WO2023099820A1 - Dispositif et procédé de mesure de températures d'un aliment et procédé de traitement des valeurs de températures - Google Patents

Dispositif et procédé de mesure de températures d'un aliment et procédé de traitement des valeurs de températures Download PDF

Info

Publication number
WO2023099820A1
WO2023099820A1 PCT/FR2022/000126 FR2022000126W WO2023099820A1 WO 2023099820 A1 WO2023099820 A1 WO 2023099820A1 FR 2022000126 W FR2022000126 W FR 2022000126W WO 2023099820 A1 WO2023099820 A1 WO 2023099820A1
Authority
WO
WIPO (PCT)
Prior art keywords
probes
food
temperature
support
cooking
Prior art date
Application number
PCT/FR2022/000126
Other languages
English (en)
Inventor
Stéphane FJELDDAHL
Gabriel MONEYRON
Original Assignee
Mountdale
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mountdale filed Critical Mountdale
Publication of WO2023099820A1 publication Critical patent/WO2023099820A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/146Supports; Fastening devices; Arrangements for mounting thermometers in particular locations arrangements for moving thermometers to or from a measuring position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2207/00Application of thermometers in household appliances
    • G01K2207/02Application of thermometers in household appliances for measuring food temperature
    • G01K2207/06Application of thermometers in household appliances for measuring food temperature for preparation purposes

