WO2023100262A1 - Sound wave shielding hood and sound source direction detecting device including sound wave shielding hood - Google Patents

Sound wave shielding hood and sound source direction detecting device including sound wave shielding hood Download PDF

Info

Publication number
WO2023100262A1
WO2023100262A1 PCT/JP2021/043942 JP2021043942W WO2023100262A1 WO 2023100262 A1 WO2023100262 A1 WO 2023100262A1 JP 2021043942 W JP2021043942 W JP 2021043942W WO 2023100262 A1 WO2023100262 A1 WO 2023100262A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
azimuth
microphones
sound source
hood
Prior art date
Application number
PCT/JP2021/043942
Other languages
French (fr)
Japanese (ja)
Inventor
知路 岡
将広 小田
靖夫 櫛田
Original Assignee
Jfeアドバンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeアドバンテック株式会社 filed Critical Jfeアドバンテック株式会社
Priority to PCT/JP2021/043942 priority Critical patent/WO2023100262A1/en
Publication of WO2023100262A1 publication Critical patent/WO2023100262A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present invention relates to a sound wave shielding hood that shields sound waves arriving from outside the sound source direction determination range, and a sound source azimuth locating device equipped with the sound wave shielding hood.
  • a sound source azimuth locating device that has an array sensor in which a plurality of microphones that receive sound waves are arranged, and that locates the azimuth where the sound source exists based on the sound pressure signal of the sound waves received by the array sensor.
  • the microphone may also receive sound waves (hereinafter referred to as external sounds) coming from outside a preset azimuth determination range.
  • external sounds sound waves
  • the regularity of the phase difference obtained with respect to the external sound received by each microphone results in false orientation called grating lobes (when called false signals). ) occurs within the azimuth orientation range, and this may cause misorientation of the sound source azimuth. Therefore, it is desirable to shield the sound source azimuth device from external sounds.
  • Patent Literature 1 describes an example of a sound collector configured to shield external sounds.
  • the sound collector consists of a sound collecting hood (hereinafter simply referred to as a hood) having a sound reflecting inner wall forming a parabolic curved surface, and a sound receiving surface facing forward, that is, toward the opening of the hood. and a microphone placed in the
  • a sound collecting hood hereinafter simply referred to as a hood
  • the microphone receives the sound that enters the hood, and the external sound coming from the outside of the hood toward the microphone is received by the hood. It is designed to be shielded.
  • hood for each microphone of the array sensor is considered to be effective in shielding each microphone from external sounds.
  • the spacing between the microphones constituting the array sensor is set narrow in order to prevent grating lobes from occurring near the direction of the sound source. Therefore, there is a possibility that the installation space for attaching the hood becomes narrow, or that adjacent hoods compete for installation space, making it difficult to attach the hood.
  • the opening of the hood cannot be made sufficiently large due to the narrow spacing between the microphones, making it susceptible to sound wave diffraction. there is a possibility. Specifically, when the opening of the hood is shorter than the wavelength of the external sound, there is a possibility that the external sound cannot be sufficiently shielded due to the diffraction phenomenon of sound waves.
  • the hood can be attached to the array sensor without being affected by the arrangement of the microphones.
  • the opening of the hood can be set large, it is possible to suppress the influence of external noise due to the diffraction phenomenon.
  • the inner diameter of the hood and the height of the hood are set so that all the microphones in the array sensor can receive the sound waves coming from within the azimuth determination range, when the azimuth determination of the sound source is performed, It may not be possible to obtain a large grating lobe suppression effect. This is because a large number of microphones constituting the array sensor can receive the ambient sound due to the size of the hood, the direction of arrival of the ambient sound with respect to the array sensor, and the arrangement of the microphones.
  • the present invention has been made in view of the above technical problems, and is capable of suppressing the reception of external sounds coming from outside the azimuth determination range and suppressing misorientation due to grating lobes caused by the external sounds. It is an object of the present invention to provide a sound wave shielding hood and a sound source azimuth device equipped with the sound wave shielding hood.
  • a sound wave shielding hood configured to suppress an array sensor having a plurality of microphones for receiving sound waves from receiving external sounds coming from outside a preset azimuth determination range, wherein the plurality of a sound wave shielding hood configured to shield sound waves coming from the perimeter of said azimuth range for at least one of said microphones.
  • the array sensor has a cylindrical shape, and the height protruding from the array sensor is such that it shields at least one of the plurality of microphones from sound waves arriving from the periphery of the azimuth determination range.
  • the acoustic wave shielding hood according to the above [1] or [2], wherein the hood is set to be at least .
  • the height protruding from the array sensor is set lower than the height at which the number of microphones that do not block sound waves arriving from the periphery of the azimuth determination range is two among the plurality of microphones.
  • the shielding hood according to any one of [1] to [3] above.
  • An array sensor having a plurality of microphones for receiving sound waves, and based on the sound pressure information of the sound waves received by the array sensor, calculating the sound pressure in each direction within the azimuth determination range,
  • a sound source direction having a computing means for locating the direction at which the sound pressure is maximum among the directions as the arrival direction of the sound wave from the sound source, and the sound wave shielding hood according to any one of [1] to [4] above.
  • the computing means weights the sound pressure information of sound waves received by each of the plurality of microphones according to the height of the sound wave shielding hood, and converts the weighted sound pressure information into The sound source azimuth determination device according to the above [5] or [6], configured to determine the azimuth of the sound source based on the sound source.
  • the computing means performs delay-and-sum beamforming calculation on a plurality of sound pressure information acquired by each of the plurality of microphones to locate the direction of arrival of the sound wave, above [5] to The sound source azimuth locating device according to any one of [7].
  • the sound wave shielding hood is installed so as to surround the array sensor, and shields at least one of the plurality of microphones from sound waves coming from the periphery of the azimuth determination range and external sounds. . Therefore, the reception of external sounds is sufficiently suppressed in the entire device, and the generation of grating lobes due to external sounds can be suppressed. As a result, misorientation of the direction of the sound source due to grating lobes caused by external sounds can be suppressed. As a result, it is possible to improve the accuracy of sound source azimuth determination by the sound source azimuth determination device. In addition, compared to the case where a sound wave shielding hood is provided for each microphone, it is possible to reduce the number of parts and cost of members for the entire device, thereby suppressing an increase in product cost.
  • FIG. 1 is a diagram showing an example of a sound source azimuth locating device according to an embodiment of the present invention
  • FIG. 1 is a perspective view of an example of a sound source azimuth locating device according to an embodiment of the present invention
  • FIG. FIG. 4 is a diagram showing an example of an arrangement pattern of microphones
  • 1 is a functional block diagram of a sound source azimuth locating device
  • FIG. 2 is a diagram showing an example of a sound source azimuth range by a sound source azimuth determination device
  • FIG. 4 is a diagram for explaining the direction of arrival of sound waves
  • FIG. 4 is a schematic diagram showing how sound waves are detected by a plurality of microphones; It is a figure which shows an example of the sound pressure information detected by each microphone.
  • FIG. 1 is a diagram showing an example of a sound source azimuth locating device according to an embodiment of the present invention
  • FIG. 1 is a perspective view of an example of a sound source azimuth locating device according to an embodiment
  • FIG. 10 is a diagram showing another example of the shape of the hood;
  • FIG. 10 is a diagram showing another example of the arrangement pattern of microphones;
  • 11 is a cross-sectional view taken along line BB shown in FIG. 10;
  • FIG. 10 is a diagram for explaining a range shielded by the hood when the height of the hood is set to a minimum height that satisfies Equation (2);
  • FIG. 5 is a diagram for explaining a range shielded by the hood when the height of the hood is set to the maximum height that satisfies Equation (2);
  • FIG. 10 is a diagram showing a one-dimensional sound wave distribution part of a sound pressure map created by delay-and-sum beamforming calculation when a sound source is in front (0°) of the sound source azimuth locator; 4 is a flowchart for explaining an example of control executed in an embodiment of the present invention;
  • FIG. 5 is a diagram showing an example of received sound pressure distribution for each microphone when the height of the hood is low;
  • FIG. 5 is a diagram showing an example of received sound pressure distribution for each microphone when the height of the hood is high;
  • FIG. 1A and 1B are diagrams showing an example of a sound source azimuth determination apparatus according to an embodiment of the present invention.
  • FIG. 1(a) is a front view of the sound source azimuth determination apparatus
  • FIG. 1(a) is a cross-sectional view taken along line AA shown in FIG. 1(a)
  • FIG. 1(c) is a rear view of the sound source azimuth locating device.
  • FIG. 2 is a perspective view of a sound source azimuth determination device according to an embodiment of the present invention.
  • the sound source azimuth determination device 1 includes a camera 2, an array sensor 3, a computing means 4, a display means 5, an input means 6, a housing 7, and a sound wave shielding hood (hereinafter referred to as It is simply described as a hood.) 8 as a main component.
  • the camera 2, the array sensor 3, and the hood 8 are provided on the front side of the housing 7 of the sound source azimuth locating device 1.
  • FIG. 2 a computing means 4 is provided inside the housing 7 .
  • a display means 5 and an input means 6 are provided on the rear side of the housing 7 .
  • the camera 2 captures an image of the object to be measured, and outputs the captured image obtained to the computing means 4 .
  • the captured image is used for the purpose of superimposing it on a two-dimensional distribution of sound pressure (referred to as a sound pressure map) obtained by the delay-and-sum beamforming calculation.
  • the delay-and-sum method beamforming calculation is a calculation method that uses the phase difference of sound waves measured by a plurality of microphones in the array sensor 3 to obtain the azimuth angle of arrival of sound waves with respect to the front azimuth of the microphones.
  • the magnification and field of view of the camera 2 may be appropriately adjusted according to the search range of the sound source.
  • the camera 2 may be, for example, a digital camera including an image sensor such as a CCD sensor or a CMOS sensor and a lens.
  • the above camera 2 is provided at the center of the array sensor 3.
  • the array sensor 3 has multiple microphones 9 .
  • the microphone 9 is configured to receive sound waves emitted from a sound source (not shown) and output sound pressure information of the received sound waves.
  • each microphone 9 is provided on a flat base plate.
  • FIG. 3 is a diagram showing an example of an arrangement pattern of the microphones 9. As shown in FIG. In the example shown in FIG. 3, each microphone 9 as a whole is arranged so as to be non-rotationally symmetrical at each of the vertices of two co-circular polygons (not shown) on the same plane and having the same center. .
  • the microphone 9 is arranged to receive sound waves in the range of audible to 100 kHz frequency.
  • the sound pressure information output from the microphone 9 is input to the computing means 4, band-pass filtered to an arbitrary frequency band by the computing means 4, and delay-and-sum method beamforming calculation is performed.
  • the microphone 9 detects a predetermined broadband sound wave, but it may detect a single-wavelength or narrowband sound wave.
  • the array sensor 3 has 13 microphones 9.
  • the microphones 9 are used in an outer coherent circle whose circumscribed circle has a diameter of 41 mm. They are provided at the positions of the vertices of the regular heptagon and the positions of the vertices of the inner regular hexagon whose circumscribed circle has a diameter of 15.3 mm.
  • the circumscribed circle of the outer regular heptagon and the circumscribed circle of the inner regular hexagon are provided on concentric circles centered on the camera 2 .
  • the frequency of the sound wave to be measured and the size of the circumscribed circle of the regular n-sided symmetry are not limited to these.
  • the measurement frequency by the microphone 9 may be selected from the range of audible sound (for example, 20 Hz) to 100 kHz, and the size of the circumscribed circle of the regular n-sided symmetry may be appropriately set according to the frequency (wavelength).
  • the 13 microphones 9 are arranged at the apexes of the outer cyclic regular heptagon, which is a symmetrical polygon with the same center, and the inner symmetrical hexagon. It is provided at each vertex of the regular hexagon.
  • the microphones 9 arranged in this manner are rotationally asymmetric as a whole.
  • non-rotationally symmetrical means an arrangement in which all the microphones 9 are not simultaneously arranged in the same arrangement as before the rotation while the array sensor 3 is rotated 360° with respect to the center of the circumscribed circle of the symmetrical polygon.
  • the array sensor 3 can improve directivity while suppressing an increase in the number of installed microphones 9, and can suppress the occurrence of grating lobes.
  • the display means 5 may be, for example, a liquid crystal display (LCD), and is configured to display the superimposed image created by the calculation means 4.
  • the input means 6 may be push switches, for example, and are provided in the vicinity of the display means 5 . When the user presses the input means 6 , a predetermined input signal is input to the computing means 4 . Note that a touch panel type input means 6 may be used in place of the push switch or together with the push switch.
  • FIG. 4 is a functional block diagram of the sound source azimuth determination device 1.
  • FIG. Display processing of a superimposed image in the sound source azimuth locating apparatus 1 will be described with reference to FIG.
  • the computing means 4 has a processing section 10 and a storage section 11 .
  • the processing unit 10 is, for example, a CPU or the like, and executes predetermined calculations using programs and data stored in the storage unit 11, acquired information, etc., and controls the operation of the sound source azimuth determination device 1. Output command signal.
  • the storage unit 11 is, for example, an information recording medium such as a flash memory capable of updating and recording, a built-in or connected hard disk, a memory card, and a read/write device thereof.
  • the storage unit 11 stores in advance programs for realizing various functions of the sound source azimuth locating apparatus 1, information used during execution of the programs, and the like.
  • the processing unit 10 uses the sound pressure information acquired from the array sensor 3, the processing unit 10 divides the azimuth determination range into predetermined azimuth divisions based on, for example, the time difference (phase difference) of the sound pressure information detected by each microphone 9. Perform delay-and-sum beamforming calculations for the partitions. By doing so, a sound pressure map is created in which the sound pressure of each azimuth segment is organized into a two-dimensional distribution.
  • the processing unit 10 creates a superimposed image in which the sound pressure map corresponding to the imaging area of the camera 2 is superimposed on the captured image. Specifically, the processing unit 10 converts the sound pressure map into a transparent image or a translucent image, and superimposes this on the captured image to create a superimposed image.
  • the processing unit 10 also outputs the superimposed image to the display unit 5 for display.
  • the superimposed image the subject and the sound pressure distribution are superimposed and displayed. Therefore, by confirming the superimposed image, the user can determine the correspondence relationship between the position of the subject in the captured image and the sound pressure distribution of the sound wave at a glance. Therefore, in addition to locating the azimuth at which the sound pressure is maximum as the arrival azimuth of the sound wave, it is possible to determine which part of the object the sound source is located.
  • FIG. 5 is a diagram showing an example of a sound source azimuth determination range TA by the sound source azimuth determination device 1.
  • a sound source (not shown) is searched for within the quadrangular pyramid-shaped region shown in FIG.
  • the maximum angle ⁇ range of the azimuth determination range TA in the embodiment of the present invention means the angle between the oblique sides located diagonally on the base of the quadrangular pyramid among the four oblique sides of the quadrangular pyramid shown in FIG. .
  • FIG. 6 is a diagram for explaining the direction of arrival of sound waves.
  • the arrival azimuth of the sound wave is the azimuth in which the sound source exists.
  • ) is expressed as an arrival azimuth angle ( ⁇ , ⁇ ) by an azimuth angle ⁇ with respect to an arbitrary azimuth (for example, X azimuth) serving as a reference above.
  • the processing unit 10 uses the sound pressure information detected by the plurality of microphones 9 to determine the arrival azimuth angle ( ⁇ , ⁇ ) by delay-and-sum beamforming calculation.
  • FIG. 7 is a schematic diagram showing how sound waves are detected by a plurality of microphones 9, and FIG. 8 is a diagram showing an example of sound pressure information detected by each microphone 9.
  • FIG. 7 and 8 illustrate the case where the three microphones 9a, 9b, and 9c are arranged in a line at equal intervals for the sake of simplicity of explanation.
  • the first microphone 9a when the microphone 9a is used as a reference microphone (hereinafter referred to as the first microphone 9a), the second microphone 9b adjacent to the first microphone 9a , the sound waves arrive at the first microphone 9a with a time lag of ⁇ .
  • a time difference ⁇ (s) between arrival of sound waves at the first microphone 9a and the second microphone 9b can be obtained by the following equation (1).
  • (L ⁇ sin ⁇ )/v (1)
  • v is the speed of sound (mm/s)
  • is the azimuth angle of the sound wave
  • L is the distance between the first microphone 9a and the second microphone 9b (the distance d between the microphones 9 to be described later) ( mm).
  • FIGS. 7 and 8 show that the time difference ⁇ (phase difference) is generated due to the azimuth angle ⁇ , the time difference due to the azimuth angle ⁇ is also generated.
  • the concept of the azimuth angle ⁇ is the same as that of the equation (1), and the time difference ⁇ changes according to the arrival azimuth angles ( ⁇ , ⁇ ).
  • the distance 2d between the first microphone 9a and the third microphone 9c which is the reference, is set to twice the distance d between the first microphone 9a and the second microphone 9b. Therefore, the sound wave reaches the third microphone 9c with a delay of ⁇ with respect to the second microphone 9b. That is, the time difference 2 ⁇ between the arrival time of the sound wave at the first microphone 9a and the arrival time of the sound wave at the third microphone 9c is equal to the arrival time of the sound wave at the first microphone 9a and the arrival time of the sound wave at the second microphone 9b.
  • the processing unit 10 locates the arrival azimuth angle ( ⁇ , ⁇ ) of the sound wave.
  • the processing unit 10 shifts the time of the sound pressure information received by the plurality of microphones 9 by the time difference ⁇ , and calculates an addition value by adding the plurality of time-shifted sound pressure information.
  • a plurality of different time differences ⁇ corresponding to the arrival azimuth angles ( ⁇ , ⁇ ) are set in advance in the processing unit 10, and the plurality of different time differences ⁇ are set for each of the plurality of microphones 9 according to the distance L. are set respectively.
  • the processing unit 10 uses a plurality of different set time differences ⁇ to obtain a plurality of addition values by changing the shift time as described above.
  • the added value added with the time difference ⁇ corresponding to the arrival azimuth angle ( ⁇ , ⁇ ) becomes maximum because the phases of the waveforms of each sound pressure information are aligned.
  • the processing unit 10 successively changes the assumed arrival azimuth angles ( ⁇ ', ⁇ ') of the sound waves from the assumed sound source within the azimuth determination range TA of the sound source to obtain a plurality of added values.
  • a sound pressure map which is a two-dimensional distribution of sound pressure within the azimuth determination range TA, is created using a plurality of added values obtained in this manner. Then, the assumed arrival azimuth angle, which is the maximum added value among the multiple added values, is determined as the azimuth of the sound source.
  • the processing unit 10 exemplifies the delay-and-sum method beamforming calculation in which the arrival azimuth angle ( ⁇ , ⁇ ) is determined based on the time difference ⁇ .
  • method can be applied.
  • the sound pressure information observed by the microphones 9a, 9b, and 9c at the same time is regarded as a two-dimensional spatial sound pressure field.
  • Delay-and-sum method beamforming can also be performed by utilizing the fact that there is a correlation between the spatial wave number obtained by spatially performing a two-dimensional Fourier transform on the sound pressure information and the arrival azimuth angle ( ⁇ , ⁇ ). A sound source azimuth determination result that is almost equivalent to the calculation is obtained.
  • the processing unit 10 is configured to display the superimposed image on the display means 5 as described above.
  • the processing unit 10 is configured to store the camera image and the superimposed image in the storage unit 11 when an instruction to save the image displayed on the display unit 5 is input from the input unit 6 .
  • the array sensor 3 it is preferable to use the array sensor 3 with high sound source azimuth performance from the viewpoint of increasing the sound source azimuth determination accuracy.
  • the sound source orientation performance of the array sensor 3 is greatly affected by the arrangement of the multiple microphones 9 .
  • Directivity is one of the sound source azimuth performance indicators.
  • the directivity is an index indicating whether or not the sound source sound pressure (hereinafter referred to as main lobe) observed on the sound pressure map can be displayed sharply.
  • the full width at half maximum (FWHM) of the main lobe is represented by the ratio ⁇ /D (rad) between the wavelength ⁇ of the sound wave detected by the array sensor 3 and the aperture width D of the array sensor 3 .
  • the aperture width of the array sensor 3 is the diameter of a virtual circle passing through the plurality of microphones 9 arranged on the outermost side with respect to the center of the array sensor 3.
  • the sound source intensity ratio is the ratio of the intensity of the grating lobe to the intensity of the main lobe, and is expressed by dividing the intensity of the main lobe by the intensity of the grating lobe.
  • a high sound source intensity ratio means that the intensity of the grating lobe is sufficiently smaller than the intensity of the main lobe. If the intensity of the grating lobe can be made smaller than the intensity of the main lobe, erroneous determination of the direction of the sound source due to the grating lobe can be suppressed. In order to increase the sound source intensity ratio, it is effective to increase the number of microphones 9 and narrow the arrangement interval of the microphones 9 .
  • the number of microphones 9 is as small as possible. Therefore, the generation of grating lobes may be suppressed by devising the arrangement of the microphones 9 as in the embodiment of the present invention.
  • FIGS. 1 and 2 the hood 8 in the embodiment of the present invention will be explained.
  • the hood 8 is positioned on the plane of arrangement of the array sensor 3 and outside the array sensor 3 to surround the array sensor 3 .
  • the hood 8 is formed in a square tubular shape.
  • the hood 8 is not limited to a rectangular cylinder.
  • FIG. 9 is a schematic diagram showing another example of the shape of the hood 8.
  • the hood 8 may have a cylindrical shape as shown in FIG. 9(a), or a truncated conical shell shape as shown in FIG. 9(b). Alternatively, as shown in FIG.
  • FIG. 9(c) it may be formed in an elliptical cylindrical shell shape, or as shown in FIG. 9(d), it may be formed in an elliptical trapezoidal shell shape. Alternatively, as shown in (e) of FIG. 9, it may be formed in the shape of a truncated quadrangular pyramid shell.
  • the shape of the hood 8 does not necessarily have to be a frustum shape in which the observation direction side is wider than the microphone 9 side, that is, a tapered shape. That is, it may have a frustum shape in which the microphone 9 side is wider than the observation direction side.
  • the spread angle (taper angle) of the hood 8 is half the maximum angle of the azimuth determination range TA ( ⁇ range /2) It is preferable not to spread beyond.
  • the hood 8 is formed in a square tubular shape, but instead of this, it may be formed in a polygonal tubular shape other than a square tubular shape. Also, instead of the truncated quadrangular pyramid shell shape shown in FIG.
  • slits extending in the axial direction of the hood 8 may be formed at regular intervals in the circumferential direction of the virtual circle.
  • the hood 8 may be configured by arranging a plurality of plates (not shown) extending in the axial direction at regular intervals in the circumferential direction of the virtual circle as shielding portions. The point is that the hood 8 is positioned outside the array sensor 3 and should be configured to cover at least a portion of the circumference of the array sensor 3 from the outside in the radial direction of the virtual circle.
  • the hood 8 in the embodiment of the present invention may be composed of a sound insulating material having sound insulating performance, a sound absorbing material having sound absorbing performance, or a combination thereof.
  • the sound insulating material is made of, for example, a synthetic resin material or a metal material
  • the sound absorbing material is made of soft urethane, polystyrene foam, melamine foam, rubber sponge, fiber-based glass wool, white wool, or the like.
  • the hood 8 is composed of a combination of a sound insulating material and a sound absorbing material, it is preferable that the inner portion of the hood 8, that is, the portion on the side of the microphone 9 in the plate thickness direction, is composed of the sound absorbing material. This is to prevent or suppress multiple reflections of sound waves within the hood 8 .
  • the sizes such as the height of the hood 8 and the inner diameter of the hood 8 described above are determined based on the maximum angle ⁇ range of the azimuth locating range TA of the sound source azimuth locating device 1 and the arrangement pattern of the microphones 9 of the array sensor 3 .
  • a case where the microphones 9 are arranged as shown in FIG. 10 will be described as an example.
  • the description of sound sources existing outside the azimuth determination range TA is omitted for the sake of simplicity of explanation.
  • the interval d at which grating lobes due to external sound are generated within ⁇ range is set.
  • microphones 9 are arranged at regular intervals on each of two virtual circles forming concentric circles centered on the center of the array sensor 3 .
  • four microphones 9 are arranged at regular intervals on the outer virtual circle, and four microphones 9 are arranged at regular intervals on the inner virtual circle.
  • the diameter of the outer virtual circle of the two virtual circles is approximately twice the diameter of the inner virtual circle.
  • the sound source is sufficiently far away from the microphones 9 and that the plane wave arrives at the array sensor 3 from the sound wave arrival direction indicated by the arrow.
  • the length of the hood 8 and the inner diameter of the hood 8 in the embodiment of the present invention will be explained by applying a ray tracing method that does not particularly consider the diffraction phenomenon of sound waves.
  • the distance between the microphone 9 and the hood 8 is the narrowest along the sound wave arrival direction. That is, FIG. 10 shows the sound wave arrival direction in which the microphone 9 closest to the hood 8 is most likely to be shielded by the hood 8 .
  • FIG. 11 is a cross-sectional view along line BB shown in FIG. 10 for explaining the height of the hood 8 and the inner diameter of the hood 8 in the embodiment of the present invention.
  • ⁇ max be the angle between a line perpendicular to the surface of the array sensor 3 (hereinafter referred to as a normal line) and the peripheral edge OE of the azimuth determination range TA.
  • the sound source azimuth locating device 1 is configured to measure sound waves arriving from the front side.
  • the hood 8 is configured to shield one microphone 9 among the plurality of microphones 9 installed on the array sensor 3 from sound waves from the peripheral portion OE of the azimuth determination range TA.
  • the microphone 9-1 is shielded by the hood 8 against sound waves arriving at the angle ⁇ max.
  • the sound wave that reaches the array sensor 3 from outside the angle ⁇ max is the external sound in the embodiment of the present invention.
  • a symbol “a” shown in FIG. 11 indicates the distance between the hood 8 and the microphone 9 - 1 that is positioned closest to the sound wave arrival azimuth side among the plurality of microphones 9 .
  • Sound source azimuth using delay-and-sum beamforming calculations requires reception of sound waves by at least two microphones 9 .
  • FIG. 11 when a sound wave arrives at the angle ⁇ max, it is necessary to receive the sound wave at least by the microphones 9-3 and 9-4 on the farthest side from the hood 8 with respect to the arrival direction of the sound wave. . That is, in the examples shown in FIGS.
  • the sound wave when a sound wave arrives at the angle ⁇ max, if the sound wave can be received by the microphone 9-3, the sound wave can be received by at least two microphones 9-3 and 9-4. becomes.
  • the symbol "ax" shown in FIG. 11 indicates the distance between the microphone 9-3 and the hood 8 in the sound wave arrival direction. shielding at least one microphone (microphone 9-1 in FIGS. 10 and 11) when a sound wave arrives from the periphery OE of the azimuth determination range TA (from the angle ⁇ max in FIG. 11);
  • the height of the hood 8 at which sound waves can be received by two or more microphones 9 can be expressed by the following equation (2).
  • FIG. 12 is a diagram for explaining the range shielded by the hood 8 when the height of the hood 8 is set to the minimum height that satisfies Equation (2).
  • hatched areas are shielded by the hood 8 from sound waves arriving from the peripheral edge OE of the azimuth determination range TA.
  • the arrangement of the microphones 9 in FIG. 12 is the same as the arrangement of the microphones 9 shown in FIG. 3 based on the above-described embodiment.
  • the hood 8 directs at least one microphone 9 to sound waves arriving along the peripheral edge OE of the azimuth determination range TA. shield.
  • the remaining microphones 9 except for at least one microphone 9 are not shielded from incoming sound waves. Therefore, the remaining microphones 9 can receive sound waves arriving along the peripheral portion OE of the azimuth determination range TA.
  • the sound source azimuth determination apparatus 1 as a whole can acquire sufficient signals required for azimuth determination of the sound source, that is, sound pressure information from each direction within the azimuth determination range TA. Therefore, even if the source of the external sound exists outside the azimuth determination range TA of the sound source azimuth determination device 1, erroneous determination of the sound source can be prevented or suppressed. As a result, the accuracy of azimuth determination of the sound source can be improved.
  • FIG. 13 is a diagram for explaining the range shielded by the hood 8 when the height of the hood 8 is set to the maximum height that satisfies Equation (2).
  • the area where the hood 8 shields the sound waves arriving from the peripheral edge OE of the azimuth determination range TA is hatched.
  • two microphones 9, which are the minimum required number when performing the delay-and-sum method beamforming calculation, are used for sound waves arriving along the periphery OE of the sound source azimuth determination range TA.
  • the height of the hood 8 is set so as to receive the
  • the number of microphones 9 whose hoods 8 shield sound waves coming from the peripheral edge OE of the azimuth determination range TA is increased compared to the configuration shown in FIG.
  • the effect of shielding external sounds is improved, and the occurrence of grating lobes can be further suppressed. Therefore, even if the source of the external sound exists outside the azimuth determination range TA of the sound source azimuth determination device 1, erroneous determination of the sound source can be prevented or suppressed. As a result, the accuracy of azimuth determination of the sound source can be improved.
  • the effect of reducing erroneous determination of the sound source within the azimuth determination range TA by the hood 8 differs depending on the arrangement of the microphones 9 of the array sensor 3 . Assume that the microphone 9 is omnidirectional. 3 horizontal direction). In that case, if the microphones 9 are arranged such that the grating lobes are generated within the azimuth locating range TA of the sound source azimuth locating device 1, the hood 8 that shields the sound waves arriving from the azimuth (90°) on the one side is provided. is valid.
  • the hood 8 shields the sound source outside the azimuth determination range TA, and there is no erroneous determination prevention effect.
  • the delay and sum method beamforming calculation is performed based on the acquired sound pressure information.
  • a signal with high sound pressure originating from a so-called sound source appears.
  • the above d is the arithmetic mean value of the distance to the closest microphone 9 for each of the plurality of microphones 9, and the above ⁇ is the wavelength of the sound wave emitted from the sound source.
  • the condition for generating grating lobes can be expressed by the following formula (4). d ⁇ 90° ⁇ /(90°+ ⁇ range/2) (4) That is, when the distance d between the microphones 9 satisfies the formula (4), a signal indicating a grating lobe appears within the maximum angle ⁇ range of the azimuth determination range TA. Also, as noted above, when the spacing d is increased, the signal exhibits a Gretsch lobe closer to the main lobe (0°) than when the spacing d is small.
  • the hood 8 physically shields the array sensor 3 from part or all of external sounds. Therefore, it is possible to suppress the appearance of grating lobes within the azimuth locating range TA when the delay sum method beamforming calculation is performed based on the sound pressure information acquired by the sound source azimuth locating apparatus 1 . As a result, erroneous determination of the sound source can be suppressed.
  • the distance d between the microphones 9 is set large so as to satisfy the expression (4), grating lobes caused by external sounds are generated within the azimuth determination range TA of the sound source. can be suppressed. Therefore, even if the number of microphones 9 is small, the aperture width of the array sensor 3 can be increased to improve directivity. As a result, the accuracy of azimuth determination of the sound source can be improved without increasing the number of parts, computational load, and the like.
  • FIG. 14 is a diagram showing a one-dimensional sound wave distribution part of a sound pressure map calculated by the delay-and-sum method beamforming when the sound source is in front of the sound source azimuth locator 1 (0°).
  • the vertical axis in FIG. 14 indicates the sound pressure (dB), and the horizontal axis indicates the angle for searching for the direction of the sound source.
  • dB sound pressure
  • the horizontal axis indicates the angle for searching for the direction of the sound source.
  • the side lobe is reduced by multiplying the output of each sampling point with a window function. Therefore, by regarding each microphone 9 as each sampling point and combining the shielding effect of the hood 8 and the correction (weighting) of the detection sensitivity of the microphone 9 not shielded by the hood 8, the side lobe by the window function can be obtained. It is possible to obtain the same effect as reduction.
  • the detection sensitivity of the microphone 9 is the sensitivity of the microphone 9 to the received sound pressure.
  • the detection sensitivity of the microphone 9 not shielded by the hood 8 is weighted, i.e. the correction and diffraction of the sound waves coming from the periphery OE of the azimuth range TA by the hood 8. combined with the accompanying damping effect.
  • This is configured to reduce the occurrence of side lobes relative to the main lobe in the vicinity of the peripheral edge OE of the azimuth location range TA when the delay-and-sum beamforming calculation is executed.
  • FIG. 15 is a flowchart for explaining an example of control executed in another embodiment of the invention. The routine shown in FIG. 15 is repeatedly executed at predetermined short time intervals by the computing means 4 described above.
  • a sound wave (n-1) in the first (n-1) measurement is acquired for each microphone 9 of the array sensor 3 (step S1), and a band is obtained for each of the acquired sound waves (n-1). Pass filtering is performed (step S2).
  • n is a natural number of 2 or more.
  • a delay-and-sum method beamforming calculation is performed on the sound waves extracted in step S2, and a sound pressure map (n ⁇ 1) corresponding to the sound waves (n ⁇ 1) acquired in step S1 is created (step S3).
  • an example of the received sound pressure distribution for each microphone 9 acquired in step S1 is connected by a smooth line and described by a thick solid line.
  • a sound source (not shown) on the right side of the sound source azimuth determination device 1 (right direction in FIG. 16), and sound waves arrive at the sound source azimuth determination device 1 from the sound source.
  • the hood 8 shields the sound waves incident on the microphone 9 located on the direction of arrival of the sound waves, that is, on the sound source side (right side in FIG. 16). Therefore, as indicated by the thick solid line in FIG. lower than pressure.
  • the sound pressure incident on the microphone 9 gradually increases. This is due to the diffraction phenomenon of sound waves.
  • the azimuth of the sound source is estimated based on the sound pressure map (n-1) (step S4).
  • a sensitivity correction coefficient (n-1) for each microphone 9 is determined (step S5). That is, there is a correlation between the estimated direction of the sound source and the received sound pressure of each microphone 9 affected by the shielding by the hood 8, and the relative sound pressure distribution of each microphone 9 according to the direction of the sound source is , can be estimated from the dimensions of the hood 8 and the direction of the sound source. Based on the estimated sound pressure distribution, a correction coefficient for each microphone 9 is determined according to the position of the microphone 9 that is not affected by the shielding by the hood 8 .
  • step S5 the sound wave (n) in the second (n) measurement is obtained (step S6), and bandpass filtering is performed on the sound wave (n) (step S7).
  • step S7 is the same as the processing in step S2.
  • the sound wave (n) extracted in step S7 is multiplied by the sensitivity correction coefficient (n-1) determined in step S5 for correction (step S8).
  • step S9 delay-and-sum beamforming calculation is performed for each sound wave (n) corrected in step S8, and a sound pressure map (n) corresponding to the sound wave (n) acquired in step S6 is created.
  • step S9 The sound pressure map (n) is output from the computing means 4 to the display means 5 and displayed.
  • step S10 the position of the sound source is determined based on the sound pressure map (n) created in step S9 (step S10). Note that the position of the sound source may be displayed on the display means 5 .
  • FIG. 16(b) an example of the received sound pressure distribution for each microphone 9 after sensitivity correction determined by the position of each microphone 9 and the degree of sound source shielding by the hood 8 is connected by a smooth line and indicated by a dotted line.
  • the correction in step S8 reduces the detection sensitivity of the microphone 9, which is placed far from the sound source and is not affected by the shielding by the hood 8.
  • the received sound pressure distribution of each microphone 9 indicated by the dotted line in FIG. It has a shape similar to the sound pressure distribution after multiplication by the window function of .
  • FIG. 17 is a diagram showing an example of received sound pressure distribution for each microphone 9 when the height of the hood 8 is higher than that of the hood 8 shown in FIG.
  • the area covered by the hood 8 is larger than in the example shown in FIG. 17(a), the microphone 9 whose received sound pressure is reduced by the hood 8 reaches near the center of the array sensor 3 compared to FIG. 16(a).
  • FIG. 17B shows the received sound pressure distribution of each microphone 9 including the shielding effect of the hood 8 after the detection sensitivity of each microphone 9 is corrected.
  • the received sound pressure distribution for each microphone 9 shown in (b) of FIG. 17 has a shape similar to the sound pressure distribution after multiplication by the window function for each microphone 9 when suppressing side lobe generation using a window function. become. Therefore, even if the height of the hood 8 is high, substantially the same functions and effects as those of the embodiment shown in FIG. 16 can be obtained.
  • An array sensor 3 is configured by arranging microphones 9 at regular intervals on each of two concentric imaginary circles having different outer diameters. Specifically, the outer diameter of the inner virtual circle in the radial direction was set to 15.3 mm, and six microphones 9 were arranged at regular intervals on the circumference of the virtual circle. The outer diameter of the virtual circle on the outer side in the radial direction, that is, the aperture width of the array sensor 3 was set to 41.0 mm, and seven microphones 9 were arranged at regular intervals on the circumference of the virtual circle.
  • the arithmetic mean value of the distance d between the microphones 9 adjacent to each other is 10.8 mm
  • the wavelength of the sound source that is, the measured wavelength ⁇ at the array sensor 3 is 8.7 mm
  • the ratio of the distance d to the measured wavelength ⁇ (d / ⁇ ) was 1.2.
  • the maximum angle ⁇ range of the sound source azimuth determination range TA in the sound source azimuth determination device 1 was set to 62°.
  • a rectangular tube having an inner dimension of 60 mm ⁇ 60 mm and a height of 43 mm was used as the hood 8 . Since other configurations are the same as those shown in FIGS. 1 to 3, description thereof will be omitted. Note that the height of the hood 8 satisfies the formula (2) described above.
  • the sound source azimuth locating device 1 configured as described above was installed on a predetermined mounting surface so as to rotate about a rotation center axis (not shown) extending in a vertical direction and to maintain a substantially horizontal position.
  • a reference position (0°) was set in front of the sound source azimuth locating device 1, and a sound source to be azimuth-located (hereinafter referred to as a first sound source) was placed at the reference position.
  • a source of external sound hereinafter referred to as a second sound source
  • the sound source azimuth determination device 1 was rotated around the rotation center axis by 50° from the reference position of the sound source azimuth determination device 1 to determine the azimuths of the first sound source and the second sound source. Also, the sound pressure emitted by the first sound source is constant, and the sound pressure of the external sound emitted by the second sound source is increased more than the sound pressure emitted by the first sound source. By doing this, it is evaluated whether or not the azimuth of the first sound source is possible even if the external sound with a higher sound pressure than the sound wave emitted by the first sound source arrives at the sound source azimuth determination device 1. bottom.
  • the first sound source azimuth determination apparatus 1 It was determined that the azimuth determination of the sound source was possible.
  • the hood 8 in the embodiment of the present invention even if a strong external sound source exists outside the azimuth locating range TA of the sound source azimuth device 1, the sound source within the azimuth locating range TA can be detected. It was confirmed that the azimuth determination of

