WO2023098249A1 - 一种辅助oct进行扫描的方法、pc终端、存储介质及系统 - Google Patents

一种辅助oct进行扫描的方法、pc终端、存储介质及系统 Download PDF

Info

Publication number
WO2023098249A1
WO2023098249A1 PCT/CN2022/120754 CN2022120754W WO2023098249A1 WO 2023098249 A1 WO2023098249 A1 WO 2023098249A1 CN 2022120754 W CN2022120754 W CN 2022120754W WO 2023098249 A1 WO2023098249 A1 WO 2023098249A1
Authority
WO
WIPO (PCT)
Prior art keywords
fundus
image
state
nth
current
Prior art date
Application number
PCT/CN2022/120754
Other languages
English (en)
French (fr)
Inventor
杨志
汪霄
Original Assignee
图湃(北京)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 图湃(北京)医疗科技有限公司 filed Critical 图湃(北京)医疗科技有限公司
Publication of WO2023098249A1 publication Critical patent/WO2023098249A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Definitions

  • the present application relates to the technical field of OCT scanning, in particular to a method for assisting OCT in scanning, a PC terminal, a storage medium and a system.
  • OCT Optical Coherence Tomography, optical coherence tomography, or optical coherence tomography
  • OCT optical Coherence Tomography, optical coherence tomography, or optical coherence tomography
  • OCT For clinical ophthalmology posterior segment OCT system, its main function is to observe the characteristics of ocular posterior segment tomographic lesions. As the scanning speed of OCT continues to increase, the scanning method of OCT is also constantly upgrading, from the early single-line scanning, radiation line scanning, grid scanning and other interval scanning methods to 3D scanning, 3D OCTA scanning and other full-area scanning methods.
  • the present application provides a method for assisting OCT in scanning, a PC terminal, a storage medium and a system.
  • the present application provides a method for assisting OCT in scanning, and adopts the following technical solution:
  • a method for assisting OCT in scanning comprising:
  • L fundus images constitute a complete frame of fundus image, and L is a natural number that is not zero;
  • the offset coefficient of the nth fundus image is obtained.
  • low-speed SLO imaging is used to assist OCT for acquisition and positioning, and the PC terminal receives the fundus image sent by the SLO device to determine the current fundus state.
  • a fundus image, a reference image of the nth fundus image, and a reference image of the reference image to obtain an offset coefficient, and send the obtained offset coefficient to the OCT device, so that the OCT device adjusts the scanning position according to the offset coefficient;
  • This method has low requirements on fundus acquisition speed and algorithm recognition equipment, and the obtained offset coefficient has high accuracy, which can effectively assist OCT equipment in scanning.
  • said acquiring the nth fundus image and its corresponding reference image includes:
  • the fundus image with the same id as the nth fundus image and the closest acquisition time is used as the reference image of the nth fundus image; wherein, id represents the fundus image in the whole frame of fundus image Corresponding position.
  • the judging whether the current state of the fundus is offset includes:
  • n is greater than 1 and not greater than L
  • the previous fundus state is the fundus state corresponding to the n-1th fundus image
  • the judging whether the current fundus acquisition state is normal based on the nth fundus image and the corresponding reference image includes:
  • the judging whether the fundus acquisition states corresponding to the n-1th to n-M+1th fundus images are all normal includes:
  • the judging whether the current fundus state is static or moving based on the previous state of the fundus includes:
  • the reference image of the nth fundus image determined in the n fundus images is acquired by the following method:
  • the fundus image with the same id as the nth fundus image the fundus image that is still in the state of the fundus and the closest acquisition time is used as the reference image of the nth fundus image.
  • the present application provides a PC terminal, which adopts the following technical solution:
  • a PC terminal including a memory and a processor, the memory stores a computer program that can be loaded by the processor and execute the OCT-assisted scanning method according to any one of the first aspect.
  • low-speed SLO imaging is used to assist OCT for acquisition and positioning, and the PC terminal receives the fundus image sent by the SLO device to determine the current fundus state.
  • a fundus image, a reference image of the nth fundus image, and a reference image of the reference image to obtain an offset coefficient, and send the obtained offset coefficient to the OCT device, so that the OCT device adjusts the scanning position according to the offset coefficient;
  • This method has low requirements on fundus acquisition speed and algorithm recognition equipment, and the obtained offset coefficient has high accuracy, which can effectively assist OCT equipment in scanning.
  • the present application provides a computer-readable storage medium, adopting the following technical solution:
  • a computer-readable storage medium storing a computer program capable of being loaded by a processor and executing the OCT-assisted scanning method according to any one of the first aspect.
  • low-speed SLO imaging is used to assist OCT for acquisition and positioning, and the PC terminal receives the fundus image sent by the SLO device to determine the current fundus state.
  • a fundus image, a reference image of the nth fundus image, and a reference image of the reference image to obtain an offset coefficient, and send the obtained offset coefficient to the OCT device, so that the OCT device adjusts the scanning position according to the offset coefficient;
  • This method has low requirements on fundus acquisition speed and algorithm recognition equipment, and the obtained offset coefficient has high accuracy, which can effectively assist OCT equipment in scanning.
  • the present application provides a system for assisting OCT in scanning, which adopts the following technical solution:
  • a system for assisting OCT in scanning including an OCT device, an SLO device, and the PC terminal described in the above-mentioned embodiments of the present disclosure
  • the PC terminal After acquiring the trigger command, the PC terminal sends the fundus image acquisition command and the acquisition mode to the SLO device according to the preset acquisition mode;
  • the SLO device After receiving the acquisition command and acquisition mode, the SLO device divides the overall acquisition area according to the acquisition mode, and acquires multiple actual acquisition areas; acquires fundus images according to the actual acquisition areas, and collects the acquired fundus images The images are sent to the PC terminal in sequence; wherein, the number of the actual collection areas is L;
  • the PC terminal After receiving the fundus image, the PC terminal acquires an offset coefficient, and uploads the offset coefficient to the OCT device.
  • low-speed SLO imaging is used to assist OCT for acquisition and positioning, and the PC terminal receives the fundus image sent by the SLO device to determine the current fundus state.
  • a fundus image, a reference image of the nth fundus image, and a reference image of the reference image to obtain an offset coefficient, and send the obtained offset coefficient to the OCT device, so that the OCT device adjusts the scanning position according to the offset coefficient;
  • This method has low requirements on fundus acquisition speed and algorithm recognition equipment, and the obtained offset coefficient has high accuracy, which can effectively assist OCT equipment in scanning.
  • FIG. 1 is a schematic flowchart of a method for assisting OCT in scanning provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a whole frame fundus image provided by an embodiment of the present application.
  • Fig. 3 is another schematic flow chart of the method for assisting OCT in scanning provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a PC terminal provided by an embodiment of the present application.
  • FIG. 5 is a structural block diagram of a system for assisting OCT in scanning provided by an embodiment of the present application.
  • This embodiment provides a method for assisting OCT in scanning, which is applied to a system for assisting OCT in scanning, as shown in FIG. 1 , the main flow of the method is described as follows (steps S101 to S105):
  • Step S101 Obtain the nth fundus image and its corresponding reference image; wherein, L fundus images form a complete frame of fundus image.
  • a trigger command is acquired; wherein, the trigger command may be acquired by a worker pressing a button.
  • the OCT device After obtaining the trigger command, according to the preset acquisition mode, send the data acquisition command and acquisition position data to the OCT device, and the OCT device scans according to the data acquisition command and acquisition position data; at the same time, send the fundus image acquisition command and acquisition mode to the SLO device .
  • the SLO device After receiving the acquisition command and acquisition mode, the SLO device divides the overall acquisition area according to the acquisition mode to obtain multiple actual acquisition areas; according to the actual acquisition area, it acquires multiple fundus images, and sends the acquired fundus images to the PC terminal in turn ; Among them, the number of actual collection areas is L.
  • Fig. 2 shows 3 whole frames of fundus images successively acquired, and each L portion of fundus images constitutes a complete frame of fundus images, and the id in the figure indicates the corresponding position of the fundus image in the whole frame of fundus image, and the fundus image
  • the id of the reference image of is the same as that of the fundus image.
  • the tracking moment of the nth fundus image and the tracking moment of the n-1th fundus image correspond to different positions of the whole frame of fundus image. Assuming that the fundus image with id equal to L in Fig. 2 (3) is the nth fundus image, then the fundus image with id equal to L in Fig. 2 (2) is the reference image of the nth fundus image.
  • Step S102 Determine whether the current state of the fundus is offset; if yes, execute step S103; if not, execute step S105.
  • step S1-S10 refer to the specific steps in FIG. 3 (steps S1-S10):
  • Step S1 Determine whether n is not greater than 1; if yes, execute step S2; if not, execute step S3.
  • Step S2 Determine that the current state of the fundus is static, and execute step S105.
  • Step S3 Judging whether n is greater than 1 and not greater than L; if yes, execute step S4; if not, execute step S5.
  • Step S4 Determine that the current state of fundus acquisition is normal, and execute step S8.
  • Step S5 Based on the nth fundus image and its corresponding reference image, determine whether the current fundus collection status is normal; if not, execute step S6; if yes, execute step S7.
  • step S5 the current blink state is determined based on the nth fundus image; the current eye movement state is determined based on the nth fundus image and a reference image of the nth fundus image.
  • I n (x, y) represents the nth fundus image
  • gx n represents the gradient parameter of the nth fundus image on the abscissa
  • gy n represents the gradient parameter of the nth fundus image on the ordinate.
  • the blink parameter is obtained, and the specific formula is as follows:
  • flag0 represents the blink parameter.
  • the blinking parameter is greater than the blinking threshold; if so, it is judged that the current blinking state is blinking; if not, it is judged that the current blinking state is non-blinking.
  • the specific method to determine the current eye movement state is as follows:
  • the initial offset coefficient of the nth fundus image is the offset coefficient between the nth fundus image and the reference image of the nth fundus image, the specific formula is as follows:
  • dx(n) represents the first parameter
  • dy(n) represents the second parameter
  • [dx(n), dy(n)] represents the initial offset coefficient of the nth fundus image
  • g(I n , R n ) represents the offset coefficient between the nth fundus image and the reference image of the nth fundus image
  • both R n and R n (x, y) represent the reference image of the nth fundus image.
  • pinv( ⁇ ) represents the matrix generalized inverse operation.
  • the image can be down-sampled here.
  • Step S6 Determine that the current state of the fundus is motion, and execute step S105.
  • Step S7 Determine whether the fundus acquisition states corresponding to the n-1th to n-M+1th fundus images are normal; if not, execute step S8; if yes, execute step S9; wherein, M>L .
  • Step S8 Obtain the previous state of the fundus, and judge whether the previous state of the fundus is movement; if yes, return to step S6; if not, return to step S2.
  • the prior fundus state is the fundus state corresponding to the n-1 fundus image, which means the state of the fundus when the n-1 fundus image is formed.
  • the current fundus acquisition status is normal. It is judged whether the previous fundus state is motion; if so, it is judged that the current fundus state is motion; if not, it is judged that the current fundus state is static.
  • step S105 is executed.
  • Step S9 Obtain the previous state of the fundus, and judge whether the previous state of the fundus is movement; if not, return to step S2; if yes, execute step S10.
  • Step S10 Determine that the current state of the fundus is offset.
  • Step S103 Based on the nth fundus image and the corresponding reference image, determine the reference image of the nth fundus image in the n fundus images.
  • the previously acquired fundus image with the same id, the fundus state is still and the acquisition time is the closest is used as the reference image of the nth fundus image.
  • the fundus image with id equal to L in Figure 2(3) is the nth fundus image
  • the fundus state corresponding to the fundus image with id equal to L in Figure 2(2) is not static
  • the fundus image with id equal to L in Figure 2(1) The fundus state corresponding to the fundus image is static
  • the fundus image with id equal to L in Fig. 2 (1) is the reference image of the nth fundus image.
  • Step S104 Obtain the offset coefficient of the nth fundus image based on the nth fundus image, the reference image of the nth fundus image and the reference image of the reference image, and execute step S105.
  • In represents the nth fundus image
  • B n represents the reference image of the nth fundus image.
  • the initial offset coefficient is an offset coefficient between the reference image of the nth fundus image and the reference image of the reference image of the nth fundus image.
  • the initial offset coefficient is [dx B , dy B ], and the calculation principle of [dx B , dy B ] is consistent with the calculation principle of g(I n , R n ) mentioned above, and will not be repeated here. It is worth noting that the reference image of the n-th fundus image is acquired before the n-th fundus image, so the initial offset coefficient of the reference image of the n-th fundus image is important in judging the eye movement of the reference image of the n-th fundus image. The status has been obtained.
  • [dx n ,dy n ] [dx B ,dy B ]+[dx1(n),dy1(n)];
  • [dx n ,dy n ] represents the offset coefficient of the nth fundus image.
