WO2023098395A1 - 多维力和力矩传感器及机械手 - Google Patents

多维力和力矩传感器及机械手 Download PDF

Info

Publication number
WO2023098395A1
WO2023098395A1 PCT/CN2022/129812 CN2022129812W WO2023098395A1 WO 2023098395 A1 WO2023098395 A1 WO 2023098395A1 CN 2022129812 W CN2022129812 W CN 2022129812W WO 2023098395 A1 WO2023098395 A1 WO 2023098395A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
sensor
force
pliers
bragg grating
Prior art date
Application number
PCT/CN2022/129812
Other languages
English (en)
French (fr)
Inventor
高安柱
邹运
高红岩
陈卫东
杨广中
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2023098395A1 publication Critical patent/WO2023098395A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/166Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using photoelectric means

Definitions

  • the invention relates to the technical field of sensors, in particular to a multi-dimensional force and moment sensor and a manipulator.
  • Minimally invasive surgical instruments are mainly used in various types of minimally invasive surgery and interventional surgery in medical operations. Diagnosis and treatment are performed through small wounds outside the human body or with the help of natural orifices of the human body. The size of the instrument body is small and the structure is controllable. Strong, integrated with multiple types of auxiliary sensors, etc., with good minimal invasiveness, flexibility, safety and other characteristics. This application aims to provide a multi-dimensional force and torque sensor for minimally invasive surgical instruments, which can achieve stable and high-precision real-time measurement while maintaining a small and compact size.
  • Patent document CN103968980B discloses a new type of optical fiber tactile array sensor and its manufacturing method, which includes a thin film on which an array composed of several row sensors is arranged.
  • the row sensor includes n elastic devices arranged in a row and an elastic device passing through the elastic Device for fiber grating sensors.
  • the manufacturing process of the optical fiber tactile array sensor includes the following steps: step 1: making a horizontal serial model mold; step 2: making row optical fiber tactile sensors; step 3: adhering the obtained row optical fiber tactile sensors to a film to form an array.
  • step 1 making a horizontal serial model mold
  • step 2 making row optical fiber tactile sensors
  • step 3 adhering the obtained row optical fiber tactile sensors to a film to form an array.
  • the key design of this patent is an array composed of several rows of sensors, which is different from the present application.
  • the object of the present invention is to provide a multi-dimensional force and torque sensor and a manipulator.
  • a multi-dimensional force and torque sensor provided according to one or more embodiments of the present invention includes: a force and torque sensor substrate, a force and torque sensor fixed end, a channel, a force and torque sensor installation end, and a fiber Bragg grating sensor group ;
  • One end of the force and torque sensor is provided with a fixed end of the force and torque sensor, the fixed end of the force and torque sensor is connected to the base of the force and torque sensor, and the other end of the force and torque sensor is set as the installation end of the force and torque sensor ;
  • the channel is arranged inside the force and torque sensor, and the channel is arranged inside the base of the force and torque sensor and the fixed end of the force and torque sensor;
  • the fiber Bragg grating sensor assembly groove group is arranged on the base of the force and torque sensor, and the fiber Bragg grating sensor group is installed in the fiber Bragg grating sensor assembly groove group;
  • the base of the force and moment sensor is provided with at least one corner along the plane where the half-section is located, and a straight line segment is provided at both ends of the corner, and the axes where two adjacent straight line segments are located form an included angle.
  • the fiber Bragg grating sensor fitting groove group includes more than or equal to one fiber Bragg grating sensor fitting groove.
  • the fiber Bragg grating sensor assembly groove group extends from one end of the force and torque sensor base to the other end of the force and torque sensor base;
  • the fiber Bragg grating sensor mounting slots allow coiling on the force and torque sensor substrate.
  • the fiber Bragg grating sensor group includes more than or equal to one fiber Bragg grating sensor
  • the fiber Bragg grating sensor is installed in the fiber Bragg grating sensor fitting groove and corresponds to the fiber Bragg grating sensor fitting groove one by one.
  • the fiber Bragg grating sensor is etched at intervals greater than or equal to one fiber Bragg grating along the extension direction of the force and torque sensor substrate;
  • More than or equal to one fiber Bragg grating sensor section is provided with more than or equal to one fiber Bragg grating axis parallel to the axis of the straight line segment where it is located;
  • More than or equal to one fiber Bragg grating sensor cross-section is provided with greater than or equal to one fiber Bragg grating axis forming an included angle with the straight line segment axis;
  • the channel comprises a single lumen or multiple lumens
  • the fixed end of the force and moment sensor is provided with a cross structure in the circumferential direction.
  • a manipulator adopts the multi-dimensional force and torque sensor.
  • a sensor adapter rod includes: a sensor adapter rod, a fiber grating sensor demodulator, a driving device, a drug delivery device, and an operating tool;
  • One end of the force and torque sensor is connected to the sensor adapter rod, and the other end of the force and torque sensor is installed with the operating tool;
  • the sensor adapter rod allows connecting the fiber grating sensor demodulator, the driving device and the drug delivery device.
  • the sensor adapter rod includes: the main rod body of the transfer rod, the mounting flange of the transfer rod, the sensor installation hole of the transfer rod and the working channel of the transfer rod;
  • One end of the main rod body of the transfer rod is provided with the mounting flange of the transfer rod, and the other end of the main rod body of the transfer rod is provided with the installation hole of the transfer rod sensor;
  • the force and torque sensor is installed in the mounting hole of the adapter rod sensor
  • the sensor adapter rod is provided with the adapter rod working channel, the adapter rod working channel includes a single cavity or multiple cavities, and the adapter rod working channel is connected to the channel;
  • the main rod body of the adapter rod is provided with more than or equal to one adapter rod assembly groove in the axial direction, and the adapter rod assembly groove is correspondingly connected with the fiber Bragg grating sensor assembly groove group;
  • the main rod body of the transfer rod is uniformly distributed with groove structures along the circumferential direction.
  • the operating tools include: passive forceps, driven closed forceps, driven open forceps and drug delivery needles;
  • the force and moment sensors allow mounting of the passive forceps, the driven closed forceps, the driven open forceps or the drug delivery needle;
  • the passive pliers include: a passive pliers clamping part, a passive pliers driving part and a passive pliers installation end;
  • One end of the driving part of the passive pliers is connected to the clamping part of the passive pliers, and the other end of the driving part of the passive pliers is connected to the installation end of the passive pliers, and the installation end of the passive pliers is installed on the installation end of the force and moment sensor;
  • the driving closing pliers include: a clamping part of the driving closing pliers and a mounting end of the driving closing pliers;
  • the clamping part of the driving closing pliers is connected to the installation end of the driving closing pliers, and the installation end of the driving closing pliers is installed on the installation end of the force and torque sensor;
  • the clamping part of the driving and closing pliers includes: a fixing component of the clamping part of the driving and closing pliers, a driving component of the clamping part of the driving and closing pliers, and a mounting hole of the driving component of the driving and closing pliers;
  • the clamping part fixing component of the driving closing pliers is connected to one end of the driving component of the clamping part of the driving closing pliers and is pulled and closed by the driving component of the clamping part of the driving closing pliers, and the other end of the driving component of the clamping part of the driving closing pliers is connected to
  • the installation hole of the driving assembly of the driving and closing pliers, the installation hole of the driving assembly of the driving and closing pliers is installed with a first fixed driving wire, and the first fixed driving wire is connected to the driving device;
  • the driving pliers include: a clamping part of the driving pliers and a mounting end of the driving pliers;
  • the clamping part of the drive opening pliers is connected to the installation end of the drive opening pliers, and the installation end of the drive opening pliers is installed on the installation end of the force and torque sensor;
  • the driving opening pliers clamping part includes: driving opening pliers clamping part driving assembly, driving opening pliers clamping part fixing assembly and driving opening pliers driving assembly mounting holes;
  • the driving opening pliers clamping part fixing assembly is connected to one end of the driving opening pliers clamping part driving assembly and pulled open by the driving opening pliers clamping part driving assembly, and the other end of the driving opening pliers clamping part driving assembly is Connecting to the mounting hole of the driving opening pliers driving assembly, the mounting hole of the driving opening pliers driving assembly is installed with a second fixed driving wire, and the second fixed driving wire is connected to the driving device;
  • the drug delivery needle includes: a drug delivery needle tube part and a drug delivery needle installation end;
  • the needle tube part of the drug delivery needle is connected to the installation end of the drug delivery needle, and the installation end of the drug delivery needle is installed on the installation end of the force and torque sensor.
  • the drug needle channel communicates with the channel and communicates with the drug delivery device through the channel and the working channel of the adapter rod.
  • the fiber Bragg grating sensor group is connected to the fiber Bragg grating sensor demodulator through the sensor adapter rod;
  • the driving closing pliers is provided with a first driving pipeline, and the first driving pipeline is connected to the driving device through the channel and the working channel of the adapter rod;
  • the driving opening pliers is provided with a second driving pipeline, and the second driving pipeline is connected to the driving device through the channel and the working channel of the adapter rod.
  • the base of the force and torque sensor is made of elastic material.
  • Fig. 1 is wherein the multidimensional force and force and torque sensor base structure schematic diagram of an embodiment
  • Fig. 2 is a structural schematic diagram when the passive clamp is installed on the manipulator of one of the embodiments
  • Fig. 3 is a schematic view of the structure when the manipulator of one embodiment is installed to drive the closing pliers;
  • Fig. 4 is a structural schematic diagram when the manipulator of one embodiment is installed to drive the opening pliers
  • Fig. 5 is a schematic diagram of the structure of the manipulator of one embodiment when the drug delivery needle is installed;
  • Fig. 6 is a schematic diagram of the three-dimensional structure of the sensor adapter rod in one embodiment
  • Fig. 7 is a cross-sectional view of the sensor adapter rod of one embodiment
  • Fig. 8 is a schematic view of the structure of the base end of the force and torque sensor of one embodiment
  • Fig. 9 is a structural schematic view (1) of a multidimensional force and torque sensor of one embodiment
  • Figure 10 is a structural schematic diagram (2) of a multi-dimensional force and torque sensor of one of the embodiments.
  • Fig. 11 is the front view of the multi-dimensional force and torque sensor of one of the embodiments.
  • Fig. 12 is a structural schematic diagram when two corners are set for the force and torque sensor of one embodiment
  • Fig. 13 is a schematic diagram of the three-dimensional structure of the passive forceps of one embodiment
  • Figure 14 is a front view of the passive forceps of one of the embodiments.
  • Fig. 15 is a schematic diagram of the three-dimensional structure of the driving closing pliers of one embodiment
  • Fig. 16 is a schematic diagram of the structure of the installation hole of the drive closure pliers drive assembly of one embodiment
  • Fig. 17 is a cross-sectional view of the driving closing pliers of one embodiment
  • Fig. 18 is a schematic diagram of the three-dimensional structure of the driving opening pliers in one embodiment
  • Fig. 19 is a front view of the driving opening pliers of one embodiment
  • Fig. 20 is a cross-sectional view of the driving opening pliers of one embodiment
  • Fig. 21 is a schematic diagram of the three-dimensional structure of the drug delivery needle in one embodiment
  • Figure 22 is a structural schematic diagram (four) of a multidimensional force and torque sensor of one of the embodiments.
  • a kind of multi-dimensional force and moment sensor comprises: force and moment sensor substrate 11, force and moment sensor fixed end 12, channel 13 and fiber Bragg grating sensor group; Force and moment sensor 1 One end is provided with a fixed end 12 of the force and torque sensor, the fixed end 12 of the force and torque sensor is connected to the base 11 of the force and torque sensor, a channel 13 is arranged inside the force and torque sensor 1, and the channel 13 is arranged on the base 11 of the force and torque sensor and the force and torque sensor Inside the sensor fixed end 12, the fiber Bragg grating sensor assembly groove group is arranged on the force and torque sensor base 11, and the fiber Bragg grating sensor group is installed in the fiber Bragg grating sensor assembly groove group.
  • the requirement setting is greater than or equal to one corner, and the two ends of each corner are set as straight line segments.
  • the channel 13 includes a single chamber or multiple chambers, and the fixed end 12 of the force and torque sensor is provided with a cross structure in the circumferential direction.