Abstract

The present invention provides a sound wave shielding hood 8 that can suppress the reception of an external sound arriving from the outside of a direction detection range TA and thereby reduce erroneous detection due to a grating lobe resulting from the external sound and a sound source direction detecting device 1 including the sound wave shielding hood 8. The sound wave shielding hood 8 is configured to prevent an array sensor 3, which includes multiple microphones 9 for receiving sound waves, from receiving an external sound arriving from the outside of a preset direction detection range TA and is configured to shield at least one of the multiple microphones 9 from a sound wave arriving from a periphery OE of the direction detection range TA.

Description

音波遮蔽フード及び音波遮蔽フードを備えた音源方位標定装置Acoustic shielding hood and sound source azimuth device with acoustic shielding hood
 本発明は、音源方位の標定範囲外から到来する音波を遮蔽する音波遮蔽フード、および、音波遮蔽フードを備えた音源方位標定装置に関する。 The present invention relates to a sound wave shielding hood that shields sound waves arriving from outside the sound source direction determination range, and a sound source azimuth locating device equipped with the sound wave shielding hood.
 音波を受信する複数のマイクロホンが配置されたアレイセンサを有し、当該アレイセンサによって受信した音波の音圧信号に基づいて音源の存在する方位を標定する音源方位標定装置が知られている。この種の装置では、予め設定された方位標定範囲外から到来する音波(以下、外音と記す。)もマイクロホンで受信される場合がある。その場合、アレイセンサにおけるマイクロホンの配置によっては、マイクロホン毎に受信された外音に対して得られる位相差の規則性に起因してグレーチングローブと称される偽標定(偽信号と称される場合がある。)が方位標定範囲内に発生してしまい、これが原因で音源方位の誤標定が生じる場合がある。そのため、音源方位標定装置に対して外音を遮蔽することが望ましい。 A sound source azimuth locating device is known that has an array sensor in which a plurality of microphones that receive sound waves are arranged, and that locates the azimuth where the sound source exists based on the sound pressure signal of the sound waves received by the array sensor. In this type of device, the microphone may also receive sound waves (hereinafter referred to as external sounds) coming from outside a preset azimuth determination range. In that case, depending on the arrangement of the microphones in the array sensor, the regularity of the phase difference obtained with respect to the external sound received by each microphone results in false orientation called grating lobes (when called false signals). ) occurs within the azimuth orientation range, and this may cause misorientation of the sound source azimuth. Therefore, it is desirable to shield the sound source azimuth device from external sounds.
 特許文献1には、外音を遮蔽するように構成された集音器の一例が記載されている。その集音器は放物曲面状を成す音反射内壁を有する集音フード(以下、単にフードと記す。)と、受音面を前方に向けて、つまりフードの開口部側に向けてフード内に配置されたマイクロホンとを備えている。上記の集音器は、所定の音源に対してフードの開口部を向けると、フード内に入射した音をマイクロホンによって受信し、また、フードの外側からマイクロホンに向かって到来する外音をフードによって遮蔽するようになっている。 Patent Literature 1 describes an example of a sound collector configured to shield external sounds. The sound collector consists of a sound collecting hood (hereinafter simply referred to as a hood) having a sound reflecting inner wall forming a parabolic curved surface, and a sound receiving surface facing forward, that is, toward the opening of the hood. and a microphone placed in the With the above sound collector, when the opening of the hood is directed toward a predetermined sound source, the microphone receives the sound that enters the hood, and the external sound coming from the outside of the hood toward the microphone is received by the hood. It is designed to be shielded.
特許第5137609号明細書Patent No. 5137609
 アレイセンサの各マイクロホンに対する上述したフードの使用は、各マイクロホンに対する外音の遮蔽に有効であると考えられる。しかしながら、アレイセンサで測定対象とする音波の周波数が高い場合には、グレーチングローブが、音源方位の近傍に発生することを防ぐ目的で、アレイセンサを構成するマイクロホン同士の間隔は狭く設定される。そのため、フードを取り付けるための設置スペースが狭くなり、あるいは、互いに隣接するフード同士の間で設置スペースの取り合いが生じて、フードの取り付けが困難になる可能性がある。また、フードを取り付けることができたとしても、マイクロホン同士の間隔が狭いことが要因となってフードの開口部を十分に大きくすることができず、音波の回析の影響を受けやすくなってしまう可能性がある。具体的には、フードの開口が外音の波長よりも短い場合には、音波の回析現象によって外音を十分に遮蔽できない可能性がある。 The use of the above-mentioned hood for each microphone of the array sensor is considered to be effective in shielding each microphone from external sounds. However, when the frequency of the sound wave to be measured by the array sensor is high, the spacing between the microphones constituting the array sensor is set narrow in order to prevent grating lobes from occurring near the direction of the sound source. Therefore, there is a possibility that the installation space for attaching the hood becomes narrow, or that adjacent hoods compete for installation space, making it difficult to attach the hood. Also, even if a hood can be attached, the opening of the hood cannot be made sufficiently large due to the narrow spacing between the microphones, making it susceptible to sound wave diffraction. there is a possibility. Specifically, when the opening of the hood is shorter than the wavelength of the external sound, there is a possibility that the external sound cannot be sufficiently shielded due to the diffraction phenomenon of sound waves.
 一方で、回析現象による外音の影響を抑制するために、マイクロホン同士の間隔を広く設定すると、外音によるグレーチングローブが方位標定範囲内に発生しやすくなり、かえって音源方位を誤標定しやすくなってしまう可能性がある。 On the other hand, if the distance between the microphones is widened in order to suppress the influence of the external sound due to the diffraction phenomenon, grating lobes due to the external sound are likely to occur within the azimuth determination range, and the direction of the sound source is more likely to be erroneously determined. It may become
 そこで、アレイセンサの全体をフードによって覆うことが考えられる。こうすることにより、マイクロホンの配置に影響されることなくアレイセンサにフードを取り付けることができる。また、フードの開口部を大きく設定することができるため、回析現象による外音の影響を抑制できる。 Therefore, it is conceivable to cover the entire array sensor with a hood. By doing so, the hood can be attached to the array sensor without being affected by the arrangement of the microphones. In addition, since the opening of the hood can be set large, it is possible to suppress the influence of external noise due to the diffraction phenomenon.
 しかしながら、アレイセンサにおける全てのマイクロホンが方位標定範囲内から到来する音波を受信できるように、フードの内径、および、フードの高さなどの各サイズを設定すると、音源の方位標定を実施した時に、大きなグレーチングローブ抑制効果を得ることはできない可能性がある。これは、フードのサイズ、アレイセンサに対する外音の到来方位、各マイクロホンの配置の関係で、アレイセンサを構成するマイクロホンのうち、多数のマイクロホンで外音を受信できてしまうためである。 However, if the inner diameter of the hood and the height of the hood are set so that all the microphones in the array sensor can receive the sound waves coming from within the azimuth determination range, when the azimuth determination of the sound source is performed, It may not be possible to obtain a large grating lobe suppression effect. This is because a large number of microphones constituting the array sensor can receive the ambient sound due to the size of the hood, the direction of arrival of the ambient sound with respect to the array sensor, and the arrangement of the microphones.
 本発明は、上記の技術的課題に着目してなされたものであり、方位標定範囲外から到来する外音の受信を抑制して、外音に起因するグレーチングローブによる誤標定を抑制することのできる音波遮蔽フード及び音波遮蔽フードを備えた音源方位標定装置を提供することを目的とするものである。 The present invention has been made in view of the above technical problems, and is capable of suppressing the reception of external sounds coming from outside the azimuth determination range and suppressing misorientation due to grating lobes caused by the external sounds. It is an object of the present invention to provide a sound wave shielding hood and a sound source azimuth device equipped with the sound wave shielding hood.
 このような課題を解決する本発明の特徴は、以下の通りである。
[1]音波を受信する複数のマイクロホンを有するアレイセンサが、予め設定された方位標定範囲外から到来する外音を受信することを抑制するように構成された音波遮蔽フードであって、前記複数のマイクロホンのうちの少なくとも一つのマイクロホンに対しては、前記方位標定範囲の周縁部から到来する音波を遮蔽するように構成されている、音波遮蔽フードである。
[2]前記アレイセンサの周囲の少なくとも一部を囲うように構成されている、上記の[1]に記載の音波遮蔽フードである。
[3]筒状を成しており、前記アレイセンサから突出する高さは、前記複数のマイクロホンのうちの少なくとも一つのマイクロホンに対して前記方位標定範囲の周縁部から到来する音波を遮蔽する高さ以上に設定されている、上記の[1]または[2]に記載の音波遮蔽フードである。
[4]前記アレイセンサから突出する高さは、前記複数のマイクロホンのうちで前記方位標定範囲の周縁部から到来する音波が遮蔽されないマイクロホンの数が2つになる高さよりも低く設定される、上記の[1]ないし[3]のいずれかに記載の遮蔽フードである。
[5]音波を受信する複数のマイクロホンを有するアレイセンサと、前記アレイセンサによって受信される前記音波の音圧情報に基づいて、前記方位標定範囲内の各方位の音圧をそれぞれ算出し、前記各方位のうち、音圧が最大となる方位を音源からの音波の到来方位として標定する演算手段と、上記の[1]ないし[4]のいずれかに記載の音波遮蔽フードとを有する音源方位標定装置である。
[6]互いに隣接する前記複数のマイクロホン同士の平均間隔dは、下記式を満たす上記の[5]に記載の音源方位標定装置である。
    d≧90°×λ/(90°+βrange/2)(mm)
  上記のλは音波の到来方位の計算に使用する音波の中心波長(mm)、βrangeは方位標定範囲の最大角度(°)である。
[7]前記演算手段は、前記音波遮蔽フードの高さに応じて、前記複数のマイクロホンのそれぞれで受信される音波の音圧情報に対して重みづけを行い、重みづけられた音圧情報に基づいて音源の方位を標定するように構成されている、上記の[5]または[6]に記載の音源方位標定装置である。
[8]前記演算手段は、前記複数のマイクロホンのそれぞれで取得された複数の音圧情報に対して、遅延和法ビームフォーミング計算を行って音波の到来方位を標定する、上記の[5]ないし[7]のいずれかに記載の音源方位標定装置である。
The features of the present invention for solving such problems are as follows.
[1] A sound wave shielding hood configured to suppress an array sensor having a plurality of microphones for receiving sound waves from receiving external sounds coming from outside a preset azimuth determination range, wherein the plurality of a sound wave shielding hood configured to shield sound waves coming from the perimeter of said azimuth range for at least one of said microphones.
[2] The acoustic wave shielding hood according to [1] above, which is configured to surround at least a portion of the array sensor.
[3] The array sensor has a cylindrical shape, and the height protruding from the array sensor is such that it shields at least one of the plurality of microphones from sound waves arriving from the periphery of the azimuth determination range. The acoustic wave shielding hood according to the above [1] or [2], wherein the hood is set to be at least .
[4] The height protruding from the array sensor is set lower than the height at which the number of microphones that do not block sound waves arriving from the periphery of the azimuth determination range is two among the plurality of microphones. The shielding hood according to any one of [1] to [3] above.
[5] An array sensor having a plurality of microphones for receiving sound waves, and based on the sound pressure information of the sound waves received by the array sensor, calculating the sound pressure in each direction within the azimuth determination range, A sound source direction having a computing means for locating the direction at which the sound pressure is maximum among the directions as the arrival direction of the sound wave from the sound source, and the sound wave shielding hood according to any one of [1] to [4] above. Orientation device.
[6] The sound source azimuth locating device according to [5] above, wherein the average distance d between the plurality of microphones adjacent to each other satisfies the following equation.
d≧90°×λ/(90°+βrange/2) (mm)
λ is the central wavelength (mm) of the sound wave used for calculating the direction of arrival of the sound wave, and βrange is the maximum angle (°) of the azimuth determination range.
[7] The computing means weights the sound pressure information of sound waves received by each of the plurality of microphones according to the height of the sound wave shielding hood, and converts the weighted sound pressure information into The sound source azimuth determination device according to the above [5] or [6], configured to determine the azimuth of the sound source based on the sound source.
[8] The computing means performs delay-and-sum beamforming calculation on a plurality of sound pressure information acquired by each of the plurality of microphones to locate the direction of arrival of the sound wave, above [5] to The sound source azimuth locating device according to any one of [7].
 本発明によれば、音波遮蔽フードはアレイセンサを囲うように設置され、複数のマイクロホンのうち、少なくとも一つのマイクロホンに対しては、方位標定範囲の周縁部から到来する音波および外音を遮蔽する。そのため、装置の全体として、外音の受信が十分に抑制され、外音に起因するグレーチングローブの発生を抑制することができる。これにより、外音に起因するグレーチングローブによる音源の方位の誤標定を抑制することができる。その結果、音源方位標定装置による音源の方位標定精度を向上させることができる。また、マイクロホンのそれぞれに対して音波遮蔽フードを設ける場合と比較して、装置の全体で部品点数や部材コストを低減できるため、製品コストの増大を抑制することができる。 According to the present invention, the sound wave shielding hood is installed so as to surround the array sensor, and shields at least one of the plurality of microphones from sound waves coming from the periphery of the azimuth determination range and external sounds. . Therefore, the reception of external sounds is sufficiently suppressed in the entire device, and the generation of grating lobes due to external sounds can be suppressed. As a result, misorientation of the direction of the sound source due to grating lobes caused by external sounds can be suppressed. As a result, it is possible to improve the accuracy of sound source azimuth determination by the sound source azimuth determination device. In addition, compared to the case where a sound wave shielding hood is provided for each microphone, it is possible to reduce the number of parts and cost of members for the entire device, thereby suppressing an increase in product cost.
本発明の実施形態に係る音源方位標定装置の一例を示す図である。1 is a diagram showing an example of a sound source azimuth locating device according to an embodiment of the present invention; FIG. 本発明の実施形態に係る音源方位標定装置の一例の斜視図である。1 is a perspective view of an example of a sound source azimuth locating device according to an embodiment of the present invention; FIG. マイクロホンの配置パターンの一例を示す図である。FIG. 4 is a diagram showing an example of an arrangement pattern of microphones; 音源方位標定装置の機能ブロック図である。1 is a functional block diagram of a sound source azimuth locating device; FIG. 音源方位標定装置による音源の方位標定範囲の一例を示す図である。FIG. 2 is a diagram showing an example of a sound source azimuth range by a sound source azimuth determination device; 音波の到来方位を説明するための図である。FIG. 4 is a diagram for explaining the direction of arrival of sound waves; 音波が複数のマイクロホンによって検出される様子を示す模式図である。FIG. 4 is a schematic diagram showing how sound waves are detected by a plurality of microphones; 各マイクロホンによって検出された音圧情報の一例を示す図である。It is a figure which shows an example of the sound pressure information detected by each microphone. フードの形状の他の例を示す図である。FIG. 10 is a diagram showing another example of the shape of the hood; マイクロホンの配置パターンの他の例を示す図である。FIG. 10 is a diagram showing another example of the arrangement pattern of microphones; 図10に示すB―B線に沿う矢視断面図である。11 is a cross-sectional view taken along line BB shown in FIG. 10; FIG. フードの高さを、式(2)を満たす最小高さに設定した場合における、フードによって遮蔽される範囲を説明するための図である。FIG. 10 is a diagram for explaining a range shielded by the hood when the height of the hood is set to a minimum height that satisfies Equation (2); フードの高さを、式(2)を満たす最大高さに設定した場合における、フードによって遮蔽される範囲を説明するための図である。FIG. 5 is a diagram for explaining a range shielded by the hood when the height of the hood is set to the maximum height that satisfies Equation (2); 音源方位標定装置の正面(0°)に音源がある場合に、遅延和法ビームフォーミング計算によって作成された音圧マップの一部を一次元の音波分布として示す図である。FIG. 10 is a diagram showing a one-dimensional sound wave distribution part of a sound pressure map created by delay-and-sum beamforming calculation when a sound source is in front (0°) of the sound source azimuth locator; 本発明の実施形態で実行される制御の一例を説明するためのフローチャートである。4 is a flowchart for explaining an example of control executed in an embodiment of the present invention; フードの高さが低い場合におけるマイクロホン毎の受信音圧分布の一例を示す図である。FIG. 5 is a diagram showing an example of received sound pressure distribution for each microphone when the height of the hood is low; フードの高さが高い場合におけるマイクロホン毎の受信音圧分布の一例を示す図である。FIG. 5 is a diagram showing an example of received sound pressure distribution for each microphone when the height of the hood is high;
 以下、本発明の実施形態を説明する。図1は、本発明の実施形態に係る音源方位標定装置の一例を示す図であって、図1の(a)は、音源方位標定装置の正面図であり、図1の(b)は、図1の(a)に示すA-A線に沿う矢視断面図であり、図1の(c)は音源方位標定装置の背面図である。図2は、本発明の実施形態に係る音源方位標定装置の斜視図である。ここに示す本実施形態に係る音源方位標定装置1は、カメラ2と、アレイセンサ3と、演算手段4と、表示手段5と、入力手段6と、筐体7と、音波遮蔽フード(以下、単にフードと記す。)8とを主要な構成要素として有している。図1および図2に示す例では、音源方位標定装置1の筐体7の正面側にカメラ2およびアレイセンサ3ならびにフード8が設けられている。また、筐体7の内部に演算手段4が設けられている。筐体7の背面側に表示手段5および入力手段6が設けられている。 Embodiments of the present invention will be described below. 1A and 1B are diagrams showing an example of a sound source azimuth determination apparatus according to an embodiment of the present invention. FIG. 1(a) is a front view of the sound source azimuth determination apparatus, and FIG. FIG. 1(a) is a cross-sectional view taken along line AA shown in FIG. 1(a), and FIG. 1(c) is a rear view of the sound source azimuth locating device. FIG. 2 is a perspective view of a sound source azimuth determination device according to an embodiment of the present invention. The sound source azimuth determination device 1 according to this embodiment shown here includes a camera 2, an array sensor 3, a computing means 4, a display means 5, an input means 6, a housing 7, and a sound wave shielding hood (hereinafter referred to as It is simply described as a hood.) 8 as a main component. In the example shown in FIGS. 1 and 2, the camera 2, the array sensor 3, and the hood 8 are provided on the front side of the housing 7 of the sound source azimuth locating device 1. FIG. Further, a computing means 4 is provided inside the housing 7 . A display means 5 and an input means 6 are provided on the rear side of the housing 7 .
