to the above configuration, the hands-off state can be continued without issuing a hands-on request. That is, when traveling on a curve, it is possible to issue a hands-on request when necessary, while avoiding issuing a hands-on request when unnecessary.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle control device according to the first embodiment of the present disclosure
  • FIG. 2 is a flowchart showing a process of informing a hands-on request executed by the vehicle control device
  • FIG. 3 is a schematic diagram for explaining calculation of lateral acceleration.
  • the automatic driving control system 100 includes a vehicle control device 110, a peripheral sensor 120, an internal sensor 130, a road information storage unit 140, an automatic driving control unit 210, and a driving force control ECU (Electronic Control Unit). ) 220, a braking force control ECU 230, and a steering control ECU 240.
  • Vehicle control device 110 , automatic driving control unit 210 , driving force control ECU 220 , braking force control ECU 230 , and steering control ECU 240 are connected via in-vehicle network 250 .
  • the peripheral sensor 120 acquires peripheral information outside the vehicle necessary for automatic driving.
  • Perimeter sensor 120 includes camera 121 and object sensor 122 .
  • the camera 121 acquires an image by imaging the surroundings of the own vehicle 10 .
  • the object sensor 122 detects the circumstances around the vehicle 10 . Examples of the object sensor 122 include object sensors using reflected waves such as laser radar, millimeter wave radar, and ultrasonic sensors.
  • the internal sensor 130 includes an own vehicle position sensor 131 , an acceleration sensor 132 , a vehicle speed sensor 133 and a yaw rate sensor 134 .
  • the own vehicle position sensor 131 detects the current position of the vehicle 10 .
  • Examples of the vehicle position sensor 131 include a global navigation satellite system (GNSS), a gyro sensor, and the like.
  • GNSS global navigation satellite system
  • the acceleration sensor 132 is a detector that detects acceleration of the vehicle 10 .
  • the acceleration sensor 132 includes, for example, a longitudinal acceleration sensor that detects longitudinal acceleration of the vehicle 10 in the longitudinal direction and a lateral acceleration sensor that detects lateral acceleration of the vehicle 10 .
  • a vehicle speed sensor 133 measures the current running speed of the vehicle 10 .
  • the yaw rate sensor 134 is a detector that detects a yaw rate (rotational angular velocity) around the vertical axis of the center of gravity of the vehicle 10 .
  • a gyro sensor for example, can be used as the yaw rate sensor 134 .
  • Peripheral sensor 120 and internal sensor 130 transmit various acquired data to vehicle control device 110 .
  • the road information storage unit 140 stores detailed road information and the like regarding roads on which the vehicle 10 is scheduled to travel.
  • Road information includes, for example, the number of lanes, lane width, center coordinates of each lane, stop line position, traffic light position, guardrail position, road gradient, road type of curves and straight sections, curvature radius of curves, length of curve sections, etc. contains information about
  • the notification device 150 is a device that uses images and sounds to notify the passengers (mainly the driver) of the vehicle 10 of various types of information.
  • Notification device 150 includes a display device and a speaker.
  • the display device for example, a HUD (Head-Up Display) or a display device provided on an instrument panel can be used.
  • the “image” includes moving images and character strings.
  • the vehicle control device 110 includes a travel route setting unit 111, a peripheral information recognition unit 112, a lateral acceleration calculation unit 113, a notification unit 114, a control determination unit 115, and a communication unit 116.
  • the vehicle control device 110 includes a central processing unit (CPU), a microcomputer configured with a RAM and a ROM, and the like.
  • the microcomputer executes pre-installed programs to realize the functions of these units. However, some or all of the functions of these units may be realized by hardware circuits.
  • the travel route setting unit 111 sets the route along which the vehicle 10 travels. More specifically, the travel route setting unit 111 uses road information stored in the road information storage unit 140 to set a target travel route to a predetermined destination.
  • the "target travel route” in this embodiment indicates a detailed route such as a travel lane and a travel position on the road, rather than a mere route to the destination.
  • the peripheral information recognition unit 112 recognizes peripheral information of the vehicle 10 using the detection signal of the peripheral sensor 120 . More specifically, the peripheral information recognition unit 112 recognizes the presence of left and right lane markings (hereinafter referred to as “lane markers”) on the road on which the vehicle is traveling, based on the image captured by the camera 121 and the output signal of the object sensor 122 . Its position, the existence of a traffic light, its position and instruction content, the existence, position, size, distance, direction of travel of other vehicles, the existence and behavior of drivers of other vehicles, the existence and position of people around other vehicles, etc. are recognized as peripheral information. Note that the peripheral information recognition unit 112 may acquire and recognize part or all of this information through wireless communication with a traffic light, an external server, or the like.
  • lane markers left and right lane markings
  • the lateral acceleration calculation unit 113 calculates the future lateral acceleration that will occur in the vehicle 10 when the vehicle 10 travels along a curve in the direction in which the vehicle 10 is traveling. Specifically, the lateral acceleration calculator 113 calculates the future lateral acceleration during curve travel based on the curvature of the curve and the vehicle speed of the vehicle 10 . The details of lateral acceleration calculation will be described later.
  • the notification unit 114 uses the notification device 150 capable of image display and voice output to notify the occupants of various information such as travel route and vehicle position information. Notification unit 114 notifies the information of the hands-on request according to the processing of control determination unit 115 according to the running condition of vehicle 10 .
  • a hands-on request is a request to switch from a hands-off state in which the driver does not hold the steering wheel during execution of automatic driving to a hands-on state in which the driver holds the steering wheel.
  • the control determination unit 115 determines the control details of the vehicle 10 according to the calculation result of the lateral acceleration calculation unit 113, and outputs to the automatic driving control unit 210 via the in-vehicle network 250 to control the vehicle 10.
  • the communication unit 116 acquires traffic information, weather information, accident information, obstacle information, traffic regulation information, etc. from an information center (not shown) through an antenna (not shown).
  • the communication unit 116 may acquire various information from other vehicles through inter-vehicle communication.
  • the communication part 116 may acquire various information from the roadside unit provided in each place of the road by road-to-vehicle communication.
  • the automatic driving control unit 210 consists of a central processing unit (CPU), a microcomputer configured with a RAM and a ROM, etc.
  • the microcomputer executes pre-installed programs to realize automatic driving functions.
  • the automatic driving control unit 210 controls the driving force control ECU 220, the braking force control ECU 230, and the steering control ECU 240 so that the vehicle travels along the route determined by the travel route setting unit 111, for example. For example, when the vehicle 10 changes lanes to the next lane, the automatic driving control unit 210 performs merging support so that the vehicle 10 travels from the reference line of the lane in which the vehicle 10 is traveling to the reference line of the next lane. good.
  • the driving force control ECU 220 is an electronic control unit that controls actuators that generate driving force for the vehicle 10, such as the engine.
  • the driving force control ECU 220 controls the power source such as the engine or the electric motor according to the amount of operation of the accelerator pedal.
  • the driving force control ECU 220 controls the power source according to the required driving force calculated by the automatic driving control section 210 .
  • the braking force control ECU 230 is an electronic control device that controls the brake actuator that generates the braking force of the vehicle 10 .
  • the braking force control ECU 230 controls the brake actuator according to the amount of operation of the brake pedal.
  • the braking force control ECU 230 controls the brake actuator according to the required braking force calculated by the automatic operation control section 210 .
  • the steering control ECU 240 is an electronic control unit that controls a motor that generates steering torque for the vehicle 10 .
  • the steering control ECU 240 controls the motor according to the operation of the steering wheel to generate an assist torque for the steering operation.
  • the driver can operate the steering with a small amount of force, and steering of the vehicle 10 is realized.
  • the steering control ECU 240 performs steering by controlling the motor according to the required steering angle calculated by the automatic driving control section 210 .
  • the travel route setting unit 111 determines whether the vehicle 10 will travel for several seconds based on the current position detected by the own vehicle position sensor 131 and the positions and speeds of other vehicles around the vehicle 10. Create a plan.
  • This driving plan includes a steering plan and an acceleration/deceleration plan for the vehicle 10 up to several seconds later.