  • H(n) represents the current fundus acquisition state
  • f(n) represents the current fundus state
  • the corresponding current fundus collection state is static.
  • the reference image of the nth fundus image is the nth fundus image itself.
  • the embodiment of the present application further provides a PC terminal.
  • the PC terminal 200 includes a memory 201 and a processor 202 .
  • the PC terminal 200 can be implemented in various forms, including devices such as mobile phones, tablet computers, palmtop computers, notebook computers, and desktop computers.
  • the memory 201 can be used to store instructions, programs, codes, code sets or instruction sets.
  • the memory 201 may include a program storage area and a data storage area, wherein the program storage area may store instructions for implementing the operating system, instructions for at least one function (such as receiving a new fundus image and obtaining a reference to the nth fundus image) images, etc.) and instructions for implementing the OCT-assisted scanning method provided by the above embodiments; the storage data area can store the data involved in the OCT-assisted scanning method provided by the above embodiments.
  • Processor 202 may include one or more processing cores.
  • the processor 202 runs or executes instructions, programs, code sets or instruction sets stored in the memory 201, calls data stored in the memory 201, executes various functions of the present application and processes data.
  • the processor 202 may be an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a digital signal processor (Digital Signal Processor, DSP), a digital signal processing device (Digital Signal Processing Device, DSPD), a programmable logic device (Programmable Logic At least one of Device, PLD), Field Programmable Gate Array (Field Programmable Gate Array, FPGA), Central Processing Unit (Central Processing Unit, CPU), controller, microcontroller and microprocessor. It can be understood that, for different devices, the electronic device used to realize the function of the processor 202 may also be other, which is not specifically limited in this embodiment of the present application.
  • the embodiment of the present application provides a computer-readable storage medium, such as: U disk, mobile hard disk, read-only memory (Read Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • a computer-readable storage medium such as: U disk, mobile hard disk, read-only memory (Read Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the computer-readable storage medium stores a computer program that can be loaded by a processor and execute the OCT-assisted scanning method of the above embodiment.
  • an embodiment of the present application further provides a system for assisting OCT in scanning.
  • FIG. 5 is a structural block diagram of a system for assisting OCT in scanning provided by an embodiment of the present application.
  • the device mainly includes a PC terminal 301 , an OCT device 302 and an SLO device 303 .
  • the PC terminal 301 acquires the trigger command; wherein, the trigger command can be acquired by a worker pressing a button.
  • the PC terminal 301 After obtaining the trigger command, the PC terminal 301 sends the data collection command and the collection position data to the OCT device 302 according to the preset collection mode, and sends the fundus image collection command and the collection mode to the SLO device 303 .
  • the preset acquisition mode may be a line acquisition mode or a block acquisition mode.
  • the SLO device 303 After receiving the acquisition command and acquisition mode, the SLO device 303 divides the overall acquisition area according to the acquisition mode to obtain multiple actual acquisition areas; collects multiple fundus images according to the actual acquisition areas, and sends the acquired fundus images to the PC in sequence Terminal 301; wherein, the number of actual acquisition areas is L, and the L fundus images acquired constitute a complete frame of fundus images.
  • the fundus image in the line acquisition mode is shown in FIG. 2 .
  • the id in the figure indicates the corresponding position of the fundus image in the whole frame of the fundus image, and the reference image of the fundus image is the same as the id of the fundus image.
  • Different collection methods can also be used.
  • the round-trip collection method is used, which means that the order of the obtained ids is in the order of first from top to bottom, then from bottom to top, and then from top to bottom, and then from bottom to top. It is 1,2,...,L,L,L-1,...,1,1,...; the collection method is collected in order from top to bottom, and the order of the obtained ids is 1,2, ..., L, 1, 2, ..., L, 1, ....
  • the SLO device 303 It takes a long time for the SLO device 303 to directly collect the whole frame of the fundus image, and this time is defined as t.
  • the SLO device 303 will transmit the fundus image to the PC terminal 301 every time it collects 1/L frame of fundus image, and the PC terminal 301 will track and detect the 1/L frame of fundus image in turn. At this time, the tracking rate will be changed from the original 1/t is raised to L/t.
  • the principle of the line acquisition mode is to split the entire frame of fundus image horizontally or vertically.
  • the principle of the block acquisition mode is to split the entire frame of fundus image according to the horizontal and vertical directions.
  • the acquisition method is the same as that of the line acquisition mode.
  • the principles of the collection methods are the same, and will not be repeated here.
  • the received n-L fundus images are taken as the reference images of the nth fundus images.
  • the reference image of the nth fundus image is determined in the n fundus images by the following method:
  • the collected position data includes (x 0 ,y 0 ),(x 1 ,y 0 ), whil,(x L ,y 0 ); when the block collection mode is used and only When collecting once, the collected position data includes (x 0 ,y 0 ),(x 1 ,y 0 ), whil,(x L ,y 0 ); (x 0 ,y 1 ),(x 1 ,y 1 ), whil,(x L ,y 1 ); «,(x 0 ,y L ),(x 1 ,y L ), whil,(x L ,y L ).
  • the OCT device 302 After receiving the data collection command and the collection position data, the OCT device 302 collects the fundus data according to the collection position data, that is, scans according to the collection position data, and sends the scanned OCT image to the PC terminal 301, and the PC terminal 301 performs the operation on the OCT image. show.
  • the PC terminal 301 After receiving the fundus image, the PC terminal 301 acquires the offset coefficient, and uploads the acquired offset coefficient to the OCT device 302 .
  • the PC terminal 301 determines that the current state of the fundus is motion, because the current state of the fundus is motion, it means that there is currently eye movement or blinking, which will cause abnormal data collected by the OCT device 302, so the PC terminal 301 sends to the OCT device 302 Pause the command to collect data.
  • the OCT device 302 After receiving the command to suspend data collection, the OCT device 302 temporarily collects fundus data, that is, suspends scanning, and then continues scanning after the eyes are stable, thereby avoiding misalignment operations in large-displacement scenarios and solving the problem of There is a risk of misjudgment in the detection of large longitudinal displacement motion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种辅助OCT进行扫描的方法、PC终端、存储介质及系统,该方法包括:获取第n份眼底图像和与其对应的参考图像;其中,L份眼底图像构成完整的一帧眼底图,L是不为零的自然数;判断当前眼底状态是否为偏移;若否,则执行接收步骤,接收步骤为接收新的眼底图像,n=n+1,直至当前眼底状态为偏移状态;若是,则基于第n份眼底图像和与其对应的参考图像,在n份眼底图像中确定出第n份眼底图像的基准图像;基于第n份眼底图像、第n份眼底图像的基准图像和该基准图像的参考图像,得到第n份眼底图像的偏移系数。该方法及系统允许在低速SLO成像的情况下辅助OCT设备进行扫描位置的准确调整。