 カメラ2は、測定対象を撮影し、得られた撮影画像を演算手段4に出力する。撮影画像は、遅延和法ビームフォーミング計算で得られた音圧の2次元分布(音圧マップと記す。)に重ね合わせる目的で用いられる。ここで、遅延和法ビームフォーミング計算とは、アレイセンサ3における複数のマイクロホンで測定される音波の位相差を用いて、当該マイクロホンの正面方位に対する音波の到来方位角度を求める計算手法をいう。カメラ2の倍率や視野の広さ等は、音源の探索範囲に応じて適宜調節されてよい。カメラ2は、例えば、CCDセンサまたはCMOSセンサ等のイメージセンサとレンズとなどを備えるデジタルカメラであってよい。 The camera 2 captures an image of the object to be measured, and outputs the captured image obtained to the computing means 4 . The captured image is used for the purpose of superimposing it on a two-dimensional distribution of sound pressure (referred to as a sound pressure map) obtained by the delay-and-sum beamforming calculation. Here, the delay-and-sum method beamforming calculation is a calculation method that uses the phase difference of sound waves measured by a plurality of microphones in the array sensor 3 to obtain the azimuth angle of arrival of sound waves with respect to the front azimuth of the microphones. The magnification and field of view of the camera 2 may be appropriately adjusted according to the search range of the sound source. The camera 2 may be, for example, a digital camera including an image sensor such as a CCD sensor or a CMOS sensor and a lens.
 上記のカメラ2はアレイセンサ3の中心に設けられる。カメラ2をアレイセンサ3の中心に設けることによって、遅延和法ビームフォーミング計算で得られた音圧マップに撮影画像を重ね合わせる際に、測定対象までの距離に因らず、撮影画像と音圧マップとをズレなく重ね合わせた画像を作成できる。 The above camera 2 is provided at the center of the array sensor 3. By providing the camera 2 at the center of the array sensor 3, when the captured image is superimposed on the sound pressure map obtained by the delay sum method beamforming calculation, regardless of the distance to the measurement object, the captured image and the sound pressure You can create an image that overlaps the map without any gap.
 アレイセンサ3は、複数のマイクロホン9を有する。マイクロホン9は、図示しない音源から発せられた音波を受信し、受信した音波の音圧情報を出力するように構成されている。本発明の実施形態において、各マイクロホン9は、平板状のベースプレート上に設けられている。図3は、マイクロホン9の配置パターンの一例を示す図である。図3に示す例では、同一平面上であって、中心が同じ2つの共円多角形(図示せず)の頂点のそれぞれに、各マイクロホン9の全体が非回転対称となるように配置される。マイクロホン9は、可聴音から周波数100kHzの範囲内の音波を受信するように構成されている。マイクロホン9から出力された音圧情報は、演算手段4に入力され、当該演算手段4によって任意の周波数帯にバンドパスフィルター処理され、遅延和法ビームフォーミング計算が実施される。なお、本発明の実施形態では、マイクロホン9が所定の広帯域の音波を検出する場合について例示しているが、単一波長もしくは狭帯域の音波を検出してもよい。 The array sensor 3 has multiple microphones 9 . The microphone 9 is configured to receive sound waves emitted from a sound source (not shown) and output sound pressure information of the received sound waves. In the embodiment of the present invention, each microphone 9 is provided on a flat base plate. FIG. 3 is a diagram showing an example of an arrangement pattern of the microphones 9. As shown in FIG. In the example shown in FIG. 3, each microphone 9 as a whole is arranged so as to be non-rotationally symmetrical at each of the vertices of two co-circular polygons (not shown) on the same plane and having the same center. . The microphone 9 is arranged to receive sound waves in the range of audible to 100 kHz frequency. The sound pressure information output from the microphone 9 is input to the computing means 4, band-pass filtered to an arbitrary frequency band by the computing means 4, and delay-and-sum method beamforming calculation is performed. In the embodiment of the present invention, the microphone 9 detects a predetermined broadband sound wave, but it may detect a single-wavelength or narrowband sound wave.
 図3に示す例では、アレイセンサ3は13個のマイクロホン9を有している。それらのマイクロホン9は、例えば、大気中を伝搬する40kHzの音波(気温25℃、1気圧として、波長約8.7mm)が測定対象であるときに、外接円の直径が41mmである外側の共円正7角形の各頂点の位置と、外接円の直径が15.3mmである内側の共円正6角形の各頂点の位置とにそれぞれ設けられる。外側の共円正7角形の外接円と、内側の共円正6角形の外接円とは、カメラ2を中心とした同心円上に設けられる。なお、測定する音波の周波数、及び、共円正n角形の外接円の大きさは、これに限定されない。例えば、可聴音(例えば20Hz)から周波数100kHzの範囲内からマイクロホン9による測定周波数を選択し、その周波数(波長)に応じて共円正n角形の外接円の大きさを適宜設定してよい。 In the example shown in FIG. 3, the array sensor 3 has 13 microphones 9. For example, when a 40 kHz sound wave propagating in the atmosphere (at a temperature of 25° C. and a pressure of 1 atm, a wavelength of about 8.7 mm) is measured, the microphones 9 are used in an outer coherent circle whose circumscribed circle has a diameter of 41 mm. They are provided at the positions of the vertices of the regular heptagon and the positions of the vertices of the inner regular hexagon whose circumscribed circle has a diameter of 15.3 mm. The circumscribed circle of the outer regular heptagon and the circumscribed circle of the inner regular hexagon are provided on concentric circles centered on the camera 2 . It should be noted that the frequency of the sound wave to be measured and the size of the circumscribed circle of the regular n-sided symmetry are not limited to these. For example, the measurement frequency by the microphone 9 may be selected from the range of audible sound (for example, 20 Hz) to 100 kHz, and the size of the circumscribed circle of the regular n-sided symmetry may be appropriately set according to the frequency (wavelength).
 本発明の実施形態に係る音源方位標定装置1では、上述したように、13個のマイクロホン9が同じ中心の共円多角形である外側の共円正7角形の各頂と、内側の共円正6角形の各頂点とにそれぞれ設けられている。このように配置されたマイクロホン9は、全体として非回転対称となる。ここで、非回転対称とは、共円多角形の外接円の中心に対してアレイセンサ3を360°回転させる間に、全てのマイクロホン9が同時に回転前と同じ配置にならない配置を意味する。このように、複数のマイクロホン9を全体として非回転対称となるように配置することで、マイクロホン9の設置数の増大を抑制しながら指向性を向上でき、グレーチングローブの発生を抑制できるアレイセンサ3とすることができる。 In the sound source azimuth locating apparatus 1 according to the embodiment of the present invention, as described above, the 13 microphones 9 are arranged at the apexes of the outer cyclic regular heptagon, which is a symmetrical polygon with the same center, and the inner symmetrical hexagon. It is provided at each vertex of the regular hexagon. The microphones 9 arranged in this manner are rotationally asymmetric as a whole. Here, "non-rotationally symmetrical" means an arrangement in which all the microphones 9 are not simultaneously arranged in the same arrangement as before the rotation while the array sensor 3 is rotated 360° with respect to the center of the circumscribed circle of the symmetrical polygon. In this way, by arranging the plurality of microphones 9 so as to be rotationally asymmetric as a whole, the array sensor 3 can improve directivity while suppressing an increase in the number of installed microphones 9, and can suppress the occurrence of grating lobes. can be
 表示手段5は、例えば、液晶ディスプレイ(LCD)であってよく、演算手段4で作成された重ね合わせ画像を表示するように構成されている。入力手段6は、例えば、プッシュスイッチであってよく、表示手段5の近傍に複数設けられている。使用者が入力手段6を押圧することで、所定の入力信号が演算手段4に入力される。なお、プッシュスイッチに替えて、またはプッシュスイッチとともにタッチパネル方式の入力手段6を用いてもよい。 The display means 5 may be, for example, a liquid crystal display (LCD), and is configured to display the superimposed image created by the calculation means 4. The input means 6 may be push switches, for example, and are provided in the vicinity of the display means 5 . When the user presses the input means 6 , a predetermined input signal is input to the computing means 4 . Note that a touch panel type input means 6 may be used in place of the push switch or together with the push switch.
 図4は、音源方位標定装置1の機能ブロック図である。図4を用いて、音源方位標定装置1における重ね合わせ画像の表示処理について説明する。演算手段4は、処理部10と格納部11とを有する。処理部10は、例えば、CPU等であって、格納部11に格納されているプログラムやデータ、取得した情報などを用いて所定の演算を実行し、音源方位標定装置1の動作を制御する制御指令信号を出力する。格納部11は、例えば、更新記録可能なフラッシュメモリ、内蔵あるいはデータ通信端子で接続されたハードディスク、メモリーカード等の情報記録媒体およびその読み書き装置である。格納部11には、音源方位標定装置1が有する種々の機能を実現するためのプログラムや、当該プログラム実行中に使用する情報等が予め格納されている。 FIG. 4 is a functional block diagram of the sound source azimuth determination device 1. FIG. Display processing of a superimposed image in the sound source azimuth locating apparatus 1 will be described with reference to FIG. The computing means 4 has a processing section 10 and a storage section 11 . The processing unit 10 is, for example, a CPU or the like, and executes predetermined calculations using programs and data stored in the storage unit 11, acquired information, etc., and controls the operation of the sound source azimuth determination device 1. Output command signal. The storage unit 11 is, for example, an information recording medium such as a flash memory capable of updating and recording, a built-in or connected hard disk, a memory card, and a read/write device thereof. The storage unit 11 stores in advance programs for realizing various functions of the sound source azimuth locating apparatus 1, information used during execution of the programs, and the like.
 処理部10は、アレイセンサ3から取得した音圧情報を用いて、例えば各マイクロホン9で検出される音圧情報の時間差(位相差)に基づいて、方位標定範囲の予め定められた各方位分割区分に対して遅延和法ビームフォーミング計算を行う。こうすることによって、各方位分割区分の音圧を2次元分布にまとめた音圧マップを作成する。処理部10は、カメラ2の撮影領域に対応した音圧マップを撮影画像に重ね合わせた重ね合わせ画像を作成する。具体的には、処理部10は、音圧マップを透過画像や半透明画像に変換し、これを撮影画像に重ね合わせることによって重ね合わせ画像を作成する。また、処理部10は、重ね合わせ画像を表示手段5へ出力して表示させる。重ね合わせ画像では、被写体と音圧分布とが重ね合わされて表示される。そのため、使用者が当該重ね合わせ画像を確認することで、撮影画像中の被写体の位置と音波の音圧分布との対応関係が一目で判別できる。したがって、音圧が最大となる方位を音波の到来方位として標定することに加え、被写体のどの部分に音源が位置するかを判断することができる。 Using the sound pressure information acquired from the array sensor 3, the processing unit 10 divides the azimuth determination range into predetermined azimuth divisions based on, for example, the time difference (phase difference) of the sound pressure information detected by each microphone 9. Perform delay-and-sum beamforming calculations for the partitions. By doing so, a sound pressure map is created in which the sound pressure of each azimuth segment is organized into a two-dimensional distribution. The processing unit 10 creates a superimposed image in which the sound pressure map corresponding to the imaging area of the camera 2 is superimposed on the captured image. Specifically, the processing unit 10 converts the sound pressure map into a transparent image or a translucent image, and superimposes this on the captured image to create a superimposed image. The processing unit 10 also outputs the superimposed image to the display unit 5 for display. In the superimposed image, the subject and the sound pressure distribution are superimposed and displayed. Therefore, by confirming the superimposed image, the user can determine the correspondence relationship between the position of the subject in the captured image and the sound pressure distribution of the sound wave at a glance. Therefore, in addition to locating the azimuth at which the sound pressure is maximum as the arrival azimuth of the sound wave, it is possible to determine which part of the object the sound source is located.
 図5は、音源方位標定装置1による音源の方位標定範囲TAの一例を示す図であり、図5に示す例では、方位標定範囲TAは四角形を成しており、これは設計上、予め定められる。したがって、本発明の実施形態では、結果的に、音源方位標定装置1の正面における図5に示す四角錐状の領域内において、図示しない音源の探索を行うようになっている。また、図5に示す方位標定範囲TAの四辺つまり前記四角錐底面の外周面およびその内側近傍に相当する方位が、本発明の実施形態における方位標定範囲TAの周縁部OEに相当している。本発明の実施形態における方位標定範囲TAの最大角度βrangeは、図5に示す四角錐の4つの斜辺のうち、四角錐の底面で対角に位置する斜辺同士の間の角度を意味している。 FIG. 5 is a diagram showing an example of a sound source azimuth determination range TA by the sound source azimuth determination device 1. In the example shown in FIG. be done. Therefore, in the embodiment of the present invention, as a result, a sound source (not shown) is searched for within the quadrangular pyramid-shaped region shown in FIG. Further, the four sides of the azimuth determination range TA shown in FIG. 5, that is, the azimuth corresponding to the outer peripheral surface of the bottom of the quadrangular pyramid and the vicinity of the inner side thereof, correspond to the peripheral edge portion OE of the azimuth determination range TA in the embodiment of the present invention. The maximum angle βrange of the azimuth determination range TA in the embodiment of the present invention means the angle between the oblique sides located diagonally on the base of the quadrangular pyramid among the four oblique sides of the quadrangular pyramid shown in FIG. .
 図6は、音波の到来方位を説明するための図である。図6に示すように、音波の到来方位は、音源が存在する方位であり、マイクロホン9の配置面(XY面)に対し直交する方位(Z方位)に対する方位角θと、配置面(XY面)上の基準となる任意の方位(例えばX方位)に対する方位角φとによって到来方位角(θ、ψ)として表現される。処理部10は、複数のマイクロホン9において検出された音圧情報を用いて、遅延和法ビームフォーミング計算によって到来方位角(θ、ψ)を決定する。 FIG. 6 is a diagram for explaining the direction of arrival of sound waves. As shown in FIG. 6, the arrival azimuth of the sound wave is the azimuth in which the sound source exists. ) is expressed as an arrival azimuth angle (θ, ψ) by an azimuth angle φ with respect to an arbitrary azimuth (for example, X azimuth) serving as a reference above. The processing unit 10 uses the sound pressure information detected by the plurality of microphones 9 to determine the arrival azimuth angle (θ, ψ) by delay-and-sum beamforming calculation.
 図7は、音波が複数のマイクロホン9によって検出される様子を示す模式図であり、図8は、各マイクロホン9によって検出された音圧情報の一例を示す図である。なお、説明を簡単にするために、図7および図8では、3つのマイクロホン9a,9b,9cを等間隔に一列に並べた場合について例示する。音波が上記の到来方位角(θ、ψ)から到来すると、マイクロホン9aを基準マイクロホン(以下、第1マイクロホン9aと記す。)としたときに、第1マイクロホン9aと互いに隣接する第2マイクロホン9bには、第1マイクロホン9aに対して時間差τだけずれて音波が到達する。第1マイクロホン9aと第2マイクロホン9bとに音波が到達する時間差τ(s)は、下記式(1)によって求めることができる。
   τ=(L×sinθ)/v     ・・・(1)
  上記の式(1)のvは音速(mm/s)、θは音波の方位角、Lは第1マイクロホン9aと第2マイクロホン9bとの間の距離(後述するマイクロホン9同士の間隔d)(mm)である。
FIG. 7 is a schematic diagram showing how sound waves are detected by a plurality of microphones 9, and FIG. 8 is a diagram showing an example of sound pressure information detected by each microphone 9. As shown in FIG. 7 and 8 illustrate the case where the three microphones 9a, 9b, and 9c are arranged in a line at equal intervals for the sake of simplicity of explanation. When sound waves arrive from the above arrival azimuth angles (θ, ψ), when the microphone 9a is used as a reference microphone (hereinafter referred to as the first microphone 9a), the second microphone 9b adjacent to the first microphone 9a , the sound waves arrive at the first microphone 9a with a time lag of τ. A time difference τ(s) between arrival of sound waves at the first microphone 9a and the second microphone 9b can be obtained by the following equation (1).
τ=(L×sin θ)/v (1)
In the above formula (1), v is the speed of sound (mm/s), θ is the azimuth angle of the sound wave, and L is the distance between the first microphone 9a and the second microphone 9b (the distance d between the microphones 9 to be described later) ( mm).
 なお、図7および図8では、方位角θに起因して時間差τ(位相差)が生じることを示しているが、方位角ψに起因した時間差も生じる。方位角ψに対する考え方も式(1)と同一であり、時間差τは到来方位角(θ、ψ)に応じて変化する。 Although FIGS. 7 and 8 show that the time difference τ (phase difference) is generated due to the azimuth angle θ, the time difference due to the azimuth angle ψ is also generated. The concept of the azimuth angle ψ is the same as that of the equation (1), and the time difference τ changes according to the arrival azimuth angles (θ, ψ).
 ここで、各マイクロホン9a,9b,9cに対して十分に離れた箇所にある音源から音波が到来する場合を考える。基準である第1マイクロホン9aと第3マイクロホン9cとの間隔2dは、第1マイクロホン9aと第2マイクロホン9bとの間隔dの2倍に設定されている。そのため、第3マイクロホン9cには、第2マイクロホン9bに対して時間差τだけ遅れて音波が到達する。つまり、第1マイクロホン9aでの音波の到来時間と第3マイクロホン9cでの音波の到来時間との時間差2τは、第1マイクロホン9aでの音波の到来時間と第2マイクロホン9bでの音波の到来時間との時間差τの2倍になる。第3マイクロホン9cには、第2マイクロホン9bよりも2倍の時間遅れて音波が到達する。したがって、図8に示すように、各マイクロホン9a,9b,9cで検出した音圧情報は基準の第1マイクロホン9aからの距離Lに応じた時間差τ分だけずれている。これらを利用して、処理部10は音波の到来方位角(θ、ψ)を標定する。 Here, consider a case where sound waves arrive from a sound source sufficiently distant from each of the microphones 9a, 9b, and 9c. The distance 2d between the first microphone 9a and the third microphone 9c, which is the reference, is set to twice the distance d between the first microphone 9a and the second microphone 9b. Therefore, the sound wave reaches the third microphone 9c with a delay of τ with respect to the second microphone 9b. That is, the time difference 2τ between the arrival time of the sound wave at the first microphone 9a and the arrival time of the sound wave at the third microphone 9c is equal to the arrival time of the sound wave at the first microphone 9a and the arrival time of the sound wave at the second microphone 9b. is twice the time difference τ with The sound wave reaches the third microphone 9c with a time delay twice as long as that of the second microphone 9b. Therefore, as shown in FIG. 8, the sound pressure information detected by each of the microphones 9a, 9b, and 9c is shifted by the time difference τ corresponding to the distance L from the reference first microphone 9a. Using these, the processing unit 10 locates the arrival azimuth angle (θ, ψ) of the sound wave.
