WO2023098838A1 - 电解除氧装置以及具有其的冰箱及其控制方法 - Google Patents

电解除氧装置以及具有其的冰箱及其控制方法 Download PDF

Info

Publication number
WO2023098838A1
WO2023098838A1 PCT/CN2022/136025 CN2022136025W WO2023098838A1 WO 2023098838 A1 WO2023098838 A1 WO 2023098838A1 CN 2022136025 W CN2022136025 W CN 2022136025W WO 2023098838 A1 WO2023098838 A1 WO 2023098838A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
space
reaction
electrolytic
deoxygenation
Prior art date
Application number
PCT/CN2022/136025
Other languages
English (en)
French (fr)
Inventor
苗建林
王睿龙
姬立胜
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111468131.9A external-priority patent/CN116222117A/zh
Priority claimed from CN202111466835.2A external-priority patent/CN116222110A/zh
Priority claimed from CN202111466848.XA external-priority patent/CN116222129B/zh
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Priority to EP22900642.4A priority Critical patent/EP4443086A1/en
Publication of WO2023098838A1 publication Critical patent/WO2023098838A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the invention relates to fresh-keeping technology, in particular to an electrolytic deoxidizer, a refrigerator with the same and a control method thereof.
  • reaction devices such as the electrolytic deoxygenation device used to reduce the oxygen inside the refrigerator through electrochemical reaction
  • the process of electrochemical reaction requires the participation of electrolyte, and the reaction process will generate gas, which needs to be released to the external environment emission.
  • the electrolyte During the reaction process, due to the generation of a large amount of heat, the electrolyte will be heated and evaporated, which may cause a small amount of electrolyte vapor to be carried in the gas discharged from the reaction vessel. Most electrolytes are acidic or alkaline solutions, which are corrosive. If the gas generated in the reaction vessel is directly discharged to the air without treatment, it may cause air pollution and endanger life and health.
  • the electrolytic deoxygenation device consumes oxygen in the working environment through an electrochemical reaction under the action of electrolysis voltage.
  • the inventors have realized that, in general, to increase the rate at which an electrolytic deoxygenator consumes oxygen, it is necessary to increase the electrolysis voltage, or to increase the current flowing through the electrochemical components of the electrolytic deoxygenator, which will lead to wear and tear of the electrochemical components The rate increases, shortening the service life of electrochemical components.
  • An object of the present invention is to overcome at least one technical defect in the prior art, and provide an electrolytic deoxygenation device, a refrigerator having the same and a control method thereof.
  • a further object of one aspect of the present invention is to enable the electrolytic deoxygenation device to have a filtering function, so as to reduce or avoid environmental pollution caused by gas discharge.
  • Yet another further object of one aspect of the present invention is to improve the resource utilization efficiency of the electrolytic deoxygenation device.
  • a further object of one aspect of the present invention is to simplify the structure of the electrolytic deoxygenation device and improve the structural integrity.
  • Another further object of one aspect of the present invention is to improve the gas discharge efficiency of each reaction space and avoid excessive impact of gas on each component of the electrolysis oxygen unit.
  • a further object of another aspect of the present invention is to ensure the service life of the electrolytic oxygen removal device while improving the oxygen removal efficiency.
  • Another further object of another aspect of the present invention is to make the service life of a plurality of electrolysis oxygen units consistent.
  • Yet another further object of another aspect of the present invention is to simplify the rehydration process of the electrolytic deoxygenation device.
  • Another further object of another aspect of the present invention is to enable the electrolytic deoxygenation device to process the discharged gas to prevent environmental pollution.
  • a further object of another aspect of the present invention is to enable the refrigerator to accurately calculate the amount of fluid replenishment in the reaction space to achieve precise fluid replenishment.
  • a still further object of yet another aspect of the present invention is to provide a new method for detecting oxygen removal rate.
  • a further object of another aspect of the present invention is to improve the control precision of the oxygen removal process, so as to ensure the oxygen removal effect and save energy consumption.
  • an electrolytic deoxygenation device comprising: at least one electrolytic deoxygenation unit for consuming oxygen outside the electrolytic deoxidation device through an electrochemical reaction under the action of an electrolytic voltage; and a reaction vessel, Its interior defines a liquid-sealed space and at least one reaction space; a reaction space is correspondingly equipped with an electro-deoxygenation unit; the liquid-sealed space is used to contain liquid, and is connected to the reaction space by a gas path, so that the electro-deoxygenation unit can perform electrochemical reactions
  • the gas generated during the process flows through the liquid contained in the liquid-sealed space, so that the specific material components in the gas are dissolved in the liquid-sealed space.
  • transverse partition plate inside the reaction vessel, which is extended laterally to separate the liquid-sealed space and the reaction space arranged up and down; and at least one exhaust port, an exhaust port Correspondingly communicate with a reaction space, so that the liquid-sealed space communicates with the gas path of the reaction space.
  • At least one liquid replenishment port is opened on the transverse partition plate, and one liquid replenishment port is correspondingly connected to a reaction space, so that the liquid seal space is in fluid communication with the reaction space; and the liquid replenishment port is arranged higher than the exhaust port.
  • liquid replenishment port and the exhaust port are respectively hollow cylindrical air nozzles, which pass through the transverse partition plate and extend into the liquid-sealed space.
  • a gas outlet is opened on the top wall of the liquid-sealed space to communicate with the liquid-sealed space to allow the filtered gas to be discharged.
  • the electrolytic deoxygenation device further includes: a liquid replenishment container, which is located above the reaction container, and forms a liquid storage space connected to the liquid-sealed space inside, for supplying liquid to the liquid-sealed space.
  • a liquid replenishment container which is located above the reaction container, and forms a liquid storage space connected to the liquid-sealed space inside, for supplying liquid to the liquid-sealed space.
  • the multiple electrolytic deoxygenation units and reaction spaces are not connected to each other and are arranged in sequence along the horizontal direction.
  • At least one vertical partition plate inside the reaction vessel which is respectively extended longitudinally to separate a plurality of reaction spaces arranged in sequence along the horizontal direction.
  • the electrolytic deoxygenation unit includes: a cathode plate for consuming oxygen through an electrochemical reaction under the action of an electrolysis voltage, and having a cathode connection terminal;
  • the reaction supplies reactants and generates gas to the cathode plate, which has an anode terminal; and the cathode terminal of an adjacent electrolytic deoxygenation unit is connected to the anode terminal.
  • an electrolytic deoxygenation device comprising:
  • the reaction vessel defines a plurality of reaction spaces for containing the electrolyte; the plurality of reaction spaces are connected to form a through channel for the flow of the electrolyte; and a plurality of electrolytic deoxygenation units are arranged in one-to-one correspondence with the reaction spaces , and each electrolytic deoxygenation unit is respectively assembled in a reaction space, and is used for consuming oxygen outside the reaction vessel through an electrochemical reaction under the action of the electrolytic voltage.
  • a plurality of reaction spaces are arranged in sequence along the horizontal direction, and adjacent reaction spaces communicate with each other, thereby forming a through channel.
  • At least one longitudinal partition in the reaction vessel which is respectively extended longitudinally to separate a plurality of reaction spaces arranged in sequence along the horizontal direction; and a communication port is opened on the longitudinal partition, so that adjacent The reaction spaces are interconnected.
  • the inside of the reaction vessel also defines a processing space, located above the multiple reaction spaces, and communicated with each reaction space one by one, so as to allow the gas generated during the electrochemical reaction of each electrolytic deoxygenation unit to flow into it ; and a gas outlet is provided on the top wall of the processing space to allow the gas flowing into the processing space to be discharged.
  • transverse partition plate inside the reaction vessel, which extends laterally to separate the processing space and the reaction space arranged up and down; connected.
  • a liquid replenishment hole is opened on the transverse partition plate, and the liquid replenishment hole communicates with any reaction space, so as to allow the liquid flowing through the processing space to flow into the reaction space.
  • liquid replenishment hole and the exhaust hole are respectively light holes penetrating through the thickness direction of the transverse partition plate; Upper ring flange.
  • the electrolytic deoxygenation device also includes:
  • the liquid replenishment container is located above the reaction container, and forms a liquid storage space connected to the processing space inside, and is used for replenishing liquid to the processing space.
  • the electrolysis oxygen unit includes:
  • a cathode plate for consuming oxygen by an electrochemical reaction under the action of an electrolysis voltage, and having a cathode connection terminal; and an anode plate for supplying reactants to the cathode plate by an electrochemical reaction under the action of an electrolysis voltage and generating gas ; and it has an anode connection terminal; and the cathode connection terminal of the adjacent electrolysis oxygen unit is connected to the anode connection terminal.
  • a refrigerator comprising: the electrolytic deoxygenation device according to any one of the above.
  • a control method for a refrigerator includes an electrolysis oxygen unit and a reaction container, and the electrolysis oxygen unit is used to perform an electrochemical reaction under the action of an electrolysis voltage to consume the stored contents of the refrigerator.
  • Oxygen in the space, the interior of the reaction vessel defines a reaction space and a filter space; the reaction space is used to assemble the electrolysis oxygen unit; Filtration; and the control method includes: obtaining the liquid volume change value of the reaction space and the liquid volume change value of the filter space, which are respectively recorded as the first variable and the second variable; determining the liquid replenishment volume of the reaction space according to the first variable and the second variable; Add liquid to the reaction space according to the determined amount of liquid replenishment.
  • the filter space is used to filter the gas by dissolving specific material components in the gas; the filter space is in fluid communication with the reaction space; and the step of determining the liquid replenishment amount of the reaction space according to the first variable and the second variable
  • the method includes: calculating the difference between the first variable and the second variable; calculating the fluid loss rate of the reaction space and the filter space according to the difference; and determining the liquid replenishment volume of the reaction space according to the fluid loss rate.
  • the filter space and the reaction space are in liquid communication through the liquid return port, and the filter space is provided with a liquid inlet for receiving liquid; and the step of replenishing the reaction space according to the determined liquid replenishment amount includes: opening the liquid return port and the liquid inlet, and detect the amount of liquid flowing through the liquid inlet; when the accumulated liquid volume reaches the replenishment volume, the liquid inlet is closed, and the liquid return port is closed after a delay.
  • the refrigerator further includes a liquid replenishment container, which communicates with the liquid inlet and is used to provide liquid to the filter space; and before opening the liquid return port and the liquid inlet, the step of replenishing liquid to the reaction space according to the determined liquid replenishment amount further includes : Make sure that the liquid storage volume of the liquid replenishment container is greater than or equal to the liquid replenishment volume.
  • the step of replenishing the reaction space with liquid according to the determined liquid replenishment amount further includes: preheating the liquid replenishment container.
  • the reaction space while replenishing the reaction space with liquid according to the determined liquid replenishment amount, it also includes: obtaining the flow rate of the liquid flowing through the liquid inlet; judging whether the liquid flow rate exceeds a preset safety threshold; if so, closing the liquid inlet, and send out a warning signal.
  • the filter space is provided with an air outlet connected to the external environment for discharging the filtered gas; and after the step of replenishing liquid to the reaction space according to the determined liquid replenishment amount, further includes: obtaining the exhaust rate of the filter space; The electrochemical reaction rate of the electro-deoxidation unit is calculated according to the exhaust rate and the liquid loss rate; the working time of the electro-deoxidation unit is determined according to the electrochemical reaction rate; and the electro-de-oxidation unit is controlled according to the working time.
  • the step of calculating the electrochemical reaction rate of the electrolysis oxygen unit according to the exhaust rate and the liquid loss rate includes: calculating the difference between the exhaust rate and the liquid loss rate to obtain the gas generation rate of the electrolysis oxygen unit; The electrochemical reaction rate is determined from the rate of gas generation.
  • the step of determining the working time of the electrolytic oxygen removal unit according to the electrochemical reaction rate includes: obtaining the oxygen content of the storage space; and calculating the working time of the electrolytic oxygen removal unit according to the electrochemical reaction rate and the oxygen content.
  • a refrigerator which includes: an electrolytic deoxygenation unit for performing an electrochemical reaction under the action of an electrolytic voltage to consume oxygen in the storage space of the refrigerator; a reaction container, Its interior defines a reaction space and a filter space; the reaction space is used to assemble the electrolysis oxygen unit; the filter space is used to hold liquid and filter the gas generated during the electrochemical reaction of the electrolysis oxygen unit; and a processor and a memory A machine-executable program is stored in the memory, and when the machine-executable program is executed by the processor, it is used to implement the control method according to any one of the above.
  • the electrolytic deoxygenation device of the present invention since the inside of the reaction vessel defines a liquid-sealed space and a reaction space, the electrolytic deoxygenation unit is assembled into the reaction space, and the electrolytic deoxygenation unit produces The gas can flow through the liquid contained in the liquid-sealed space, so that the specific substance components in the gas can be dissolved in the liquid-sealed space. Therefore, the present invention provides an electrolytic oxygen removal device with a filtering function, which is beneficial to reduce or avoid Environmental pollution caused by emissions.
  • the electrolytic deoxygenation device of the present invention since the fluid connection between the liquid-sealed space and the reaction space is realized through the liquid replenishment port, the specific substance components dissolved in the liquid-sealed space can be redissolved through the liquid replenishment port. Return to the reaction space for recycling and reuse, which is conducive to improving the resource utilization efficiency of the electrolytic oxygen removal device.
  • the electrolytic deoxygenation device of the present invention since the reaction space and the liquid-sealed space are integrated in the reaction container, the gap between the reaction space and the liquid-sealed space can be realized by opening an opening on the transverse partition plate.
  • the air path communication and the liquid path communication among them can realize the filtering function and the recovery function. Therefore, the electrolytic deoxygenation device of the present invention has the advantages of simple structure and high degree of integration.
  • each reaction space since each reaction space is not connected to each other, it means that each reaction space is set independently of each other and does not interfere with each other, therefore, the gas generated in each reaction space can only pass through
  • the exhaust port is discharged to the liquid-sealed space, which can prevent the gas generated in each reaction space from entering other reaction spaces, which is conducive to improving the gas discharge efficiency of each reaction space and avoiding excessive impact of gas on various components of the electrolytic oxygen removal unit .
  • the electrolytic deoxygenation device of the present invention and the refrigerator having it have multiple electrolytic deoxygenation units.
  • each electrolytic deoxygenation unit only needs to work at a lower electrolysis voltage to obtain higher oxygen removal efficiency. Therefore, the electrolytic deoxygenation device of the present invention can be used in While improving the oxygen removal efficiency, the service life is guaranteed.
  • each electrolytic deoxygenation unit is respectively arranged in a reaction space, and each reaction space is connected through to form a through channel for the electrolyte to flow through, and the electrolyte can be in multiple Free flow in each reaction space, and the electrolyte in each reaction space is basically kept uniform, which is beneficial to ensure that the electrochemical reaction rate of each electrolytic deoxygenation unit is consistent, thereby ensuring that the service life of multiple electrolytic deoxygenation units is consistent.
  • a plurality of reaction spaces are provided through, and a treatment space is provided above the plurality of reaction spaces, and the liquid flowing through the treatment spaces flows into any One reaction space, the liquid flowing into any reaction space can be evenly distributed to other reaction spaces, so as to complete the liquid replenishment, which is beneficial to simplify the liquid replenishment process of the electrolytic deoxygenation device.
  • the hole wall of the liquid replenishing hole extends upwards to form an upper annular flange, and the upper annular flange is set higher than the exhaust hole, therefore, when using the processing space to When replenishing liquid in the reaction space, it is necessary to make the liquid level in the processing space higher than the upper annular flange.
  • the liquid in the processing space can play the role of liquid sealing the vent hole, and the gas flowing out of the vent hole needs to flow through the processing space. After the liquid flows out of the processing space, the gas can dissolve the carried liquid in the processing space when it flows through the liquid in the processing space, which can reduce or avoid environmental pollution caused by gas discharge.
  • the refrigerator and its control method of the present invention obtain the liquid replenishment amount of the reaction space by analyzing the liquid volume change value of the reaction space and the liquid volume change value of the filter space, and replenish liquid to the reaction space according to the liquid replenishment amount, so that On the basis of accurately calculating the amount of rehydration in the reaction space, the refrigerator realizes precise rehydration, and the rehydration process is more intelligent, avoiding manual monitoring of the amount of rehydration during the rehydration process.
  • the electrochemical reaction rate of the electro-deoxygenation unit can be calculated according to the exhaust rate of the filter space and the liquid loss rate of the reaction space and the filter space, the electrochemical reaction rate is
  • the electrolytic oxygen removal unit is aimed at the oxygen removal rate of the storage space. Therefore, the solution of the present invention provides a new method for detecting the oxygen removal rate.
  • the refrigerator and its control method of the present invention can determine the working hours of the electrolytic oxygen removal unit according to the electrochemical reaction rate, and control the electrolytic oxygen removal unit according to the working hours. Therefore, the solution of the present invention is beneficial to improve the The control accuracy of the oxygen process not only ensures the deoxygenation effect, but also saves energy consumption.
  • Fig. 1 is a schematic structural diagram of an electrolytic oxygen removal device according to one embodiment of the present invention.
  • Fig. 2 is a schematic top view of the electrolytic deoxidizer shown in Fig. 1;
  • Fig. 3 is a schematic structural diagram of an electrolytic deoxygenation device according to another embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of an electrolytic deoxygenation device according to yet another embodiment of the present invention.
  • Fig. 5 is a schematic top view of the electrolytic deoxidizer shown in Fig. 4;
  • Fig. 6 is a schematic structural diagram of an electrolytic deoxygenation device according to yet another embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of a refrigerator according to another embodiment of the present invention.
  • Fig. 9 is a schematic block diagram of a refrigerator according to an embodiment of the present invention.
  • Fig. 10 is a schematic structural diagram of an electrolytic deoxygenation device of a refrigerator according to an embodiment of the present invention.
  • Fig. 11 is a schematic diagram of a method for controlling a refrigerator according to an embodiment of the present invention.
  • Figure 12 is a control flow diagram according to one embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of an electrolytic deoxygenation device 10 according to an embodiment of the present invention.
  • the electrolytic deoxygenation device 10 of this embodiment is used to be installed in the refrigerator 1 to consume oxygen in the storage space of the refrigerator 1 .
  • the electrolytic deoxygenation device 10 may generally include a reaction vessel 200 and at least one electrolytic deoxygenation unit 100 .
  • the interior of the reaction vessel 200 defines a liquid-sealed space 230 and at least one reaction space 220 .
  • a reaction space 220 is correspondingly equipped with an electrolytic deoxygenation unit 100 .
  • the number of reaction spaces 220 is the same as the number of electrolytic deoxygenation units 100 , and the two are provided in a one-to-one correspondence.
  • Each reaction space 220 is respectively equipped with an electrolytic deoxygenation unit 100 .
  • the liquid-sealed space 230 is used to contain liquid, and is in gas communication with the reaction space 220, so that the gas generated during the electrochemical reaction of the electrolysis oxygen removal unit 100 flows through the liquid contained in the liquid-sealed space 230, so that specific The material components are dissolved in the liquid-sealed space 230 . That is to say, the gas discharged from the reaction space 220 will be filtered when flowing through the liquid-sealed space 230 , so as to purify the gas.
  • a particular composition of matter may refer to the electrolyte in the electrolyte entrained by the gas.
  • the electrolytic oxygen removal unit 100 is assembled to the reaction space 220, and the gas generated when the electrolytic oxygen removal unit 100 performs electrochemical reactions can flow through the liquid-sealed space 230.
  • the contained liquid dissolves specific substances in the gas in the liquid-sealed space 230. Therefore, the present invention provides an electrolytic deoxygenation device 10 with a filtering function, which is beneficial to reduce or avoid environmental pollution caused by gas discharge.
  • the liquid contained in the liquid-sealed space 230 may be water. In some optional embodiments, the liquid contained in the liquid-sealed space 230 may also be replaced with other solvents, such as low-concentration NaOH aqueous solution, etc. according to the solubility of the electrolyte carried by the gas.
  • the gas generated in the reaction space 220 flows through the liquid contained in the liquid-sealed space 230, so that the gas generated in the reaction space 220 can be purified.
  • the method is very ingenious, and the filtering effect is better.
  • there is no need to install a purification mechanism outside the electrolytic deoxygenation device 10 and the electrolytic deoxygenation device 10 of this embodiment has the advantages of compact structure and high degree of integration.
  • the reaction vessel 200 has a transverse partition plate 250 extending in the transverse direction to separate the liquid-sealed space 230 and the reaction space 220 arranged up and down. That is, the liquid-sealed space 230 is disposed above the reaction space 220 .
  • the transverse partition board 250 may be in the shape of a flat plate or a sheet, and the board surface where it is located may be parallel to the horizontal plane.
  • At least one exhaust port 251 is opened on the transverse partition plate 250 , and one exhaust port 251 is correspondingly connected to a reaction space 220 , so that the liquid-sealed space 230 communicates with the reaction space 220 through a gas path.
  • the gas generated in each reaction space 220 can flow into the liquid-sealed space 230 through the corresponding exhaust port 251 .
  • the number of exhaust ports 251 is the same as the number of reaction spaces 220 , and the two are provided in one-to-one correspondence, so that the gas generated in each reaction space 220 can flow into the liquid-sealed space 230 for filtration.
  • the reaction space 220 can be connected with the gas path of the liquid-sealed space 230, and the gas generated in the reaction space 220 can rely on the gas itself.
  • the upward floating movement flows into the liquid-sealed space 230 for filtering treatment, without installing other guiding mechanisms, and has the advantages of simple and delicate structure.