Description

一种辅助OCT进行扫描的方法、PC终端、存储介质及系统 技术领域
本申请涉及OCT扫描的技术领域,尤其是涉及一种辅助OCT进行扫描的方法、PC终端、存储介质及系统。
背景技术
OCT(Optical Coherence Tomography,光学相干层析成像,或称光相干断层成像)是一种高灵敏度、高分辨率、高速度、无入侵的成像方式,已被广泛应用于眼底疾病的诊断中,对眼科疾病的检测和治疗有着重要意义。
对于临床眼科后节OCT系统,其主要功能在观测眼后节断层病变特征。随着OCT扫描速度不断升高,OCT的扫描方式也在不断升级,从早期的单线扫描、辐射线扫描、栅格扫描等间隔扫描方式向3D扫描、3D OCTA扫描等全区域扫描方式变化。
但是对于全区域扫描方式而言,由于在慢扫描方向上受检测者眼部运动影响,其实际扫描区域会发生偏移,从而导致成像失败,因此利用SLO检测眼部运动来调整扫描位置将是在OCT扫描中一个必不可少的过程。
相对于已公开的眼底追踪技术,Vienola K V,Braaf B,Sheehy C K,et al.Real-time eye motion compensation for OCT imaging with tracking SLO[J].Biomedical optics express,2012,3(11):2950-2963,其对消除眼部运动影响有很好的矫正效果,但是存在以下问题:1、对眼底扫描速度较高;2、对算法识别设备要求较高;3、对纵向大位移运动检测存在误判风险。
发明内容
为了辅助OCT设备进行扫描位置调整,本申请提供一种辅助OCT进行扫描的方法、PC终端、存储介质及系统。
第一方面,本申请提供一种辅助OCT进行扫描的方法,采用如下的技术方案:
一种辅助OCT进行扫描的方法,包括:
获取第n份眼底图像和与其对应的参考图像;其中,L份眼底图像构成完整的一帧眼底图,L是不为零的自然数;
判断当前眼底状态是否为偏移;
若否,则执行接收步骤,所述接收步骤为接收新的眼底图像,n=n+1,直至当前眼底状态为偏移状态;
若是,则基于第n份眼底图像和与其对应的参考图像,在n份眼底图像中确定出所述第n份眼底图像的基准图像;
基于所述第n份眼底图像、第n份眼底图像的基准图像和该基准图像的参考图像,得到所述第n份眼底图像的偏移系数。
通过采用上述技术方案,基于眼底追踪技术,用低速SLO成像辅助OCT进行采集定位,PC终端接收SLO设备发送的眼底图像,确定当前眼底状态,在当前眼底状态为偏移的情况下,通过第n份眼底图像、第n份眼底图像的基准图像和该基准图像的参考图像,得到偏移系数,并将获取的偏移系数发送至OCT设备,以便OCT设备根据偏移系数对扫描位置进行调整;该方法对眼底采集速度和算法识别设备要求低,获取的偏移系数精准度高,能够有效辅助OCT设备进行扫描。
优选的,所述获取第n份眼底图像和与其对应的参考图像,包括:
将在前获取的眼底图像中与所述第n份眼底图像同id的并且获取时间最接近的眼底图像作为第n份眼底图像的参考图像;其中,id表示眼底图像在整帧眼底图中的对应位置。
优选的,所述判断当前眼底状态是否为偏移,包括:
判断n是否不大于1;
若是,则判定当前眼底状态为静止;
若否,则判断n是否大于1,并且不大于L;
若是,则判定当前眼底采集状态为正常;
若否,则基于所述第n份眼底图像和与其对应的参考图像,判断所述当前眼底采集状态是否为正常;
若是,则判断第n-1份至第n-M+1份眼底图像所对应的眼底采集状态是否均为正常;其中,M>L;
若是,则获取在先眼底状态,判断所述在先眼底状态是否为运动;其中,所述在先眼底状态为所述第n-1份眼底图像所对应的眼底状态;
若是,则判定所述当前眼底状态为偏移。
优选的,所述基于所述第n份眼底图像和与其对应的参考图像,判断所述当前眼底采集状态是否为正常,包括:
基于所述第n份眼底图像,确定当前眨眼状态;
基于所述第n份眼底图像和第n份眼底图像的参考图像,确定当前眼动状态;
判断是否所述当前眨眼状态为非眨眼,并且所述当前眼动状态为非眼动;
若是,则判定所述当前眼底采集状态为正常;
若否,则判定所述当前眼底采集状态为异常。
优选的,所述判断第n-1份至第n-M+1份眼底图像所对应的眼底采集状态是否均为正常,包括:
若否,则获取在先眼底状态,基于所述在先眼底状态,判断所述当前眼底状态为静止还是运动, 返回所述接收步骤。
优选的,所述基于所述在先眼底状态,判断所述当前眼底状态为静止还是运动,包括:
判断所述在先眼底状态是否为运动;
若是,则判定所述当前眼底状态为运动;
若否,则判定所述当前眼底状态为静止。
优选的,所述在n份眼底图像中确定出所述第n份眼底图像的基准图像通过如下方式获取:
将在前获取的眼底图像中与所述第n份眼底图像同id的、眼底状态静止并且获取时间最接近的眼底图像作为第n份眼底图像的基准图像。
第二方面,本申请提供一种PC终端,采用如下的技术方案:
一种PC终端,包括存储器和处理器,所述存储器上存储有能够被处理器加载并执行第一方面任一项所述的辅助OCT进行扫描的方法的计算机程序。
通过采用上述技术方案,基于眼底追踪技术,用低速SLO成像辅助OCT进行采集定位,PC终端接收SLO设备发送的眼底图像,确定当前眼底状态,在当前眼底状态为偏移的情况下,通过第n份眼底图像、第n份眼底图像的基准图像和该基准图像的参考图像,得到偏移系数,并将获取的偏移系数发送至OCT设备,以便OCT设备根据偏移系数对扫描位置进行调整;该方法对眼底采集速度和算法识别设备要求低,获取的偏移系数精准度高,能够有效辅助OCT设备进行扫描。
第三方面,本申请提供一种计算机可读存储介质,采用如下的技术方案:
一种计算机可读存储介质,存储有能够被处理器加载并执行第一方面任一项所述的辅助OCT进行扫描的方法的计算机程序。
通过采用上述技术方案,基于眼底追踪技术,用低速SLO成像辅助OCT进行采集定位,PC终端接收SLO设备发送的眼底图像,确定当前眼底状态,在当前眼底状态为偏移的情况下,通过第n份眼底图像、第n份眼底图像的基准图像和该基准图像的参考图像,得到偏移系数,并将获取的偏移系数发送至OCT设备,以便OCT设备根据偏移系数对扫描位置进行调整;该方法对眼底采集速度和算法识别设备要求低,获取的偏移系数精准度高,能够有效辅助OCT设备进行扫描。
第四方面,本申请提供一种辅助OCT进行扫描的系统,采用如下的技术方案:
一种辅助OCT进行扫描的系统,包括OCT设备、SLO设备和本公开上述实施例所述的PC终端;
所述PC终端在获取触发命令之后,根据预设的采集模式,向所述SLO设备发送眼底图像采集命令和所述采集模式;
所述SLO设备在接收所述采集命令和采集模式之后,根据所述采集模式,对整体采集区域进行划分,获取多个实际采集区域;按照所述实际采集区域,采集眼底图像,将采集的眼底图像依次发 送至所述PC终端;其中,所述实际采集区域的个数为L个;
所述PC终端在接收眼底图像之后,获取偏移系数,将所述偏移系数上传至OCT设备。
通过采用上述技术方案,基于眼底追踪技术,用低速SLO成像辅助OCT进行采集定位,PC终端接收SLO设备发送的眼底图像,确定当前眼底状态,在当前眼底状态为偏移的情况下,通过第n份眼底图像、第n份眼底图像的基准图像和该基准图像的参考图像,得到偏移系数,并将获取的偏移系数发送至OCT设备,以便OCT设备根据偏移系数对扫描位置进行调整;该方法对眼底采集速度和算法识别设备要求低,获取的偏移系数精准度高,能够有效辅助OCT设备进行扫描。
附图说明
图1是本申请实施例提供的辅助OCT进行扫描的方法的流程示意图。
图2是本申请实施例提供的整帧眼底图的示意图。
图3是本申请实施例提供的辅助OCT进行扫描的方法的另一流程示意图。
图4是本申请实施例提供的PC终端的结构示意图。
图5是本申请实施例提供的辅助OCT进行扫描的系统的结构框图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本实施例提供一种辅助OCT进行扫描的方法,应用于辅助OCT进行扫描的系统,如图1所示,该方法的主要流程描述如下(步骤S101~S105):
步骤S101:获取第n份眼底图像和与其对应的参考图像;其中,L份眼底图像构成完整的一帧眼底图。
本实施例中,获取触发命令;其中,触发命令可以为通过工作人员按下按钮来获取。
在获取触发命令之后,根据预设的采集模式,向OCT设备发送数据采集命令和采集位置数据,OCT设备根据数据采集命令和采集位置数据进行扫描;同时向SLO设备发送眼底图像采集命令和采集模式。
SLO设备在接收采集命令和采集模式之后,根据采集模式,对整体采集区域进行划分,获取多个实际采集区域;按照实际采集区域,采集多份眼底图像,将采集的眼底图像依次发送至PC终端;其中,实际采集区域的个数为L个。
依次接收SLO设备发送的n份眼底图像,将在前获取的、同id的并且获取时间最接近的眼底图像作为第n份眼底图像的参考图像;其中,id表示眼底图像在整帧眼底图中的对应位置。参照图2,图2中展示先后获取的3帧整帧眼底图,每L份眼底图像构成完整的一帧眼底图,图中的id表 示眼底图像在整帧眼底图中的对应位置,眼底图像的参考图像与眼底图像的id相同,可见第n份眼底图像的追踪时刻和第n-1份眼底图像的追踪时刻所对应整帧眼底图的位置并不相同。假设图2(3)中id等于L的眼底图像为第n份眼底图像,则图2(2)中id等于L的眼底图像为第n份眼底图像的参考图像。
步骤S102:判断当前眼底状态是否为偏移;若是,则执行步骤S103;若否,则执行步骤S105。
具体的,参照图3中的具体步骤(步骤S1~S10):
步骤S1:判断n是否不大于1;若是,则执行步骤S2;若否,则执行步骤S3。
步骤S2:判定当前眼底状态为静止,执行步骤S105。
步骤S3:判断n是否大于1,并且不大于L;若是,则执行步骤S4;若否,则执行步骤S5。
步骤S4:判定当前眼底采集状态为正常,执行步骤S8。
步骤S5:基于第n份眼底图像和与其对应的参考图像,判断当前眼底采集状态是否为正常;若否,则执行步骤S6;若是,则执行步骤S7。
在步骤S5中,基于第n份眼底图像,确定当前眨眼状态;基于第n份眼底图像和第n份眼底图像的参考图像,确定当前眼动状态。
其中,确定当前眨眼状态的具体方法如下:
提取第n份眼底图像的梯度参数,具体公式如下:
gx n=I n(x,y)-I n(x-1,y);
gy n=I n(x,y)-I n(x,y-1);
其中,I n(x,y)表示第n份眼底图像,gx n表示第n份眼底图像在横坐标上的梯度参数,gy n表示第n份眼底图像在纵坐标上的梯度参数。
通过梯度参数,得到眨眼参数,具体公式如下:
Figure PCTCN2022120754-appb-000001
其中,flag0表示眨眼参数。
判断眨眼参数是否大于眨眼阈值;若是,则判定当前眨眼状态为眨眼;若否,则判定当前眨眼状态为非眨眼。
确定当前眼动状态的具体方法如下:
获取第n份眼底图像的初始偏移系数,初始偏移系数为第n份眼底图像和第n份眼底图像的参考图像之间的偏移系数,具体公式如下:
Figure PCTCN2022120754-appb-000002
其中,dx(n)表示第一参数,dy(n)表示第二参数,[dx(n),dy(n)]表示第n份眼底图像的初始 偏移系数,g(I n,R n)表示第n份眼底图像和第n份眼底图像的参考图像之间的偏移系数,R n和R n(x,y)均表示第n份眼底图像的参考图像。
对I n(x+dx(n),y+dy(n))一阶泰勒展开,得到:
I n(x+dx(n),y+dy(n))≈I n(x,y)+dx(n)*gx n+dy(n)*gy n
因此可以得到:
[dx(n),dy(n)]≈pinv([gx n,gy n])*(R(x,y)-I n(x,y));
这里pinv(·)表示矩阵广义逆运算。为了提升算法实时性,这里可以对图像进行降采样。
判断是否第一参数大于眼动阈值,并且第二参数也大于眼动阈值;若是,则判定当前眼动状态为眼动;若否,则判定当前眼动状态为非眼动。
判断是否当前眨眼状态为非眨眼,并且当前眼动状态为非眼动;若是,则判定当前眼底采集状态为正常;若否,则判定当前眼底采集状态为异常。
步骤S6:判定当前眼底状态为运动,执行步骤S105。
步骤S7:判断第n-1份至第n-M+1份眼底图像所对应的眼底采集状态是否均为正常;若否,则执行步骤S8;若是,则执行步骤S9;其中,M>L。
步骤S8:获取在先眼底状态,判断在先眼底状态是否为运动;若是,则返回步骤S6;若否,则返回步骤S2。
其中,在先眼底状态为第n-1份眼底图像所对应的眼底状态,意思就是在第n-1份眼底图像成像时,眼底的状态。
此时,已经得知当前眼底采集状态为正常。判断在先眼底状态是否为运动;若是,则判定当前眼底状态为运动;若否,则判定当前眼底状态为静止。
在判断出当前眼底状态为静止还是运动之后,执行步骤S105。
步骤S9:获取在先眼底状态,判断在先眼底状态是否为运动;若否,则则返回步骤S2;若是,则执行步骤S10。
步骤S10:判定当前眼底状态为偏移。
步骤S103:基于第n份眼底图像和与其对应的参考图像,在n份眼底图像中确定出第n份眼底图像的基准图像。
本实施例中,将在前获取的、同id的、眼底状态静止并且获取时间最接近的眼底图像作为第n份眼底图像的基准图像。假设图2(3)中id等于L的眼底图像为第n份眼底图像,图2(2)中id等于L的眼底图像所对应的眼底状态不是静止,图2(1)中id等于L的眼底图像所对应的眼底状态为静止,则图2(1)中id等于L的眼底图像为第n份眼底图像的基准图像。
步骤S104:基于第n份眼底图像、第n份眼底图像的基准图像和该基准图像的参考图像,得到第n份眼底图像的偏移系数,执行步骤S105。
本实施中,获取第n份眼底图像与其基准图像之间的偏移系数,该偏移系数为[dx1(n),dy1(n)],[dx1(n),dy1(n)]=g(I n,B n),g(I n,B n)的计算原理与上述中g(I n,R n)的计算原理一致,在此不再赘述。其中,I n表示第n份眼底图像,B n表示第n份眼底图像的基准图像。
获取第n份眼底图像的基准图像的初始偏移系数,该初始偏移系数为第n份眼底图像的基准图像和第n份眼底图像的基准图像的参考图像之间的偏移系数。该初始偏移系数为[dx B,dy B],[dx B,dy B]的计算原理与上述中g(I n,R n)的计算原理一致,在此不再赘述。值得注意的是,第n份眼底图像的基准图像在第n份眼底图像之前获取,因此,第n份眼底图像的基准图像的初始偏移系数在判断第n份眼底图像的基准图像的眼动状态时已经获取。
接下来,获取第n份眼底图像的偏移系数,其具体计算公式如下:
[dx n,dy n]=[dx B,dy B]+[dx1(n),dy1(n)];
其中,[dx n,dy n]表示第n份眼底图像的偏移系数。
综上,可以用下列公式判断当前眼底状态:
Figure PCTCN2022120754-appb-000003
其中,H(n)表示当前眼底采集状态;f(n)表示当前眼底状态;H(n)&H(n-1)&......&H(n-M+1)&(n≥L)=1表示H(n)=1,H(n-1)=1,H(n-2)=1,H(n-3)=1,H(n-4)=1,并且n≥L;H(n)&H(n-1)&......&H(n-M+1)&(n≥L)=0表示在连续L份眼底图像中,至少有一份眼底图像对应的当前眼底采集状态为静止。
值得注意的是,当n不大于1时,第n份眼底图像的参考图像为第n份眼底图像自身。
步骤S105:接收新的眼底图像,n=n+1,并返回步骤S101。
为了更好地执行上述方法的程序,本申请实施例还提供一种PC终端,如图4所示,PC终端200包括存储器201和处理器202。
PC终端200可以以各种形式来实施,包括手机、平板电脑、掌上电脑、笔记本电脑和台式计算机等设备。
其中,存储器201可用于存储指令、程序、代码、代码集或指令集。存储器201可以包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于至少一个功能的指令(比如接收新的眼底图像和获取第n份眼底图像的参考图像等)以及用于实现上述实施例提供的辅 助OCT进行扫描的方法的指令等;存储数据区可存储上述实施例提供的辅助OCT进行扫描的方法中涉及到的数据等。
处理器202可以包括一个或者多个处理核心。处理器202通过运行或执行存储在存储器201内的指令、程序、代码集或指令集,调用存储在存储器201内的数据,执行本申请的各种功能和处理数据。处理器202可以为特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(Programmable Logic Device,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、控制器、微控制器和微处理器中的至少一种。可以理解地,对于不同的设备,用于实现上述处理器202功能的电子器件还可以为其它,本申请实施例不作具体限定。
本申请实施例提供一种计算机可读存储介质,例如包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。该计算机可读存储介质存储有能够被处理器加载并执行上述实施例的辅助OCT进行扫描的方法的计算机程序。
本申请具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。
为了更好地实施以上方法,本申请实施例还提供了一种辅助OCT进行扫描的系统。
图5为本申请实施例提供的一种辅助OCT进行扫描的系统的结构框图,如图5所示,该装置主要包括PC终端301、OCT设备302和SLO设备303。
PC终端301获取触发命令;其中,触发命令可以为通过工作人员按下按钮来获取。
PC终端301在获取触发命令之后,根据预设的采集模式,向OCT设备302发送数据采集命令和采集位置数据,并向SLO设备303发送眼底图像采集命令和采集模式。
其中,预设的采集模式可以为线采集模式或者块采集模式。
SLO设备303在接收采集命令和采集模式之后,根据采集模式,对整体采集区域进行划分,获取多个实际采集区域;按照实际采集区域,采集多份眼底图像,将采集的眼底图像依次发送至PC终端301;其中,实际采集区域的个数为L个,采集的其中L份眼底图像构成完整的一帧眼底图。
参照图2,图2中展示的为线采集模式下的眼底图,图中的id表示眼底图像在整帧眼底图中的对应位置,眼底图像的参考图像与眼底图像的id相同。还可以采用不同的采集方式,例如,采用往返采集方式,意思就是按照先从上往下,然后从下往上,再重复从上往下,然后从下往上的顺序, 获取的id的顺序为1,2,……,L,L,L-1,……,1,1,……;采用按照从上往下的顺序进行采集的采集方式,获取的id的顺序为1,2,……,L,1,2,……,L,1,……。
SLO设备303直接采集整帧眼底图所用的时间较长,将该时间定义为t。为了提高检测速率,SLO设备303每采集到1/L帧眼底图像时,就将眼底图像传输至PC终端301,PC终端301依次对1/L帧眼底图像进行追踪检测,此时追踪速率将由原始1/t提升至L/t。
线采集模式的原理是将整帧眼底图按照横向或纵向进行拆分,块采集模式的原理是将整帧眼底图既按照横向,也按照纵向进行拆分,其采集方式与线采集模式下的采集方式的原理一致,在此不再赘述。
假设采用的为线采集模式,并且采用按照从上往下的顺序对眼底图像进行采集,则将接收的第n-L份眼底图像作为第n份眼底图像的参考图像。同理,在n份眼底图像中确定出第n份眼底图像的基准图像通过如下方式获取:
判断第(n-a*L)份眼底图像是否为静止状态;其中,a为正整数,a的初始值为1;若是,则将第(n-a*L)份眼底图像作为第n份眼底图像的基准图像;若否,则a=a+1,并返回判断第(n-a*L)份眼底图像是否为静止状态的步骤。
当为线采集模式并且仅采集1次时,采集位置数据包括(x 0,y 0),(x 1,y 0),……,(x L,y 0);当为块采集模式并且仅采集1次时,采集位置数据包括(x 0,y 0),(x 1,y 0),……,(x L,y 0);(x 0,y 1),(x 1,y 1),……,(x L,y 1);……,(x 0,y L),(x 1,y L),……,(x L,y L)。
OCT设备302在接收数据采集命令和采集位置数据之后,按照采集位置数据进行眼底数据采集,也就是按照采集位置数据进行扫描,将扫描的OCT图像发送至PC终端301,PC终端301对OCT图像进行显示。
PC终端301在接收眼底图像之后,获取偏移系数,将获取的偏移系数上传至OCT设备302。
但是,在PC终端301判定出当前眼底状态为运动时,因为当前眼底状态为运动,则表示当前存在眼动或者眨眼情况,会导致OCT设备302采集数据异常,因此PC终端301向OCT设备302发送暂停采集数据命令,OCT设备302在接收暂停采集数据命令之后,暂时眼底数据采集,也就是暂停扫描,在眼睛稳定后再继续扫描,从而避免在大位移场景下的误偏移操作,解决了对纵向大位移运动检测存在误判风险。
上述实施例提供的方法中的各种变化方式和具体实例同样适用于本实施例的PC终端,通过前述对辅助OCT进行扫描的方法的详细描述,本领域技术人员可以清楚的知道本实施例中的PC终端的实施方法,为了说明书的简洁,在此不再详述。

Claims (10)

  1. 一种辅助OCT进行扫描的方法,其特征在于,包括:
    获取第n份眼底图像和与其对应的参考图像;其中,L份眼底图像构成完整的一帧眼底图,L是不为零的自然数;
    判断当前眼底状态是否为偏移;
    若否,则执行接收步骤,所述接收步骤为接收新的眼底图像,n=n+1,直至当前眼底状态为偏移状态;
    若是,则基于第n份眼底图像和与其对应的参考图像,在n份眼底图像中确定出所述第n份眼底图像的基准图像;
    基于所述第n份眼底图像、第n份眼底图像的基准图像和该基准图像的参考图像,得到所述第n份眼底图像的偏移系数。
  2. 根据权利要求1所述的方法,其特征在于,所述获取第n份眼底图像和与其对应的参考图像,包括:
    将在前获取的眼底图像中与所述第n份眼底图像同id的并且获取时间最接近的眼底图像作为第n份眼底图像的参考图像;其中,id表示眼底图像在整帧眼底图中的对应位置。
  3. 根据权利要求2所述的方法,其特征在于,所述判断当前眼底状态是否为偏移,包括:
    判断n是否不大于1;
    若是,则判定当前眼底状态为静止;
    若否,则判断n是否大于1,并且不大于L;
    若是,则判定当前眼底采集状态为正常;
    若否,则基于所述第n份眼底图像和与其对应的参考图像,判断所述当前眼底采集状态是否为正常;
    若是,则判断第n-1份至第n-M+1份眼底图像所对应的眼底采集状态是否均为正常;其中,M>L;
    若是,则获取在先眼底状态,判断所述在先眼底状态是否为运动;其中,所述在先眼底状态为所述第n-1份眼底图像所对应的眼底状态;
    若是,则判定所述当前眼底状态为偏移。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述第n份眼底图像和与其对应的参考图像,判断所述当前眼底采集状态是否为正常,包括:
    基于所述第n份眼底图像,确定当前眨眼状态;
    基于所述第n份眼底图像和第n份眼底图像的参考图像,确定当前眼动状态;
    判断是否所述当前眨眼状态为非眨眼,并且所述当前眼动状态为非眼动;
    若是,则判定所述当前眼底采集状态为正常;
    若否,则判定所述当前眼底采集状态为异常。
  5. 根据权利要求3或4所述的方法,其特征在于,所述判断第n-1份至第n-M+1份眼底图像所对应的眼底采集状态是否均为正常,包括:
    若否,则获取在先眼底状态,基于所述在先眼底状态,判断所述当前眼底状态为静止还是运动,返回所述接收步骤。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述在先眼底状态,判断所述当前眼底状态为静止还是运动,包括:
    判断所述在先眼底状态是否为运动;
    若是,则判定所述当前眼底状态为运动;
    若否,则判定所述当前眼底状态为静止。
  7. 根据权利要求6所述的方法,其特征在于,所述在n份眼底图像中确定出所述第n份眼底图像的基准图像通过如下方式获取:
    将在前获取的眼底图像中与所述第n份眼底图像同id的、眼底状态静止并且获取时间最接近的眼底图像作为第n份眼底图像的基准图像。
  8. 一种PC终端,其特征在于,包括存储器和处理器,所述存储器上存储有能够被所述处理器加载并执行如权利要求1至7中任一项所述方法的计算机程序。
  9. 一种计算机可读存储介质,其特征在于,存储有能够被处理器加载并执行如权利要求1至7中任一项所述方法的计算机程序。
  10. 一种辅助OCT进行扫描的系统,其特征在于,包括OCT设备、SLO设备和权利要求8所述的PC终端;
    所述PC终端在获取触发命令之后,根据预设的采集模式,向所述SLO设备发送眼底图像采集命令和所述采集模式;
    所述SLO设备在接收所述采集命令和采集模式之后,根据所述采集模式,对整体采集区域进行划分,获取多个实际采集区域;按照所述实际采集区域,采集眼底图像,将采集的眼底图像依次发送至所述PC终端;其中,所述实际采集区域的个数为L个;
    所述PC终端在接收眼底图像之后,获取偏移系数,将所述偏移系数上传至OCT设备。
PCT/CN2022/120754 2021-11-30 2022-09-23 一种辅助oct进行扫描的方法、pc终端、存储介质及系统 WO2023098249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111451885.3 2021-11-30
CN202111451885.3A CN114343566B (zh) 2021-11-30 2021-11-30 一种辅助oct进行扫描的方法、pc终端、存储介质及系统

Publications (1)

Publication Number Publication Date
WO2023098249A1 true WO2023098249A1 (zh) 2023-06-08

Family

ID=81096461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120754 WO2023098249A1 (zh) 2021-11-30 2022-09-23 一种辅助oct进行扫描的方法、pc终端、存储介质及系统

Country Status (2)

Country Link
CN (1) CN114343566B (zh)
WO (1) WO2023098249A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114343566B (zh) * 2021-11-30 2022-11-01 图湃(北京)医疗科技有限公司 一种辅助oct进行扫描的方法、pc终端、存储介质及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228011A1 (en) * 2005-04-06 2006-10-12 Everett Matthew J Method and apparatus for measuring motion of a subject using a series of partial images from an imaging system
US20100110171A1 (en) * 2008-11-05 2010-05-06 Nidek Co., Ltd. Ophthalmic photographing apparatus
JP2010110391A (ja) * 2008-11-05 2010-05-20 Nidek Co Ltd 眼科撮影装置
CN102525403A (zh) * 2010-12-17 2012-07-04 佳能株式会社 眼科设备及其控制方法
CN102670169A (zh) * 2011-03-10 2012-09-19 佳能株式会社 摄像设备及其控制方法
CN103096785A (zh) * 2010-03-12 2013-05-08 佳能株式会社 眼科设备及其控制方法
CN105982638A (zh) * 2015-02-03 2016-10-05 广东福地新视野光电技术有限公司 多功能oct系统图像扫描范围定位方法
US20170325681A1 (en) * 2013-10-23 2017-11-16 Canon Kabushiki Kaisha Retinal movement tracking in optical coherence tomography
US20180199806A1 (en) * 2017-01-18 2018-07-19 Canon Kabushiki Kaisha Information processing apparatus, information processing method, and storage medium
JP2019201962A (ja) * 2018-05-24 2019-11-28 キヤノン株式会社 眼底撮影装置およびその制御方法
CN114343566A (zh) * 2021-11-30 2022-04-15 图湃(北京)医疗科技有限公司 一种辅助oct进行扫描的方法、pc终端、存储介质及系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228011A1 (en) * 2005-04-06 2006-10-12 Everett Matthew J Method and apparatus for measuring motion of a subject using a series of partial images from an imaging system
US20100110171A1 (en) * 2008-11-05 2010-05-06 Nidek Co., Ltd. Ophthalmic photographing apparatus
JP2010110391A (ja) * 2008-11-05 2010-05-20 Nidek Co Ltd 眼科撮影装置
CN103096785A (zh) * 2010-03-12 2013-05-08 佳能株式会社 眼科设备及其控制方法
CN102525403A (zh) * 2010-12-17 2012-07-04 佳能株式会社 眼科设备及其控制方法
CN102670169A (zh) * 2011-03-10 2012-09-19 佳能株式会社 摄像设备及其控制方法
US20170325681A1 (en) * 2013-10-23 2017-11-16 Canon Kabushiki Kaisha Retinal movement tracking in optical coherence tomography
CN105982638A (zh) * 2015-02-03 2016-10-05 广东福地新视野光电技术有限公司 多功能oct系统图像扫描范围定位方法
US20180199806A1 (en) * 2017-01-18 2018-07-19 Canon Kabushiki Kaisha Information processing apparatus, information processing method, and storage medium
JP2019201962A (ja) * 2018-05-24 2019-11-28 キヤノン株式会社 眼底撮影装置およびその制御方法
CN114343566A (zh) * 2021-11-30 2022-04-15 图湃(北京)医疗科技有限公司 一种辅助oct进行扫描的方法、pc终端、存储介质及系统

Also Published As

Publication number Publication date
CN114343566A (zh) 2022-04-15
CN114343566B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Nyström et al. Post-saccadic oscillations in eye movement data recorded with pupil-based eye trackers reflect motion of the pupil inside the iris
WO2023098249A1 (zh) 一种辅助oct进行扫描的方法、pc终端、存储介质及系统
US20170169596A1 (en) Image processing device, image processing method, and program
JP2015032127A (ja) 画像処理装置、画像処理方法及びプログラム
US20160012575A1 (en) Image processing apparatus and image processing method
JP7143862B2 (ja) 診断支援装置、学習装置、診断支援方法、学習方法及びプログラム
US10952604B2 (en) Diagnostic tool for eye disease detection using smartphone
US10058237B2 (en) Image processing device, image processing method, and program
WO2008010305A1 (fr) Analyseur d'images et programme d'analyse d'images
KR20190082149A (ko) 녹내장 발생 예측 방법
WO2020009801A1 (en) Analysis and visualization of subtle motions in videos
JP5995217B2 (ja) 瞳孔部分を近似する楕円の検出を行う方法
US9451879B2 (en) Optical apparatus and operating method thereof
JP2014018251A (ja) 眼科撮影装置及び眼科撮影プログラム
JP7468637B2 (ja) 撮像システム、撮像方法、及びコンピュータプログラム
CN103099622B (zh) 一种基于图像的身体稳定性评价方法
JP2017068576A (ja) 状態判定装置、閉眼判定装置、状態判定方法、状態判定プログラムおよび記録媒体
Parrilla et al. Primary ciliary dyskinesia assessment by means of optical flow analysis of phase-contrast microscopy images
KR102305387B1 (ko) 양성돌발성 두위 현훈 진단을 위한 안진 검사 장치 및 검사 방법
CN110097966B (zh) 一种信息提醒方法、装置及终端设备
JP2021101900A5 (zh)
CN113177038A (zh) 一种视网膜神经纤维层数据校正方法、装置及电子设备
JP6410498B2 (ja) 眼科装置及びその制御方法
Thakkar et al. Glaucoma Detection Using Features of Optic Nerve Head, CDR and ISNT from Fundus Image of Eye
JP2016047076A (ja) 画像処理装置、眼底撮影システム、画像処理方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900057

Country of ref document: EP

Kind code of ref document: A1