 具体的には、処理部10は、複数のマイクロホン9において、それぞれ受信された音圧情報の時間を時間差τ分ずらし、時間をずらした複数の音圧情報を加算した加算値を算出する。なお、処理部10には、到来方位角(θ、ψ)に対応した複数の異なる時間差τが予め設定されており、この複数の異なる時間差τは、距離Lに応じて複数のマイクロホン9ごとにそれぞれ設定されている。処理部10は、設定された複数の異なる時間差τを用いて、上述したように、ずらす時間を変化させて複数の加算値を求める。 Specifically, the processing unit 10 shifts the time of the sound pressure information received by the plurality of microphones 9 by the time difference τ, and calculates an addition value by adding the plurality of time-shifted sound pressure information. A plurality of different time differences τ corresponding to the arrival azimuth angles (θ, ψ) are set in advance in the processing unit 10, and the plurality of different time differences τ are set for each of the plurality of microphones 9 according to the distance L. are set respectively. The processing unit 10 uses a plurality of different set time differences τ to obtain a plurality of addition values by changing the shift time as described above.
 到来方位角(θ、ψ)に対応する時間差τで加算された加算値は各音圧情報の波形の位相が揃うため最大になる。一方、複数の加算値のうち、到来方位角(θ、ψ)に対応していない時間差τで加算された加算値は、位相が揃わずに互いに打ち消し合って大きくならない。そこで、処理部10は、音源の方位標定範囲TA内で想定する想定音源からの音波の想定到来方位角(θ‘、ψ’)を逐次変化させて複数の加算値を求める。また、こうして求まる複数の加算値を用いて、方位標定範囲TA内の音圧の2次元分布である音圧マップを作成する。そして、複数の加算値のうち、最大の加算値になる想定到来方位角を音源の方位として標定する。 The added value added with the time difference τ corresponding to the arrival azimuth angle (θ, ψ) becomes maximum because the phases of the waveforms of each sound pressure information are aligned. On the other hand, among the plurality of added values, the added values added with the time difference τ that do not correspond to the arrival azimuth angles (θ, ψ) are out of phase and cancel each other out and do not increase. Therefore, the processing unit 10 successively changes the assumed arrival azimuth angles (θ', ψ') of the sound waves from the assumed sound source within the azimuth determination range TA of the sound source to obtain a plurality of added values. A sound pressure map, which is a two-dimensional distribution of sound pressure within the azimuth determination range TA, is created using a plurality of added values obtained in this manner. Then, the assumed arrival azimuth angle, which is the maximum added value among the multiple added values, is determined as the azimuth of the sound source.
 なお、上記の遅延和法ビームフォーミング計算において、アレイセンサ3を構成する各マイクロホン9の配置と音波波長の関係により、グレーチングローブが発生し、これが誤標定の原因となる場合がある。 In addition, in the delay-and-sum method beamforming calculation described above, depending on the relationship between the arrangement of the microphones 9 constituting the array sensor 3 and the sound wave wavelength, grating lobes may occur, which may cause misorientation.
 なおまた、本発明の実施形態では、処理部10が時間差τに基づいて到来方位角(θ、ψ)を標定する遅延和法ビームフォーミング計算について例示したが、これに限定されず公知の種々の方法を適用することができる。例えば、各マイクロホン9a,9b,9cが同時刻に観測した音圧情報を2次元の空間的な音圧場と捉える。そして、前記音圧情報に対して空間的に2次元フーリエ変換を実施することにより求められる空間波数と到来方位角(θ、ψ)とに相関があることを利用しても遅延和法ビームフォーミング計算とほぼ等価な音源方位標定結果が得られる。 Further, in the embodiment of the present invention, the processing unit 10 exemplifies the delay-and-sum method beamforming calculation in which the arrival azimuth angle (θ, ψ) is determined based on the time difference τ. method can be applied. For example, the sound pressure information observed by the microphones 9a, 9b, and 9c at the same time is regarded as a two-dimensional spatial sound pressure field. Delay-and-sum method beamforming can also be performed by utilizing the fact that there is a correlation between the spatial wave number obtained by spatially performing a two-dimensional Fourier transform on the sound pressure information and the arrival azimuth angle (θ, ψ). A sound source azimuth determination result that is almost equivalent to the calculation is obtained.
 処理部10は、上述したように、重ね合わせ画像を表示手段5に表示するように構成されている。表示手段5に表示する重ね合わせ画像に用いる音圧マップとしては、音圧に応じて連続的に異なる色に色分けさえたカラー画像を用いてよい。処理部10は、入力手段6から表示手段5に表示された画像を保存する指示が入力されると、格納部11にカメラ画像および重ね合わせ画像を格納するように構成されている。 The processing unit 10 is configured to display the superimposed image on the display means 5 as described above. As the sound pressure map used for the superimposed image displayed on the display means 5, a color image in which different colors are continuously assigned according to the sound pressure may be used. The processing unit 10 is configured to store the camera image and the superimposed image in the storage unit 11 when an instruction to save the image displayed on the display unit 5 is input from the input unit 6 .
 本実施形態に係る音源方位標定装置1においては、音源方位標定精度を高める観点で、音源方位標定性能の高いアレイセンサ3を用いることが好ましい。アレイセンサ3の音源方位標定性能は、複数のマイクロホン9の配置に大きく影響される。 In the sound source azimuth determination device 1 according to the present embodiment, it is preferable to use the array sensor 3 with high sound source azimuth performance from the viewpoint of increasing the sound source azimuth determination accuracy. The sound source orientation performance of the array sensor 3 is greatly affected by the arrangement of the multiple microphones 9 .
 音源方位標定性能指標の一つに指向性がある。指向性とは、音圧マップに観測される音源音圧(以下、メインローブと記す。)をシャープに表示できるか否かを示す指標である。メインローブの半値全幅(FWHM)が狭いほど、指向性が高くなるので、音源方位の標定に有利になる。メインローブの半値全幅(FWHM)は、アレイセンサ3で検出する音波の波長λとアレイセンサ3の開口幅Dとの比λ/D(rad)で表される。指向性を高めるには、波長に対してアレイセンサ3の開口幅を大きくすることが有効である。アレイセンサ3の開口幅とは、アレイセンサ3の中心に対して最も外側に配置された複数のマイクロホン9を通る仮想円の直径であり、本発明の実施形態では、上述した2つの共円多角形のうち、外側の共円多角形に接する外接円の直径である。 Directivity is one of the sound source azimuth performance indicators. The directivity is an index indicating whether or not the sound source sound pressure (hereinafter referred to as main lobe) observed on the sound pressure map can be displayed sharply. The narrower the full width at half maximum (FWHM) of the main lobe, the higher the directivity, which is advantageous for locating the direction of the sound source. The full width at half maximum (FWHM) of the main lobe is represented by the ratio λ/D (rad) between the wavelength λ of the sound wave detected by the array sensor 3 and the aperture width D of the array sensor 3 . In order to improve the directivity, it is effective to increase the aperture width of the array sensor 3 with respect to the wavelength. The aperture width of the array sensor 3 is the diameter of a virtual circle passing through the plurality of microphones 9 arranged on the outermost side with respect to the center of the array sensor 3. The diameter of the circumscribed circle of the polygon that touches the outer cyclic polygon.
 音源方位標定性能指標のもう一つは音源強度比である。音源強度比とは、グレーチングローブの強度とメインローブの強度との比であり、メインローブの強度をグレーチングローブの強度で除算して表される。音源強度比が高いことは、メインローブの強度に比べてグレーチングローブの強度が十分小さいことを意味する。メインローブの強度に対してグレーチングローブの強度を小さくできれば、グレーチングローブによる音源方位の誤判定を抑制できるので、音源強度比が高いことは音源方位の標定に有利になる。音源強度比を高くするには、マイクロホン9の数を多くしてマイクロホン9の配置間隔を狭くすることが有効である。しかしながら、製品コストの低減、および、演算手段4での演算負荷の軽減の観点では、マイクロホン9の数はなるべく少ない方が好ましい。そのため、本発明の実施形態のように、マイクロホン9の配置を工夫することにより、グレーチングローブの発生を抑制する場合もある。 Another sound source azimuth performance index is the sound source strength ratio. The sound source intensity ratio is the ratio of the intensity of the grating lobe to the intensity of the main lobe, and is expressed by dividing the intensity of the main lobe by the intensity of the grating lobe. A high sound source intensity ratio means that the intensity of the grating lobe is sufficiently smaller than the intensity of the main lobe. If the intensity of the grating lobe can be made smaller than the intensity of the main lobe, erroneous determination of the direction of the sound source due to the grating lobe can be suppressed. In order to increase the sound source intensity ratio, it is effective to increase the number of microphones 9 and narrow the arrangement interval of the microphones 9 . However, from the viewpoint of reducing the product cost and reducing the computation load on the computing means 4, it is preferable that the number of microphones 9 is as small as possible. Therefore, the generation of grating lobes may be suppressed by devising the arrangement of the microphones 9 as in the embodiment of the present invention.
 ここで、本発明の実施形態におけるフード8について説明する。フード8は、図1や図2に示すように、アレイセンサ3の配置平面上であってかつアレイセンサ3の外側に位置していてアレイセンサ3を囲うように構成されている。図1や図2に示す例では、フード8は四角筒状に形成されている。なお、フード8は四角筒に限定されない。図9は、フード8の形状の他の例を示す模式図である。フード8の形状は、図9の(a)に示すように、円筒状に形成されていてよく、図9の(b)に示すように、円錐台殻状に形成されていてよい。あるいは、図9の(c)に示すように、楕円筒殻状に形成されていてよく、図9の(d)に示すように、楕円台殻状に形成されていてよい。もしくは、図9の(e)に示すように、四角錐台殻状に形成されていてよい。 Here, the hood 8 in the embodiment of the present invention will be explained. As shown in FIGS. 1 and 2 , the hood 8 is positioned on the plane of arrangement of the array sensor 3 and outside the array sensor 3 to surround the array sensor 3 . In the examples shown in FIGS. 1 and 2, the hood 8 is formed in a square tubular shape. Note that the hood 8 is not limited to a rectangular cylinder. FIG. 9 is a schematic diagram showing another example of the shape of the hood 8. FIG. The hood 8 may have a cylindrical shape as shown in FIG. 9(a), or a truncated conical shell shape as shown in FIG. 9(b). Alternatively, as shown in FIG. 9(c), it may be formed in an elliptical cylindrical shell shape, or as shown in FIG. 9(d), it may be formed in an elliptical trapezoidal shell shape. Alternatively, as shown in (e) of FIG. 9, it may be formed in the shape of a truncated quadrangular pyramid shell.
 フード8の形状は、必ずしも、マイクロホン9側よりも観測方向側が拡がっている錐台形状、つまり、テーパー形状である必要はない。すなわち、観測方向側よりもマイクロホン9側が拡がっている錐台形状であってもよい。フード8の形状を、上述したマイクロホン9側よりも観測方向側が拡がっている錐台形状とする場合は、フード8の拡がり角(テーパー角)は方位標定範囲TAの最大角度の半分の角度(βrange/2)以上に拡がらないことが好ましい。これは、フード8のテーパー角が上述した角度以上になると、フード8によって方位標定範囲TAの周縁部OEから到来する音波を遮蔽できず、その結果、十分な外音遮蔽性能も得られない可能性があるためである。なお、図1および図2に示す例では、フード8は四角筒状に形成されているが、これに替えて、四角筒以外の多角筒状に形成されていてよい。また、図9の(e)に示す四角錐台殻状に替えて、四角錐台殻状以外の多角錐台殻状に形成されていてよい。 The shape of the hood 8 does not necessarily have to be a frustum shape in which the observation direction side is wider than the microphone 9 side, that is, a tapered shape. That is, it may have a frustum shape in which the microphone 9 side is wider than the observation direction side. When the shape of the hood 8 is a truncated cone shape in which the observation direction side is wider than the microphone 9 side, the spread angle (taper angle) of the hood 8 is half the maximum angle of the azimuth determination range TA (βrange /2) It is preferable not to spread beyond. This is because if the taper angle of the hood 8 is greater than or equal to the angle described above, the hood 8 cannot shield sound waves coming from the peripheral edge portion OE of the azimuth determination range TA, and as a result, it is possible that sufficient external sound shielding performance cannot be obtained. This is because of the nature of In the example shown in FIGS. 1 and 2, the hood 8 is formed in a square tubular shape, but instead of this, it may be formed in a polygonal tubular shape other than a square tubular shape. Also, instead of the truncated quadrangular pyramid shell shape shown in FIG.
 また、上記の仮想円の円周方向で、フード8に一定の間隔でフード8の軸線方向に延びるスリットが形成されていてもよい。あるいは、上記の仮想円の円周方向に一定の間隔で軸線方向に延びる図示しない複数のプレートを遮蔽部として配置してフード8を構成してもよい。フード8は、要は、アレイセンサ3の外側に位置していて、アレイセンサ3の周囲の少なくとも一部を、上記の仮想円の半径方向で外側から覆うように構成されていればよい。 Further, slits extending in the axial direction of the hood 8 may be formed at regular intervals in the circumferential direction of the virtual circle. Alternatively, the hood 8 may be configured by arranging a plurality of plates (not shown) extending in the axial direction at regular intervals in the circumferential direction of the virtual circle as shielding portions. The point is that the hood 8 is positioned outside the array sensor 3 and should be configured to cover at least a portion of the circumference of the array sensor 3 from the outside in the radial direction of the virtual circle.
 本発明の実施形態におけるフード8は遮音性能を有する遮音材、または、吸音性能を有する吸音材、もしくは、それらの組み合わせから構成されていてよい。遮音材は、例えば合成樹脂材料や金属材料などによって構成され、吸音材は軟質ウレタンや、ポリスチレンフォーム、メラミンフォーム、ゴムスポンジ系、繊維系のグラスウールやホワイトウールなどによって構成されている。遮音材と吸音材とを組み合わせてフード8を構成する場合には、フード8の内側部分つまり、板厚方位でマイクロホン9側の部分を吸音材によって構成することが好ましい。これは、フード8内での音波の多重反射を防止もしくは抑制するためである。 The hood 8 in the embodiment of the present invention may be composed of a sound insulating material having sound insulating performance, a sound absorbing material having sound absorbing performance, or a combination thereof. The sound insulating material is made of, for example, a synthetic resin material or a metal material, and the sound absorbing material is made of soft urethane, polystyrene foam, melamine foam, rubber sponge, fiber-based glass wool, white wool, or the like. When the hood 8 is composed of a combination of a sound insulating material and a sound absorbing material, it is preferable that the inner portion of the hood 8, that is, the portion on the side of the microphone 9 in the plate thickness direction, is composed of the sound absorbing material. This is to prevent or suppress multiple reflections of sound waves within the hood 8 .
 上述したフード8の高さやフード8の内径などのサイズは、音源方位標定装置1の方位標定範囲TAの最大角度βrangeと、アレイセンサ3の各マイクロホン9の配置パターンとに基づいて決定される。具体的には、例えば、各マイクロホン9を図10示すように配置した場合を例として説明する。なお、図10に示す例は、説明の簡略化のため、方位標定範囲TA外に存在する音源の記載を省略している。また、図10に示す例でのマイクロホン9同士の間隔dは、音源方位標定装置1によって取得した音圧情報に基づいて遅延和法ビームフォーミング計算を実施したときに、方位標定範囲TAの最大角度βrange内に外音によるグレーチングローブが発生する間隔dとしている。 The sizes such as the height of the hood 8 and the inner diameter of the hood 8 described above are determined based on the maximum angle βrange of the azimuth locating range TA of the sound source azimuth locating device 1 and the arrangement pattern of the microphones 9 of the array sensor 3 . Specifically, for example, a case where the microphones 9 are arranged as shown in FIG. 10 will be described as an example. Note that, in the example shown in FIG. 10, the description of sound sources existing outside the azimuth determination range TA is omitted for the sake of simplicity of explanation. Further, the distance d between the microphones 9 in the example shown in FIG. The interval d at which grating lobes due to external sound are generated within β range is set.
 図10に示す例では、アレイセンサ3の中心を中心とする同心円を成す2つの仮想円の円周上のそれぞれに、一定の間隔でマイクロホン9が配置されている。具体的には、2つの仮想円のうち、外側の仮想円上に4つのマイクロホン9が一定間隔で配置され、内側の仮想円上に4つのマイクロホン9が一定間隔で配置されている。また、図10に示す例では、2つの仮想円のうち、外側の仮想円の直径は、内側の仮想円の直径のほぼ2倍になっている。以下の説明では、フード8の開口つまりフード8の内径は音源方位標定装置1で測定する音波の波長よりも十分に長く設定されているものと仮定する。また、音源はマイクロホン9の間隔に対して十分に遠方にあるとして平面波が矢印で示す音波到来方向からアレイセンサ3に到来すると仮定する。さらに、音波の回析現象は特には考慮しないレイトレーシング法を適用して、本発明の実施形態におけるフード8の長さや、フード8の内径を説明する。なお、図10に示す例では、前記音波到来方向に沿ってマイクロホン9とフード8の間隔が最も狭くなる。つまり、図10には、フード8に最も近接したマイクロホン9が当該フード8によって最も遮蔽されやすい前記音波到来方向を記載してある。 In the example shown in FIG. 10, microphones 9 are arranged at regular intervals on each of two virtual circles forming concentric circles centered on the center of the array sensor 3 . Specifically, of the two virtual circles, four microphones 9 are arranged at regular intervals on the outer virtual circle, and four microphones 9 are arranged at regular intervals on the inner virtual circle. Also, in the example shown in FIG. 10, the diameter of the outer virtual circle of the two virtual circles is approximately twice the diameter of the inner virtual circle. In the following explanation, it is assumed that the opening of the hood 8, that is, the inner diameter of the hood 8, is set sufficiently longer than the wavelength of the sound waves measured by the sound source azimuth locating device 1. FIG. It is also assumed that the sound source is sufficiently far away from the microphones 9 and that the plane wave arrives at the array sensor 3 from the sound wave arrival direction indicated by the arrow. Further, the length of the hood 8 and the inner diameter of the hood 8 in the embodiment of the present invention will be explained by applying a ray tracing method that does not particularly consider the diffraction phenomenon of sound waves. In the example shown in FIG. 10, the distance between the microphone 9 and the hood 8 is the narrowest along the sound wave arrival direction. That is, FIG. 10 shows the sound wave arrival direction in which the microphone 9 closest to the hood 8 is most likely to be shielded by the hood 8 .