Definitions

  • the invention relates to a device and a method for measuring food temperatures and a method for processing the temperature values.
  • Document US8556502 discloses an arrangement of a temperature probe forming an elongated rod comprising a first and a second part: the first part is configured to be inserted into a food (such as bread) and the second part is configured to be extend outside the food.
  • the probe further supports at least two temperature sensors positioned at different longitudinal locations along the first portion of the shaft and which are configured to measure food temperatures at different locations in the food while the food is being being heat treated.
  • the probe further comprises in its second part at least one ambient temperature sensor coupled to the rod and configured to measure the ambient temperature near the food.
  • the object of the invention is to provide a device for measuring the temperatures of a food being cooked which makes it possible to accurately measure the temperatures within the food.
  • the invention proposes a device for measuring the temperatures of a food, comprising an interface for fixing the device to a cooking surface of the food, a plurality of temperature probes, spaced apart from each other, a support for the temperature probes, the support being capable of moving together the temperature probes towards a temperature measurement position, in an oblique direction relative to the cooking surface.
  • the device further comprises a ramp for guiding the support in translation between a retracted position of the temperature probes and the temperature measurement position of the probes.
  • the device further comprises a rail, the ramp being movable in translation relative to the rail in a horizontal direction.
  • the probes have a temperature measurement zone, the measurement zones being along a vertical axis in the temperature measurement position of the probes.
  • the attachment interface comprises attachment members to a food cooking surface, the attachment members being magnets.
  • the probes are adjustable in position relative to the support.
  • the probes are thermocouples, the number of probes being adapted to the food.
  • the probes are spaced apart by a space of between 3 and 10 mm, preferably 5 mm.
  • the invention also relates to a method for measuring temperatures within at least one food being cooked, comprising the provision of a cooking surface and the device as described previously; the placement of food to be cooked on the cooking surface; the positioning and adjustment of the device on the cooking surface; the introduction of the probes into a food, the support moving together the temperature probes towards a position for measuring the temperatures, in an oblique direction with respect to the cooking surface.
  • the probes are introduced in such a way that the measurement zones of the probes are along a central vertical axis of the food.
  • one of the probes is introduced into the food as far as the base of the food at the level of the cooking surface, and another of the probes measures the ambient temperature.
  • the invention also relates to a method for processing the temperature values obtained by the device as described previously, comprising a step for defining isothermal curves linking similar temperature values provided by the probes and a step for making a decision on the cooking of food according to isothermal curves and cooking times.
  • isothermal curves at a temperature of 55° C. and/or 85° C. are defined.
  • FIG. 1 is a perspective view of an embodiment of the temperature measuring device
  • FIG. 1 is a sectional view of the device of Figure 1;
  • FIG. 3 is a perspective view of the device of Figure 1 in the measurement position
  • FIG. 4 shows a sectional view of the positioning of probes in a food
  • FIG. 5 is a graph showing the temperature measurements taken by the device.
  • the invention proposes a device for measuring the temperatures of food being cooked.
  • the device comprises an interface for fixing the device to a food cooking surface, a plurality of temperature probes, spaced apart from each other, and a support for the temperature probes, the support being able to move together the temperature probes. temperatures to a position for measuring temperatures, in an oblique direction with respect to the cooking surface.
  • the invention makes it possible to accurately measure temperatures within the food thanks to a single and coordinated movement of the probes.
  • FIG. 1 is a perspective view of an embodiment of the device 10 for measuring food temperatures.
  • the device 10 allows the measurement of temperatures of the food being cooked, on a cooking surface (or plate) in a cooking oven.
  • the device 10 makes it possible to measure food temperatures on a moving cooking surface in the oven.
  • the device 10 is capable of withstanding the high temperatures of the oven without undergoing deformations - up to 300° C. or beyond.
  • the invention finds particular application in the field of baking.
  • the food is for example bread, in particular hamburger buns.
  • the device 10 comprises a plurality of temperature probes 12.
  • the probes 12 can be arranged in a vertical plane (considering the device 10 in operating mode).
  • the advantage of such an arrangement is to be able to take measurements in the food at several points vertically, according to the propagation of the heat of the oven within the food (from top to bottom and from bottom to top).
  • the probes can be spaced from each other in the vertical plane. This makes it possible to measure the temperature at several points within the food, according to the height of the food and according to the propagation of the heat in the food.
  • the probes are each provided with a 14 temperature measurement zone - a single temperature measurement zone. The measurements taken by the measurement zone 14 of each probe 12 are not influenced by the thermal conduction along the probes.
  • the measurement probes 12 are independent of each other and there is no interference (propagation of heat by the envelope of the probes, potentially metallic). Also, the probes 12 each carrying a measurement zone, they then have a very small diameter not harming the integrity of the food and offering better reactivity because they have less inertia.
  • the probes 12 are for example in the form of a straight needle, with at one of the tips, the measurement zone 14 which is introduced into the food.
  • the probes 12 can be thermocouples.
  • the probes 12 have for example a diameter between 0.5 mm and 1.5 mm.
  • the measurement zones 14 are preferably along a vertical axis 16 (considering the device 10 in operating mode) and included in the vertical plane mentioned above. This makes it possible to arrange the temperature measurement zones 14 one above the other - considering the device 10 in operating mode - and thus to measure the evolution of the temperature as centrally as possible in the food, at different depths.
  • Device 10 may include a support 18 for temperature probes.
  • the support 18 is capable of moving the temperature probes 12 together towards a temperature measurement position, in an oblique direction with respect to the cooking surface.
  • the cooking surface defines a substantially horizontal plane (according to the device 10 in the operating mode, in the cooking oven) and the support 18 allows a single movement of all the probes at the same time in the food.
  • the movement of the probes is not perpendicular or parallel to the cooking surface.
  • the direction of movement is neither vertical nor horizontal.
  • the direction of movement is at a non-zero angle relative to the vertical and the horizontal.
  • all the probes have a coordinated movement during their introduction - which makes it possible to keep the integrity of the food.
  • the oblique direction of movement of the probes avoids the positioning of the device 10 above the food but sideways; the device 10 therefore does not hinder the expansion of the food during cooking.
  • the support 18 can be mobile in the plane containing the probes. More specifically, the support 18 is movable in the vertical plane containing the probes 12. This makes it possible to introduce the probes into the food without damaging the food - and therefore without harming its external appearance - and to adjust the position of the probes. measurement zones 14 at the desired locations in the food.
  • the support 18 is movable between a retracted position (visible in Figure 1), in which the probes are outside the food and a temperature measurement position (visible in Figure 2), in which the probes are in the 'food.
  • the probes 12 can be adjustable in position with respect to the support 18, favoring the precision of the temperature measurements.
  • the support 10 allows the probes 12 to be held precisely in place within the device 10 and relative to each other, preferably in parallel, so as to be able to make precise and repeatable measurements.
  • the support 10 allows the precise holding in place of the measurement zones 14 of the probes 12 along the vertical axis 16. This makes it possible to clearly know the location of the measurement zones 14 in order to position them as well as possible in the food.
  • the probes 12 can be supported by the support 18 using sheaths 20 (for example). One or more sheaths 20 allow the holding of the probes 12 by the support 18 - as well as the position adjustment of the probes 12.
  • the highest probe 12 is held by two sheaths 20 to the support 18.
  • the sheaths 20 allow good orientation of the probes towards the food.
  • the sheaths 20 can be fixed to the support by fasteners such as one or more screws through holes 22 of the support.
  • the support 18 can support a variable number of probes 12.
  • the number of probes 12 is adapted to the food, in particular its size.
  • support 18 can support a few probes 12 for small foods; support 18 can support up to twelve probes or more for larger foods.
  • the probes 12 are spaced from each other by a space 24 whose size depends steps to take and food.
  • a space 24 between the probes 12 - or more exactly, between the measurement zones 14 - comprised between 3 and 10 mm, preferably 5 mm can be chosen.
  • Such a spacing is a compromise between the proximity of the probes 12 and the number of probes 12 that one wishes to use.
  • Figure 2 is a sectional view of the device of Figure 1, in transparency.
  • the support 18 is movable in translation along the direction 28 which is oblique with respect to the cooking surface.
  • Direction 28 is parallel to probes 12 in the form of straight needles. This makes it possible to introduce the probes 12 into the food along the extension axis of the probes 12 and thus not harm the integrity of the food (in particular before cooking, when the food is fragile).
  • the introduction of the probes 12 is therefore done with a single movement, thanks to the linear guide of the support 18.
  • the probes of the device 10 are introduced at the same time into the food.
  • the direction 28 is inclined relative to the vertical and the horizontal - according to the device 10 in the operating mode.
  • the angle of inclination of the direction 28 with respect to the horizontal is for example between 30° and 60°.
  • the lateral introduction of the probes into the food makes it possible to leave the top of the food free (therefore not impacting the development of the food or impacting the cooking) while introducing the probes as close as possible to the center of the food. the food between the top and bottom of the food resting on the cooking surface.
  • the gesture is repeatable.
  • the device 10 further comprises a ramp 30 for guiding the support 18 in translation. of the ramp 30 in order to precisely introduce the probes 12 into the food.
  • the ramp 30 has an inclination adapted to allow, after sliding of the support 18 towards the bottom of the ramp 30, to precisely position the probes (and in particular the tip of the probes in the form of a needle) in the food according to a direction of oblique introduction, up to the position for measuring the temperatures inside the food.
  • the ramp 30 may include for this purpose a groove 32 (visible in Figure 1) along which the support 18 can slide.
  • the support 18 may include a slot 34 through which extends a tenon 36 (visible in Figure 1); the tenon 36 makes it possible to maintain the support at the bottom of the groove 32.
  • Two tenons 36 can be provided to prevent the support 18 from tilting during its movement. Pin 36 can also serve as a translational stop to limit the movement of the support in one direction and the other and to stop the linear guide of support 18 at a specific location.
  • the ramp 30 can be movable in translation along a direction 26, horizontal. This makes it possible to adjust the ramp 30 in position relative to the food before the oblique movement of the support 18 and the probes 12 in the food. Horizontal adjustment accommodates a variety of cooking surfaces.
  • the support 10 further comprises a rail 38.
  • the ramp 30 can be movable in translation (or sliding) relative to the rail 38 in the direction 26, horizontal. This makes it possible to adjust the ramp 30 in position relative to the food before the oblique displacement of the support 18 and the probes 12 in the food.
  • the rail 38 can include for this purpose a groove along which the ramp 30 can slide.
  • the ramp 30 may include a slot 40 through which extends a tenon 42 (visible in Figure 1); the tenon 42 makes it possible to maintain the ramp 30 at the bottom of the groove.
  • Two studs 42 can be provided to prevent the ramp 30 from tilting during its movement.
  • the tenon 42 can also serve as a stop in translation to limit the movement of the ramp 30 in one direction and in the other.
  • brackets 44 it is also possible to provide brackets 44 to hold the rail 38 in position. Also, it is possible to adjust the height of the rail 38 (and therefore the ramp 30 and the support 18) in relation to the brackets 44 in order to further refine the position of the support 18 and the probes 12 in relation to the food.
  • the device 10 may include an interface 43 for fixing to the food cooking surface.
  • the interface 43 can be in the form of a plate and include members for fixing to the cooking surface (not visible in the figures). These can be screws but preferably magnets. Magnets have the advantage of being easily adjustable in position and above all of not modifying the integrity of the cooking surface.
  • Rail 38 is fixed to interface 43 and is held by brackets 44.
  • FIG 3 is a perspective view of the device 10 of Figure 1 in operating mode. Temperature measurements within foods 45 can be made in different contexts. These can be measurements for each cooking or during a selected cooking, when changing recipes, when changing oven... The measurements can be carried out on a single food or on several foods.
  • the device 10 is positioned on the cooking surface (or plate or table) 46. Such a surface is in a horizontal plane within the cooking oven. The cooking surface may be moving in the oven. Possibly, the cooking surface has cavities 48 to receive food to be cooked.
  • a method for measuring the temperatures within at least one food item 45 during cooking can comprise the following steps. After the provision of the cooking surface 46 and the device 10, food 45 to be cooked is arranged on the cooking surface 46.
  • the device 10 is positioned near a food 45, possibly in a cell 48 in place of a food. Fixing members, preferably magnets, make it possible to easily position and immobilize the device 10 on the cooking surface.
  • the device 10 is adjusted in position.
  • the ramp 30 is adjusted in the horizontal direction 26 by translation relative to the rail 38 to bring the support 18 closer to the food.
  • the probes are introduced into the food. For this, the support 18 together moves the temperature probes 12 towards the temperature measurement position, in the oblique direction 28 with respect to the cooking surface.
  • the mobile part of the device 10, consisting of the support 18, has been lowered by the operator along the ramp 30 and the probes 12 such as thermocouples are placed in the food (such as a piece of dough fermented, just before the cooking phase).
  • the device and method allow a double translation along the directions 26 and 28, and therefore a precise introduction of the temperature probes into the food - in particular for various cooking surfaces.
  • Figure 4 shows a sectional view of the positioning of the probes 12 in the food 45.
  • the probes 12 are inserted such that the measurement areas 14 - such as the end of the probes 12 - are along the vertical axis 16 passing through the center of the food. More specifically, the vertical axis 16 along which the measurement zones 14 are positioned coincides with the central vertical axis of the food - in the hypothesis of a food with rotational symmetry.
  • the advantage of such a positioning is that the measurements are taken in the center of the food, presenting the greatest thickness of material and therefore the greatest cooking gradient. If the food does not have rotational symmetry, the introduction of the probes into the thickest zone of the food should be preferred.
  • the insertion of the probes 12 into the food 45 in the direction 28 makes the top of the food 45 free; it can thus grow during cooking without encountering the support of the probes 12. Thus, the measurements do not harm the integrity of the food.
  • the tips of the probes 12 in the form of a needle are all aligned along the same vertical axis passing through the center of the food.
  • the lowest probe can be introduced as far as the base of the food 45, at the level of the cooking surface (or floor of the oven). At least one of the highest probes is located at the top of the food. This makes it possible to measure the behavior of the temperature within the food, from the top and from the bottom of the food. Also, it is possible to envisage a probe 12 remaining outside the food and measures the ambient temperature, close to the food 45. This makes it possible to know precisely the temperature inside the oven, in the immediate environment of the food.
  • FIG. 5 is a graph showing the temperature measurements taken by the device 10.
  • a system comprising the device 10 connected to an electronic recorder can be placed in a thermal box.
  • the recorder not visible in the figures, can be placed on the cooking surface 46 and thus be protected from the heat by the thermal box forming a thermal shield. It is conceivable to remove food from the cooking surface to place the thermal box there. Wires connect the probes 12 to the recorder in order to transmit the measurements.
  • the advantage of the support 18 of the device 10 is that the mass of the wires does not induce a displacement of the probes 12, thus avoiding falsifying the measurements.
  • the temperature values taken by the various probes are restored in the form of a graph representing a thermographic image on which isothermal curves are superimposed to simplify reading.
  • the graph shows how the heat will enter the food through the top or bottom of the oven, during cooking.
  • the cooking time (in seconds) is indicated on the abscissa and each probe on the ordinate (probe no. 1 is the lowest, at the base of the food), the measured temperatures of which are converted into shades of gray (of colors in practice) thermographically - with a gray color chart on the right representing the temperature.
  • 12 probes are used. This way of representing the data makes it possible to bring out specific curves and to implement a process for processing the temperature values obtained by the device 10 and the process described above.
  • References 56 and 58 respectively represent the start and end of cooking.
  • the method includes the definition of isothermal curves, linking similar temperature values provided by the probes 12.
  • isothermal curves are defined, of interest for decision-making on the cooking of a food which could to be bread.
  • Curve 50 represents the isotherm at 55° C. which is the temperature at which the yeast is deactivated.
  • Curve 52 represents the 85° C. isotherm, which is the temperature above which some bakers believe that the microbiological risks are minimal.
  • Curve 54 represents the isotherm at 93° C. which is the temperature at which the last cooking phase begins.
  • the shape of the curves (in the shape of a nose) makes it possible to characterize the cooking, and corresponds to its "signature".
  • the method also comprises a decision-making step on the cooking of food as a function of at least one of these isothermal curves and of the cooking time.
  • cooking time 60 above 85°C for the “coldest” probes located at the heart of the food is synonymous with food safety.
  • the operator can thus determine when food safety occurs and make a decision on cooking the food.
  • Such processing of the measurements makes it possible to see how the heat penetrates the food, and how the cooking progresses, and thus to decide on the cooking.
  • the positioning of the zones 14 along the vertical axis 16 makes it possible to know precisely the positions in the food of the measurement zones, which facilitates the processing of the temperature values.
  • the probes 12 make it possible to see the propagation of the heat, over the entire height of the food 45, the top/bottom heat difference, isothermal curves, the effect of the cooking surface and the food safety time (for example).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

