WO2023097957A1 - 一种基于冲压成形氢燃料单电池的进出气结构 - Google Patents

一种基于冲压成形氢燃料单电池的进出气结构 Download PDF

Info

Publication number
WO2023097957A1
WO2023097957A1 PCT/CN2022/089255 CN2022089255W WO2023097957A1 WO 2023097957 A1 WO2023097957 A1 WO 2023097957A1 CN 2022089255 W CN2022089255 W CN 2022089255W WO 2023097957 A1 WO2023097957 A1 WO 2023097957A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pole plate
outlet
distribution area
inlet
Prior art date
Application number
PCT/CN2022/089255
Other languages
English (en)
French (fr)
Inventor
徐龙飞
姜天豪
胡鹏
毕飞飞
蓝树槐
Original Assignee
上海治臻新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海治臻新能源股份有限公司 filed Critical 上海治臻新能源股份有限公司
Publication of WO2023097957A1 publication Critical patent/WO2023097957A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of fuel cells, in particular to a gas inlet and outlet structure based on a stamped hydrogen fuel single cell.
  • the key components of fuel cells include membrane electrodes and bipolar plates, of which bipolar plates include graphite, metal and composite plates. Due to volume and mass limitations, metal plates are gradually replacing graphite plates to carry hydrogen, oxygen and coolant.
  • the structure of the metal plate generally includes the flow field area, the distribution area and the inlet and outlet areas. The inlet and outlet areas ensure the normal flow of gas; the characteristics of the distribution area play the role of gas-liquid distribution and the support of the plate to ensure uniform flow between the flow channels; the flow field area is the reaction place of the gas, the cooperation and parameters of the flow channels affect the performance of the plates.
  • Japan's Toyota and South Korea's Hyundai represent two technical routes for global fuel cell development, and the final assembly form of the core affects the structure of the pole plate.
  • its electric stack core is formed by repeated stacking of single cells, which adopts the integrated package single cell scheme;
  • its electric stack core adopts the alternate stacking scheme of bipolar plates and membrane electrodes .
  • the domestic electric stack package is commonly used in alternate stacking schemes.
  • the existing metal bipolar plates mainly connect the anode plate and the cathode plate through laser welding to form a structure of “two plates and three fields”.
  • the gas method is "layer-over-level", the gas flows into the inlet and rotates up and down in the channel, and then climbs over to the distribution area.
  • the two sides of the bipolar plate are fed with different gases, and the middle of the bipolar plate is fed with cooling liquid.
  • the integrated packaging technology replaces the original sealing and welding route with the hot melt adhesive solution.
  • the cathode and anode plates are respectively bonded to both sides of the membrane electrode by hot melt adhesive, and the gas is passed through the two sides of the membrane electrode respectively, that is, the gas flows from the inside of the electrode plate. Flow through, the coolant passes through both sides of the plate.
  • the air intake method proposed by the present invention provides an air intake method for the hydrogen fuel single cell. The gas passes through the air inlet of the separation film from the gas channel and climbs over to the distribution area. Gas flow, improve cavity pressure drop.
  • the object of the present invention is to provide a gas inlet and outlet structure based on stamping hydrogen fuel cell.
  • a gas inlet and outlet structure based on a stamped hydrogen fuel single cell characterized in that the battery includes a first pole plate, a separator film, and a second pole plate, and the first pole plate, the second pole plate and the separator film The middle is hollowed out to form the first air intake cavity and the second air intake cavity.
  • the reaction gas of the first plate is the gas of the first air intake cavity
  • the reaction gas of the second plate is the gas of the second air intake cavity
  • the second plate is close to the first air intake cavity.
  • a gas channel is provided at the air inlet cavity
  • a distribution area is provided at the end of the first pole plate.
  • the first pole plate and the separation film are glued together in the distribution area to ensure gas circulation.
  • Gas sealing is carried out with glue, and the gas inlet and outlet are provided on the separation film, and the gas inlet and outlet are connected to the gas passage of the second pole plate and the distribution area of the first pole plate, and the gas in the first air inlet chamber passes through the air inlet channel of the second pole plate and the gas inlet and outlet of the first pole plate.
  • the gas inlet and outlet of the separation membrane are directly connected to the distribution area of the first plate.
  • a number of parallel grooves are arranged on the second pole plate near the first air inlet cavity, and are arranged in parallel to form gas flow channels.