  • step 11 it is determined whether or not the current driving state of the vehicle 10 is the hands-off state. For example, based on a control signal from the automatic driving control unit 210, it is determined whether or not the vehicle is in a hands-off state during execution of automatic driving.
  • the process proceeds to S12, where it is determined whether or not the vehicle 10 will drive around a curve. "After that, the vehicle 10 travels around a curve” includes before the curve when the vehicle 10 is approaching the curve and while the vehicle 10 is traveling around the curve. Further, hereinafter, “when driving on a curve” similarly includes before the curve approaching the curve and during driving on the curve, and is hereinafter simply referred to as "when driving on a curve”.
  • the process proceeds to S13, where the lateral acceleration calculator 113 calculates the lateral acceleration An. Then, in S14, it is determined whether or not the lateral acceleration An is greater than a predetermined threshold value A0.
  • the threshold value A0 is determined in advance through experiments and the like as the upper limit value of the lateral acceleration at which the driver is assumed to be able to maintain a certain degree of safety and comfort with a sense of security when driving on a curve.
  • the process proceeds to S15, where the notification device 150 issues a hands-on request.
  • an image representing the hands-on request may be displayed on the display, or a sound indicating the hands-on request may be emitted from a speaker.
  • the lateral acceleration calculator 113 calculates a lateral acceleration An (n is a positive integer) for each section obtained by dividing the curve recognition distance D into a plurality of sections.
  • the curve recognition distance D is the total length of the portion in front of the vehicle 10 that is recognized as a curve.
  • the sections are parts obtained by dividing the curve recognition distance D into equal intervals of several meters (for example, 5 m). Sections 1, 2, . . .
  • the future lateral acceleration An when traveling on a curve is calculated by the following equation (1) based on the curvature Rn of the curve and the current vehicle speed V of the vehicle 10 .
  • Lateral acceleration An (vehicle speed V) 2 ⁇ curvature Rn (1)
  • the lateral acceleration A1 of Section 1 is calculated by the following equation (2).
  • Lateral acceleration A1 (vehicle speed V1) 2 ⁇ curvature R1 (2)
  • the vehicle speed V1 is the vehicle speed at the first point P1
  • the curvature R1 is the curvature at the first point P1.
  • a current vehicle speed V of the vehicle 10 can be obtained from the vehicle speed sensor 133 .
  • the curvature R1 at the first point P1 can be obtained from the road information storage unit 140.
  • the lateral accelerations A2 to An in the section 2 to section n can also be obtained in the same manner, the vehicle speed V is the vehicle speed V1 at the first point P1, and the curvature Rn is calculated at the starting point P2 to Pn of each section.
  • Each curvature can be used.
  • the curvature Rn the curvature of the curve of the map information stored in the road information storage unit 140 is used.
  • the lateral acceleration calculator 113 calculates the lateral acceleration An for each section obtained by dividing the curve recognition distance D into equal intervals. Therefore, compared to a configuration in which the lateral acceleration is calculated using the curvature, which is the representative value of the entire curve recognition distance D, more precise control can be performed, and the vehicle 10 can travel on a curve in the vicinity more safely.
  • the timing of announcing the hands-on request is set several seconds before approaching the curve section exceeding the threshold value Ao. , safety and comfort are maintained.
  • Second embodiment Next, a second embodiment will be described. Note that the overall configuration (FIG. 2) and processing (FIG. 3) of the vehicle control device in the second embodiment and in a third embodiment described later are substantially the same as those in the first embodiment, so description thereof will be omitted.
  • the curvature of the curve in the map information stored in the road information storage unit 140 is used as the curvature of the curve Rn when calculating the lateral acceleration An.
  • the curvature estimated from the actual traveling road information read from the peripheral sensor 120 is used as the curvature Rn.
  • “Actual road information” is information obtained while the vehicle 10 is actually traveling. Specifically, for example, it is information related to the lane marker 21 (see FIG. 3) estimated by the peripheral information recognition unit 112 based on the forward image captured by the camera 121 . The curvature is estimated from the estimated shape of the lane marker 21 and the like.
  • the lateral acceleration calculator 113 calculates the lateral acceleration An for each of the sections 1, 2, . . .
  • the same effects as those of the first embodiment can be obtained. Furthermore, since the curvature estimated from the actual traveling road information is used, the lateral acceleration An can be calculated even without map information, and the calculation accuracy of the lateral acceleration An can be improved.
  • the curvature of the target travel route T set by the travel route setting unit 111 is used as the curvature Rn.
  • the target travel route T on the curve draws a line such that, for example, the vehicle enters from the outside side of the road at the beginning of the curve and travels on the inside side of the road at the end of the curve. Since the target travel route T draws a line for smooth curve travel, it does not completely match the map information and the actual travel route information. Therefore, the curvature of the target travel route T is information more suited to actual travel than the curvature based on map information or actual travel route information.
  • the same effects as those of the second embodiment can be obtained. It is possible to improve the calculation accuracy of the acceleration An.
  • the lateral acceleration An can be calculated and a hands-on request can be issued accurately.
  • the look-ahead vehicle speed Vn is calculated by the following formula (4).
  • Look-ahead vehicle speed Vn Current vehicle speed V + Target longitudinal acceleration x
  • the target longitudinal acceleration can be obtained, for example, by measuring the inter-vehicle distance between the preceding vehicle 22 and the own vehicle 10 with a sensor, and automatically adjusting the inter-vehicle distance control system (ACC: Adaptive Cruise Control).
  • the hands-on request is notified in the curve section where the lateral acceleration An exceeds the threshold value Ao.
  • the notification may be made after reaching the corresponding curve section.
  • the lateral acceleration calculator 113 calculates the lateral acceleration An for each interval obtained by dividing the curve recognition distance D into equal intervals. good. For example, a section whose curvature is constant to some extent may not be divided.
  • the vehicle controller 110 and techniques described in this disclosure are provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be implemented by a computer. Alternatively, the vehicle controller 110 and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • vehicle controller 110 and techniques described in this disclosure are a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured in combination.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.

Abstract

A vehicle control device (110) comprises: a lateral acceleration calculation unit (113) that calculates, on the basis of the curvature of a curve and the vehicle speed of a vehicle (10), a future lateral acceleration to be generated in the vehicle; a notification unit (114) that makes notification of, through a notification device (150), a hands-on request for requesting switching from a hands-off state to a hands-on state; and a control determination unit (115) that determines the details of control of the vehicle in accordance with a calculation result of the lateral acceleration calculation unit. When the vehicle travels on a curve in the hands-off state, in a case where the lateral acceleration is greater than a preset threshold value, the control determination unit determines control for making notification of the hands-on request through the notification unit, and in a case where the lateral acceleration is not greater than the threshold value, the control determination unit determines control for continuing the hands-off state.

Description

車両制御装置vehicle controller 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年11月30日に出願された日本出願番号2021-193738号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2021-193738 filed on November 30, 2021, and the contents thereof are incorporated herein.
 本開示は、車両制御装置に関する。 The present disclosure relates to a vehicle control device.
 例えば、特許文献1に記載されるように、自動運転および手動運転が可能な車両の情報処理装置が知られている。この情報処理装置では、自動運転から手動運転へ切り替えられた地点を、自動運転が不調となる不調地点として地図情報に予め記憶する。そして、不調地点に近づいたことをドライバに対して報知するようにしている。このような報知があった場合は、ドライバが操舵ハンドルを保持していないハンズオフ状態から、ドライバが操舵ハンドルを保持しているハンズオン状態への切り替えを要求するハンズオン要求を出す構成が想定される。 For example, as described in Patent Document 1, a vehicle information processing device capable of automatic driving and manual driving is known. In this information processing device, the point at which the automatic operation was switched to the manual operation is stored in advance in the map information as the point where the automatic operation is unsatisfactory. Then, the driver is notified that the vehicle has approached the point of failure. When such a notification is received, a configuration is assumed in which a hands-on request for switching from a hands-off state in which the driver does not hold the steering wheel to a hands-on state in which the driver holds the steering wheel is issued.
特開2018-32333号公報JP 2018-32333 A
 しかし、上記構成では、予め記憶された地図情報に基づき一律にハンズオン要求を出すため、車両の実際の走行時の状況によっては不要なハンズオン要求を出す場合が生じ得る。例えば、予め不調地点として登録されたカーブを走行する際、渋滞低速走行時などで車両に生じる横加速度が小さいためにハンズオフ状態のままでもドライバの安全快適性が損なわれることがない場合でも、ハンズオン要求を出すことが起こり得る。この場合、運転者に無駄な操作を強いてしまう。そこで、カーブ走行時において、不要な場合にはハンズオン要求を出さないようにしつつ、必要な場合にはハンズオン要求を出すことが可能な車両制御装置が望まれる。 However, in the above configuration, hands-on requests are uniformly issued based on pre-stored map information, so unnecessary hands-on requests may be issued depending on the actual driving conditions of the vehicle. For example, when driving on a curve that has been registered as a trouble spot in advance, even if the driver's safety and comfort are not impaired even in the hands-off state because the lateral acceleration that occurs in the vehicle is small, such as when driving at low speed in traffic jams, the hands-on system can be used. Making a request can happen. In this case, the driver is forced to perform useless operations. Therefore, there is a demand for a vehicle control device that can issue a hands-on request when necessary while avoiding issuing a hands-on request when the vehicle is traveling on a curve.
 本開示は、以下の形態として実現することが可能である。 The present disclosure can be realized as the following forms.
 本開示の一形態によれば、車両制御装置が提供される。この車両制御装置は、自動運転および手動運転が可能な車両が備える車両制御装置であって、前記車両の目標走行経路を設定する走行経路設定部と、前記車両が走行する進行方向にあるカーブの曲率と前記車両の車速とに基づいて、前記車両に生じる将来の横加速度を算出する横加速度算出部と、前記自動運転の実行中において前記車両のドライバが操舵ハンドルを保持していない状態であるハンズオフ状態から、前記ドライバが前記操舵ハンドルを保持しているハンズオン状態への切り替えを要求するハンズオン要求を、報知装置により報知する報知部と、前記横加速度算出部の算出結果に応じて前記車両の制御内容を決定する制御決定部と、を備える。前記制御決定部は、前記車両が前記ハンズオフ状態で前記カーブを走行するときに、前記横加速度算出部により算出された前記横加速度が予め定められた閾値より大きい場合には、前記制御内容として前記報知部により前記ハンズオン要求を報知する制御を決定し、前記横加速度が前記閾値以下である場合には、前記制御内容として前記ハンズオフ状態を継続する制御を決定する。 According to one aspect of the present disclosure, a vehicle control device is provided. This vehicle control device is provided in a vehicle capable of automatic operation and manual operation, and includes a travel route setting unit that sets a target travel route of the vehicle, and a curve in the direction in which the vehicle travels. A lateral acceleration calculator that calculates a future lateral acceleration occurring in the vehicle based on the curvature and the vehicle speed of the vehicle; and a state in which the driver of the vehicle does not hold the steering wheel during the execution of the automatic driving a notification unit for notifying a hands-on request requesting switching from a hands-off state to a hands-on state in which the driver holds the steering wheel by a notification device; and a control determination unit that determines the content of control. When the lateral acceleration calculated by the lateral acceleration calculator is greater than a predetermined threshold value when the vehicle travels on the curve in the hands-off state, the control determination unit determines the control details as the A notification unit determines control to notify the hands-on request, and when the lateral acceleration is equal to or less than the threshold value, determines control to continue the hands-off state as the control content.
 この構成によれば、車両がハンズオフ状態でカーブを走行するときに、制御決定部により、横加速度算出部により算出された横加速度が予め定められた閾値より大きい場合には、ハンズオン要求を報知する制御が決定され、横加速度が閾値以下である場合には、ハンズオフ状態を継続する制御が決定される。例えば、渋滞低速走行時などで車両に生じる横加速度が小さい場合には、ハンズオフ状態のままでもドライバの安全快適性が損なわれることがなく、ハンズオフ状態を継続しても問題がない。このような場合に、上記構成によれば、ハンズオン要求を出すことなくハンズオフ状態を継続できる。すなわち、カーブ走行時において、不要な場合にはハンズオン要求を出さないようにしつつ、必要な場合にはハンズオン要求を出すことができる。 According to this configuration, when the vehicle travels on a curve in the hands-off state, the control determination unit notifies the hands-on request if the lateral acceleration calculated by the lateral acceleration calculation unit is greater than a predetermined threshold value. Control is determined, and if the lateral acceleration is equal to or less than the threshold, control to continue the hands-off state is determined. For example, when the lateral acceleration generated in the vehicle is small, such as when the vehicle is traveling at low speed in a traffic jam, the driver's safety and comfort are not impaired even in the hands-off state, and there is no problem in continuing the hands-off state. In such a case, according to the above configuration, the hands-off state can be continued without issuing a hands-on request. That is, when traveling on a curve, it is possible to issue a hands-on request when necessary, while avoiding issuing a hands-on request when unnecessary.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の第1実施形態における車両制御装置の概略構成を示すブロック図であり、 図2は、車両制御装置が実行するハンズオン要求を報知する処理を示すフローチャートであり、 図3は、横加速度の算出を説明するための模式図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a block diagram showing a schematic configuration of a vehicle control device according to the first embodiment of the present disclosure; FIG. 2 is a flowchart showing a process of informing a hands-on request executed by the vehicle control device; FIG. 3 is a schematic diagram for explaining calculation of lateral acceleration.
 以下、本開示の複数の実施形態について図1~図3に基づいて説明する。 A plurality of embodiments of the present disclosure will be described below with reference to FIGS. 1 to 3.
A.第1実施形態:
 A1.車両制御装置110の構成:
 図1に示すように、車両10は、自動運転制御システム100を備える。車両10は、自動運転および手動運転が可能である。自動運転では、車両10の運転を操作するための操舵ハンドルがドライバによって操作されていなくても、自動的に車両10が操舵されて運転される。また、自動運転では、操舵はドライバにより行われ、加減速が自動的に制御される形態もある。手動運転では、ドライバによって操舵ハンドルが操作されることによって車両10が操舵されて運転される。
A. First embodiment:
A1. Configuration of vehicle control device 110:
As shown in FIG. 1 , the vehicle 10 has an automatic driving control system 100 . The vehicle 10 can be driven automatically and manually. In automatic driving, the vehicle 10 is automatically steered and driven even if the steering wheel for operating the driving of the vehicle 10 is not operated by the driver. In automatic driving, there is also a mode in which steering is performed by the driver and acceleration/deceleration is automatically controlled. In manual driving, the vehicle 10 is steered and driven by the driver operating the steering wheel.
 本実施形態において、自動運転制御システム100は、車両制御装置110と、周辺センサ120と、内部センサ130と、道路情報記憶部140と、自動運転制御部210と、駆動力制御ECU(Electronic Control Unit)220と、制動力制御ECU230と、操舵制御ECU240と、を備える。車両制御装置110と、自動運転制御部210と、駆動力制御ECU220と、制動力制御ECU230と、操舵制御ECU240とは、車載ネットワーク250を介して接続される。 In this embodiment, the automatic driving control system 100 includes a vehicle control device 110, a peripheral sensor 120, an internal sensor 130, a road information storage unit 140, an automatic driving control unit 210, and a driving force control ECU (Electronic Control Unit). ) 220, a braking force control ECU 230, and a steering control ECU 240. Vehicle control device 110 , automatic driving control unit 210 , driving force control ECU 220 , braking force control ECU 230 , and steering control ECU 240 are connected via in-vehicle network 250 .
 周辺センサ120は、自動運転に必要な車外の周辺情報を取得する。周辺センサ120は、カメラ121と物体センサ122とを備える。カメラ121は、自車両10の周囲を撮像して画像を取得する。物体センサ122は、自車両10の周囲の状況を検出する。物体センサ122として、例えば、レーザーレーダー、ミリ波レーダー、超音波センサ等の反射波を利用した物体センサが挙げられる。 The peripheral sensor 120 acquires peripheral information outside the vehicle necessary for automatic driving. Perimeter sensor 120 includes camera 121 and object sensor 122 . The camera 121 acquires an image by imaging the surroundings of the own vehicle 10 . The object sensor 122 detects the circumstances around the vehicle 10 . Examples of the object sensor 122 include object sensors using reflected waves such as laser radar, millimeter wave radar, and ultrasonic sensors.
 内部センサ130は、自車位置センサ131と、加速度センサ132と、車速センサ133と、ヨーレートセンサ134と、を備える。自車位置センサ131は、現在の車両10の位置を検出する。自車位置センサ131として、例えば、汎地球航法衛星システム(Global Navigation Satellite System(s)(GNSS))やジャイロセンサ等が挙げられる。 The internal sensor 130 includes an own vehicle position sensor 131 , an acceleration sensor 132 , a vehicle speed sensor 133 and a yaw rate sensor 134 . The own vehicle position sensor 131 detects the current position of the vehicle 10 . Examples of the vehicle position sensor 131 include a global navigation satellite system (GNSS), a gyro sensor, and the like.
 加速度センサ132は、車両10の加速度を検出する検出器である。加速度センサ132は、例えば、車両10の前後方向の縦加速度を検出する縦加速度センサと、車両10の横加速度を検出する横加速度センサとを含む。車速センサ133は、車両10の現在の走行速度を計測する。ヨーレートセンサ134は、車両10の重心の鉛直軸周りのヨーレート(回転角速度)を検出する検出器である。ヨーレートセンサ134としては、例えばジャイロセンサを用いることができる。周辺センサ120および内部センサ130は、取得した各種データを車両制御装置110に送信する。 The acceleration sensor 132 is a detector that detects acceleration of the vehicle 10 . The acceleration sensor 132 includes, for example, a longitudinal acceleration sensor that detects longitudinal acceleration of the vehicle 10 in the longitudinal direction and a lateral acceleration sensor that detects lateral acceleration of the vehicle 10 . A vehicle speed sensor 133 measures the current running speed of the vehicle 10 . The yaw rate sensor 134 is a detector that detects a yaw rate (rotational angular velocity) around the vertical axis of the center of gravity of the vehicle 10 . A gyro sensor, for example, can be used as the yaw rate sensor 134 . Peripheral sensor 120 and internal sensor 130 transmit various acquired data to vehicle control device 110 .
 道路情報記憶部140は、車両10が走行予定の道路に関する詳細な道路情報等を記憶する。道路情報は、例えば、車線数、車線幅、各車線の中心座標、停止線位置、信号機位置、ガードレール位置、道路勾配、カーブや直線部の道路種別、カーブの曲率半径、カーブ区間の長さ等の情報を含む。 The road information storage unit 140 stores detailed road information and the like regarding roads on which the vehicle 10 is scheduled to travel. Road information includes, for example, the number of lanes, lane width, center coordinates of each lane, stop line position, traffic light position, guardrail position, road gradient, road type of curves and straight sections, curvature radius of curves, length of curve sections, etc. contains information about
 報知装置150は、車両10の乗員(主にドライバ)に対して、画像や音声を用いて各種の情報を報知する装置である。報知装置150は、表示装置およびスピーカを含む。表示装置としては、例えば、HUD(Head-Up Display)や、インストルメントパネルに設けられた表示装置を用いることができる。なお、「画像」には、動画や文字列も含まれる。 The notification device 150 is a device that uses images and sounds to notify the passengers (mainly the driver) of the vehicle 10 of various types of information. Notification device 150 includes a display device and a speaker. As the display device, for example, a HUD (Head-Up Display) or a display device provided on an instrument panel can be used. Note that the “image” includes moving images and character strings.
 車両制御装置110は、走行経路設定部111と、周辺情報認識部112と、横加速度算出部113と、報知部114と、制御決定部115と、通信部116と、を備える。車両制御装置110は、中央処理装置(CPU)や、RAM、ROMにより構成されたマイクロコンピュータ等からなり、予めインストールされたプログラムをマイクロコンピュータが実行することによって、これらの各部の機能を実現する。ただし、これらの各部の機能の一部又は全部をハードウェア回路で実現してもよい。 The vehicle control device 110 includes a travel route setting unit 111, a peripheral information recognition unit 112, a lateral acceleration calculation unit 113, a notification unit 114, a control determination unit 115, and a communication unit 116. The vehicle control device 110 includes a central processing unit (CPU), a microcomputer configured with a RAM and a ROM, and the like. The microcomputer executes pre-installed programs to realize the functions of these units. However, some or all of the functions of these units may be realized by hardware circuits.
 走行経路設定部111は、車両10の走行する経路を設定する。より具体的には、走行経路設定部111は、道路情報記憶部140に記憶された道路情報を用いて、予め定められた目的地までの目標走行経路を設定する。本実施形態における「目標走行経路」とは、目的地までの単なる道順ではなく、走行車線や道路内における走行位置等の詳細な経路を示す。 The travel route setting unit 111 sets the route along which the vehicle 10 travels. More specifically, the travel route setting unit 111 uses road information stored in the road information storage unit 140 to set a target travel route to a predetermined destination. The "target travel route" in this embodiment indicates a detailed route such as a travel lane and a travel position on the road, rather than a mere route to the destination.
 周辺情報認識部112は、周辺センサ120の検出信号を用いて車両10の周辺情報を認識する。より具体的には、周辺情報認識部112は、カメラ121が撮像した画像および物体センサ122の出力信号に基づき、走行している道路の左右の区画線(以下、「レーンマーカ」という)の存在とその位置や、信号機の存在とその位置や指示内容、他車両の存在、位置、大きさ、距離、進行方向、他車両のドライバの存在とその動作、他車両の周辺の人の存在、位置、等を周辺情報として認識する。なお、周辺情報認識部112は、信号機や、外部サーバ等との無線通信によってこれらの情報の一部または全部を取得し、認識してもよい。 The peripheral information recognition unit 112 recognizes peripheral information of the vehicle 10 using the detection signal of the peripheral sensor 120 . More specifically, the peripheral information recognition unit 112 recognizes the presence of left and right lane markings (hereinafter referred to as “lane markers”) on the road on which the vehicle is traveling, based on the image captured by the camera 121 and the output signal of the object sensor 122 . Its position, the existence of a traffic light, its position and instruction content, the existence, position, size, distance, direction of travel of other vehicles, the existence and behavior of drivers of other vehicles, the existence and position of people around other vehicles, etc. are recognized as peripheral information. Note that the peripheral information recognition unit 112 may acquire and recognize part or all of this information through wireless communication with a traffic light, an external server, or the like.
 横加速度算出部113は、車両10の進行方向にあるカーブを走行するときに車両10に生じる将来の横加速度を算出する。具体的には、横加速度算出部113は、カーブ走行時の将来の横加速度を、カーブの曲率と、車両10の車速とに基づいて算出する。なお、横加速度算出の詳細については後述する。 The lateral acceleration calculation unit 113 calculates the future lateral acceleration that will occur in the vehicle 10 when the vehicle 10 travels along a curve in the direction in which the vehicle 10 is traveling. Specifically, the lateral acceleration calculator 113 calculates the future lateral acceleration during curve travel based on the curvature of the curve and the vehicle speed of the vehicle 10 . The details of lateral acceleration calculation will be described later.
 報知部114は、画像表示および音声出力が可能な上記報知装置150を用いて、走行経路および車両位置情報等の種々の情報を乗員に報知する。報知部114は、ハンズオン要求の情報を、車両10の走行状況に応じて制御決定部115の処理に従って報知する。ハンズオン要求とは、自動運転の実行中においてドライバが操舵ハンドルを保持していない状態であるハンズオフ状態から、ドライバが操舵ハンドルを保持しているハンズオン状態への切り替えを要求するものである。 The notification unit 114 uses the notification device 150 capable of image display and voice output to notify the occupants of various information such as travel route and vehicle position information. Notification unit 114 notifies the information of the hands-on request according to the processing of control determination unit 115 according to the running condition of vehicle 10 . A hands-on request is a request to switch from a hands-off state in which the driver does not hold the steering wheel during execution of automatic driving to a hands-on state in which the driver holds the steering wheel.
 制御決定部115は、横加速度算出部113の算出結果に応じて、車両10の制御内容を決定し、車載ネットワーク250を通じて自動運転制御部210に車両10の制御を行うよう出力する。通信部116は、例えば、図示しないアンテナを通じて図示しない情報センターから、交通情報、天気情報、事故情報、障害物情報、交通規制情報等を取得する。通信部116は、車車間通信により、他車両から種々の情報を取得してもよい。また、通信部116は、路車間通信により、道路の各所に設けられた路側機から種々の情報を取得してもよい。 The control determination unit 115 determines the control details of the vehicle 10 according to the calculation result of the lateral acceleration calculation unit 113, and outputs to the automatic driving control unit 210 via the in-vehicle network 250 to control the vehicle 10. For example, the communication unit 116 acquires traffic information, weather information, accident information, obstacle information, traffic regulation information, etc. from an information center (not shown) through an antenna (not shown). The communication unit 116 may acquire various information from other vehicles through inter-vehicle communication. Moreover, the communication part 116 may acquire various information from the roadside unit provided in each place of the road by road-to-vehicle communication.
 自動運転制御部210は、中央処理装置(CPU)や、RAM、ROMにより構成されたマイクロコンピュータ等からなり、予めインストールされたプログラムをマイクロコンピュータが実行することによって、自動運転機能を実現する。自動運転制御部210は、例えば、走行経路設定部111が定めた経路に沿って走行するように、駆動力制御ECU220および制動力制御ECU230、操舵制御ECU240を制御する。自動運転制御部210は、例えば、車両10が隣車線に車線変更を行う場合に、車両10が走行している車線の基準線から隣車線の基準線を走行するように合流支援を行ってもよい。 The automatic driving control unit 210 consists of a central processing unit (CPU), a microcomputer configured with a RAM and a ROM, etc. The microcomputer executes pre-installed programs to realize automatic driving functions. The automatic driving control unit 210 controls the driving force control ECU 220, the braking force control ECU 230, and the steering control ECU 240 so that the vehicle travels along the route determined by the travel route setting unit 111, for example. For example, when the vehicle 10 changes lanes to the next lane, the automatic driving control unit 210 performs merging support so that the vehicle 10 travels from the reference line of the lane in which the vehicle 10 is traveling to the reference line of the next lane. good.
 駆動力制御ECU220は、エンジンなど車両10の駆動力を発生するアクチュエータを制御する電子制御装置である。ドライバが手動で運転を行う場合、駆動力制御ECU220は、アクセルペダルの操作量に応じてエンジンや電気モータである動力源を制御する。一方、自動運転を行う場合、駆動力制御ECU220は、自動運転制御部210で演算された要求駆動力に応じて動力源を制御する。 The driving force control ECU 220 is an electronic control unit that controls actuators that generate driving force for the vehicle 10, such as the engine. When the driver manually drives the vehicle, the driving force control ECU 220 controls the power source such as the engine or the electric motor according to the amount of operation of the accelerator pedal. On the other hand, when performing automatic driving, the driving force control ECU 220 controls the power source according to the required driving force calculated by the automatic driving control section 210 .
 制動力制御ECU230は、車両10の制動力を発生するブレーキアクチュエータを制御する電子制御装置である。ドライバが手動で運転を行う場合、制動力制御ECU230は、ブレーキペダルの操作量に応じてブレーキアクチュエータを制御する。一方、自動運転を行う場合、制動力制御ECU230は、自動運転制御部210で演算された要求制動力に応じてブレーキアクチュエータを制御する。 The braking force control ECU 230 is an electronic control device that controls the brake actuator that generates the braking force of the vehicle 10 . When the driver manually drives the vehicle, the braking force control ECU 230 controls the brake actuator according to the amount of operation of the brake pedal. On the other hand, when performing automatic operation, the braking force control ECU 230 controls the brake actuator according to the required braking force calculated by the automatic operation control section 210 .
 操舵制御ECU240は、車両10の操舵トルクを発生するモータを制御する電子制御装置である。ドライバが手動で運転を行う場合、操舵制御ECU240は、ステアリングハンドルの操作に応じてモータを制御して、ステアリング操作に対するアシストトルクを発生させる。これにより、ドライバが少量の力でステアリングを操作でき、車両10の操舵を実現する。一方、自動運転を行う場合、操舵制御ECU240は、自動運転制御部210で演算された要求操舵角に応じてモータを制御することで操舵を行う。 The steering control ECU 240 is an electronic control unit that controls a motor that generates steering torque for the vehicle 10 . When the driver manually drives the vehicle, the steering control ECU 240 controls the motor according to the operation of the steering wheel to generate an assist torque for the steering operation. As a result, the driver can operate the steering with a small amount of force, and steering of the vehicle 10 is realized. On the other hand, when performing automatic driving, the steering control ECU 240 performs steering by controlling the motor according to the required steering angle calculated by the automatic driving control section 210 .
 A2.車両制御装置110による処理:
 自動運転では、走行経路設定部111は、自車位置センサ131によって検出された現在位置と、車両10の周囲の他車両等の位置や速度等とに基づいて、数秒後までの車両10の走行プランを作成する。この走行プランには、数秒後までの車両10の操舵プラン及び加減速プラン等が含まれる。
A2. Processing by vehicle control device 110:
In automatic driving, the travel route setting unit 111 determines whether the vehicle 10 will travel for several seconds based on the current position detected by the own vehicle position sensor 131 and the positions and speeds of other vehicles around the vehicle 10. Create a plan. This driving plan includes a steering plan and an acceleration/deceleration plan for the vehicle 10 up to several seconds later.
 図2に示される処理は、車両10の走行中に所定時間ごとに繰り返し実行される。図2に示すように、ステップ11(以下、ステップを「S」と略す)において、現在の車両10の運転状態が、ハンズオフ状態であるか否かが判断される。例えば、自動運転制御部210からの制御信号に基づいて、自動運転実行中のハンズオフ状態であるか否かが判断される。 The process shown in FIG. 2 is repeatedly executed at predetermined time intervals while the vehicle 10 is running. As shown in FIG. 2, at step 11 (hereinafter step is abbreviated as "S"), it is determined whether or not the current driving state of the vehicle 10 is the hands-off state. For example, based on a control signal from the automatic driving control unit 210, it is determined whether or not the vehicle is in a hands-off state during execution of automatic driving.
 ハンズオフ状態であると判断された場合には(S11:YES)、S12に進み、車両10がこのあとカーブ走行をするか否かが判断される。「このあとカーブ走行をする」とは、車両10がカーブにさしかかるカーブ手前およびカーブ走行中、を含む。また、以下、「カーブを走行するとき」とは、同様にカーブにさしかかるカーブ手前およびカーブ走行中、を含み、以下、単に「カーブ走行時」ともいう。 If it is determined that the hands-off state is established (S11: YES), the process proceeds to S12, where it is determined whether or not the vehicle 10 will drive around a curve. "After that, the vehicle 10 travels around a curve" includes before the curve when the vehicle 10 is approaching the curve and while the vehicle 10 is traveling around the curve. Further, hereinafter, "when driving on a curve" similarly includes before the curve approaching the curve and during driving on the curve, and is hereinafter simply referred to as "when driving on a curve".
 車両10がカーブを走行すると判断された場合には(S12:YES)、S13に進み、横加速度算出部113により、横加速度Anが算出される。そして、S14において、横加速度Anが、予め定められた閾値A0よりも大きいか否かが判断される。閾値A0は、カーブ走行時において、ドライバが体感的に安心感のある程度の安全快適性を維持できると想定される横加速度の上限値に、予め実験等により検討され設定される。 When it is determined that the vehicle 10 will travel on a curve (S12: YES), the process proceeds to S13, where the lateral acceleration calculator 113 calculates the lateral acceleration An. Then, in S14, it is determined whether or not the lateral acceleration An is greater than a predetermined threshold value A0. The threshold value A0 is determined in advance through experiments and the like as the upper limit value of the lateral acceleration at which the driver is assumed to be able to maintain a certain degree of safety and comfort with a sense of security when driving on a curve.
 横加速度Anが、予め定められた閾値A0よりも大きいと判断された場合には(S14:YES)、S15に進み、報知装置150によりハンズオン要求が出される。具体的には、ディスプレイ上にハンズオン要求を表す画像を表示してもよいし、ハンズオン要求を知らせる音をスピーカから発してもよい。 When it is determined that the lateral acceleration An is greater than the predetermined threshold value A0 (S14: YES), the process proceeds to S15, where the notification device 150 issues a hands-on request. Specifically, an image representing the hands-on request may be displayed on the display, or a sound indicating the hands-on request may be emitted from a speaker.
 一方、横加速度Anが、予め定められた閾値Ao以下である場合には(S14:NO)、S16に進み、ハンズオフ状態が継続され、ハンズオン要求はなされない。S15およびS16の処理の後、本処理ルーチンは終了する。なお、S11においてハンズオフ状態ではないと判断された場合(S11: NO)、およびS12においてカーブ走行ではないと判断された場合(S12:NO)には、後の制御を行わず、図2の処理を終了する。 On the other hand, if the lateral acceleration An is equal to or less than the predetermined threshold value Ao (S14: NO), the process proceeds to S16, the hands-off state continues, and no hands-on request is made. After the processing of S15 and S16, this processing routine ends. Note that if it is determined in S11 that the hands are not in the off state (S11: NO) and if it is determined in S12 that the car is not traveling on a curve (S12: NO), the subsequent control is not performed and the processing of FIG. 2 is performed. exit.
 A3.横加速度算出(S13)およびハンズオン要求判定(S14)の詳細:
 次に、上記S13、S14の処理の詳細について説明する。横加速度算出部113は、図3に示すように、カーブ認識距離Dを複数に分割した区間ごとの横加速度An(nは正の整数)を算出する。カーブ認識距離Dは、車両10の前方においてカーブと認識される部分の全長である。区間は、カーブ認識距離Dを数m(例えば5m)ごとの等間隔に分割された部分であり、車両10に近い方から順に区間1、区間2、・・・~区間nとする。カーブ走行時の将来の横加速度Anは、カーブの曲率Rnと、車両10の現在の車速Vとに基づいて、以下の式(1)により、算出される。
 横加速度An=(車速V)×曲率Rn ・・・(1)
A3. Details of lateral acceleration calculation (S13) and hands-on request determination (S14):
Next, the details of the processing of S13 and S14 will be described. As shown in FIG. 3, the lateral acceleration calculator 113 calculates a lateral acceleration An (n is a positive integer) for each section obtained by dividing the curve recognition distance D into a plurality of sections. The curve recognition distance D is the total length of the portion in front of the vehicle 10 that is recognized as a curve. The sections are parts obtained by dividing the curve recognition distance D into equal intervals of several meters (for example, 5 m). Sections 1, 2, . . . The future lateral acceleration An when traveling on a curve is calculated by the following equation (1) based on the curvature Rn of the curve and the current vehicle speed V of the vehicle 10 .
Lateral acceleration An=(vehicle speed V) 2 ×curvature Rn (1)
 例えば、車両10が、図3に示す区間1の始点である第1地点P1にいるとき、区間1の横加速度A1は、以下の式(2)により、算出される。
 横加速度A1=(車速V1)×曲率R1 ・・・(2)
 式(2)において、車速V1は、第1地点P1での車速であり、曲率R1は、第1地点P1での曲率である。車両10の現在の車速Vは、車速センサ133から取得できる。第1地点P1での曲率R1は、道路情報記憶部140から取得できる。区間2~区間nの横加速度A2~Anについても同様に求めることができ、車速Vは第1地点P1での車速V1を用い、曲率Rnについては各区間の始まりとなる地点P2~Pnでの曲率をそれぞれ用いることができる。曲率Rnは、道路情報記憶部140に記憶された地図情報のカーブの曲率を用いる。
For example, when the vehicle 10 is at the first point P1, which is the starting point of Section 1 shown in FIG. 3, the lateral acceleration A1 of Section 1 is calculated by the following equation (2).
Lateral acceleration A1=(vehicle speed V1) 2 ×curvature R1 (2)
In the formula (2), the vehicle speed V1 is the vehicle speed at the first point P1, and the curvature R1 is the curvature at the first point P1. A current vehicle speed V of the vehicle 10 can be obtained from the vehicle speed sensor 133 . The curvature R1 at the first point P1 can be obtained from the road information storage unit 140. FIG. The lateral accelerations A2 to An in the section 2 to section n can also be obtained in the same manner, the vehicle speed V is the vehicle speed V1 at the first point P1, and the curvature Rn is calculated at the starting point P2 to Pn of each section. Each curvature can be used. As the curvature Rn, the curvature of the curve of the map information stored in the road information storage unit 140 is used.
 車両10が進み、車両10が第2地点P2以降にいるときに上記図2に示す処理ルーチンが実行されるときにも、同様にしてその時点での車両10の進行方向のカーブ認識距離Dを等間隔に分割した区間毎の横加速度をそれぞれ算出する。算出した横加速度Anが閾値Aoより大きいか否かを判断するとき(S14)には、算出した各区間の横加速度Anのうち、いずれかでも閾値Aoより大きければハンズオン要求を出す(S15)。なお、ハンズオン要求の報知のタイミングは、閾値Aoを超えるカーブ区間にさしかかる数秒前であればよく、適宜設定され得る。 Similarly, when the vehicle 10 advances and the processing routine shown in FIG. Lateral acceleration is calculated for each section divided into equal intervals. When determining whether the calculated lateral acceleration An is greater than the threshold Ao (S14), if any of the calculated lateral accelerations An is greater than the threshold Ao, a hands-on request is issued (S15). Note that the timing of announcing the hands-on request may be set as appropriate as long as it is several seconds before approaching the curve section exceeding the threshold Ao.
[効果]
 (1)上記第1実施形態の車両制御装置110によれば、ハンズオフ状態のカーブ走行時において、カーブ認識距離を将来走行するとき車両10に生じる横加速度Anが閾値Aoを超える場合にはハンズオン要求が出される(S15)。そして、横加速度Anが閾値Ao以下の場合にはハンズオフ状態が継続される(S16)。すなわち、カーブ走行時の車速という運転状況が加味されてハンズオン要求の採否が判断されるため、予め記憶された地図情報に基づき一律にハンズオン要求を出す構成と比較して、不要なハンズオン要求を抑制できる。
[effect]
(1) According to the vehicle control device 110 of the first embodiment, when the vehicle 10 travels a curve recognition distance in the future and the lateral acceleration An generated in the vehicle 10 exceeds the threshold value Ao when traveling on a curve in the hands-off state, a hands-on request is made. is issued (S15). Then, when the lateral acceleration An is equal to or less than the threshold Ao, the hands-off state is continued (S16). That is, since the driving situation such as the vehicle speed when traveling on a curve is taken into consideration when deciding whether or not to adopt a hands-on request, unnecessary hands-on requests are suppressed compared to a configuration in which a hands-on request is uniformly issued based on pre-stored map information. can.
 例えば、通常速度の走行ではハンズオン要求を出すべきカーブであっても、渋滞低速走行時などで車両10に生じる横加速度Anが小さい場合には、ハンズオフ状態のままでもドライバの安全快適性が損なわれることがなく、ハンズオフ状態を継続しても問題がない。このような場合に、ハンズオン要求を出すことなくハンズオフ状態を継続できるため、カーブ走行時におけるハンズオン要求の的確性を向上させることができる。 For example, even if the vehicle 10 is traveling at a normal speed on a curve where a hands-on request should be issued, if the lateral acceleration An generated in the vehicle 10 is small when the vehicle 10 is traveling at a low speed in a traffic jam, the safety and comfort of the driver are impaired even in the hands-off state. There is no problem even if the hands-off state is continued. In such a case, since the hands-off state can be continued without issuing a hands-on request, the accuracy of the hands-on request during curve travel can be improved.