L'invention propose un dispositif (10) de mesure de températures d'un aliment, comprenant : une interface (43) de fixation du dispositif à une surface de cuisson de l'aliment; une pluralité de sondes (12) de températures, espacées les unes des autres; un support (18) des sondes (12) de températures, le support (18) étant apte à déplacer ensemble les sondes (12) de températures vers une position de mesure des températures, selon une direction oblique par rapport à la surface de cuisson; une rampe (30) de guidage en translation du support entre une position rétractée des sondes de températures et la position de mesure des températures des sondes; un rail (38), la rampe étant mobile en translation par rapport au rail selon une direction horizontale. L'invention se rapporte aussi à un procédé de mesure de températures et un procédé de traitement de valeurs de températures.

Description

Dispositif et procédé de mesure de températures d’un aliment et procédé de traitement des valeurs de températures
Domaine de l’invention
L’invention concerne un dispositif et un procédé de mesure de températures d’un aliment et un procédé de traitement des valeurs de températures.
Etat de la technique
Le document US8556502 divulgue un agencement d’une sonde de température formant une tige allongée comportant une première et une seconde partie : la première partie est configurée pour être insérée dans un aliment (tel que du pain) et la seconde partie est configurée pour s’étendre à l’extérieur de l’aliment. La sonde supporte en outre au moins deux capteurs de température positionnés à différents emplacements longitudinaux le long de la première partie de la tige et qui sont configurés pour mesurer les températures de l’aliment à différents emplacements dans l’aliment tandis que l’aliment est en cours de traitement thermique. La sonde comprend en outre dans sa seconde partie au moins un capteur de température ambiante couplé à la tige et configuré pour mesurer la température ambiante à proximité de l’aliment.
L’inconvénient de cet agencement est que les mesures faites par les capteurs sont faussées par le fait que la sonde supportant les capteurs conduit la chaleur d’un capteur à l’autre.
Exposé de l’invention
Le but de l’invention est de fournir un dispositif de mesure de températures d’un aliment en cuisson qui permette de mesurer de manière précise des températures au sein de l’aliment.
Pour cela l’invention propose un dispositif de mesure de températures d’un aliment, comprenant une interface de fixation du dispositif à une surface de cuisson de l’aliment, une pluralité de sondes de températures, espacées les unes des autres, un support des sondes de températures, le support étant apte à déplacer ensemble les sondes de températures vers une position de mesure des températures, selon une direction oblique par rapport à la surface de cuisson.
Le dispositif comprend en outre une rampe de guidage en translation du support entre une position rétractée des sondes de températures et la position de mesure des températures des sondes. Le dispositif comprend en outre un rail, la rampe étant mobile en translation par rapport au rail selon une direction horizontale.
Selon une variante, les sondes ont une zone de mesure de températures, les zones de mesure étant selon un axe vertical dans la position de mesure des températures des sondes.
Selon une variante, l’interface de fixation comprend des organes de fixation à une surface de cuisson d’aliments, les organes de fixation étant des aimants.
Selon une variante, les sondes sont réglables en position par rapport au support.
Selon une variante, les sondes sont des thermocouples, le nombre de sondes étant adapté à l’aliment.
Selon une variante, les sondes sont espacées d’un espace compris entre 3 et 10 mm, de préférence 5 mm.
L’invention se rapporte aussi à un procédé de mesure de températures au sein d’au moins un aliment en cours de cuisson, comprenant la fourniture d’une surface de cuisson et du dispositif tel que décrit précédemment ; la disposition d’aliments à cuire sur la surface de cuisson; le positionnement et le réglage du dispositif sur la surface de cuisson ; l’introduction des sondes dans un aliment, le support déplaçant ensemble les sondes de températures vers une position de mesure des températures, selon une direction oblique par rapport à la surface de cuisson.
Selon une variante, les sondes sont introduites de telle sorte que les zones de mesure des sondes soient selon un axe vertical central de l’aliment.
Selon une variante, l’une des sondes est introduite dans l’aliment jusqu’à la base de l’aliment au niveau de la surface de cuisson, et une autre des sondes mesure la température ambiante.
L’invention se rapporte aussi à un procédé de traitement des valeurs de températures, obtenues par le dispositif tel que décrit précédemment, comprenant une étape de définition de courbes isothermes reliant des valeurs de températures semblables fournies par les sondes et une étape de prise de décision sur la cuisson d’aliments en fonction des courbes isothermes et des temps de cuisson.
Selon une variante, des courbes isothermes à une température de 55°C et/ou 85°C sont définies.
L’ensemble des modes de réalisation préférés ainsi que l’ensemble des avantages du dispositif selon l’invention se transposent mutatis mutandis aux procédés et inversement. Les différents modes de réalisation peuvent être pris en combinaison ou considérés isolément.
Brève description des figures
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui suit pour la compréhension de laquelle on se reportera aux figures annexées qui montrent :
- la figure 1 est une vue en perspective d’un mode de réalisation du dispositif de mesure des températures ;
- la figure 2 est une vue en coupe du dispositif de la figure 1 ;
- la figure 3 est une vue en perspective du dispositif de la figure 1 en position de mesure ;
- la figure 4 montre une vue en coupe du positionnement de sondes dans un aliment ;
- la figure 5 est un graphique montrant les mesures de températures prises par le dispositif.
Les dessins des figures ne sont pas à l’échelle. Des éléments semblables sont en général dénotés par des références semblables dans les figures. Dans le cadre du présent document, les éléments identiques ou analogues peuvent porter les mêmes références. En outre, la présence de numéros ou lettres de référence aux dessins ne peut être considérée comme limitative, y compris lorsque ces numéros ou lettres sont indiqués dans les revendications.