 図11は、本発明の実施形態におけるフード8の高さや、フード8の内径を説明するための図10に示すB―B線に沿う矢視断面図である。ここで、アレイセンサ3の表面に垂直な線(以下、法線と記す。)と方位標定範囲TAの周縁部OEとの成す角度をθmaxとする。図11に示す例では、音源方位標定装置1は、正面側から到来する音波を測定するように構成されている。また、フード8は、アレイセンサ3上に設置された複数のマイクロホン9のうち、1つのマイクロホン9に対して方位標定範囲TAの周縁部OEからの音波を遮蔽するように構成されている。図11においては、前記角度θmaxから到来する音波に対しては、フード8によってマイクロホン9-1が遮蔽される。また、前記角度θmaxより外からアレイセンサ3に到来する音波が本発明の実施形態における外音である。 FIG. 11 is a cross-sectional view along line BB shown in FIG. 10 for explaining the height of the hood 8 and the inner diameter of the hood 8 in the embodiment of the present invention. Here, let θmax be the angle between a line perpendicular to the surface of the array sensor 3 (hereinafter referred to as a normal line) and the peripheral edge OE of the azimuth determination range TA. In the example shown in FIG. 11, the sound source azimuth locating device 1 is configured to measure sound waves arriving from the front side. Further, the hood 8 is configured to shield one microphone 9 among the plurality of microphones 9 installed on the array sensor 3 from sound waves from the peripheral portion OE of the azimuth determination range TA. In FIG. 11, the microphone 9-1 is shielded by the hood 8 against sound waves arriving at the angle θmax. Also, the sound wave that reaches the array sensor 3 from outside the angle θmax is the external sound in the embodiment of the present invention.
 図11に示す符号「a」は、複数のマイクロホン9のうち、音波到来方位側に最も接近して位置しているマイクロホン9-1とフード8との間隔を示している。遅延和法ビームフォーミング計算を用いた音源の方位標定では、少なくとも2つのマイクロホン9によって音波を受信する必要がある。図11に示す例では、前記角度θmaxから音波が到来する場合には、少なくとも音波の到来方向に対してフード8から最も遠い側のマイクロホン9-3,9-4によって音波を受信する必要がある。すなわち、図10および図11に示す例において、前記角度θmaxから音波が到来する場合には、マイクロホン9-3によって音波を受信できれば、少なくとも2つのマイクロホン9-3,9-4によって音波を受信可能となる。図11に示す符号「ax」は、そのマイクロホン9-3と音波到来方向のフード8との距離を示している。音波が方位標定範囲TAの周縁部OEから(図11では前記角度θmaxから)到来する場合に、少なくとも一つのマイクロホン(図10,図11ではマイクロホン9-1)に対して当該音波を遮蔽し、かつ、2つ以上のマイクロホン9(図10,図11ではマイクロホン9-3,9-4)で音波受信が可能であるフード8の高さは、下記の式(2)で表すことができる。
  a・tan(90°-θmax)≦フードの高さ<ax・tan(90°-θmax)・・・(2)
A symbol “a” shown in FIG. 11 indicates the distance between the hood 8 and the microphone 9 - 1 that is positioned closest to the sound wave arrival azimuth side among the plurality of microphones 9 . Sound source azimuth using delay-and-sum beamforming calculations requires reception of sound waves by at least two microphones 9 . In the example shown in FIG. 11, when a sound wave arrives at the angle θmax, it is necessary to receive the sound wave at least by the microphones 9-3 and 9-4 on the farthest side from the hood 8 with respect to the arrival direction of the sound wave. . That is, in the examples shown in FIGS. 10 and 11, when a sound wave arrives at the angle θmax, if the sound wave can be received by the microphone 9-3, the sound wave can be received by at least two microphones 9-3 and 9-4. becomes. The symbol "ax" shown in FIG. 11 indicates the distance between the microphone 9-3 and the hood 8 in the sound wave arrival direction. shielding at least one microphone (microphone 9-1 in FIGS. 10 and 11) when a sound wave arrives from the periphery OE of the azimuth determination range TA (from the angle θmax in FIG. 11); Moreover, the height of the hood 8 at which sound waves can be received by two or more microphones 9 (microphones 9-3 and 9-4 in FIGS. 10 and 11) can be expressed by the following equation (2).
a tan (90°-θmax)≦hood height<ax tan (90°-θmax) (2)
 図12は、フード8の高さを、式(2)を満たす最小高さに設定した場合における、フード8によって遮蔽される範囲を説明するための図である。図12に示すアレイセンサ3上で、フード8によって方位標定範囲TAの周縁部OEから到来する音波が遮蔽される領域にハッチングを付してある。なお、図12でのマイクロホン9の配置は、上述した実施形態に基づく図3に示すマイクロホン9の配置と同一である。上記の式(2)の下限値を満たすようにフード8の高さを設定すると、フード8は、少なくとも一つのマイクロホン9に対して、方位標定範囲TAの周縁部OEに沿って到来する音波を遮蔽する。また、少なくとも一つのマイクロホン9を除く、残りのマイクロホン9に対しては、音波の到来を遮蔽しない。そのため、前記残りのマイクロホン9では、方位標定範囲TAの周縁部OEに沿って到来する音波を受信できる。 FIG. 12 is a diagram for explaining the range shielded by the hood 8 when the height of the hood 8 is set to the minimum height that satisfies Equation (2). On the array sensor 3 shown in FIG. 12, hatched areas are shielded by the hood 8 from sound waves arriving from the peripheral edge OE of the azimuth determination range TA. Note that the arrangement of the microphones 9 in FIG. 12 is the same as the arrangement of the microphones 9 shown in FIG. 3 based on the above-described embodiment. When the height of the hood 8 is set so as to satisfy the lower limit value of the above formula (2), the hood 8 directs at least one microphone 9 to sound waves arriving along the peripheral edge OE of the azimuth determination range TA. shield. Also, the remaining microphones 9 except for at least one microphone 9 are not shielded from incoming sound waves. Therefore, the remaining microphones 9 can receive sound waves arriving along the peripheral portion OE of the azimuth determination range TA.
 したがって、本発明の実施形態によれば、図12に示すフード8の使用によって、音源方位標定装置1の全体として、アレイセンサ3で受信できる方位標定範囲TAの周縁部OEから到来する音波信号は減少するものの、外音の受信を抑制できる。そのため、遅延和法ビームフォーミング計算を行ったときに、方位標定範囲TA内にグレーチローブが発生することを抑制できる。また、音源方位標定装置1の全体として、音源の方位標定に要する十分な信号つまり方位標定範囲TA内の各方位からの音圧情報を取得できる。したがって、音源方位標定装置1の方位標定範囲TAの外側に、外音の発生源が存在しているとしても、音源の誤判定を防止もしくは抑制することができる。その結果、音源の方位標定の精度を向上できる。 Therefore, according to the embodiment of the present invention, by using the hood 8 shown in FIG. Although it decreases, reception of external sounds can be suppressed. Therefore, when the delay-and-sum beamforming calculation is performed, it is possible to suppress the occurrence of a Gretsch lobe within the azimuth determination range TA. Further, the sound source azimuth determination apparatus 1 as a whole can acquire sufficient signals required for azimuth determination of the sound source, that is, sound pressure information from each direction within the azimuth determination range TA. Therefore, even if the source of the external sound exists outside the azimuth determination range TA of the sound source azimuth determination device 1, erroneous determination of the sound source can be prevented or suppressed. As a result, the accuracy of azimuth determination of the sound source can be improved.
 図13は、フード8の高さを、式(2)を満たす最大高さに設定した場合における、フード8によって遮蔽される範囲を説明するための図である。なお、フード8によって方位標定範囲TAの周縁部OEから到来する音波が遮蔽される領域にハッチングを付してある。図13に示す例では、複数のマイクロホン9のうち、遅延和法ビームフォーミング計算を実施する際に、最低限必要な2つのマイクロホン9が音源方位標定範囲TAの周縁部OEに沿って到来する音波を受信するようにフード8の高さが設定されている。 FIG. 13 is a diagram for explaining the range shielded by the hood 8 when the height of the hood 8 is set to the maximum height that satisfies Equation (2). The area where the hood 8 shields the sound waves arriving from the peripheral edge OE of the azimuth determination range TA is hatched. In the example shown in FIG. 13, among the plurality of microphones 9, two microphones 9, which are the minimum required number when performing the delay-and-sum method beamforming calculation, are used for sound waves arriving along the periphery OE of the sound source azimuth determination range TA. The height of the hood 8 is set so as to receive the
 図13に示す構成では、図12に示す構成と比較して、方位標定範囲TAの周縁部OEから到来する音波がフード8によって遮蔽されるマイクロホン9の数が増大する。その結果として、外音の遮蔽効果が向上し、グレーチングローブの発生をより抑制することができる。したがって、音源方位標定装置1の方位標定範囲TAの外側に、外音の発生源が存在しているとしても、音源の誤判定を防止もしくは抑制することができる。その結果、音源の方位標定の精度を向上できる。 In the configuration shown in FIG. 13, the number of microphones 9 whose hoods 8 shield sound waves coming from the peripheral edge OE of the azimuth determination range TA is increased compared to the configuration shown in FIG. As a result, the effect of shielding external sounds is improved, and the occurrence of grating lobes can be further suppressed. Therefore, even if the source of the external sound exists outside the azimuth determination range TA of the sound source azimuth determination device 1, erroneous determination of the sound source can be prevented or suppressed. As a result, the accuracy of azimuth determination of the sound source can be improved.
 さらに、アレイセンサ3のマイクロホン9の配置によってもフード8による方位標定範囲TA内の音源の方位標定の誤判定削減の効果は異なる。マイクロホン9は無指向性であると仮定し、例えば、方位標定装置1の正面を測定方向(0°)とし、その測定方向に対して、左右のいずれか一方側の90°の方位(アレイセンサ3の水平方向)から音波が到来する場合を考える。その場合、グレーチングローブが音源方位標定装置1の方位標定範囲TA内に発生するようなマイクロホン9の配置であれば、前記一方側の方位(90°)から到来する音波を遮蔽するようなフード8は有効である。しかしながら、方位標定範囲TA内にグレーチングローブが発生しないマイクロホン9の配置の場合には、フード8が方位標定範囲TA外の音源を遮蔽することによる誤判定防止効果はない。 Furthermore, the effect of reducing erroneous determination of the sound source within the azimuth determination range TA by the hood 8 differs depending on the arrangement of the microphones 9 of the array sensor 3 . Assume that the microphone 9 is omnidirectional. 3 horizontal direction). In that case, if the microphones 9 are arranged such that the grating lobes are generated within the azimuth locating range TA of the sound source azimuth locating device 1, the hood 8 that shields the sound waves arriving from the azimuth (90°) on the one side is provided. is valid. However, in the case where the microphone 9 is arranged such that no grating lobe occurs within the azimuth determination range TA, the hood 8 shields the sound source outside the azimuth determination range TA, and there is no erroneous determination prevention effect.
 音源方位標定装置1の正面に音源が存在する場合には、取得した音圧情報に基づいて遅延和法ビームフォーミング計算を行うと、方位標定装置1の正面(0°)の位置にメインローブと称する音源由来の音圧の高い信号が表れる。メインローブの表れる方位角(基準角と称される場合がある)に対するグレーチングローブの発生方位の角度(以下、単に発生角度と記す。)α(°)は下記式(3)で表すことができる。
    α=90°/(d/λ)  ・・・(3)
  上記のdは、複数のマイクロホン9のそれぞれに対して、最も近い位置にあるマイクロホン9との距離の算術平均値であって、上記のλは音源から発せられる音波の波長である。
When a sound source exists in front of the sound source azimuth locating device 1, the delay and sum method beamforming calculation is performed based on the acquired sound pressure information. A signal with high sound pressure originating from a so-called sound source appears. The angle α (°) of the azimuth at which the grating lobe is generated with respect to the azimuth at which the main lobe appears (sometimes referred to as the reference angle) (hereinafter simply referred to as the generation angle) can be expressed by the following equation (3). .
α=90°/(d/λ) (3)
The above d is the arithmetic mean value of the distance to the closest microphone 9 for each of the plurality of microphones 9, and the above λ is the wavelength of the sound wave emitted from the sound source.
 上記の式(3)から、間隔dと音波の波長λとの比(d/λ)が増大することに伴って、グレーチングローブの発生角度αは減少することが理解できる。すなわち、マイクロホン9同士の間隔dを増大させると、グレーチングローブを示す信号(図示せず)の発生角度αはメインローブ(0°)に接近して表れる。 From the above formula (3), it can be understood that as the ratio (d/λ) between the interval d and the wavelength λ of the sound wave increases, the angle α of the grating lobe generation decreases. That is, when the distance d between the microphones 9 is increased, the generation angle α of the signal (not shown) representing the grating lobe appears closer to the main lobe (0°).
 また、マイクロホン9に対して、各マイクロホンに入射可能な最大の音波到来角度である正面に対して直交する方向(90°)から音波が到来する場合において、方位標定範囲TAの最大角度βrange内にグレーチングローブが発生する条件は、下記式(4)で表すことができる。
  d≧90°×λ/(90°+βrange/2)  ・・・(4)
  つまり、マイクロホン9同士の間隔dが式(4)を満たす場合に、方位標定範囲TAの最大角度βrange内にグレーチングローブを示す信号が表れる。また、上述したように、間隔dが増大すると、間隔dが小さい場合よりも、メインローブ(0°)に接近してグレーチローブを示す信号が表れる。
Further, when a sound wave arrives at the microphone 9 from a direction (90°) orthogonal to the front, which is the maximum sound wave arrival angle that can be incident on each microphone, The condition for generating grating lobes can be expressed by the following formula (4).
d≧90°×λ/(90°+βrange/2) (4)
That is, when the distance d between the microphones 9 satisfies the formula (4), a signal indicating a grating lobe appears within the maximum angle βrange of the azimuth determination range TA. Also, as noted above, when the spacing d is increased, the signal exhibits a Gretsch lobe closer to the main lobe (0°) than when the spacing d is small.
 上述したように、本発明の実施形態では、マイクロホン9同士の間隔dが式(4)を満たし、方位標定範囲TAの最大角度βrange内に外音によるグレーチングローブを発生させる間隔dであっても、フード8によってアレイセンサ3に対して外音の一部または全てを物理的に遮蔽するように構成されている。そのため、音源方位標定装置1で取得した音圧情報に基づいて遅延和法ビームフォーミング計算を行ったときに、方位標定範囲TA内にグレーチングローブが表れることを抑制できる。その結果、音源の誤判定を抑制することができる。 As described above, in the embodiment of the present invention, even if the distance d between the microphones 9 satisfies the formula (4) and the distance d causes grating lobes due to external sound within the maximum angle βrange of the azimuth determination range TA, , the hood 8 physically shields the array sensor 3 from part or all of external sounds. Therefore, it is possible to suppress the appearance of grating lobes within the azimuth locating range TA when the delay sum method beamforming calculation is performed based on the sound pressure information acquired by the sound source azimuth locating apparatus 1 . As a result, erroneous determination of the sound source can be suppressed.
 また、本発明の実施形態では、マイクロホン9同士の間隔dを、式(4)を満たすように大きく設定しても、音源の方位標定範囲TA内に、外音に起因するグレーチングローブが発生することを抑制できる。そのため、マイクロホン9の数が少ない場合であっても、アレイセンサ3の開口幅を増大して指向性を向上させることができる。これにより、部品点数、演算負荷などを増大することなく、音源の方位標定の精度を向上できる。 Further, in the embodiment of the present invention, even if the distance d between the microphones 9 is set large so as to satisfy the expression (4), grating lobes caused by external sounds are generated within the azimuth determination range TA of the sound source. can be suppressed. Therefore, even if the number of microphones 9 is small, the aperture width of the array sensor 3 can be increased to improve directivity. As a result, the accuracy of azimuth determination of the sound source can be improved without increasing the number of parts, computational load, and the like.
 一方、遅延和法ビームフォーミング計算を実行すると、グレーチングローブとは別に、メインローブの周辺にサイドローブが発生する。図14は、音源方位標定装置1の正面(0°)に音源がある場合に、遅延和法ビームフォーミングにより計算された音圧マップの一部を一次元の音波分布として示す図である。図14の縦軸は音圧(dB)を示し、横軸は音源方位を探索する角度を示している。図14によれば、音源方位標定装置1の正面(0°)にメインローブが表れ、そのメインローブの周囲にサイドローブが発生していることが分かる。当該サイドローブは各サンプリング点の出力に対して窓関数を掛けることによって低減されることが一般的に知られている。そこで、各マイクロホン9を各サンプリング点と見なして、フード8による遮蔽効果と、フード8によって遮蔽されていないマイクロホン9の検出感度の補正(重みづけ)とを組み合わせることによって、窓関数によるサイドローブの低減と同様の効果を得ることが可能である。なお、マイクロホン9の検出感度は、マイクロホン9の受信音圧に対する感度である。 On the other hand, when performing delay-and-sum beamforming calculations, side lobes occur around the main lobe in addition to grating lobes. FIG. 14 is a diagram showing a one-dimensional sound wave distribution part of a sound pressure map calculated by the delay-and-sum method beamforming when the sound source is in front of the sound source azimuth locator 1 (0°). The vertical axis in FIG. 14 indicates the sound pressure (dB), and the horizontal axis indicates the angle for searching for the direction of the sound source. According to FIG. 14, it can be seen that a main lobe appears in front (0°) of the sound source azimuth locating apparatus 1, and side lobes are generated around the main lobe. It is generally known that the side lobe is reduced by multiplying the output of each sampling point with a window function. Therefore, by regarding each microphone 9 as each sampling point and combining the shielding effect of the hood 8 and the correction (weighting) of the detection sensitivity of the microphone 9 not shielded by the hood 8, the side lobe by the window function can be obtained. It is possible to obtain the same effect as reduction. The detection sensitivity of the microphone 9 is the sensitivity of the microphone 9 to the received sound pressure.
 本発明の他の実施形態では、フード8によって遮蔽されていないマイクロホン9の検出感度に対して重みづけ、すなわち、補正と、フード8による方位標定範囲TAの周縁部OEから到来する音波の回折に伴う減衰効果とを組み合わせる。これによって、遅延和法ビームフォーミング計算を実行した場合における方位標定範囲TAの周縁部OE付近でのメインローブに対するサイドローブの発生を低減するように構成されている。図15は、本発明の他の実施形態で実行される制御の一例を説明するためのフローチャートである。図15に示すルーチンは上述した演算手段4によって所定の短時間ごとに繰り返し実行される。 In another embodiment of the invention, the detection sensitivity of the microphone 9 not shielded by the hood 8 is weighted, i.e. the correction and diffraction of the sound waves coming from the periphery OE of the azimuth range TA by the hood 8. combined with the accompanying damping effect. This is configured to reduce the occurrence of side lobes relative to the main lobe in the vicinity of the peripheral edge OE of the azimuth location range TA when the delay-and-sum beamforming calculation is executed. FIG. 15 is a flowchart for explaining an example of control executed in another embodiment of the invention. The routine shown in FIG. 15 is repeatedly executed at predetermined short time intervals by the computing means 4 described above.
 先ず、アレイセンサ3のマイクロホン9ごとに1回目(n-1)の測定における音波(n-1)が取得され(ステップS1)、その取得された音波(n-1)のそれぞれに対してバンドパスフィルター処理が行われる(ステップS2)。ここでnは2以上の自然数である。これにより、取得された音波(n-1)のうち、音源の探索に使用する予め設定された周波数帯の音波が抽出され、不要な周波数帯の音波が除去される。ステップS2で抽出した音波に対して遅延和法ビームフォーミング計算が行われて、ステップS1で取得した音波(n-1)に対応する音圧マップ(n-1)が作成される(ステップS3)。 First, a sound wave (n-1) in the first (n-1) measurement is acquired for each microphone 9 of the array sensor 3 (step S1), and a band is obtained for each of the acquired sound waves (n-1). Pass filtering is performed (step S2). Here, n is a natural number of 2 or more. As a result, among the acquired sound waves (n−1), sound waves in a preset frequency band used for searching for the sound source are extracted, and sound waves in unnecessary frequency bands are removed. A delay-and-sum method beamforming calculation is performed on the sound waves extracted in step S2, and a sound pressure map (n−1) corresponding to the sound waves (n−1) acquired in step S1 is created (step S3). .
 図16の(a)に、ステップS1で取得されるマイクロホン9毎の受信音圧分布の一例を滑らかな線でつなぎ、太い実線で記載してある。なお、図16に示す例では、音源方位標定装置1の右方向(図16での右方向)に図示しない音源があり、当該音源から音源方位標定装置1に音波が到来している。音波の到来方位側、つまり音源側(図16での右側)に位置するマイクロホン9に入射される音波は、フード8による遮蔽作用を受ける。そのため、図16の(a)に太い実線で示すように、フード8による遮蔽作用を受けるマイクロホン9に入射する音波の音圧は、フード8による遮蔽作用を受けにくいマイクロホン9に入射する音波の音圧よりも低くなる。また、音波の到来方位側のフード8とマイクロホン9との間の距離が増大することに伴って、マイクロホン9に入射する音圧が次第に増大する。これは、音波の回析現象による。 In (a) of FIG. 16, an example of the received sound pressure distribution for each microphone 9 acquired in step S1 is connected by a smooth line and described by a thick solid line. In the example shown in FIG. 16, there is a sound source (not shown) on the right side of the sound source azimuth determination device 1 (right direction in FIG. 16), and sound waves arrive at the sound source azimuth determination device 1 from the sound source. The hood 8 shields the sound waves incident on the microphone 9 located on the direction of arrival of the sound waves, that is, on the sound source side (right side in FIG. 16). Therefore, as indicated by the thick solid line in FIG. lower than pressure. In addition, as the distance between the hood 8 and the microphone 9 on the direction from which sound waves arrive increases, the sound pressure incident on the microphone 9 gradually increases. This is due to the diffraction phenomenon of sound waves.
 上記の音圧マップ(n-1)に基づいて音源の方位が推定される(ステップS4)。次いで、マイクロホン9毎の感度補正係数(n-1)が決定される(ステップS5)。すなわち、推定された音源の方位とフード8による遮蔽の影響を受けた各マイクロホン9の受信音圧とには相関関係があり、音源の方位に応じたマイクロホン9毎の相対的な音圧分布は、フード8の寸法と音源の方位とにより推定できる。その推定した音圧分布に基づいて、フード8による遮蔽の影響受けないマイクロホン9の位置に応じて、各マイクロホン9の補正係数を決定する。 The azimuth of the sound source is estimated based on the sound pressure map (n-1) (step S4). Next, a sensitivity correction coefficient (n-1) for each microphone 9 is determined (step S5). That is, there is a correlation between the estimated direction of the sound source and the received sound pressure of each microphone 9 affected by the shielding by the hood 8, and the relative sound pressure distribution of each microphone 9 according to the direction of the sound source is , can be estimated from the dimensions of the hood 8 and the direction of the sound source. Based on the estimated sound pressure distribution, a correction coefficient for each microphone 9 is determined according to the position of the microphone 9 that is not affected by the shielding by the hood 8 .
 ステップS5での処理に続けて、2回目(n)の測定における音波(n)を取得し(ステップS6)、その音波(n)に対してバンドパスフィルター処理が行われる(ステップS7)。ステップS7での処理は、ステップS2での処理と同様である。続いて、ステップS7で抽出した音波(n)にステップS5で決定した感度補正係数(n-1)を乗算して補正する(ステップS8)。 Following the processing in step S5, the sound wave (n) in the second (n) measurement is obtained (step S6), and bandpass filtering is performed on the sound wave (n) (step S7). The processing in step S7 is the same as the processing in step S2. Subsequently, the sound wave (n) extracted in step S7 is multiplied by the sensitivity correction coefficient (n-1) determined in step S5 for correction (step S8).
 そして、ステップS8で補正された各音波(n)のそれぞれに対して遅延和法ビームフォーミング計算が行われて、ステップS6で取得した音波(n)に対応する音圧マップ(n)が作成される(ステップS9)。その音圧マップ(n)は演算手段4から表示手段5に出力されて表示される。これに続けて、ステップS9で作成された音圧マップ(n)に基づいて音源の位置が決定される(ステップS10)。なお、音源の位置は表示手段5に表示されてよい。 Then, delay-and-sum beamforming calculation is performed for each sound wave (n) corrected in step S8, and a sound pressure map (n) corresponding to the sound wave (n) acquired in step S6 is created. (step S9). The sound pressure map (n) is output from the computing means 4 to the display means 5 and displayed. Following this, the position of the sound source is determined based on the sound pressure map (n) created in step S9 (step S10). Note that the position of the sound source may be displayed on the display means 5 .
 図16の(b)に、各マイクロホン9の位置とフード8による音源遮蔽の程度とによって決定される感度補正後のマイクロホン9毎の受信音圧分布の一例を滑らかな線でつなぎ、点線で記載してある。図16の(b)に点線で示すように、ステップS8での補正を行うことにより、音源から遠い位置に配置され、フード8による遮蔽の影響を受けないマイクロホン9の検出感度が低減される。その図16の(b)に点線で示すマイクロホン9毎の受信音圧分布は、フード8による遮蔽の影響を受けない場合に、窓関数を用いてサイドローブの発生を抑制する場合のマイクロホン9毎の窓関数を乗算した後の音圧分布と類似の形状になる。 In FIG. 16(b), an example of the received sound pressure distribution for each microphone 9 after sensitivity correction determined by the position of each microphone 9 and the degree of sound source shielding by the hood 8 is connected by a smooth line and indicated by a dotted line. I have As indicated by the dotted line in FIG. 16B, the correction in step S8 reduces the detection sensitivity of the microphone 9, which is placed far from the sound source and is not affected by the shielding by the hood 8. The received sound pressure distribution of each microphone 9 indicated by the dotted line in FIG. It has a shape similar to the sound pressure distribution after multiplication by the window function of .
 したがって、本発明の実施形態によれば、フード8によって遮蔽されていないマイクロホン9の検出感度に対して感度補正を行うことによって、窓関数に基づいてサイドローブを補正した場合とほぼ同様に、サイドローブを低減することができる。そのため、方位標定範囲TAの周縁部OEの近傍に音源がある場合であって、かつ、フード8の使用により方位標定範囲TAの周縁部OEにおけるメインローブ(音源信号)の強度が低下する場合であっても、そのメインローブを明確に判別できる。つまり、音源方位標定装置1による音源方位の標定精度の低下を抑制できる。 Therefore, according to the embodiment of the present invention, by performing sensitivity correction on the detection sensitivity of the microphone 9 not shielded by the hood 8, side lobes are corrected in substantially the same way as when the side lobes are corrected based on the window function. Lobe can be reduced. Therefore, even if there is a sound source in the vicinity of the peripheral edge OE of the azimuth determination range TA, and the use of the hood 8 reduces the strength of the main lobe (sound source signal) at the peripheral edge OE of the azimuth determination range TA, Even if there is, the main lobe can be clearly distinguished. In other words, it is possible to suppress deterioration in accuracy of locating the direction of the sound source by the sound source azimuth determination device 1 .
 また、上記の感度補正係数は、フード8の高さや内径などの大きさに応じて大小に変更する。これは、フード8の大きさによって、方位標定範囲TAの周縁部OEから到来する音波が遮蔽、回折される範囲が変化するためである。図17は、フード8の高さが、図16に示すフード8よりも高い場合におけるマイクロホン9毎の受信音圧分布の一例を示す図である。図17に示す例では、フード8によって遮蔽される領域は、図16に示す例よりも大きくなる。また、図17の(a)に太い実線で示すように、フード8によって受信音圧が低下されるマイクロホン9は、図16の(a)と比較してアレイセンサ3の中心付近にまで及ぶ。 Also, the above sensitivity correction coefficient is changed to be large or small according to the size of the hood 8 such as its height and inner diameter. This is because the size of the hood 8 changes the range in which the sound waves arriving from the peripheral edge OE of the azimuth determination range TA are shielded and diffracted. FIG. 17 is a diagram showing an example of received sound pressure distribution for each microphone 9 when the height of the hood 8 is higher than that of the hood 8 shown in FIG. In the example shown in FIG. 17, the area covered by the hood 8 is larger than in the example shown in FIG. 17(a), the microphone 9 whose received sound pressure is reduced by the hood 8 reaches near the center of the array sensor 3 compared to FIG. 16(a).
 そして、図17の(a)に示す受信音圧分布に基づいて、図15に示すステップS4ないしステップS8の処理を実行してマイクロホン9毎の感度補正係数を決定し、その感度補正係数によってマイクロホン9ごとの検出感度を補正する。こうしてマイクロホン9毎の検出感度を補正した後のフード8による遮蔽効果を含んだ各マイクロホン9の受信音圧分布を図17の(b)に示してある。その図17の(b)に示すマイクロホン9毎の受信音圧分布は、窓関数を用いてサイドローブ発生を抑制する場合のマイクロホン9毎の窓関数を乗算した後の音圧分布と類似の形状になる。そのため、フード8の高さが高い場合であっても、図16に示す実施形態とほぼ同様の作用・効果を得ることできる。 Then, based on the received sound pressure distribution shown in (a) of FIG. 17, the processing of steps S4 to S8 shown in FIG. 15 is executed to determine the sensitivity correction coefficient for each microphone 9, and the sensitivity correction coefficient of the microphone is used to determine the sensitivity correction coefficient. Correct the detection sensitivity every 9. FIG. 17B shows the received sound pressure distribution of each microphone 9 including the shielding effect of the hood 8 after the detection sensitivity of each microphone 9 is corrected. The received sound pressure distribution for each microphone 9 shown in (b) of FIG. 17 has a shape similar to the sound pressure distribution after multiplication by the window function for each microphone 9 when suppressing side lobe generation using a window function. become. Therefore, even if the height of the hood 8 is high, substantially the same functions and effects as those of the embodiment shown in FIG. 16 can be obtained.
 (実施例)
  次に、本発明の実施形態におけるフード8の効果を確認するために行った実施例について説明する。互いに外径の異なる2つの同心円である仮想円の円周上のそれぞれに、一定の間隔でマイクロホン9を配置してアレイセンサ3を構成した。具体的には、半径方向で内側の仮想円の外径を15.3mmに設定し、その仮想円の円周上に一定間隔で6個のマイクロホン9を配置した。半径方向で外側の仮想円の外径つまり、アレイセンサ3の開口幅を41.0mmに設定し、その仮想円の円周上に一定間隔で7個のマイクロホン9を配置した。互いに隣接するマイクロホン9同士の間隔dの算術平均値は10.8mmであり、音源の波長つまりアレイセンサ3での測定波長λは8.7mmであり、間隔dと測定波長λとの比(d/λ)は1.2であった。また、音源方位標定装置1における音源の方位標定範囲TAの最大角度βrangeを62°に設定した。さらに、内寸60mm×60mm、高さ43mmの四角筒をフード8として使用した。他の構成は、図1ないし図3に示す構成と同様であるため、その説明を省略する。なお、フード8の高さは、上述した式(2)を満たしている。
(Example)
Next, an example conducted to confirm the effect of the hood 8 in the embodiment of the present invention will be described. An array sensor 3 is configured by arranging microphones 9 at regular intervals on each of two concentric imaginary circles having different outer diameters. Specifically, the outer diameter of the inner virtual circle in the radial direction was set to 15.3 mm, and six microphones 9 were arranged at regular intervals on the circumference of the virtual circle. The outer diameter of the virtual circle on the outer side in the radial direction, that is, the aperture width of the array sensor 3 was set to 41.0 mm, and seven microphones 9 were arranged at regular intervals on the circumference of the virtual circle. The arithmetic mean value of the distance d between the microphones 9 adjacent to each other is 10.8 mm, the wavelength of the sound source, that is, the measured wavelength λ at the array sensor 3 is 8.7 mm, and the ratio of the distance d to the measured wavelength λ (d /λ) was 1.2. Also, the maximum angle βrange of the sound source azimuth determination range TA in the sound source azimuth determination device 1 was set to 62°. Further, a rectangular tube having an inner dimension of 60 mm×60 mm and a height of 43 mm was used as the hood 8 . Since other configurations are the same as those shown in FIGS. 1 to 3, description thereof will be omitted. Note that the height of the hood 8 satisfies the formula (2) described above.
 (実験方法)
  垂直方位に延びる図示しない回転中心軸線を中心として回動し、また、ほぼ水平を維持するように、所定の載置面上に上記のように構成した音源方位標定装置1を設置した。音源方位標定装置1の正面を基準位置(0°)とし、その基準位置に、方位標定の対象とする音源(以下、第1音源と記す。)を設置した。また、音源方位標定装置1から見た場合に、基準位置に対して左右方向のいずれか一方における50°の位置に、外音の発生源(以下、第2音源と記す。)を設置した。そして、音源方位標定装置1の基準位置から50°ずつ、前記回転中心軸線を中心として音源方位標定装置1を回動させて第1音源および第2音源の方位標定を行った。また、第1音源で発する音圧を一定とし、第2音源で発する外音の音圧を第1音源で発する音圧よりも増大させた。こうすることによって、第1音源で発する音波よりも、音圧の高い外音が音源方位標定装置1に到来する場合であっても、第1音源の方位標定が可能であるか否かを評価した。また、このような音源方位標定装置1による第1音源の方位標定を複数回行い、第1音源の実際の設置位置と、方位標定結果とが一致した割合が5割以上の場合に、第1音源の方位標定が可能であると判断した。
(experimental method)
The sound source azimuth locating device 1 configured as described above was installed on a predetermined mounting surface so as to rotate about a rotation center axis (not shown) extending in a vertical direction and to maintain a substantially horizontal position. A reference position (0°) was set in front of the sound source azimuth locating device 1, and a sound source to be azimuth-located (hereinafter referred to as a first sound source) was placed at the reference position. In addition, when viewed from the sound source azimuth locating device 1, a source of external sound (hereinafter referred to as a second sound source) was installed at a position 50° in one of the left and right directions with respect to the reference position. Then, the sound source azimuth determination device 1 was rotated around the rotation center axis by 50° from the reference position of the sound source azimuth determination device 1 to determine the azimuths of the first sound source and the second sound source. Also, the sound pressure emitted by the first sound source is constant, and the sound pressure of the external sound emitted by the second sound source is increased more than the sound pressure emitted by the first sound source. By doing this, it is evaluated whether or not the azimuth of the first sound source is possible even if the external sound with a higher sound pressure than the sound wave emitted by the first sound source arrives at the sound source azimuth determination device 1. bottom. In addition, when the azimuth determination of the first sound source by such a sound source azimuth determination apparatus 1 is performed a plurality of times, and the ratio of matching between the actual installation position of the first sound source and the azimuth determination result is 50% or more, the first sound source azimuth determination apparatus 1 It was determined that the azimuth determination of the sound source was possible.
 (比較例1)
  フード8を設けない以外は実施例と同様に構成した。
(Comparative example 1)
The configuration was the same as that of the example except that the hood 8 was not provided.
 (比較例2)
  フード8の高さを、上述した式(2)で示すフード8の下限高さよりも低く設定した以外は実施例と同様に構成した。
(Comparative example 2)
The configuration was the same as that of the embodiment except that the height of the hood 8 was set to be lower than the lower limit height of the hood 8 given by the above formula (2).
 (評価)
  比較例1では、第1音源の音圧に対して、第2音源(外音)の音圧が2.3倍までの場合に、第1音源の方位標定が可能であった。比較例2では、第1音源の音圧に対して、第2音源(外音)の音圧が4.0倍までの場合に、第1音源の方位標定が可能であった。一方、本発明の実施例では、第1音源の音圧に対して、第2音源(外音)の音圧が8.2倍までの場合に、第1音源の方位標定が可能であった。このように、本発明の実施形態におけるフード8を使用することにより、音源方位標定装置1の方位標定範囲TA外に強い外音源が存在する場合であっても、方位標定範囲TA内にある音源の方位標定が可能であることが確認できた。
(evaluation)
In Comparative Example 1, azimuth determination of the first sound source was possible when the sound pressure of the second sound source (external sound) was up to 2.3 times the sound pressure of the first sound source. In Comparative Example 2, azimuth determination of the first sound source was possible when the sound pressure of the second sound source (external sound) was up to 4.0 times the sound pressure of the first sound source. On the other hand, in the embodiment of the present invention, azimuth determination of the first sound source was possible when the sound pressure of the second sound source (external sound) was up to 8.2 times the sound pressure of the first sound source. . As described above, by using the hood 8 in the embodiment of the present invention, even if a strong external sound source exists outside the azimuth locating range TA of the sound source azimuth device 1, the sound source within the azimuth locating range TA can be detected. It was confirmed that the azimuth determination of
 1  音源方位標定装置
 2  カメラ
 3  アレイセンサ
 4  演算手段
 5  表示手段
 6  入力手段
 7  筐体
 8  フード
 9  マイクロホン
 10 処理部
 11 格納部
 TA 音源方位標定装置における音源の方位標定範囲
 βrange 音源方位標定装置における音源の方位標定範囲の最大角度
1 Sound source azimuth determination device 2 Camera 3 Array sensor 4 Calculation means 5 Display means 6 Input means 7 Housing 8 Hood 9 Microphone 10 Processing unit 11 Storage unit TA Sound source azimuth determination range in sound source azimuth determination device βrange Sound source in sound source azimuth determination device The maximum angle of the azimuth range of