  • the inlets and outlets of the plate distribution area are equally spaced to distribute the gas evenly.
  • the second pole plate and the separation film are glued at the end of the gas inlet and outlet to achieve a sealing effect, so that the gas can cross over to the distribution area of the first pole plate; further, the first pole plate and the separation film are distributed Adhesive technology is also used in the area outside the area to seal the reaction gas in the distribution area and flow field.
  • the invention provides a gas inlet and outlet structure based on stamping forming hydrogen fuel single cells.
  • the gas passes through the gas inlet of the separation film from the gas channel and climbs over to the distribution area.
  • the gas channel can effectively improve the rigidity of the structure at the mouth of the cavity, and at the same time improve the gas circulation. and improve the mouth pressure drop.
  • Figure 1 is a schematic diagram of three chambers of a single battery
  • Fig. 2 is a schematic diagram of a single chamber structure of the present invention.
  • Fig. 3 is the schematic diagram of the second polar plate of the present invention.
  • Fig. 4 is the schematic diagram of the air inlet and outlet structure of the separation membrane of the present invention.
  • This embodiment discloses a gas inlet and outlet structure based on a stamped hydrogen fuel single cell.
  • the structure includes a first pole plate 1, a separator 2, and a second pole plate 3.
  • the first The pole plate 1 is bonded to the separator film 2 by the first pole plate glue 7
  • the second pole plate 3 is bonded to the separator film 2 by the second pole plate glue 6
  • the first pole plate glue 7 is bonded to the second pole plate
  • the glue 6 plays the role of gas sealing on both sides of the separation film 2
  • the separation film 2 and the second pole plate 3 is hollowed out to form an oxygen gas inlet and outlet area 4 and a hydrogen gas inlet and outlet area 10 .
  • the reaction gas of the first pole plate 1 is oxygen, which enters from the oxygen inlet and outlet region 4, and the reaction gas of the second pole plate 3 is hydrogen, which enters from the hydrogen inlet and outlet region 10.
  • the second pole plate 3 is provided with several parallel grooves, which are arranged in parallel to form gas flow channels 5 , and the structure of the gas inlet and outlet area 10 is consistent with that of the gas inlet and outlet area 4 .
  • the structure of the separation membrane is shown in Figure 3.
  • the separation membrane 2 is provided with an air inlet and outlet 8, which connects the gas channel 5 of the second pole plate 3 and the distribution area 9 of the first pole plate 1, and the gas is discharged from the air intake area. 4 passes through the gas channel 5, passes through the gas inlet and outlet 8, and flows to the distribution area 9.
  • the gas inlet and outlet ports 8 on the separation membrane extend from the inlet channel of the second pole plate to the inlet and outlet of the distribution area of the first pole plate, presenting an equidistant and uniform distribution of gas.
  • the rear end of the air inlet and outlet 8 is several longitudinal air passages arranged evenly, and the front end is a horizontal air passage connected with the several longitudinal air passages, the front end of the air inlet and outlet 8 is connected to the second plate gas passage, and the rear end Connect the first plate distribution area.
  • the horizontal air channel corresponds to the width of the gas flow channel 5 and is responsible for collecting the incoming gas.
  • the longitudinal air channel is responsible for transporting the gas from the horizontal channel to the plate distribution area.
  • the slope of the longitudinal air channel depends on the layout of the distribution area. The role of the gas distribution is to ensure that the gas is evenly distributed to the distribution area, so the slope is used to evenly distribute the gas in the flow channel.
  • the range of the slope can be 0° ⁇ 180°, and the width of the longitudinal air channel can be adjusted according to the uniformity of the gas transmission. The adjustments are not specified to be evenly spaced.
  • the groove feature at the inlet and outlet of the polar plate forms a gas channel 5 , which can effectively improve the rigidity of the structure at the mouth of the cavity, improve the gas flow rate, and improve the pressure drop at the mouth of the cavity.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一种基于冲压成形氢燃料单电池的进出气结构,氢燃料单电池包括第一极板(1)、分隔膜(2)、第二极板(3),第一极板(1)、第二极板(3)与分隔膜(2)的中间镂空形成第一进气腔和第二进气腔,第一极板(1)反应气体为第一进气腔气体,第二极板(3)靠近第一进气腔处设有气体通道(5),第一极板(1)末端设第一极板分配区(9),第一极板(1)与分隔膜(2)在第一极板分配区(9)实现无胶粘连,保证气体流通,第二极板(3)与分隔膜(2)末端平面处用胶进行气体密封,分隔膜(2)上设有进出气口(8),进出气口(8)连接第二极板(3)的气体通道(5)与第一极板分配区(9),第一进气腔气体通过第二极板(3)的进气通道及分隔膜(2)的进出气口(8)直通第一极板分配区(9)。

