WO2023098493A1 - 广播波束扫描的方法和通信装置 - Google Patents

广播波束扫描的方法和通信装置 Download PDF

Info

Publication number
WO2023098493A1
WO2023098493A1 PCT/CN2022/132938 CN2022132938W WO2023098493A1 WO 2023098493 A1 WO2023098493 A1 WO 2023098493A1 CN 2022132938 W CN2022132938 W CN 2022132938W WO 2023098493 A1 WO2023098493 A1 WO 2023098493A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
wave
broadcast
wave position
group
Prior art date
Application number
PCT/CN2022/132938
Other languages
English (en)
French (fr)
Inventor
孔垂丽
陈莹
乔云飞
汪宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023098493A1 publication Critical patent/WO2023098493A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to a satellite network, and more specifically, to a broadcast beam scanning method and communication device.
  • Non-terrestrial networks such as satellite communications have significant advantages such as global coverage, long-distance transmission, flexible networking, convenient deployment, and not limited by geographical conditions. They have been widely used in maritime communications, positioning and navigation, Various fields such as disaster relief, scientific experiments, video broadcasting and earth observation.
  • the current new radio (NR) beam scanning scheme is not suitable for the NTN system.
  • the service area of the entire cell is covered by multiple beam scanning. , SSB), the SSBs required to complete a beam scan form an SSB burst set, and each SSB in the SSB burst set is sent in different directions at different times, so as to achieve the purpose of covering the cell.
  • the coverage of the broadcast beam is based on the wave position, that is, the broadcast beam needs to periodically poll and scan all the wave positions in the coverage area, and send broadcast messages. Due to the large satellite coverage area, there are There are many wave positions, and the load capacity on the satellite is limited. Usually, the number of broadcast beams is much smaller than the number of wave positions. Therefore, broadcast beams need to poll each wave position for time-division coverage, which may cause areas with large population densities to be unable to access quickly. satellite.
  • Embodiments of the present application provide a broadcast beam scanning method and a communication device.
  • the broadcast beam scanning area can be adaptively adjusted based on the population density in the satellite coverage area to ensure fast access to areas with high population density.
  • a broadcast beam scanning method is provided, which can be performed by a satellite, or can also be performed by a component (such as a chip or a circuit) of the satellite, which is not limited.
  • a component such as a chip or a circuit
  • Satellite execution is used as an example for illustration.
  • the method may include: the satellite divides all wave positions in the satellite coverage area into K wave position groups according to the population density of the wave positions in the satellite coverage area, and the K wave position groups correspond to the K broadcast beams of the satellite respectively, K is an integer greater than 1, wherein, the number of wave positions contained in the first wave position group is inversely proportional to the population density in the area covered by the first wave position group, and the first wave position group is any one of the K wave position groups.
  • a wave position set, the first wave position set includes at least one wave position; the satellite uses the first broadcast beam corresponding to the first wave position set to sequentially perform beam scanning on the wave positions in the first wave position set.
  • the broadcast beam coverage area of the satellite can be adaptively adjusted based on the population density in the satellite coverage area to ensure that areas with high population density can be quickly accessed. It can be understood that for a wave position group with a large population density (that is, the scanning area of the broadcast beam corresponding to the wave position group), the number of wave numbers is relatively small, and the corresponding broadcast beam scan period is short, and the access delay is relatively small , for a beamset with a small population density, the number of wavenumbers is relatively large, the corresponding broadcast beam scanning period is long, and the access delay is relatively large.
  • the number of broadcast beam scanning periods maintained by the satellite is greater than or equal to 1 and less than or equal to K, where the scanning period of the first broadcast beam is m*t, m is the number of beams included in the first beam group, t is the time required for the first broadcast beam to scan one beam, and t is greater than 0.
  • the number of beam positions contained in the beam position group corresponding to each broadcast beam may be different, so the scanning period of each broadcast beam may also be different, so the satellite can maintain One or more broadcast beam periods.
  • the method further includes: the satellite replans the K broadcasting beams according to the population density in the satellite coverage area and/or the wave position access success rate corresponding to the K broadcasting beams The mapping relationship between the beam and all wave positions in the satellite coverage area.
  • the satellite re-plans the mapping relationship between the K broadcast beams and all the wave positions of the satellite according to the population density in the satellite coverage area, including: when the first wave position group The change ratio of the population density in the coverage area between time t1 and time t0 is greater than or equal to the first threshold, and the satellite re-plans the mapping relationship between K broadcast beams and all wave positions in the satellite coverage area, where t1 is greater than t0.
  • the synchronization signal block SSB burst period of the first broadcast beam is greater than or equal to the scanning period of the first broadcast beam.
  • the SSB burst period of the first broadcast beam is predefined by a protocol.
  • the method further includes: the satellite uses the first broadcast beam to transmit a first broadcast signal at a first wave position, and the first broadcast signal includes a first synchronization signal block SSB and For CORESET#0 and the physical downlink shared channel PDSCH corresponding to the first SSB, the first wave bit is any wave bit in the first wave bit group.
  • the user of each beam after receiving the SSB, can receive the SIB1 carried on CORESET#0 and PDSCH without waiting for the next scanning period, and obtain the access information in SIB1, so as to pass the uplink
  • the beam sends a preamble to complete the subsequent access process, which can reduce the access delay.
  • CORESET#0 and SIB1 carried on PDSCH in one wave position switch to the next wave position.
  • the beam switching unit of the satellite can have sufficient The determination of the beam pointing, the calculation of the phase shifter phase, and the transmission of the phase shifter phase are completed at the radio frequency, and it takes effect on the phase shifter of the antenna, that is, the beam switching time does not need ns level, which is conducive to hardware implementation.
  • the satellite when the satellite, the first satellite, and the center point of the first wave position form a straight line, the satellite is a non-geosynchronous orbit NGSO satellite, and the first satellite
  • the first wave position is any wave position in the first wave position group
  • the method also includes: the satellite scans the first wave position in the first wave position group according to the synchronization signal block SSB scanning pattern of the first broadcast beam
  • the second wave position, the second wave position is different from the first wave position; or, during the period of scanning the first wave position, the satellite closes the first broadcast beam; or, the satellite broadcasts the first wave position to the first wave position
  • the terminal device sends the first indication information.
  • the first indication information includes the first time. The first time is used to instruct the terminal device to send the random access preamble after the first time after receiving the first indication information.
  • the terminal device is located at In the first wave.
  • the satellite predicts that the SSB transmitted by the first broadcast beam at the first wave position is an invalid SSB, and the first wave position is any wave position in the first wave position group , the method further includes: during the period of scanning the first wave position, the satellite turns off the first broadcast beam; or, the satellite uses the first broadcast beam to scan other wave positions in the first wave position group except the first wave position .
  • a communication device configured to execute the method provided in the first aspect above.
  • the apparatus may include a unit and/or module for executing the method in the first aspect or any possible implementation manner of the first aspect, such as a processing unit and/or a communication unit.
  • the device is a satellite.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, a system-on-a-chip or a circuit for use in a satellite.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit, etc.
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a communication device in a third aspect, includes: including at least one processor, at least one processor is coupled with at least one memory, at least one memory is used to store computer programs or instructions, and at least one processor is used to read from at least one memory
  • the computer program or instruction is called and executed in the computer, so that the communication device executes the first aspect or the method provided by any one of the above-mentioned implementation manners of the first aspect.
  • the device is a satellite.
  • the device is a chip, a system-on-a-chip or a circuit for use in a satellite.
  • the present application provides a processor configured to execute the methods provided in the foregoing aspects.
  • the processor's output and reception, input and other operations can also be understood as the sending and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium stores program code for device execution, and the program code includes the above-mentioned first aspect or any one of the above-mentioned implementation methods of the first aspect provided method.
  • a computer program product containing instructions is provided, and when the computer program product is run on a computer, the computer is made to execute the method provided by the above first aspect or any one of the above implementation manners of the first aspect.
  • a chip in a seventh aspect, includes a processor and a communication interface.
  • the processor reads the instructions stored in the memory through the communication interface, and executes the method provided by the first aspect or any one of the above implementations of the first aspect.
  • the chip further includes a memory, in which computer programs or instructions are stored, and the processor is used to execute the computer programs or instructions stored in the memory, and when the computer programs or instructions are executed, the processor is used to execute The method provided by the above-mentioned first aspect or any one of the above-mentioned implementation manners of the first aspect.
  • Fig. 1 is a schematic diagram of a multi-beam mobile satellite communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a broadcast beam scanning method proposed in the present application.
  • FIG. 3 is a schematic diagram of broadcast beam scanning by a satellite.
  • FIG. 4 is a schematic diagram of an SSB scan pattern of a broadcast beam in an NR system.
  • FIG. 5 is a schematic diagram of an SSB scanning pattern of a broadcast beam in an NTN system proposed by the present application.
  • Fig. 6 is a schematic diagram of a straight line formed by the center point of the GEO satellite, the LEO satellite and the interference wave position.
  • Fig. 7 is a schematic diagram of the angle ⁇ formed by the center point of the interference wave position and the line connecting the LEO satellite deviated from the GEO satellite.
  • FIG. 8 is a schematic diagram of a satellite sending an invalid SSB to a UE in a wave position at the edge of a coverage area.
  • Fig. 9 is a schematic block diagram of a communication device 1000 provided in this application.
  • FIG. 10 is a schematic structural diagram of a communication device 10 provided by the present application.
  • the technical solution of the present application can be applied to satellite communication systems, high altitude platform station (high altitude platform station, HAPS) communication and other non-terrestrial network (non-terrestrial network, NTN) systems, for example, integrated communication and navigation (integrated communication and navigation, ICaN) system, global navigation satellite system (GNSS) and so on.
  • high altitude platform station high altitude platform station
  • HAPS high altitude platform station
  • non-terrestrial network non-terrestrial network
  • ICaN integrated communication and navigation
  • GNSS global navigation satellite system
  • the satellite communication system can be integrated with the traditional mobile communication system.
  • the mobile communication system can be a fourth generation (4th generation, 4G) communication system (for example, long term evolution (long term evolution, LTE) system), global interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, the fifth generation (5th generation, 5G) communication system (for example, new radio (NR) system), and future mobile communication systems, etc.
  • 4G fourth generation
  • LTE long term evolution
  • WiMAX global interconnection microwave access
  • 5th generation, 5G for example, new radio (NR) system
  • future mobile communication systems etc.
  • FIG. 1 is a schematic diagram of a multi-beam mobile satellite communication system applicable to an embodiment of the present application.
  • satellites provide communication services to terminal devices through multi-beams.
  • the satellites in this scenario are non-geostationary earth orbit (NGEO) satellites, and the satellites are connected to the core network equipment.
  • the satellite uses multiple beams to cover the service area, and different beams can communicate through one or more of time division, frequency division and space division. Satellites provide communication and navigation services to terminal devices by broadcasting communication signals and navigation signals.
  • the satellite mentioned in the embodiment of the present application may also be a satellite base station, or a network-side device carried on a satellite.
  • the terminal equipment mentioned in the embodiment of this application includes various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems with unlimited communication functions, and can specifically refer to user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • user equipment user equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the terminal device may also be a satellite phone, a cellular phone, a smartphone, a wireless data card, a wireless modem, a machine type communication device, may be a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (wireless local loop) loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, vehicle-mounted device or wearable device, virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, 5G network or future communication network terminal equipment etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • SSB Contains primary synchronization signals (PSS), secondary synchronization signals (SSS) and physical broadcast channel (physical broadcast channel, PBCH), providing cell downlink synchronization for UE and basic cell configuration Information, wherein the PBCH will carry the master information block (master information block, MIB) of the cell, and the MIB will indicate whether there is a system information block type 1 (system information block type 1, SIB1) exists.
  • SSBs appear in the frequency domain with certain rules, that is, an SSB may appear at a certain interval, and when the UE is turned on, it can search for cells according to this interval.
  • Beam scanning of NR The frequency in NR is higher, and the transmission loss of high-frequency carrier is large. It is necessary to use beamforming to increase the transmission distance of wireless signals. Since the angle covered by each beam is limited, NR passes through multiple beams. Scan to cover the service area of the entire cell. Beam scanning refers to the use of beams in different directions to send physical channels or reference signals at different times. A cell usually needs to send multiple SSBs to complete a beam scan. The SSB can be configured with beams in up to 64 directions.
  • SSB burst set The SSBs required to complete a beam scan form an SSB burst set, and each SSB in the SSB burst set is sent in different directions at different times, so as to achieve the purpose of covering the cell. All SSBs in an SSB burst set must be sent within the same half frame (5ms), that is, the base station needs to complete the scanning of the entire coverage area within 5ms, and the period of the SSB burst set can be 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, this cycle will be indicated in SIB1. When initial cell search, UE has not received SIB1, and will search for SSB according to the default 20ms period.
  • broadcast beam coverage is based on wave positions, that is, broadcast beams need to periodically poll and scan all wave positions in the coverage area, and deliver broadcast messages.
  • problems that have not been encountered in the original NR system. For example, 1) The satellite covers a large area, and there are many wave positions in the coverage area, but the load capacity on the satellite is limited, and the number of broadcast beams is usually much smaller than the number of wave positions, so the broadcast beam needs to poll each wave position for time-division Coverage; 2) The scan of the entire coverage area cannot be completed within 5ms; 3) The maximum period of the SSB burst set in the NR system is 160ms, which may not meet the needs of the NTN system.
  • the NTN system has new features: feature 1: the interference avoidance problem of the geosynchronous earth orbit (GSO).
  • GSO geosynchronous earth orbit
  • NGSO non-GSO
  • LEO low-orbit
  • LEO low earth orbit
  • Feature 2 Problems brought about by mobility.
  • the satellite moves rapidly, and the satellite coverage area changes with the satellite movement.
  • the broadcast message can be covered and delivered at the last moment, but it may not be in the coverage area at the next moment, and the downlink message cannot be delivered. Therefore, there may be a problem that the broadcast message becomes invalid.
  • NTN directly multiplexes NR's SSB beam scanning, which has certain problems, and corresponding adaptation design needs to be carried out for the NTN system.
  • the present application proposes a broadcast beam scanning method, which can adapt to the SSB beam scanning of the NTN system.
  • FIG. 2 is a schematic diagram of a broadcast beam scanning method proposed in the present application.
  • the satellite divides all the wave positions in the satellite coverage area into K wave position groups according to the population density of the wave positions in the satellite coverage area, and the K wave position groups correspond to the K broadcast beams of the satellite respectively, wherein, K is an integer greater than 1, the number of waves contained in the first wave group is inversely proportional to the population density in the first wave group, the first wave group is any wave group in the K wave group, The first wave group contains at least one wave.
  • the satellite obtains the population density of each wave position within the satellite coverage area through methods such as earth population density analysis.
  • the beam group served by the broadcast beam k of the satellite is denoted as the beam group k, where 1 ⁇ k ⁇ K, where K is an integer.
  • the satellite sequentially performs beam scanning on the beam positions in the first beam position group by using the first broadcast beam corresponding to the first beam position group.
  • the corresponding broadcast beams need to poll and scan the beam positions in this group. For example, there are m wave positions in the beam group k served by the broadcast beam k, then the broadcast beam k performs polling and scanning on the m wave positions in sequence, assuming that the scanning time of each wave position is the same, denoted as t, If t is greater than 0, it takes m*t time to complete a round of scanning of all wave positions in group k, that is, the scanning period of the broadcast beam corresponding to wave position group k is m*t.
  • the number of wave positions contained in the wave position group corresponding to each broadcast beam may be different, so the scanning period of each broadcast beam may also be different, therefore, the satellite may need to maintain one or more broadcast beam periods, that is, the number of broadcast beam scan periods maintained by the satellite is greater than or equal to 1 and less than or equal to K.
  • the satellite contains K (K ⁇ 2) broadcast beams, assuming that the scanning time of each beam is t, the number of beams served by beam #1 is 100, and the number of beams served by beam #2 is 200, then beam Table 1 shows the broadcast beam periods corresponding to #1 and beam #2 respectively.
  • Service Wave Number 1 100 100*t 1,2,...,100 2 200 200*t 101,102,...300 ... ... ... ...
  • the scanning cycle of the broadcast beam of the satellite can be adaptively adjusted based on the population density in the satellite coverage area, so as to ensure that areas with high population density can be quickly accessed.
  • the satellite is configured with two broadcast beams.
  • the wave positions in the satellite coverage area are divided into land areas and ocean areas. It can be seen that there are fewer wave positions in the land area and more wave positions in the ocean area. .
  • the number of wave positions that the two broadcast beams are responsible for is different.
  • Method 1 Based on population density changes. When the population density in the coverage area of the broadcast beam k at time t1 changes significantly from the previous population density (that is, at time t0), it is necessary to adjust the number of beam positions in the beam position group corresponding to the K broadcast beams in real time.
  • Method 2 Statistics based on access success rate. Count the access success rate of the wave positions in the wave position group corresponding to each broadcast beam. For broadcast beams with low success rates, reduce the number of associated wave positions. These wave positions that are no longer served by the broadcast beam are allocated to Other broadcast beams with high access success rates are used for services.
  • the minimum value of the SSB burst set period is 5ms and the maximum is 160ms. Due to the large number of wave positions within the satellite coverage area and the limited number of broadcast beams, it is necessary to complete the entire coverage For the scanning of the area, the required SSB burst set period may exceed 160ms. For example, if there are 1200 beams in the satellite coverage area, only one broadcast beam is configured, and the broadcast beam dwell time of each wave position is 2ms, then the scanning of the entire coverage area is completed, and the required time is 2.4s, that is, the SSB burst set The period is far beyond the maximum range of 160ms supported by the NR system. Therefore, in order to adapt to the NTN system, the SSB burst set cycle can be extended, and the extension methods may include the following two types:
  • Mode 1 The SSB burst set period of the broadcast beam is predefined by the protocol. For example, you can increase the value of the parameter ssb-periodicityServingCell, add ms1000, ms2000, ms3000, ms4000, etc.
  • Mode 2 Add a calculation formula to calculate the SSB burst set period.
  • the value of the parameter ssb-periodicityServingCell can be calculated by the calculation formula N*T, where N represents the number of wave positions covered by the broadcast beam, and T represents the scanning time of the broadcast beam in one wave position.
  • the value of ssb-periodicityServingCell The value is greater than or equal to N*T.
  • the period of SIB1 is consistent with the period of SSB .
  • the SIB1 period in NR is currently scheduled at a period of 160ms.
  • the SIB1 period also needs to be extended.
  • the extension method refer to the extension method 1 and method 2 of the SSB burst set period.
  • this application proposes a new SSB scanning pattern to adapt to the NTN scenario.
  • the SSB scan pattern (pattern) in NR is shown in Figure 4, that is, the satellite base station continuously sends SSB in different directions through the beam to complete the scan of the coverage area. After all SSB scans are completed, the CORESET corresponding to all SSBs is sent in turn. #0 and SIB1 carried on a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the form of the SSB pattern in the NTN system proposed by this application is shown in Figure 5.
  • the service time of the broadcast beam at each wave position needs to complete the transmission of the broadcast signal, and the broadcast beam sends the SSB at each wave position. After that, it is necessary to send the CORESET#0 corresponding to the SSB and the SIB1 carried on the PDSCH to help the user complete downlink synchronization and obtain related information such as random access.
  • the information carried in SIB1 includes system information, such as system parameter configuration, random access resources, beam and frequency configuration, and ephemeris information.
  • the user of each beam can receive the SIB1 carried on CORESET#0 and PDSCH without waiting for the next scanning cycle, and obtain the access information in SIB1 After that, in order to send the preamble (preamble) through the uplink beam to complete the subsequent access process, which can reduce the access delay; 2) After sending the SSB, CORESET#0 and SIB1 carried on the PDSCH in one wave bit, and then To switch the next wave position, since the illumination time of a wave position is at the ms level, the beam switching unit of the satellite can have enough time to complete the determination of the beam pointing, the calculation of the phase shifter phase, and the transmission of the phase shifter phase at the radio frequency , and take effect on the phase shifter of the antenna, that is, the beam switching time does not need ns level, which is beneficial to hardware implementation.
  • this application adapts the parameters of the broadcast beam in the NR system, which can effectively avoid GEO interference and avoid the problem of invalid broadcast messages.
  • the GEO satellite shall not be required to protect (ITU RR No.5.484A, 4.487A) , and cannot interfere with GEO services.
  • ITU RR No.5.484A, 4.487A the GEO satellite shall not be required to protect (ITU RR No.5.484A, 4.487A) , and cannot interfere with GEO services.
  • the terminal equipment at wave position #1 The uplink signal sent by the satellite will cause interference to the GEO satellite, wherein the wave position #1 is any wave position in the wave position group k, and the wave position group k corresponds to the broadcast beam k.
  • LEO satellites can adopt three schemes during the broadcast beam scanning phase:
  • the LEO satellite designs the SSB scanning pattern of the broadcast beam to ensure that the center point of the GEO satellite, the LEO satellite and the wave position #1 forms a straight line, and the LEO satellite scans other wave positions without scanning the interference wave position, so that the interference wave position
  • the terminal equipment will not send uplink signals to LEO satellites, thereby avoiding interference to GEO satellites. That is to say, when the LEO satellite is in a straight line, the broadcast beam k scans the wave position #2 according to the SSB scanning pattern of the broadcast beam k, where the wave position #2 is any one of the wave positions except the wave position #1 in the wave position group k. wave position.
  • the LEO satellite designs the SSB scan pattern of the broadcast beam according to the distribution of the GEO satellites, the frequency bands used by the GEO satellites, and the LEO ephemeris information.
  • the network equipment When the SSB scanning pattern of the broadcast beam has been formulated, and the network equipment predicts that it will run above wave position #1 and is about to scan the interference wave position, the network equipment will notify the LEO satellite in advance of the interference wave position scanning time period Turn off broadcast beam k.
  • the network device in this solution is a LEO satellite base station or a network side device mounted on a LEO satellite.
  • the network side predicts that the LEO satellite will run above wave position #1 according to the distribution of the GEO satellite, the frequency band used by the GEO satellite, and the ephemeris information of the LEO satellite.
  • the notification information of the network device may carry the wave position ID of wave position #1, the network device sends the wave position ID to the LEO satellite through the feedback link, and the LEO satellite closes the broadcast beam corresponding to the wave position #1 ( That is beam k).
  • each wave position uses bits to indicate the ID of the corresponding wave position. For example: There are 32 wave positions in total, numbered from 0, it can be represented by 5 bits, when the wave position ID is 8, it can be represented by 01000, when the wave position ID is 30, it can be represented by 11110, no more details here.
  • the LEO satellite instructs the user to send the physical random access channel (physical random access channel, PRACH) time
  • the LEO satellite still broadcasts in the case of the above-mentioned straight line, but carries the first indication information in the broadcast message.
  • the first indication information includes the first time, and the first time is used to indicate that the UE in wave position #1 is receiving
  • the time to send the PRACH preamble (preamble) after the first time interval after the first indication information the first time needs to meet the requirement that the LEO satellite has deviated from the straight line formed by the center point of the GEO satellite and the interference wave position when the UE sends the PRACH preamble.
  • the specific calculation of the first time offset is as follows.
  • the center of the interference wave position is in a straight line with the LEO satellite and the GEO satellite, and the uplink data sent by the UE will cause interference to the GEO satellite.
  • the angle ⁇ needs to be satisfied, and the signal arriving at the GEO satellite is outside the XdB range of the receiving beam of the GEO satellite.
  • the value of X can be 3.
  • the network device can notify the UE in the following two ways:
  • Method 1 The UE and the GEO satellite agree on the first time in advance.
  • the LEO satellite sends second indication information to the UE, where the second indication information is used to indicate whether the UE performs interference avoidance on the GEO satellite.
  • the specific interference avoidance operation is that when the UE receives the second indication information, if avoidance is required, it needs to send the PRACH preamble after the first time.
  • the network device adds a GSO interference avoidance field (that is, an example of the second indication information) to the SIB1 message.
  • a GSO interference avoidance field occupies 1 bit, 0 means no avoidance, 1 means avoidance, and vice versa.
  • the UE receives the GSO interference avoidance indication, it can use the agreed first time to perform subsequent UE access.
  • Method 2 The first time is not fixed, but can be adjusted dynamically.
  • n-bit quantization is performed on the first time, and the first indication information is used to indicate the quantized first time.
  • the LEO satellite may also maintain a table to determine an index corresponding to the first time according to the first time, and the first indication information is used to indicate the index corresponding to the first time.
  • the satellite coverage area will change with the movement of the satellite. If the UE in the wave position at the coverage edge is broadcast and the SSB is sent, due to the satellite movement, when the satellite sends a random access response (random access response) to the UE, it may It may happen that the wave position where the UE is located is no longer within the satellite coverage area, and the UE cannot receive RAR. As an example, as shown in Figure 8, at time t0, satellite 1 can perform SSB broadcast on wave position n, and then complete the sequential scanning of other wave positions in the coverage area, and then the user of wave position n sends a preamble through the uplink beam to the satellite, and wait to receive the RAR sent by satellite 1 at time t1.
  • the UE in wave position n fails to access, and re-initiates access, and may access to Satellite 2. It can be seen from this that the SSB sent by satellite 1 to wave position n at time t0 is invalid.
  • Solution 1 Turn off the beam.
  • the LEO satellite is notified in advance to close the broadcast beam corresponding to the wave position n.
  • the notification information of the network device may carry the wave position ID of wave position n, and the network device sends the wave position ID to the LEO satellite through the feedback link.
  • the network device in this solution is a LEO satellite base station or a network side device mounted on a LEO satellite.
  • Solution 2 Change the beam pointing. Change the scanning direction of the broadcast beam to scan the wave positions in the non-edge coverage area, but do not scan the broadcast beam for the edge wave positions gradually away from the satellite (wave position n in Figure 8). In this way, the number of wave positions served by the broadcast beam is reduced, which not only prevents the satellite from sending invalid SSBs, but also reduces the scanning period of the corresponding broadcast beam and shortens the access delay of the UE.
  • the broadcast beam scanning method provided by the present application has been described in detail above, and the communication device provided by the present application will be introduced below.
  • FIG. 9 is a schematic block diagram of a communication device 1000 provided in this application.
  • the communication device 1000 includes a processing unit 1200 and a sending unit 1300 .
  • the communication device 1000 can implement the steps or processes corresponding to the satellites in the above method embodiments, for example, the communication device 1000 can be a satellite, or can also be a chip or a circuit configured in a satellite.
  • the processing unit 1200 is configured to perform satellite processing related operations in the above method embodiments
  • the sending unit is configured to perform satellite sending related operations in the above method embodiments.
  • the processing unit 1200 is configured to divide all the wave positions in the satellite coverage area into K wave position groups according to the population density of the wave positions in the satellite coverage area, and the K wave position groups correspond to the K broadcast beams of the satellite respectively, Among them, K is an integer greater than 1, the number of waves included in the first wave group is inversely proportional to the population density in the first wave group, and the first wave group is any wave in the K wave groups A bit group, the first wave bit group includes at least one wave bit; the sending unit 1300 is configured to use the first broadcast beam corresponding to the first wave bit group to sequentially perform SSB beam scanning on the wave positions in the first wave bit group.
  • the processing unit 1200 is further configured to re-plan the K broadcast beams and all wave positions in the satellite coverage area according to the population density in the satellite coverage area and/or the wave position access success rate corresponding to the K broadcast beams. Mapping relations.
  • the processing unit 1200 is specifically configured to: re-plan K broadcast beams and satellite coverage when the population density change ratio in the coverage area corresponding to time t1 and time t0 of the first wave position group is greater than or equal to the first threshold The mapping relationship of all wave positions in the area, where t1 is greater than t0.
  • the sending unit 1300 is specifically configured to: use the first broadcast beam to send the first broadcast signal at the first wave position, the first broadcast signal includes the first SSB and the CORESET#0 corresponding to the first SSB and the physical downlink shared channel PDSCH , the first wave is any wave in the first wave group.
  • the sending unit 1300 is further configured to use the first broadcast beam to perform SSB beam scanning on the second wave position in the first wave position group, and the second wave position and the first wave position different wave positions; or, the processing unit 1200 is also used to turn off the first broadcast beam during the period of scanning the first wave position; or, the sending unit 1300 is also used to send the terminal device in the first wave position Sending first indication information, where the first indication information includes a first time, and the first time is used to instruct the terminal device to send the random access preamble after the first time after receiving the first indication information.
  • the processing unit 1200 predicts that the SSB transmitted by the first broadcast beam at the first wave position is an invalid SSB, and the first wave position is any wave position in the first wave position group, and the processing unit 1200 is further configured to scan During the time period of the first wave position, turn off the first broadcast beam; or, the sending unit 1300 is further configured to use the first broadcast beam to perform SSB beam scanning on other wave positions in the first wave position group except the first wave position.
  • the communication device 1000 further includes a receiving unit 1100, and the receiving unit 1100 is configured to perform operations related to satellite reception in the above method embodiments.
  • the sending unit 1300 and the receiving unit 1100 may also be integrated into a transceiver unit, which has both receiving and sending functions, which is not limited here.
  • the sending unit 1300 may be a transmitter
  • the receiving unit 1100 may be a receiver.
  • Receiver and transmitter can also be integrated into a transceiver.
  • the processing unit 1200 may be a processing device.
  • the functions of the processing device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the processing device may include a memory and a processor, wherein the memory is used to store a computer program, and the processor reads and executes the computer program stored in the memory, so that the communication device 1000 performs the operations performed by the satellite in each method embodiment and/or or process.
  • the processing means may comprise only a processor, and the memory for storing the computer program is located outside the processing means.
  • the processor is connected to the memory by circuits/wires to read and execute the computer program stored in the memory.
  • the processing device may be a chip or an integrated circuit.
  • the communication device 1000 can be a chip or an integrated circuit installed in a satellite
  • the sending unit 1300 and the receiving unit 1100 can be a communication interface or an interface circuit
  • the sending unit 1300 is an output interface or an output circuit
  • the receiving unit 1100 is an input interface or an input circuit
  • the processing unit 1200 may be a processor or a microprocessor integrated on the chip or integrated circuit. It is not limited here.
  • FIG. 10 is a schematic structural diagram of a communication device 10 provided in the present application.
  • the device 10 includes a processor 11, the processor 11 is coupled with a memory 12, the memory 12 is used to store computer programs or instructions and/or data, and the processor 11 is used to execute the computer programs or instructions stored in the memory 12, or to read the memory 12
  • the stored data is used to execute the methods in the above method embodiments.
  • processors 11 there are one or more processors 11 .
  • the memory 12 is integrated with the processor 11, or is set separately.
  • the device 10 further includes a transceiver 13, and the transceiver 13 is used for receiving and/or sending signals.
  • the processor 11 is configured to control the transceiver 13 to receive and/or send signals.
  • the device 10 is used to implement the operations performed by the satellite in the above method embodiments.
  • the processor 11 is configured to execute the computer programs or instructions stored in the memory 12, so as to realize the relevant operations performed by the satellite in the various method embodiments above. For example, implement the method performed by the satellite in the embodiment shown in FIG. 2 .
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and when the computer instructions are run on the computer, the operations performed by the satellite in each method embodiment of the present application and /or the process is executed.
  • the present application also provides a computer program product.
  • the computer program product includes computer program codes or instructions.
  • the operations and/or processes performed by the satellite in each method embodiment of the present application are executed. implement.
  • the present application also provides a chip, and the chip includes a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is used for executing the computer program stored in the memory, so that the operations and/or processing performed by the satellite in any method embodiment are performed.
  • the chip may further include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit or the like.
  • the chip may further include a memory.
  • the processor in the embodiment of the present application may be an integrated circuit chip capable of processing signals.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the processor can be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuits, ASICs), field programmable Gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the methods disclosed in the embodiments of the present application may be directly implemented by a hardware coded processor, or executed by a combination of hardware and software modules in the coded processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory direct rambus RAM, DRRAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes various media that can store program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Abstract

本申请实施例提供了一种广播波束扫描的方法和通信装置。卫星根据卫星覆盖区域内波位的人口密度将卫星覆盖区域内的所有波位分为K个波位组,K个波位组分别与卫星的K个广播波束一一对应,K为大于1的整数,其中,第一波位组包含的波位的个数与第一波位组内的人口密度成反比,第一波位组为K个波位组中的任一波位组,第一波位组包含至少一个波位;卫星使用与第一波位组对应的第一广播波束依次对第一波位组内的波位进行波束扫描。该方法中广播波束的扫描区域可以基于卫星覆盖区域内人口密度进行自适应调整,保证人口密度高的区域可以快速接入。

Description

广播波束扫描的方法和通信装置
本申请要求于2021年11月30日提交中国国家知识产权局、申请号为202111449656.8、申请名称为“广播波束扫描的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及卫星网络,更具体地,涉及一种广播波束扫描的方法和通信装置。
背景技术
卫星通信等非地面通信网络(non-terrestrial networks,NTN)具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理条件限制等显著优点,已经被广泛应用于海上通信、定位导航、抗险救灾、科学实验、视频广播和对地观测等多个领域。
目前的新无线(new radio,NR)的波束扫描方案,并不适用于NTN系统。在NR系统中,由于每个波束覆盖的角度有限,通过多个波束扫描来覆盖整个小区的服务范围,波束扫描是指在不同时刻,采用不同方向的波束发送同步信号块(synchronization signal and PBCH block,SSB),完成一次波束扫描所需要的SSB组成了一个SSB突发集,SSB突发集中每个SSB在不同时刻向不同的方向发送,从而达到覆盖小区的目的。而在NTN系统中,广播波束的覆盖是基于波位进行的,即广播波束需要周期性地轮询扫描覆盖区内的所有波位,下发广播消息,由于卫星覆盖面积大,覆盖区域内存在较多波位,星上载荷能力有限,通常广播波束的数目远小于波位数目,因此广播波束需要轮询每个波位,进行时分的覆盖,这样可能导致人口密度大的区域无法快速接入卫星。
发明内容
本申请实施例提供一种广播波束扫描的方法和通信装置,广播波束的扫描区域可以基于卫星覆盖区域内人口密度进行自适应调整,保证人口密度高的区域可以快速接入。
第一方面,提供了一种广播波束扫描的方法,该方法可以由卫星执行,或者,也可以由卫星的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由卫星执行为例进行说明。
该方法可以包括:卫星根据卫星覆盖区域内波位的人口密度将卫星覆盖区域内的所有波位分为K个波位组,K个波位组分别与卫星的K个广播波束一一对应,K为大于1的整数,其中,第一波位组包含的波位的个数与第一波位组覆盖区域内的人口密度成反比,第一波位组为K个波位组中的任一波位组,第一波位组包含至少一个波位;卫星使用与第一波位组对应的第一广播波束依次对第一波位组内的波位进行波束扫描。
上述方案中,卫星的广播波束覆盖区域可以基于卫星覆盖区域内人口密度进行自适应调整,保证人口密度高的区域可以快速接入。可以理解,对于人口密度大的波位组(即该 波位组对应的广播波束的扫描区域)的波位数相对较少,其对应的广播波束的扫描周期短,接入时延相对较小,对于人口密度小的波位组的波位数相对较多,其对应的广播波束扫描周期长,接入时延相对较大。
结合第一方面,在第一方面的某些实现方式中,卫星维护的广播波束扫描周期的个数大于或等于1且小于或等于K,其中,第一广播波束的扫描周期为m*t,m为第一波位组包含的波位的个数,t为第一广播波束扫描一个波位所需的时间,t大于0。
上述技术方案中,由于一个卫星具有多个广播波束,每个广播波束对应的波位组中包含的波位的个数可能不同,因此每个广播波束的扫描周期也可能不同,因此卫星可以维护一个或多个广播波束周期。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:卫星根据卫星覆盖区域内的人口密度和/或K个广播波束对应的波位接入成功率重新规划K个广播波束与卫星覆盖区域内的所有波位的映射关系。
结合第一方面,在第一方面的某些实现方式中,卫星根据卫星覆盖区域内的人口密度重新规划K个广播波束与卫星的所有波位的映射关系,包括:当第一波位组的覆盖区域内的人口密度在t1时刻与t0时刻的变化比例大于或等于第一阈值,卫星重新规划K个广播波束与卫星覆盖区域内的所有波位的映射关系,其中,t1大于t0。
结合第一方面,在第一方面的某些实现方式中,第一广播波束的同步信号块SSB突发集周期大于或等于第一广播波束的扫描周期。
结合第一方面,在第一方面的某些实现方式中,第一广播波束的SSB突发集周期为协议预定义的。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:卫星使用第一广播波束在第一波位发送第一广播信号,第一广播信号包括第一同步信号块SSB和第一SSB对应的CORESET#0和物理下行共享信道PDSCH,第一波位为第一波位组中的任一波位。
上述技术方案中,每个波束的用户,在接收SSB之后,不用等待下一个扫描周期,就可以接着接收CORESET#0和PDSCH上承载的SIB1,获得SIB1中关于接入的信息后,以便通过上行波束发送前导码(preamble),完成后续的接入流程,这样可以降低接入时延。另外,在一个波位发送完SSB,CORESET#0和PDSCH上承载的SIB1后,再切换下一个波位,由于在一个波位的照亮时间是ms级别,卫星的波束切换单元可以有充足的时间在射频完成波束指向的确定,移相器相位的计算,移相器相位的传输,并在天线的移相器上生效,也即波束切换时间不需要ns级别,利于硬件实现。
结合第一方面,在第一方面的某些实现方式中,当卫星、第一卫星和第一波位的中心点位置形成一条直线时,其中,卫星为非地球同步轨道NGSO卫星,第一卫星为地球静止轨道GEO卫星,第一波位为第一波位组中的任一波位,该方法还包括:卫星根据第一广播波束的同步信号块SSB扫描图样扫描第一波位组中的第二波位,第二波位与第一波位为不同的波位;或,在扫描所述第一波位的时间段内,卫星关闭第一广播波束;或,卫星向第一波位的终端设备发送第一指示信息,第一指示信息包括第一时间,第一时间用于指示终端设备在接收到第一指示信息后,再经过第一时间发送随机接入前导码,终端设备位于第一波位中。
结合第一方面,在第一方面的某些实现方式中,卫星预测第一广播波束在第一波位发 送的SSB为无效SSB,第一波位为第一波位组中的任一波位,该方法还包括:在扫描所述第一波位的时间段内,卫星关闭第一广播波束;或,卫星使用第一广播波束扫描第一波位组中除第一波位的其它波位。
应理解,第一方面的上述任意一种实现方式也可以作为一种单独的实现方式,。
第二方面,提供了一种通信装置,该装置用于执行上述第一方面提供的方法。具体地,该装置可以包括用于执行第一方面或第一方面的任意可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为卫星。当该装置为卫星时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于卫星中的芯片、芯片系统或电路。当该装置为用于卫星中的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第三方面,提供一种通信装置,该装置包括:包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信装置执行第一方面或第一方面的上述任意一种实现方式提供的方法。
在一种实现方式中,该装置为卫星。
在另一种实现方式中,该装置为用于卫星中的芯片、芯片系统或电路。
第四方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第五方面,提供一种计算机可读存储介质,该计算机可读存储介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面或第一方面的上述任意一种实现方式提供的方法。
第六方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第一方面的上述任意一种实现方式提供的方法。
第七方面,提供一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面或第一方面的上述任意一种实现方式提供的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面或第一方面的上述任意一种实现方式提供的方法。
附图说明
图1是适用于本申请实施例的多波束移动卫星通信系统的示意图。
图2是本申请提出的一种广播波束的扫描方法的示意图。
图3是卫星进行广播波束扫描的示意图。
图4是NR系统中广播波束的SSB扫描图样的示意图。
图5是本申请提出的一种NTN系统中广播波束的SSB扫描图样的示意图。
图6是GEO卫星,LEO卫星和干扰波位的中心点形成一条直线的示意图。
图7是干扰波位的中心点与LEO卫星连线偏离GEO卫星形成夹角θ的示意图。
图8是卫星对覆盖区域边缘的波位内的UE发送无效SSB的示意图。
图9是本申请提供的通信装置1000的示意性框图。
图10是本申请提供的通信装置10的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可以应用于卫星通信系统、高空平台(high altitude platform station,HAPS)通信等非地面网络(non-terrestrial network,NTN)系统,例如,通信、导航一体化(integrated communication and navigation,ICaN)系统、全球导航卫星系统(global navigation satellite system,GNSS)等。
卫星通信系统可以与传统的移动通信系统相融合。例如:所述移动通信系统可以为第四代(4th generation,4G)通信系统(例如,长期演进(long term evolution,LTE)系统),全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th generation,5G)通信系统(例如,新无线(new radio,NR)系统),以及未来的移动通信系统等。
参见图1,图1是适用于本申请实施例的多波束移动卫星通信系统的示意图。如图1,卫星通过多波束向终端设备提供通信服务,该场景下的卫星为非静止轨道(non-geostationary earth orbit,NGEO)卫星,卫星连接到核心网设备。卫星采用多个波束覆盖服务区域,不同的波束可通过时分、频分和空分中的一种或多种进行通信。卫星通过广播通信信号和导航信号向终端设备提供通信和导航服务。本申请实施例中提及的卫星,也可以为卫星基站,或者为搭载在卫星上的网络侧设备。
本申请实施例中提及的终端设备,包括各种具有无限通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络或者未来通信网络中的终端设备等。
为便于理解本申请实施例,首先对本申请中涉及到的术语作简单说明。
1、SSB:包含主同步信号(primary synchronization signals,PSS)、辅同步信号(secondary synchronization signals,SSS)以及物理广播信道(physical broadcast channel,PBCH),为UE提供小区下行同步,以及小区的基本配置信息,其中PBCH中会承载小区的主信息块(master information block,MIB),MIB中会指示是否有系统信息块类型一(system information block type 1,SIB1)存在。SSB在频域上出现有一定的规律,即隔一定的间隔,就可能出现一个SSB,当UE开机后,可以按照此间隔去搜索小区。
2、NR的波束扫描:NR中频率更高了,高频载波的传输损耗大,需要用波束赋形来增大无线信号的传输距离,由于每个波束覆盖的角度有限,NR通过多个波束扫描来覆盖整个小区的服务范围。波束扫描是指在不同时刻,采用不同方向的波束发送物理信道或者参考信号,一个小区通常需要发送多个SSB来完成一次波束扫描,SSB最多可配置64个方向的波束。
3、SSB突发集:完成一次波束扫描所需要的SSB组成了一个SSB突发集,SSB突发集中每个SSB在不同时刻向不同的方向发送,从而达到覆盖小区的目的。一个SSB突发集中的所有SSB都要在同一个半帧(5ms)内完成发送,也即基站需要在5ms内完成整个覆盖区的扫描,SSB突发集的周期可以是5ms、10ms、20ms、40ms、80ms、160ms,这个周期会在SIB1中指示。当初始小区搜索的时候,UE还没有收到SIB1,会按照默认20ms的周期搜索SSB。
在NTN系统中,广播波束的覆盖是基于波位进行的,也即广播波束需要周期性地轮询扫描覆盖区内的所有波位,下发广播消息。在NTN系统中,存在原来NR系统中未曾遇到的问题。例如,1)卫星覆盖面积大,覆盖区域内存在较多波位,而星上载荷能力有限,通常广播波束的数目远小于波位数目,因此广播波束需要轮询每个波位,进行时分的覆盖;2)5ms内不能完成整个覆盖区的扫描;3)NR系统中SSB突发集的最大周期为160ms可能无法满足NTN系统的需求。
另外,NTN系统具有新的特点:特点一:地球同步轨道(geosynchronous earth orbit,GSO)的干扰规避问题。太空中存在GSO和非GSO(NGSO)卫星,GSO卫星优先级最高,NGSO卫星,例如低轨道(LEO,low earth orbit)卫星需在部署和设计时不能对GSO卫星造成干扰。
特点二:移动性带来的问题。卫星快速运动,卫星覆盖区随着卫星运动产生变化。上一时刻可以覆盖并下发广播消息,下一时刻可能就不在覆盖区内,无法下发下行消息。因此,可能会带来广播消息失效的问题。
因此,NTN直接复用NR的SSB波束扫描,具有一定的问题,需要针对NTN系统,进行相应的适配设计。有鉴于此,本申请提出了一种广播波束的扫描方法,能够适配NTN系统的SSB波束扫描。
参见图2,图2是本申请提出的一种广播波束的扫描方法的示意图。
S201,卫星根据卫星覆盖区域内波位的人口密度将卫星覆盖区域内的所有波位分为K个波位组,K个波位组分别与卫星的K个广播波束一一对应,其中,K为大于1的整数,第一波位组包含的波位的个数与第一波位组内的人口密度成反比,第一波位组为K个波位组中的任一波位组,第一波位组包含至少一个波位。
可选地,卫星通过地球人口密度分析等方法,获取卫星覆盖区域内各波位的人口密度。
为便于描述,本申请实施例中将卫星的广播波束k服务的波位组记为波位组k,其中,1<k≤K,其中,K为整数。
S202,卫星使用与第一波位组对应的第一广播波束依次对第一波位组内的波位进行波束扫描。
在分配好K组波束组之后,对应的广播波束需要对本组内的波位进行轮询扫描。例如,广播波束k服务的波束组k内共有m个波位,则该广播波束k按照先后顺序对这m个波位进行轮询扫描,假设每个波位的扫描时间相同,记为t,t大于0,则完成组k内所有波位的一轮扫描需要时间为m*t,即波位组k对应的广播波束的扫描周期为m*t。由于一个卫星具有多个广播波束,每个广播波束对应的波位组中包含的波位的个数可能不同,因此每个广播波束的扫描周期也可能不同,因此,卫星可能需要维护一个或多个广播波束周期,即卫星维护的广播波束扫描周期的个数大于或等于1且小于或等于K。
作为示例,卫星包含K(K≥2)个广播波束,假设每个波位的扫描时间为t,波束#1服务的波位数目为100,波束#2服务的波位数目为200,则波束#1和波束#2分别对应的广播波束周期如表1所示。
表1
广播波束编号 服务波位数目 广播波束周期 服务波位编号
1 100 100*t 1,2,…,100
2 200 200*t 101,102,…300
上述方案中,卫星的广播波束的扫描周期可以基于卫星覆盖区域内人口密度进行自适应调整,保证人口密度高的区域可以快速接入。
可以理解,对于人口密度大的波位所在波位组的波位数相对较少,其对应的广播波束的扫描周期短,接入时延相对较小,对于人口密度小的波位所在波位组的波位数相对较多,其对应的广播波束扫描周期长,接入时延相对较大。作为示例,如图3所示,卫星配置了两个广播波束,卫星覆盖区域内的波位分为陆地区域和海洋区域,可以看出,陆地区域的波位较少,海洋区域波位较多。对于此场景,卫星进行广播波束扫描时,两个广播波束所负责的波位数目不同。对于陆地区域波位比较少,人口密度大,分配一个广播波束,以降低扫描周期,减少接入时延;对于海洋区域波位比较多,人口密度小,分配另一个广播波束进行扫描,扫描周期长,接入延迟大,但对于较少需求的海洋,影响可以忽略。
可以理解,由于卫星的移动性,因此卫星还需要实时调整广播波束所对应的波位信息。本实施例中给出两种可能的触发方式:
方式一:基于人口密度变化。当t1时刻广播波束k的覆盖区域内的人口密度与上一次(即t0时刻)的人口密度发生显著变化,需要实时调整K个广播波束所对应的波位组中的波位个数。例如:当广播波束k的覆盖区域内的人口密度在t1时刻与t0时刻相比,变化比例超过或等于门限值X,即(rho_t1-rho_t0)/rho_t0≥X时,重新规划广播波束与具体波位的映射关系,其中,rho_t0表示波位组k在t0时刻的覆盖区域内的人口密度,rho_t1表示波位组k在t1时刻的覆盖区域内的人口密度,其中,t1大于t0。
方式二:基于接入成功率统计。统计每个广播波束对应的波位组中的波位的接入成功 率,对于成功率较低的广播波束,减少相关联的波位数目,该广播波束不再服务的这些波位,分配给其他接入成功率高的广播波束进行服务。
此外,如前所述,在NR系统中,SSB突发集周期的取值最小为5ms,最大为160ms,由于卫星覆盖范围内的波位数目较多,广播波束的数目有限,要完成整个覆盖区的扫描,所需的SSB突发集周期可能会超过160ms。举例说明,若卫星覆盖范围内有1200个波束,只配置一个广播波束,每个波位广播波束停留时间为2ms,则完成整个覆盖区的扫描,所需时间为2.4s,即SSB突发集周期远超NR系统最大支持的160ms的范围。因此,为了适配NTN系统,可以对SSB突发集周期进行扩展,扩展方式可能包括以下两种:
方式一:广播波束的SSB突发集周期为协议预定义的。例如,可以对参数ssb-periodicityServingCell增加取值,添加ms1000,ms2000,ms3000,ms4000等。
方式二:增加一个计算公式计算得到SSB突发集周期。例如,参数ssb-periodicityServingCell的取值可以通过计算公式N*T计算得到,其中,N表示广播波束所覆盖的波位数目,T表示广播波束在一个波位的扫描时间,其中,ssb-periodicityServingCell的取值大于或等于N*T。
需要说明的是,由于广播波束在每次扫描波位时,除了发送SSB,还需要发送SIB1消息和星历信息,以帮助该波位的UE接入网络,因此SIB1的周期和SSB的周期一致。NR中的SIB1周期,目前是以160ms的周期调度,为了适配NTN网络,同样需要对SIB1的周期进行扩展,扩展方法参考SSB突发集周期的扩展方式一和方式二。
另外,本申请为适配NTN场景,提出了一种新的SSB扫描图样。NR中SSB扫描图样(pattern)如图4所示所示,也即卫星基站通过波束连续发送不同方向上的SSB,完成覆盖区的扫描,所有SSB扫描完成后,再依次发送所有SSB对应的CORESET#0和物理下行共享信道(physical downlink shared channel,PDSCH)上承载的SIB1。
而本申请提出的NTN系统中SSB pattern的形式如图5所示,在NTN系统中,广播波束在每个波位的服务时间,需完成广播信号的发送,广播波束在每个波位发送SSB之后,就需要发送该SSB对应的CORESET#0和PDSCH上承载的SIB1,帮助用户完成下行同步和获得随机接入等相关信息。其中,SIB1中携带的信息包括系统信息,例如系统参数配置,随机接入资源,波束和频率配置,以及星历信息等。
该方案具体的有益效果有:1)每个波束的用户,在接收SSB之后,不用等待下一个扫描周期,就可以接着接收CORESET#0和PDSCH上承载的SIB1,获得SIB1中关于接入的信息后,以便通过上行波束发送前导码(preamble),完成后续的接入流程,这样可以降低接入时延;2)在一个波位发送完SSB,CORESET#0和PDSCH上承载的SIB1后,再切换下一个波位,由于在一个波位的照亮时间是ms级别,卫星的波束切换单元可以有充足的时间在射频完成波束指向的确定,移相器相位的计算,移相器相位的传输,并在天线的移相器上生效,也即波束切换时间不需要ns级别,利于硬件实现。
另外,本申请对NR系统中的广播波束的参数进行了适配,可以有效规避GEO干扰和避免广播消息无效的问题。
按照国际电信联盟(international telecommunication union,ITU)《无线电规则》要求,NGSO用户链路使用的下行频率为卫星固定业务频率时,不得对GEO卫星提出保护要求(ITU RR No.5.484A、4.487A),且不能对GEO业务造成干扰。如图6所示,当GEO 卫星,LEO卫星和波位#1(即波位#1为干扰波位)的中心点形成一条直线,在这种场景下,波位#1的终端设备向LEO卫星发送上行信号,会对GEO卫星造成干扰,其中,波位#1为波位组k中的任一波位,波位组k与广播波束k对应。
为了避免对GEO卫星的干扰,LEO卫星在广播波束扫描阶段可以采用三种方案:
1)提前规避方案
LEO卫星设计广播波束的SSB扫描图样,确保GEO卫星,LEO卫星和波位#1的中心点形成一条直线的情况下,LEO卫星扫描其它波位,不会扫描到干扰波位,这样干扰波位的终端设备就不会向LEO卫星发送上行信号,从而规避对GEO卫星的干扰。也就是说,LEO卫星在一条直线的情况下,广播波束k根据广播波束k的SSB扫描图样扫描波位#2,其中,波位#2是波位组k中除波位#1的任一波位。
可选地,LEO卫星根据GEO卫星分布情况,GEO卫星所用频段等信息,LEO星历信息设计广播波束的SSB扫描图样。
2)LEO卫星关闭波束
当已经制定广播波束的SSB扫描图样,且网络设备预测自己将运行到波位#1上方,并即将进行干扰波位的扫描,则网络设备会提前通知LEO卫星在干扰波位的扫描时间段内关闭广播波束k。
可以理解,该方案中的网络设备为LEO卫星基站或搭载在LEO卫星上的网络侧设备。
可选地,网络侧根据GEO卫星分布情况,GEO卫星所用频段等信息,LEO卫星的星历信息,预测LEO卫星将运行到波位#1上方。
可选地,网络设备的通知信息中可以携带波位#1的波位ID,网络设备通过反馈链路将该波位ID发送给LEO卫星,由LEO卫星关闭波位#1对应的广播波束(即波束k)。
可选地,每个波位用比特位指示对应波位的ID。例如:共有32个波位,从0开始编号,则可以用5比特位表示,当波位ID为8,可以用01000表示,当波位ID为30,可以用11110表示,这里不再赘述。
3)LEO卫星指示用户发送物理随机接入信道(physical random access channel,PRACH)的时间
LEO卫星在上述一条直线的情况下仍然进行广播,但在广播消息中携带第一指示信息,第一指示信息中包括第一时间,第一时间用于指示波位#1中的UE在接收到第一指示信息后间隔第一时间后发送PRACH前导码(preamble)的时间,第一时间需满足UE发送PRACH前导码时LEO卫星已经偏离GEO卫星与干扰波位的中心点形成的直线。其中,第一时间offset的具体计算如下所示。
如图6所示,在t 0时刻,干扰波位的中心与LEO卫星与GEO卫星位于一条直线,UE发送上行数据会对GEO卫星造成干扰。LEO卫星运行offset=t 1-t 0时间后,到达t 1,如图8所示,此时干扰波位的中心点与LEO卫星连线的延长线偏离GEO卫星,形成夹角θ(单位为弧度),该夹角θ表示干扰波位的中心点与LEO卫星在t 0时刻与t 1时刻所对应的连线的夹角。为了规避对GEO卫星的干扰,该θ角需满足,到达GEO卫星的信号在GEO卫星接收波束的XdB范围外,例如,X的取值可以为3。
下面根据夹角θ来计算第一时间offset,通过三角几何关系,可得t=hθ/v,其中h为LEO卫星的轨道高度,v表示LEO卫星的运行速度。举例说明,轨道高度为h=600km, 运行速度为v=7.6km/s,夹角θ=1*2π/360rad,则可计算得offset=1.3779s。
可选的,网络设备可以通过以下两种方式通知给UE:
方式一:UE和GEO卫星提前约定好第一时间。
LEO卫星向UE发送第二指示信息,第二指示信息用于指示UE是否对GEO卫星进行干扰规避。具体的干扰规避操作为,UE收到第二指示信息时,如果需要规避,需在第一时间之后发送PRACH前导码。
可选地,网络设备在SIB1消息中增加GSO干扰规避字段(即第二指示信息的一例)。例如:该字段占1bit,0表示不规避,1表示规避,反之亦可,这样UE收到GSO干扰规避指示时,就可以使用约定好的第一时间,进行后续UE的接入。
方式二:第一时间不固定,可动态调整。
可选地,对第一时间进行n比特量化,第一指示信息用于指示量化后的第一时间。例如:采用函数offset_quan=quantizer(offset_unquan,n)进行量化,其中offset_unquan为网络设备计算的第一时间,offset_quan表示经过n比特量化后的第一时间。
可选地,LEO卫星也可以维护一个表格,根据第一时间确定第一时间对应的索引,第一指示信息用于指示第一时间对应的索引。
最后,卫星覆盖区会随着卫星运动产生变化,若对覆盖边缘的波位内的UE进行广播,发送SSB,由于卫星移动,当卫星向UE发送随机接入响应(random access response)时,可能会出现该UE所在波位已不在卫星覆盖区内,UE无法接收RAR的情况。作为示例,如图8所示,在t0时刻,卫星1可以对波位n进行SSB广播,然后完成覆盖区内其他波位的按序扫描,之后波位n的用户通过上行波束,发送前导码给卫星,并等待在t1时刻接收卫星1下发的RAR。然而在t1时刻,卫星1由于移动,卫星1的覆盖区发生了变化,无法对波位n的UE发送RAR,因此波位n中的UE接入失败,重新发起接入,可能会接入到卫星2。由此可知,卫星1在t0时刻对波位n发送的SSB是无效的。
因此,为了避免卫星发送无效的SSB,可以采用两种方案:
方案一:关闭波束。当已经制定广播波束的SSB扫描图样,且网络设备预测LEO卫星在波位n发送的SSB是无效的,则提前通知LEO卫星关闭波位n对应的广播波束。
可选地,网络设备的通知信息中可以携带波位n的波位ID,网络设备通过反馈链路将该波位ID发送给LEO卫星。
可以理解,该方案中的网络设备为LEO卫星基站或搭载在LEO卫星上的网络侧设备。
方案二:改变波束指向。改变广播波束的扫描方向,对非边缘覆盖区的波位进行扫描,而对逐渐远离卫星的边缘波位(如图8中的波位n),不进行广播波束的扫描。这样广播波束所服务的波位数目减少,不仅可以避免卫星发送无效的SSB,也可以减小对应广播波束的扫描周期,缩短UE的接入时延。
需要说明的是,上述实施例中的给出方案可以分开单独使用,也可以相互结合使用,本申请对此不作具体限定。
以上对本申请提供的广播波束扫描的方法进行了详细说明,下面介绍本申请提供的通信装置。
参见图9,图9是本申请提供的通信装置1000的示意性框图。通信装置1000包括处理单元1200和发送单元1300。该通信装置1000可实现对应于上文方法实施例中卫星执 行的步骤或者流程,例如,该通信装置1000可以为卫星,或者也可以为配置卫星中的芯片或电路。处理单元1200用于执行上文方法实施例中卫星的处理相关操作,发送单元用于执行上文方法实施例中卫星的发送相关操作。
处理单元1200,用于根据卫星覆盖区域内波位的人口密度将卫星覆盖区域内的所有波位分为K个波位组,K个波位组分别与卫星的K个广播波束一一对应,其中,K为大于1的整数,第一波位组包含的波位的个数与第一波位组内的人口密度成反比,第一波位组为K个波位组中的任一波位组,第一波位组包含至少一个波位;发送单元1300,用于使用与第一波位组对应的第一广播波束依次对第一波位组内的波位进行SSB波束扫描。
可选地,处理单元1200,还用于根据卫星覆盖区域内的人口密度和/或K个广播波束对应的波位接入成功率重新规划K个广播波束与卫星覆盖区域内的所有波位的映射关系。
可选地,处理单元1200具体用于:当第一波位组在t1时刻与t0时刻对应的覆盖区域内的人口密度的变化比例大于或等于第一阈值,重新规划K个广播波束与卫星覆盖区域内的所有波位的映射关系,其中,t1大于t0。
可选地,发送单元1300具体用于:使用第一广播波束在第一波位发送第一广播信号,第一广播信号包括第一SSB和第一SSB对应的CORESET#0和物理下行共享信道PDSCH,第一波位为第一波位组中的任一波位。
可选地,当卫星、第一卫星和第一波位的中心点位置形成一条直线时,其中,卫星为非地球同步轨道NGSO卫星,第一卫星为地球静止轨道GEO卫星,第一波位为第一波位组中的任一波位,发送单元1300还用于,使用第一广播波束对第一波位组中的第二波位进行SSB波束扫描,第二波位与第一波位为不同的波位;或,处理单元1200还用于,在扫描第一波位的时间段内,关闭第一广播波束;或,发送单元1300还用于,向第一波位中的终端设备发送第一指示信息,第一指示信息包括第一时间,第一时间用于指示终端设备在接收到第一指示信息后,再经过第一时间发送随机接入前导码。
可选地,处理单元1200预测第一广播波束在第一波位发送的SSB为无效SSB,第一波位为第一波位组中的任一波位,处理单元1200还用于,在扫描第一波位的时间段内,关闭第一广播波束;或,发送单元1300,还用于使用第一广播波束对第一波位组中除第一波位的其它波位进行SSB波束扫描。
可选地,通信装置1000还包括接收单元1100,接收单元1100用于执行上文方法实施例中卫星的接收相关操作。
可选地,发送单元1300和接收单元1100也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
可选的,在通信装置1000可以为方法实施例中的卫星这种实现方式中,发送单元1300可以为发射器,接收单元1100可以为接收器。接收器和发射器也可以集成为一个收发器。处理单元1200可以为处理装置。
其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括存储器和处理器,其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,使得通信装置1000执行各方法实施例中由卫星执行的操作和/或处理。可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的 计算机程序。又例如,处理装置可以芯片或集成电路。
可选地,在通信装置1000可以为安装在卫星中的芯片或集成电路这种实现方式中,发送单元1300和接收单元1100可以为通信接口或者接口电路,例如,发送单元1300为输出接口或输出电路,接收单元1100为输入接口或输入电路。处理单元1200可以为该芯片或集成电路上集成的处理器或者微处理器。在此不做限定。
参见图10,图10是本申请提供的通信装置10的示意性结构图。该装置10包括处理器11,处理器11与存储器12耦合,存储器12用于存储计算机程序或指令和/或数据,处理器11用于执行存储器12存储的计算机程序或指令,或读取存储器12存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器11为一个或多个。
可选地,存储器12为一个或多个。
可选地,该存储器12与该处理器11集成在一起,或者分离设置。
可选地,如图10所示,该装置10还包括收发器13,收发器13用于信号的接收和/或发送。例如,处理器11用于控制收发器13进行信号的接收和/或发送。
作为一种方案,该装置10用于实现上文各个方法实施例中由卫星执行的操作。例如,处理器11用于执行存储器12存储的计算机程序或指令,以实现上文各个方法实施例中由卫星执行的相关操作。例如,实现图2所示实施例中由卫星执行的方法。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由卫星执行的操作和/或流程被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由卫星执行的操作和/或流程被执行。
此外,本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由卫星执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括存储器。
应理解,本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而 前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种广播波束扫描的方法,其特征在于,包括:
    卫星根据所述卫星覆盖区域内波位的人口密度将所述卫星覆盖区域内的所有波位分为K个波位组,所述K个波位组分别与所述卫星的K个广播波束一一对应,K为大于1的整数,其中,第一波位组包含的波位的个数与所述第一波位组覆盖区域的人口密度成反比,所述第一波位组为所述K个波位组中的任一波位组,所述第一波位组包含至少一个波位;
    所述卫星使用与所述第一波位组对应的第一广播波束依次对所述第一波位组内的波位进行波束扫描。
  2. 根据权利要求1所述的方法,其特征在于,所述卫星维护的广播波束扫描周期的个数大于或等于1且小于或等于K,其中,所述第一广播波束的扫描周期为m*t,m为所述第一波位组包含的波位的个数,t为所述第一广播波束扫描一个波位所需的时间,t大于0。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述卫星根据所述第一波位组覆盖区域内的人口密度和/或所述第一波位组的波位接入所述卫星的成功率,重新规划所述K个广播波束与所述卫星覆盖区域内的所有波位的映射关系。
  4. 根据权利要求3所述的方法,其特征在于,所述卫星根据所述卫星覆盖区域内的人口密度,重新规划所述K个广播波束与所述卫星的所有波位的映射关系,包括:
    当所述第一波位组在t1时刻与t0时刻对应的覆盖区域内的人口密度的变化比例大于或等于第一阈值,所述卫星重新规划所述K个广播波束与所述卫星覆盖区域内的所有波位的映射关系,其中,t1大于t0。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一广播波束的同步信号块SSB突发集周期大于或等于所述第一广播波束的扫描周期。
  6. 根据权利要求5所述的方法,其特征在于,所述第一广播波束的SSB突发集周期为协议预定义的。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述卫星使用与所述第一波位组对应的第一广播波束依次对第一波位组内的波位进行波束扫描,包括:
    所述卫星使用所述第一广播波束在第一波位发送第一广播信号,所述第一广播信号包括第一同步信号块SSB和所述第一SSB对应的CORESET#0和物理下行共享信道PDSCH,所述第一波位为所述第一波位组中的任一波位。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,当所述卫星、第一卫星和第一波位的中心点位置形成一条直线时,其中,所述卫星为非地球同步轨道NGSO卫星,所述第一卫星为地球静止轨道GEO卫星,所述第一波位为所述第一波位组中的任一波位,所述方法还包括:
    所述卫星使用所述第一广播波束对所述第一波位组中的第二波位进行波束扫描,所述第二波位与所述第一波位为不同的波位;
    或,
    在扫描所述第一波位的时间段内,所述卫星关闭所述第一广播波束;
    或,
    所述卫星向所述第一波位的终端设备发送第一指示信息,所述第一指示信息包括第一时间,所述第一时间用于指示所述终端设备在接收到所述第一指示信息后,再经过所述第一时间发送随机接入前导码。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述卫星预测所述第一广播波束在第一波位发送的同步信号块SSB为无效SSB,所述第一波位为所述第一波位组中的任一波位,所述方法还包括:
    在扫描所述第一波位的时间段内,所述卫星关闭所述第一广播波束;
    或,
    所述卫星使用所述第一广播波束对所述第一波位组中除所述第一波位的其它波位进行波束扫描。
  10. 一种通信装置,其特征在于,包括:
    处理单元,用于根据卫星覆盖区域内波位的人口密度将所述卫星覆盖区域内的所有波位分为K个波位组,所述K个波位组分别与所述卫星的K个广播波束一一对应,其中,K为大于1的整数,第一波位组包含的波位的个数与所述第一波位组内的人口密度成反比,所述第一波位组为所述K个波位组中的任一波位组,所述第一波位组包含至少一个波位;
    发送单元,用于使用与所述第一波位组对应的第一广播波束依次对所述第一波位组内的波位进行波束扫描。
  11. 根据权利要求10所述的装置,其特征在于,所述处理单元维护的广播波束扫描周期的个数大于或等于1且小于或等于K,其中,所述第一广播波束的扫描周期为m*t,m为所述第一波位组包含的波位的个数,t为所述第一广播波束扫描一个波位所需的时间,t大于0。
  12. 根据权利要求10或11所述的装置,其特征在于,所述处理单元,还用于根据所述第一波位组覆盖区域内的人口密度和/或所述第一波位组的波位接入所述卫星的成功率,重新规划所述K个广播波束与所述卫星覆盖区域内的所有波位的映射关系。
  13. 根据权利要求12所述的装置,其特征在于,所述处理单元具体用于:
    当所述第一波位组在t1时刻与t0时刻对应的覆盖区域内的人口密度的变化比例大于或等于第一阈值,重新规划所述K个广播波束与所述卫星覆盖区域内的所有波位的映射关系,其中,t1大于t0。
  14. 根据权利要求10至13中任一项所述的装置,其特征在于,所述第一广播波束的SSB突发集周期大于或等于所述第一广播波束的扫描周期。
  15. 根据权利要求14所述的装置,其特征在于,所述第一广播波束的同步信号块SSB突发集周期为协议预定义的。
  16. 根据权利要求10至15中任一项所述的装置,其特征在于,所述发送单元具体用于:
    使用所述第一广播波束在第一波位发送第一广播信号,所述第一广播信号包括第一同步信号块SSB和所述第一SSB对应的CORESET#0和物理下行共享信道PDSCH,所述第 一波位为所述第一波位组中的任一波位。
  17. 根据权利要求10至16中任一项所述的装置,其特征在于,当所述卫星、第一卫星和第一波位的中心点位置形成一条直线时,其中,所述卫星为非地球同步轨道NGSO卫星,所述第一卫星为地球静止轨道GEO卫星,所述第一波位为所述第一波位组中的任一波位,
    所述发送单元还用于,使用所述第一广播波束对所述第一波位组中的第二波位进行波束扫描,所述第二波位与所述第一波位为不同的波位;
    或,
    所述处理单元还用于,在扫描所述第一波位的时间段内,关闭所述第一广播波束;
    或,
    所述发送单元还用于,向所述第一波位中的终端设备发送第一指示信息,所述第一指示信息包括第一时间,所述第一时间用于指示所述终端设备在接收到所述第一指示信息后,再经过所述第一时间发送随机接入前导码。
  18. 根据权利要求10至17中任一项所述的装置,其特征在于,所述处理单元预测所述第一广播波束在第一波位发送的同步信号块SSB为无效SSB,所述第一波位为所述第一波位组中的任一波位,
    所述处理单元还用于,在扫描所述第一波位的时间段内,关闭所述第一广播波束;
    或,
    所述发送单元,还用于使用所述第一广播波束对所述第一波位组中除所述第一波位的其它波位进行波束扫描。
  19. 一种通信装置,其特征在于,所述通信装置包括至少一个处理器和至少一个存储器,所述至少一个存储器用于存储计算机程序或指令,所述至少一个处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1至9中任一项所述的方法被执行。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求1至9中任一项所述的方法被执行。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,如权利要求1至9中任一项所述的方法被执行。
PCT/CN2022/132938 2021-11-30 2022-11-18 广播波束扫描的方法和通信装置 WO2023098493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111449656.8 2021-11-30
CN202111449656.8A CN116209063A (zh) 2021-11-30 2021-11-30 广播波束扫描的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023098493A1 true WO2023098493A1 (zh) 2023-06-08

Family

ID=86515196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132938 WO2023098493A1 (zh) 2021-11-30 2022-11-18 广播波束扫描的方法和通信装置

Country Status (2)

Country Link
CN (1) CN116209063A (zh)
WO (1) WO2023098493A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116528253A (zh) * 2023-07-05 2023-08-01 四川创智联恒科技有限公司 一种信令波束下的波位图谱生成方法及系统
CN116761187A (zh) * 2023-08-09 2023-09-15 天地信息网络研究院(安徽)有限公司 一种针对大范围分布高机动节点的波束扫描方法
CN116528253B (zh) * 2023-07-05 2024-05-17 四川创智联恒科技有限公司 一种信令波束下的波位图谱生成方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116996116B (zh) * 2023-09-27 2024-01-09 银河航天(北京)网络技术有限公司 一种基于遥感图像的波束调度方法、装置及存储介质
CN117081659B (zh) * 2023-10-12 2024-01-09 银河航天(北京)通信技术有限公司 确定与波束对应的通信频段的方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054432A1 (en) * 1999-03-08 2000-09-14 Motorola Inc. Signal acquisition method and apparatus in a satellite communication system
CN112383346A (zh) * 2020-11-17 2021-02-19 北京空灵网科技术有限公司 一种卫星广播信道的实现方法和装置
CN112910541A (zh) * 2021-01-20 2021-06-04 华力智芯(成都)集成电路有限公司 一种应用于卫星移动通信系统的卫星用户侧波束设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054432A1 (en) * 1999-03-08 2000-09-14 Motorola Inc. Signal acquisition method and apparatus in a satellite communication system
CN112383346A (zh) * 2020-11-17 2021-02-19 北京空灵网科技术有限公司 一种卫星广播信道的实现方法和装置
CN112910541A (zh) * 2021-01-20 2021-06-04 华力智芯(成都)集成电路有限公司 一种应用于卫星移动通信系统的卫星用户侧波束设计方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116528253A (zh) * 2023-07-05 2023-08-01 四川创智联恒科技有限公司 一种信令波束下的波位图谱生成方法及系统
CN116528253B (zh) * 2023-07-05 2024-05-17 四川创智联恒科技有限公司 一种信令波束下的波位图谱生成方法及系统
CN116761187A (zh) * 2023-08-09 2023-09-15 天地信息网络研究院(安徽)有限公司 一种针对大范围分布高机动节点的波束扫描方法
CN116761187B (zh) * 2023-08-09 2023-10-20 天地信息网络研究院(安徽)有限公司 一种针对大范围分布高机动节点的波束扫描方法

Also Published As

Publication number Publication date
CN116209063A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
WO2023098493A1 (zh) 广播波束扫描的方法和通信装置
US10211909B2 (en) Link adaptation with RF intermediary element
CN116390214A (zh) 功率控制参数确定方法、终端、网络设备及存储介质
CN112887004B (zh) 一种通信方法及装置
KR20000064458A (ko) 위성다이버시티구조
JP2004524728A5 (zh)
WO2022152000A1 (zh) 应用于非地面通信网络中的定位的方法和通信装置
CN110519723B (zh) 一种卫星与终端设备在双工多频段的通信方法
US11778576B2 (en) Method for processing round trip delay, related apparatus, and readable storage medium
CN111066357A (zh) 信息传输系统
US20220377687A1 (en) Communication method and apparatus
CN114125928A (zh) 一种基于卫星网络的通信方法以及相关装置
Liu et al. Interference coordination method for integrated HAPS-terrestrial networks
CN116073878A (zh) 卫星通信方法和卫星通信装置
US20230216602A1 (en) Polarization Reconfiguration Method and Communication Apparatus
CN107835042B (zh) 同步波束发送接收方法、网络设备、终端及系统
WO2021056385A1 (zh) 无线通信的方法、终端设备和网络设备
US20220385393A1 (en) Data transmission method, terminal device and network device
US20240049219A1 (en) Cross-carrier data transmission method, terminal, and storage medium
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
EP4221274A1 (en) Method for collaborative sensing, electronic device, and readable storage medium
WO2022022238A1 (zh) 卫星通信系统中预编码的方法和通信装置
CN112448753B (zh) 一种通信方法及装置
US10644830B2 (en) Data transmission method, receiving device, and transmitting device
Yun et al. Main features of 5G new radio for non-terrestrial networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900298

Country of ref document: EP

Kind code of ref document: A1