Claims (8)

  1.  音波を受信する複数のマイクロホンを有するアレイセンサが、予め設定された方位標定範囲外から到来する外音を受信することを抑制するように構成された音波遮蔽フードであって、
     前記複数のマイクロホンのうちの少なくとも一つのマイクロホンに対しては、前記方位標定範囲の周縁部から到来する音波を遮蔽するように構成されている、音波遮蔽フード。
    A sound wave shielding hood configured to suppress an array sensor having a plurality of microphones for receiving sound waves from receiving external sounds coming from outside a preset azimuth determination range,
    A sound wave shielding hood configured to shield sound waves coming from a peripheral portion of the azimuth range for at least one of the plurality of microphones.
  2.  前記アレイセンサの周囲の少なくとも一部を囲うように構成されている、請求項1に記載の音波遮蔽フード。 The acoustic wave shielding hood according to claim 1, which is configured to enclose at least part of the circumference of the array sensor.
  3.  筒状を成しており、
     前記アレイセンサから突出する高さは、前記複数のマイクロホンのうちの少なくとも一つのマイクロホンに対して前記方位標定範囲の周縁部から到来する音波を遮蔽する高さ以上に設定されている、請求項1または2に記載の音波遮蔽フード。
    It has a cylindrical shape,
    2. The height protruding from the array sensor is set to be equal to or higher than a height at which at least one of the plurality of microphones shields sound waves coming from the periphery of the azimuth determination range. 3. The sound wave shielding hood according to 2.
  4.  前記アレイセンサから突出する高さは、前記複数のマイクロホンのうちで前記方位標定範囲の周縁部から到来する音波が遮蔽されないマイクロホンの数が2つになる高さよりも低く設定される、請求項1ないし3のいずれか一項に記載の音波遮蔽フード。 2. The height protruding from the array sensor is set lower than the height at which the number of microphones from which sound waves arriving from the periphery of the azimuth determination range are not shielded is two among the plurality of microphones. 4. The sound shielding hood according to any one of items 1 to 3.
  5.  音波を受信する複数のマイクロホンを有するアレイセンサと、前記アレイセンサによって受信される前記音波の音圧情報に基づいて、前記方位標定範囲内の各方位の音圧をそれぞれ算出し、前記各方位のうち、音圧が最大となる方位を音源からの音波の到来方位として標定する演算手段と、請求項1ないし4のいずれか一項に記載の音波遮蔽フードとを有する音源方位標定装置。 Based on an array sensor having a plurality of microphones for receiving sound waves and sound pressure information of the sound waves received by the array sensor, the sound pressure in each direction within the azimuth determination range is calculated. 5. A sound source azimuth locating apparatus, comprising computing means for locating the azimuth at which sound pressure is maximized as the arrival azimuth of sound waves from a sound source, and the sound wave shielding hood according to claim 1.
  6.  互いに隣接する前記複数のマイクロホン同士の平均間隔dは、下記式を満たす請求項5に記載の音源方位標定装置。
        d≧90°×λ/(90°+βrange/2)(mm)
      上記のλは音波の到来方位の計算に使用する音波の中心波長(mm)、βrangeは方位標定範囲の最大角度(°)である。
    6. The sound source azimuth locating apparatus according to claim 5, wherein an average interval d between the plurality of microphones adjacent to each other satisfies the following equation.
    d≧90°×λ/(90°+βrange/2) (mm)
    λ is the central wavelength (mm) of the sound wave used for calculating the direction of arrival of the sound wave, and βrange is the maximum angle (°) of the azimuth determination range.
  7.  前記演算手段は、前記音波遮蔽フードの高さに応じて、前記複数のマイクロホンのそれぞれで受信される音波の音圧情報に対して重みづけを行い、重みづけられた音圧情報に基づいて音源の方位を標定するように構成されている、請求項5または6に記載の音源方位標定装置。 The computing means weights the sound pressure information of the sound waves received by each of the plurality of microphones according to the height of the sound wave shielding hood, and controls the sound source based on the weighted sound pressure information. 7. A sound source azimuth device according to claim 5 or 6, adapted to determine the azimuth of the .
  8.  前記演算手段は、前記複数のマイクロホンのそれぞれで取得された複数の音圧情報に対して、遅延和法ビームフォーミング計算を行って音波の到来方位を標定する、請求項5ないし7のいずれか一項に記載の音源方位標定装置。
     

     
    8. The arithmetic unit according to claim 5, wherein said calculating means performs delay-and-sum beamforming calculation on a plurality of sound pressure information acquired by each of said plurality of microphones to locate the direction of arrival of a sound wave. A sound source azimuth locating device according to the above paragraph.


PCT/JP2021/043942 2021-11-30 2021-11-30 Sound wave shielding hood and sound source direction detecting device including sound wave shielding hood WO2023100262A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043942 WO2023100262A1 (en) 2021-11-30 2021-11-30 Sound wave shielding hood and sound source direction detecting device including sound wave shielding hood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043942 WO2023100262A1 (en) 2021-11-30 2021-11-30 Sound wave shielding hood and sound source direction detecting device including sound wave shielding hood

Publications (1)

Publication Number Publication Date
WO2023100262A1 true WO2023100262A1 (en) 2023-06-08

Family

ID=86611692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043942 WO2023100262A1 (en) 2021-11-30 2021-11-30 Sound wave shielding hood and sound source direction detecting device including sound wave shielding hood

Country Status (1)

Country Link
WO (1) WO2023100262A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071510A (en) * 2007-09-12 2009-04-02 National Institute Of Advanced Industrial & Technology Method for detecting point sound source
JP2013135373A (en) * 2011-12-27 2013-07-08 Nippon Telegr & Teleph Corp <Ntt> Zoom microphone device
WO2018056214A1 (en) * 2016-09-23 2018-03-29 Jfeスチール株式会社 Ultrasound wave source azimuth orienting device, and method of analyzing superimposed image

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071510A (en) * 2007-09-12 2009-04-02 National Institute Of Advanced Industrial & Technology Method for detecting point sound source
JP2013135373A (en) * 2011-12-27 2013-07-08 Nippon Telegr & Teleph Corp <Ntt> Zoom microphone device
WO2018056214A1 (en) * 2016-09-23 2018-03-29 Jfeスチール株式会社 Ultrasound wave source azimuth orienting device, and method of analyzing superimposed image

Similar Documents

Publication Publication Date Title
AU2016332046B2 (en) Ultrasonic gas leak location system and method
US5680371A (en) Broadband sonar method and apparatus for use with conventional sonar arrays
JP6393442B2 (en) Ultrasonic source orientation locating device and overlay image analysis method
US7274622B1 (en) Nonlinear techniques for pressure vector acoustic sensor array synthesis
JP2015507422A (en) Sound source position estimation
KR20120063272A (en) Security monitoring system using beamforming acoustic imaging and method using the same
JP2011015050A (en) Array for beam forming, and sound source exploration/measurement system using the same
JP2007163321A (en) Radio wave arrival direction measuring device and array antenna device for it
Sun et al. Improving the performance of a vector sensor line array by deconvolution
Hald et al. A class of optimal broadband phased array geometries designed for easy construction
WO2023100262A1 (en) Sound wave shielding hood and sound source direction detecting device including sound wave shielding hood
CN114586097A (en) Differential directional sensor system
US20090009382A1 (en) Method for determining signal direction using artificial doppler shifts
JP2011179896A (en) Beam combining device, beam combining method, and cylindrical array receiving system
JP6687235B2 (en) Detection device and detection method
JP2021518569A (en) Devices, systems and methods for determining the spatial location of sound sources
JP7220804B2 (en) Sound source azimuth device
US20220412835A1 (en) Ultrasonic detector
Fernandez Comesana et al. " Virtual Arrays", a novel broadband source localization technique
Wettergren et al. Optimization of conventional beamformer shading weights for conformal velocity sonar
Yang et al. Method of separation of incidental acoustic field on cylindrical shell by vector processing
EP3184785B1 (en) Device for the acquisition and conditioning of an acoustic signal generated by a source of an internal combustion engine
Townsend et al. Beamfield analysis for statistically described planar microphone arrays
JP6279191B2 (en) Multi-beam forming device, radar device, and communication device
Lai Optimum and adaptive processing of acoustic vector and higher-order sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966348

Country of ref document: EP

Kind code of ref document: A1