 (2)上記第1実施形態の車両制御装置110によれば、横加速度算出部113は、カーブ認識距離Dを等間隔に分割した区間毎の横加速度Anをそれぞれ算出する。このため、カーブ認識距離D全体の代表値である曲率を用いて横加速度を算出する構成と比較して、より緻密な制御を実施でき、車両10の間近のカーブ走行をより安全にできる。 (2) According to the vehicle control device 110 of the first embodiment, the lateral acceleration calculator 113 calculates the lateral acceleration An for each section obtained by dividing the curve recognition distance D into equal intervals. Therefore, compared to a configuration in which the lateral acceleration is calculated using the curvature, which is the representative value of the entire curve recognition distance D, more precise control can be performed, and the vehicle 10 can travel on a curve in the vicinity more safely.
 (3)上記第1実施形態の車両制御装置110によれば、ハンズオン要求を報知するタイミングは、閾値Aoを超えるカーブ区間にさしかかる数秒前に設定されるため、ドライバが不安に思う前に報知でき、安全快適性が維持される。 (3) According to the vehicle control device 110 of the first embodiment, the timing of announcing the hands-on request is set several seconds before approaching the curve section exceeding the threshold value Ao. , safety and comfort are maintained.
B.第2実施形態:
 次に、第2実施形態について説明する。なお、第2実施形態および後述の第3の実施形態における車両制御装置の全体構成(図2)および処理(図3)は、上記第1実施形態と実質同様であるため、説明は省略する。上記第1実施形態では、横加速度Anの算出に際し、カーブの曲率Rnとして、道路情報記憶部140に記憶された地図情報のカーブの曲率を用いた。これに代えて、第2実施形態では、曲率Rnとして、周辺センサ120から読み取られた進行方向の実走路情報から推定される曲率を用いる。
B. Second embodiment:
Next, a second embodiment will be described. Note that the overall configuration (FIG. 2) and processing (FIG. 3) of the vehicle control device in the second embodiment and in a third embodiment described later are substantially the same as those in the first embodiment, so description thereof will be omitted. In the first embodiment, the curvature of the curve in the map information stored in the road information storage unit 140 is used as the curvature of the curve Rn when calculating the lateral acceleration An. Instead of this, in the second embodiment, the curvature estimated from the actual traveling road information read from the peripheral sensor 120 is used as the curvature Rn.
 実走路情報とは、車両10が実際に走行中に得られる情報である。例えば具体的には、カメラ121が撮像した前方画像を基に、周辺情報認識部112により推定されるレーンマーカ21(図3参照)に関する情報である。推定されるレーンマーカ21の形状等から曲率が推定される。横加速度算出部113は、上記第1実施形態と同様に、カーブ認識距離Dを等間隔に分割した区間1、2…n毎の横加速度Anをそれぞれ算出する。 "Actual road information" is information obtained while the vehicle 10 is actually traveling. Specifically, for example, it is information related to the lane marker 21 (see FIG. 3) estimated by the peripheral information recognition unit 112 based on the forward image captured by the camera 121 . The curvature is estimated from the estimated shape of the lane marker 21 and the like. The lateral acceleration calculator 113 calculates the lateral acceleration An for each of the sections 1, 2, . . .
 第2実施形態によれば、上記第1実施形態と同様の効果を奏することができる。さらに、実走路情報から推定される曲率を用いるため、地図情報を持たない場合でも横加速度Anを算出できるとともに、横加速度Anの算出精度を向上させることができる。 According to the second embodiment, the same effects as those of the first embodiment can be obtained. Furthermore, since the curvature estimated from the actual traveling road information is used, the lateral acceleration An can be calculated even without map information, and the calculation accuracy of the lateral acceleration An can be improved.
C.第3実施形態:
 次に、第3実施形態について説明する。第3実施形態では、曲率Rnとして、走行経路設定部111により設定された目標走行経路Tにおける曲率を用いる。図3に示すように、カーブでの目標走行経路Tは、例えば、カーブの差し掛かりでは道路のアウト側から進入し、カーブの終わりでは道路のイン側を走行するようなラインを描く。目標走行経路Tは、スムーズにカーブを走行するためのラインを描くため、地図情報や実走路情報と完全には一致していない。このため、目標走行経路Tにおける曲率は、地図情報や実走路情報に基づく曲率よりも実際の走行に即した情報である。
C. Third embodiment:
Next, a third embodiment will be described. In the third embodiment, the curvature of the target travel route T set by the travel route setting unit 111 is used as the curvature Rn. As shown in FIG. 3, the target travel route T on the curve draws a line such that, for example, the vehicle enters from the outside side of the road at the beginning of the curve and travels on the inside side of the road at the end of the curve. Since the target travel route T draws a line for smooth curve travel, it does not completely match the map information and the actual travel route information. Therefore, the curvature of the target travel route T is information more suited to actual travel than the curvature based on map information or actual travel route information.
 第3実施形態によれば、上記第2実施形態と同様の効果を奏することができるとともに、さらに、より実際の走行に即した正確な情報である目標走行経路Tにおける曲率を用いることで、横加速度Anの算出精度を向上させることができる。 According to the third embodiment, the same effects as those of the second embodiment can be obtained. It is possible to improve the calculation accuracy of the acceleration An.
 さらに、例えば先行車22によって遠方のレーンマーカ21が隠されて見えないためにカーブ曲率を読み取れない場合でも、横加速度Anを算出でき、的確にハンズオン要求を出すことができる。 Furthermore, even if the curve curvature cannot be read because the distant lane marker 21 is hidden by the preceding vehicle 22 and cannot be seen, the lateral acceleration An can be calculated and a hands-on request can be issued accurately.
D.他の実施形態:
 (D1)上記各実施形態では、上記式(1)に示すように、将来の横加速度Anの算出に際して、車両10の現在の車速Vを全ての区間に用いたが、先の区間を走行するときの車速を先読みして用いてもよい。この場合、横加速度Anは、以下の式(3)により算出される。
 横加速度An=(先読み車速Vn)×曲率Rn ・・・(3)
D. Other embodiments:
(D1) In each of the above embodiments, the current vehicle speed V of the vehicle 10 is used for all sections when calculating the future lateral acceleration An, as shown in the above equation (1). The vehicle speed at that time may be read in advance and used. In this case, the lateral acceleration An is calculated by the following formula (3).
Lateral acceleration An=(predicted vehicle speed Vn) 2 ×curvature Rn (3)
 ここで、先読み車速Vnは、以下の式(4)により算出される。
 先読み車速Vn=現在車速V+目標縦加速度×先読み時間 ・・・(4)
 目標縦加速度は、例えば、先行車22と自車両10との車間距離をセンサで計測し、車間距離が設定された間隔以下に縮まらないように速度を自動調整する車間距離自動制御システム(ACC:Adaptive Cruise Control)から取得できる。
Here, the look-ahead vehicle speed Vn is calculated by the following formula (4).
Look-ahead vehicle speed Vn = Current vehicle speed V + Target longitudinal acceleration x Look-ahead time (4)
The target longitudinal acceleration can be obtained, for example, by measuring the inter-vehicle distance between the preceding vehicle 22 and the own vehicle 10 with a sensor, and automatically adjusting the inter-vehicle distance control system (ACC: Adaptive Cruise Control).
 (D2)上記各実施形態では、横加速度Anが閾値Aoを超えるカーブ区間の手間でハンズオン要求を報知するようにしたが、カーブを曲がることが可能でありドライバの最低限の安全性が確保される場合には、該当カーブ区間にさしかかってから報知するようにしてもよい。 (D2) In each of the above embodiments, the hands-on request is notified in the curve section where the lateral acceleration An exceeds the threshold value Ao. In this case, the notification may be made after reaching the corresponding curve section.
 (D3)上記各実施形態において、カーブ認識距離Dのうち、1区間のみが閾値Aoを超えている場合には、当該区間を走行後には、ハンズオン要求をリセットし、ハンズオフ状態が可能になったことを報知するようにしてもよい。 (D3) In each of the above embodiments, if only one section out of the curve recognition distance D exceeds the threshold value Ao, the hands-on request is reset after traveling the section, and the hands-off state becomes possible. You may make it alert|report that.
 (D4)上記各実施形態において、横加速度算出部113は、カーブ認識距離Dを等間隔に分割した区間ごとに横加速度Anを算出したが、区間は等間隔に分割されたものでなくてもよい。例えば、曲率がある程度一定である区間は分割しなくてもよい。
 なお、本開示に記載の車両制御装置110及びそれら手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の車両制御装置110及びそれら手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の車両制御装置110及びそれら手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
(D4) In each of the above embodiments, the lateral acceleration calculator 113 calculates the lateral acceleration An for each interval obtained by dividing the curve recognition distance D into equal intervals. good. For example, a section whose curvature is constant to some extent may not be divided.
It should be noted that the vehicle controller 110 and techniques described in this disclosure are provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be implemented by a computer. Alternatively, the vehicle controller 110 and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the vehicle controller 110 and techniques described in this disclosure are a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured in combination. The computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.

Claims (5)

  1.  自動運転および手動運転が可能な車両(10)が備える車両制御装置であって、
     前記車両の目標走行経路を設定する走行経路設定部(111)と、
     前記車両が走行する進行方向にあるカーブの曲率と前記車両の車速とに基づいて、前記車両に生じる将来の横加速度を算出する横加速度算出部(113)と、
     前記自動運転の実行中において前記車両のドライバが操舵ハンドルを保持していない状態であるハンズオフ状態から、前記ドライバが前記操舵ハンドルを保持しているハンズオン状態への切り替えを要求するハンズオン要求を、報知装置(150)により報知する報知部(114)と、
     前記横加速度算出部の算出結果に応じて前記車両の制御内容を決定する制御決定部(115)と、
     を備え、
     前記制御決定部は、
     前記車両が前記ハンズオフ状態で前記カーブを走行するときに、
     前記横加速度算出部により算出された前記横加速度が予め定められた閾値より大きい場合には、前記制御内容として前記報知部により前記ハンズオン要求を報知する制御を決定し、前記横加速度が前記閾値以下である場合には、前記制御内容として前記ハンズオフ状態を継続する制御を決定する、車両制御装置。
    A vehicle control device provided in a vehicle (10) capable of automatic operation and manual operation,
    a travel route setting unit (111) for setting a target travel route of the vehicle;
    a lateral acceleration calculation unit (113) for calculating a future lateral acceleration occurring in the vehicle based on the curvature of a curve in the traveling direction of the vehicle and the vehicle speed of the vehicle;
    Notification of a hands-on request requesting switching from a hands-off state in which the driver of the vehicle does not hold the steering wheel to a hands-on state in which the driver holds the steering wheel during the execution of the automatic driving. A notification unit (114) that notifies by the device (150);
    a control determination unit (115) that determines the details of control of the vehicle according to the calculation result of the lateral acceleration calculation unit;
    with
    The control determination unit
    When the vehicle travels on the curve in the hands-off state,
    When the lateral acceleration calculated by the lateral acceleration calculator is greater than a predetermined threshold, the controller determines, as the control content, control to notify the hands-on request by the notification unit, and the lateral acceleration is equal to or less than the threshold. , the vehicle control device determines control for continuing the hands-off state as the content of control.
  2.  前記横加速度算出部は、前記カーブを複数に分割した区間ごとに前記横加速度を算出し、
     前記制御決定部は、前記制御内容として、前記横加速度が前記閾値より大きい前記区間に前記車両が進入する前に前記ハンズオン要求を報知する制御を決定する請求項1に記載の車両制御装置。
    The lateral acceleration calculation unit calculates the lateral acceleration for each section obtained by dividing the curve into a plurality of sections,
    2. The vehicle control device according to claim 1, wherein the control determination unit determines, as the control content, control to notify the hands-on request before the vehicle enters the section in which the lateral acceleration is greater than the threshold value.
  3.  前記横加速度算出部は、前記カーブの前記曲率として、地図情報の曲率を用いる請求項1または請求項2に記載の車両制御装置。 The vehicle control device according to claim 1 or 2, wherein the lateral acceleration calculator uses a curvature of map information as the curvature of the curve.
  4.  前記横加速度算出部は、前記カーブの前記曲率として、前記進行方向の実走路情報から推定される曲率を用いる請求項1または請求項2に記載の車両制御装置。 The vehicle control device according to claim 1 or 2, wherein the lateral acceleration calculation unit uses a curvature estimated from the actual traveling road information in the traveling direction as the curvature of the curve.
  5.  前記横加速度算出部は、前記カーブの前記曲率として、前記走行経路設定部により設定された前記目標走行経路における曲率を用いる請求項1または請求項2に記載の車両制御装置。 The vehicle control device according to claim 1 or 2, wherein the lateral acceleration calculator uses the curvature of the target travel route set by the travel route setting unit as the curvature of the curve.
PCT/JP2022/037235 2021-11-30 2022-10-05 Vehicle control device WO2023100469A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-193738 2021-11-30
JP2021193738 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100469A1 true WO2023100469A1 (en) 2023-06-08

Family

ID=86611814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037235 WO2023100469A1 (en) 2021-11-30 2022-10-05 Vehicle control device

Country Status (1)

Country Link
WO (1) WO2023100469A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024360A (en) * 2016-08-11 2018-02-15 株式会社Soken Vehicle control device
JP2018136700A (en) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 Vehicle control device
JP2020104829A (en) * 2018-12-28 2020-07-09 スズキ株式会社 Vehicle traveling control device
JP2020128165A (en) * 2019-02-08 2020-08-27 スズキ株式会社 Travelling control device of vehicle
JP2021160458A (en) * 2020-03-31 2021-10-11 株式会社日立製作所 Moving body control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024360A (en) * 2016-08-11 2018-02-15 株式会社Soken Vehicle control device
JP2018136700A (en) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 Vehicle control device
JP2020104829A (en) * 2018-12-28 2020-07-09 スズキ株式会社 Vehicle traveling control device
JP2020128165A (en) * 2019-02-08 2020-08-27 スズキ株式会社 Travelling control device of vehicle
JP2021160458A (en) * 2020-03-31 2021-10-11 株式会社日立製作所 Moving body control system

Similar Documents

Publication Publication Date Title
US9963149B2 (en) Vehicle control device
JP6677822B2 (en) Vehicle control device
JP6323385B2 (en) Vehicle travel control device
JP6663547B2 (en) Vehicle control device
US10173680B2 (en) Vehicle speed control device
US11104348B2 (en) Vehicle alarm apparatus
WO2019188218A1 (en) Driving assistance system, driving assistance device, and driving assistance method
US10821980B2 (en) Vehicle control device
US20210027625A1 (en) Image display device
CN112262066A (en) Driving assistance method and driving assistance device
US20230347926A1 (en) Driving control method and driving control device
JP5614079B2 (en) Driving assistance device
JP7117162B2 (en) Driving support method and driving support device
WO2020031238A1 (en) Vehicle control method and vehicle control device
JP6633041B2 (en) Vehicle, travel control device, and travel control method
JP2017073059A (en) Lane change support device
WO2023100469A1 (en) Vehicle control device
JP5251889B2 (en) Deceleration support system
WO2023105960A1 (en) Vehicle control device
WO2023090166A1 (en) Vehicle control device and vehicle control method
JP7393258B2 (en) Control device and vehicle
JP7354170B2 (en) Vehicle control device and vehicle control method
US20240083454A1 (en) Vehicle control system and vehicle control method
JP2023076380A (en) Vehicular control device and vehicular control method
JP2023069812A (en) Vehicle travel control method and travel control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900903

Country of ref document: EP

Kind code of ref document: A1