Description

一种基于冲压成形氢燃料单电池的进出气结构 技术领域
本发明涉及燃料电池技术领域,具体涉及一种基于冲压成形氢燃料单电池的进出气结构。
背景技术
燃料电池发电时,需要通入氢气和氧气,通过催化剂反应,产生电能。燃料电池关键零部件包括膜电极、双极板,其中双极板包括石墨、金属以及复合极板。由于体积、质量限制,金属极板正逐步取代石墨极板,承载氢气、氧气以及冷却液。金属极板的结构大体上包括流场区域、分配区域以及进出口区域。进出口区域保证气体能够正常的流动;分配区特征起到气液的分配作用以及极板的支撑作用,确保流道间流量均匀;流场区则为气体的反应场所,流道的配合及参数影响着极板的性能。
日本丰田和韩国现代代表了全球燃料电池发展的两条技术路线,最终的堆芯装配形式影响着极板的结构。以丰田为例,其电堆堆芯由单电池重复堆叠形成,其采用的是一体化封装单电池方案;以现代为例,其电堆堆芯采用的是双极板与膜电极交替层叠方案。目前,国内的电堆封装常用的是交替层叠方案,现有金属双极板主要将阳极极板与阴极极板通过激光焊接的方式连接在一起,形成“两板三场”的结构,其进气方式为“层越式”,气体流入进口后在通道内上下转动,之后翻越至分配区。双极板两侧通入不同的气体,双极板中间通入冷却液。一体化封装技术是将热熔胶方案替代了原有的密封及焊接路线,阴阳极板通过热熔胶分别粘在膜电极两侧,膜电极两侧分别通气体,也就是气体从极板内部流过,冷却液从极板两侧通过。本发明提出的进气方式为氢燃料单电池提供了一种进气方式,气体从气体通道穿过分隔膜进气口,翻越至分配区,气体通道可以有效提高腔口处结构的刚度,同时提高气体流通性,改善腔口压降。
发明内容
本发明的目的是提供一种基于冲压成形氢燃料单电池的进出气结构。
为实现上述目的,本发明的技术方案是:
一种基于冲压成形氢燃料单电池的进出气结构,其特征在于,所述电池包括第一极板、分隔膜、第二极板,所述第一极板、第二极板与分隔膜的中间镂空形成第一进气腔和第二进气腔,第一极板反应气体为第一进气腔气体,第二极板反应气体为第二进气腔气体,第二极板近第一进气腔处设有气体通道,第一极板末端设分配区,所述第一极板与分隔膜在分配区实现无 胶粘连,保证气体流通,第二极板与分隔膜末端平面处用胶进行气体密封,所述分隔膜上设有进出气口,进出气口连接第二极板的气体通道与第一极板分配区,第一进气腔气体通过第二极板的进气通道及分隔膜的进出气口直通第一极板分配区。
进一步地,第二极板上近第一进气腔处设有若干平行凹槽,平行排布成气体流道,所述分隔膜上进气口从第二极板进气通道至第一极板分配区出入口,呈现等间距分布,以便均匀分配气体。
进一步地,所述第二极板与分隔膜在进出气口末端用胶粘工艺,达到密封的效果,使气体翻越至第一极板分配区;进一步地,所述第一极板与分隔膜分配区以外区域也采用胶粘工艺,将反应气体密闭在分配区及流场中。
本发明的有益效果是:
本发明提供了一种基于冲压成形氢燃料单电池的进出气结构,气体从气体通道穿过分隔膜进气口,翻越至分配区,气体通道可以有效提高腔口处结构的刚度,同时提高气体流通性,改善腔口压降。
附图说明
图1为单电池三腔示意图;
图2为本发明的单腔结构示意图;
图3为本发明的第二极板示意图;
图4为本发明的分隔膜进出气口结构示意图;
附图中:1-第一极板,2-分隔膜,3-第二极板,4-氧气进出气区域,5-气体通道,6-第二极板粘胶密封,7-第一极板粘胶密封,8-进出气口,9-第一极板分配区,10-氢气进出气区域。
具体实施方式
下面将结合附图对本发明的技术方案进行详细说明。本实施例以本发明技术方案为前提进行实施,但并不仅限于此案例。在本领域内的普通技术人员,基于本实施例原理,进行的方案改进均属于本发明保护的范围。
本实施例公开了一种基于冲压成形氢燃料单电池的进出气结构,如图1所示,所述结构包括第一极板1、分隔膜2、和第二极板3,实际中第一极板1由第一极板粘胶7与分隔膜2粘接,第二极板3由第二极板粘胶6与分隔膜2粘接,第一极板粘胶7与第二极板粘胶6起到分隔膜2两侧气体密封的作用,所述第一极板1、分隔膜2与第二极板3中间镂空形成氧气进出气区域4和氢气进出气区域10。
所述第一极板1的反应气体为氧气,从氧气进出气区域4进入,第二极板3反应气 体为氢气,从氢气进出气区域10进入。第二极板3上设有若干平行凹槽,平行排布成气体流道5,进出气区域10的结构与进出气区域4的结构保持一致。
分隔膜结构如图3所示,所述分隔膜2上设有进出气口8,进出气口8连接第二极板3的气体通道5与第一极板1的分配区9,气体由进气区域4经过气体通道5,透过进出气口8,流至分配区9。所述分隔膜上进出气口8从第二极板进气通道延伸至至第一极板分配区出入口,呈现等间距均匀分配气体。其中进出气口8的后端为均匀设置的若干道纵向气道,前端为与所述若干道纵向气道相连的横向气道,所述进出气口8的前端连接第二极板气体通道,后端连接第一极板分配区。横向气道对应的是气体流道5的宽度,负责搜集进入的气体,纵向气道负责传输气体从横向流道至极板分配区,纵向气道的斜度,取决于分配区的布局,气道的作用在保证气体分配均匀传输至分配区,故斜度是用来均布流道中气体的,斜度的范围可以在0°~180°,纵向气道的宽度可以根据传输气体的均匀性进行调整,并不指定是均匀间隔的。
如图2所示,所述极板进出口处凹槽特征,形成了气体通道5,可以有效提高腔口处结构的刚度,同时提高气体流通性,改善腔口压降。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (3)