  • the fiber Bragg grating sensor assembly groove group includes: a first fiber Bragg grating sensor assembly groove 111, a second fiber Bragg grating sensor assembly groove 112, a third fiber Bragg grating sensor assembly groove 113 and a fourth fiber Bragg grating sensor assembly groove 114.
  • the second fiber Bragg grating sensor mounting groove 112 and the third fiber Bragg grating sensor mounting groove 113 are arranged on both sides of the torque sensor 1, and the second fiber Bragg grating sensor mounting groove 112 and the third fiber Bragg grating sensor mounting groove 113 are about force and moment
  • the half-section line of the sensor 1 is symmetrical, and the force and torque sensor 1 is arranged with a first fiber Bragg grating sensor installation groove 111 and a fourth fiber Bragg grating sensor installation groove 114 along both sides of the half-section.
  • the fiber Bragg grating sensor assembly groove group extends from one end of the force and torque sensor substrate 11 to the other end of the force and torque sensor substrate 11, and the second fiber Bragg grating sensor assembly groove 112 and the third fiber Bragg grating sensor assembly groove 113 allow symmetrical helical coiling in On the force and torque sensor substrate 11, the first fiber Bragg grating sensor mounting groove 111, the second fiber Bragg grating sensor mounting groove 112, the third fiber Bragg grating sensor mounting groove 113 and the fourth fiber Bragg grating sensor mounting groove 114 are facing away from the force One end and the fixed end 12 of the torque sensor are arranged in quarters on the side of the base 11 of the force and torque sensor.
  • the Fiber Bragg Grating sensor group includes: a first Fiber Bragg Grating sensor 14, a second Fiber Bragg Grating sensor 15, a third Fiber Bragg Grating sensor 16 and a fourth Fiber Bragg Grating sensor 17;
  • the fiber Bragg grating sensor assembly slot 111 is installed with the first fiber Bragg grating sensor 14,
  • the second fiber Bragg grating sensor assembly slot 112 is installed with the second fiber Bragg grating sensor 15, and
  • the third fiber Bragg grating sensor assembly slot 113 is installed with the third fiber Bragg grating sensor 16.
  • the fourth fiber Bragg grating sensor installation slot 114 is used to install the fourth fiber Bragg grating sensor 17 .
  • the first Fiber Bragg Grating sensor 14, the second Fiber Bragg Grating sensor 15, the third Fiber Bragg Grating sensor 16, and the fourth Fiber Bragg Grating sensor 17 are respectively etched at predetermined wavelength intervals greater than or equal to One fiber Bragg grating, the second fiber Bragg grating sensor 15 and the third fiber Bragg grating sensor 16 have greater than or equal to one fiber Bragg grating sensor cross-section is provided with greater than or equal to one fiber Bragg grating axis parallel to the axis of the straight line where it is located, greater than or equal to one
  • the section of the fiber Bragg grating sensor is provided with an included angle greater than or equal to an axis of the fiber Bragg grating and the axis of the straight line segment where it is located.
  • a manipulator adopts a multi-dimensional force and torque sensor, including: a sensor adapter rod 2, a fiber grating sensor demodulator 3, a driving device 4, a drug delivery device 5 and an operating tool; One end of the torque sensor 1 is connected to the sensor adapter rod 2, and the other end of the force and torque sensor 1 is installed with an operating tool;
  • the fiber Bragg grating sensor group is connected to the fiber Bragg grating sensor demodulator 3 through the sensor adapter rod 2 .
  • the sensor adapter rod 2 includes: the adapter rod main rod body 21, the adapter rod mounting flange 22, the transfer rod sensor installation hole 23 and the transfer rod working channel 24; One end of the rod body 21 is connected to the adapter rod mounting flange 22, and the other end of the main rod body 21 of the transfer rod is provided with a transfer rod sensor installation hole 23, and the transfer rod sensor installation hole 23 is installed with the force and torque sensor 1, and the sensor transfer rod 2 is provided inside
  • the transfer rod working channel 24, the transfer rod working channel 24 includes a single cavity or multiple cavities, the transfer rod working channel 24 communicates with the channel 13, and the transfer rod main rod body 21 is axially set to be greater than or equal to one transfer rod assembly groove, and the transfer rod
  • the mounting grooves of the connecting rod are correspondingly connected with the group of mounting grooves of the fiber Bragg grating sensor, and the main rod body 21 of the connecting rod is uniformly arranged in a groove structure along the circumferential direction.
  • the operating tool includes: passive forceps 6, driving closing forceps 7, driving opening forceps 8 and drug delivery needle 9; force and torque sensor 1 allows passive forceps 6, driving closing forceps 7, driving opening forceps to be installed One of forceps 8 or drug delivery needle 9.
  • the passive pliers 6 includes: a passive pliers clamping part 61, a passive pliers driving part 62 and a passive pliers mounting end 63; one end of the passive pliers driving part 62 is connected to the passive pliers clamping part 61, and the other end of the passive pliers driving part 62 is connected to the passive pliers mounting end 63 , the passive clamp installation end 63 is installed in the force and torque sensor 1 .
  • the driving and closing pliers 7 include: the driving and closing pliers clamping part 71 and the driving and closing pliers installation end 72; the driving and closing pliers clamping part 71 is connected to the driving and closing pliers installation end 72, and the driving and closing pliers installation end 72 is installed in the force and torque sensor 1 , the driving closing pliers clamping part 71 includes: driving closing pliers clamping part fixing assembly 711, driving closing pliers clamping part driving assembly 712 and driving closing pliers driving assembly mounting hole 713, driving closing pliers clamping part fixing assembly 711 is connected to the drive One end of the closing pliers clamping part driving assembly 712 is pulled and closed by driving the closing pliers clamping part driving assembly 712, the other end of the driving closing pliers clamping part driving assembly 712 is connected to the driving closing pliers driving assembly mounting hole 713, and the closing pliers driving assembly is driven to install
  • the first fixed driving wire is installed in the hole 713 , and the first fixed driving wire is connected to
  • the driving pliers 8 includes: the driving pliers clamping part 81 and the driving pliers mounting end 82; the driving pliers clamping part 81 is connected to the driving pliers mounting end 82, and the driving pliers mounting end 82 is installed in the force and torque sensor 1 , the driving opening pliers clamping part 81 includes: driving opening pliers clamping part driving assembly 811, driving opening pliers clamping part fixing assembly 812 and driving opening pliers driving assembly mounting hole 813; driving opening pliers clamping part fixing assembly 812 is connected to drive One end of the opening pliers clamping part driving assembly 811 is pulled and opened by driving the opening pliers clamping part driving assembly 811, and the other end of the opening pliers clamping part driving assembly 811 is connected to the driving opening pliers driving assembly mounting hole 813 to drive the opening pliers driving assembly
  • the installation hole 813 is installed with the second fixed driving wire, and the second fixed driving wire is connected with the driving device 4 .
  • a second driving pipeline is provided
  • the drug delivery needle 9 includes: the drug delivery needle tube part 91 and the drug delivery needle installation end 92; A drug delivery needle channel is arranged inside the drug needle 9 , and the drug delivery needle channel communicates with the channel 13 and communicates with the drug delivery device 5 through the channel 13 and the working channel 24 of the adapter rod.
  • Embodiment 2 is a preferred example of Embodiment 1.
  • the present embodiment is a multidimensional force and moment sensor comprising four fiber Bragg grating sensors, including a force and moment sensor substrate 11, a first fiber Bragg grating sensor 14, a second fiber Bragg grating sensor Grating sensor 15, the third fiber Bragg grating sensor 16 and the fourth fiber Bragg grating sensor 17;
  • the force and moment sensor substrate 11 is preset to be greater than or equal to a corner to form a special vertical and curved combined shape, and the two ends of the force and moment sensor 1 corner
  • the axis of the straight line section is preset to form a certain angle, so that the force deformation along the axial direction is more sensitive, and it provides high-sensitivity axial force and torque data decoupling of the fiber Bragg grating sensor group to obtain high axial force and torque sensing
  • its structural shape also improves the flexibility of surgical instruments or instrument operations in some special operating spaces, providing operators with a wider field of vision.
  • Multi-dimensional force and torque sensors can also arrange multiple fiber Bragg grating sensors.
  • a channel 13 is provided in the middle of the force and torque sensor base 11, and the channel 13 can be set as a single chamber or multi-cavity.
  • the cross structure; the outer surface of the force and torque sensor substrate 11 is provided with a first fiber Bragg grating sensor fitting groove 111, a second fiber Bragg grating sensor fitting groove 112, a third fiber Bragg grating sensor fitting groove 113 and a fourth fiber Bragg grating sensor fitting groove
  • the sensor assembly groove 114, the fiber Bragg grating sensor assembly groove group extends to the end of the sensor body according to the requirements; the force and torque sensor base 11 body is made of polymer, nickel, etc.
  • Titanium alloy and other materials have a certain bearing capacity, which can satisfy the force and moment sensor base 11.
  • the fiber Bragg grating sensor group deforms accordingly to collect data.
  • the first fiber Bragg grating sensor installation groove 111 installs the first fiber Bragg grating sensor 14, the second fiber Bragg grating sensor installation groove 112 installs the second fiber Bragg grating sensor 15, and the third fiber Bragg grating sensor installation groove 113 installs the third fiber Bragg
  • the fourth fiber Bragg grating sensor mounting slot 114 is installed with the fourth fiber Bragg grating sensor 17 .
  • the first Fiber Bragg Grating sensor 14, the second Fiber Bragg Grating sensor 15, the third Fiber Bragg Grating sensor 16, and the fourth Fiber Bragg Grating sensor 17 are respectively etched at predetermined wavelength intervals greater than or equal to A Fiber Bragg Grating.
  • the front ends of the first Fiber Bragg Grating sensor 14, the second Fiber Bragg Grating sensor 15, the third Fiber Bragg Grating sensor 16, and the fourth Fiber Bragg Grating sensor 17 are uniformly distributed along the force and torque sensor base 11 in the initial part, which is beneficial to the fiber Bragg grating
  • the temperature compensation of the grating sensor group; the first fiber Bragg grating sensor 14, the second fiber Bragg grating sensor 15, the third fiber Bragg grating sensor 16 and the fourth fiber Bragg grating sensor 17 are arranged in force and on the torque sensor substrate 11, so as to achieve high sensitivity to deformation caused by axial force and torque, and realize effective demodulation of force and torque including multidimensional force and torque sensors; force and torque sensors 1 are arranged on both sides of the second The fiber Bragg grating sensor
  • the fiber Bragg grating sensor assembly groove group extends from one end of the force and moment sensor substrate 11 to the other end of the force and moment sensor substrate 11, the second fiber Bragg grating sensor assembly groove 112 and the third fiber Bragg grating sensor assembly groove 113 allow symmetrical coiling in the force And on the torque sensor substrate 11.
  • the main rod body 21 of the sensor transfer rod 2 is provided with four transfer rod assembly grooves in the axial direction to realize the installation guidance of the fiber Bragg grating sensor group, and the transfer rod assembly grooves Different quantities can be preset according to actual needs.
  • the main rod body 21 of the adapter rod is uniformly distributed in an array groove structure to facilitate hand-held operation.
  • the end is equipped with an adapter rod mounting flange 22, which can be connected with various mechanical arms to realize robot automatic control.
  • Instruments, the sensor mounting hole 23 at the front end of the sensor adapter rod 2 is used to install the force and torque sensor 1, and an adapter rod working channel 24 can be used for the driving line of the surgical instrument and the drug line of the drug delivery needle. Or the transmission lines of various instruments lead out, and the working channel 24 of the adapter rod can be set as a single-chamber channel or a multi-chamber channel.
  • a predetermined clamping gap is maintained between the two petal grippers of the clamping part 61 of the passive forceps, which has a certain shape memory characteristic, and can pre-clamp implanted electrodes and send them to the target position Clamp the driving part 62 of the passive forceps by auxiliary tweezers etc.
  • the sensor mounting hole 23 of the adapter rod is assembled, and the fiber Bragg grating sensor group is connected with the fiber grating sensor demodulator 3 through the tail end of the sensor adapter rod 2, so that hand-held related operations can be realized, and the flange 22 can also be installed through the transfer rod It is connected with the mechanical arm to realize the robot to control the surgical operation, and obtain the force and torque feedback data of the operating instrument during the surgical operation.
  • the clamping part 71 of the driving closing pliers has a certain shape memory characteristic, and the fixing components 711 of the clamping part 711 of the driving closing pliers on both sides of the clamping part 71 maintain a preset certain angular position and It has an integrated structure with the driving assembly 712 of the clamping part of the driving and closing pliers.
  • One end of the driving assembly 712 of the clamping part of the driving and closing pliers is integrally structured with the fixing assembly 711 of the clamping part of the driving and closing pliers.
  • the other end of the driving assembly 712 is connected to the driving assembly of the driving and closing pliers for installation.
  • the installation hole 713 can be installed with the first fixed driving wire, and the coaxial direction stretching can be realized through the connected driving device 4, and the driving assembly 712 of the clamping part of the driving closing pliers can drive the symmetrical two sides after moving. Drive the clamping part fixing assembly 711 of the closing pliers closer to the inner axis position so as to realize the closing of the pliers to realize the clamping operation.
  • the front and rear ends of the force and torque sensor 1 are respectively assembled with the drive closing pliers installation end 72 and the adapter rod sensor installation hole 23, and the fiber Bragg grating sensor group is connected to the fiber Bragg grating sensor demodulator 3 through the tail end of the sensor adapter rod 2;
  • the first driving pipeline that drives the closing forceps 7 is connected to the drive device 4 through the channel 13 and the working channel 24 of the adapter rod, which can realize hand-held related surgical operations, and can also be connected to the mechanical arm through the adapter rod mounting flange 22, thereby
  • the robot controls the surgical operation, and obtains the force and torque feedback data of the operating instrument during the surgical operation.
  • the driving pliers clamping part 81 has a certain shape memory characteristic.
  • the driving component 811 of the clamping part of the driving opening pliers symmetrically on both sides maintains a preset certain angular position, and its tail end is connected to the mounting hole 813 of the driving opening pliers driving component, and the second fixing hole 813 of the driving opening pliers driving component can be installed.
  • the driving wire is stretched in the coaxial direction through the connected driving device 4, and the driving assembly 811 of the clamping part of the opening pliers is driven symmetrically on both sides to open and deform in the opposite direction of the axis, and at the same time, the front part of the fixing assembly 812 of the clamping part of the opening pliers is driven. There is also opening deformation thereupon, and finally realizes the opening of the driven opening pliers to realize the clamping operation.
  • the front and rear ends of the force and torque sensor 1 are respectively assembled with the mounting end 82 of the drive opening pliers and the sensor mounting hole 23 of the adapter rod, and the fiber Bragg grating sensor group is connected with the fiber Bragg grating sensor demodulator 3 through the tail end of the sensor adapter rod 2;
  • the second drive pipeline for driving the opening forceps 8 is connected to the drive device 4 through the channel 13 and the working channel 24 of the adapter rod, which can realize hand-held related surgical operations, and can also be connected to the mechanical arm through the adapter rod mounting flange 22, thereby
  • the robot controls the surgical operation, and obtains the force and torque feedback data of the operating instrument during the surgical operation.
  • the needle tube part 91 of the drug delivery needle is provided with a certain length and inner and outer diameters according to the requirements, so as to realize the flow of surgical drugs to the target position through the channel of the drug delivery needle;
  • the installation end 92 is assembled with the sensor mounting hole 23 of the adapter rod, and the fiber Bragg grating sensor group is connected with the fiber grating sensor demodulator 3 through the tail end of the sensor adapter rod 2;
  • the drug delivery needle channel of the drug delivery needle 9 passes through the channel 13 It is connected with the transfer rod working channel 24 and the drug delivery device 5, which can realize hand-held related surgical operations, and can also be connected with the mechanical arm through the transfer rod mounting flange 22, so as to realize the robot-controlled surgical operation and obtain operation during the surgical operation. Instrument force and torque feedback data.
  • present embodiment comprises: force and moment sensor substrate 11, force and moment sensor fixed end 12, channel 13, force and moment sensor installation end 18 and fiber Bragg grating sensor group;
  • One end of the force and moment sensor 1 is provided with a fixed end 12 of the force and moment sensor, the fixed end 12 of the force and moment sensor is connected to the base 11 of the force and moment sensor, the other end of the force and moment sensor 1 is set as a force and moment sensor installation end 18, and the force and moment sensor 1 Channel 13 is arranged inside, and the channel 13 is arranged inside the base 11 of the force and torque sensor and the fixed end 12 of the force and torque sensor;
  • the base 11 of the force and torque sensor is provided with a fiber Bragg grating sensor assembly groove group, and in the fiber Bragg grating sensor assembly groove group Install the fiber Bragg grating sensor group;
  • the force and moment sensor substrate 11 is provided with a corner greater than or equal to the plane where the half-section is located, and a straight line segment is set at both ends of the corner
  • the fiber Bragg grating sensor assembly groove group includes more than or equal to one fiber Bragg grating sensor assembly groove.
  • the fiber Bragg grating sensor mounting groove group extends from one end of the force and torque sensor substrate 11 to the other end of the force and torque sensor substrate 11 , and the fiber Bragg grating sensor mounting groove allows coiling on the force and torque sensor substrate 11 .
  • the fiber Bragg grating sensor group includes more than one fiber Bragg grating sensor, and the fiber Bragg grating sensor is installed in the fiber Bragg grating sensor assembly groove and corresponds to the fiber Bragg grating sensor assembly groove one by one.
  • the fiber Bragg grating sensor is etched at intervals along the extension direction of the force and moment sensor substrate 11, which is greater than or equal to one fiber Bragg grating, and is greater than or equal to one fiber Bragg grating.
  • the sensor section is provided with greater than or equal to one fiber Bragg grating.
  • the cross-section of a fiber Bragg grating sensor is provided with an included angle greater than or equal to an axis of the fiber Bragg grating and the axis of the straight line segment where it is located.
  • the channel 13 includes a single chamber or multiple chambers, and the fixed end 12 of the force and torque sensor is provided with a cross structure in the circumferential direction.
  • the number of fiber Bragg grating sensors can be selected according to requirements, as long as it can include all fiber Bragg gratings used for sensing. For example: if there is only one fiber Bragg grating sensor, and the fiber Bragg grating sensor includes all fiber Bragg grating points, then sensing can also be achieved.
  • a manipulator adopts a multi-dimensional force and torque sensor, including: a sensor adapter rod 2, a fiber grating sensor demodulator 3, a driving device 4, a drug delivery device 5 and an operating tool; force and torque One end of the sensor 1 is connected to the sensor adapter rod 2, and the other end of the force and torque sensor 1 is installed with an operating tool.
  • the sensor adapter rod 2 includes: the main rod body 21 of the transfer rod, the mounting flange 22 of the transfer rod, the sensor installation hole 23 of the transfer rod and the working channel 24 of the transfer rod, and the installation method of the transfer rod is set at one end of the main rod body 21 Lan 22, the other end of the main rod body 21 of the transfer rod is provided with a transfer rod sensor mounting hole 23;
  • the rod working channel 24 includes a single cavity or multiple cavities.
  • the connecting rod working channel 24 communicates with the channel 13.
  • the main rod body 21 of the connecting rod is provided with one or more connecting rod assembly grooves in the axial direction.
  • the assembly groove groups are correspondingly connected, and the main rod body 21 of the adapter rod is uniformly distributed in a groove structure along the circumferential direction.
  • the operating tool includes: passive forceps 6, driving closing forceps 7, driving opening forceps 8 and drug delivery needle 9; force and torque sensor 1 allows passive forceps 6, driving closing forceps 7, driving opening forceps to be installed
  • the forceps 8 or the drug delivery needle 9, the passive forceps 6 include: the passive forceps clamping part 61, the passive forceps driving part 62 and the passive forceps mounting end 63, one end of the passive forceps driving part 62 is connected to the passive forceps clamping part 61, the passive forceps driving part The other end of 62 is connected to the passive pliers installation end 63, and the passive pliers installation end 63 is installed on the force and torque sensor installation end 18.
  • the driving closing pliers 7 includes: the driving closing pliers clamping part 71 and the driving closing pliers installation end 72, the driving closing pliers
  • the clamping part 71 is connected to the mounting end 72 of the driving and closing pliers, and the mounting end 72 of the driving and closing pliers is installed on the mounting end 18 of the force and torque sensor.
  • the clamping part 71 of the driving and closing pliers includes: The driving assembly 712 of the clamping part of the clamp and the installation hole 713 of the driving assembly of the driving and closing clamp.
  • the other end of the driving assembly 712 of the clamping part of the driving closing pliers is connected to the mounting hole 713 of the driving assembly of the driving closing pliers, and the first fixed driving wire is installed in the mounting hole 713 of the driving assembly of the driving closing pliers.
  • the driving opening pliers clamping part 81 includes: the driving opening pliers clamping part driving assembly 811, the driving opening pliers clamping part fixing assembly 812 and the driving opening pliers driving assembly mounting hole 813, the driving opening pliers clamping part fixing assembly 812 is connected to the driving opening One end of the pliers clamping part driving assembly 811 is pulled and opened by driving the opening pliers clamping part driving assembly 811, and the other end of the driving opening pliers clamping part driving assembly 811 is connected to the driving opening pliers driving assembly mounting hole 813, and the driving opening pliers driving assembly is installed.
  • the hole 813 is equipped with a second fixed driving wire, and the second fixed driving wire is connected to the driving device 4;
  • the drug delivery needle 9 includes: the drug delivery needle tube part 91 and the drug delivery needle installation end 92, and the drug delivery needle tube part 91 is connected to the drug delivery needle for installation. end 92, the drug delivery needle installation end 92 is installed on the force and moment sensor installation end 18, the drug delivery needle channel is arranged inside the drug delivery needle 9, and the drug delivery needle channel communicates with the channel 13 and communicates with the transfer rod working channel 24 through the channel 13 Drug delivery device 5.
  • the Fiber Bragg Grating sensor group is connected to the Fiber Bragg Grating sensor demodulator 3 through the sensor adapter rod 2; the driving closing clamp 7 is provided with the first driving pipeline, and the first driving pipeline is connected to the driving device 4 through the channel 13 and the working channel 24 of the adapter rod ; Drive the opening pliers 8 to set the second driving pipeline, the second driving pipeline is connected to the driving device 4 through the channel 13 and the working channel 24 of the adapter rod.
  • the fiber Bragg grating sensor assembly groove on one side of the force and torque sensor base 11 is set to the upward bending and spiraling place
  • the fiber Bragg grating sensor assembly groove on the other side of the force and moment sensor substrate 11 is set to the downward bending and spiraling place and is the fiber Bragg grating on the opposite side.
  • the grating sensor assembly groove is formed after the curved and spiraled part is rotated 180 degrees around the axis, and the two curved and spiraled parts intersect along the horizontal direction.
  • the system provided by the present invention and its various devices can be completely programmed by logically programming the method steps.
  • modules, and units implement the same functions in the form of logic gates, switches, ASICs, programmable logic controllers, and embedded microcontrollers. Therefore, the system and its various devices, modules, and units provided by the present invention can be regarded as a hardware component, and the devices, modules, and units included in it for realizing various functions can also be regarded as hardware components.
  • the structure; the devices, modules, and units for realizing various functions can also be regarded as not only the software modules for realizing the method, but also the structures in the hardware components.
  • the present invention has the following beneficial effects:
  • the present invention utilizes the characteristics that the fiber Bragg grating sensor is arranged on the surface of the base structure of the force and torque sensor based on the mixed vertical and helical directions, which can reduce the overall size of the operating instrument or instrument assembly, and can realize a narrower and limited Related operations in the operating space;
  • the present invention can adapt to a variety of surgical environments, realize stable operation instruments or instrument force perception data collection, and can be applied to various types of minimally invasive surgery.
  • Efficiency, safety, etc. have important application value, and can ensure fast and safe diagnosis and treatment;
  • the present invention etches the fiber Bragg grating at predetermined wavelength intervals along the length direction of the fiber body according to the requirements of use, and the cross section of the fiber Bragg grating sensor is provided with more than or equal to one fiber Bragg grating axis and the straight line where it is located. Parallel to the axis of the segment, greater than or equal to one fiber Bragg grating sensor cross-section is provided with an angle greater than or equal to the axis of the fiber Bragg grating and the axis of the straight line segment, which can realize high-precision multi-dimensional force and Torque data collection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种多维力和力矩传感器(1)及机械手,其中多维力和力矩传感器包括:力和力矩传感器基底(11)、力和力矩传感器固定端(12)、通道(13)、力和力矩传感器安装端(18)以及光纤布拉格光栅传感器组;力和力矩传感器一端设置力和力矩传感器固定端(12),力和力矩传感器固定端(12)连接力和力矩传感器基底(11),力和力矩传感器(1)另一端设置为力和力矩传感器安装端(18);力和力矩传感器(1)内部设置通道(13);力和力矩传感器基底(11)上设置光纤布拉格光栅传感器装配槽组,光纤布拉格光栅传感器装配槽组内安装光纤布拉格光栅传感器组;力和力矩传感器基底(11)沿半剖面所在平面内设置大于等于一个拐角。利用光纤布拉格光栅传感器基于竖直和螺旋方向混合布置在力和力矩传感器基底(11)结构表面上的特点,能够减小整体尺寸并获得多维力和力矩数据反馈,可实现更狭窄和有限的手术空间内等相关操作。

Description

多维力和力矩传感器及机械手 技术领域
本发明涉及传感器技术领域,具体地,涉及多维力和力矩传感器及机械手。
背景技术
微创手术器械主要应用于医疗手术中的各类微创手术、介入手术等,通过人体外部较小的创口或借助人体的自然腔道来进行诊断和治疗,器械本体尺寸较小,结构可控性强,集成了多类辅助传感器等,具有较好的微创性、灵活性、安全性等特点。本申请旨在提供一种用于微创手术器械的多维力和力矩传感器,能够在保持体积小巧紧凑的同时实现稳定高精度的实时测量。
专利文献CN103968980B公开了一种新型的光纤触觉阵列传感器及制作方法,包括一个薄膜,在薄膜上设置由若干行传感器组成的阵列,行传感器包括n个排列成一行的弹性装置和一根穿过弹性装置的光纤光栅传感器。光纤触觉阵列传感器的制作过程,包括如下步骤:步骤1:制作横向串联式模型模具;步骤2:制作行光纤触觉传感器;步骤3:将获得的行光纤触觉传感器粘到薄膜上构成阵列。该专利设计要点为由若干行传感器组成的阵列,与本申请不相同。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种多维力和力矩传感器及机械手。
根据本发明的其中一个或多个实施例提供的一种多维力和力矩传感器,包括:力和力矩传感器基底、力和力矩传感器固定端、通道、力和力矩传感器安装端以及光纤布拉格光栅传感器组;
力和力矩传感器一端设置所述力和力矩传感器固定端,所述力和力矩传感器固定端连接所述力和力矩传感器基底,所述力和力矩传感器另一端设置为所述力和力矩传感器安装端;
所述力和力矩传感器内部设置所述通道,所述通道布置在所述力和力矩传感器 基底和所述力和力矩传感器固定端内部;
所述力和力矩传感器基底上设置光纤布拉格光栅传感器装配槽组,所述光纤布拉格光栅传感器装配槽组内安装所述光纤布拉格光栅传感器组;
所述力和力矩传感器基底沿半剖面所在平面内设置大于等于一个拐角,所述拐角两端设置直线段,相邻两个所述直线段所在轴线形成夹角。
进一步地,所述光纤布拉格光栅传感器装配槽组包括大于等于一个光纤布拉格光栅传感器装配槽。
进一步地,所述光纤布拉格光栅传感器装配槽组从所述力和力矩传感器基底一端延伸至所述力和力矩传感器基底另一端;
所述光纤布拉格光栅传感器装配槽允许盘绕在所述力和力矩传感器基底上。
进一步地,所述光纤布拉格光栅传感器组包括大于等于一个光纤布拉格光栅传感器;
所述光纤布拉格光栅传感器安装在所述光纤布拉格光栅传感器装配槽中并与所述光纤布拉格光栅传感器装配槽一一对应。
进一步地,所述光纤布拉格光栅传感器沿所述力和力矩传感器基底延伸方向间隔刻蚀大于等于一个光纤布拉格光栅;
大于等于一根所述光纤布拉格光栅传感器截面设置有大于等于一个所述光纤布拉格光栅轴线与所在所述直线段轴线平行;
大于等于一根所述光纤布拉格光栅传感器截面设置有大于等于一个所述光纤布拉格光栅轴线与所在所述直线段轴线形成夹角;
所述通道包括单腔或多腔;
所述力和力矩传感器固定端周向设置十字结构。
进一步地,一种机械手,所述机械手采用所述多维力和力矩传感器。
进一步地,包括:传感器转接杆、光纤光栅传感器解调仪、驱动装置、给药装置以及操作工具;
所述力和力矩传感器一端连接所述传感器转接杆,所述力和力矩传感器另一端安装所述操作工具;
所述传感器转接杆允许连接所述光纤光栅传感器解调仪、所述驱动装置和所述给药装置。
进一步地,所述传感器转接杆包括:转接杆主杆体、转接杆安装法兰、转接杆 传感器安装孔以及转接杆工作通道;
所述转接杆主杆体一端设置所述转接杆安装法兰,所述转接杆主杆体另一端设置所述转接杆传感器安装孔;
所述转接杆传感器安装孔安装所述力和力矩传感器;
所述传感器转接杆内部设置所述转接杆工作通道,所述转接杆工作通道包括单腔或多腔,所述转接杆工作通道连通所述通道;
所述转接杆主杆体沿轴向设置大于等于一个转接杆装配槽,所述转接杆装配槽与所述光纤布拉格光栅传感器装配槽组对应连接;
所述转接杆主杆体沿周向阵列均布凹槽结构。
进一步地,所述操作工具包括:被动钳、驱动闭合钳、驱动开口钳以及给药针;
所述力和力矩传感器允许安装所述被动钳、所述驱动闭合钳、所述驱动开口钳或所述给药针;
所述被动钳包括:被动钳夹持部分、被动钳驱动部分以及被动钳安装端;
所述被动钳驱动部分一端连接所述被动钳夹持部分,所述被动钳驱动部分另一端连接所述被动钳安装端,所述被动钳安装端安装在所述力和力矩传感器安装端上;
所述驱动闭合钳包括:驱动闭合钳夹持部分和驱动闭合钳安装端;
所述驱动闭合钳夹持部分连接所述驱动闭合钳安装端,所述驱动闭合钳安装端安装在所述力和力矩传感器安装端上;
所述驱动闭合钳夹持部分包括:驱动闭合钳夹持部分固定组件、驱动闭合钳夹持部分驱动组件以及驱动闭合钳驱动组件安装孔;
所述驱动闭合钳夹持部分固定组件连接所述驱动闭合钳夹持部分驱动组件一端并通过所述驱动闭合钳夹持部分驱动组件拉动闭合,所述驱动闭合钳夹持部分驱动组件另一端连接所述驱动闭合钳驱动组件安装孔,所述驱动闭合钳驱动组件安装孔安装第一固定驱动丝,所述第一固定驱动丝连接所述驱动装置;
所述驱动开口钳包括:驱动开口钳夹持部分和驱动开口钳安装端;
所述驱动开口钳夹持部分连接所述驱动开口钳安装端,所述驱动开口钳安装端安装在所述力和力矩传感器安装端上;
所述驱动开口钳夹持部分包括:驱动开口钳夹持部分驱动组件、驱动开口钳夹持部分固定组件以及驱动开口钳驱动组件安装孔;
所述驱动开口钳夹持部分固定组件连接所述驱动开口钳夹持部分驱动组件一 端并通过所述驱动开口钳夹持部分驱动组件拉动张开,所述驱动开口钳夹持部分驱动组件另一端连接所述驱动开口钳驱动组件安装孔,所述驱动开口钳驱动组件安装孔安装第二固定驱动丝,所述第二固定驱动丝连接所述驱动装置;
所述给药针包括:给药针针管部分和给药针安装端;
所述给药针针管部分连接所述给药针安装端,所述给药针安装端安装在所述力和力矩传感器安装端上,所述给药针内部设置给药针通道,所述给药针通道连通所述通道并通过所述通道和所述转接杆工作通道连通所述给药装置。
进一步地,所述光纤布拉格光栅传感器组通过所述传感器转接杆连接所述光纤光栅传感器解调仪;
所述驱动闭合钳设置第一驱动管路,所述第一驱动管路通过所述通道和所述转接杆工作通道连接所述驱动装置;
所述驱动开口钳设置第二驱动管路,所述第二驱动管路通过所述通道和所述转接杆工作通道连接所述驱动装置。
进一步地,所述力和力矩传感器基底采用弹性材质。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为其中一个实施例的多维力和力和力矩传感器基底结构示意图;
图2为其中一个实施例的机械手安装被动钳时结构示意图;
图3为其中一个实施例的机械手安装驱动闭合钳时结构示意图;
图4为其中一个实施例的机械手安装驱动开口钳时结构示意图;
图5为其中一个实施例的机械手安装给药针时结构示意图;
图6为其中一个实施例的传感器转接杆立体结构示意图;
图7为其中一个实施例的传感器转接杆剖视图;
图8为其中一个实施例的力和力矩传感器基底端部结构示意图;
图9为其中一个实施例的多维力和力矩传感器结构示意图(一);
图10为其中一个实施例的多维力和力矩传感器结构示意图(二);
图11为其中一个实施例的多维力和力矩传感器主视图;
图12为其中一个实施例的力和力矩传感器设置两个拐角时结构示意图;
图13为其中一个实施例的被动钳立体结构示意图;
图14为其中一个实施例的被动钳主视图;
图15为其中一个实施例的驱动闭合钳立体结构示意图;
图16为其中一个实施例的驱动闭合钳驱动组件安装孔结构示意图;
图17为其中一个实施例的驱动闭合钳剖视图;
图18为其中一个实施例的驱动开口钳立体结构示意图;
图19为其中一个实施例的驱动开口钳主视图;
图20为其中一个实施例的驱动开口钳剖视图;
图21为其中一个实施例的给药针立体结构示意图;
图22为其中一个实施例的多维力和力矩传感器结构示意图(四);
图中所示:
Figure PCTCN2022129812-appb-000001
Figure PCTCN2022129812-appb-000002
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
实施例1
如图1、图8和图12所示,一种多维力和力矩传感器,包括:力和力矩传感器基底11、力和力矩传感器固定端12、通道13以及光纤布拉格光栅传感器组;力和力矩传感器1一端设置力和力矩传感器固定端12,力和力矩传感器固定端12连接力和力矩传感器基底11,力和力矩传感器1内部设置通道13,通道13布置在力和力矩传感器基底11和力和力矩传感器固定端12内部,力和力矩传感器基底11上设置光纤布拉格光栅传感器装配槽组,光纤布拉格光栅传感器装配槽组内安装光纤布拉格光栅传感器组,力和力矩传感器基底11沿半剖面所在平面内根据需求设置大于等于一个拐角,每个所述拐角两端设置为直线段。通道13包括单腔或多腔,力和力矩传感器固定端12周向设置十字结构。光纤布拉格光栅传感器装配槽组包括:第一光纤布拉格光栅传感器装配槽111、第二光纤布拉格光栅传感器装配槽112、第三光纤布拉格光栅传感器装配槽113以及第四光纤布拉格光栅传感器装配槽114,力和力矩传感器1两侧布置第二光纤布拉格光栅传感器装配槽112和第三光纤布拉格光栅传感器装配槽113,第二光纤布拉格光栅传感器装配槽112和第三光纤布拉格光栅传感器装配槽113关于力和力矩传感器1半剖面线对称,力和力矩传感器1沿半剖面两侧布置第一光纤布拉格光栅传感器装配槽111和第四光纤布拉格光栅传感器装配槽114。光纤布拉格光栅传感器装配槽组从力和力矩传感器基底11一端延伸至力和力矩传感器基底11另一端,第二光纤布拉格光栅传感器装配槽112和第三光纤布拉格光栅传感器装配槽113允许对称螺旋盘绕在力和力矩传感器基底11上,第一光纤布拉格光栅传感器装配槽111、第二光纤布拉格光栅传感器装配槽112、第三光纤布拉格光栅传感器装配槽113以及第四光纤布拉格光栅传感器装配槽114背向力和力矩传感器固定端12一端四等分布置在力和力矩传感器基底11周侧。
如图9至图11所示,光纤布拉格光栅传感器组包括:第一光纤布拉格光栅传感器 14、第二光纤布拉格光栅传感器15、第三光纤布拉格光栅传感器16以及第四光纤布拉格光栅传感器17;第一光纤布拉格光栅传感器装配槽111安装第一光纤布拉格光栅传感器14,第二光纤布拉格光栅传感器装配槽112安装第二光纤布拉格光栅传感器15,第三光纤布拉格光栅传感器装配槽113安装第三光纤布拉格光栅传感器16,第四光纤布拉格光栅传感器装配槽114安装第四光纤布拉格光栅传感器17。第一光纤布拉格光栅传感器14、第二光纤布拉格光栅传感器15、第三光纤布拉格光栅传感器16以及第四光纤布拉格光栅传感器17沿力和力矩传感器基底11延伸方向按预设波长间隔分别刻蚀大于等于一个光纤布拉格光栅,第二光纤布拉格光栅传感器15和第三光纤布拉格光栅传感器16有大于等于一根光纤布拉格光栅传感器截面设置有大于等于一个光纤布拉格光栅轴线与所在直线段轴线平行,大于等于一根光纤布拉格光栅传感器截面设置有大于等于一个光纤布拉格光栅轴线与所在直线段轴线形成夹角。
如图2至图5所示,一种机械手采用了多维力和力矩传感器,包括:传感器转接杆2、光纤光栅传感器解调仪3、驱动装置4、给药装置5以及操作工具;力和力矩传感器1一端连接传感器转接杆2,力和力矩传感器1另一端安装操作工具;传感器转接杆2允许连接光纤光栅传感器解调仪3、驱动装置4和给药装置5。光纤布拉格光栅传感器组通过传感器转接杆2连接光纤光栅传感器解调仪3。
如图6和图7所示,传感器转接杆2包括:转接杆主杆体21、转接杆安装法兰22、转接杆传感器安装孔23以及转接杆工作通道24;转接杆主杆体21一端连接转接杆安装法兰22,转接杆主杆体21另一端设置转接杆传感器安装孔23,转接杆传感器安装孔23安装力和力矩传感器1,传感器转接杆2内部设置转接杆工作通道24,转接杆工作通道24包括单腔或多腔,转接杆工作通道24连通通道13,转接杆主杆体21沿轴向设置大于等于一个转接杆装配槽,转接杆装配槽与光纤布拉格光栅传感器装配槽组对应连接,转接杆主杆体21沿周向阵列均布凹槽结构。
如图13至图21所示,操作工具包括:被动钳6、驱动闭合钳7、驱动开口钳8以及给药针9;力和力矩传感器1允许安装被动钳6、驱动闭合钳7、驱动开口钳8或给药针9中的一种。
被动钳6包括:被动钳夹持部分61、被动钳驱动部分62以及被动钳安装端63;被动钳驱动部分62一端连接被动钳夹持部分61,被动钳驱动部分62另一端连接被动钳安装端63,被动钳安装端63安装在力和力矩传感器1中。
驱动闭合钳7包括:驱动闭合钳夹持部分71和驱动闭合钳安装端72;驱动闭合钳 夹持部分71连接驱动闭合钳安装端72,驱动闭合钳安装端72安装在力和力矩传感器1中,驱动闭合钳夹持部分71包括:驱动闭合钳夹持部分固定组件711、驱动闭合钳夹持部分驱动组件712以及驱动闭合钳驱动组件安装孔713,驱动闭合钳夹持部分固定组件711连接驱动闭合钳夹持部分驱动组件712一端并通过驱动闭合钳夹持部分驱动组件712拉动闭合,驱动闭合钳夹持部分驱动组件712另一端连接驱动闭合钳驱动组件安装孔713,驱动闭合钳驱动组件安装孔713安装第一固定驱动丝,第一固定驱动丝连接驱动装置4。驱动闭合钳7设置第一驱动管路,第一驱动管路通过通道13和转接杆工作通道24连接驱动装置4。
驱动开口钳8包括:驱动开口钳夹持部分81和驱动开口钳安装端82;驱动开口钳夹持部分81连接驱动开口钳安装端82,驱动开口钳安装端82安装在力和力矩传感器1中,驱动开口钳夹持部分81包括:驱动开口钳夹持部分驱动组件811、驱动开口钳夹持部分固定组件812以及驱动开口钳驱动组件安装孔813;驱动开口钳夹持部分固定组件812连接驱动开口钳夹持部分驱动组件811一端并通过驱动开口钳夹持部分驱动组件811拉动张开,驱动开口钳夹持部分驱动组件811另一端连接驱动开口钳驱动组件安装孔813,驱动开口钳驱动组件安装孔813安装第二固定驱动丝,第二固定驱动丝连接驱动装置4。驱动开口钳8设置第二驱动管路,第二驱动管路通过通道13和转接杆工作通道24连接驱动装置4。
给药针9包括:给药针针管部分91和给药针安装端92;给药针针管部分91连接给药针安装端92,给药针安装端92安装在力和力矩传感器1中,给药针9内部设置给药针通道,给药针通道连通通道13并通过通道13和转接杆工作通道24连通给药装置5。
实施例2
实施例2作为实施例1的优选例。
如图1、图8至图12所示,本实施例为包含4根光纤布拉格光栅传感器的多维力和力矩传感器,包含力和力矩传感器基底11、第一光纤布拉格光栅传感器14、第二光纤布拉格光栅传感器15、第三光纤布拉格光栅传感器16以及第四光纤布拉格光栅传感器17;力和力矩传感器基底11预设大于等于一个拐角形成特殊的竖直、弯曲组合形状,力和力矩传感器1拐角两端的直线段部分的轴线预设形成一定角度,从而沿轴向受力变形更加敏感,提供光纤布拉格光栅传感器组的高灵敏度轴向力和力矩数据解耦,获得轴向力和扭矩较高的传感能力,同时其结构形状也提高了一些特殊操作空间的手术器械或仪器操作的灵活性,为操作者提供更开阔的视野。多维力和力矩传感器也可布置多根光 纤布拉格光栅传感器。力和力矩传感器基底11中间设有通道13,通道13可以设为单腔也可设为多腔,通道13尾端设有力和力矩传感器固定端12,力和力矩传感器固定端12周向固定作用的十字结构;力和力矩传感器基底11外表面上设有第一光纤布拉格光栅传感器装配槽111、第二光纤布拉格光栅传感器装配槽112、第三光纤布拉格光栅传感器装配槽113以及第四光纤布拉格光栅传感器装配槽114,光纤布拉格光栅传感器装配槽组根据需求各路径延伸至传感器主体尾端;力和力矩传感器基底11主体采用具有优越弹性、抗腐蚀性、生物相容性等特性的聚合物、镍钛合金等材料,具有一定的承载力,可满足力和力矩传感器基底11受力变形后,光纤布拉格光栅传感器组随之形变进行数据采集。第一光纤布拉格光栅传感器装配槽111安装第一光纤布拉格光栅传感器14,第二光纤布拉格光栅传感器装配槽112安装第二光纤布拉格光栅传感器15,第三光纤布拉格光栅传感器装配槽113安装第三光纤布拉格光栅传感器16,第四光纤布拉格光栅传感器装配槽114安装第四光纤布拉格光栅传感器17。
第一光纤布拉格光栅传感器14、第二光纤布拉格光栅传感器15、第三光纤布拉格光栅传感器16以及第四光纤布拉格光栅传感器17沿力和力矩传感器基底11延伸方向按预设波长间隔分别刻蚀大于等于一个光纤布拉格光栅。第一光纤布拉格光栅传感器14、第二光纤布拉格光栅传感器15、第三光纤布拉格光栅传感器16以及第四光纤布拉格光栅传感器17的前端在初始部分沿力和力矩传感器基底11周向均布,有利于光纤布拉格光栅传感器组的温度补偿;第一光纤布拉格光栅传感器14、第二光纤布拉格光栅传感器15、第三光纤布拉格光栅传感器16以及第四光纤布拉格光栅传感器17基于沿轴线方向和螺旋方向混合布置在力和力矩传感器基底11上,从而实现对轴向力和扭矩引起的变形具有较高的灵敏度,实现对包含多维力和力矩传感器的力和力矩的有效解调;力和力矩传感器1两侧布置第二光纤布拉格光栅传感器装配槽112和第三光纤布拉格光栅传感器装配槽113,第二光纤布拉格光栅传感器装配槽112和第三光纤布拉格光栅传感器装配槽113关于力和力矩传感器1半剖面线对称,力和力矩传感器1沿半剖面两侧布置第一光纤布拉格光栅传感器装配槽111和第四光纤布拉格光栅传感器装配槽114。光纤布拉格光栅传感器装配槽组从力和力矩传感器基底11一端延伸至力和力矩传感器基底11另一端,第二光纤布拉格光栅传感器装配槽112和第三光纤布拉格光栅传感器装配槽113允许对称盘绕在力和力矩传感器基底11上。
如图2至图7所示,传感器转接杆2的转接杆主杆体21轴向设有4个转接杆装配槽以实现光纤布拉格光栅传感器组的安装导引,其转接杆装配槽可根据实际需求对应预 设不同数量,转接杆主杆体21周向均布阵列凹槽结构以方便手持操作,尾端设有转接杆安装法兰22可与各类机械臂相连接实现机器人自动化操控器械,传感器转接杆2前端的转接杆传感器安装孔23用于安装力和力矩传感器1,同时设有转接杆工作通道24可用于手术器械的驱动管路、给药针的药物管路或各类仪器的传输线路引出,转接杆工作通道24可设为单腔道或多腔道。
如图13和图14所示,被动钳夹持部分61的两瓣抓手之间保持预设一定的夹持间隙,具有一定的形状记忆特性,可以预先夹持植入电极等送至目标位置,通过辅助镊子等夹紧被动钳驱动部分62使得被动钳夹持部分61张开一定角度后从而释放植入电极等植入物;力和力矩传感器1前后两端分别与被动钳安装端63和转接杆传感器安装孔23装配,光纤布拉格光栅传感器组通过传感器转接杆2的尾端与光纤光栅传感器解调仪3连接,可实现手持相关手术操作,也可以通过转接杆安装法兰22与机械臂连接,从而实现机器人控制手术操作,在手术操作过程中获得操作器械的力和力矩反馈数据。
如图15至图17所示,驱动闭合钳夹持部分71具有一定的形状记忆特性,驱动闭合钳夹持部分71的两侧驱动闭合钳夹持部分固定组件711保持预设一定的角度位置且与驱动闭合钳夹持部分驱动组件712为一体结构,驱动闭合钳夹持部分驱动组件712一端与驱动闭合钳夹持部分固定组件711为一体结构,驱动组件712另一端连接驱动闭合钳驱动组件安装孔713,驱动闭合钳驱动组件安装孔713可安装第一固定驱动丝,通过所连接的驱动装置4实现同轴方向拉伸,驱动闭合钳夹持部分驱动组件712移动后可带动对称两侧的驱动闭合钳夹持部分固定组件711向内侧轴线位置靠拢从而实现钳子的闭合以实现夹持操作。力和力矩传感器1前后两端分别与驱动闭合钳安装端72和转接杆传感器安装孔23装配,光纤布拉格光栅传感器组通过传感器转接杆2的尾端与光纤光栅传感器解调仪3连接;驱动闭合钳7的第一驱动管路穿过通道13和转接杆工作通道24与驱动装置4连接,可实现手持相关手术操作,也可以通过转接杆安装法兰22与机械臂连接,从而实现机器人控制手术操作,在手术操作过程中获得操作器械的力和力矩反馈数据。
如图18至图20所示,驱动开口钳夹持部分81具有一定的形状记忆特性,驱动开口钳夹持部分81的驱动开口钳夹持部分固定组件812与驱动开口钳夹持部分驱动组件811为一体结构,两侧对称驱动开口钳夹持部分驱动组件811保持预设一定的角度位置,其尾端连接驱动开口钳驱动组件安装孔813,驱动开口钳驱动组件安装孔813可安装第二固定驱动丝,通过所连接的驱动装置4实现同轴方向拉伸,两侧对称驱动开口钳夹持 部分驱动组件811向轴线相反方向张开变形,同时驱动开口钳夹持部分固定组件812前侧部分也随之有张开变形,最终实现驱动开口钳的张开,实现夹持操作。力和力矩传感器1前后两端分别与驱动开口钳安装端82和转接杆传感器安装孔23装配,光纤布拉格光栅传感器组通过传感器转接杆2的尾端与光纤光栅传感器解调仪3连接;驱动开口钳8的第二驱动管路穿过通道13和转接杆工作通道24与驱动装置4连接,可实现手持相关手术操作,也可以通过转接杆安装法兰22与机械臂连接,从而实现机器人控制手术操作,在手术操作过程中获得操作器械的力和力矩反馈数据。
如图21所示,给药针针管部分91根据需求设有一定的长度和内外径尺寸,实现手术药物通过给药针通道流通至目标位置;力和力矩传感器1前后两端分别与给药针安装端92和转接杆传感器安装孔23装配,光纤布拉格光栅传感器组通过传感器转接杆2的尾端与光纤光栅传感器解调仪3连接;给药针9的给药针通道穿过通道13和转接杆工作通道24与给药装置5连接,可实现手持相关手术操作,也可以通过转接杆安装法兰22与机械臂连接,从而实现机器人控制手术操作,在手术操作过程中获得操作器械的力和力矩反馈数据。
实施例3
如图1、图8至图12所示,本实施例包括:力和力矩传感器基底11、力和力矩传感器固定端12、通道13、力和力矩传感器安装端18以及光纤布拉格光栅传感器组;力和力矩传感器1一端设置力和力矩传感器固定端12,力和力矩传感器固定端12连接力和力矩传感器基底11,力和力矩传感器1另一端设置为力和力矩传感器安装端18,力和力矩传感器1内部设置通道13,通道13布置在力和力矩传感器基底11和力和力矩传感器固定端12内部;力和力矩传感器基底11上设置光纤布拉格光栅传感器装配槽组,光纤布拉格光栅传感器装配槽组内安装光纤布拉格光栅传感器组;力和力矩传感器基底11沿半剖面所在平面内设置大于等于一个拐角,拐角两端设置直线段,相邻两个直线段所在轴线形成夹角。光纤布拉格光栅传感器装配槽组包括大于等于一个光纤布拉格光栅传感器装配槽。光纤布拉格光栅传感器装配槽组从力和力矩传感器基底11一端延伸至力和力矩传感器基底11另一端,光纤布拉格光栅传感器装配槽允许盘绕在力和力矩传感器基底11上。光纤布拉格光栅传感器组包括大于等于一个光纤布拉格光栅传感器,光纤布拉格光栅传感器安装在光纤布拉格光栅传感器装配槽中并与光纤布拉格光栅传感器装配槽一一对应。光纤布拉格光栅传感器沿力和力矩传感器基底11延伸方向间隔刻蚀大于等于一个光纤布拉格光栅,大于等于一根光纤布拉格光栅传感器截面设置有大 于等于一个光纤布拉格光栅轴线与所在直线段轴线平行,大于等于一根光纤布拉格光栅传感器截面设置有大于等于一个光纤布拉格光栅轴线与所在直线段轴线形成夹角。通道13包括单腔或多腔,力和力矩传感器固定端12周向设置十字结构。光纤布拉格光栅传感器的根数可以按需求选择,只要能够包括用于传感的所有光纤布拉格光栅即可。举例:如果只有一根光纤布拉格光栅传感器,且该光纤布拉格光栅传感器包括所有光纤布拉格光栅点,那么也可以实现感知。
如图2至图7所示,一种机械手采用多维力和力矩传感器,包括:传感器转接杆2、光纤光栅传感器解调仪3、驱动装置4、给药装置5以及操作工具;力和力矩传感器1一端连接传感器转接杆2,力和力矩传感器1另一端安装操作工具,传感器转接杆2允许连接光纤光栅传感器解调仪3、驱动装置4和给药装置5。传感器转接杆2包括:转接杆主杆体21、转接杆安装法兰22、转接杆传感器安装孔23以及转接杆工作通道24,转接杆主杆体21一端设置转接杆安装法兰22,转接杆主杆体21另一端设置转接杆传感器安装孔23;转接杆传感器安装孔23安装力和力矩传感器1,传感器转接杆2内部设置转接杆工作通道24,转接杆工作通道24包括单腔或多腔,转接杆工作通道24连通通道13,转接杆主杆体21沿轴向设置大于等于一个转接杆装配槽,转接杆装配槽与光纤布拉格光栅传感器装配槽组对应连接,转接杆主杆体21沿周向阵列均布凹槽结构。
如图13至图21所示,操作工具包括:被动钳6、驱动闭合钳7、驱动开口钳8以及给药针9;力和力矩传感器1允许安装被动钳6、驱动闭合钳7、驱动开口钳8或给药针9,被动钳6包括:被动钳夹持部分61、被动钳驱动部分62以及被动钳安装端63,被动钳驱动部分62一端连接被动钳夹持部分61,被动钳驱动部分62另一端连接被动钳安装端63,被动钳安装端63安装在力和力矩传感器安装端18上,驱动闭合钳7包括:驱动闭合钳夹持部分71和驱动闭合钳安装端72,驱动闭合钳夹持部分71连接驱动闭合钳安装端72,驱动闭合钳安装端72安装在力和力矩传感器安装端18上,驱动闭合钳夹持部分71包括:驱动闭合钳夹持部分固定组件711、驱动闭合钳夹持部分驱动组件712以及驱动闭合钳驱动组件安装孔713,驱动闭合钳夹持部分固定组件711连接驱动闭合钳夹持部分驱动组件712一端并通过驱动闭合钳夹持部分驱动组件712拉动闭合,驱动闭合钳夹持部分驱动组件712另一端连接驱动闭合钳驱动组件安装孔713,驱动闭合钳驱动组件安装孔713安装第一固定驱动丝,第一固定驱动丝连接驱动装置4,驱动开口钳8包括:驱动开口钳夹持部分81和驱动开口钳安装端82,驱动开口钳夹持部分81连接驱动开口钳安装端82,驱动开口钳安装端82安装在力和力矩传感器安装端18上; 驱动开口钳夹持部分81包括:驱动开口钳夹持部分驱动组件811、驱动开口钳夹持部分固定组件812以及驱动开口钳驱动组件安装孔813,驱动开口钳夹持部分固定组件812连接驱动开口钳夹持部分驱动组件811一端并通过驱动开口钳夹持部分驱动组件811拉动张开,驱动开口钳夹持部分驱动组件811另一端连接驱动开口钳驱动组件安装孔813,驱动开口钳驱动组件安装孔813安装第二固定驱动丝,第二固定驱动丝连接驱动装置4;给药针9包括:给药针针管部分91和给药针安装端92,给药针针管部分91连接给药针安装端92,给药针安装端92安装在力和力矩传感器安装端18上,给药针9内部设置给药针通道,给药针通道连通通道13并通过通道13和转接杆工作通道24连通给药装置5。光纤布拉格光栅传感器组通过传感器转接杆2连接光纤光栅传感器解调仪3;驱动闭合钳7设置第一驱动管路,第一驱动管路通过通道13和转接杆工作通道24连接驱动装置4;驱动开口钳8设置第二驱动管路,第二驱动管路通过通道13和转接杆工作通道24连接驱动装置4。
实施例4
如图22所示,一种光纤布拉格光栅传感器装配槽组的布置方式。
力和力矩传感器基底11一侧光纤布拉格光栅传感器装配槽设置朝上侧弯曲盘旋处,力和力矩传感器基底11另一侧光纤布拉格光栅传感器装配槽设置朝下侧弯曲盘旋处且为对面侧光纤布拉格光栅传感器装配槽弯曲盘旋处绕轴线旋转180度后形成,两处弯曲盘旋处沿水平方向相交。
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置、模块、单元以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统及其各个装置、模块、单元以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置、模块、单元可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置、模块、单元也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置、模块、单元视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
与现有技术相比,本发明具有如下的有益效果:
1、本发明利用光纤布拉格光栅传感器基于竖直和螺旋方向混合布置在力和力矩传感器基底结构表面上的特点,能够减小操作器械装或仪器装配体的整体尺寸,可实现更狭窄和有限的手术空间内等相关操作;
2、本发明可以适应多样的手术环境,实现稳定的操作器械或仪器力感知数据采集,可应用于多种类型的微创手术上,对多维力和力矩传感器辅助微创手术的微创性、高效性、安全性等具有重要的应用价值,能够保证快速且安全的开展诊断和治疗;
3、本发明根据使用需求沿光纤主体长度方向按预设波长间隔刻蚀光纤布拉格光栅,大于等于一根所述光纤布拉格光栅传感器截面设置有大于等于一个所述光纤布拉格光栅轴线与所在所述直线段轴线平行,大于等于一根所述光纤布拉格光栅传感器截面设置有大于等于一个所述光纤布拉格光栅轴线与所在所述直线段轴线形成夹角,可实现高精度的操作器械或仪器的多维力和力矩的数据采集。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

  1. 一种多维力和力矩传感器,其特征在于,包括:力和力矩传感器基底(11)、力和力矩传感器固定端(12)、通道(13)、力和力矩传感器安装端(18)以及光纤布拉格光栅传感器组;
    力和力矩传感器(1)一端设置所述力和力矩传感器固定端(12),所述力和力矩传感器固定端(12)连接所述力和力矩传感器基底(11),所述力和力矩传感器(1)另一端设置为所述力和力矩传感器安装端(18);
    所述力和力矩传感器(1)内部设置所述通道(13),所述通道(13)布置在所述力和力矩传感器基底(11)和所述力和力矩传感器固定端(12)内部;
    所述力和力矩传感器基底(11)上设置光纤布拉格光栅传感器装配槽组,所述光纤布拉格光栅传感器装配槽组内安装所述光纤布拉格光栅传感器组;
    所述力和力矩传感器基底(11)沿半剖面所在平面内设置大于等于一个拐角,所述拐角两端设置直线段,相邻两个所述直线段所在轴线形成夹角。
  2. 根据权利要求1所述多维力和力矩传感器,其特征在于:所述光纤布拉格光栅传感器装配槽组包括大于等于一个光纤布拉格光栅传感器装配槽。
  3. 根据权利要求2所述多维力和力矩传感器,其特征在于:所述光纤布拉格光栅传感器装配槽组从所述力和力矩传感器基底(11)一端延伸至所述力和力矩传感器基底(11)另一端;
    所述光纤布拉格光栅传感器装配槽允许盘绕在所述力和力矩传感器基底(11)上。
  4. 根据权利要求3所述多维力和力矩传感器,其特征在于:所述光纤布拉格光栅传感器组包括大于等于一个光纤布拉格光栅传感器;
    所述光纤布拉格光栅传感器安装在所述光纤布拉格光栅传感器装配槽中并与所述光纤布拉格光栅传感器装配槽一一对应。
  5. 根据权利要求4所述多维力和力矩传感器,其特征在于:所述光纤布拉格光栅传感器沿所述力和力矩传感器基底(11)延伸方向间隔刻蚀大于等于一个光纤布拉格光栅;
    大于等于一根所述光纤布拉格光栅传感器截面设置有大于等于一个所述光纤布拉格光栅轴线与所在所述直线段轴线平行;
    大于等于一根所述光纤布拉格光栅传感器截面设置有大于等于一个所述光纤布拉 格光栅轴线与所在所述直线段轴线形成夹角;
    所述通道(13)包括单腔或多腔,所述力和力矩传感器固定端(12)周向设置十字结构。
  6. 一种机械手,其特征在于:所述机械手采用权利要求5所述多维力和力矩传感器。
  7. 根据权利要求6所述机械手,其特征在于,包括:传感器转接杆(2)、光纤光栅传感器解调仪(3)、驱动装置(4)、给药装置(5)以及操作工具;
    所述力和力矩传感器(1)一端连接所述传感器转接杆(2),所述力和力矩传感器(1)另一端安装所述操作工具;
    所述传感器转接杆(2)允许连接所述光纤光栅传感器解调仪(3)、所述驱动装置(4)和所述给药装置(5)。
  8. 根据权利要求7所述机械手,其特征在于,所述传感器转接杆(2)包括:转接杆主杆体(21)、转接杆安装法兰(22)、转接杆传感器安装孔(23)以及转接杆工作通道(24);
    所述转接杆主杆体(21)一端设置所述转接杆安装法兰(22),所述转接杆主杆体(21)另一端设置所述转接杆传感器安装孔(23);
    所述转接杆传感器安装孔(23)安装所述力和力矩传感器(1);
    所述传感器转接杆(2)内部设置所述转接杆工作通道(24),所述转接杆工作通道(24)包括单腔或多腔,所述转接杆工作通道(24)连通所述通道(13);
    所述转接杆主杆体(21)沿轴向设置大于等于一个转接杆装配槽,所述转接杆装配槽与所述光纤布拉格光栅传感器装配槽组对应连接;
    所述转接杆主杆体(21)沿周向阵列均布凹槽结构。
  9. 根据权利要求8所述机械手,其特征在于,所述操作工具包括:被动钳(6)、驱动闭合钳(7)、驱动开口钳(8)以及给药针(9);
    所述力和力矩传感器(1)允许安装所述被动钳(6)、所述驱动闭合钳(7)、所述驱动开口钳(8)或所述给药针(9);
    所述被动钳(6)包括:被动钳夹持部分(61)、被动钳驱动部分(62)以及被动钳安装端(63);
    所述被动钳驱动部分(62)一端连接所述被动钳夹持部分(61),所述被动钳驱动部分(62)另一端连接所述被动钳安装端(63),所述被动钳安装端(63)安装在所述 力和力矩传感器安装端(18)上;
    所述驱动闭合钳(7)包括:驱动闭合钳夹持部分(71)和驱动闭合钳安装端(72);
    所述驱动闭合钳夹持部分(71)连接所述驱动闭合钳安装端(72),所述驱动闭合钳安装端(72)安装在所述力和力矩传感器安装端(18)上;
    所述驱动闭合钳夹持部分(71)包括:驱动闭合钳夹持部分固定组件(711)、驱动闭合钳夹持部分驱动组件(712)以及驱动闭合钳驱动组件安装孔(713);
    所述驱动闭合钳夹持部分固定组件(711)连接所述驱动闭合钳夹持部分驱动组件(712)一端并通过所述驱动闭合钳夹持部分驱动组件(712)拉动闭合,所述驱动闭合钳夹持部分驱动组件(712)另一端连接所述驱动闭合钳驱动组件安装孔(713),所述驱动闭合钳驱动组件安装孔(713)安装第一固定驱动丝,所述第一固定驱动丝连接所述驱动装置(4);
    所述驱动开口钳(8)包括:驱动开口钳夹持部分(81)和驱动开口钳安装端(82);
    所述驱动开口钳夹持部分(81)连接所述驱动开口钳安装端(82),所述驱动开口钳安装端(82)安装在所述力和力矩传感器安装端(18)上;
    所述驱动开口钳夹持部分(81)包括:驱动开口钳夹持部分驱动组件(811)、驱动开口钳夹持部分固定组件(812)以及驱动开口钳驱动组件安装孔(813);
    所述驱动开口钳夹持部分固定组件(812)连接所述驱动开口钳夹持部分驱动组件(811)一端并通过所述驱动开口钳夹持部分驱动组件(811)拉动张开,所述驱动开口钳夹持部分驱动组件(811)另一端连接所述驱动开口钳驱动组件安装孔(813),所述驱动开口钳驱动组件安装孔(813)安装第二固定驱动丝,所述第二固定驱动丝连接所述驱动装置(4);
    所述给药针(9)包括:给药针针管部分(91)和给药针安装端(92);
    所述给药针针管部分(91)连接所述给药针安装端(92),所述给药针安装端(92)安装在所述力和力矩传感器安装端(18)上,所述给药针(9)内部设置给药针通道,所述给药针通道连通所述通道(13)并通过所述通道(13)和所述转接杆工作通道(24)连通所述给药装置(5)。
  10. 根据权利要求9所述机械手,其特征在于:所述光纤布拉格光栅传感器组通过所述传感器转接杆(2)连接所述光纤光栅传感器解调仪(3);
    所述驱动闭合钳(7)设置第一驱动管路,所述第一驱动管路通过所述通道(13)和所述转接杆工作通道(24)连接所述驱动装置(4);
    所述驱动开口钳(8)设置第二驱动管路,所述第二驱动管路通过所述通道(13)和所述转接杆工作通道(24)连接所述驱动装置(4)。
PCT/CN2022/129812 2021-12-01 2022-11-04 多维力和力矩传感器及机械手 WO2023098395A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111459035.8 2021-12-01
CN202111459035.8A CN114216594B (zh) 2021-12-01 2021-12-01 一种机械手

Publications (1)

Publication Number Publication Date
WO2023098395A1 true WO2023098395A1 (zh) 2023-06-08

Family

ID=80699414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129812 WO2023098395A1 (zh) 2021-12-01 2022-11-04 多维力和力矩传感器及机械手

Country Status (2)

Country Link
CN (1) CN114216594B (zh)
WO (1) WO2023098395A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216594B (zh) * 2021-12-01 2022-11-11 上海交通大学 一种机械手

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586722B1 (en) * 1998-11-11 2003-07-01 European Community Represented By Commission Of The European Communities Strain sensor with optical fibre Bragg gratings
US20100272384A1 (en) * 2007-11-05 2010-10-28 Mathias Mueller Force-moment sensor
CN101874729A (zh) * 2005-03-04 2010-11-03 恩杜森斯公司 具有光纤负载感应能力的医疗装置系统
CN108593161A (zh) * 2018-04-20 2018-09-28 南开大学 一种基于光纤光栅的微创外科手术机器人三维力传感器
CN109813473A (zh) * 2019-03-18 2019-05-28 南开大学 一种基于光纤光栅的微创外科手术机器人四维力传感器
CN110455447A (zh) * 2019-08-09 2019-11-15 浙江华东工程安全技术有限公司 基于光纤光栅的管片弯螺栓应力长期监测装置及安装方法
CN111678539A (zh) * 2019-03-11 2020-09-18 新加坡国立大学 用于手术器械的光纤光栅传感器
CN114216594A (zh) * 2021-12-01 2022-03-22 上海交通大学 多维力和力矩传感器及机械手

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586722B1 (en) * 1998-11-11 2003-07-01 European Community Represented By Commission Of The European Communities Strain sensor with optical fibre Bragg gratings
CN101874729A (zh) * 2005-03-04 2010-11-03 恩杜森斯公司 具有光纤负载感应能力的医疗装置系统
US20100272384A1 (en) * 2007-11-05 2010-10-28 Mathias Mueller Force-moment sensor
CN108593161A (zh) * 2018-04-20 2018-09-28 南开大学 一种基于光纤光栅的微创外科手术机器人三维力传感器
CN111678539A (zh) * 2019-03-11 2020-09-18 新加坡国立大学 用于手术器械的光纤光栅传感器
CN109813473A (zh) * 2019-03-18 2019-05-28 南开大学 一种基于光纤光栅的微创外科手术机器人四维力传感器
CN110455447A (zh) * 2019-08-09 2019-11-15 浙江华东工程安全技术有限公司 基于光纤光栅的管片弯螺栓应力长期监测装置及安装方法
CN114216594A (zh) * 2021-12-01 2022-03-22 上海交通大学 多维力和力矩传感器及机械手

Also Published As

Publication number Publication date
CN114216594A (zh) 2022-03-22
CN114216594B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
US20200275983A1 (en) Steerable tube
WO2023098395A1 (zh) 多维力和力矩传感器及机械手
Lin et al. Biometry-based concentric tubes robot for vitreoretinal surgery
US5445140A (en) Endoscopic surgical device
Webster et al. Toward active cannulas: Miniature snake-like surgical robots
KR101837463B1 (ko) 섬세한 조직의 수술 조작을 위한 마이크로-포스 안내식 협동 제어
WO2009140688A2 (en) System and method for macro-micro distal dexterity enhancement in micro-surgery of the eye
He et al. IRIS: integrated robotic intraocular snake
KR20180071306A (ko) 의료 장비의 제조 방법
EP2446803A1 (en) Steerable, follow the leader device
CN107949338A (zh) 具有机械优势的手术末端执行器
US11457987B2 (en) Manipulator device and therapeutic and diagnostic methods
EP1486173A1 (en) Link device for surgical tool and surgical tool
KR20140008546A (ko) 수술기구, 이를 구비한 수술 로봇 및 원격 조종 로봇 시스템
Matich et al. A new single-port robotic system based on a parallel kinematic structure
Zeng et al. Motion coupling analysis for the decoupled design of a two-segment notched continuum robot
EP3244822B1 (en) Adjustable trajectory guide
US11097057B2 (en) Cannulas having wall strengthening features, and related systems and methods
CN116784774B (zh) 新型诊疗装置和诊疗系统
CN214017642U (zh) 一种手术用杆体及手术工具
US20230414306A1 (en) Integrated robotic intraocular snake
WO2019155316A1 (en) Adaptatively morphing surgical grasper
US20230145905A1 (en) Articulating Robotic Arm For Minimally Invasive Surgery, Surgical Robot And Method For Production
Wu et al. Discussion on the Feasibility of Soft Actuator as an Assistive Tool for Seniors in Minimally Invasive Surgery
Ying et al. Flexible steerable manipulator utilizing complementary configuration of multiple routing grooves and ball joints for stable omnidirectional bending

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900200

Country of ref document: EP

Kind code of ref document: A1