  • the transverse partition plate 250 can be formed inside the reaction vessel 200 by injection molding, the process is simple, the complicated assembly process is omitted, and the communication between the reaction space 220 and the liquid-sealed space 230 is ensured.
  • the exhaust rate of the exhaust port 251 is greater than the maximum value of the gas generation rate of the electrolysis oxygen unit 100, so as to prevent the reaction space 220 from impacting various components of the electrolysis oxygen unit 100 due to the formation of relatively high pressure.
  • At least one liquid replenishment port 252 is opened on the transverse partition plate 250 , and one liquid replenishment port 252 communicates with a reaction space 220 correspondingly, so that the liquid seal space 230 and the reaction space 220 are in liquid communication.
  • the liquid contained in the liquid-sealed space 230 can flow into the reaction space 220 through the liquid replenishment port 252 , so as to replenish the reaction space 220 with liquid.
  • the number of liquid replenishment ports 252 is the same as the number of reaction spaces 220 , and the two are provided in one-to-one correspondence, so that each reaction space 220 can receive liquid from the liquid-sealed space 230 .
  • the specific substance components dissolved in the liquid seal space 230 can return to the reaction space 220 through the liquid replenishment port 252 for recycling. This is beneficial to improving the resource utilization efficiency of the electrolytic deoxidizer 10 .
  • the liquid replenishment port 252 is set higher than the exhaust port 251 , so that the liquid contained in the liquid-sealed space 230 liquid-seals the exhaust port 251 . That is to say, when the liquid in the liquid-sealed space 230 can enter the reaction space 220 through the liquid replenishment port 252 , the liquid level in the liquid-sealed space 230 is higher than the exhaust port 251 , so that the exhaust port 251 can be liquid-sealed.
  • the liquid contained in the liquid-sealed space 230 is liquid-sealed to the exhaust port 251, which can ensure that all the gas flowing out of the exhaust port 251 flows through the liquid contained in the liquid-sealed space 230, so as to avoid direct discharge of unfiltered gas to the outside and cause environmental pollution
  • the liquid in the liquid-sealed space 230 can also isolate the electrolyte in the reaction space 220 from the air, reducing or avoiding deterioration of the electrolyte.
  • the liquid replenishment port 252 and the exhaust port 251 are respectively hollow cylindrical gas nozzles, which pass through the transverse partition plate 250 and protrude into the liquid-sealed space 230 . Since the cylinder wall of the hollow cylindrical gas nozzle can define a hollow cylindrical gas flow channel, the hollow cylindrical gas nozzle can be extended into the liquid-sealed space 230, and the gas flowing through the exhaust port 251 can be guided upwards, thereby improving Gas filtration efficiency and emission efficiency.
  • a gas outlet 231 may be opened on the top wall of the liquid-sealed space 230 to communicate with the liquid-sealed space 230 to allow the filtered gas to be discharged.
  • the top wall of the liquid-sealed space 230 is also the top wall of the reaction vessel 200 .
  • the gas flowing into the liquid-sealed space 230 finally flows to the gas outlet 231 and is discharged to the external environment of the reaction vessel 200 through the gas outlet 231 .
  • the liquid-sealed space 230 is used to collect and filter the gas generated by each electrolytic deoxygenation unit 100, and the gas is uniformly discharged through the gas outlet 231.
  • the air guide tube When it is necessary to use the air guide tube to guide the gas, it is only necessary to connect the air guide tube to the gas outlet 231 That is, the structure is simple and easy to implement.
  • the reaction space 220 and the liquid-sealed space 230 are integrated in the reaction vessel 200, the gas and liquid communication between the reaction space 220 and the liquid-sealed space 230 can be realized by opening an opening on the transverse partition plate 250, Furthermore, the filtering function and the recovery function are realized. Therefore, the electrolytic deoxygenation device 10 of the present invention has the advantages of simple structure and high degree of integration.
  • each electrolytic deoxygenation unit 100 can consume oxygen by performing an electrochemical reaction under the action of an electrolytic voltage.
  • Each electrolytic oxygen removal unit 100 can obtain higher oxygen removal efficiency only by working at a lower electrolytic voltage. Therefore, the electrolytic oxygen removal device 10 of the present embodiment ensures a longer service life while improving the oxygen removal efficiency. .
  • FIG. 2 is a schematic top view of the electrolytic deoxygenation device 10 shown in FIG. 1 , in which a plurality of reaction spaces 220 and a plurality of electrolytic deoxygenation units 100 are shown.
  • the multiple reaction spaces 220 are not connected to each other and are arranged in sequence along the horizontal direction.
  • each reaction space 220 is not connected to each other, it means that each reaction space 220 is set independently of each other and does not interfere with each other. Therefore, the gas generated in each reaction space 220 can only be discharged to the liquid-sealed space 230 through the exhaust port 251, which can Preventing the gas generated in each reaction space 220 from entering other reaction spaces 220 is conducive to improving the gas discharge efficiency of each reaction space 220 and avoiding excessive impact of gas on various components of the electrolysis oxygen removal unit 100 .
  • each electrolytic deoxygenation unit 100 can smoothly contact the oxygen outside the reaction vessel 200, and each electrolytic deoxygenation unit 100 can contact with the oxygen outside the reaction vessel 200.
  • the chances of contacting are equal, and the electric energy efficiency of the whole electrolytic deoxygenation device 10 is relatively high.
  • the number of longitudinal partition plates 210 is set according to the number of reaction spaces 220 and is one less than the number of reaction spaces 220 .
  • a plurality of longitudinal partition plates 210 may be in the shape of a flat plate or a thin sheet, and arranged parallel to each other, and the surface of each vertical partition plate 210 may be parallel to the vertical plane.
  • the longitudinal partition plate 210 can be formed inside the reaction vessel 200 by injection molding, the process is simple, the complicated assembly process is omitted, and the communication between adjacent reaction spaces 220 is ensured.
  • the electrolytic deoxygenation device 10 further includes a liquid replenishment container 300, which is located above the reaction container 200, and forms a liquid storage space 310 connected to the liquid-sealed space 230 inside it, and is used to supply liquid to the liquid-sealed space. 230 rehydration.
  • a liquid replenishment container 300 which is located above the reaction container 200, and forms a liquid storage space 310 connected to the liquid-sealed space 230 inside it, and is used to supply liquid to the liquid-sealed space. 230 rehydration.
  • the liquid replenishment container 300 can be a water tank, and a liquid supply port is opened at the bottom thereof, and a liquid inlet 232 is correspondingly opened on the top wall of the liquid-sealed space 230, and the liquid supply port is higher than the liquid inlet 232, and the liquid supply port and the liquid inlet
  • the ports 232 may be communicated with each other through a liquid infusion tube, so as to guide the liquid from the liquid supply port to the liquid inlet port 232 through the liquid infusion tube.
  • a switch element 400 may be installed in the infusion tube for controlled opening and closing, so as to switch the liquid path between the liquid supply port and the liquid inlet port 232 .
  • the electrolytic solution is consumed when the electrolytic deoxygenation unit 100 performs an electrochemical reaction.
  • the liquid replenishment demand of the electrolytic deoxygenation unit 100 can be met within a certain range, and the problem that the electrolytic deoxygenation unit 100 cannot work normally due to insufficient electrolyte can be reduced or avoided, which is conducive to improving the The working performance of the electrolytic deoxygenation device 10.
  • Electrolytic deoxygenation unit 100 may generally include an anode plate 120 and a cathode plate 110 .
  • the cathode plate 110 is used to consume oxygen through an electrochemical reaction under the action of electrolysis voltage.
  • the anode plate 120 serves to supply reactants (eg, electrons) to the cathode plate 110 through an electrochemical reaction under the action of an electrolysis voltage and generate gas.
  • oxygen in the air can undergo a reduction reaction at the cathode plate 110 , namely: O 2 +2H 2 O+4e ⁇ ⁇ 4OH ⁇ .
  • the OH ⁇ produced by the cathode plate 110 can undergo an oxidation reaction at the anode plate 120 to generate oxygen, namely: 4OH ⁇ ⁇ O 2 +2H 2 O+4e ⁇ .
  • the cathode plate 110 has a cathode terminal 111 .
  • the anode plate 120 has an anode connection terminal 121 .
  • the cathode connection terminal 111 of the adjacent electrolytic deoxygenation unit 100 is connected to the anode connection terminal 121 , which allows a plurality of electrolytic deoxygenation units 100 to be connected in series sequentially. Since each electrolytic deoxygenation unit 100 can function as a voltage divider, this can prevent the electrolytic deoxygenation unit 100 from increasing the loss rate due to excessive operating current, which is beneficial to prolong the service life of the electrochemical element.
  • the electrochemical reaction of the electrolytic deoxygenation unit 100 consumes water. Therefore, it is only necessary to supply water to the reaction space 220 , and the liquids in the water tank and the liquid-sealed space 230 can be water respectively.
  • Fig. 3 is a schematic structural diagram of an electrolytic deoxidizer 10 according to another embodiment of the present invention, which is a side view.
  • the reaction vessel 200 has an opening on the sidewall of the reaction space 220 , and the cathode plate 110 may be disposed at the opening and together with the reaction vessel 200 define the reaction space 220 for containing the electrolyte.
  • the anode plate 120 and the cathode plate 110 may be disposed in the reaction space 220 at a distance from each other.
  • At least a part of the front wall of the liquid-sealed space 230 is recessed backward to form a wiring compartment 280, and cables can be arranged in the wiring compartment 280, and the cables are used to connect the electrolysis oxygen unit 100.
  • a power supply to the electrolysis oxygen device 10 such that the power supply supplies an electrolysis voltage to the electrolysis oxygen unit 100 .
  • the cathode plate 110 may be disposed inside the reaction vessel 200 , for example, the front wall of the reaction vessel 200 may be provided with a plurality of holes to allow the cathode plate 110 to be in contact with the outside gas.
  • Fig. 4 is a schematic structural diagram of an electrolytic deoxidizer 10 according to yet another embodiment of the present invention.
  • the electrolytic deoxygenation device 10 of this embodiment is used to be installed in the refrigerator 1 to consume oxygen in the storage space of the refrigerator 1 .
  • the electrolytic deoxygenation device 10 may generally include a reaction vessel 200 and a plurality of electrolytic deoxygenation units 100 .
  • the interior of the reaction vessel 200 defines a plurality of reaction spaces 220 for containing the electrolyte.
  • a plurality of reaction spaces 220 are arranged through to form a through channel 221 through which the electrolyte solution circulates.
  • each reaction space 220 is directly or indirectly connected to form a through channel 221 through which the electrolyte circulates, and the electrolyte in each reaction space 220 is uniform.
  • a plurality of electrolytic deoxygenation units 100 are provided in one-to-one correspondence with the reaction space 220, and each electrolytic deoxygenation unit 100 is respectively assembled to a reaction space 220 for consuming the external oxygen of the reaction vessel 200 through an electrochemical reaction under the action of the electrolysis voltage. oxygen.
  • each electrolytic deoxygenation unit 100 can independently perform an electrochemical reaction, and when multiple electrolytic deoxygenation units 100 perform an electrochemical reaction simultaneously, the deoxygenation efficiency of the electrolytic deoxygenation device 10 is accumulated.
  • the electrolytic deoxygenation device 10 of the present invention and the refrigerator 1 having it have a plurality of electrolytic deoxygenation units 100, and each electrolytic deoxygenation unit 100 can consume oxygen by carrying out an electrochemical reaction under the action of an electrolytic voltage.
  • each electrolytic deoxygenation unit 100 only needs to work at a lower electrolysis voltage to obtain a higher deoxygenation efficiency. Therefore, the electrolytic deoxidation unit 100 of the present invention
  • the device 10 not only improves the oxygen removal efficiency, but also ensures the service life and has high safety.
  • FIG. 5 is a schematic top view of the electrolytic deoxygenation device 10 shown in FIG. 4 , in which the reaction space 220 and the electrolytic deoxygenation unit 100 are shown. Since each electrolytic deoxygenation unit 100 is respectively arranged in a reaction space 220, and each reaction space 220 is arranged through to form a through channel 221 (shown in dotted line in FIG. 220 flows freely, and the electrolyte in each reaction space 220 is basically kept uniform, which helps to ensure that the electrochemical reaction rate of each electrolytic deoxygenation unit 100 remains consistent, thereby ensuring that the service life of multiple electrolytic deoxygenation units 100 remains consistent. When all the electrolytic deoxygenation units are aging, they can be replaced uniformly, which is beneficial to reduce maintenance costs.
  • a plurality of reaction spaces 220 are arranged in sequence along the horizontal direction, and adjacent reaction spaces 220 communicate with each other, thereby forming a through channel 221 .
  • reaction spaces 220 that are not directly connected can be connected indirectly, so that a plurality of reaction spaces 220 are connected to form a through channel 221 .
  • Arranging a plurality of reaction spaces 220 in sequence along the horizontal direction can ensure that the heights of each reaction space 220 are basically the same. Since adjacent reaction spaces 220 are connected to each other, each reaction space 220 forms a connector through penetration. Based on this connector structure, the electrolyte solution in each reaction space 220 can be evenly distributed without external force interference, and the liquid level and concentration of the electrolyte solution are basically the same.
  • each electrolytic deoxygenation unit 100 can smoothly contact the oxygen outside the reaction vessel 200, and each electrolytic deoxygenation unit 100 can contact with the oxygen outside the reaction vessel 200. Equal opportunity to make contacts.
  • the number of longitudinal partition plates 210 is set according to the number of reaction spaces 220 and is one less than the number of reaction spaces 220 .
  • a plurality of longitudinal partition plates 210 may be in the shape of a flat plate or a thin sheet, and arranged parallel to each other, and the surface of each vertical partition plate 210 may be parallel to the vertical plane.
  • a communication port 211 is opened on the longitudinal partition plate 210 so that adjacent reaction spaces 220 communicate with each other.
  • the electrolyte in a certain reaction space 220 can flow into other reaction spaces 220 through the communication port 211 .
  • the electrolytic deoxygenation device 10 of this embodiment can pass through each reaction space 220 by opening the communication port 211 on the longitudinal partition plate 210 , and has the advantage of a compact structure.
  • the communication port 211 may be located at the bottom section of the longitudinal partition plate 210 .
  • the communication port 211 may not be provided on the longitudinal partition plate 210 , for example, a gap may be formed between the longitudinal partition plate 210 and the bottom wall of the reaction space 220 , thereby forming the communication port 211 .
  • the longitudinal partition plate 210 can be formed inside the reaction vessel 200 by injection molding, the process is simple, the complicated assembly process is omitted, and the communication between adjacent reaction spaces 220 is ensured.
  • the interior of the reaction vessel 200 also defines a processing space 230, located above the plurality of reaction spaces 220, and communicated with each reaction space 220 one by one, so as to allow each electrolytic deoxygenation unit 100 The gas generated during the electrochemical reaction flows into it. That is, in the reaction vessel 200 of this embodiment, the upper space is the processing space 230 and the lower space is the reaction space 220 .
  • the processing space 230 can also function as a liquid seal, so it is also called the liquid seal space 230 .
  • the gas generated when the electrolytic oxygen removal unit 100 performs an electrochemical reaction is formed in the respective corresponding reaction spaces 220. Since the processing space 230 communicates with each reaction space 220 one by one, the gas generated by each electrolytic oxygen removal unit 100 is uniform. can flow into the processing space 230 .
  • a gas outlet 231 is defined on the top wall of the processing space 230 to allow the gas flowing into the processing space 230 to be discharged.
  • the top wall of the processing space 230 is also the top wall of the reaction vessel 200 .
  • the gas flowing into the processing space 230 finally flows to the gas outlet 231 and is discharged to the external environment of the reaction vessel 200 through the gas outlet 231 .
  • the reaction vessel 200 has a transverse partition plate 250 extending in the transverse direction to separate the processing space 230 and the reaction space 220 arranged up and down.
  • a transverse partition plate 250 there is one transverse partition plate 250 in this embodiment.
  • the transverse partition board 250 may be in the shape of a flat plate or a sheet, and the board surface where it is located may be parallel to the horizontal plane.
  • a plurality of exhaust holes 251 a are opened on the transverse partition plate 250 , communicating with the reaction spaces 220 one by one.
  • the electrolytic deoxygenation device 10 of this embodiment can communicate with the reaction space 220 and the processing space 230 by opening the exhaust hole 251 a on the transverse partition plate 250 , and has the advantage of compact structure. Since the processing space 230 and the reaction space 220 are both integrated in the reaction vessel 200 and separated by the transverse partition plate 250 with the exhaust hole 251a, the gas guiding structure is omitted and the airtightness is ensured.
  • the exhaust rate of the exhaust hole 251a is greater than the maximum value of the gas generation rate of the electrolysis oxygen unit 100 , so as to prevent the reaction space 220 from having an impact on various components of the electrolysis oxygen unit 100 due to the formation of relatively high pressure.
  • the transverse partition plate 250 can be formed inside the reaction vessel 200 by injection molding, the process is simple, the complicated assembly process is omitted, and the connectivity between the reactions is ensured.
  • a liquid replenishment hole 252 a is opened on the transverse partition plate 250 to allow the liquid flowing through the processing space 230 to flow into the reaction space 220 .
  • the processing space 230 of this embodiment can not only be used as a gas collection bin for collecting gas, but also can be used as a liquid supply bin for providing liquid to the reaction space 220 .
  • the liquid from the outside of the processing space 230 may flow into the reaction space 220 from the replenishment hole 252 a after passing through the processing space 230 .
  • liquid replenishment hole 252 a There is only one liquid replenishment hole 252 a , and the liquid replenishment hole 252 a can communicate with any reaction space 220 .
  • a plurality of reaction spaces 220 are arranged through, and a processing space 230 is arranged above the plurality of reaction spaces 220, and the liquid flowing through the processing space 230 flows into any reaction space 220 through the liquid replenishment hole 252a, and flows into any reaction space 220.
  • the liquid can be evenly distributed to other reaction spaces 220 to complete the liquid replenishment, which is beneficial to simplify the liquid replenishment process of the electrolytic deoxygenation device 10 .
  • the number of liquid replenishment holes 252a can also be set in multiples according to actual needs, which can improve the efficiency of liquid replenishment, so that the electrolyte in each reaction space 220 can be uniformed at a relatively fast speed.
  • the liquid replenishment hole 252 a and the exhaust hole 251 a are respectively light holes penetrating through the thickness direction of the transverse partition plate 250 .
  • the liquid replenishment hole 252a may communicate with the reaction space 220 at the end of the reaction vessel 200 .
  • the exhaust hole 251a can be set close to the anode plate 120 of the electrolysis unit 100 and away from the cathode plate 110 of the electrolysis unit 100 , so as to ensure the gas exhaust efficiency of the reaction space 220 .
  • the hole wall of the liquid replenishment hole 252 a extends upwards, and an upper annular flange 260 is formed on the upper surface of the transverse partition plate 250 to pass through the liquid replenishment hole 252 a and the processing space 230 .
  • the upper annular flange 260 is in the shape of a hollow cylinder, and the wall of the cylinder encloses a hollow passage communicating with the liquid replenishing hole 252a.
  • the liquid replenishing hole 252a and the upper annular flange 260 jointly form a hollow cylindrical air nozzle.
  • the liquid in the processing space 230 needs to flow through the hollow channel of the upper annular flange 260 , then flow through the liquid replenishment hole 252 a , and finally flow into the reaction space 220 .
  • the upper annular flange 260 is set higher than the exhaust hole 251a, therefore, when using the processing space 230 to supply liquid to the reaction space 220, it is necessary to make the processing space 230
  • the liquid level is set higher than the upper annular flange 260, the liquid in the processing space 230 can play the role of liquid sealing the vent hole 251a, the gas flowing out from the vent hole 251a needs to flow through the liquid in the processing space 230, After flowing out of the processing space 230 , the gas can dissolve the carried liquid (such as electrolyte) in the processing space 230 when the gas flows through the liquid in the processing space 230 , which can reduce or avoid environmental pollution caused by gas discharge.
  • the carried liquid such as electrolyte
  • the electrolytic deoxygenation device 10 of this embodiment has the function of filtration and recovery, which improves resource utilization efficiency and reduces or avoids electrolyte waste caused by direct gas discharge.
  • the liquid in the processing space 230 can also isolate the electrolyte in the reaction space 220 from the air, reducing or avoiding deterioration of the electrolyte.
  • the hole wall of the exhaust hole 251a may also extend upwards, and another upper annular flange 260 is formed on the upper surface of the transverse partition plate 250 to pass through the exhaust hole 251a and the processing space 230 , may be named as the second upper annular flange 260 .
  • the exhaust hole 251a and the second upper annular flange 260 jointly form a hollow cylindrical air nozzle.
  • the upper annular flange 260 passing through the liquid replenishing hole 252a and the processing space 230 can be named as the first upper annular flange 260 .
  • the first upper annular flange 260 is higher than the second upper annular flange 260 to ensure that the liquid in the processing space 230 can liquid seal the exhaust hole 251a.
  • the inside of the second upper annular flange 260 defines an air flow channel extending from bottom to top, it can play a role in guiding the air flow passing through it upwards, which is beneficial to improve the gas discharge efficiency.
  • the electrolytic deoxygenation device 10 further includes a liquid replenishment container 300, which is located above the reaction container 200, and forms a liquid storage space 310 connected to the processing space 230 inside, and is used for replenishing liquid to the processing space 230.
  • the liquid replenishment container 300 can be a water tank, and a liquid supply port is opened at the bottom thereof, and a liquid inlet 232 is correspondingly opened on the top wall of the processing space 230, and the liquid supply port is higher than the liquid inlet 232, and the liquid supply port and the liquid inlet 232 can be communicated with through an infusion tube, so that the liquid from the outflow liquid supply port can be guided to the liquid inlet 232 by the infusion tube.
  • a switch element 400 may be installed in the infusion tube for controlled opening and closing, so as to switch the liquid path between the liquid supply port and the liquid inlet port 232 .
  • the electrolytic solution is consumed when the electrolytic deoxygenation unit 100 performs an electrochemical reaction.
  • the liquid replenishment demand of the electrolytic deoxygenation unit 100 can be met within a certain range, and the problem that the electrolytic deoxygenation unit 100 cannot work normally due to insufficient electrolyte can be reduced or avoided, which is conducive to improving the The working performance of the electrolytic deoxygenation device 10.
  • the structure of the electrolytic deoxygenation unit 100 is as described above and will not be repeated here.
  • the electrochemical reaction of the electrolytic deoxygenation unit 100 consumes water, therefore, it is only necessary to supply water to the reaction space 220 , and the liquids in the water tank and the treatment space 230 can be water respectively.
  • Fig. 6 is a schematic structural diagram of an electrolytic deoxidizer 10 according to yet another embodiment of the present invention, which is a side view.
  • the reaction vessel 200 has an opening on the sidewall of the reaction space 220 , and the cathode plate 110 may be disposed at the opening and together with the reaction vessel 200 define the reaction space 220 for containing the electrolyte.
  • the anode plate 120 and the cathode plate 110 may be disposed in the reaction space 220 at a distance from each other.
  • At least a part of the front wall of the processing space 230 is recessed backward to form a cable compartment 280, and cables can be arranged in the cable compartment 280, and the cables are used to connect the electrolysis oxygen unit 100 to the
  • the power supply of the electrolytic deoxygenation device 10 is such that the power supply provides electrolysis voltage to the electrolytic deoxygenation unit 100 .
  • the cathode plate 110 may be disposed inside the reaction vessel 200 , for example, the front wall of the reaction vessel 200 may be provided with a plurality of holes to allow the cathode plate 110 to be in contact with the outside gas.