  1. 一种基于冲压成形氢燃料单电池的进出气结构,其特征在于,所述电池包括第一极板、分隔膜、第二极板,所述第一极板、第二极板与分隔膜的中间镂空形成第一进气腔和第二进气腔,第一极板反应气体为第一进气腔气体,第二极板反应气体为第二进气腔气体,第二极板近第一进气腔处设有气体通道,第一极板末端设分配区,所述第一极板与分隔膜在分配区实现无胶粘连,保证气体流通,第二极板与分隔膜末端平面处用胶进行气体密封,所述分隔膜上设有进出气口,进出气口连接第二极板的气体通道与第一极板分配区,第一进气腔气体通过第二极板的进气通道及分隔膜的进出气口直通第一极板分配区。
  2. 根据权力要求1所述的基于冲压成形氢燃料单电池的进出气结构,其特征在于,第二极板上近第一进气腔处设有若干平行凹槽,平行排布成气体流道,所述分隔膜上进气口从第二极板进气通道至第一极板分配区出入口,呈现等间距分布,以便均匀分配气体。
  3. 根据权力要求1所述的基于冲压成形氢燃料单电池的进出气结构,其特征在于,所述第二极板与分隔膜在进出气口末端用胶粘工艺,达到密封的效果,使气体翻越至第一极板分配区;进一步地,所述第一极板与分隔膜分配区以外区域也采用胶粘工艺,将反应气体密闭在分配区及流场中。
PCT/CN2022/089255 2021-12-02 2022-04-26 一种基于冲压成形氢燃料单电池的进出气结构 WO2023097957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111463670.3A CN114335588B (zh) 2021-12-02 2021-12-02 一种基于冲压成形氢燃料单电池的进出气结构
CN202111463670.3 2021-12-02

Publications (1)