Description détaillée de modes de réalisation de l’invention
L’invention propose un dispositif de mesure de températures d’un aliment en cuisson. Le dispositif comprend une interface de fixation du dispositif à une surface de cuisson de l’aliment, une pluralité de sondes de températures, espacées les unes des autres, et un support des sondes de températures, le support étant apte à déplacer ensemble les sondes de températures vers une position de mesure des températures, selon une direction oblique par rapport à la surface de cuisson. L’invention permet de mesurer de manière précise des températures au sein de l’aliment grâce à un mouvement unique et coordonné des sondes.
La figure 1 est une vue en perspective d’un mode de réalisation du dispositif 10 de mesure de températures d’un aliment. En particulier, le dispositif 10 permet la mesure de températures de l’aliment en cuisson, sur une surface (ou plaque) de cuisson dans un four de cuisson. Notamment, le dispositif 10 permet de mesurer des températures d’aliments sur une surface de cuisson en mouvement dans le four. Le dispositif 10 est apte à supporter les hautes températures du four sans subir de déformations - jusqu’à 300°C ou au-delà. L’invention trouve en particulier application dans le domaine de la boulangerie. L’aliment est par exemple du pain, notamment des pains à hamburger.
Le dispositif 10 comprend une pluralité de sondes 12 de températures. Les sondes 12 peuvent être disposées dans un plan vertical (en considérant le dispositif 10 en mode opératoire). L’avantage d’une telle disposition est de pouvoir prendre des mesures dans l’aliment en plusieurs points verticalement, selon la propagation de la chaleur du four au sein de l’aliment (de haut en bas et de bas en haut). Les sondes peuvent être espacées les unes des autres dans le plan vertical. Ceci permet de mesurer la température en plusieurs points au sein de l’aliment, selon la hauteur de l’aliment et selon la propagation de la chaleur dans l’aliment. Les sondes sont pourvues chacune d’une zone de mesure 14 de températures - une zone unique de mesure de températures. Les mesures prises par la zone de mesure 14 de chaque sonde 12 ne sont pas influencées par la conduction thermique le long des sondes. Les sondes de mesure 12 sont indépendantes les unes des autres et il n’y a pas d’interférence (propagation de chaleur par l’enveloppe des sondes, potentiellement métallique). Également, les sondes 12 portant chacune une zone de mesure, elles ont alors un diamètre très faible ne nuisant pas à l’intégrité de l’aliment et offrant une meilleure réactivité car présentant une inertie moindre. Les sondes 12 sont par exemple sous la forme d’une aiguille rectiligne, avec à l’une des pointes, la zone de mesure 14 qui est introduite dans l’aliment. Les sondes 12 peuvent être des thermocouples. Les sondes 12 ont par exemple un diamètre entre 0,5 mm et 1 ,5 mm. Les zones de mesure 14 sont de préférence selon un axe vertical 16 (en considérant le dispositif 10 en mode opératoire) et inclus dans le plan vertical mentionné ci-dessus. Ceci permet de disposer les zones de mesure 14 de températures les unes au-dessus des autres - en considérant le dispositif 10 en mode opératoire - et ainsi de mesurer l’évolution de la température le plus au centre possible de l’aliment, à différentes profondeurs.
Le dispositif 10 peut comprendre un support 18 des sondes de températures. Le support 18 est apte à déplacer ensemble les sondes 12 de températures vers une position de mesure des températures, selon une direction oblique par rapport à la surface de cuisson. En d’autres termes, la surface de cuisson définit un plan sensiblement horizontal (selon le dispositif 10 en mode opératoire, dans le four de cuisson) et le support 18 permet un déplacement unique de toutes les sondes en même temps dans l’aliment. Le déplacement des sondes n'est pas perpendiculaire ni parallèle à la surface de cuisson. La direction de déplacement n’est ni verticale ni horizontale. La direction de déplacement est selon un angle non nul par rapport à la verticale et l’horizontale. Ainsi toutes les sondes ont un mouvement coordonné lors de leur introduction - ce qui permet de garder l’intégrité de l’aliment. En outre, la direction oblique de déplacement des sondes évite le positionnement du dispositif 10 au-dessus de l’aliment mais de côté ; le dispositif 10 n’entrave donc pas l’expansion de l’aliment durant la cuisson.
Le support 18 peut être mobile dans le plan contenant les sondes. Plus spécifiquement, le support 18 est mobile dans le plan vertical contenant les sondes 12. Ceci permet d’introduire les sondes dans l’aliment sans endommager l’aliment - et donc sans nuire à son aspect extérieur - et d’ajuster la position des zones de mesure 14 aux emplacements souhaités dans l’aliment. Le support 18 est mobile entre une position rétractée (visible sur la figure 1 ), dans laquelle les sondes sont en dehors de l’aliment et une position de mesure des températures (visible sur la figure 2), dans laquelle les sondes sont dans l’aliment.
Les sondes 12 peuvent être réglables en position par rapport au support 18, favorisant la précision des mesures de températures. Le support 10 permet un maintien précis en place des sondes 12 au sein du dispositif 10 et les unes par rapport aux autres, de préférence de manière parallèle, de sorte à pouvoir faire des mesures précises et de façon répétable. En particulier, le support 10 permet le maintien précis en place des zones de mesure 14 des sondes 12 selon l’axe vertical 16. Ceci permet de bien connaître l’emplacement des zones de mesure 14 afin de les positionner au mieux dans l’aliment. Les sondes 12 peuvent être supportées par le support 18 à l’aide de fourreaux 20 (par exemple). Un ou plusieurs fourreaux 20 permettent le maintien des sondes 12 par le support 18 - ainsi que le réglage en position des sondes 12. A titre d’exemple sur la figure 1 , la sonde 12 la plus haute est maintenue par deux fourreaux 20 au support 18. Les fourreaux 20 permettent une bonne orientation des sondes vers l’aliment. Les fourreaux 20 peuvent être fixés au support par des organes de fixation telles qu’une ou plusieurs vis au travers de trous 22 du support.
Le support 18 peut supporter un nombre variable de sondes 12. Le nombre de sondes 12 est adapté à l’aliment, en particulier sa taille. Par exemple, le support 18 peut supporter quelques sondes 12 pour des aliments de petite taille ; le support 18 peut supporter jusque douze sondes ou plus pour des aliments de plus grande taille. Les sondes 12 sont espacées les unes des autres d’un espace 24 dont la grandeur dépend des mesures à faire et de l’aliment. Par exemple, un espace 24 entre les sondes 12 - ou plus exactement, entre les zones de mesure 14 - compris entre 3 et 10 mm, de préférence de 5 mm peut être choisi. Un tel espacement est un compromis entre la proximité des sondes 12 et le nombre de sondes 12 que l’on souhaite utiliser.
La figure 2 est une vue en coupe du dispositif de la figure 1 , en transparence. Le support 18 est mobile en translation selon la direction 28 qui est oblique par rapport à la surface de cuisson. La direction 28 est parallèle aux sondes 12 sous forme d’aiguilles rectilignes. Ceci permet d’introduire les sondes 12 dans l’aliment selon l’axe d’extension des sondes 12 et ainsi ne pas nuire à l’intégrité de l’aliment (en particulier avant la cuisson, lorsque l’aliment est fragile). L’introduction des sondes 12 se fait donc avec un seul mouvement, grâce au guidage linéaire du support 18. En outre, les sondes du dispositif 10 sont introduites en même temps dans l’aliment. La direction 28 est inclinée par rapport à la verticale et l’horizontale - selon le dispositif 10 en mode opératoire. L’angle d’inclinaison de la direction 28 par rapport à l’horizontal est par exemple compris entre 30° et 60°. L’introduction latérale des sondes dans l’aliment permet de laisser libre le dessus de l’aliment (donc de ne pas impacter le développement de l’aliment ni d’impacter la cuisson) tout en introduisant les sondes au plus proche du centre de l’aliment entre le haut et le bas de l’aliment reposant sur la surface de cuisson. En outre, le geste est répétable.
Le dispositif 10 comprend en outre une rampe 30 de guidage en translation du support 18. En particulier, la rampe 30 permet le guidage du support 18 selon la direction 28. Ainsi, le support 18 est monté coulissant sur la rampe 30 et coulisse le long de la rampe 30 afin d’introduire précisément les sondes 12 dans l’aliment. La rampe 30 a une inclinaison adaptée pour permettre, après coulissement du support 18 vers le bas de la rampe 30, de positionner précisément les sondes (et en particulier la pointe des sondes sous forme d’aiguille) dans les aliments selon une direction d’introduction oblique, jusqu’à la position de mesure des températures à l’intérieur de l’aliment. La rampe 30 peut comprendre à cet effet une rainure 32 (visible sur la figure 1 ) le long de laquelle le support 18 peut coulisser. Le support 18 peut comporter une lumière 34 à travers laquelle s’étend un tenon 36 (visible sur la figure 1) ; le tenon 36 permet de maintenir le support au fond de la rainure 32. On peut prévoir deux tenons 36 pour éviter au support 18 de basculer lors de son mouvement. Le tenon 36 peut aussi servir de butée en translation pour limiter le mouvement du support dans un sens et dans l’autre et d’arrêter le guidage linéaire du support 18 à un endroit précis.
La rampe 30 peut être mobile en translation selon une direction 26, horizontale. Ceci permet d’ajuster la rampe 30 en position par rapport à l’aliment avant le déplacement oblique du support 18 et des sondes 12 dans l’aliment. Un réglage horizontal permet de s’adapter à des surfaces de cuisson variées.
Le support 10 comprend en outre un rail 38. La rampe 30 peut être mobile en translation (ou coulissante) par rapport au rail 38 selon la direction 26, horizontale. Ceci permet d’ajuster la rampe 30 en position par rapport à l’aliment avant le déplacement oblique du support 18 et des sondes 12 dans l’aliment. Le rail 38 peut comprendre à cet effet une rainure le long de laquelle la rampe 30 peut coulisser. La rampe 30 peut comporter une lumière 40 à travers laquelle s’étend un tenon 42 (visible sur la figure 1 ) ; le tenon 42 permet de maintenir la rampe 30 au fond de la rainure. On peut prévoir deux tenons 42 pour éviter à la rampe 30 de basculer lors de son mouvement. Le tenon 42 peut aussi servir de butée en translation pour limiter le mouvement de la rampe 30 dans un sens et dans l’autre.
Il est aussi possible de prévoir des équerres 44 pour maintenir le rail 38 en position. Également, il est possible d’ajuster en hauteur le rail 38 (et donc la rampe 30 et le support 18) par rapport aux équerres 44 afin d’affiner encore la position du support 18 et des sondes 12 par rapport à l’aliment.
Selon la figure 1 , le dispositif 10 peut comprendre une interface 43 de fixation sur la surface de cuisson d’aliments. L’interface 43 peut être sous forme d’une platine et comporter des organes de fixation à la surface de cuisson (non visibles sur les figures). Il peut s’agir de vis mais de préférence, des aimants. Les aimants présentent l’avantage d’être aisément ajustables en position et surtout de ne pas modifier l’intégrité de la surface de cuisson. Le rail 38 est fixé sur l’interface 43 et est maintenu par les équerres 44.
La figure 3 est une vue en perspective du dispositif 10 de la figure 1 en mode opératoire. Les mesures de températures au sein d’aliments 45 peuvent être faites dans différents contextes. Il peut s’agir de mesures à chaque cuisson ou lors d’une cuisson sélectionnée, lors d’un changement de recette, lors d’un changement de four... Les mesures peuvent être menées sur un seul ou plusieurs aliments. Le dispositif 10 est positionné sur la surface (ou plaque ou table) de cuisson 46. Une telle surface est selon un plan, horizontal au sein du four de cuisson. La surface de cuisson peut être en mouvement dans le four. Possiblement, la surface de cuisson comporte des alvéoles 48 pour recevoir des aliments à cuire.
Selon la figure 3, un procédé de mesure des températures au sein d’au moins un aliment 45 en cours de cuisson peut comporter les étapes suivantes. Après la fourniture de la surface de cuisson 46 et du dispositif 10, des aliments 45 à cuire sont disposées sur la surface de cuisson 46. Le dispositif 10 est positionné à proximité d’un aliment 45, possiblement dans une alvéole 48 à la place d’un aliment. Des organes de fixation, de préférence des aimants, permettent de positionner et immobiliser aisément le dispositif 10 sur la surface de cuisson. Puis, le dispositif 10 est réglé en position. Pour cela, la rampe 30 est réglée selon la direction 26 horizontale par translation par rapport au rail 38 pour rapprocher le support 18 de l’aliment. Puis les sondes sont introduites dans l’aliment. Pour cela, le support 18 déplace ensemble les sondes 12 de températures vers la position de mesure des températures, selon la direction 28 oblique par rapport à la surface de cuisson. Selon la figure 3, la partie mobile du dispositif 10, constituée du support 18, a été descendue par l’opérateur le long de la rampe 30 et les sondes 12 tels que des thermocouples sont placées dans l’aliment (telle qu’un pâton fermenté, juste avant la phase de cuisson). Les dispositif et procédé permettent une double translation selon les directions 26 et 28, et donc une introduction précise des sondes de température dans l’aliment - notamment pour des surfaces de cuisson variées.
La figure 4 montre une vue en coupe du positionnement des sondes 12 dans l’aliment 45. Les sondes 12 sont insérées de telle sorte que les zones de mesure 14 - telles que l’extrémité des sondes 12 - soient selon l’axe vertical 16 passant par le centre de l’aliment. Plus spécifiquement, l’axe vertical 16 le long duquel les zones de mesure 14 sont positionnées est confondu avec l’axe vertical central de l’aliment - dans l’hypothèse d’un aliment à symétrie de révolution. L’avantage d’un tel positionnement est que les mesures sont prises au centre de l’aliment, présentant la plus grande épaisseur de matière et donc le gradient de cuisson le plus important. Si l’aliment ne présente pas de symétrie de révolution, on privilégiera l’introduction des sondes dans la zone la plus épaisse de l’aliment.
L’insertion des sondes 12 dans l’aliment 45 selon la direction 28 (oblique, inclinée par rapport à la verticale et l’horizontale) rend le dessus de l’aliment 45 libre ; elle peut ainsi croître durant la cuisson sans rencontrer le support des sondes 12. Ainsi, les mesures ne nuisent pas à l’intégrité de l’aliment.
Selon un aspect du procédé, dans la position de mesure des températures, les pointes des sondes 12 sous forme d’aiguille sont toutes alignées suivant le même axe vertical passant par le centre de l’aliment. La sonde la plus basse peut être introduite jusqu’à la base de l’aliment 45, au niveau de la surface de cuisson (ou sole du four). Au moins une des sondes les plus hautes est située en haut de l’aliment. Ceci permet de mesurer le comportement de la température au sein de l’aliment, par le haut et par le bas de l’aliment. Également, on peut envisager qu’une sonde 12 reste à l’extérieur de l’aliment et mesure la température ambiante, à proximité de l’aliment 45. Ceci permet de connaître précisément la température à l’intérieur du four, dans l’environnement immédiat de l’aliment.
La figure 5 est un graphique montrant les mesures de températures prises par le dispositif 10. Pour collecter les mesures, on peut mettre un œuvre un système comprenant le dispositif 10 relié à un enregistreur électronique dans un boiter thermique. L’enregistreur, non visible sur les figures, peut être disposé sur la surface de cuisson 46 et ainsi être protégé de la chaleur par le boîtier thermique formant bouclier thermique. Il est envisageable de retirer des aliments de la surface de cuisson pour y déposer le boîtier thermique. Des fils relient les sondes 12 à l’enregistreur afin de transmettre les mesures. L’avantage du support 18 du dispositif 10 est que la masse des fils n’induit pas un déplacement des sondes 12, évitant ainsi de fausser les mesures.
Sur la figure 5, les valeurs des températures prélevées par les différentes sondes sont restituées sous la forme d’un graphe représentatif d’une image thermographique sur laquelle sont superposées des courbes isothermes pour simplifier la lecture. Le graphe permet de voir de quelle façon la chaleur va entrer dans l’aliment par la voûte ou par la sole du four, et ce, pendant la cuisson. Le temps (en secondes) de cuisson est indiqué en abscisses et chaque sonde en ordonnées (la sonde n°1 est la plus basse, à la base de l’aliment), dont les températures mesurées sont converties en nuance de gris (de couleurs en pratique) de façon thermographie - avec un nuancier de gris sur la droite représentant la température. A titre d’exemple, 12 sondes sont utilisées. Cette façon de représenter les données permet de faire ressortir des courbes spécifiques et de mettre en œuvre un procédé de traitement des valeurs de températures obtenues par le dispositif 10 et le procédé décrit ci-dessus. Les références 56 et 58 représentent respectivement le début et la fin de cuisson. Le procédé comprend la définition de courbes isothermes, reliant des valeurs de températures semblables fournies par les sondes 12. A titre d’exemple, trois courbes isothermes sont définies, présentant un intérêt pour la prise de décision sur la cuisson d’un aliment qui pourrait être du pain. La courbe 50 représente l’isotherme à 55°C qui est la température à laquelle la levure est désactivée. La courbe 52 représente l’isotherme à 85°C qui est la température au-dessus de laquelle certains boulangers estiment que les risques microbiologiques sont minimes. La courbe 54 représente l’isotherme à 93°C qui est la température à laquelle commence la dernière phase de cuisson. La forme des courbes (en forme de nez) permet de caractériser la cuisson, et correspond à sa « signature ». Le procédé comprend aussi une étape de prise de décision sur la cuisson d’aliments en fonction de l’une au moins de ces courbes isothermes et des temps de cuisson. Par exemple, le temps 60 de cuisson au-dessus de 85°C pour les sondes les plus « froides » situées au cœur de l’aliment, est synonyme de sécurité alimentaire. L’opérateur peut ainsi déterminer à partir de quel moment la sécurité alimentaire se produit et prendre une décision sur la cuisson des aliments. Un tel traitement des mesures permet de voir comment la chaleur pénètre dans l’aliment, et comment la cuisson progresse, et ainsi de décider de la cuisson. En outre, le positionnement des zones 14 selon l’axe vertical 16 permet de connaître précisément les positions dans l’aliment des zones de mesures, ce qui facilite le traitement des valeurs de températures.
Les sondes 12 permettent de voir la propagation de la chaleur, sur toute la hauteur de l’aliment 45, la différence de chaleur voûte/sole, des courbes isothermes, l’effet de la surface de cuisson et le temps de sécurité alimentaire (par exemple).
La présente invention a été décrite en relation avec des modes de réalisations spécifiques, qui ont une valeur purement illustrative et ne doivent pas être considérés comme limitatifs. D’une manière générale, il apparaîtra évident pour un homme du métier que la présente invention n’est pas limitée aux exemples illustrés et/ou décrits ci-dessus.

Claims

Revendications Dispositif (10) de mesure de températures d’un aliment, comprenant
• Une pluralité de sondes (12) de températures, espacées les unes des autres,
• Un support (18) des sondes (12) de températures, le support (18) étant apte à déplacer ensemble les sondes (12) de températures vers une position de mesure des températures, caractérisé en ce que le support (18) est apte à déplacer ensemble les sondes (12) de températures selon une direction oblique par rapport à la surface de cuisson, et en ce que le dispositif comprend en outre
• Une interface (43) de fixation du dispositif à une surface de cuisson de l’aliment,
• Une rampe (30) de guidage en translation du support (18) entre une position rétractée des sondes (12) de températures et la position de mesure des températures des sondes (12),
• Un rail (38), la rampe (30) étant mobile en translation par rapport au rail (38) selon une direction (26) horizontale. Le dispositif (10) selon la revendication 1 , dans lequel les sondes (12) ont une zone de mesure de températures, les zones de mesure étant selon un axe vertical dans la position de mesure des températures des sondes (12). Le dispositif (10) selon l’une des revendications précédentes, dans lequel l’interface (43) de fixation comprend des organes de fixation à une surface de cuisson d’aliments, les organes de fixation étant des aimants. Le dispositif (10) selon l’une des revendications précédentes, dans lequel les sondes (12) sont réglables en position par rapport au support (18). Le dispositif (10) selon l’une des revendications précédentes, dans lequel les sondes (12) sont des thermocouples, le nombre de sondes étant adapté à l’aliment. Le dispositif (10) selon l’une des revendications précédentes, dans lequel les sondes (12) sont espacées d’un espace compris entre 3 et 10 mm, de préférence 5 mm. Procédé de mesure de températures au sein d’au moins un aliment (45) en cours de cuisson, comprenant
• La fourniture d’une surface de cuisson (46) et du dispositif (10) selon l’une des revendications précédentes ;
• La disposition d’aliments (45) à cuire sur la surface de cuisson (46) ;
• Le positionnement et le réglage du dispositif (10) sur la surface de cuisson ;
• L’introduction des sondes (12) dans un aliment, le support (18) déplaçant ensemble les sondes (12) de températures vers une position de mesure des températures, selon une direction oblique par rapport à la surface de cuisson. Le procédé selon la revendication 7, dans lequel les sondes (12) sont introduites de telle sorte que les zones de mesure (14) des sondes (12) soient selon un axe vertical central de l’aliment. Procédé selon la revendication 7 ou 8, dans lequel l’une des sondes (12) est introduite dans l’aliment (45) jusqu’à la base de l’aliment au niveau de la surface de cuisson, et une autre des sondes mesure la température ambiante. Procédé de traitement des valeurs de températures, obtenues par le dispositif (10) selon l’une des revendications 1 à 6, comprenant une étape de définition de courbes isothermes (50, 52, 54) reliant des valeurs de températures semblables fournies par les sondes (12) et une étape de prise de décision sur la cuisson d’aliments en fonction des courbes isothermes et des temps de cuisson. Procédé selon la revendication précédente, dans lequel des courbes isothermes à une température de 55°C et/ou 85°C sont définies.
PCT/FR2022/000126 2021-12-01 2022-12-01 Dispositif et procédé de mesure de températures d'un aliment et procédé de traitement des valeurs de températures WO2023099820A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2112824A FR3129724B1 (fr) 2021-12-01 2021-12-01 Dispositif et procédé de mesure de températures d’un aliment et procédé de traitement des valeurs de températures
FRFR2112824 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023099820A1 true WO2023099820A1 (fr) 2023-06-08

Family

ID=80122476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/000126 WO2023099820A1 (fr) 2021-12-01 2022-12-01 Dispositif et procédé de mesure de températures d'un aliment et procédé de traitement des valeurs de températures

Country Status (2)

Country Link
FR (1) FR3129724B1 (fr)
WO (1) WO2023099820A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3119496A1 (de) * 1981-05-15 1982-12-23 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Speisenthermometer, insbesondere fuer mikrowellenherde
US8556502B2 (en) 2011-11-22 2013-10-15 Electronic Controls Design, Inc. Food temperature probe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3119496A1 (de) * 1981-05-15 1982-12-23 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Speisenthermometer, insbesondere fuer mikrowellenherde
US8556502B2 (en) 2011-11-22 2013-10-15 Electronic Controls Design, Inc. Food temperature probe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Lifespace Thermometer Probe Holder Pot Clip - 2 pack", TAKEALOT ONLINE (PTY) LTD. COMMERCIAL WEBSITE, 30 September 2021 (2021-09-30), Cape Town (South Africa), XP055942406, Retrieved from the Internet <URL:https://www.takealot.com/lifespace-thermometer-probe-holder-pot-clip-2-pack/PLID73056363> [retrieved on 20220713] *

Also Published As

Publication number Publication date
FR3129724B1 (fr) 2023-12-08
FR3129724A1 (fr) 2023-06-02

Similar Documents

Publication Publication Date Title
Russell et al. In vivo measurement of colour changes in natural teeth
Arnaud et al. Measurement of vertical profiles of snow specific surface area with a 1 cm resolution using infrared reflectance: instrument description and validation
Mukadam et al. Ensemble characteristics of the ZZ Ceti stars
US11160418B1 (en) Barbecue grill accessory and method for preparing food
Chin et al. Interstellar sulfur isotopes and stellar oxygen burning
CA2909112C (fr) Procede pour le percage d&#39;un tunnel de reception d&#39;un capteur dans un recipient de cuisson et recipient issu d&#39;un tel procede
Orlovskaya et al. Detection of temperature-and stress-induced modifications of La Co O 3 by micro-Raman spectroscopy
EP3237893B1 (fr) Fantome destine a etre utilise pour le controle de la qualite d&#39;images tomographiques.
WO2023099820A1 (fr) Dispositif et procédé de mesure de températures d&#39;un aliment et procédé de traitement des valeurs de températures
JP2018182211A (ja) エピタキシャルシリコンウェーハのエピタキシャル層厚の測定方法、及びエピタキシャルシリコンウェーハの製造方法
Pilachowski et al. The abundance of lithium in Pleiades F stars.
Koester et al. SDSS white dwarf mass distribution at low effective temperatures
EP2952227A1 (fr) Objet-test pour correction des mouvements parasites d&#39;imageur de sortie equipant un appareil de traitement par radiotherapie externe lorsque celui-ci est en mouvement
EP2975983B1 (fr) Procédé de détermination d&#39;un indice de performance d&#39;un ustensile culinaire pour une température de cuisson prédeterminée dans le but d&#39;évaluer un gain nutritionnel
FR3047396A1 (fr) Procede de determination d&#39;un indice de performance d&#39;un recipient de cuisson representatif de l&#39;homogeneite de temperature
WO2021019187A1 (fr) Creuset pour traitement thermique hautes temperatures de pieces massives
EP0590962B1 (fr) Détermination de la densité de carbon contenu dans un monocristal de silicium par la méthode de FT-IR
US20220400195A1 (en) Electronic visual food probe
Michl et al. Separation of front and backside surface recombination by photoluminescence imaging on both wafer sides
Arnaud et al. Instruments and Methods-Measurement of vertical profiles of snow specific surface area with a 1 cm resolution using infrared reflectance: Instrument description and validation
Butkovskaya On the variability of Vega
EP2548016B1 (fr) Procede et dispositif de caracterisation des proprietes sensorielles de tissus
EP0787839B1 (fr) Procédé d&#39;étalonnage de température d&#39;un réacteur d&#39;épitaxie
EP0677265B1 (fr) Dispositif et procédé de commande pour appareil de cuisson
WO2018050998A1 (fr) Dispositif de caractérisation d&#39;un équipement sportif allonge de frappe de balle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836311

Country of ref document: EP

Kind code of ref document: A1