  • Fig. 7 is a schematic structural diagram of a refrigerator 1 according to one embodiment of the present invention
  • Fig. 8 is a schematic structural diagram of a refrigerator 1 according to another embodiment of the present invention.
  • the refrigerator 1 may generally include a box body 20 and the electrolytic deoxygenation device 10 as in any of the above embodiments.
  • the interior of the box body 20 defines a storage space.
  • the electrolytic deoxygenation device 10 is installed in the box body 20 and is used to consume oxygen in the storage space.
  • the cathode plate may be in airflow communication with the storage space.
  • the refrigerator 1 of the embodiment of the present invention is an electrical device with a low-temperature storage function, including not only a refrigerator in a narrow sense, but also a freezer, a storage cabinet, and other refrigerating and freezing devices.
  • the electrolytic deoxygenation device 10 can also provide oxygen to the storage space, so that the storage space creates a high-oxygen fresh-keeping atmosphere, for example, the air outlet of the electrolytic deoxygenation device can be connected to the storage space by air flow.
  • the electrolytic deoxygenation unit 100 is assembled into the reaction space 220, and the electrolytic deoxygenation unit 100
  • the gas generated when the unit 100 performs an electrochemical reaction can flow through the liquid contained in the liquid-sealed space 230, so that specific material components in the gas can be dissolved in the liquid-sealed space 230. Therefore, the present invention provides an electrolytic solution with a filtering function.
  • the oxygen device 10 is beneficial to reduce or avoid environmental pollution caused by gas discharge.
  • the electrolytic deoxygenation device 10 of the present invention and the refrigerator 1 having it have a plurality of electrolytic deoxygenation units 100, and each electrolytic deoxygenation unit 100 can be consumed by performing an electrochemical reaction under the action of the electrolysis voltage.
  • Oxygen when a plurality of electrolytic deoxygenation units 100 are utilized to carry out electrochemical reactions simultaneously, each electrolytic deoxygenation unit 100 only needs to work at a smaller electrolytic voltage to obtain higher oxygen removal efficiency, therefore, the present invention
  • the electrolytic oxygen removal device 10 improves the oxygen removal efficiency while ensuring the service life and high safety.
  • Fig. 9 is a schematic block diagram of a refrigerator 1 according to an embodiment of the present invention.
  • the refrigerator 1 may generally include an electrolytic deoxygenation unit 100 , a reaction container 200 , a processor 810 and a storage 820 , and may further include a box.
  • the electrolytic deoxygenation unit 100, the reaction vessel 200, the processor 810 and the memory 820 are all arranged in the box.
  • the electrolytic deoxygenation unit 100 and the reaction vessel 200 can form the electrolytic deoxygenation device 10 .
  • a storage space is formed inside the box body.
  • the number of storage spaces can be set to one or more according to actual needs.
  • the electrolytic deoxygenation unit 100 is used to perform an electrochemical reaction under the action of an electrolytic voltage to consume oxygen in the storage space of the refrigerator 1 .
  • the electrolytic deoxygenation unit 100 can not only deoxygenate one storage space, but also deoxygenate multiple storage spaces at the same time, as long as the air flow between the electrolytic deoxygenation unit 100 and the storage space to be deoxygenated is ensured.
  • the airflow communication means that the air in the storage space can flow to the electrolysis oxygen unit 100, for example, flow to the cathode plate of the electrolysis oxygen unit 100, so that the cathode plate performs an electrochemical reaction with oxygen in the air as a reactant, thereby Play the role of deoxygenation.
  • the following embodiments will illustrate the case where a plurality of electrolytic deoxygenation units 100 are dedicated to deoxygenating a storage space, and those skilled in the art should easily expand according to the following embodiments, so no further examples are given for other cases.
  • Electrolytic deoxygenation unit 100 may generally include an anode plate and a cathode plate.
  • the cathode plate is used to consume oxygen through an electrochemical reaction under the action of electrolysis voltage.
  • the anode plate is used to supply reactants (eg, electrons) to the cathode plate through an electrochemical reaction under the action of an electrolysis voltage and generate gas.
  • reactants eg, electrons
  • oxygen in the air can undergo a reduction reaction at the cathode plate, namely: O 2 +2H 2 O+4e - ⁇ 4OH - .
  • the OH - produced by the cathode plate can undergo oxidation reaction at the anode plate and generate oxygen, namely: 4OH - ⁇ O 2 +2H 2 O+4e - .
  • the cathode plate has cathode terminals.
  • the anode plate has an anode terminal.
  • the cathode terminals of adjacent electrolytic deoxygenation units 100 are connected to the anode terminal, which allows multiple electrolytic deoxygenation units 100 to be sequentially connected in series. Since each electrolytic deoxygenation unit 100 can function as a voltage divider, this can prevent the electrolytic deoxygenation unit 100 from increasing the loss rate caused by excessive operating current, which is beneficial to prolong the service life of the electrochemical element.
  • the refrigerator 1 may further include a power supply configured to provide the electrolytic deoxygenation unit 100 with an electrolysis voltage required for electrochemical reactions.
  • the number of electrolytic deoxygenation units 100 in this embodiment can be set to one or more according to actual needs. When there are multiple electrolytic deoxygenation units 100 , the multiple electrolytic deoxygenation units 100 can be connected in series and start electrochemical reactions synchronously.
  • Fig. 10 is a schematic structural diagram of the electro-deoxidation device 10 of the refrigerator 1 according to an embodiment of the present invention.
  • the interior of the reaction vessel 200 defines a reaction space 220 and a filter space 230 .
  • the reaction space 220 is used for assembling the electrolysis oxygen removal unit 100 .
  • the filter space 230 is used to hold liquid and filter the gas generated when the electro-deoxygenation unit 100 performs an electrochemical reaction.
  • the reaction space 220 can be communicated with the filter space 230 through an air path.
  • the gas generated in the reaction space 220 flows into the filter space 230 and flows through the liquid contained in the filter space 230, so that the specific material components carried by the gas (for example, in the electrolyte)
  • the electrolyte and other components are dissolved in the liquid contained in the filter space 230, so that the filter space 230 realizes the function of gas filtration.
  • the filter space 230 can also function as a liquid seal, so it is also called the liquid seal space 230 .
  • transverse partition plate 250 inside the reaction vessel 200 , which is extended in the transverse direction to separate the filter space 230 and the reaction space 220 arranged up and down.
  • the filter space 230 is located above the reaction space 220 .
  • An exhaust port 251 is opened on the transverse partition plate 250 , so that the filter space 230 and the reaction space 220 are in air communication through the exhaust port 251 .
  • a liquid return port (also referred to as a liquid replenishment port) 252 is provided on the transverse partition plate 250 , so that the filter space 230 and the reaction space 220 are in liquid communication through the liquid return port 252 .
  • the liquid in the filter space 230 can flow into the reaction space 220 through the liquid return port 252 to replenish the reaction space 220 .
  • the liquid return port 252 and the exhaust port 251 are respectively hollow cylindrical air nozzles, which pass through the transverse partition plate 250 and extend into the filter space 230 .
  • the liquid return port 252 is arranged higher than the exhaust port 251 , so that the liquid contained in the filter space 230 seals the exhaust port 251 . That is to say, when the liquid in the filter space 230 can enter the reaction space 220 through the liquid return port 252 , the liquid level in the filter space 230 is higher than the exhaust port 251 , so that the exhaust port 251 can be liquid-sealed. Under normal conditions, the liquid level in the filter space is higher than the liquid return port setting.
  • the liquid contained in the filter space 230 seals the exhaust port 251, which can ensure that all the gas flowing out of the exhaust port 251 flows through the liquid contained in the filter space 230, so as to prevent the unfiltered gas from being discharged directly to the outside and causing environmental pollution.
  • the liquid in the filtering space 230 can also isolate the electrolyte in the reaction space 220 from the air, reducing or avoiding deterioration of the electrolyte.
  • An air outlet 231 may be opened on the top wall of the filter space 230 to communicate with the filter space 230 to allow the filtered gas to be discharged.
  • the top wall of the filtering space 230 is also the top wall of the reaction vessel 200 .
  • the gas flowing into the filter space 230 finally flows to the gas outlet 231 and is discharged to the external environment of the reaction vessel 200 through the gas outlet 231 .
  • the processor 810 and the memory 820 are used to form a control device of the refrigerator 10 , and the control device may be a main control board of the refrigerator 10 .
  • a machine-executable program 821 is stored in the memory 820. When the machine-executable program 821 is executed by the processor 810, it is used to implement the method for controlling the refrigerator 10 in any of the following embodiments.
  • the processor 810 may be a central processing unit (CPU), or a digital processing unit (DSP) and so on.
  • the memory 820 is used to store programs executed by the processor 810 .
  • the memory 820 may be any medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the storage 820 may also be a combination of various storages 820 . Since the machine executable program 821 is executed by the processor 810 to implement each process of the following method embodiments and achieve the same technical effect, to avoid repetition, details are not repeated here
  • Fig. 11 is a schematic diagram of a control method of the refrigerator 1 according to an embodiment of the present invention.
  • the control method may generally include the following steps:
  • step S302 the change value of the liquid volume in the reaction space 220 and the change value of the liquid volume in the filter space 230 are obtained, which are respectively recorded as a first variable and a second variable.
  • the liquid volume change value of the reaction space 220 and the liquid volume change value of the filter space 230 in this embodiment are all relative to the electrochemical reaction process.
  • the reaction space 220 and the filter space 230 may be respectively provided with liquid level sensors, and the respective liquid volume change values are respectively determined according to the detection values of the liquid level sensors.
  • Step S304 determining the amount of liquid replenishment in the reaction space 220 according to the first variable and the second variable.
  • the amount of liquid replenished in the reaction space 220 is used to characterize the amount of liquid that needs to be added to the reaction space 220 .
  • Step S306 replenishing liquid to the reaction space 220 according to the determined liquid replenishing amount.
  • the amount of liquid lost by the electrochemical reaction can be compensated, and the liquid amount in the reaction space 220 can be restored to the initial liquid level before the electrochemical reaction.
  • the liquid replenishment amount of the reaction space 220 is obtained by analyzing the liquid volume change value of the reaction space 220 and the liquid volume change value of the filter space 230, and replenishing liquid to the reaction space 220 according to the liquid replenishment amount, so that On the basis of accurately calculating the amount of liquid replenishment in the reaction space 220, the refrigerator 1 realizes precise liquid replenishment, and the liquid replenishment process is more intelligent, avoiding manual monitoring of the liquid replenishment amount during the liquid replenishment process.
  • the filter space 230 can filter the gas by dissolving specific material components in the gas.
  • the filter space 230 is in liquid communication with the reaction space 220 and is used for supplying liquid to the reaction space 220 .
  • the liquid can be replenished directly to the filter space 230 first, and then the liquid flowing into the filter space 230 flows into the reaction space 220 through the liquid communication port 211 between the filter space 230 and the reaction space 220 .
  • the filter space 230 is in fluid communication with the reaction space 220 , the specific substance components retained in the filter space 230 due to filtration can return to the reaction space 220 again.
  • the step of determining the fluid replacement amount of the reaction space 220 according to the first variable and the second variable includes: calculating the difference between the first variable and the second variable, and calculating the fluid loss rate of the reaction space 220 and the filter space 230 according to the difference, according to The fluid loss rate determines the amount of fluid replenishment to the reaction space 220 .
  • the first variable and the second variable are respectively positive numbers. Since the specific substance components retained in the filter space 230 can return to the reaction space 220 again, the difference between the first variable and the second variable reflects the amount of liquid that is not filtered and is discharged to the external space with the gas.
  • the liquid amount is the actual liquid loss amount of the reaction space 220 , that is, the liquid loss amount of the reaction space 220 and the filter space 230 .
  • the ratio between the fluid loss amount and the time length of the set time period is the fluid loss rate.
  • the liquid replenishment amount of the reaction space 220 may be determined according to the liquid loss rate and the cumulative duration of the actual electrochemical reaction.
  • the step of replenishing liquid to the reaction space 220 may be performed during the electrochemical reaction of the electrolytic deoxygenation unit 100 , for example, the liquid replenishing operation may be performed every preset time interval.
  • the filter space 230 and the reaction space 220 are in liquid communication through the liquid return port 252, and the filter space 230 is provided with a liquid inlet 232 for receiving liquid, and the liquid inlet 232 can allow The liquid in the space outside the reaction vessel 200 passes and flows into the filter space 230 .
  • the step of adding liquid to the reaction space 220 according to the determined liquid replenishment amount includes: opening the liquid return port 252 and the liquid inlet port 232, and detecting the amount of liquid flowing through the liquid inlet port 232, and closing the liquid inlet when the accumulated liquid amount reaches the liquid replenishment amount Port 232, delay closing liquid return port 252.
  • a liquid flow meter may be provided at the liquid inlet 232 for detecting the flow rate of the liquid flowing through the liquid inlet 232 , so as to determine the amount of liquid flowing through the liquid inlet 232 .
  • the specific substance components retained by filtration in the filter space 230 and the liquid from the external space of the reaction vessel 200 can all flow into the reaction space 220 .
  • the accumulative amount of liquid flowing through the liquid inlet 232 reaches the replenishment amount, by delaying the closure of the liquid return port 252, the retained specific substance components and the liquid from the external space of the reaction vessel 200 can all flow into the reaction space 220, achieving purpose of rehydration.
  • the liquid return port 252 Before starting to add liquid to the reaction space 220, the liquid return port 252 is in a normally closed state.
  • the refrigerator 1 further includes a liquid replenishment container 300 , which communicates with the liquid inlet 232 and is used for providing liquid to the filter space 230 .
  • the inner space 310 of the rehydration container 300 is used for containing liquid.
  • the liquid replenishment container 300 can be a water tank, the bottom of which is provided with a liquid supply port, and the top wall of the filter space 230 is correspondingly provided with a liquid inlet 232, the liquid supply port is higher than the liquid inlet 232, and the liquid supply port and the liquid inlet 232 can be communicated with through an infusion tube, so that the liquid from the outflow liquid supply port can be guided to the liquid inlet 232 by the infusion tube.
  • a switch element 400 may be installed in the infusion tube for controlled opening and closing, so as to switch the liquid path between the liquid supply port and the liquid inlet port 232 .
  • the step of replenishing the reaction space 220 with liquid according to the determined liquid replenishment amount further includes: determining that the liquid storage amount of the liquid replenishment container 300 is greater than or equal to the liquid replenishment amount. That is to say, the step of replenishing liquid to the reaction space 220 is performed under the condition that the liquid storage capacity of the liquid replenishment container 300 can meet the liquid replenishment requirement of the reaction space 220 , which can ensure the accuracy and continuity of the liquid replenishment process. In some embodiments, if the liquid storage volume of the fluid replacement container 300 is less than the fluid replacement volume, a prompt signal may be sent to prompt the user to replenish fluid into the fluid replacement container 300 .
  • the step of replenishing the reaction space 220 with liquid according to the determined liquid replenishment amount further includes: preheating the liquid replenishment container 300 .
  • a heating wire may be wound around the wall of the liquid replacement container 300 , and the heating wire may be energized to generate heat so as to preheat the liquid replacement container 300 .
  • Preheating the liquid replenishment container 300 can heat the liquid contained in the liquid replenishment container 300 so that the liquid flowing into the reaction space 220 has a certain temperature, which is beneficial to improve the electrochemical reaction rate.
  • the control method also includes: obtaining the flow rate of the liquid flowing through the liquid inlet 232, judging whether the liquid flow rate exceeds a preset safety threshold, and if so, closing the liquid inlet 232 , and send out a signal.
  • the flow rate of the liquid flowing through the liquid inlet 232 will be less than the safety threshold, and when the liquid flow rate exceeds the preset safety threshold In some cases, liquid leakage may have occurred in the reaction container 200, or the liquid replacement container 300 and the liquid inlet 232 are no longer sealed. At this time, by sending out a prompt signal, the user can be promptly reminded to carry out inspections to prevent safety accidents.
  • the filter space 230 is provided with an air outlet 231 communicating with the external environment for discharging the filtered air.
  • the control method may further include: obtaining the exhaust rate of the filter space 230, and calculating the electrochemical reaction rate of the electrolysis oxygen unit 100 according to the exhaust rate and the liquid loss rate.
  • the reaction rate the working time of the electrolytic deoxygenation unit 100 is determined according to the electrochemical reaction rate, and the electrolytic deoxygenation unit 100 is controlled according to the working time.
  • a gas flow meter may be installed at the gas outlet 231 for detecting the gas flow passing through the gas outlet 231 as the exhaust rate of the filter space 230 .
  • the step of calculating the electrochemical reaction rate of the electrolysis oxygen unit 100 according to the exhaust rate and the liquid loss rate includes: calculating the difference between the exhaust rate and the liquid loss rate to obtain the gas generation rate of the electrolysis oxygen unit 100, according to the gas
  • the rate of formation determines the rate of the electrochemical reaction. Since the gas flowing out of the gas outlet 231 may still carry more or less liquid, the discharge rate of this part of liquid is actually the liquid loss rate of the reaction space 220 and the filter space 230 . Therefore, the difference between the degassing rate and the liquid loss rate is the generation rate of pure gas (without entraining electrolyte) generated by the electrochemical reaction, that is, the gas generation rate.
  • the solution of the present invention provides a new method for detecting the oxygen removal rate.
  • the step of determining the working hours of the electrolytic deoxygenation unit 100 according to the electrochemical reaction rate includes: obtaining the oxygen content of the storage space, and calculating the working time of the electrolytic deoxygenation unit 100 according to the electrochemical reaction rate and the oxygen content duration.
  • an oxygen concentration sensor may be provided in the storage space for detecting the oxygen concentration of the storage space, thereby determining the oxygen content of the storage space.
  • the solution of the present invention is conducive to improving the control accuracy of the oxygen removal process, which not only ensures the oxygen removal effect, and save energy consumption.
  • Fig. 12 is a control flowchart of the refrigerator 1 according to one embodiment of the present invention.
  • the control process may generally include the following steps:
  • Step S402 acquiring the liquid volume change value of the reaction space 220 and the liquid volume change value of the filter space 230, which are respectively recorded as a first variable and a second variable.
  • Step S404 calculating the difference between the first variable and the second variable.
  • Step S406 calculating the liquid loss rate of the reaction space 220 and the filter space 230 according to the difference.
  • Step S408 determining the amount of fluid replenishment in the reaction space 220 according to the fluid loss rate.
  • Step S410 determining that the liquid storage volume of the fluid replacement container 300 is greater than or equal to the fluid replacement volume.
  • Step S412 preheating the liquid replacement container 300 .
  • Step S414 open the liquid return port 252 and the liquid inlet port 232, and detect the amount of liquid flowing through the liquid inlet port 232.
  • the step of replenishing liquid to the reaction space 220 may be performed during the electrochemical reaction of the electrolytic deoxygenation unit 100 , for example, the liquid replenishing operation may be performed every preset time interval.
  • Step S420 calculating the difference between the exhaust rate and the liquid loss rate to obtain the gas generation rate of the electrolysis oxygen unit 100 .
  • Step S422 determining the electrochemical reaction rate according to the gas generation rate.
  • Step S424 acquiring the oxygen content of the storage space.
  • Step S426, calculating the working time of the electrolytic deoxygenation unit 100 according to the electrochemical reaction rate and the oxygen content.
  • the refrigerator 1 can be accurately On the basis of calculating the amount of fluid replenishment in the reaction space 220, accurate fluid replenishment is realized, and the fluid replenishment process is more intelligent, avoiding manual monitoring of the fluid replenishment amount during the fluid replenishment process.
  • the structure of the electrolytic deoxygenation device 10 will be described in detail below in conjunction with a more specific embodiment.
  • the electrolytic deoxygenation device 10 of this embodiment includes a plurality of electrolytic deoxygenation units 100 connected in series.
  • At least one vertical partition plate 210 inside the reaction vessel 200 which are respectively extended longitudinally to separate a plurality of reaction spaces 220 arranged in sequence along the horizontal direction.
  • a communication port 211 is opened on the longitudinal partition plate 210 , so that adjacent reaction spaces 220 communicate with each other, thereby forming a through channel 221 .
  • a plurality of electrolytic deoxygenation units 100 are provided in one-to-one correspondence with the reaction space 220, and each electrolytic deoxygenation unit 100 is respectively assembled to a reaction space 220 for consuming the external oxygen of the reaction vessel 200 through an electrochemical reaction under the action of the electrolysis voltage. oxygen.
  • Arranging a plurality of reaction spaces 220 in sequence along the horizontal direction can ensure that the heights of each reaction space 220 are basically the same. Since adjacent reaction spaces 220 are connected to each other, each reaction space 220 forms a connector through penetration. Based on this connector structure, the electrolyte solution in each reaction space 220 can be evenly distributed without external force interference, and the liquid level and concentration of the electrolyte solution are basically the same.
  • the reaction vessel 200 has an opening on the sidewall of the reaction space 220 , and the cathode plate can be disposed at the opening and together with the reaction vessel 200 define the reaction space 220 for containing the electrolyte.
  • the anode plate and the cathode plate may be disposed in the reaction space 220 at a distance from each other.
  • a plurality of exhaust ports 251 are opened on the transverse partition plate 250 , communicating with the reaction spaces 220 one by one.
  • the filter space 230 of this embodiment communicates with each reaction space 220 through the air outlet 251 for air passage.
  • a liquid return port 252 is also provided on the transverse partition plate 250 , and the filter space 230 and the reaction space 220 are in liquid communication through the liquid return port 252 .
  • the liquid in the filter space 230 can flow into the reaction space 220 through the liquid return port 252 .
  • the electrolytic deoxygenation device of this embodiment since the reaction space 220 and the filter space 230 are integrated in the reaction vessel 200, the gas flow between the reaction space 220 and the filter space 230 can be realized by opening an opening on the transverse partition plate 250. The circuit and the liquid circuit are connected, thereby realizing the filtering function and the recycling function. Therefore, the electrolytic deoxygenation device 10 has the advantages of simple structure and high degree of integration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种电解除氧装置以及具有其的冰箱及其控制方法。电解除氧装置包括:至少一个电解除氧单元,用于在电解电压的作用下通过电化学反应消耗电解除氧装置外部的氧气;和反应容器,其内部限定出液封空间以及至少一个反应空间;一反应空间对应装配有一电解除氧单元;液封空间用于盛装液体,且与反应空间气路连通,以使电解除氧单元进行电化学反应时产生的气体流经液封空间所盛装的液体,从而使气体中的特定物质成分溶解于液封空间。由于气体中的特定物质成分能够溶解于液封空间,因此,本发明提供了一种具备过滤功能的电解除氧装置,有利于减少或避免因气体排放导致的环境污染。

Description

电解除氧装置以及具有其的冰箱及其控制方法 技术领域
本发明涉及保鲜技术,特别是涉及电解除氧装置以及具有其的冰箱及其控制方法。
背景技术
对于部分反应装置而言,例如用于通过电化学反应降低冰箱内部氧气的电解除氧装置,发生电化学反应的过程需要电解液参与,且反应过程会产生气体,需要将产生的气体向外部环境排放。
在反应过程中,由于伴随着大量热量的产生,电解液会受热蒸发,这导致反应容器所排放的气体中可能会携带有微量的电解液蒸汽。大部分电解液为酸性溶液或者碱性溶液,具有腐蚀性。若不经处理直接将反应容器所产生的气体向空气排放,则可能会导致空气污染,危害生命健康。
电解除氧装置通过在电解电压的作用下进行电化学反应来消耗工作环境中的氧气。发明人认识到,一般情况下,若要提高电解除氧装置消耗氧气的速率,需要增大电解电压,或者提高流经电解除氧装置的电化学元件的电流,这会导致电化学元件的损耗速率提高,缩短电化学元件的使用寿命。
在反应过程中,由于电解液会受热蒸发,导致反应容器的反应空间内的电解液会不断减少,因此需要适时地执行补液操作。发明人认识到,如何准确地计算补液量,以便于精准补液,成为本领域技术人员亟待解决的技术问题。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种电解除氧装置以及具有其的冰箱及其控制方法。
本发明的一方面的一个进一步的目的是要使电解除氧装置具备过滤功能,减少或避免因气体排放导致环境污染。
本发明的一方面的又一个进一步的目的是要提高电解除氧装置的资源利用效率。
本发明的一方面的再一个进一步的目的是要简化电解除氧装置的结构,提高结构一体性。
本发明的一方面的另一个进一步的目的是要提高各个反应空间的气体排放效率,避免气体对电解除氧单元的各个部件产生过大冲击。
本发明的另一方面的一个进一步的目的是要使电解除氧装置在提高除氧效率的同时,保证使用寿命。
本发明的另一方面的另一个进一步的目的是要使多个电解除氧单元的使用寿命保持一致。
本发明的另一方面的又一个进一步的目的是要简化电解除氧装置的补液过程。
本发明的另一方面的再一个进一步的目的是要使电解除氧装置对排放的气体进行处理,以防造成环境污染。
本发明的再一方面的一个进一步的目的是要使冰箱准确地计算反应空间的补液量,实现精准补液。
本发明的再一方面的再一个进一步的目的是要提供一种用于检测除氧速率的新方法。
本发明的再一方面的又一个进一步的目的是要提高除氧过程的控制精度,既保证除氧效果,又节约能耗。
根据本发明的一方面,提供了一种电解除氧装置,包括:至少一个电解除氧单元,用于在电解电压的作用下通过电化学反应消耗电解除氧装置外部的氧气;和反应容器,其内部限定出液封空间以及至少一个反应空间;一反应空间对应装配有一电解除氧单元;液封空间用于盛装液体,且与反应空间气路连通,以使电解除氧单元进行电化学反应时产生的气体流经液封空间所盛装的液体,从而使气体中的特定物质成分溶解于液封空间。
可选地,反应容器内具有横向分隔板,其沿横向延伸设置,以分隔出上下布置的液封空间和反应空间;且横向分隔板上开设有至少一个排气口,一排气口对应连通一反应空间,使液封空间与反应空间气路连通。
可选地,横向分隔板上还开设有至少一个补液口,一补液口对应连通一反应空间,使液封空间与反应空间液路连通;且补液口高于排气口设置。
可选地,补液口和排气口分别为中空筒状气嘴,贯穿横向分隔板,且伸入液封空间。
可选地,液封空间的顶壁上开设有出气口,连通液封空间,以允许过滤后的气体排出。
可选地,电解除氧装置还包括:补液容器,位于反应容器的上方,且其内部形成与液封空间相连通的储液空间,用于向液封空间补液。
可选地,电解除氧单元和反应空间分别为多个;且多个反应空间互不连通,且沿水平方向依次排布。
可选地,反应容器内具有至少一个纵向分隔板,分别沿纵向延伸设置,以分隔出沿水平方向依次排布的多个反应空间。
可选地,电解除氧单元包括:阴极板,用于在电解电压的作用下通过电化学反应消耗氧气,且其具有阴极接线端子;和阳极板,用于在电解电压的作用下通过电化学反应向阴极板提供反应物且生成气体,其具有阳极接线端子;且相邻电解除氧单元的阴极接线端子与阳极接线端子相连。
根据本发明的另一方面,还提供了一种电解除氧装置,包括:
反应容器,其内部限定出用于盛装电解液的多个反应空间;多个反应空间贯通设置,以形成供电解液流通的贯通通道;和多个电解除氧单元,与反应空间一一对应设置,且每一电解除氧单元分别装配至一反应空间,用于在电解电压的作用下通过电化学反应消耗反应容器外部的氧气。
可选地,多个反应空间沿水平方向依次排布,且相邻反应空间相互连通,从而形成贯通通道。
可选地,反应容器内具有至少一个纵向分隔板,分别沿纵向延伸设置,以分隔出沿水平方向依次排布的多个反应空间;且纵向分隔板上开设有连通口,使得相邻反应空间相互连通。
可选地,反应容器的内部还限定出处理空间,位于多个反应空间的上方,并与每一反应空间一一连通,以允许每一电解除氧单元进行电化学反应时产生的气体流入其中;且处理空间的顶壁上开设有出气口,以允许流入处理空间的气体排出。
可选地,反应容器内具有横向分隔板,其沿横向延伸设置,以分隔出上下布置的处理空间和反应空间;且横向分隔板上开设有多个排气孔,与反应空间一一连通。
可选地,横向分隔板上还开设有补液孔,补液孔连通任一反应空间,以允许流经处理空间的液体流入反应空间。
可选地,补液孔和排气孔分别为贯穿横向分隔板厚度方向的光孔;且补液孔的孔壁向上延伸,且在横向分隔板的上表面形成有贯通补液孔与处理空间的上环形凸缘。
可选地,该电解除氧装置还包括:
补液容器,位于反应容器的上方,且其内部形成与处理空间相连通的储液空间,用于向处理空间补液。
可选地,电解除氧单元包括:
阴极板,用于在电解电压的作用下通过电化学反应消耗氧气,且其具有阴极接线端子;和阳极板,用于在电解电压的作用下通过电化学反应向阴极板提供反应物且生成气体;且其具有阳极接线端子;并且相邻电解除氧单元的阴极接线端子与阳极接线端子相连。
根据本发明的再一方面,还提供了一种冰箱,包括:如上述任一项的电解除氧装置。
根据本发明的又一方面,还提供了一种冰箱的控制方法,冰箱包括电解除氧单元和反应容器,电解除氧单元用于在电解电压的作用下进行电化学反应以消耗冰箱的储物空间内的氧气,反应容器的内部限定出反应空间和过滤空间;反应空间用于装配电解除氧单元;过滤空间用于盛装液体、且对电解除氧单元进行电化学反应时产生的气体进行过滤;并且控制方法包括:获取反应空间的液量变化值和过滤空间的液量变化值,分别记为第一变量和第二变量;根据第一变量和第二变量确定反应空间的补液量;按照确定出的补液量向反应空间补液。
可选地,过滤空间通过使气体中的特定物质成分溶解于其中,从而对气体进行过滤;过滤空间与反应空间液路连通;且根据第一变量和第二变量确定反应空间的补液量的步骤包括:计算第一变量和第二变量之间的差值;根据差值计算反应空间和过滤空间的液体流失速率;按照液体流失速率确定反应空间的补液量。
可选地,过滤空间与反应空间之间通过回液口进行液路连通,过滤空间开设有用于接收液体的进液口;且按照确定出的补液量向反应空间补液的步骤包括:打开回液口和进液口,并检测流经进液口的液量;在液量累计达到补液量时,关闭进液口,延时关闭回液口。
可选地,冰箱还包括补液容器,其连通进液口,用于向过滤空间提供液体;且在打开回液口和进液口之前,按照确定出的补液量向反应空间补液的步骤还包括:确定补液容器的储液量大于等于补液量。
可选地,在打开回液口和进液口之前,按照确定出的补液量向反应空间补液的步骤还包括:对补液容器进行预热。
可选地,在按照确定出的补液量向反应空间补液的同时,还包括:获取流经进液口的液体流速;判断液体流速是否超出预设的安全阈值;若是,则关闭进液口,并发出提示信号。
可选地,过滤空间开设有连通外部环境的出气口,用于排出经过滤的气体;且在按照确定出的补液量向反应空间补液的步骤之后,还包括:获取过滤空间的排气速率;根据排气速率和液体流失速率计算电解除氧单元的电化学反应速率;根据电化学反应速率确定电解除氧单元的工作时长;按照工作时长对电解除氧单元进行控制。
可选地,根据排气速率和液体流失速率计算电解除氧单元的电化学反应速率的步骤包括:计算排气速率与液体流失速率之间的差值,得到电解除氧单元的气体生成速率;根据气体生成速率确定电化学反应速率。
可选地,根据电化学反应速率确定电解除氧单元的工作时长的步骤包括:获取储物空间的含氧量;根据电化学反应速率和含氧量计算电解除氧单元的工作时长。
根据本发明的又再一方面,还提供了一种冰箱,其包括:电解除氧单元,用于在电解电压的作用下进行电化学反应以消耗冰箱的储物空间内的氧气;反应容器,其内部限定出反应空间和过滤空间;反应空间用于装配电解除氧单元;过滤空间用于盛装液体、且对电解除氧单元进行电化学反应时产生的气体进行过滤;以及处理器和存储器,存储器内存储有机器可执行程序,机器可执行程序被处理器执行时,用于实现根据上述任一项的控制方法。
一方面,本发明的电解除氧装置以及具有其的冰箱,由于反应容器的内部限定出液封空间和反应空间,电解除氧单元装配至反应空间,且电解除氧单元进行电化学反应时产生的气体能够流经液封空间所盛装的液体,使气体中的特定物质成分溶解于液封空间,因此,本发明提供了一种具备过滤功能的电解除氧装置,有利于减少或避免因气体排放导致的环境污染。
进一步地,本发明的电解除氧装置以及具有其的冰箱,由于液封空间与反应空间之间通过补液口实现液路连通,因此,溶解于液封空间内的特定物质成分能够通过补液口重新返回反应空间,以供回收再利用,这有利于提高电解除氧装置的资源利用效率。
进一步地,本发明的电解除氧装置以及具有其的冰箱,由于反应空间和液封空间均集成在反应容器内,通过在横向分隔板上开设开口,即可实现反应空间和液封空间之间的气路连通和液路连通,进而实现过滤功能和回收功能,因此,本发明的电解除氧装置具备结构简单、一体性程度高的优点。
进一步地,本发明的电解除氧装置以及具有其的冰箱,由于各个反应空间互不连通,相当于各个反应空间相互独立设置,且互不干扰,因此,各个反应空间内产生的气体仅能通过排气口排放至液封空间,这可以避免每个反应空间内产生的气体进入其他反应空间,有利于提高各个反应空间的气体排放效率,避免气体对电解除氧单元的各个部件产生过大冲击。
另一方面,本发明的电解除氧装置以及具有其的冰箱,由于具有多个电解除氧单元,每一电解除氧单元分别能在电解电压的作用下通过进行电化学反应消耗氧气,当利用多个电解除氧单元同时进行电化学反应时,每个电解除氧单元只需在较小的电解电压下工作,即可获得较高的除氧效率,因此,本发明的电解除氧装置在提高除氧效率的同时,保证了使用寿命。
进一步地,本发明的电解除氧装置以及具有其的冰箱,每一电解除氧单元分别设置于一反应空间,各个反应空间贯通设置,以形成供电解液流通的贯通通道,电解液可以在多个反应空间内自由流动,各个反应空间内的电解液基本保持均一,这有利于保证各个电解除氧单元的电化学反应速率保持一致,从而确保多个电解除氧单元的使用寿命保持一致。
进一步地,本发明的电解除氧装置以及具有其的冰箱,通过使多个反应空间贯通设置,并在多个反应空间的上方设置处理空间,且使流经处理空间的液体通过补液孔流入任一反应空间,流入任一反应空间的液体能够均匀地分配至其他反应空间,从而完成补液,这有利于简化电解除氧装置的补液过程。
更进一步地,本发明的电解除氧装置以及具有其的冰箱,由于补液孔的孔壁向上延伸形成上环形凸缘,该上环形凸缘高于排气孔设置,因此,当利用处理空间向反应空间补液时,需使处理空间内的液位高于上环形凸缘,处理空间内的液体能够起到液封排气孔的作用,从排气孔流出的气体需要在流经处理空间内的液体之后,再流出处理空间,气体在流经处理空间内的液体时可使携带的液体溶解于处理空间,这能够减少或避免因气体排放而导致环境污染。
再一方面,本发明的冰箱及其控制方法,通过对反应空间的液量变化值和过滤空间的液量变化值进行分析得到反应空间的补液量,并按照补液量向反应空间补液,可使冰箱在准确地计算反应空间的补液量的基础上,实现精准补液,补液过程更加智能,避免了在补液过程通过人工监测补液量。
进一步地,本发明的冰箱及其控制方法,由于可根据过滤空间的排气速率、以及反应空间和和过滤空间的液体流失速率计算电解除氧单元的电化学反应速率,电化学反应速率即为电解除氧单元针对 储物空间的除氧速率,因此,本发明的方案,提供了一种用于检测除氧速率的新方法。
进一步地,本发明的冰箱及其控制方法,由于可根据电化学反应速率确定电解除氧单元的工作时长,并按照工作时长对电解除氧单元进行控制,因此,本发明的方案有利于提高除氧过程的控制精度,既保证除氧效果,又节约能耗。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的电解除氧装置的示意性结构图;
图2是图1所示的电解除氧装置的示意性俯视图;
图3是根据本发明另一实施例的电解除氧装置的示意性结构图;
图4是根据本发明再一实施例的电解除氧装置的示意性结构图;
图5是图4所示的电解除氧装置的示意性俯视图;
图6是根据本发明又一实施例的电解除氧装置的示意性结构图;
图7是根据本发明一个实施例的冰箱的示意性结构图;
图8是根据本发明另一个实施例的冰箱的示意性结构图;
图9是根据本发明一个实施例的冰箱的示意性框图;
图10是根据本发明一个实施例的冰箱的电解除氧装置的示意性结构图;
图11是根据本发明一个实施例的冰箱的控制方法的示意图;
图12是根据本发明一个实施例的控制流程图。
具体实施方式
图1是根据本发明一个实施例的电解除氧装置10的示意性结构图。本实施例的电解除氧装置10用于安装于冰箱1,以消耗冰箱1的储物空间内的氧气。
电解除氧装置10一般性地可包括反应容器200和至少一个电解除氧单元100。
其中,反应容器200的内部限定出液封空间230以及至少一个反应空间220。一反应空间220对应装配有一电解除氧单元100。本实施例中,反应空间220的数量与电解除氧单元100的数量相同,且二者一一对应设置。每个反应空间220分别装配有一个电解除氧单元100。
液封空间230用于盛装液体,且与反应空间220气路连通,以使电解除氧单元100进行电化学反应时产生的气体流经液封空间230所盛装的液体,从而使气体中的特定物质成分溶解于液封空间230。也就是说,反应空间220所排出的气体会在流经液封空间230时得到过滤,从而净化气体。特定物质成分可以指气体所携带的电解液中的电解质。
由于反应容器200的内部限定出液封空间230和反应空间220,电解除氧单元100装配至反应空间220,且电解除氧单元100进行电化学反应时产生的气体能够流经液封空间230所盛装的液体,使气体中的特定物质成分溶解于液封空间230,因此,本发明提供了一种具备过滤功能的电解除氧装置10,有利于减少或避免因气体排放导致的环境污染。
本实施例中,液封空间230所盛装的液体可以为水。在一些可选的实施例中,液封空间230所盛装的液体也可以根据气体所携带的电解液的溶解性替换为其他溶剂,例如低浓度的NaOH水溶液等。
通过在反应容器200内集成设置液封空间230和反应空间220,使反应空间220内产生的气体流经液封空间230所盛装的液体,即可使反应空间220内产生的气体得到净化,净化方式十分巧妙,过滤效果较佳。并且无需在电解除氧装置10的外部安装净化机构,本实施例的电解除氧装置10具备结构紧凑、一体化程度高的优点。
在一些可选的实施例中,反应容器200内具有横向分隔板250,其沿横向延伸设置,以分隔出上下布置的液封空间230和反应空间220。即,液封空间230设置于反应空间220的上方。例如,横向分隔板250可以呈平板状或薄片状,其所在的板面可以平行于水平面。
横向分隔板250上开设有至少一个排气口251,一排气口251对应连通一反应空间220,使液封空间230与反应空间220气路连通。每一反应空间220内产生的气体可以通过对应的排气口251流入液封空间230内。排气口251的数量与反应空间220的数量相同,且二者一一对应设置,使得每一反应空间220内产生的气体均能流入液封空间230进行过滤处理。
本实施例的电解除氧装置10,通过在横向分隔板250上开设排气口251,即可使反应空间220与液封空间230气路连通,反应空间220内产生的气体可以依靠气体自身的上浮运动流入液封空间230进行过滤处理,无需安装其他导引机构,具备结构简单而精巧的优点。
在一些实施例中,横向分隔板250可以通过注塑成型形成在反应容器200的内部,工序简单,省略了繁杂的组装过程,且保证了反应空间220与液封空间230之间的连通性。
排气口251的排气速率大于电解除氧单元100的气体产生速率的最大值,防止反应空间220内因形成较大气压而对电解除氧单元100的各个部件产生冲击影响。
在一些进一步的实施例中,横向分隔板250上还开设有至少一个补液口252,一补液口252对应连通一反应空间220,使液封空间230与反应空间220液路连通。液封空间230内盛装的液体可以通过补液口252流入反应空间220,从而向反应空间220补液。补液口252的数量与反应空间220的数量相同,且二者一一对应设置,使得每一反应空间220均能接收来自液封空间230的液体。
由于液封空间230与反应空间220之间通过补液口252实现液路连通,因此,溶解于液封空间230内的特定物质成分能够通过补液口252重新返回反应空间220,以供回收再利用,这有利于提高电解除氧装置10的资源利用效率。
补液口252高于排气口251设置,使得液封空间230所盛装的液体液封排气口251。也就是说,当液封空间230内的液体可以通过补液口252进入反应空间220时,液封空间230内的液位高于排气口251,从而可以液封排气口251。
使液封空间230所盛装的液体液封排气口251,可保证流出排气口251的气体全部流经液封空间230所盛装的液体,避免未经过滤的气体直接向外排放导致环境污染,同时,液封空间230内的液体还能使反应空间220内的电解液与空气隔绝,减少或避免电解液变质。
在一些可选的实施例中,补液口252和排气口251分别为中空筒状气嘴,贯穿横向分隔板250,且伸入液封空间230。由于中空筒状气嘴的筒壁可以限定出中空筒状的气流通道,因此,使中空筒状气嘴伸入液封空间230,可将流经排气口251的气体向上导引,从而提高气体的过滤效率和排放效率。
液封空间230的顶壁上可以开设有出气口231,连通液封空间230,以允许过滤后的气体排出。本实施例中,液封空间230的顶壁亦为反应容器200的顶壁。流入液封空间230内的气体最终流向出气口231,并经出气口231排放至反应容器200的外部环境。
利用液封空间230收集并过滤各个电解除氧单元100产生的气体,并使这些气体经出气口231统一地排放出去,当需要利用导气管导引气体时,仅需要使导气管连通出气口231即可,结构简单,易于实现。
由于反应空间220和液封空间230均集成在反应容器200内,通过在横向分隔板250上开设开口,即可实现反应空间220和液封空间230之间的气路连通和液路连通,进而实现过滤功能和回收功能,因此,本发明的电解除氧装置10具备结构简单、一体性程度高的优点。
在一些可选的实施例中,电解除氧单元100和反应空间220分别为多个。由于具有多个电解除氧单元100,每一电解除氧单元100分别能在电解电压的作用下通过进行电化学反应消耗氧气,当利用多个电解除氧单元100同时进行电化学反应时,每个电解除氧单元100只需在较小的电解电压下工作,即可获得较高的除氧效率,因此,本实施例的电解除氧装置10在提高除氧效率的同时,保证了使用寿命。
图2是图1所示的电解除氧装置10的示意性俯视图,图中示出了多个反应空间220和多个电解除氧单元100。多个反应空间220互不连通,且沿水平方向依次排布。
由于各个反应空间220互不连通,相当于各个反应空间220相互独立设置,且互不干扰,因此,各个反应空间220内产生的气体仅能通过排气口251排放至液封空间230,这可以避免每个反应空间220内产生的气体进入其他反应空间220,有利于提高各个反应空间220的气体排放效率,避免气体对电解除氧单元100的各个部件产生过大冲击。
由于多个反应空间220沿水平方向依次排布,互不遮挡,因此可保证每个电解除氧单元100均能顺利地与反应容器200外部的氧气进行接触,每个电解除氧单元100与氧气进行接触的机会均等,整个电解除氧装置10的电能效率较高。
反应容器200内具有至少一个纵向分隔板210,分别沿纵向延伸设置,以分隔出沿水平方向依次排布的多个反应空间220。纵向分隔板210的数量根据反应空间220的数量进行设置,并且比反应空间220的数量少一个。例如,多个纵向分隔板210可以呈平板状或薄片状,相互平行设置,每个纵向分隔板210所在的板面可以平行于竖直面。
在一些实施例中,纵向分隔板210可以通过注塑成型形成在反应容器200的内部,工序简单,省略了繁杂的组装过程,且保证了相邻反应空间220之间的连通性。
在一些可选的实施例中,电解除氧装置10还包括补液容器300,位于反应容器200的上方,且其内部形成与液封空间230相连通的储液空间310,用于向液封空间230补液。例如,补液容器300可以为水箱,其底部开设有供液口,液封空间230的顶壁上相应开设有进液口232,供液口高于进液口232,且供液口和进液口232之间可以采用输液管进行连通,以利用输液管将来自流出供液口的液体导引至进液口232。输液管内可以安装有开关元件400,用于受控地开闭,从而通断供液口与进液口232之间的液路。
本实施例的电解除氧装置10,电解除氧单元100进行电化学反应时会消耗电解液。通过在水箱内暂存特定量的液体,可以在一定范围内满足电解除氧单元100的补液需求,减少或避免电解除氧单元100因电解液不足而无法正常工作的问题发生,这有利于提升电解除氧装置10的工作性能。
电解除氧单元100一般性地可包括阳极板120和阴极板110。
阴极板110用于在电解电压的作用下通过电化学反应消耗氧气。阳极板120用于在电解电压的作用下通过电化学反应向阴极板110提供反应物(例如,电子)且生成气体。
在通电情况下,例如,空气中的氧气可以在阴极板110处发生还原反应,即:O 2+2H 2O+4e -→4OH -。阴极板110产生的OH -可以在阳极板120处发生氧化反应,并生成氧气,即:4OH -→O 2+2H 2O+4e -
阴极板110具有阴极接线端子111。阳极板120具有阳极接线端子121。相邻电解除氧单元100的阴极接线端子111与阳极接线端子121相连,这可使多个电解除氧单元100依次串联连接。由于每个电解除氧单元100均能起到分压的作用,因此,这可以避免电解除氧单元100因工作电流过大而导致损耗速率提高,有利于延长电化学元件的使用寿命。
本实施例中,电解除氧单元100的电化学反应消耗水,因此,仅需要向反应空间220补水即可,水箱和液封空间230内的液体可以分别为水。
以上关于阳极板120和阴极板110的电化学反应的举例仅仅是示意性的,在了解上述实施例的基础上,本领域技术人员应当易于变换电化学反应的类型,或者针对适用于其他电化学反应类型的电解除氧装置10的结构进行拓展,这些变换和拓展均应落入本发明的保护范围。
图3是根据本发明另一实施例的电解除氧装置10的示意性结构图,该图为侧视图。在一些实施例中,反应容器200在反应空间220的侧壁上开设有开口,阴极板110可以设置于开口处并与反应容器200共同限定出用于盛装电解液的反应空间220。阳极板120可以与阴极板110相互间隔地设置于反应空间220内。
在一些可选的实施例中,液封空间230的至少一部分前壁向后凹陷形成有走线仓280,该走线仓280内可以布置线缆,线缆用于将电解除氧单元100连接至电解除氧装置10的供电电源,使得供电电源向电解除氧单元100提供电解电压。
在另一些可选的实施例中,阴极板110可以设置于反应容器200的内部,例如,反应容器200的前壁可以开设有多个孔,以允许阴极板110与外部的气体接触。
图4是根据本发明再一实施例的电解除氧装置10的示意性结构图。本实施例的电解除氧装置10用于安装于冰箱1,以消耗冰箱1的储物空间内的氧气。
电解除氧装置10一般性地可包括反应容器200和多个电解除氧单元100。
其中,反应容器200的内部限定出用于盛装电解液的多个反应空间220。多个反应空间220贯通设置,以形成供电解液流通的贯通通道221。本实施例中,各个反应空间220之间直接或间接地连通,从而贯通成供电解液流通的贯通通道221,各个反应空间220内的电解液是均一的。
多个电解除氧单元100与反应空间220一一对应设置,且每一电解除氧单元100分别装配至一反应空间220,用于在电解电压的作用下通过电化学反应消耗反应容器200外部的氧气。本实施例中,每个电解除氧单元100能够独立地进行电化学反应,当多个电解除氧单元100同时进行电化学反应时,电解除氧装置10的除氧效率得到累加。
本发明的电解除氧装置10以及具有其的冰箱1,由于具有多个电解除氧单元100,每一电解除氧单元100分别能在电解电压的作用下通过进行电化学反应消耗氧气,当利用多个电解除氧单元100同时进行电化学反应时,每个电解除氧单元100只需在较小的电解电压下工作,即可获得较高的除氧效率,因此,本发明的电解除氧装置10在提高除氧效率的同时,保证了使用寿命,且具有较高的安全性。
图5是图4所示的电解除氧装置10的示意性俯视图,图中示出了反应空间220和电解除氧单元100。由于每一电解除氧单元100分别设置于一反应空间220,各个反应空间220贯通设置,以形成供电解液流通的贯通通道221(如图2虚线所示),电解液可以在多个反应空间220内自由流动,各个反应空间220内的电解液基本保持均一,这有利于保证各个电解除氧单元100的电化学反应速率保持一致,从而确保多个电解除氧单元100的使用寿命保持一致。在全部电解除氧单元全部老化时,可 以统一地进行更换,有利于降低维护成本。
在一些可选的实施例中,多个反应空间220沿水平方向依次排布,且相邻反应空间220相互连通,从而形成贯通通道221。本实施例中,通过使相邻反应空间220直接地连通,可使不直接连通的反应空间220实现间接地连通,从而使得多个反应空间220贯通成贯通通道221。
使多个反应空间220沿水平方向依次排布,可以保证各个反应空间220的高度基本一致,由于相邻反应空间220相互连通,因此,各个反应空间220通过贯通形成连通器,基于这种连通器结构,各个反应空间220内的电解液在无需外力干涉的情况下可以进行均匀分配,电解液的液位和浓度基本一致。
由于多个反应空间220沿水平方向依次排布,互不遮挡,因此可保证每个电解除氧单元100均能顺利地与反应容器200外部的氧气进行接触,每个电解除氧单元100与氧气进行接触的机会均等。
在一些可选的实施例中,反应容器200内具有至少一个纵向分隔板210,分别沿纵向延伸设置,以分隔出沿水平方向依次排布的多个反应空间220。纵向分隔板210的数量根据反应空间220的数量进行设置,并且比反应空间220的数量少一个。例如,多个纵向分隔板210可以呈平板状或薄片状,相互平行设置,每个纵向分隔板210所在的板面可以平行于竖直面。
纵向分隔板210上开设有连通口211,使得相邻反应空间220相互连通。某一反应空间220内的电解液可以通过连通口211流入其他反应空间220内。本实施例的电解除氧装置10,通过在纵向分隔板210上开设连通口211,即可贯通各个反应空间220,具备结构精巧的优点。连通口211可以位于纵向分隔板210的底部区段。
在另一些实施例中,连通口211也可以不设置在纵向分隔板210上,例如,纵向分隔板210与反应空间220的底壁之间可以形成间隙,从而形成连通口211。
在一些实施例中,纵向分隔板210可以通过注塑成型形成在反应容器200的内部,工序简单,省略了繁杂的组装过程,且保证了相邻反应空间220之间的连通性。
在一些可选的实施例中,反应容器200的内部还限定出处理空间230,位于多个反应空间220的上方,并与每一反应空间220一一连通,以允许每一电解除氧单元100进行电化学反应时产生的气体流入其中。即,本实施例的反应容器200内,其上层空间为处理空间230,下层空间为反应空间220。在一些实施例中,处理空间230也可以起到液封作用,因此也称为液封空间230。
电解除氧单元100进行电化学反应时产生的气体形成在各自对应的反应空间220内,由于处理空间230与每一反应空间220一一连通,因此,每个电解除氧单元100产生的气体均能流入处理空间230内。
处理空间230的顶壁上开设有出气口231,以允许流入处理空间230的气体排出。本实施例中,处理空间230的顶壁亦为反应容器200的顶壁。流入处理空间230内的气体最终流向出气口231,并经出气口231排放至反应容器200的外部环境。
利用处理空间230收集各个电解除氧单元100产生的气体,并使这些气体经出气口231统一地排放出去,当需要利用导气管导引气体时,仅需要使导气管连通出气口231即可,结构简单,易于实现。
在一些可选的实施例中,反应容器200内具有横向分隔板250,其沿横向延伸设置,以分隔出上下布置的处理空间230和反应空间220。本实施例的横向分隔板250为一个。例如,横向分隔板250可以呈平板状或薄片状,且其所在的板面可以平行于水平面。
横向分隔板250上开设有多个排气孔251a,与反应空间220一一连通。本实施例的电解除氧装置10,通过在横向分隔板250上开设排气孔251a,即可连通反应空间220和处理空间230,具备结构精巧的优点。由于处理空间230和反应空间220均集成设置在反应容器200内,且采用带有排气孔251a的横向分隔板250进行分隔,既省略了导气结构,又保证了气密性。
排气孔251a的排气速率大于电解除氧单元100的气体产生速率的最大值,防止反应空间220内因形成较大气压而对电解除氧单元100的各个部件产生冲击影响。
在一些实施例中,横向分隔板250可以通过注塑成型形成在反应容器200的内部,工序简单,省略了繁杂的组装过程,且保证了反应之间的连通性。
在一些进一步的实施例中,横向分隔板250上还开设有补液孔252a,以允许流经处理空间230的液体流入反应空间220。也就是说,本实施例的处理空间230不仅可以作为收集气体的集气仓,还可以作为向反应空间220提供液体的供液仓。来自处理空间230外部的液体可以在流经处理空间230之后,从补液孔252a流入反应空间220。
补液孔252a的数量为一个,该补液孔252a可以连通任一反应空间220。通过使多个反应空间220贯通设置,并在多个反应空间220的上方设置处理空间230,且使流经处理空间230的液体通过补液孔252a流入任一反应空间220,流入任一反应空间220的液体能够均匀地分配至其他反应空间220, 从而完成补液,这有利于简化电解除氧装置10的补液过程。
在一些实施例中,补液孔252a的数量也可以根据实际需要设置为多个,这可以提高补液效率,使各个反应空间220内的电解液能以较快的速度实现均一。
在一些可选的实施例中,补液孔252a和排气孔251a分别为贯穿横向分隔板250厚度方向的光孔。例如,补液孔252a可以连通位于反应容器200端部的反应空间220。排气孔251a可以靠近电解除氧单元100的阳极板120设置,且远离电解除氧单元100的阴极板110设置,从而保证反应空间220的气体排出效率。
补液孔252a的孔壁向上延伸,且在横向分隔板250的上表面形成有贯通补液孔252a与处理空间230的上环形凸缘260。也就是说,上环形凸缘260为中空筒状,其筒壁围合出与补液孔252a相连通的中空通道。如此,补液孔252a与上环形凸缘260共同形成了中空筒状气嘴。处理空间230内的液体需要流经上环形凸缘260的中空通道,然后再流经补液孔252a,最终流入反应空间220。
由于补液孔252a的孔壁向上延伸形成上环形凸缘260,该上环形凸缘260高于排气孔251a设置,因此,当利用处理空间230向反应空间220补液时,需使处理空间230内的液位高于上环形凸缘260设置,处理空间230内的液体能够起到液封排气孔251a的作用,从排气孔251a流出的气体需要在流经处理空间230内的液体之后,再流出处理空间230,气体在流经处理空间230内的液体时可使携带的液体(例如电解质)溶解于处理空间230,这能够减少或避免因气体排放而导致环境污染。
同时,溶解于处理空间230内的物质成分能够从补液孔252a返回反应空间220内,以供回收再利用。因此,本实施例的电解除氧装置10具备过滤回收功能,提高了资源利用效率,减少或避免了因直接排放气体而导致电解质浪费。
处理空间230内的液体还能使反应空间220内的电解液与空气隔绝,减少或避免电解液变质。
在一些可选的实施例中,排气孔251a的孔壁也可以向上延伸,且在横向分隔板250的上表面形成有贯通排气孔251a与处理空间230的另一上环形凸缘260,可命名为第二上环形凸缘260。排气孔251a与第二上环形凸缘260共同形成了中空筒状气嘴。贯通补液孔252a与处理空间230的上环形凸缘260可命名为第一上环形凸缘260。第一上环形凸缘260高于第二上环形凸缘260,以保证处理空间230内的液体能够液封排气孔251a。
由于第二上环形凸缘260的内部限定出自下而上延伸的气流通道,因此,能够起到将流经其的气流向上导引的作用,有利于提高气体的排放效率。
在一些可选的实施例中,电解除氧装置10还包括补液容器300,位于反应容器200的上方,且其内部形成与处理空间230相连通的储液空间310,用于向处理空间230补液。例如,补液容器300可以为水箱,其底部开设有供液口,处理空间230的顶壁上相应开设有进液口232,供液口高于进液口232,且供液口和进液口232之间可以采用输液管进行连通,以利用输液管将来自流出供液口的液体导引至进液口232。输液管内可以安装有开关元件400,用于受控地开闭,从而通断供液口与进液口232之间的液路。
本实施例的电解除氧装置10,电解除氧单元100进行电化学反应时会消耗电解液。通过在水箱内暂存特定量的液体,可以在一定范围内满足电解除氧单元100的补液需求,减少或避免电解除氧单元100因电解液不足而无法正常工作的问题发生,这有利于提升电解除氧装置10的工作性能。
电解除氧单元100的结构如前文所述,不再重复。
本实施例中,电解除氧单元100的电化学反应消耗水,因此,仅需要向反应空间220补水即可,水箱和处理空间230内的液体可以分别为水。
以上关于阳极板120和阴极板110的电化学反应的举例仅仅是示意性的,在了解上述实施例的基础上,本领域技术人员应当易于变换电化学反应的类型,或者针对适用于其他电化学反应类型的电解除氧装置10的结构进行拓展,这些变换和拓展均应落入本发明的保护范围。
图6是根据本发明又一实施例的电解除氧装置10的示意性结构图,该图为侧视图。在一些实施例中,反应容器200在反应空间220的侧壁上开设有开口,阴极板110可以设置于开口处并与反应容器200共同限定出用于盛装电解液的反应空间220。阳极板120可以与阴极板110相互间隔地设置于反应空间220内。
在一些可选的实施例中,处理空间230的至少一部分前壁向后凹陷形成有走线仓280,该走线仓280内可以布置线缆,线缆用于将电解除氧单元100连接至电解除氧装置10的供电电源,使得供电电源向电解除氧单元100提供电解电压。
在另一些可选的实施例中,阴极板110可以设置于反应容器200的内部,例如,反应容器200的前壁可以开设有多个孔,以允许阴极板110与外部的气体接触。
图7是根据本发明一个实施例的冰箱1的示意性结构图,图8是根据本发明另一个实施例的冰箱 1的示意性结构图。冰箱1一般性地可包括箱体20以及如以上任一实施例的电解除氧装置10。箱体20的内部限定出储物空间。电解除氧装置10安装于箱体20,并用于消耗储物空间内的氧气。例如,阴极板可以与储物空间气流连通。
本发明实施例的冰箱1为具备低温存储功能的电器设备,既包括狭义的冰箱,也包括冷柜、储藏柜以及其他冷藏冷冻装置。
在另一些实施例中,电解除氧装置10也可以向储物空间提供氧气,使储物空间营造高氧保鲜气氛,例如,可以使电解除氧装置的出气口与储物空间气流连通。
一方面,本发明的电解除氧装置10以及具有其的冰箱1,由于反应容器200的内部限定出液封空间230和反应空间220,电解除氧单元100装配至反应空间220,且电解除氧单元100进行电化学反应时产生的气体能够流经液封空间230所盛装的液体,使气体中的特定物质成分溶解于液封空间230,因此,本发明提供了一种具备过滤功能的电解除氧装置10,有利于减少或避免因气体排放导致的环境污染。
另一方面,本发明的电解除氧装置10以及具有其的冰箱1,由于具有多个电解除氧单元100,每一电解除氧单元100分别能在电解电压的作用下通过进行电化学反应消耗氧气,当利用多个电解除氧单元100同时进行电化学反应时,每个电解除氧单元100只需在较小的电解电压下工作,即可获得较高的除氧效率,因此,本发明的电解除氧装置10在提高除氧效率的同时,保证了使用寿命且具有较高的安全性。
图9是根据本发明一个实施例的冰箱1的示意性框图。
冰箱1一般性地可包括电解除氧单元100、反应容器200、处理器810和存储器820,还可以进一步地包括箱体。电解除氧单元100、反应容器200、处理器810和存储器820均设置于箱体内。电解除氧单元100和反应容器200可以形成电解除氧装置10。
箱体的内部形成有储物空间。储物空间的数量可根据实际需要设置为一个或多个。
电解除氧单元100用于在电解电压的作用下进行电化学反应以消耗冰箱1的储物空间的氧气。
电解除氧单元100既可以专门为一个储物空间除氧,也可以同时为多个储物空间除氧,只要保证电解除氧单元100与待除氧的储物空间气流连通即可。气流连通是指,储物空间内的空气可以流动至电解除氧单元100,例如流动至电解除氧单元100的阴极板上,使得阴极板以空气中的氧气作为反应物进行电化学反应,从而起到除氧的作用。以下实施例将以多个电解除氧单元100专门为一个储物空间进行除氧的情况进行示意,本领域技术人员应当易于根据下述实施例进行拓展,因此不再针对其他情况进行示例。
电解除氧单元100一般性地可包括阳极板和阴极板。阴极板用于在电解电压的作用下通过电化学反应消耗氧气。阳极板用于在电解电压的作用下通过电化学反应向阴极板提供反应物(例如,电子)且生成气体。在通电情况下,例如,空气中的氧气可以在阴极板处发生还原反应,即:O 2+2H 2O+4e -→4OH -。阴极板产生的OH -可以在阳极板处发生氧化反应,并生成氧气,即:4OH -→O 2+2H 2O+4e -
阴极板具有阴极接线端子。阳极板具有阳极接线端子。当电解除氧单元100为多个时,相邻电解除氧单元100的阴极接线端子与阳极接线端子相连,这可使多个电解除氧单元100依次串联连接。由于每个电解除氧单元100均能起到分压的作用,因此,这可以避免电解除氧单元100因工作电流过大而导致损耗速率提高,有利于延长电化学元件的使用寿命。
在一些实施例中,冰箱1可以进一步地包括供电电源,配置成为电解除氧单元100提供进行电化学反应所需的电解电压。
本实施例的电解除氧单元100的数量可以根据实际需要设置为一个或多个。当电解除氧单元100为多个时,多个电解除氧单元100可以相互串联且同步地启动电化学反应。图10是根据本发明一个实施例的冰箱1的电解除氧装置10的示意性结构图。
反应容器200的内部限定出反应空间220和过滤空间230。反应空间220用于装配电解除氧单元100。过滤空间230用于盛装液体、且对电解除氧单元100进行电化学反应时产生的气体进行过滤。反应空间220可以与过滤空间230气路连通,反应空间220内产生的气体通过流入过滤空间230并流经过滤空间230所盛装的液体,可使气体所携带的特定物质成分(例如,电解液中的电解质等成分)溶解于过滤空间230所盛装的液体,从而使过滤空间230实现气体过滤功能。在一些实施例中,过滤空间230也可以起到液封作用,因此也称为液封空间230。
例如,反应容器200内具有横向分隔板250,其沿横向延伸设置,以分隔出上下布置的过滤空间230和反应空间220。过滤空间230位于反应空间220的上方。横向分隔板250上开设有排气口251,使过滤空间230与反应空间220通过排气口251进行气路连通。横向分隔板250上还开设有回液口(也可称为补液口)252,使过滤空间230与反应空间220通过回液口252进行液路连通。过滤空间230 内的液体可以通过回液口252流入反应空间220内,以对反应空间220进行补液。
回液口252和排气口251分别为中空筒状气嘴,贯穿横向分隔板250,且伸入过滤空间230。回液口252高于排气口251设置,使得过滤空间230所盛装的液体液封排气口251。也就是说,当过滤空间230内的液体可以通过回液口252进入反应空间220时,过滤空间230内的液位高于排气口251,从而可以液封排气口251。正常状态下,过滤空间内的液位高于回液口设置。
使过滤空间230所盛装的液体液封排气口251,可保证流出排气口251的气体全部流经过滤空间230所盛装的液体,避免未经过滤的气体直接向外排放导致环境污染,同时,过滤空间230内的液体还能使反应空间220内的电解液与空气隔绝,减少或避免电解液变质。
过滤空间230的顶壁上可以开设有出气口231,连通过滤空间230,以允许过滤后的气体排出。本实施例中,过滤空间230的顶壁亦为反应容器200的顶壁。流入过滤空间230内的气体最终流向出气口231,并经出气口231排放至反应容器200的外部环境。
处理器810和存储器820用于形成冰箱10的控制装置,该控制装置可以为冰箱10的主控板。存储器820内存储有机器可执行程序821,机器可执行程序821被处理器810执行时用于实现以下任一实施例的冰箱10的控制方法。处理器810可以是一个中央处理单元(CPU),或者为数字处理单元(DSP)等等。存储器820用于存储处理器810执行的程序。存储器820可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,但不限于此。存储器820也可以是各种存储器820的组合。由于机器可执行程序821被处理器810执行时实现下述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图11是根据本发明一个实施例的冰箱1的控制方法的示意图。该控制方法一般性地可包括如下步骤:
步骤S302,获取反应空间220的液量变化值和过滤空间230的液量变化值,分别记为第一变量和第二变量。本实施例的反应空间220的液量变化值和过滤空间230的液量变化值均是相对于电化学反应过程而言的,例如,可以分别为电解除氧单元100在设定时间段内进行电化学反应时所发生的液量变化值。反应空间220和过滤空间230可以分别设置有液位传感器,根据液位传感器的检测值分别确定各自的液量变化值。
步骤S304,根据第一变量和第二变量确定反应空间220的补液量。反应空间220的补液量用于表征反应空间220所需加入的液量。
步骤S306,按照确定出的补液量向反应空间220补液。通过按照确定出的补液量向反应空间220补液,可以弥补电化学反应所损耗的液量,使反应空间220内的液量恢复至未进行电化学反应之前的初始液位水平。
本发明的冰箱1的控制方法,通过对反应空间220的液量变化值和过滤空间230的液量变化值进行分析得到反应空间220的补液量,并按照补液量向反应空间220补液,可使冰箱1在准确地计算反应空间220的补液量的基础上,实现精准补液,补液过程更加智能,避免了在补液过程通过人工监测补液量。
在一些可选的实施例中,过滤空间230通过使气体中的特定物质成分溶解于其中,从而对气体进行过滤。过滤空间230与反应空间220液路连通,用于向反应空间220补液。例如,当向反应空间220补液时,可以先直接向过滤空间230补液,然后使流入过滤空间230内的液体通过过滤空间230与反应空间220之间的液路连通口211流入反应空间220。需要说明的是,由于过滤空间230与反应空间220液路连通,因此,因过滤而滞留在过滤空间230内的特定物质成分能够再次返回反应空间220。
根据第一变量和第二变量确定反应空间220的补液量的步骤包括:计算第一变量和第二变量之间的差值,根据差值计算反应空间220和过滤空间230的液体流失速率,按照液体流失速率确定反应空间220的补液量。
第一变量和第二变量分别为正数。由于滞留在过滤空间230内的特定物质成分能够再次返回反应空间220,因此,第一变量和第二变量之间的差值反映了未被过滤且随气体排出至外部空间的液量,这部分液量是反应空间220的液体实际损失量,亦即反应空间220和过滤空间230的液体流失量。液体流失量与设定时间段的时间长度之间的比值为液体流失速率。在按照液体流失速率确定反应空间220的补液量的步骤中,可根据液体流失速率与实际发生的电化学反应的累计时长确定反应空间220的补液量。本实施例中,向反应空间220补液的步骤可以在电解除氧单元100进行电化学反应的过程中执行,例如可以每隔预设时间间隔执行一次补液操作。
在一些可选的实施例中,过滤空间230与反应空间220之间通过回液口252进行液路连通,过滤空间230开设有用于接收液体的进液口232,该进液口232可允许来自反应容器200外部空间的液体 通过并流入过滤空间230内。
按照确定出的补液量向反应空间220补液的步骤包括:打开回液口252和进液口232,并检测流经进液口232的液量,在液量累计达到补液量时,关闭进液口232,延时关闭回液口252。例如,进液口232处可以设置有液体流量计,用于检测流经进液口232的液体流速,从而确定流经进液口232的液量。
在打开回液口252和进液口232的同时,过滤空间230内因过滤而滞留的特定物质成分、以及来自反应容器200外部空间的液体均能流入反应空间220内。在流经进液口232的液量累计达到补液量时,通过延时关闭回液口252,可使滞留的特定物质成分以及来自反应容器200外部空间的液体全部地流入反应空间220,达到按量补液的目的。在开始向反应空间220补液之前,回液口252处于常闭状态。
在一些可选的实施例中,冰箱1还包括补液容器300,其连通进液口232,用于向过滤空间230提供液体。补液容器300的内部空间310用于盛装液体。
例如,补液容器300可以为水箱,其底部开设有供液口,过滤空间230的顶壁上相应开设有进液口232,供液口高于进液口232,且供液口和进液口232之间可以采用输液管进行连通,以利用输液管将来自流出供液口的液体导引至进液口232。输液管内可以安装有开关元件400,用于受控地开闭,从而通断供液口与进液口232之间的液路。
在打开回液口252和进液口232之前,按照确定出的补液量向反应空间220补液的步骤还包括:确定补液容器300的储液量大于等于补液量。也就是说,在补液容器300的储液量能满足反应空间220的补液需求的条件下,执行向反应空间220补液的步骤,这可以保证补液过程的准确性和连续性。在一些实施例中,若补液容器300的储液量小于补液量,则可以发出提示信号,以提示用户向补液容器300补液。
在一些可选的实施例中,在打开回液口252和进液口232之前,按照确定出的补液量向反应空间220补液的步骤还包括:对补液容器300进行预热。例如,补液容器300的周壁上可以缠绕有加热丝,通过对加热丝通电,可使其发热从而预热补液容器300。对补液容器300进行预热,可以加热补液容器300所盛装的液体,使得流入反应空间220的液体具有一定的温度,这有利于提高电化学反应速率。
在按照确定出的补液量向反应空间220补液的同时,控制方法还包括:获取流经进液口232的液体流速,判断液体流速是否超出预设的安全阈值,若是,则关闭进液口232,并发出提示信号。在补液容器300与进液口232进行密封连接、且反应容器200未发生漏液的情况下,流经进液口232的液体流速会小于安全阈值,而在液体流速超出预设的安全阈值的情况下,可能反应容器200已发生漏液现象,或者补液容器300与进液口232之间不再密封连接,此时通过发出提示信号,可以及时地提醒用户进行检修,防止发生安全事故。
在一些可选的实施例中,过滤空间230开设有连通外部环境的出气口231,用于排出经过滤的气体。
在按照确定出的补液量向反应空间220补液的步骤之后,控制方法还可以进一步地包括:获取过滤空间230的排气速率,根据排气速率和液体流失速率计算电解除氧单元100的电化学反应速率,根据电化学反应速率确定电解除氧单元100的工作时长,按照工作时长对电解除氧单元100进行控制。例如,出气口231处可以安装有气体流量计,用于检测流经出气口231的气体流量,作为过滤空间230的排气速率。
根据排气速率和液体流失速率计算电解除氧单元100的电化学反应速率的步骤包括:计算排气速率与液体流失速率之间的差值,得到电解除氧单元100的气体生成速率,根据气体生成速率确定电化学反应速率。由于从出气口231流出的气体可能仍然或多或少地携带液体,这部分液体的排出速率实际是反应空间220和过滤空间230的液体流失速率。因此,排气速率与液体流失速率之间的差值即为电化学反应所生成的纯净气体(未夹带电解液)的生成速率,亦即气体生成速率。
由于可根据过滤空间230的排气速率和过滤空间230的液体流失速率计算电解除氧单元100的电化学反应速率,电化学反应速率即为电解除氧单元100针对储物空间的除氧速率,因此,本发明的方案,提供了一种用于检测除氧速率的新方法。
在一些实施例中,根据电化学反应速率确定电解除氧单元100的工作时长的步骤包括:获取储物空间的含氧量,根据电化学反应速率和含氧量计算电解除氧单元100的工作时长。例如,储物空间内可以设置有氧气浓度传感器,用于检测储物空间的氧气浓度,从而确定储物空间的含氧量。在按照工作时长对电解除氧单元100进行控制的步骤中,可在电解除氧单元100的启动时长达到工作时长的情况下,使电解除氧单元100断电并停止反应。
由于可根据电化学反应速率确定电解除氧单元100的工作时长,并按照工作时长对电解除氧单元 100进行控制,因此,本发明的方案有利于提高除氧过程的控制精度,既保证除氧效果,又节约能耗。
图12是根据本发明一个实施例的冰箱1的控制流程图。该控制流程一般性地可包括如下步骤:
步骤S402,获取反应空间220的液量变化值和过滤空间230的液量变化值,分别记为第一变量和第二变量。
步骤S404,计算第一变量和第二变量之间的差值。
步骤S406,根据差值计算反应空间220和过滤空间230的液体流失速率。
步骤S408,按照液体流失速率确定反应空间220的补液量。
步骤S410,确定补液容器300的储液量大于等于补液量。
步骤S412,对补液容器300进行预热。
步骤S414,打开回液口252和进液口232,并检测流经进液口232的液量。
步骤S416,在液量累计达到补液量时,关闭进液口232,延时关闭回液口252。本实施例中,向反应空间220补液的步骤可以在电解除氧单元100进行电化学反应的过程中执行,例如可以每隔预设时间间隔执行一次补液操作。
步骤S418,获取过滤空间230的排气速率。
步骤S420,计算排气速率与液体流失速率之间的差值,得到电解除氧单元100的气体生成速率。
步骤S422,根据气体生成速率确定电化学反应速率。
步骤S424,获取储物空间的含氧量。
步骤S426,根据电化学反应速率和含氧量计算电解除氧单元100的工作时长。
步骤S428,按照工作时长对电解除氧单元100进行控制。
使用上述方法,通过对反应空间220的液量变化值和过滤空间230的液量变化值进行分析得到反应空间220的补液量,并按照补液量向反应空间220补液,可使冰箱1在准确地计算反应空间220的补液量的基础上,实现精准补液,补液过程更加智能,避免了在补液过程通过人工监测补液量。
下面将结合更为具体的实施例针对电解除氧装置10的结构进行详细介绍。本实施例的电解除氧装置10包括多个串联的电解除氧单元100。
反应容器200内具有至少一个纵向分隔板210,分别沿纵向延伸设置,以分隔出沿水平方向依次排布的多个反应空间220。纵向分隔板210上开设有连通口211,使得相邻反应空间220相互连通,从而形成贯通通道221。多个电解除氧单元100与反应空间220一一对应设置,且每一电解除氧单元100分别装配至一反应空间220,用于在电解电压的作用下通过电化学反应消耗反应容器200外部的氧气。
使多个反应空间220沿水平方向依次排布,可以保证各个反应空间220的高度基本一致,由于相邻反应空间220相互连通,因此,各个反应空间220通过贯通形成连通器,基于这种连通器结构,各个反应空间220内的电解液在无需外力干涉的情况下可以进行均匀分配,电解液的液位和浓度基本一致。
在一些实施例中,反应容器200在反应空间220的侧壁上开设有开口,阴极板可以设置于开口处并与反应容器200共同限定出用于盛装电解液的反应空间220。阳极板可以与阴极板相互间隔地设置于反应空间220内。
横向分隔板250上开设有多个排气口251,与反应空间220一一连通。本实施例的过滤空间230与每一反应空间220通过排气口251进行气路连通。横向分隔板250上还开设有回液口252,过滤空间230与反应空间220通过回液口252进行液路连通。过滤空间230内的液体可以通过回液口252流入反应空间220内。回液口252可以为一个。
本实施例的电解除氧装置,由于反应空间220和过滤空间230均集成在反应容器200内,通过在横向分隔板250上开设开口,即可实现反应空间220和过滤空间230之间的气路连通和液路连通,进而实现过滤功能和回收功能,因此,电解除氧装置10具备结构简单、一体性程度高的优点。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (29)

  1. 一种电解除氧装置,包括:
    至少一个电解除氧单元,用于在电解电压的作用下通过电化学反应消耗所述电解除氧装置外部的氧气;和
    反应容器,其内部限定出液封空间以及至少一个反应空间;一所述反应空间对应装配有一所述电解除氧单元;所述液封空间用于盛装液体,且与所述反应空间气路连通,以使所述电解除氧单元进行电化学反应时产生的气体流经所述液封空间所盛装的液体,从而使所述气体中的特定物质成分溶解于所述液封空间。
  2. 根据权利要求1所述的电解除氧装置,其中,
    所述反应容器内具有横向分隔板,其沿横向延伸设置,以分隔出上下布置的所述液封空间和所述反应空间;且
    所述横向分隔板上开设有至少一个排气口,一所述排气口对应连通一所述反应空间,使所述液封空间与所述反应空间气路连通。
  3. 根据权利要求2所述的电解除氧装置,其中,
    所述横向分隔板上还开设有至少一个补液口,一所述补液口对应连通一所述反应空间,使所述液封空间与所述反应空间液路连通;且
    所述补液口高于所述排气口设置。
  4. 根据权利要求3所述的电解除氧装置,其中,
    所述补液口和所述排气口分别为中空筒状气嘴,贯穿所述横向分隔板,且伸入所述液封空间。
  5. 根据权利要求1-4中任一项所述的电解除氧装置,其中,
    所述液封空间的顶壁上开设有出气口,连通所述液封空间,以允许过滤后的气体排出。
  6. 根据权利要求1-4中任一项所述的电解除氧装置,还包括:
    补液容器,位于所述反应容器的上方,且其内部形成与所述液封空间相连通的储液空间,用于向所述液封空间补液。
  7. 根据权利要求1-4中任一项所述的电解除氧装置,其中,
    所述电解除氧单元和所述反应空间分别为多个;且
    多个所述反应空间互不连通,且沿水平方向依次排布。
  8. 根据权利要求7所述的电解除氧装置,其中,
    所述反应容器内具有至少一个纵向分隔板,分别沿纵向延伸设置,以分隔出沿水平方向依次排布的多个所述反应空间。
  9. 根据权利要求1-4中任一项所述的电解除氧装置,其中,
    所述电解除氧单元包括:
    阴极板,用于在电解电压的作用下通过电化学反应消耗氧气,且其具有阴极接线端子;和
    阳极板,用于在电解电压的作用下通过电化学反应向所述阴极板提供反应物且生成气体,其具有阳极接线端子;且
    相邻所述电解除氧单元的所述阴极接线端子与所述阳极接线端子相连。
  10. 一种电解除氧装置,包括:
    反应容器,其内部限定出用于盛装电解液的多个反应空间;所述多个反应空间贯通设置,以形成供电解液流通的贯通通道;和
    多个电解除氧单元,与所述反应空间一一对应设置,且每一所述电解除氧单元分别装配至一所述反应空间,用于在电解电压的作用下通过电化学反应消耗所述反应容器外部的氧气。
  11. 根据权利要求10所述的电解除氧装置,其中,
    多个所述反应空间沿水平方向依次排布,且相邻所述反应空间相互连通,从而形成所述贯通通道。
  12. 根据权利要求11所述的电解除氧装置,其中,
    所述反应容器内具有至少一个纵向分隔板,分别沿纵向延伸设置,以分隔出沿水平方向依次排布的多个所述反应空间;且所述纵向分隔板上开设有连通口,使得相邻所述反应空间相互连通。
  13. 根据权利要求10-12中任一项所述的电解除氧装置,其中,
    所述反应容器的内部还限定出处理空间,位于多个所述反应空间的上方,并与每一所述反应空间一一连通,以允许每一所述电解除氧单元进行电化学反应时产生的气体流入其中;且
    所述处理空间的顶壁上开设有出气口,以允许流入所述处理空间的气体排出。
  14. 根据权利要求13所述的电解除氧装置,其中,
    所述反应容器内具有横向分隔板,其沿横向延伸设置,以分隔出上下布置的所述处理空间和所述反应空间;且
    所述横向分隔板上开设有多个排气孔,与所述反应空间一一连通。
  15. 根据权利要求14所述的电解除氧装置,其中,
    所述横向分隔板上还开设有补液孔,所述补液孔连通任一所述反应空间,以允许流经所述处理空间的液体流入所述反应空间。
  16. 根据权利要求15所述的电解除氧装置,其中,
    所述补液孔和所述排气孔分别为贯穿所述横向分隔板厚度方向的光孔;且
    所述补液孔的孔壁向上延伸,且在所述横向分隔板的上表面形成有贯通所述补液孔与所述处理空间的上环形凸缘。
  17. 根据权利要求13所述的电解除氧装置,还包括:
    补液容器,位于所述反应容器的上方,且其内部形成与所述处理空间相连通的储液空间,用于向所述处理空间补液。
  18. 根据权利要求10-12中任一项所述的电解除氧装置,其中,
    所述电解除氧单元包括:
    阴极板,用于在电解电压的作用下通过电化学反应消耗氧气,且其具有阴极接线端子;和
    阳极板,用于在电解电压的作用下通过电化学反应向所述阴极板提供反应物且生成气体;且其具有阳极接线端子;并且
    相邻所述电解除氧单元的所述阴极接线端子与所述阳极接线端子相连。
  19. 一种冰箱,包括:
    如权利要求1-18中任一项所述的电解除氧装置。
  20. 一种冰箱的控制方法,所述冰箱包括电解除氧单元和反应容器,所述电解除氧单元用于在电解电压的作用下进行电化学反应以消耗所述冰箱的储物空间内的氧气,所述反应容器的内部限定出反应空间和过滤空间;所述反应空间用于装配所述电解除氧单元;所述过滤空间用于盛装液体、且对所述电解除氧单元进行电化学反应时产生的气体进行过滤;并且所述控制方法包括:
    获取所述反应空间的液量变化值和所述过滤空间的液量变化值,分别记为第一变量和第二变量;
    根据所述第一变量和所述第二变量确定所述反应空间的补液量;
    按照确定出的所述补液量向所述反应空间补液。
  21. 根据权利要求20所述的控制方法,其中,
    所述过滤空间通过使所述气体中的特定物质成分溶解于其中,从而对所述气体进行过滤;所述过滤空间与所述反应空间液路连通;且
    根据所述第一变量和所述第二变量确定所述反应空间的补液量的步骤包括:
    计算所述第一变量和所述第二变量之间的差值;
    根据所述差值计算所述反应空间和所述过滤空间的液体流失速率;
    按照所述液体流失速率确定所述反应空间的补液量。
  22. 根据权利要求21所述的控制方法,其中,
    所述过滤空间与所述反应空间之间通过回液口进行液路连通,所述过滤空间开设有用于接收液体的进液口;且
    按照确定出的所述补液量向所述反应空间补液的步骤包括:
    打开所述回液口和所述进液口,并检测流经所述进液口的液量;
    在所述液量累计达到所述补液量时,关闭进液口,延时关闭所述回液口。
  23. 根据权利要求22所述的控制方法,其中,
    所述冰箱还包括补液容器,其连通所述进液口,用于向所述过滤空间提供液体;且
    在打开所述回液口和所述进液口之前,按照确定出的所述补液量向所述反应空间补液的步骤还包括:
    确定所述补液容器的储液量大于等于所述补液量。
  24. 根据权利要求23所述的控制方法,其中,
    在打开所述回液口和所述进液口之前,按照确定出的所述补液量向所述反应空间补液的步骤还包括:
    对所述补液容器进行预热。
  25. 根据权利要求22-24中任一项所述的控制方法,在按照确定出的所述补液量向所述反应空间补液的同时,还包括:
    获取流经所述进液口的液体流速;
    判断所述液体流速是否超出预设的安全阈值;
    若是,则关闭所述进液口,并发出提示信号。
  26. 根据权利要求21-24中任一项所述的控制方法,其中,
    所述过滤空间开设有连通外部环境的出气口,用于排出经过滤的气体;且
    在按照确定出的所述补液量向所述反应空间补液的步骤之后,还包括:
    获取所述过滤空间的排气速率;
    根据所述排气速率和所述液体流失速率计算所述电解除氧单元的电化学反应速率;
    根据所述电化学反应速率确定所述电解除氧单元的工作时长;
    按照所述工作时长对所述电解除氧单元进行控制。
  27. 根据权利要求26所述的控制方法,其中,
    根据所述排气速率和所述液体流失速率计算所述电解除氧单元的电化学反应速率的步骤包括:
    计算所述排气速率与所述液体流失速率之间的差值,得到所述电解除氧单元的气体生成速率;
    根据所述气体生成速率确定所述电化学反应速率。
  28. 根据权利要求27所述的控制方法,其中,
    根据所述电化学反应速率确定所述电解除氧单元的工作时长的步骤包括:
    获取所述储物空间的含氧量;
    根据所述电化学反应速率和所述含氧量计算所述电解除氧单元的工作时长。
  29. 一种冰箱,其包括:
    电解除氧单元,用于在电解电压的作用下进行电化学反应以消耗所述冰箱的储物空间内的氧气;
    反应容器,其内部限定出反应空间和过滤空间;所述反应空间用于装配所述电解除氧单元;所述过滤空间用于盛装液体、且对所述电解除氧单元进行电化学反应时产生的气体进行过滤;以及
    处理器和存储器,所述存储器内存储有机器可执行程序,所述机器可执行程序被所述处理器执行时,用于实现根据权利要求20-28中任一项所述的控制方法。
PCT/CN2022/136025 2021-12-03 2022-12-01 电解除氧装置以及具有其的冰箱及其控制方法 WO2023098838A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22900642.4A EP4443086A1 (en) 2021-12-03 2022-12-01 Electrolytic deoxygenation device, refrigerator having same, and control method therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202111468131.9A CN116222117A (zh) 2021-12-03 2021-12-03 电解除氧装置以及具有其的冰箱
CN202111466835.2 2021-12-03
CN202111468131.9 2021-12-03
CN202111466835.2A CN116222110A (zh) 2021-12-03 2021-12-03 电解除氧装置以及具有其的冰箱
CN202111466848.X 2021-12-03
CN202111466848.XA CN116222129B (zh) 2021-12-03 2021-12-03 冰箱及其控制方法

Publications (1)

Publication Number Publication Date
WO2023098838A1 true WO2023098838A1 (zh) 2023-06-08

Family

ID=86611538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136025 WO2023098838A1 (zh) 2021-12-03 2022-12-01 电解除氧装置以及具有其的冰箱及其控制方法

Country Status (2)

Country Link
EP (1) EP4443086A1 (zh)
WO (1) WO2023098838A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210292481U (zh) * 2019-04-17 2020-04-10 佛山市顺德区阿波罗环保器材有限公司 氧气分离装置和冰箱
CN113446794A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN217465117U (zh) * 2021-12-03 2022-09-20 青岛海尔电冰箱有限公司 电解除氧装置以及具有其的冰箱
CN217465118U (zh) * 2021-12-03 2022-09-20 青岛海尔电冰箱有限公司 电解除氧装置以及具有其的冰箱

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210292481U (zh) * 2019-04-17 2020-04-10 佛山市顺德区阿波罗环保器材有限公司 氧气分离装置和冰箱
CN113446794A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN217465117U (zh) * 2021-12-03 2022-09-20 青岛海尔电冰箱有限公司 电解除氧装置以及具有其的冰箱
CN217465118U (zh) * 2021-12-03 2022-09-20 青岛海尔电冰箱有限公司 电解除氧装置以及具有其的冰箱

Also Published As

Publication number Publication date
EP4443086A1 (en) 2024-10-09

Similar Documents

Publication Publication Date Title
CN217465118U (zh) 电解除氧装置以及具有其的冰箱
CN109411783B (zh) 一种燃料电池氢气回收装置
US7476458B2 (en) Fuel cell system
CN217465117U (zh) 电解除氧装置以及具有其的冰箱
JP5877449B2 (ja) セルスタックシステム
WO2023098838A1 (zh) 电解除氧装置以及具有其的冰箱及其控制方法
WO2023155668A1 (zh) 冰箱及其电解除氧系统
CN115882018B (zh) 一种燃料电池车辆的尾气排放系统及方法
CN102201588A (zh) 燃料电池尾气处理器及燃料电池尾气处理方法
KR101168957B1 (ko) 금속연료전지유닛
CN217876648U (zh) 冰箱及其电解除氧系统
CN217312376U (zh) 一种氢系统用气水分离器
US10647219B2 (en) Method for controlling fuel cell system
CN116222129B (zh) 冰箱及其控制方法
WO2013150799A1 (ja) 燃料電池システム
WO2023098837A1 (zh) 电解除氧装置以及具有其的冰箱及其控制方法
CN208797108U (zh) 一种用于列车atp系统的燃料电池装置
CN116222117A (zh) 电解除氧装置以及具有其的冰箱
WO2023098486A1 (zh) 冰箱及其控制方法
CN116222111A (zh) 电解除氧装置以及具有其的冰箱
CN116222110A (zh) 电解除氧装置以及具有其的冰箱
CN221596500U (zh) 一种钒液流电池系统的氮封排氢系统
WO2023098749A1 (zh) 储液装置以及具有其的电解除氧系统和冰箱
CN216714509U (zh) 一种防爆柴油机尾气处理箱
CN221192362U (zh) 一种氢氧发生器自动循环补液装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022900642

Country of ref document: EP

Effective date: 20240703

NENP Non-entry into the national phase

Ref country code: JP