Publication Number Publication Date
WO2023097957A1 true WO2023097957A1 (zh) 2023-06-08

Family

ID=81049615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089255 WO2023097957A1 (zh) 2021-12-02 2022-04-26 一种基于冲压成形氢燃料单电池的进出气结构

Country Status (2)

Country Link
CN (1) CN114335588B (zh)
WO (1) WO2023097957A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335588B (zh) * 2021-12-02 2023-03-28 上海治臻新能源股份有限公司 一种基于冲压成形氢燃料单电池的进出气结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050069749A1 (en) * 2003-08-15 2005-03-31 David Frank Flow field plate arrangement
CN1643718A (zh) * 2002-03-29 2005-07-20 洁能氏公司 燃料电池流场板
JP2017016758A (ja) * 2015-06-29 2017-01-19 本田技研工業株式会社 燃料電池
CN114335588A (zh) * 2021-12-02 2022-04-12 上海治臻新能源股份有限公司 一种基于冲压成形氢燃料单电池的进出气结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205814B2 (ja) * 2006-08-09 2013-06-05 大同特殊鋼株式会社 燃料電池用金属セパレータおよびこれを用いた燃料電池
CN101937998B (zh) * 2010-09-21 2012-07-04 武汉理工大学 冲压成型的质子交换膜燃料电池金属双极板
CN110581287B (zh) * 2019-09-09 2021-01-19 上海骥翀氢能科技有限公司 质子交换膜燃料电池免粘焊密封结构的金属双极板
CN111640959B (zh) * 2020-06-02 2021-06-29 浙江锋源氢能科技有限公司 单电池组件和燃料电池电堆
CN112164810A (zh) * 2020-09-27 2021-01-01 同济大学 一种燃料电池超薄双极板及燃料电池堆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643718A (zh) * 2002-03-29 2005-07-20 洁能氏公司 燃料电池流场板
US20050069749A1 (en) * 2003-08-15 2005-03-31 David Frank Flow field plate arrangement
JP2017016758A (ja) * 2015-06-29 2017-01-19 本田技研工業株式会社 燃料電池
CN114335588A (zh) * 2021-12-02 2022-04-12 上海治臻新能源股份有限公司 一种基于冲压成形氢燃料单电池的进出气结构

Also Published As

Publication number Publication date
CN114335588B (zh) 2023-03-28
CN114335588A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
JP4516229B2 (ja) 固体高分子型セルアセンブリ
CN102136585B (zh) 燃料电池组
CN101796677B (zh) 对pem燃料电池的密封垫和双极板的改进
CN106935866A (zh) 用于燃料电池的双极板以及具有该双极板的燃料电池组
CA2488935C (en) Fuel cell
CN109075357A (zh) 具有横截面积可变的反应气体通道的双极板、燃料电池堆以及具有这种燃料电池堆的车辆
KR100938023B1 (ko) 연료 전지용 공냉식 금속 분리판 및 이를 이용한 연료 전지 스택
JP2002260689A (ja) 固体高分子型セルアセンブリ、燃料電池スタックおよび燃料電池の反応ガス供給方法
JP2001148252A (ja) 燃料電池
JP2002260709A (ja) 固体高分子型セルアセンブリ、燃料電池スタックおよび燃料電池の運転方法
WO2023097957A1 (zh) 一种基于冲压成形氢燃料单电池的进出气结构
CN101546839B (zh) 利用氢充注燃料电池阳极供应歧管以用于启动的方法
US10727503B2 (en) Fuel cell separator for preventing flooding and fuel cell stack including the same
CN101529626B (zh) 用于燃料电池的金属隔板
US8722271B2 (en) Flow field plate with relief ducts for fuel cell stack
KR100953273B1 (ko) 연료전지용 금속 분리판 및 이를 구비하는 연료전지 스택
CN102035003A (zh) 固体高分子型燃料电池
JP2010114052A (ja) ケース流路部品具備の燃料電池流路板
JP4185734B2 (ja) 燃料電池スタック
JPS63119166A (ja) 燃料電池
KR20130076118A (ko) 분기유로를 이용한 연료전지 스택
JP4516630B2 (ja) 固体高分子型セルアセンブリ
JP2002100380A (ja) 燃料電池および燃料電池スタック
JP2004335179A (ja) 燃料電池
KR100802683B1 (ko) 연료전지용 금속분리판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE