WO2023098565A1 - 冰箱及其控制方法 - Google Patents
冰箱及其控制方法 Download PDFInfo
- Publication number
- WO2023098565A1 WO2023098565A1 PCT/CN2022/134080 CN2022134080W WO2023098565A1 WO 2023098565 A1 WO2023098565 A1 WO 2023098565A1 CN 2022134080 W CN2022134080 W CN 2022134080W WO 2023098565 A1 WO2023098565 A1 WO 2023098565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- efficiency
- oxygen removal
- deoxygenation
- low
- unit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 248
- 239000001301 oxygen Substances 0.000 claims abstract description 244
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 244
- 238000003860 storage Methods 0.000 claims abstract description 57
- 238000003487 electrochemical reaction Methods 0.000 claims abstract description 33
- 230000009471 action Effects 0.000 claims abstract description 8
- 238000006392 deoxygenation reaction Methods 0.000 claims description 175
- 238000005868 electrolysis reaction Methods 0.000 claims description 15
- 230000002238 attenuated effect Effects 0.000 claims description 9
- 230000032683 aging Effects 0.000 claims description 7
- 230000008439 repair process Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 10
- 230000000694 effects Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000002000 scavenging effect Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/32—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
- C25B15/023—Measuring, analysing or testing during electrolytic production
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/12—Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D29/00—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D29/00—Arrangement or mounting of control or safety devices
- F25D29/008—Alarm devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/104—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2600/00—Control issues
- F25D2600/02—Timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2600/00—Control issues
- F25D2600/06—Controlling according to a predetermined profile
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Definitions
- the invention relates to fresh-keeping technology, in particular to a refrigerator and a control method thereof.
- the chemical reaction rate is relatively simple and difficult to control, and the oxygen removal rate of the electrolytic deoxidizer cannot be adjusted according to the actual oxygen removal demand of the storage space.
- An object of the present invention is to overcome at least one technical defect in the prior art, and provide a refrigerator and a control method thereof.
- a further object of the present invention is to diversify the deoxygenation rate of the refrigerator and improve the flexibility of the deoxygenation process of the refrigerator.
- Yet a further object of the present invention is to simplify the control logic of the refrigerator.
- Another further object of the present invention is to adjust the oxygen removal strategy of the refrigerator in time to ensure the oxygen removal effect.
- a method for controlling a refrigerator includes a plurality of low-efficiency oxygen removal units connected in series and a high-efficiency oxygen removal unit connected in parallel with the plurality of low-efficiency oxygen removal units, respectively for Under the action of the electrolysis voltage, the oxygen in the storage space of the refrigerator is consumed through an electrochemical reaction, and the control method includes: obtaining the deoxygenation mode of the storage space; selectively starting multiple low-efficiency deoxygenation units and strong At least one of the effective oxygen scavenging units.
- the step of selectively starting at least one of the plurality of low-efficiency oxygen removal units and powerful oxygen removal units according to the oxygen removal mode includes: obtaining a combination rule corresponding to the oxygen removal mode; at least one of the oxygen removal unit and the plurality of low efficiency oxygen removal units.
- the deaeration modes of the storage space include high-efficiency mode, medium-efficiency mode and low-efficiency mode; The number of oxygen units to start.
- the step of starting at least one of the powerful deoxygenation unit and the plurality of low-efficiency deoxygenation units according to the combination rules it also includes: detecting the degree of attenuation of the powerful deoxygenation unit and each low-efficiency deoxygenation unit ;Adjust the combination rules corresponding to each deaeration mode according to the degree of attenuation.
- the step of detecting the degree of attenuation of the powerful deoxygenation unit and each low-efficiency deoxygenation unit includes: respectively acquiring the actual electrical parameters of the powerful deoxygenation unit and each low-efficiency deoxygenation unit when performing electrochemical reactions; The degree of attenuation of the powerful deoxygenation unit and each low-efficiency deoxygenation unit is respectively determined according to their respective actual electrical parameters.
- the step of respectively determining the attenuation degree of the powerful deoxygenation unit and each low-efficiency deoxygenation unit according to their respective actual electrical parameters includes: obtaining the unattenuated powerful deoxygenation unit and the unattenuated low-efficiency deoxygenation unit respectively The standard electrical parameters of the unit; respectively determine the attenuation degree of the powerful deoxygenation unit and each low-efficiency deoxygenation unit according to their actual electrical parameters and their respective standard electrical parameters.
- the step of adjusting the combination rule corresponding to each deoxygenation mode according to the degree of attenuation includes: acquiring a preset oxygen removal rate corresponding to each combination rule;
- the attenuation degree of the oxygen unit is used to calculate the actual oxygen removal rate of the strong oxygen removal unit and each low-efficiency oxygen removal unit; according to the actual oxygen removal rate, the strong oxygen removal unit and multiple low-efficiency oxygen removal units are matched and combined to obtain The adjusted combination rules, and make the actual oxygen removal rate corresponding to each adjusted combination rule reach the corresponding preset oxygen removal rate respectively.
- the step of detecting the attenuation degree of the powerful deoxygenation unit and each low-efficiency deoxygenation unit it also includes: judging whether the powerful deoxygenation unit or the low-efficiency deoxygenation unit has reached the degree of aging; if so, output A reminder signal to prompt the user for replacement or repair.
- the step of obtaining the deoxygenation mode of the storage space includes: obtaining the oxygen concentration of the storage space; and determining the deoxygenation mode of the storage space according to the oxygen concentration.
- a refrigerator which includes: a plurality of low-efficiency oxygen removal units connected in series and a powerful oxygen removal unit connected in parallel with the plurality of low-efficiency oxygen removal units, respectively used for electrolysis voltage
- the oxygen in the storage space of the refrigerator is consumed by the electrochemical reaction under the action of the refrigerator
- the refrigerator also includes: a processor and a memory, and a machine-executable program is stored in the memory.
- the machine-executable program is executed by the processor, it is used to realize the above-mentioned Any method of control.
- the strong deoxygenation unit and the low-efficiency deoxygenation unit can be combined to form a variety of start-up schemes, so that the deoxidation of the refrigerator Oxygen rates are diversified, so by selectively activating at least one of a plurality of low-efficiency oxygen-scavenging units and high-efficiency oxygen-scavenging units to consume oxygen in the storage space according to the oxygen-scavenging mode, the refrigerator can be used according to the actual storage space. Oxygen removal is required for deoxygenation, which is beneficial to improve the flexibility of the refrigerator's deoxygenation process.
- the refrigerator and its control method of the present invention can simplify the control logic of the refrigerator by preset combination rules, and when the deoxygenation mode is determined, start the deoxygenation unit according to the combination rule corresponding to the deoxygenation mode , improve control efficiency.
- the combination rules corresponding to each deoxygenation mode can be adjusted according to the degree of attenuation, so that the refrigerator can adjust the deoxygenation strategy in time to ensure the deoxygenation effect and improve the intelligence of the refrigerator.
- FIG. 1 is a schematic block diagram of a refrigerator according to an embodiment of the present invention
- Fig. 2 is a schematic structural diagram of an electrolytic deoxygenation device of a refrigerator according to an embodiment of the present invention
- Fig. 3 is a schematic diagram of a method for controlling a refrigerator according to an embodiment of the present invention.
- FIG. 4 is a control flowchart of a refrigerator according to an embodiment of the present invention.
- Fig. 1 is a schematic block diagram of a refrigerator 1 according to one embodiment of the present invention.
- the refrigerator 1 may generally include an electrolytic deoxidizer 10 , a processor 810 and a storage 820 , and may further include a box for installing the electrolytic deoxidizer 10 , the processor 810 and a storage 820 .
- a storage space is formed inside the box body.
- the number of storage spaces can be set to one or more according to actual needs.
- Fig. 2 is a schematic structural diagram of the electrolytic deoxygenation device 10 of the refrigerator 1 according to an embodiment of the present invention.
- the electrolytic oxygen removal device 10 includes a plurality of oxygen removal units, namely, a powerful oxygen removal unit 110 and a plurality of low efficiency oxygen removal units 120, which are respectively used to consume the storage space of the refrigerator 1 through an electrochemical reaction under the action of the electrolysis voltage. of oxygen.
- a plurality of low-efficiency oxygen removal units 120 are arranged in series, and a high-efficiency oxygen removal unit 110 is arranged in parallel with a plurality of low-efficiency oxygen removal units 120 connected in series.
- the electrochemical reaction rate of the powerful deoxygenation unit 110 is higher than that of any low-efficiency deoxygenation unit 120 The rate is higher than the sum of the electrochemical reaction rates of all low-efficiency deoxygenation units 120, or may be approximately equal to the sum of electrochemical reaction rates of all low-efficiency deoxygenation units 120.
- the configuration and performance parameters of the high-efficiency oxygen removal unit 110 and the low-efficiency oxygen removal unit 120 may be set to be the same.
- the electrolytic deoxygenation device is formed by using the high-efficiency deoxygenation unit 110 and the low-efficiency deoxygenation unit 120 mixed in series and parallel, so that the overall electrochemical reaction rate of the electrolytic deoxygenation device can have multiple different values.
- the number of powerful oxygen removal unit 110 is one.
- the number of powerful deoxygenation units 110 can also be changed to multiple, and arranged in parallel with each other, which can improve the replaceability of powerful deoxygenation units 110, and can also make low-efficiency deoxygenation units 110
- a variety of different oxygen removal efficiencies can be obtained by combining the unit 120 and the powerful oxygen removal unit 110 .
- the case where the number of powerful deoxygenation units 110 is one is used as an example.
- Airflow communication means that the air in the storage space can flow to the oxygen removal unit, for example, flow to the cathode plate of the oxygen removal unit, so that the cathode plate uses oxygen in the air as a reactant to perform an electrochemical reaction, thereby deoxidizing role.
- An oxygen scavenging unit may generally include an anode plate and a cathode plate.
- the cathode plate is used to consume oxygen through an electrochemical reaction under the action of electrolysis voltage.
- the anode plate is used to supply reactants (eg, electrons) to the cathode plate through an electrochemical reaction under the action of an electrolysis voltage and generate gas.
- reactants eg, electrons
- oxygen in the air can undergo a reduction reaction at the cathode plate, namely: O 2 +2H 2 O+4e - ⁇ 4OH - .
- the OH - produced by the cathode plate can undergo oxidation reaction at the anode plate and generate oxygen, namely: 4OH - ⁇ O 2 +2H 2 O+4e - .
- the cathode plate has cathode terminals.
- the anode plate has an anode terminal.
- the cathode connection terminals of adjacent low-efficiency deoxygenation units 120 are connected to the anode connection terminals, which allows multiple low-efficiency deoxygenation units 120 to be sequentially connected in series.
- the cathode connection terminal of the low-efficiency oxygen removal unit 120 at the end and the cathode connection terminal of the powerful oxygen removal unit 110 are respectively connected to the negative pole of the power supply, the anode connection terminal of the low-efficiency oxygen removal unit 120 at the end, and The anode terminals of the high-efficiency oxygen removal unit 110 are respectively connected to the positive pole of the power supply, so that the high-efficiency oxygen removal unit 110 is arranged in parallel with multiple low-efficiency oxygen removal units 120 .
- the processor 810 and the memory 820 are used to form a control device of the refrigerator 1 , and the control device may be a main control board of the refrigerator 1 .
- a machine-executable program 821 is stored in the memory 820. When the machine-executable program 821 is executed by the processor 810, it is used to realize the control method of the refrigerator 1 in any of the following embodiments.
- the processor 810 may be a central processing unit (CPU), or a digital processing unit (DSP) and so on.
- the memory 820 is used to store programs executed by the processor 810 .
- the memory 820 may be any medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
- the storage 820 may also be a combination of various storages 820 . Since the machine executable program 821 is executed by the processor 810 to implement each process of the following method embodiments and achieve the same technical effect, to avoid repetition, details are not repeated here
- Fig. 3 is a schematic diagram of a control method of the refrigerator 1 according to an embodiment of the present invention.
- the control method may generally include the following steps:
- Step S302 acquiring the deoxygenation mode of the storage space.
- the refrigerator 1 can preset multiple deoxygenation modes for the storage space, and each deoxygenation mode can correspond to its own deoxygenation rate, so that the deoxygenation rate of the refrigerator 1 has a variety of choices.
- Step S304 selectively starting at least one of the multiple low-efficiency deoxygenation units 120 and the high-efficiency deoxygenation units 110 according to the deoxygenation mode. That is, the oxygen removal units to be activated are selected according to the oxygen removal mode, and these activated oxygen removal units are used to perform electrochemical reactions under the action of the electrolysis voltage to consume the oxygen in the storage space.
- the powerful deoxygenation unit 110 and multiple low-efficiency deoxygenation units 120 are arranged in parallel, the powerful deoxygenation unit 110 and the low-efficiency deoxygenation unit 120 can be combined to form a variety of start-up schemes, so that the refrigerator
- the oxygen removal rate of 1 is diversified, therefore, by selectively starting at least one of a plurality of low-efficiency oxygen removal units 120 and high-efficiency oxygen removal units 110 according to the oxygen removal mode to consume the oxygen in the storage space, the refrigerator 1 can be Deoxygenation is carried out according to the actual deoxygenation demand of the storage space, which is beneficial to improve the flexibility of the deoxygenation process of the refrigerator 1 .
- the step of selectively starting at least one of the plurality of low-efficiency deoxygenation units 120 and high-efficiency deoxygenation units 110 according to the deoxygenation mode includes: obtaining a combination rule corresponding to the deoxygenation mode , start at least one of the high-efficiency oxygen removal unit 110 and the plurality of low-efficiency oxygen removal units 120 according to a combination rule.
- each deoxygenation mode is provided with its own corresponding combination rule, and the combination rule specifies the powerful deoxygenation unit 110 and the low-efficiency deoxygenation unit 120 that need to be activated in the deoxygenation mode.
- the deoxygenation modes of the storage space include a high-efficiency mode, a medium-efficiency mode and a low-efficiency mode.
- the high-efficiency mode refers to the mode with the strongest oxygen removal effect, and its oxygen removal rate is the highest
- the medium-efficiency mode refers to the mode with a medium oxygen removal effect, and its oxygen removal rate is medium
- the low-efficiency mode refers to the mode with the lowest oxygen removal effect , which has the lowest oxygen removal efficiency.
- the combination rule stipulates the activated quantity of the low-efficiency deoxygenation unit 120 and the activated quantity of the high-efficiency deoxygenation unit 110 that are compatible with the corresponding deoxygenation mode.
- each deaeration unit is also preset with its own number, and the combination rule can also specify the number of the low-efficiency deaeration unit 120 that needs to be started and the number of the inefficient deaeration unit that needs to be started that is compatible with the corresponding deaeration mode. The number of the high-efficiency oxygen removal unit 110.
- the oxygen removal mode of the storage space is the high-efficiency mode
- the oxygen removal mode of the storage space is the medium-efficiency mode
- you can choose to start all the low-efficiency deoxygenation units 120 when the oxygen removal mode of the storage space is the medium-efficiency mode, you can choose Start the powerful deoxygenation unit 110, and when the deoxygenation mode of the storage space is the low-efficiency mode, you can choose to start all the low-efficiency deoxygenation units 120 .
- the step of starting at least one of the powerful oxygen removal unit 110 and the plurality of low efficiency oxygen removal units 120 according to the combination rules it also includes: detecting the powerful oxygen removal unit 110 and each The degree of attenuation of the low-efficiency oxygen removal unit 120 adjusts the combination rules corresponding to each mode of oxygen removal according to the degree of attenuation.
- the refrigerator 1 Due to the inevitable performance attenuation of the powerful oxygen removal unit 110 and the low efficiency oxygen removal unit 120, by detecting the attenuation degree of the powerful oxygen removal unit 110 and each low efficiency oxygen removal unit 120, and adjusting the relationship with each A combination rule corresponding to the oxygen removal mode enables the refrigerator 1 to adjust the oxygen removal strategy in time to ensure the oxygen removal effect and improve the intelligence of the refrigerator 1 .
- the attenuation degree of the oxygen removal unit is relative to the oxygen removal unit without performance attenuation.
- the attenuation degree of the corresponding oxygen removal unit can be measured according to the attenuation degree of the electrochemical reaction rate.
- the degree of decay of the oxygen removal unit is 50%.
- the step of detecting the attenuation degree of the powerful deoxygenation unit 110 and each low-efficiency deoxygenation unit 120 includes: respectively acquiring the powerful deoxygenation unit 110 and each low-efficiency deoxygenation unit 120 to carry out Actual electrical parameters during the electrochemical reaction, respectively determine the degree of attenuation of the powerful deoxygenation unit 110 and each low-efficiency deoxygenation unit 120 according to their respective actual electrical parameters.
- the activated low-efficiency deoxygenation unit 120 and the powerful deoxygenation unit 110 stop the electrochemical reaction
- the actual electrical parameters of the high-efficiency deoxygenation unit 110 and each low-efficiency deoxygenation unit 120 can be obtained when the electrochemical reaction is performed.
- the high-efficiency deoxygenation unit 110 and each Actual electrical parameters of a low-efficiency oxygen removal unit 120 are undergoing electrochemical reactions.
- the actual electrical parameters of the electrochemical reaction performed by the oxygen removal unit may refer to the actual electrolysis voltage or the actual working resistance or the actual working current when the electrochemical reaction is performed. Since the deoxygenation unit during the electrochemical reaction is equivalent to an electrical component, the attenuation degree of the deoxygenation unit is determined according to the actual electrical parameters, the method is simple, and the calculation result is accurate and reliable.
- a voltage detector 610 can be arranged in parallel at both ends of each low-efficiency deoxygenation unit 120 for detecting the actual electrolysis voltage when the low-efficiency deoxygenation unit 120 performs an electrochemical reaction, and can connect the low-efficiency deoxygenation unit 120
- the actual electrolysis voltage is used as its actual electrical parameter
- the powerful oxygen removal unit 110 can be provided with a current detector 620 in series, which is used to detect the actual working current when it carries out the electrochemical reaction, and the actual working current of the powerful oxygen removal unit 110 can be The operating current is used as its actual electrical parameter.
- the step of respectively determining the attenuation degree of the powerful deoxygenation unit 110 and each low-efficiency deoxygenation unit 120 according to their respective actual electrical parameters includes: obtaining the non-attenuated powerful deoxygenation unit 110 and the non-attenuated low-efficiency deoxygenation unit respectively
- the standard electrical parameters of 120 determine the degree of attenuation of the powerful deoxygenation unit 110 and each low-efficiency deoxygenation unit 120 according to their respective actual electrical parameters and respective standard electrical parameters.
- the non-attenuated deoxygenation unit may refer to a brand new deoxygenation unit, or may refer to a deoxygenation unit whose service time is less than the preset duration threshold, and the electrical parameters of the unattenuated deoxygenation unit during the electrochemical reaction Perform detection to obtain standard electrical parameters.
- the standard electrical parameter of the powerful oxygen removal unit 110 may be a standard operating current
- the standard electrical parameter of the low efficiency oxygen removal unit 120 may be a standard electrolysis voltage.
- the ratio between the actual operating current of the powerful oxygen removal unit 110 and the standard operating current can be used as its attenuation degree, and when the attenuation degree of the inefficient oxygen removal unit 120 is determined, the actual The ratio between the electrolysis voltage and the standard electrolysis voltage is used as the attenuation degree.
- the attenuation degree of each oxygen removal unit can be obtained in a targeted manner, providing data for rationally adjusting the combination rules support.
- the step of adjusting the combination rule corresponding to each oxygen removal mode according to the degree of attenuation includes: obtaining a preset oxygen removal rate corresponding to each combination rule, according to the powerful oxygen removal unit 110 and the degree of attenuation of each low-efficiency oxygen removal unit 120 to calculate the actual oxygen removal rate of the powerful oxygen removal unit 110 and each low-efficiency oxygen removal unit 120, according to the actual oxygen removal rate to the powerful oxygen removal unit 110 and multiple
- the low-efficiency oxygen removal unit 120 performs matching and combination to obtain adjusted combination rules, and makes the actual oxygen removal rate corresponding to each adjusted combination rule reach the corresponding preset oxygen removal rate.
- the oxygen removal rate of the oxygen removal unit is the electrochemical reaction rate, which is also the oxygen consumption rate of the storage space.
- the preset oxygen removal rate corresponding to each combination rule is determined according to the standard oxygen removal rate of the unattenuated oxygen removal unit.
- the standard deoxygenation rate can be obtained by measuring the oxygen concentration in the storage space during the electrochemical reaction process of the unattenuated deoxygenation unit within a set period of time.
- the actual oxygen removal rate is determined according to the degree of attenuation. For example, when the attenuation degree of the oxygen removal unit is 50%, its actual oxygen removal rate is correspondingly attenuated to 50% of the standard oxygen removal rate.
- the adjusted combination rule can be one strong oxygen removal unit 110 plus all low efficiency oxygen removal units 120 (that is, start the strong oxygen removal unit 110 and all low efficiency oxygen removal units 120).
- the control method may further include: judging whether the powerful oxygen removal unit 110 or the low-efficiency oxygen removal unit Whether the oxygen unit 120 has reached the degree of aging, if so, output a prompt signal to prompt the user to replace or repair. For example, when the attenuation degree of the oxygen removal unit reaches 80% to 90%, it can be determined that the oxygen removal unit has reached the aging degree.
- the oxygen unit can match the combination rules corresponding to each oxygen removal mode. The above steps may be performed before adjusting the combination rules corresponding to each oxygen removal mode according to the degree of attenuation.
- the step of obtaining the deoxygenation mode of the storage space includes: obtaining the oxygen concentration of the storage space, and determining the deoxygenation mode of the storage space according to the oxygen concentration.
- an oxygen concentration sensor can be used to detect the oxygen concentration in the storage space. When the oxygen concentration is at a high level, the strong mode can be selected; when the oxygen concentration is at a medium level, the medium effect mode can be selected; When level, low-efficiency mode can be selected.
- the deoxygenation mode can also be determined according to the opening time of the storage space, which can omit the arrangement of the oxygen concentration sensor.
- the opening time of the storage space can indirectly reflect the level of oxygen concentration in the storage space. Within a certain time range, the oxygen concentration of the storage space decreases with the shortening of the opening time.
- each deoxygenation unit is respectively provided with a unit switch element 520 for controlled opening and closing, so as to cut off the power of the deoxygenation unit or connect the electrolysis voltage.
- Each low-efficiency oxygen removal unit 120 is also correspondingly provided with a replacement element 512, which is arranged on the adjustment branch 510 connected in parallel with the corresponding low-efficiency oxygen removal unit 120, and the adjustment branch 510 is also provided with an adjustment switch element 511 for Switched on and off in a controlled manner, thereby de-energizing or switching the replacement element 512 into the circuit.
- the unit switch element 520 corresponding to the low-efficiency oxygen removal unit 120 can be disconnected, and the unit switch element 520 corresponding to the low-efficiency oxygen removal unit 120 can be closed.
- the switching element 511 is adjusted so that the replacement element 512 replaces the low-efficiency oxygen removal unit 120 and is connected to the circuit.
- the refrigerator 1 can automatically remedy the associated performance degradation that may be caused by the aging low-efficiency oxygen removal unit 120, reducing or avoiding the sharp decline in the performance of other low-efficiency oxygen removal units 120, which is conducive to improving the performance of multiple low-efficiency oxygen removal units.
- the effective working life of the oxygen removal unit 120 improves the intelligence of the refrigerator 1 .
- the replacement element 512 is a resistor, and its resistance value is set according to the average resistance value when the corresponding low-efficiency deoxygenation unit 120 is in an unattenuated state.
- FIG. 4 is a control flowchart of the refrigerator 1 according to one embodiment of the present invention.
- the control process may generally include the following steps:
- Step S402 acquiring the oxygen concentration of the storage space.
- Step S404 determining the deoxygenation mode of the storage space according to the oxygen concentration.
- the deoxygenation modes of the storage space include high-efficiency mode, medium-efficiency mode and low-efficiency mode.
- Step S406 acquiring the combination rule corresponding to the deoxygenation mode.
- the combination rule stipulates the activated quantity of the low-efficiency deoxygenation unit 120 and the activated quantity of the high-efficiency deoxygenation unit 110 that are compatible with the corresponding deoxygenation mode.
- Step S408 start at least one of the high-efficiency oxygen removal unit 110 and the plurality of low-efficiency oxygen removal units 120 according to the combination rule.
- step S410 the actual electrical parameters of the high-efficiency oxygen removal unit 110 and each low-efficiency oxygen removal unit 120 when performing electrochemical reactions are obtained respectively.
- step S412 the standard electrical parameters of the non-attenuated high-efficiency deoxygenation unit 110 and the non-attenuated low-efficiency deoxygenation unit 120 are obtained respectively.
- Step S414 determine the degree of attenuation of the high-efficiency oxygen removal unit 110 and each low-efficiency oxygen removal unit 120 according to their actual electrical parameters and their respective standard electrical parameters.
- Step S416 judging whether the high-efficiency oxygen removal unit 110 or the low-efficiency oxygen removal unit 120 has reached the degree of aging, if yes, execute step S424, and if not, execute step S418.
- Step S420 calculating the actual oxygen removal rate of the powerful oxygen removal unit 110 and each low efficiency oxygen removal unit 120 respectively according to the attenuation degree of the powerful oxygen removal unit 110 and each low efficiency oxygen removal unit 120 .
- Step S422 match and combine the powerful oxygen removal unit 110 and multiple low efficiency oxygen removal units 120 according to the actual oxygen removal rate to obtain the adjusted combination rules, and make each adjusted combination rule correspond to the actual oxygen removal rate The rates respectively reach the corresponding preset oxygen removal rates.
- Step S424 outputting a prompt signal to prompt the user to perform replacement or maintenance.
- the powerful deoxygenation unit 110 and multiple low-efficiency deoxygenation units 120 are arranged in parallel, the powerful deoxygenation unit 110 and the low-efficiency deoxygenation unit 120 can be combined to form a variety of start-up schemes , to diversify the deoxygenation rate of the refrigerator 1, therefore, by selectively starting at least one of a plurality of low-efficiency deoxygenation units 120 and powerful deoxygenation units 110 according to the deoxygenation mode to consume the oxygen in the storage space, it is possible to Make the refrigerator 1 perform deoxygenation according to the actual deoxygenation demand of the storage space, which is beneficial to improve the flexibility of the deoxygenation process of the refrigerator 1 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Automation & Control Theory (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
一种冰箱及其控制方法,所述冰箱包括串联的多个低效除氧单元以及与所述多个低效除氧单元并联的强效除氧单元,分别用于在电解电压的作用下通过电化学反应消耗所述冰箱的储物空间的氧气,并且所述控制方法包括:获取所述储物空间的除氧模式;根据所述除氧模式选择性地启动多个所述低效除氧单元和所述强效除氧单元中的至少一个。使用上述方法,冰箱可根据储物空间的实际除氧需求进行除氧,这有利于提高冰箱除氧过程的灵活性。
Description
本发明涉及保鲜技术,特别是涉及冰箱及其控制方法。
随着科技的进步和人们生活水平的不断提高,用户对冰箱保鲜性能的要求越来越高。
发明人认识到,虽然冰箱可利用电解除氧装置的电化学反应来消耗储物空间的氧气,但是电解除氧装置的电化学元件往往是在固定的电解电压下进行电化学反应,这导致电化学反应速率较为单一,且难以调控,不能根据储物空间的实际除氧需求调节电解除氧装置的除氧速率。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种冰箱及其控制方法。
本发明的一个进一步的目的是要使冰箱的除氧速率多元化,提高冰箱除氧过程的灵活性。
本发明的又一个进一步的目的是要简化冰箱的控制逻辑。
本发明的另一个进一步的目的是要及时地调整冰箱的除氧策略,保证除氧效果。
特别地,根据本发明的一方面,提供了一种冰箱的控制方法,冰箱包括串联的多个低效除氧单元以及与多个低效除氧单元并联的强效除氧单元,分别用于在电解电压的作用下通过电化学反应消耗冰箱的储物空间的氧气,并且控制方法包括:获取储物空间的除氧模式;根据除氧模式选择性地启动多个低效除氧单元和强效除氧单元中的至少一个。
可选地,根据除氧模式选择性地启动多个低效除氧单元和强效除氧单元中的至少一个的步骤包括:获取与除氧模式相对应的组合规则;按照组合规则启动强效除氧单元和多个低效除氧单元中的至少一个。
可选地,储物空间的除氧模式包括强效模式、中效模式和低效模式;且 组合规则规定有与对应除氧模式相适配的低效除氧单元的启动数量和强效除氧单元的启动数量。
可选地,在按照组合规则启动强效除氧单元和多个低效除氧单元中的至少一个的步骤之后,还包括:检测强效除氧单元和每一低效除氧单元的衰减程度;根据衰减程度调整与每一除氧模式相对应的组合规则。
可选地,检测强效除氧单元和每一低效除氧单元的衰减程度的步骤包括:分别获取强效除氧单元和每一低效除氧单元进行电化学反应时的实际电参数;根据各自的实际电参数分别确定强效除氧单元和每一低效除氧单元的衰减程度。
可选地,根据各自的实际电参数分别确定强效除氧单元和每一低效除氧单元的衰减程度的步骤包括:分别获取未衰减的强效除氧单元和未衰减的低效除氧单元的标准电参数;分别根据各自的实际电参数和各自的标准电参数确定强效除氧单元和每一低效除氧单元的衰减程度。
可选地,根据衰减程度调整与每一除氧模式相对应的组合规则的步骤包括:获取与每一组合规则相对应的预设除氧速率;根据强效除氧单元和每一低效除氧单元的衰减程度分别计算强效除氧单元和每一低效除氧单元的实际除氧速率;按照实际除氧速率对强效除氧单元和多个低效除氧单元进行匹配组合,得到调整后的组合规则,且使调整后的每一组合规则相对应的实际除氧速率分别达到对应预设除氧速率。
可选地,在检测强效除氧单元和每一低效除氧单元的衰减程度的步骤之后,还包括:判断强效除氧单元或者低效除氧单元是否达到老化程度;若是,则输出提示信号,以提示用户进行更换或维修。
可选地,获取储物空间的除氧模式的步骤包括:获取储物空间的氧气浓度;根据氧气浓度确定储物空间的除氧模式。
根据本发明的另一方面,还提供了一种冰箱,其包括:串联的多个低效除氧单元以及与多个低效除氧单元并联的强效除氧单元,分别用于在电解电压的作用下通过电化学反应消耗冰箱的储物空间的氧气,并且冰箱还包括:处理器和存储器,存储器内存储有机器可执行程序,机器可执行程序被处理器执行时,用于实现根据上述任一项的控制方法。
本发明的冰箱及其控制方法,由于强效除氧单元与多个低效除氧单元并联设置,强效除氧单元和低效除氧单元可通过组合形成多种启动方案,使冰 箱的除氧速率多元化,因此,通过根据除氧模式选择性地启动多个低效除氧单元和强效除氧单元中的至少一个来消耗储物空间的氧气,可使冰箱根据储物空间的实际除氧需求进行除氧,这有利于提高冰箱除氧过程的灵活性。
进一步地,本发明的冰箱及其控制方法,通过预设组合规则,并在确定出除氧模式的情况下,按照与除氧模式相对应的组合规则启动除氧单元,可以简化冰箱的控制逻辑,提高控制效率。
更进一步地,本发明的冰箱及其控制方法,由于强效除氧单元和低效除氧单元不可避免地会发生性能衰减,通过检测强效除氧单元和每一低效除氧单元的衰减程度,并根据衰减程度调整与每一除氧模式相对应的组合规则,可使冰箱及时地调整除氧策略,保证除氧效果,提升了冰箱的智慧化程度。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性框图;
图2是根据本发明一个实施例的冰箱的电解除氧装置的示意性结构图;
图3是根据本发明一个实施例的冰箱的控制方法的示意图;
图4是根据本发明一个实施例的冰箱的控制流程图。
图1是根据本发明一个实施例的冰箱1的示意性框图。冰箱1一般性地可包括电解除氧装置10、处理器810和存储器820,还可以进一步地包括箱体,用于安装电解除氧装置10、处理器810和存储器820。
箱体的内部形成有储物空间。储物空间的数量可根据实际需要设置为一个或多个。
图2是根据本发明一个实施例的冰箱1的电解除氧装置10的示意性结构图。
电解除氧装置10包括多个除氧单元,即,强效除氧单元110和多个低 效除氧单元120,分别用于在电解电压的作用下通过电化学反应消耗冰箱1的储物空间的氧气。多个低效除氧单元120串联设置,强效除氧单元110与串联的多个低效除氧单元120并联设置。
在强效除氧单元110和多个低效除氧单元120均接通电解电压的情况下,强效除氧单元110的电化学反应速率高于任一低效除氧单元120的电化学反应速率,且高于全部低效除氧单元120的电化学反应速率之和,或者可以大致等于全部低效除氧单元120的电化学反应速率之和。在一些实施例中,强效除氧单元110和低效除氧单元120的构造和性能参数可以设置为相同。
利用串并联混合的强效除氧单元110和低效除氧单元120形成电解除氧装置,可使电解除氧装置整体的电化学反应速率具有多个不同的值。
强效除氧单元110的数量为一个。在一些可选的实施例中,强效除氧单元110的数量也可以变换为多个,且相互并联设置,这可以提高强效除氧单元110的可替代性,也可使低效除氧单元120和强效除氧单元110之间通过组合得到多种不同的除氧效率。以下实施例将以强效除氧单元110的数量为一个的情况进行示例。
多个除氧单元既可以专门为一个储物空间除氧,也可以同时为多个储物空间除氧,只要保证除氧单元与待除氧的储物空间气流连通即可。气流连通是指,储物空间内的空气可以流动至除氧单元,例如流动至除氧单元的阴极板上,使得阴极板以空气中的氧气作为反应物进行电化学反应,从而起到除氧的作用。以下实施例将以多个除氧单元专门为一个储物空间进行除氧的情况进行示意,本领域技术人员应当易于根据下述实施例进行拓展,因此不再针对其他情况进行示例。
除氧单元一般性地可包括阳极板和阴极板。阴极板用于在电解电压的作用下通过电化学反应消耗氧气。阳极板用于在电解电压的作用下通过电化学反应向阴极板提供反应物(例如,电子)且生成气体。在通电情况下,例如,空气中的氧气可以在阴极板处发生还原反应,即:O
2+2H
2O+4e
-→4OH
-。阴极板产生的OH
-可以在阳极板处发生氧化反应,并生成氧气,即:4OH
-→O
2+2H
2O+4e
-。
阴极板具有阴极接线端子。阳极板具有阳极接线端子。相邻低效除氧单元120的阴极接线端子与阳极接线端子相连,这可使多个低效除氧单元120依次串联连接。位于端部的低效除氧单元120的阴极接线端子、以及强效除 氧单元110的阴极接线端子分别与供电电源的负极相连,位于端部的低效除氧单元120的阳极接线端子、以及强效除氧单元110的阳极接线端子分别与供电电源的正极相连,从而使强效除氧单元110与多个低效除氧单元120并联设置。
处理器810和存储器820用于形成冰箱1的控制装置,该控制装置可以为冰箱1的主控板。存储器820内存储有机器可执行程序821,机器可执行程序821被处理器810执行时用于实现以下任一实施例的冰箱1的控制方法。处理器810可以是一个中央处理单元(CPU),或者为数字处理单元(DSP)等等。存储器820用于存储处理器810执行的程序。存储器820可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,但不限于此。存储器820也可以是各种存储器820的组合。由于机器可执行程序821被处理器810执行时实现下述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图3是根据本发明一个实施例的冰箱1的控制方法的示意图。该控制方法一般性地可包括如下步骤:
步骤S302,获取储物空间的除氧模式。冰箱1可以针对储物空间预先设定多个除氧模式,每个除氧模式可以分别对应有各自的除氧速率,使冰箱1的除氧速率具有多样化的选择。
步骤S304,根据除氧模式选择性地启动多个低效除氧单元120和强效除氧单元110中的至少一个。即,根据除氧模式选择需要启动的除氧单元,并利用这些启动的除氧单元在电解电压的作用下进行电化学反应以消耗储物空间的氧气。
本实施例的控制方法,由于强效除氧单元110与多个低效除氧单元120并联设置,强效除氧单元110和低效除氧单元120可通过组合形成多种启动方案,使冰箱1的除氧速率多元化,因此,通过根据除氧模式选择性地启动多个低效除氧单元120和强效除氧单元110中的至少一个来消耗储物空间的氧气,可使冰箱1根据储物空间的实际除氧需求进行除氧,这有利于提高冰箱1除氧过程的灵活性。
在一些可选的实施例中,根据除氧模式选择性地启动多个低效除氧单元120和强效除氧单元110中的至少一个的步骤包括:获取与除氧模式相对应的组合规则,按照组合规则启动强效除氧单元110和多个低效除氧单元120 中的至少一个。
也就是说,每个除氧模式分别设置有各自对应的组合规则,组合规则中规定了在该除氧模式下需要启动的强效除氧单元110和低效除氧单元120。
使用上述方法,通过预设组合规则,并在确定出除氧模式的情况下,按照与除氧模式相对应的组合规则启动除氧单元,可以简化冰箱1的控制逻辑,提高控制效率。
本实施例中,储物空间的除氧模式包括强效模式、中效模式和低效模式。顾名思义,强效模式是指除氧效果最强的模式,其除氧速率最高,中效模式是指除氧效果中等的模式,其除氧速率中等,低效模式是指除氧效果最低的模式,其除氧效率最低。
组合规则规定有与对应除氧模式相适配的低效除氧单元120的启动数量和强效除氧单元110的启动数量。在一些实施例中,每个除氧单元还分别预设有各自的编号,组合规则还可以规定有与对应除氧模式相适配的需要启动的低效除氧单元120的编号和需要启动的强效除氧单元110的编号。
例如,当储物空间的除氧模式为强效模式时,可以选择启动全部低效除氧单元120和强效除氧单元110,当储物空间的除氧模式为中效模式时,可以选择启动强效除氧单元110,当储物空间的除氧模式为低效模式时,可以选择启动全部低效除氧单元120。
在一些可选的实施例中,在按照组合规则启动强效除氧单元110和多个低效除氧单元120中的至少一个的步骤之后,还包括:检测强效除氧单元110和每一低效除氧单元120的衰减程度,根据衰减程度调整与每一除氧模式相对应的组合规则。
由于强效除氧单元110和低效除氧单元120不可避免地会发生性能衰减,通过检测强效除氧单元110和每一低效除氧单元120的衰减程度,并根据衰减程度调整与每一除氧模式相对应的组合规则,可使冰箱1及时地调整除氧策略,保证除氧效果,提升了冰箱1的智慧化程度。
除氧单元的衰减程度是相对于未发生性能衰减的除氧单元而言的,例如,可以按照电化学反应速率的衰减程度来衡量对应除氧单元的衰减程度。当除氧单元的电化学反应速率衰减为未发生性能衰减时的电化学反应速率的一半时,该除氧单元的衰减程度为50%。
在一些可选的实施例中,检测强效除氧单元110和每一低效除氧单元 120的衰减程度的步骤包括:分别获取强效除氧单元110和每一低效除氧单元120进行电化学反应时的实际电参数,根据各自的实际电参数分别确定强效除氧单元110和每一低效除氧单元120的衰减程度。
例如,在上述步骤S304之后,且在启动的低效除氧单元120和强效除氧单元110停止进行电化学反应后,通过获取低效除氧单元120和强效除氧单元110的运行记录,可以得到强效除氧单元110和每一低效除氧单元120进行电化学反应时的实际电参数。
在一些实施例中,在上述步骤S304之后,且在启动的低效除氧单元120和强效除氧单元110正在进行电化学反应时,也可以同时检测并获取强效除氧单元110和每一低效除氧单元120的实际电参数。
除氧单元进行电化学反应的实际电参数可以指进行电化学反应时的实际电解电压或者实际工作电阻或者实际工作电流。由于进行电化学反应时的除氧单元相当于电学元件,因此,根据实际电参数来确定除氧单元的衰减程度,方法简便,计算结果准确可靠。
例如,每一低效除氧单元120的两端可以并联设置一电压检测器610,用于检测低效除氧单元120进行电化学反应时的实际电解电压,并可将低效除氧单元120的实际电解电压作为其实际电参数;强效除氧单元110可以串联设置有一电流检测器620,用于检测其进行电化学反应时的实际工作电流,并可将强效除氧单元110的实际工作电流作为其实际电参数。
根据各自的实际电参数分别确定强效除氧单元110和每一低效除氧单元120的衰减程度的步骤包括:分别获取未衰减的强效除氧单元110和未衰减的低效除氧单元120的标准电参数,分别根据各自的实际电参数和各自的标准电参数确定强效除氧单元110和每一低效除氧单元120的衰减程度。本实施例中,未衰减的除氧单元可以指全新的除氧单元,或者可以指服役时长小于预设时长阈值的除氧单元,通过对未衰减的除氧单元进行电化学反应时的电参数进行检测,得到标准电参数。例如,强效除氧单元110的标准电参数可以为标准工作电流,低效除氧单元120的标准电参数可以为标准电解电压。
在分别根据各自的实际电参数和各自的标准电参数确定强效除氧单元110和每一低效除氧单元120的衰减程度的步骤中,例如,当确定强效除氧单元110的衰减程度时,可将强效除氧单元110的实际工作电流与标准工作电流之间的比值作为其衰减程度,当确定低效除氧单元120的衰减程度时, 可将低效除氧单元120的实际电解电压与标准电解电压之间的比值作为其衰减程度。
使用上述方法,通过预设标准电参数,并利用标准电参数与实际电参数计算除氧单元的衰减程度,可以有针对性地得到每个除氧单元的衰减程度,为合理调整组合规则提供数据支持。
在一些可选的实施例中,根据衰减程度调整与每一除氧模式相对应的组合规则的步骤包括:获取与每一组合规则相对应的预设除氧速率,根据强效除氧单元110和每一低效除氧单元120的衰减程度分别计算强效除氧单元110和每一低效除氧单元120的实际除氧速率,按照实际除氧速率对强效除氧单元110和多个低效除氧单元120进行匹配组合,得到调整后的组合规则,且使调整后的每一组合规则相对应的实际除氧速率分别达到对应预设除氧速率。
除氧单元的除氧速率亦即电化学反应速率,也为储物空间的氧气消耗速率。每一组合规则对应的预设除氧速率根据未衰减的除氧单元的标准除氧速率进行确定。通过在设定时间段内对未衰减除氧单元进行电化学反应过程的储物空间氧气浓度进行测定,可以得到标准除氧速率。实际除氧速率根据衰减程度进行确定,例如,当除氧单元的衰减程度为50%时,其实际除氧速率对应衰减为标准除氧速率的50%。
在按照实际除氧速率对强效除氧单元110和多个低效除氧单元120进行匹配组合的过程中,例如,当强效除氧单元110和全部低效除氧单元120的实际除氧速率均衰减50%时,若与中效模式相对应的原始的组合规则为1个强效除氧单元110加0个低效除氧单元120(即,仅启动强效除氧单元110),则调整后的组合规则可以为1个强效除氧单元110加全部低效除氧单元120(即,启动强效除氧单元110和全部低效除氧单元120)。
按照实际除氧速率对组合规则进行调整,且使调整后的每一组合规则的实际除氧速率分别达到对应的预设除氧速率,可以保证组合规则的调整过程达到良好的效果,使组合规则始终与除氧模式相对应。
在一些可选的实施例中,在检测强效除氧单元110和每一低效除氧单元120的衰减程度的步骤之后,控制方法还可以包括:判断强效除氧单元110或者低效除氧单元120是否达到老化程度,若是,则输出提示信号,以提示用户进行更换或维修。例如,当除氧单元的衰减程度达到80%~90%时,即 可判定除氧单元达到老化程度,此时,通过输出提示信号,可以提示用户尽快地采取补救措施,以保证利用多个除氧单元能够匹配出与各个除氧模式相对应的组合规则。上述步骤可以在根据衰减程度调整与每一除氧模式相对应的组合规则之前执行。
在一些可选的实施例中,获取储物空间的除氧模式的步骤包括:获取储物空间的氧气浓度,根据氧气浓度确定储物空间的除氧模式。例如,可以采用氧气浓度传感器检测储物空间的氧气浓度,在氧气浓度处于较高水平时,可以选择强效模式,在氧气浓度处于中等水平时,可以选择中效模式,在氧气浓度处于较低水平时,可以选择低效模式。
在另一些可选的实施例中,还可以根据储物空间的开放时长来确定除氧模式,这可以省略布置氧气浓度传感器。储物空间的开放时长能够间接地反映出储物空间氧气浓度的高低,在一定时长范围内,储物空间的氧气浓度随开放时长的缩短而降低。
在一些可选的实施例中,每一除氧单元分别对应设置有单元开关元件520,用于受控地开闭,从而使除氧单元断电或者接通电解电压。每一低效除氧单元120还对应设置有替代元件512,设置在与对应低效除氧单元120并联的调整支路510上,且调整支路510上还设置有调整开关元件511,用于受控地开闭,从而使替代元件512断电或者接入电路。
在一些进一步的实施例中,若某一低效除氧单元120达到老化程度,可以断开与该低效除氧单元120对应的单元开关元件520,且闭合与该低效除氧单元120对应的调整开关元件511,使得替代元件512代替该低效除氧单元120接入电路。
使用上述方法,冰箱1可以自动地针对老化的低效除氧单元120可能导致的关联性性能衰减进行补救,减少或避免其他低效除氧单元120的性能急剧衰减,有利于提高多个低效除氧单元120的有效工作寿命,提升冰箱1的智慧化程度。
在一些可选的实施例中,替代元件512为电阻,其阻值根据对应低效除氧单元120处于未衰减状态时的平均阻值进行设置。
图4是根据本发明一个实施例的冰箱1的控制流程图。该控制流程一般性地可包括如下步骤:
步骤S402,获取储物空间的氧气浓度。
步骤S404,根据氧气浓度确定储物空间的除氧模式。储物空间的除氧模式包括强效模式、中效模式和低效模式。
步骤S406,获取与除氧模式相对应的组合规则。组合规则规定有与对应除氧模式相适配的低效除氧单元120的启动数量和强效除氧单元110的启动数量。
步骤S408,按照组合规则启动强效除氧单元110和多个低效除氧单元120中的至少一个。
步骤S410,分别获取强效除氧单元110和每一低效除氧单元120进行电化学反应时的实际电参数。
步骤S412,分别获取未衰减的强效除氧单元110和未衰减的低效除氧单元120的标准电参数。
步骤S414,分别根据各自的实际电参数和各自的标准电参数确定强效除氧单元110和每一低效除氧单元120的衰减程度。
步骤S416,判断强效除氧单元110或者低效除氧单元120是否达到老化程度,若是,则执行步骤S424,若否,则执行步骤S418。
步骤S418,获取与每一组合规则相对应的预设除氧速率。
步骤S420,根据强效除氧单元110和每一低效除氧单元120的衰减程度分别计算强效除氧单元110和每一低效除氧单元120的实际除氧速率。
步骤S422,按照实际除氧速率对强效除氧单元110和多个低效除氧单元120进行匹配组合,得到调整后的组合规则,且使调整后的每一组合规则相对应的实际除氧速率分别达到对应预设除氧速率。
步骤S424,输出提示信号,以提示用户进行更换或维修。
本发明的冰箱1及其控制方法,由于强效除氧单元110与多个低效除氧单元120并联设置,强效除氧单元110和低效除氧单元120可通过组合形成多种启动方案,使冰箱1的除氧速率多元化,因此,通过根据除氧模式选择性地启动多个低效除氧单元120和强效除氧单元110中的至少一个来消耗储物空间的氧气,可使冰箱1根据储物空间的实际除氧需求进行除氧,这有利于提高冰箱1除氧过程的灵活性。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或 修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。
Claims (10)
- 一种冰箱的控制方法,所述冰箱包括串联的多个低效除氧单元以及与所述多个低效除氧单元并联的强效除氧单元,分别用于在电解电压的作用下通过电化学反应消耗所述冰箱的储物空间的氧气,并且所述控制方法包括:获取所述储物空间的除氧模式;根据所述除氧模式选择性地启动多个所述低效除氧单元和所述强效除氧单元中的至少一个。
- 根据权利要求1所述的控制方法,其中,根据所述除氧模式选择性地启动多个所述低效除氧单元和所述强效除氧单元中的至少一个的步骤包括:获取与所述除氧模式相对应的组合规则;按照所述组合规则启动所述强效除氧单元和多个所述低效除氧单元中的至少一个。
- 根据权利要求2所述的控制方法,其中,所述储物空间的除氧模式包括强效模式、中效模式和低效模式;且所述组合规则规定有与对应所述除氧模式相适配的所述低效除氧单元的启动数量和所述强效除氧单元的启动数量。
- 根据权利要求2所述的控制方法,在按照所述组合规则启动所述强效除氧单元和多个所述低效除氧单元中的至少一个的步骤之后,还包括:检测所述强效除氧单元和每一所述低效除氧单元的衰减程度;根据所述衰减程度调整与每一所述除氧模式相对应的组合规则。
- 根据权利要求4所述的控制方法,其中,检测所述强效除氧单元和每一所述低效除氧单元的衰减程度的步骤包括:分别获取所述强效除氧单元和每一所述低效除氧单元进行电化学反应时的实际电参数;根据各自的所述实际电参数分别确定所述强效除氧单元和每一所述低效除氧单元的衰减程度。
- 根据权利要求5所述的控制方法,其中,根据各自的所述实际电参数分别确定所述强效除氧单元和每一所述低效除氧单元的衰减程度的步骤包括:分别获取未衰减的所述强效除氧单元和未衰减的所述低效除氧单元的标准电参数;分别根据各自的所述实际电参数和各自的所述标准电参数确定所述强效除氧单元和每一所述低效除氧单元的衰减程度。
- 根据权利要求4-6中任一项所述的控制方法,其中,根据所述衰减程度调整与每一所述除氧模式相对应的组合规则的步骤包括:获取与每一所述组合规则相对应的预设除氧速率;根据所述强效除氧单元和每一所述低效除氧单元的所述衰减程度分别计算所述强效除氧单元和每一所述低效除氧单元的实际除氧速率;按照所述实际除氧速率对所述强效除氧单元和多个所述低效除氧单元进行匹配组合,得到调整后的组合规则,且使调整后的每一所述组合规则相对应的实际除氧速率分别达到对应所述预设除氧速率。
- 根据权利要求4-6中任一项所述的控制方法,在检测所述强效除氧单元和每一所述低效除氧单元的衰减程度的步骤之后,还包括:判断所述强效除氧单元或者所述低效除氧单元是否达到老化程度;若是,则输出提示信号,以提示用户进行更换或维修。
- 根据权利要求1-6中任一项所述的控制方法,其中,获取所述储物空间的除氧模式的步骤包括:获取所述储物空间的氧气浓度;根据所述氧气浓度确定所述储物空间的除氧模式。
- 一种冰箱,其包括:串联的多个低效除氧单元以及与所述多个低效除氧单元并联的强效除氧单元,分别用于在电解电压的作用下通过电化学反应消耗所述冰箱的储物空间的氧气,并且所述冰箱还包括:处理器和存储器,所述存储器内存储有机器可执行程序,所述机器可执 行程序被所述处理器执行时,用于实现根据权利要求1-9中任一项所述的控制方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111468132.3A CN116222134A (zh) | 2021-12-03 | 2021-12-03 | 冰箱及其控制方法 |
CN202111468132.3 | 2021-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023098565A1 true WO2023098565A1 (zh) | 2023-06-08 |
Family
ID=86568431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/134080 WO2023098565A1 (zh) | 2021-12-03 | 2022-11-24 | 冰箱及其控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116222134A (zh) |
WO (1) | WO2023098565A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108168181A (zh) * | 2017-12-22 | 2018-06-15 | 青岛海尔股份有限公司 | 冰箱 |
CN111480760A (zh) * | 2019-01-29 | 2020-08-04 | 宁波方太厨具有限公司 | 一种家庭生鲜食物保鲜装置及保鲜方法 |
CN112174090A (zh) * | 2020-10-20 | 2021-01-05 | 湖南恒光科技股份有限公司 | 一种氢气除氧工艺系统及方法 |
CN112747533A (zh) * | 2019-10-31 | 2021-05-04 | 青岛海尔电冰箱有限公司 | 冰箱及其控制方法 |
CN113533643A (zh) * | 2021-06-18 | 2021-10-22 | 中国大唐集团科学技术研究院有限公司华东电力试验研究院 | 锅炉换热管的结垢速率影响试验装置及方法 |
-
2021
- 2021-12-03 CN CN202111468132.3A patent/CN116222134A/zh active Pending
-
2022
- 2022-11-24 WO PCT/CN2022/134080 patent/WO2023098565A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108168181A (zh) * | 2017-12-22 | 2018-06-15 | 青岛海尔股份有限公司 | 冰箱 |
CN111480760A (zh) * | 2019-01-29 | 2020-08-04 | 宁波方太厨具有限公司 | 一种家庭生鲜食物保鲜装置及保鲜方法 |
CN112747533A (zh) * | 2019-10-31 | 2021-05-04 | 青岛海尔电冰箱有限公司 | 冰箱及其控制方法 |
CN112174090A (zh) * | 2020-10-20 | 2021-01-05 | 湖南恒光科技股份有限公司 | 一种氢气除氧工艺系统及方法 |
CN113533643A (zh) * | 2021-06-18 | 2021-10-22 | 中国大唐集团科学技术研究院有限公司华东电力试验研究院 | 锅炉换热管的结垢速率影响试验装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN116222134A (zh) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2402841C1 (ru) | Система топливных элементов | |
CN109841876A (zh) | 燃料电池反极电流抑制方法、装置、计算机设备和储存介质 | |
JP2007103172A (ja) | 燃料電池システムおよびそのガス排出方法 | |
WO2023098565A1 (zh) | 冰箱及其控制方法 | |
CN115663240A (zh) | 燃料电池性能恢复方法、装置及系统 | |
JP2008269911A (ja) | 燃料電池システムおよび燃料電池システムにおけるガス圧力調節方法 | |
JP2007005000A (ja) | 燃料電池システムの制御方法 | |
US20070072024A1 (en) | Apparatus for controlling operations of fuel cell system and method thereof | |
JP2004273162A (ja) | 燃料電池制御システム | |
JP2007059319A (ja) | 燃料電池システム | |
JP2005302648A (ja) | 水素濃度推定方法及び燃料電池システム | |
JP2007299747A (ja) | 燃料電池に用いる電源切断手順 | |
JP2009021077A (ja) | 燃料電池システム | |
JP2004296374A (ja) | 燃料電池システム | |
JP6124619B2 (ja) | ガス流量制御装置及びガス流量制御方法 | |
KR100711894B1 (ko) | 연료 전지 및 연료 전지 배터리 충전 제어 방법 | |
JP2017020823A (ja) | 溶存水素濃度測定装置及び測定方法 | |
KR20100083285A (ko) | 금속연료전지유닛 | |
JP2005141977A (ja) | 燃料電池システムの排出方法 | |
JP2016149260A (ja) | 燃料電池システム | |
JP5601178B2 (ja) | 燃料電池システムおよびその制御方法 | |
JPWO2021020044A1 (ja) | 負荷試験装置 | |
WO2023098836A1 (zh) | 冰箱及其控制方法 | |
JP2021064583A (ja) | 燃料電池システム | |
JP2007200779A (ja) | 燃料電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22900370 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |