WO2023097526A1 - 信道状态信息、参考信号发送方法和装置 - Google Patents

信道状态信息、参考信号发送方法和装置 Download PDF

Info

Publication number
WO2023097526A1
WO2023097526A1 PCT/CN2021/134666 CN2021134666W WO2023097526A1 WO 2023097526 A1 WO2023097526 A1 WO 2023097526A1 CN 2021134666 W CN2021134666 W CN 2021134666W WO 2023097526 A1 WO2023097526 A1 WO 2023097526A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
sas
time domain
domain resource
resource range
Prior art date
Application number
PCT/CN2021/134666
Other languages
English (en)
French (fr)
Inventor
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180004045.4A priority Critical patent/CN114287120A/zh
Priority to PCT/CN2021/134666 priority patent/WO2023097526A1/zh
Publication of WO2023097526A1 publication Critical patent/WO2023097526A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a channel state information sending method, a reference signal sending method, a channel state information sending device, a reference signal sending device, a communication device, and a computer-readable storage medium.
  • the network side can configure multiple serving cells for the terminal.
  • the serving cells can include the primary cell PCell (Primary Cell), the primary secondary cell PSCell (Primary Secondary Cell) and other serving cells, which can also be called secondary cells.
  • Cell SCell Primary Cell
  • a temporary reference signal temporary RS is introduced, but based on the temporary RS, only part of the SCell activation/deactivation process can be accelerated, and the effect on accelerating the SCell activation/deactivation Not ideal.
  • embodiments of the present disclosure propose a channel state information transmission method, a reference signal transmission method, a channel state information transmission device, a reference signal transmission device, a communication device, and a computer-readable storage medium to solve technical problems in related technologies .
  • a method for sending channel state information is proposed, which is executed by a terminal.
  • the method includes: determining the time-domain resource range of a channel state information reference signal SAS-CSI RS dedicated to secondary cell activation; according to The time-domain resource range receives the SAS-CSI RS; generates valid CSI according to the SAS-CSI RS and sends it to the network side device.
  • a method for sending a reference signal is proposed, which is executed by a network side device, and the method includes: determining a time-domain resource range of a channel state information reference signal SAS-CSI RS dedicated to secondary cell activation; sending the SAS-CSI RS according to the time domain resource range.
  • an apparatus for sending channel state information including one or more processors configured to: determine a channel state information reference signal SAS-CSI dedicated to secondary cell activation The time-domain resource range of the RS; receiving the SAS-CSI RS according to the time-domain resource range; generating valid CSI according to the SAS-CSI RS and sending it to the network side device.
  • a reference signal sending device including one or more processors, the processors are configured to perform: determining a secondary cell activation dedicated channel state information reference signal SAS-CSI RS The time domain resource range; sending the SAS-CSI RS according to the time domain resource range.
  • a communication device including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the above method for sending channel state information is implemented.
  • a communication device including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the above reference signal sending method is implemented.
  • a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the steps in the above method for sending channel state information are implemented.
  • a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the steps in the above method for sending a reference signal are implemented.
  • the network side device does not continuously send the channel state information reference signal SAS-CSI RS dedicated to the activation of the secondary cell, but only sends the SAS-CSI RS within the time domain resource range, correspondingly, the terminal It is also only necessary to receive the SAS-CSI RS within the time domain resource range.
  • the network side device since the network side device only sends the SAS-CSI RS within the range of the time domain resource, it does not send the SAS-CSI RS outside the range of the time domain resource. Therefore, the impact on the equipment overhead on the network side is small, and the terminal accordingly only receives the SAS-CSI RS within the range of the time domain resource, and does not receive the SAS-CSI RS outside the range of the time domain resource. It is beneficial to ensure that the period of the SAS-CSI RS is shortened without significantly increasing the network overhead, so that the terminal can receive the SAS-CSI RS faster, and then complete the reporting of valid CSI faster to complete the activation of the secondary cell.
  • FIG. 1 is a schematic diagram of the process of activating an SCell in the related art.
  • Fig. 2 is a schematic diagram of introducing a temporary reference signal in the process of activating an SCell in the related art.
  • Fig. 3 is a schematic flowchart of a method for sending channel state information according to an embodiment of the present disclosure.
  • Fig. 4A is a schematic flowchart of another method for sending channel state information according to an embodiment of the present disclosure.
  • Fig. 4B is a schematic diagram of a SAS-CSI RS according to an embodiment of the present disclosure.
  • Fig. 5A is a schematic flow chart showing another method for sending channel state information according to an embodiment of the present disclosure.
  • Fig. 5B is a schematic diagram of another SAS-CSI RS according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic flow chart showing another method for sending channel state information according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic flow chart showing another method for sending channel state information according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic flow chart showing a method for sending a reference signal according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic flow chart showing another method for sending a reference signal according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic flowchart showing another method for sending a reference signal according to an embodiment of the present disclosure.
  • Fig. 11 is a schematic flowchart showing another method for sending a reference signal according to an embodiment of the present disclosure.
  • Fig. 12 is a schematic block diagram of an apparatus for sending a reference signal according to an embodiment of the present disclosure.
  • Fig. 13 is a schematic block diagram of an apparatus for sending channel state information according to an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • the terms used herein are “greater than” or “less than”, “higher than” or “lower than” when representing a size relationship. But for those skilled in the art, it can be understood that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “higher than” covers the meaning of “higher than or equal to”. “The meaning of "below” also covers the meaning of "less than or equal to”.
  • FIG. 1 is a schematic diagram of the process of activating an SCell in the related art.
  • the process of activating the SCell mainly includes three steps:
  • the network side carries the activation indication in the media access control layer control element (Media Access Control Element, MAC CE) sent to the terminal, for example, carries the MAC CE through the Physical Downlink Shared CHannel (PDSCH) of the PCell, and the terminal After receiving the MAC CE, return Hybrid Automatic Repeat reQuest (HARQ) information to the network side device, such as returning HARQ-ACK, to indicate to the network side that the terminal has received the MAC CE; this stage is called HARQ timing ( timing);
  • Media Access Control Element Media Access Control Element
  • PDSCH Physical Downlink Shared CHannel
  • the terminal After receiving the MAC CE, the terminal performs hardware preparation, which may further include multiple sub-steps. First, analyze the MAC CE to determine the specific information carried in it, for example, it takes 3ms, and then wait to receive the synchronization signal block SSB (Synchronization Signal Block), for example The waiting time is T_firstSSB. After receiving the SSB, SSB-based time-frequency tracking is performed based on SSB; this stage is called Activation Time;
  • SSB Synchronation Signal Block
  • the terminal generates valid channel state information valid CSI according to the channel state information reference signal CSI RS (Channel State Information Reference Signal, generally referred to as P-CSI-RS) continuously sent by the network side to activate the SCell, and reports it to the network side, and the network side Determine SCell activation based on valid CSI; this stage is called CSI reporting (reporting).
  • CSI RS Channel State Information Reference Signal
  • the terminal needs to complete the time-frequency tracking before it can generate valid CSI according to the P-CSI-RS continuously sent by the network side to report, and the time-frequency tracking is based on the SSB, so it needs to receive the SSB first.
  • the reception of SSB is based on the SMTC periodicity, that is, the SSB Measurement Timing Configuration (SSB Measurement Timing Configuration) period, but this period is relatively long, making it difficult to complete time-frequency tracking in a timely manner.
  • SSB Measurement Timing Configuration SSB Measurement Timing Configuration
  • Fig. 2 is a schematic diagram of introducing a temporary reference signal in the process of activating an SCell in the related art.
  • the network side can periodically send temporary RS, and the period of temporary RS is shorter than the SMTC periodicity.
  • the terminal can be activated to receive temporary RS. Since the period of temporary RS is relatively small, the terminal receives After arriving at the MAC CE, the temporary RS can be received faster than the SSB, and then the automatic gain control setting AGC (Automatic Gain Control) settling and time-frequency tracking T/F tracking are performed according to the temporary RS, so that compared with the situation in Figure 1, Complete time-frequency tracking faster, and then complete the reporting of valid CSI faster, and accelerate the process of activating SCell.
  • AGC Automatic Gain Control
  • one of the main methods is to shorten the period of the P-CSI-RS, so that the terminal can generate valid CSI according to the P-CSI-RS for reporting.
  • the minimum period of P-CSI-RS is 4 slots, and the maximum period is 640 slots. Since P-CSI-RS is continuously sent by the network side, shortening the period of P-CSI-RS will significantly improve Increase network overhead.
  • the embodiments of the present disclosure are mainly proposed for this technical problem.
  • Fig. 3 is a schematic flowchart of a method for sending channel state information according to an embodiment of the present disclosure.
  • the method for sending channel state information shown in this embodiment can be executed by a terminal, and the terminal includes but is not limited to a communication device such as a mobile phone, a tablet computer, a wearable device, a sensor, and an Internet of Things device.
  • the terminal can communicate with network-side equipment, and the network-side equipment includes but is not limited to network-side equipment in communication systems such as 4G, 5G, and 6G, such as base stations and core networks.
  • the channel state information sending method may include the following steps:
  • step S301 determine the time domain resource range of the channel state information reference signal SAS-CSI RS dedicated to activation of the secondary cell;
  • step S302 receive the SAS-CSI RS according to the time domain resource range
  • step S303 generate valid CSI according to the SAS-CSI RS and send it to the network side device.
  • the network side device may send (such as broadcast, unicast, or multicast) a channel state information reference signal SAS-CSI RS dedicated to secondary cell activation.
  • a channel state information reference signal SAS-CSI RS dedicated to secondary cell activation.
  • the full name may be SCell activation specific CSI RS.
  • SAS-CSI RS Abbreviated as SAS-CSI RS.
  • the network-side device and the terminal can respectively determine the time-domain resource range of the SAS-CSI RS, for example, it can be a time window.
  • the network-side device can send the SAS-CSI RS within the determined time-domain resource range, and can send the SAS-CSI RS within the determined time-domain resource. Send the SAS-CSI RS according to the configuration information configured to the terminal within the scope.
  • the terminal can receive the SAS-CSI RS within the determined time domain resource range, for example, send the SAS-CSI RS according to the configuration information configured by the network side device within the determined time domain resource range. After receiving the SAS-CSI RS, the terminal can generate valid CSI according to the SAS-CSI RS and send it to the network side device, and the network side device can determine whether the secondary cell SCell is activated according to the valid CSI.
  • the network side device does not continuously send the channel state information reference signal SAS-CSI RS dedicated to the activation of the secondary cell, but only sends the SAS-CSI RS within the time domain resource range, correspondingly, the terminal It is also only necessary to receive the SAS-CSI RS within the time domain resource range.
  • the network side device since the network side device only sends the SAS-CSI RS within the range of the time domain resource, it does not send the SAS-CSI RS outside the range of the time domain resource. Therefore, the impact on the equipment overhead on the network side is small, and the terminal accordingly only receives the SAS-CSI RS within the range of the time domain resource, and does not receive the SAS-CSI RS outside the range of the time domain resource. It is beneficial to ensure that the period of the SAS-CSI RS is shortened without significantly increasing the network overhead, so that the terminal can receive the SAS-CSI RS faster, and then complete the reporting of valid CSI faster to complete the activation of the secondary cell.
  • the manner of determining the time-domain resource range includes at least one of the following:
  • the time-domain resource range of the SAS-CSI RS can be determined according to the protocol agreement.
  • both the network side device and the terminal can determine the time-domain resource range of the SAS-CSI RS according to the agreement agreement, and then the network The side device can send SAS-CSI RS within this time domain resource range, and the terminal can receive SAS-CSI RS within this time domain resource range.
  • the time-domain resource range of the SAS-CSI RS can be set by the network-side device as needed, and then sent to the terminal through indication information.
  • the network-side device can independently determine the time domain of the SAS-CSI RS. Domain resource range, and then indicate the time domain resource range of the terminal through the indication information, and then the network side device can send SAS-CSI RS within the time domain resource range, and the terminal can receive SAS-CSI RS within the time domain resource range .
  • the indication information may be carried in a MAC CE, and the MAC CE carrying the indication information may multiplex the same MAC CE with the MAC CE that activates the temporary RS, or other MAC CEs may be used to carry the indication information.
  • Fig. 4A is a schematic flowchart of another method for sending channel state information according to an embodiment of the present disclosure.
  • the determination of the time-domain resource range of the channel state information reference signal SAS-CSI RS dedicated to activation of the secondary cell includes:
  • step S401 the starting position of the time domain resource range is determined in the time domain resources after the temporary reference signal temporary RS is received.
  • the network side device may determine the starting position of the time domain resource range in the time domain resource after sending the temporary RS according to the protocol agreement, and accordingly, the terminal may determine based on the agreement agreement that when the temporary RS is received The starting position of the time domain resource range is determined in the subsequent time domain resources.
  • the starting position may be determined according to the time slot where the temporary RS is located and an offset offset (greater than or equal to 0 time slots), for example, the starting position is the time slot where the temporary RS is located plus the offset, wherein the The above offset may be indicated by the network side device, or determined according to the protocol.
  • the network side device can determine the starting position of the time domain resource range in the time domain resource after sending the temporary RS as required, and then can send indication information to the terminal, and indicate the terminal to receive The starting position of the time domain resource range is determined in the time domain resource after the temporary RS.
  • the starting position can be determined according to the time slot where the temporary RS is located and the offset offset, for example, the starting position is the time slot where the temporary RS is located plus the offset, wherein the offset can be determined according to the agreement Determined, or also indicated by the network side device.
  • the network side device determines that there is a need to report valid CSI as soon as possible after the temporary RS is configured for the terminal and the terminal is activated to receive the temporary RS, it may be possible after receiving the temporary RS Determine the starting position of the time domain resource range in the domain resource, so that after receiving the temporary RS, it is determined that there is a need to report valid CSI as soon as possible, and the terminal starts to receive the SAS-CSI RS from the starting position.
  • the network side device The SAS-CSI RS can be sent after the temporary RS is sent. It is beneficial to avoid waste of resources caused by receiving SAS-CSI RS at the terminal and sending SAS-CSI RS at the network side without reporting valid CSI as soon as possible.
  • Fig. 4B is a schematic diagram of a SAS-CSI RS according to an embodiment of the present disclosure.
  • the starting position of the time domain resource range is the time slot where the temporary RS is located plus the offset offset, and the network side device periodically sends the SAS-CSI RS, and the surrounding Periodicity can be configured as required, and the time domain resource
  • the end position of the range may be, for example, the time domain position where the valid CSI report is completed.
  • the starting position may be the first time slot after the time slot where the temporary RS is located.
  • Fig. 5A is a schematic flow chart showing another method for sending channel state information according to an embodiment of the present disclosure.
  • the determination of the time-domain resource range of the channel state information reference signal SAS-CSI RS dedicated to activation of the secondary cell includes:
  • step S501 the starting position of the range of the time-domain resource is determined in the time-domain resource after AGC settling and time-frequency tracking T/F tracking are completed.
  • the terminal may determine the starting position of the time domain resource range in the time domain resources after AGC settling and T/F tracking are completed according to the agreement, or may determine the start position of the time domain resource range after completing AGC settling and T/F tracking according to the instruction of the network side device. Determine the starting position of the time domain resource range in the time domain resource after AGC settling and T/F tracking.
  • the terminal can determine the start position of the time domain resource range in the time domain resource after AGC settling and T/F tracking are completed, and then start receiving the SAS-CSI RS at the start position. Since AGC settling and T/F tracking are actions performed by the terminal, the network side device may not be able to determine when the terminal will complete AGC settling and T/F tracking.
  • the network side device determines to send the SAS-CSI RS
  • the starting position of may be earlier than the starting position determined by the terminal for receiving the SAS-CSI RS.
  • the starting position for sending the SAS-CSI RS determined by the network side device may be the first time slot after sending the temporary RS, or the time slot before sending the temporary RS. Since the terminal needs to perform AGC settling and T/F tracking according to the temporary RS, the network side device starts to send the SAS-CSI RS in the first time slot after sending the temporary RS, or starts sending the SAS-CSI RS in the time slot before sending the temporary RS, which can ensure The terminal can receive SAS-CSI RS at the time domain position after completing AGC settling and T/F tracking.
  • the network side device can determine when the terminal completes AGC settling and T/F tracking, then the network side device can choose to use the first slot after the terminal completes AGC settling and T/F tracking as the starting point for sending SAS-CSI RS You can also choose to use the slot before the terminal completes AGC settling and T/F tracking as the starting position for sending SAS-CSI RS. According to this, it can also ensure that the terminal completes AGC settling and T/F tracking. Time domain location, capable of receiving SAS-CSI RS.
  • the terminal before the terminal completes AGC settling and T/F tracking, there may be a certain degree of asynchrony between the network side and the terminal side, which leads to inconsistencies in the understanding of the time domain resource range between the network side device and the terminal. lead to subsequent problems.
  • the terminal can determine the starting position of the time domain resource range in the time domain resource after AGC settling and T/F tracking are completed, so as to ensure that it will not start until AGC settling and T/F tracking are completed.
  • To receive SAS-CSI RS ensure that the network-side device and the terminal have the same understanding of the time-domain resource range to receive SAS-CSI RS.
  • Fig. 5B is a schematic diagram of another SAS-CSI RS according to an embodiment of the present disclosure.
  • the network side device still uses the time slot where the temporary RS is located plus the offset offset as the starting position, that is, the sending starting position, and starts sending the SAS-CSI RS at the sending starting position; After the terminal receives the temporary RS, it needs to complete AGC settling and T/F tracking first, and then can determine the starting position of receiving the SAS-CSI RS, that is, the receiving starting position.
  • the receiving starting position is between AGC settling and T/F tracking. After F tracking, the terminal starts to receive the SAS-CSI RS when it is ensured that the network-side device and the terminal have the same understanding of the time domain resource range.
  • the time domain resource range of the SAS-CSI RS determined by the network side device may be different from the time domain resource range of the SAS-CSI RS determined by the terminal.
  • the manner of determining the time-domain resource range includes determining according to the indication information of the network side device, and the determining the time-domain resource range of the channel state information reference signal SAS-CSI RS dedicated to secondary cell activation includes : Determine the start position of the time-domain resource range according to the absolute time position indicated by the indication information.
  • the network side device When the network side device instructs the terminal to determine the time domain resource range through the indication information, the network side device may indicate the absolute time position as the start position of the time domain resource range through the indication information.
  • the manner of determining the time-domain resource range includes determining according to the indication information of the network side device, and the determining the time-domain resource range of the channel state information reference signal SAS-CSI RS dedicated to secondary cell activation includes : Determine the start position of the time-domain resource range according to the offset indicated by the indication information relative to the preset time-domain position.
  • the network side device When the network side device instructs the terminal to determine the time domain resource range through the indication information, the network side device can indicate the offset to the terminal, and the terminal can determine the time domain resource according to the preset time domain position and the offset indicated by the network side device The starting position of the range.
  • the preset time domain position may be determined based on a protocol agreement, or may also be pre-indicated by the network side device.
  • the preset time domain position includes at least one of the following:
  • Fig. 6 is a schematic flow chart showing another method for sending channel state information according to an embodiment of the present disclosure.
  • the time domain resource range for determining the channel state information reference signal SAS-CSI RS dedicated to activation of the secondary cell includes:
  • step S601 it is determined that the time domain position for sending the valid CSI is the end position of the time domain resource range.
  • the terminal since the terminal has completed the activation/deactivation process of the secondary cell after sending the valid CSI, it does not receive SAS-CSI RS, therefore, the time domain position (for example, time slot slot) for sending valid CSI can be determined as the end position of the time domain resource range for receiving SAS-CSI RS, after the end position, the terminal stops receiving SAS-CSI RS.
  • the time domain position for example, time slot slot
  • the network side device may determine the time domain position where the valid CSI is received as the end position of the time domain resource range for sending the SAS-CSI RS, and after the end position, the network side device stops sending the SAS-CSI RS.
  • Fig. 7 is a schematic flow chart showing another method for sending channel state information according to an embodiment of the present disclosure.
  • the receiving the SAS-CSI RS according to the time domain resource range includes:
  • step S701 when it is determined that the network side device configures a temporary RS for the terminal and activates the terminal to receive the temporary RS, the SAS-CSI RS is received according to the time domain resource range.
  • the method also includes:
  • step S702 when it is determined that the network side device has not activated the terminal to receive the temporary RS or has not configured the terminal with the temporary RS, the SAS-CSI RS is not received according to the time domain resource range.
  • the network side device determines that there is a need to report the valid CSI as soon as possible after the terminal is configured with a temporary RS and the terminal is activated to receive the temporary RS.
  • the terminal may only receive the SAS-CSI RS according to the time domain resource range when it is determined that the network side device has configured a temporary RS for the terminal and the terminal is activated to receive the temporary RS. If the network side device does not activate the terminal to receive the temporary RS or does not configure the terminal with the temporary RS, it does not receive the SAS-CSI RS according to the time domain resource range.
  • the network side device may send the SAS-CSI RS according to the time-domain resource range only when it is determined that a temporary RS is configured for the terminal and the terminal is activated to receive the temporary RS, and when it is determined that the terminal is not activated When the terminal receives the temporary RS or the terminal is not configured with the temporary RS, the SAS-CSI RS is not sent according to the time domain resource range.
  • the method further includes: performing at least one of the following operations based on the SAS-CSI RS:
  • the SAS-CSI RS in the embodiment shown in the present disclosure may be different from the P-CSI-RS in the related art.
  • the SAS-CSI RS is only sent and received within the scope of the time domain resource, P-CSI-RS is sent continuously.
  • the period of SAS-CSI RS can be shorter than that of P-CSI-RS, so that the terminal can receive SAS-CSI RS faster and generate it accordingly. valid CSI has been reported.
  • the terminal will generally receive the SAS-CSI RS faster, then for other RSs before the preset RS, for example, in the P-CSI
  • Other RSs before -RS can use SAS-CSI RS as the QCL source of other RSs, which is beneficial to determine the QCL sources of other RSs faster.
  • RSs may include a demodulation reference signal (Demodulation Reference Signal, DMRS).
  • DMRS is a DMRS within W time slot slots after the terminal activates the secondary cell. W is an integer greater than or equal to 1, which can be set as required.
  • the P-CSI-RS is not received in W time slots after the secondary cell.
  • SAS-CSI RS other functions can be realized based on SAS-CSI RS, such as interference measurement based on SAS-CSI RS, mobility management based on SAS-CSI RS (for example, judging whether to switch cells according to the receiving quality of SAS-CSI RS), etc. Specifically, it can be expanded according to needs, and the present disclosure does not make specific limitations.
  • Fig. 8 is a schematic flow chart showing a method for sending a reference signal according to an embodiment of the present disclosure.
  • the method for sending a reference signal shown in this embodiment can be performed by a network-side device, and the terminal can communicate with the network-side device, and the network-side device includes but is not limited to network-side devices in communication systems such as 4G, 5G, and 6G, For example, a base station, a core network, etc., the network-side device can communicate with a terminal, and the terminal includes but is not limited to a communication device such as a mobile phone, a tablet computer, a wearable device, a sensor, and an Internet of Things device.
  • a communication device such as a mobile phone, a tablet computer, a wearable device, a sensor, and an Internet of Things device.
  • the reference signal sending method may include the following steps:
  • step S801 determine the time domain resource range of the channel state information reference signal SAS-CSI RS dedicated to activation of the secondary cell;
  • step S802 the SAS-CSI RS is sent according to the time domain resource range.
  • the network side device may send (such as broadcast, unicast, or multicast) a channel state information reference signal SAS-CSI RS dedicated to secondary cell activation.
  • a channel state information reference signal SAS-CSI RS dedicated to secondary cell activation.
  • the full name may be SCell activation specific CSI RS.
  • SAS-CSI RS Abbreviated as SAS-CSI RS.
  • the network-side device and the terminal can respectively determine the time-domain resource range of the SAS-CSI RS, for example, it can be a time window.
  • the network-side device can send the SAS-CSI RS within the determined time-domain resource range, and can send the SAS-CSI RS within the determined time-domain resource. Send the SAS-CSI RS according to the configuration information configured to the terminal within the scope.
  • the terminal can receive the SAS-CSI RS within the determined time domain resource range, for example, send the SAS-CSI RS according to the configuration information configured by the network side device within the determined time domain resource range. After receiving the SAS-CSI RS, the terminal can generate valid CSI according to the SAS-CSI RS and send it to the network side device, and the network side device can determine whether the secondary cell SCell is activated according to the valid CSI.
  • the network side device does not continuously send the channel state information reference signal SAS-CSI RS dedicated to the activation of the secondary cell, but only sends the SAS-CSI RS within the time domain resource range, correspondingly, the terminal It is also only necessary to receive the SAS-CSI RS within the time domain resource range.
  • the network side device since the network side device only sends the SAS-CSI RS within the range of the time domain resource, it does not send the SAS-CSI RS outside the range of the time domain resource. Therefore, the impact on the equipment overhead on the network side is small, and the terminal accordingly only receives the SAS-CSI RS within the range of the time domain resource, and does not receive the SAS-CSI RS outside the range of the time domain resource. It is beneficial to ensure that the period of the SAS-CSI RS is shortened without significantly increasing the network overhead, so that the terminal can receive the SAS-CSI RS faster, and then complete the reporting of valid CSI faster to complete the activation of the secondary cell.
  • the manner of determining the time-domain resource range includes at least one of the following:
  • the time-domain resource range of the SAS-CSI RS can be determined according to the protocol agreement.
  • both the network side device and the terminal can determine the time-domain resource range of the SAS-CSI RS according to the agreement agreement, and then the network The side device can send SAS-CSI RS within this time domain resource range, and the terminal can receive SAS-CSI RS within this time domain resource range.
  • the time-domain resource range of the SAS-CSI RS can be set by the network-side device as needed, and then sent to the terminal through indication information.
  • the network-side device can independently determine the time domain of the SAS-CSI RS. Domain resource range, and then indicate the time domain resource range of the terminal through the indication information, and then the network side device can send SAS-CSI RS within the time domain resource range, and the terminal can receive SAS-CSI RS within the time domain resource range .
  • the indication information may be carried in a MAC CE, and the MAC CE carrying the indication information may multiplex the same MAC CE with the MAC CE that activates the temporary RS, or other MAC CEs may be used to carry the indication information.
  • Fig. 9 is a schematic flow chart showing another method for sending a reference signal according to an embodiment of the present disclosure.
  • the time domain resource range for determining the channel state information reference signal SAS-CSI RS dedicated to activation of the secondary cell includes:
  • step S901 the starting position of the time domain resource range is determined in the time domain resources after the temporary reference signal temporary RS is received.
  • the network side device may determine the starting position of the time domain resource range in the time domain resource after sending the temporary RS according to the protocol agreement, and accordingly, the terminal may determine based on the agreement agreement that when the temporary RS is received The starting position of the time domain resource range is determined in the subsequent time domain resources.
  • the starting position may be determined according to the time slot where the temporary RS is located and an offset offset (greater than or equal to 0 time slots), for example, the starting position is the time slot where the temporary RS is located plus the offset, wherein the The above offset may be indicated by the network side device, or determined according to the protocol.
  • the network side device can determine the starting position of the time domain resource range in the time domain resource after sending the temporary RS as required, and then can send indication information to the terminal, and indicate the terminal to receive The starting position of the time domain resource range is determined in the time domain resource after the temporary RS.
  • the starting position can be determined according to the time slot where the temporary RS is located and the offset offset, for example, the starting position is the time slot where the temporary RS is located plus the offset, wherein the offset can be determined according to the agreement Determined, or also indicated by the network side device.
  • the network side device determines that there is a need to report valid CSI as soon as possible after the temporary RS is configured for the terminal and the terminal is activated to receive the temporary RS, it may be possible after receiving the temporary RS Determine the starting position of the time domain resource range in the domain resource, so that after receiving the temporary RS, it is determined that there is a need to report valid CSI as soon as possible, and the terminal starts to receive the SAS-CSI RS from the starting position.
  • the network side device The SAS-CSI RS can be sent after the temporary RS is sent. It is beneficial to avoid waste of resources caused by the terminal receiving the SAS-CSI RS and the network side sending the SAS-CSI RS without reporting the valid CSI as soon as possible.
  • the manner of determining the time-domain resource range includes setting by the network side device, and the determining the time-domain resource range of the channel state information reference signal SAS-CSI RS dedicated to activation of the secondary cell includes: according to the set The absolute time position set by the network side device determines the start position of the time domain resource range.
  • the network side device When the network side device instructs the terminal to determine the time domain resource range through the indication information, the network side device may indicate the absolute time position as the start position of the time domain resource range through the indication information.
  • the manner of determining the time-domain resource range includes setting by the network side device, and the determining the time-domain resource range of the channel state information reference signal SAS-CSI RS dedicated to activation of the secondary cell includes: according to the set The offset set by the network side device relative to the preset time domain position determines the start position of the time domain resource range.
  • the network side device When the network side device instructs the terminal to determine the time domain resource range through the indication information, the network side device can indicate the offset to the terminal, and the terminal can determine the time domain resource according to the preset time domain position and the offset indicated by the network side device
  • the network side device may also determine the start position of the time domain resource range according to the preset time domain position and the offset indicated by the network side device.
  • the preset time domain position may be determined based on a protocol agreement, or may also be pre-indicated by the network side device. Wherein, for the network side device and the terminal, the offset may be the same, but the preset time domain positions may be different.
  • the preset time domain position includes at least one of the following:
  • the downlink time slot corresponding to the time domain position of the hybrid automatic repeat request HARQ corresponding to the indication information sent by the terminal is received.
  • the preset time domain position includes at least one of the following:
  • Fig. 10 is a schematic flowchart showing another method for sending a reference signal according to an embodiment of the present disclosure.
  • the determination of the time-domain resource range of the channel state information reference signal SAS-CSI RS dedicated to activation of the secondary cell includes:
  • step S1001 it is determined that the time domain position where the valid CSI generated by the terminal according to the SAS-CSI RS is received is the end position of the time domain resource range.
  • the terminal since the terminal has completed the activation/deactivation process of the secondary cell after sending the valid CSI, it does not receive SAS-CSI RS, therefore, the time domain position (for example, time slot slot) for sending valid CSI can be determined as the end position of the time domain resource range for receiving SAS-CSI RS, after the end position, the terminal stops receiving SAS-CSI RS.
  • the time domain position for example, time slot slot
  • the network side device may determine the time domain position where the valid CSI is received as the end position of the time domain resource range for sending the SAS-CSI RS, and after the end position, the network side device stops sending the SAS-CSI RS.
  • Fig. 11 is a schematic flowchart showing another method for sending a reference signal according to an embodiment of the present disclosure.
  • the sending the SAS-CSI RS according to the time domain resource range includes:
  • step S1101 when it is determined that a temporary RS is configured for the terminal and the terminal is activated to receive the temporary RS, the SAS-CSI RS is sent according to the time domain resource range.
  • the method also includes:
  • step S1102 when it is determined that the terminal is not activated to receive the temporary RS or the terminal is not configured with the temporary RS, the SAS-CSI RS is not sent according to the time domain resource range.
  • the network side device determines that there is a need to report the valid CSI as soon as possible after the terminal is configured with a temporary RS and the terminal is activated to receive the temporary RS.
  • the terminal may only receive the SAS-CSI RS according to the time domain resource range when it is determined that the network side device has configured a temporary RS for the terminal and the terminal is activated to receive the temporary RS. If the network side device does not activate the terminal to receive the temporary RS or does not configure the terminal with the temporary RS, it does not receive the SAS-CSI RS according to the time domain resource range.
  • the network side device may send the SAS-CSI RS according to the time-domain resource range only when it is determined that a temporary RS is configured for the terminal and the terminal is activated to receive the temporary RS, and when it is determined that the terminal is not activated When the terminal receives the temporary RS or the terminal is not configured with the temporary RS, the SAS-CSI RS is not sent according to the time domain resource range.
  • the method further includes: when the SAS-CSI RS is sent according to the time domain resource range, stop sending other CSI-RS related to activating the secondary cell.
  • the terminal can obtain valid CSI according to the SAS-CSI RS and report without other CSI-RS related to activating the secondary cell.
  • the valid CSI is regenerated, so the network side device can stop (for example, stop within the scope of the time domain resource) from sending other CSI-RS related to the activation of the secondary cell (for example, the P-CSI-RS of the related technology center), So as not to waste network resources.
  • the present disclosure also provides embodiments of the channel state information sending device and the reference signal sending device.
  • Embodiments of the present disclosure propose a channel state information sending device, which can be applied to terminals, and the terminals include but are not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices. .
  • the terminal can communicate with network-side equipment, and the network-side equipment includes but is not limited to network-side equipment in communication systems such as 4G, 5G, and 6G, such as base stations and core networks.
  • the channel state information sending device includes one or more processors, and the processors are configured to perform: determining the time-domain resource range of the secondary cell activation-specific channel state information reference signal SAS-CSI RS ; Receive the SAS-CSI RS according to the time domain resource range; generate valid CSI according to the SAS-CSI RS and send it to the network side device.
  • the manner of determining the time-domain resource range includes at least one of the following:
  • the processor is configured to perform: determining the start position of the time-domain resource range in the time-domain resources after receiving the temporary reference signal temporary RS.
  • the processor is configured to perform: determining the start position of the time-domain resource range in the time-domain resources after automatic gain control setting AGC settling and time-frequency tracking T/F tracking are completed.
  • the manner of determining the time domain resource range includes determining according to indication information of the network side device, and the processor is configured to perform: determining the time domain resource range according to the absolute time position indicated by the indication information. The starting position of the time domain resource range.
  • the manner of determining the time domain resource range includes determining according to indication information of the network side device, and the processor is configured to perform: according to the relative preset time domain indicated by the indication information The position offset determines the start position of the time-domain resource range.
  • the preset time domain position includes at least one of the following:
  • the processor is configured to perform: determining that the time domain position for sending the valid CSI is the end position of the time domain resource range.
  • the processor is configured to execute: when it is determined that the network side device configures a temporary RS for the terminal and activates the terminal to receive the temporary RS, receive the temporary RS according to the time domain resource range Describe the SAS-CSI RS.
  • the processor is further configured to execute: when it is determined that the network side device has not activated the terminal to receive a temporary RS or has not configured a temporary RS for the terminal, not according to the time domain
  • the resource scope receives the SAS-CSI RS.
  • the processor is further configured to:
  • Embodiments of the present disclosure propose a reference signal sending device, the reference signal sending device can be applied to network side equipment, the terminal can communicate with the network side equipment, the network side equipment includes but not limited to 4G, 5G, 6G Network-side equipment in communication systems such as base stations, core networks, etc., the network-side equipment can communicate with terminals, and the terminals include but are not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices .
  • the reference signal sending device includes one or more processors, and the processors are configured to perform: determining a time-domain resource range of a secondary cell activation-specific channel state information reference signal SAS-CSI RS; sending the SAS-CSI RS according to the time domain resource range.
  • the manner of determining the time-domain resource range includes at least one of the following:
  • the processor is configured to perform: determining the start position of the time-domain resource range in the time-domain resources after receiving the temporary reference signal temporary RS.
  • the manner of determining the time-domain resource range includes setting by a network-side device, and the processor is configured to perform: determining the time-domain resource range according to an absolute time position set by the network-side device starting point.
  • the manner of determining the time-domain resource range includes setting by a network-side device, and the processor is configured to execute: according to an offset set by the network-side device relative to a preset time-domain position Determine the starting position of the time-domain resource range.
  • the preset time domain position includes at least one of the following:
  • the downlink time slot corresponding to the time domain position of the hybrid automatic repeat request HARQ corresponding to the indication information sent by the terminal is received.
  • the processor is configured to perform: determining that the time domain position where the effective channel state information valid CSI generated by the terminal according to the SAS-CSI RS is received is the end position of the time domain resource range .
  • the processor is configured to execute: when it is determined that a temporary RS is configured for the terminal and the terminal is activated to receive the temporary RS, sending the SAS- CSI RS.
  • the processor is further configured to execute: when it is determined that the terminal is not activated to receive the temporary RS or the terminal is not configured with the temporary RS, not sending the SAS-CSI RS.
  • the processor is further configured to: stop sending other CSI-RSs related to activation of the secondary cell when the SAS-CSI RS is sent according to the time domain resource range.
  • the device embodiment since it basically corresponds to the method embodiment, for related parts, please refer to the part description of the method embodiment.
  • the device embodiments described above are only illustrative, and the modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.
  • An embodiment of the present disclosure also proposes a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the channel state information described in any of the above embodiments is realized sending method.
  • An embodiment of the present disclosure also proposes a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the reference signal transmission described in any of the above-mentioned embodiments is realized method.
  • Embodiments of the present disclosure also provide a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the steps in the channel state information sending method described in any of the foregoing embodiments are implemented.
  • Embodiments of the present disclosure further provide a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the steps in the reference signal sending method described in any of the foregoing embodiments are implemented.
  • FIG. 12 is a schematic block diagram of an apparatus 1200 for sending a reference signal according to an embodiment of the present disclosure.
  • Apparatus 1200 may be provided as a base station.
  • the device 1200 includes a processing component 1222 , a wireless transmitting/receiving component 1224 , an antenna component 1226 , and a signal processing part specific to a wireless interface.
  • the processing component 1222 may further include one or more processors.
  • One of the processors in the processing component 1222 may be configured to implement the reference signal sending method described in any of the foregoing embodiments.
  • Fig. 13 is a schematic block diagram of an apparatus 1300 for sending channel state information according to an embodiment of the present disclosure.
  • the apparatus 1300 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • the device 1300 may include one or more of the following components: a processing component 1302, a memory 1304, a power supply component 1306, a multimedia component 1308, an audio component 1310, an input/output (I/O) interface 1312, a sensor component 1314, and Communication component 1316.
  • a processing component 1302 a memory 1304, a power supply component 1306, a multimedia component 1308, an audio component 1310, an input/output (I/O) interface 1312, a sensor component 1314, and Communication component 1316.
  • the processing component 1302 generally controls the overall operations of the device 1300, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1302 may include one or more processors 1320 to execute instructions to complete all or part of the steps of the above-mentioned method for sending channel state information.
  • processing component 1302 may include one or more modules that facilitate interaction between processing component 1302 and other components.
  • processing component 1302 may include a multimedia module to facilitate interaction between multimedia component 1308 and processing component 1302 .
  • the memory 1304 is configured to store various types of data to support operations at the device 1300 . Examples of such data include instructions for any application or method operating on device 1300, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 1304 may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1306 provides power to various components of the device 1300 .
  • Power components 1306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 1300 .
  • the multimedia component 1308 includes a screen that provides an output interface between the device 1300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 1308 includes a front camera and/or a rear camera. When the device 1300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1310 is configured to output and/or input audio signals.
  • the audio component 1310 includes a microphone (MIC), which is configured to receive external audio signals when the device 1300 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 1304 or sent via communication component 1316 .
  • the audio component 1310 also includes a speaker for outputting audio signals.
  • the I/O interface 1312 provides an interface between the processing component 1302 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 1314 includes one or more sensors for providing various aspects of status assessment for device 1300 .
  • the sensor component 1314 can detect the open/closed state of the device 1300, the relative positioning of components, such as the display and keypad of the device 1300, and the sensor component 1314 can also detect a change in the position of the device 1300 or a component of the device 1300 , the presence or absence of user contact with the device 1300 , the device 1300 orientation or acceleration/deceleration and the temperature change of the device 1300 .
  • Sensor assembly 1314 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 1314 may also include optical sensors, such as CMOS or CCD image sensors, for use in imaging applications.
  • the sensor component 1314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1316 is configured to facilitate wired or wireless communication between the apparatus 1300 and other devices.
  • the device 1300 can access wireless networks based on communication standards, such as WiFi, 2G, 3G, 4G LTE, 5G NR or combinations thereof.
  • the communication component 1316 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 1300 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Realized by a gate array (FPGA), controller, microcontroller, microprocessor or other electronic components, it is used to execute the above channel state information sending method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Realized by a gate array
  • controller microcontroller, microprocessor or other electronic components
  • non-transitory computer-readable storage medium including instructions, such as the memory 1304 including instructions, which can be executed by the processor 1320 of the device 1300 to complete the above method for sending channel state information.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及信道状态信息、参考信号发送方法和装置,其中,所述信道状态信息方法包括:确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围;根据所述时域资源范围接收所述SAS-CSI RS;根据所述SAS-CSI RS生成有效信道状态信息valid CSI发送至网络侧设备。根据本公开,有利于确保在不显著增加网络开销的情况下,缩短SAS-CSI RS的周期,使得终端可以更快接收到SAS-CSI RS,进而更快完成valid CSI的上报以完成辅小区的激活。

Description

信道状态信息、参考信号发送方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及信道状态信息发送方法、参考信号发送方法、信道状态信息发送装置、参考信号发送装置、通信装置和计算机可读存储介质。
背景技术
在无线通信网络中,网络侧可以为终端配置多个服务小区serving cell,服务小区可以包括主小区PCell(Primary Cell)、主辅小区PSCell(Primary Secondary Cell)和其他服务小区,也可以称作辅小区SCell。
在相关技术中,为了加快SCell的激活/去激活进程,引入了临时参考信号temporary RS,但是基于temporary RS只能加快SCell的激活/去激活的部分进程,对于加快SCell的激活/去激活的效果并不理想。
发明内容
有鉴于此,本公开的实施例提出了信道状态信息发送方法、参考信号发送方法、信道状态信息发送装置、参考信号发送装置、通信装置和计算机可读存储介质,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种信道状态信息发送方法,由终端执行,所述方法包括:确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围;根据所述时域资源范围接收所述SAS-CSI RS;根据所述SAS-CSI RS生成有效信道状态信息valid CSI发送至网络侧设备。
根据本公开实施例的第二方面,提出一种参考信号发送方法,由网络侧设备执行,所述方法包括:确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围;根据所述时域资源范围发送所述SAS-CSI RS。
根据本公开实施例的第三方面,提出一种信道状态信息发送装置,包括一个或多个处理器,所述处理器被配置为执行:确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围;根据所述时域资源范围接收所述SAS-CSI RS;根据 所述SAS-CSI RS生成有效信道状态信息valid CSI发送至网络侧设备。
根据本公开实施例的第四方面,提出一种参考信号发送装置,包括一个或多个处理器,所述处理器被配置为执行:确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围;根据所述时域资源范围发送所述SAS-CSI RS。
根据本公开实施例的第五方面,提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述信道状态信息发送方法。
根据本公开实施例的第六方面,提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现权上述参考信号发送方法。
根据本公开实施例的第七方面,提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述信道状态信息发送方法中的步骤。
根据本公开实施例的第八方面,提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述参考信号发送方法中的步骤。
根据本公开的实施例,网络侧设备并不是持续发送辅小区激活专属的信道状态信息参考信号SAS-CSI RS,而是仅在所述时域资源范围内发送SAS-CSI RS,相应地,终端也只需要在所述时域资源范围内接收SAS-CSI RS。
据此,即使将SAS-CSI RS的周期设置的相对较小,由于网络侧设备仅在所述时域资源范围内发送SAS-CSI RS,在所述时域资源范围外则不发送SAS-CSI RS,因此对于网络侧设备开销的影响很小,终端则相应地仅在所述时域资源范围内接收SAS-CSI RS,在所述时域资源范围外则不接收SAS-CSI RS。有利于确保在不显著增加网络开销的情况下,缩短SAS-CSI RS的周期,使得终端可以更快接收到SAS-CSI RS,进而更快完成valid CSI的上报以完成辅小区的激活。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这 些附图获得其他的附图。
图1是相关技术中激活SCell的过程示意图。
图2是相关技术中在激活SCell过程中引入临时参考信号的示意图。
图3是根据本公开的实施例示出的一种信道状态信息发送方法的示意流程图。
图4A是根据本公开的实施例示出的另一种信道状态信息发送方法的示意流程图。
图4B是根据本公开的实施例示出的一种SAS-CSI RS的示意图。
图5A是根据本公开的实施例示出的又一种信道状态信息发送方法的示意流程图。
图5B是根据本公开的实施例示出的另一种SAS-CSI RS的示意图。
图6是根据本公开的实施例示出的又一种信道状态信息发送方法的示意流程图。
图7是根据本公开的实施例示出的又一种信道状态信息发送方法的示意流程图。
图8是根据本公开的实施例示出的一种参考信号发送方法的示意流程图。
图9是根据本公开的实施例示出的另一种参考信号发送方法的示意流程图。
图10是根据本公开的实施例示出的又一种参考信号发送方法的示意流程图。
图11是根据本公开的实施例示出的又一种参考信号发送方法的示意流程图。
图12是根据本公开的实施例示出的一种用于参考信号发送的装置的示意框图。
图13是根据本公开的实施例示出的一种用于信道状态信息发送的装置的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
图1是相关技术中激活SCell的过程示意图。
如图1所示,对于处于去激活状态的SCell,激活SCell的过程主要包括三个步骤:
网络侧通过在向终端发送的介质访问控制层控制元素(Media Access Control Control Element,MAC CE)中携带激活指示,例如通过PCell的物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)携带MAC CE,终端接收到MAC CE后向网络侧设备返回混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)信息,例如返回HARQ-ACK,以向网络侧指示终端已接收到MAC CE;这个阶段称作HARQ timing(定时);
接下来终端接收到MAC CE后进行硬件准备,可以进一步包括多个子步骤,首先解析MAC CE以确定其中携带的具体信息,例如耗时3ms,然后等待接收同步信号块SSB(Synchronization Signal Block),例如等待时长为T_firstSSB,在接收到SSB之后,进行基于SSB的时频跟踪SSB-based time-frequency tracking;这个阶段称作激活时间Activation Time;
最后终端根据网络侧持续发送的用以激活SCell的信道状态信息参考信号CSI RS(Channel State Information Reference Signal,一般称作P-CSI-RS)生成有效信道状 态信息valid CSI上报给网络侧,网络侧根据valid CSI确定SCell激活;这个阶段称作CSI reporting(报告)。
在此过程中,终端需要先完成时频跟踪,才能根据网络侧持续发送的P-CSI-RS生成valid CSI进行上报,而时频跟踪是基于SSB实现的,因此就需要先接收到SSB。但是如图1所示,SSB的接收是基于SMTC periodicity,也即SSB测量定时配置(SSB Measurement Timing Configuration)周期,但是这个周期相对较长,导致难以及时地完成时频跟踪。针对该问题,相关技术中进一步提出了临时参考信号temporary RS。
图2是相关技术中在激活SCell过程中引入临时参考信号的示意图。
如图2所示,网络侧可以周期性发送temporary RS,并且temporary RS的周期比SMTC periodicity要小,通过MAC CE可以激活终端接收temporary RS,由于temporary RS的周期相对较小,因此在终端在接收到MAC CE后,相对于SSB可以更快地接收到temporary RS,进而根据temporary RS进行自动增益控制设置AGC(Automatic Gain Control)settling和时频跟踪T/F tracking,从而相对于图1的情况,更快地完成时频跟踪,进而更快地完成valid CSI的上报,加快激活SCell的进程。
基于图2可知,通过引入temporary RS可以加快激活SCell的进程,但是经过分析可知,只是加快了激活SCell的部分进程,具体是加快了激活SCell完成时频跟踪的部分。由于终端根据网络侧持续发送的P-CSI-RS生成valid CSI上报,因此完成时频跟踪后到上报valid CSI部分并没有因为引入temporary RS而加快。
而为了加快valid CSI上报,主要的方式之一是缩短P-CSI-RS的周期,以便终端能够更根据P-CSI-RS生成valid CSI进行上报。目前P-CSI-RS的周期最小为4个时隙slot,周期最大为640个时隙slot,由于P-CSI-RS是网络侧持续发送的,缩短P-CSI-RS的周期将会显著地增加网络开销。本公开的实施例主要是针对该技术问题提出的。
图3是根据本公开的实施例示出的一种信道状态信息发送方法的示意流程图。本实施例所示的信道状态信息发送方法可以由终端执行,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述终端可以与网络侧设备通信,所述网络侧设备包括但不限于4G、5G、6G等通信系统中的网络侧设备,例如基站、核心网等。
如图3所示,所述信道状态信息发送方法可以包括以下步骤:
在步骤S301中,确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS 的时域资源范围;
在步骤S302中,根据所述时域资源范围接收所述SAS-CSI RS;
在步骤S303中,根据所述SAS-CSI RS生成有效信道状态信息valid CSI发送至网络侧设备。
在一个实施例中,网络侧设备可以发送(例如广播、单播、组播)辅小区激活专属的信道状态信息参考信号SAS-CSI RS,全称可以为SCell activation specific CSI RS,为了方便描述,以下简称为SAS-CSI RS。
网络侧设备和终端可以分别确定SAS-CSI RS的时域资源范围,例如可以是时间窗,网络侧设备可以在确定的时域资源范围内发送SAS-CSI RS,并且可以在确定的时域资源范围内按照配置给所述终端的配置信息发送SAS-CSI RS。
配置信息可以包括SAS-CSI RS的周期、周期数量(可以理解为发送次数)等,例如周期为N个时隙slot,N小于周期阈值M,M可以根据需要进行设置,例如可以设置M=10,一般情况下,N的最小值为4,可以适当将N值设置的相对较小,以便终端能够尽快接收到SAS-CSI RS。
终端可以在确定的时域资源范围内接收SAS-CSI RS,例如在确定的时域资源范围内按照网络侧设备配置的配置信息发送SAS-CSI RS。接收到SAS-CSI RS后,终端可以根据SAS-CSI RS生成valid CSI发送至网络侧设备,网络侧设备根据valid CSI可以确定辅小区SCell是否激活。
根据本公开的实施例,网络侧设备并不是持续发送辅小区激活专属的信道状态信息参考信号SAS-CSI RS,而是仅在所述时域资源范围内发送SAS-CSI RS,相应地,终端也只需要在所述时域资源范围内接收SAS-CSI RS。
据此,即使将SAS-CSI RS的周期设置的相对较小,由于网络侧设备仅在所述时域资源范围内发送SAS-CSI RS,在所述时域资源范围外则不发送SAS-CSI RS,因此对于网络侧设备开销的影响很小,终端则相应地仅在所述时域资源范围内接收SAS-CSI RS,在所述时域资源范围外则不接收SAS-CSI RS。有利于确保在不显著增加网络开销的情况下,缩短SAS-CSI RS的周期,使得终端可以更快接收到SAS-CSI RS,进而更快完成valid CSI的上报以完成辅小区的激活。
在一个实施例中,确定所述时域资源范围的方式包括以下至少之一:
根据所述网络侧设备发送的指示信息确定;
根据协议约定确定。
在一个实施例中,SAS-CSI RS的时域资源范围可以根据协议约定确定,在这种情况下,网络侧设备和终端均可根据协议约定确定SAS-CSI RS的时域资源范围,进而网络侧设备可以在该时域资源范围内发送SAS-CSI RS,终端可以在该时域资源范围内接收SAS-CSI RS。
在一个实施例中,SAS-CSI RS的时域资源范围可以由网络侧设备根据需要设置,进而通过指示信息发送给终端,在这种情况下,网络侧设备可以自主确定SAS-CSI RS的时域资源范围,然后通过指示信息指示终端所述时域资源范围,进而网络侧设备可以在所述时域资源范围内发送SAS-CSI RS,终端可以在该时域资源范围内接收SAS-CSI RS。
其中,所述指示信息可以携带在MAC CE中,携带所述指示信息的MAC CE可以与激活temporary RS的MAC CE复用同一个MAC CE,也可以采用其他MAC CE携带所述指示信息。
图4A是根据本公开的实施例示出的另一种信道状态信息发送方法的示意流程图。如图4A所示,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
在步骤S401中,在接收到临时参考信号temporary RS之后的时域资源中确定所述时域资源范围的起始位置。
在一个实施例中,网络侧设备可以根据协议约定确定在发送temporary RS之后的时域资源中确定所述时域资源范围的起始位置,相应地,终端可以基于协议约定确定在接收到temporary RS之后的时域资源中确定所述时域资源范围的起始位置。
例如可以根据temporary RS所在时隙和偏移量offset(大于或等于0个时隙)确定所述起始位置,例如起始位置为temporary RS所在时隙加上所述偏移量,其中,所述偏移量可以是网络侧设备指示的,或者也是根据协议约定确定的。
在一个实施例中,网络侧设备可以根据需要设置在发送temporary RS之后的时域资源中确定所述时域资源范围的起始位置,进而可以向终端发送指示信息,通过指示信息指示终端在接收到temporary RS之后的时域资源中确定所述时域资源范围的起始位置。
例如可以根据temporary RS所在时隙和偏移量offset确定所述起始位置,例如起始位置为temporary RS所在时隙加上所述偏移量,其中,所述偏移量可以是根据协议约定确定的,或者也是由网络侧设备指示的。
在一个实施例中,由于网络侧设备在给终端配置了temporary RS,且在激活终端接收temporary RS的情况下,才确定存在尽快上报valid CSI的需要,因此,可以在接收到temporary RS之后的时域资源中确定所述时域资源范围的起始位置,以便在接收到temporary RS,确定存在尽快上报valid CSI的需要,终端才从起始位置开始接收SAS-CSI RS,相应地,网络侧设备可以在发送temporary RS之后,才开始发送SAS-CSI RS。有利于避免在无需尽快上报valid CSI的情况下终端接收SAS-CSI RS、网络侧发送SAS-CSI RS而造成资源浪费。
图4B是根据本公开的实施例示出的一种SAS-CSI RS的示意图。
如图4B所示,时域资源范围的起始位置为temporary RS所在时隙加上所述偏移量offset,网络侧设备周期性发送SAS-CSI RS,周围Periodicity可以根据需要配置,时域资源范围的结束位置例如可以为完成valid CSI上报的时域位置。在offset为0的情况下,起始位置可以为temporary RS所在时隙之后的第一个时隙。
图5A是根据本公开的实施例示出的又一种信道状态信息发送方法的示意流程图。如图5A所示,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
在步骤S501中,在完成自动增益控制设置AGC settling和时频跟踪T/F tracking之后的时域资源中确定所述时域资源范围的起始位置。
在一个实施例中,终端可以根据协议约定确定在完成AGC settling和T/F tracking之后的时域资源中确定所述时域资源范围的起始位置,或者可以根据网络侧设备的指示确定在完成AGC settling和T/F tracking之后的时域资源中确定所述时域资源范围的起始位置。
在这种情况下,终端可以在完成AGC settling和T/F tracking之后的时域资源中确定所述时域资源范围的起始位置,进而在该起始位置开始接收所述SAS-CSI RS。由于AGC settling和T/F tracking是终端执行的动作,网络侧设备并不一定能够确定终端何时完成AGC settling和T/F tracking。
若网络侧设备不能确定终端何时完成AGC settling和T/F tracking,为了确保终 端能够在完成AGC settling和T/F tracking之后接收所述SAS-CSI RS,网络侧设备确定的发送SAS-CSI RS的起始位置可以早于终端确定的接收所述SAS-CSI RS的起始位置。
例如网络侧设备确定的发送SAS-CSI RS的起始位置可以为发送temporary RS之后的第一个时隙slot,或者为发送temporary RS之前的时隙。由于终端需要根据temporary RS进行AGC settling和T/F tracking,因此网络侧设备在发送temporary RS之后的第一个时隙slot,或者在发送temporary RS之前的时隙开始发送SAS-CSI RS,可以确保终端在完成AGC settling和T/F tracking之后的时域位置,能够接收SAS-CSI RS。
若网络侧设备能够确定终端何时完成AGC settling和T/F tracking,那么网络侧设备可以选择将终端完成AGC settling和T/F tracking之后的第一个时隙slot作为发送SAS-CSI RS的起始位置,也可以选择将终端完成AGC settling和T/F tracking之前的时隙slot作为发送SAS-CSI RS的起始位置,据此,也可以确保终端在完成AGC settling和T/F tracking之后的时域位置,能够接收SAS-CSI RS。
在一个实施例中,由于终端在完成AGC settling和T/F tracking之前,网络侧和终端侧可能存在一定程度的不同步,进而导致网络侧设备和终端对于时域资源范围的理解存在不一致,进而导致后续问题。为了避免这种情况,终端可以在完成AGC settling和T/F tracking之后的时域资源中确定所述时域资源范围的起始位置,从而确保在完成AGC settling和T/F tracking之后才会开始接收SAS-CSI RS,确保在网络侧设备和终端对于时域资源范围的理解一致的情况下接收SAS-CSI RS。
图5B是根据本公开的实施例示出的另一种SAS-CSI RS的示意图。
如图5B所示,例如网络侧设备仍然将temporary RS所在时隙加上所述偏移量offset作为起始位置,也即发送起始位置,并在发送起始位置开始发送SAS-CSI RS;而终端在接收到temporary RS之后,需要先完成AGC settling和T/F tracking,进而才能确定接收SAS-CSI RS的起始位置,也即接收起始位置,接收起始位置在AGC settling和T/F tracking之后,确保网络侧设备和终端对于时域资源范围的理解一致的情况下,终端开始接收SAS-CSI RS。在这种情况下,网络侧设备确定的SAS-CSI RS的时域资源范围与终端确定的SAS-CSI RS的时域资源范围可以不同。
在一个实施例中,确定所述时域资源范围的方式包括根据所述网络侧设备的指 示信息确定,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:根据所述指示信息所指示的绝对时间位置确定所述时域资源范围的起始位置。
在网络侧设备通过指示信息指示终端确定时域资源范围的情况下,网络侧设备可以通过指示信息指示绝对时间位置作为时域资源范围的起始位置。
在一个实施例中,确定所述时域资源范围的方式包括根据所述网络侧设备的指示信息确定,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:根据所述指示信息所指示的相对于预设时域位置的偏移量确定所述时域资源范围的起始位置。
在网络侧设备通过指示信息指示终端确定时域资源范围的情况下,网络侧设备可以向终端指示偏移量,终端可以根据预设时域位置和网络侧设备指示的偏移量确定时域资源范围的起始位置。
其中,所述预设时域位置可以是基于协议约定确定的,或者也可以是网络侧设备预先指示的。在一个实施例中,所述预设时域位置包括以下至少之一:
接收到temporary RS的时域位置;
接收到所述指示信息的时域位置;
发送所述指示信息对应的混合自动重传请求HARQ的时域位置对应的下行时隙。
图6是根据本公开的实施例示出的又一种信道状态信息发送方法的示意流程图。如图6所示,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
在步骤S601中,确定发送所述valid CSI的时域位置为所述时域资源范围的结束位置。
在一个实施例中,由于终端在发送valid CSI后,就已经完成了辅小区的激活/去激活进程,因此在发送valid CSI之后(到下一次需要激活/去激活辅小区之前),就没有接收SAS-CSI RS了,因此,可以将发送valid CSI的时域位置(例如时隙slot)确定为接收SAS-CSI RS的时域资源范围的结束位置,在结束位置之后,终端停止接收SAS-CSI RS。
相对应地,网络侧设备可以将接收到valid CSI的时域位置确定为发送SAS-CSI RS的时域资源范围的结束位置,在结束位置之后,网络侧设备停止发送SAS-CSI RS。
图7是根据本公开的实施例示出的又一种信道状态信息发送方法的示意流程图。如图7所示,所述根据所述时域资源范围接收所述SAS-CSI RS包括:
在步骤S701中,在确定所述网络侧设备给所述终端配置了temporary RS,且激活所述终端接收temporary RS的情况下,根据所述时域资源范围接收所述SAS-CSI RS。
在一个实施例中,所述方法还包括:
在步骤S702中,在确定所述网络侧设备未激活所述终端接收temporary RS或未给所述终端配置temporary RS的情况下,不根据所述时域资源范围接收所述SAS-CSI RS。
在一个实施例中,由于网络侧设备在给终端配置了temporary RS,且在激活终端接收temporary RS的情况下,才确定存在尽快上报valid CSI的需要。
因此,终端可以在确定所述网络侧设备给所述终端配置了temporary RS,且激活所述终端接收temporary RS的情况下,才根据所述时域资源范围接收SAS-CSI RS,而在确定所述网络侧设备未激活所述终端接收temporary RS或未给所述终端配置temporary RS的情况下,则不根据所述时域资源范围接收SAS-CSI RS。
相对应地,网络侧设备可以在确定给所述终端配置了temporary RS,且激活所述终端接收temporary RS的情况下,才根据所述时域资源范围发送SAS-CSI RS,而在确定未激活所述终端接收temporary RS或未给所述终端配置temporary RS的情况下,则不根据所述时域资源范围发送SAS-CSI RS。
据此,可以避免在无需尽快上报valid CSI的情况下终端接收SAS-CSI RS、网络侧发送SAS-CSI RS而造成资源浪费。
在一个实施例中,所述方法还包括:基于所述SAS-CSI RS执行以下至少一项操作:
将所述SAS-CSI RS作为接收到预设RS之前的其他RS的准共址源QCL source;
根据所述SAS-CSI RS进行干扰测量;
根据所述SAS-CSI RS进行移动性管理。
在一个实施例中,本公开所示实施例中的SAS-CSI RS可以与相关技术中的P-CSI-RS不同,一方面SAS-CSI RS尽在所述时域资源范围内发送和接收,P-CSI-RS则是持续发送的,另一方面SAS-CSI RS的周期相对于P-CSI-RS的周期可以更短,以便终端可以更快地接收到SAS-CSI RS,并据此生成valid CSI完成上报。
在SAS-CSI RS的周期相对于P-CSI-RS的周期较短的情况下,终端一般会更快接收到SAS-CSI RS,那么针对在预设RS之前的其他RS,例如在P-CSI-RS之前的其他RS,可以将SAS-CSI RS作为其他RS的QCL source,有利于更快确定其他RS的QCL source。
例如其他RS可以包括解调参考信号(Demodulation Reference Signal,DMRS),DMRS为终端激活辅小区后W个时隙slot内的DMRS,W为大于或等于1的整数,可以根据需要设置,例如终端激活辅小区后W个时隙slot内未接收到P-CSI-RS。
另外,基于SAS-CSI RS还可以实现其他功能,例如根据SAS-CSI RS进行干扰测量,根据SAS-CSI RS进行移动性管理(例如根据SAS-CSI RS的接收质量判断是否需要切换小区)等,具体可以根据需要进行拓展,本公开不作具体限制。
图8是根据本公开的实施例示出的一种参考信号发送方法的示意流程图。本实施例所示的参考信号发送方法可以由网络侧设备执行,所述终端可以与网络侧设备通信,所述网络侧设备包括但不限于4G、5G、6G等通信系统中的网络侧设备,例如基站、核心网等,所述网络侧设备可以与终端通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。
如图8所示,所述参考信号发送方法可以包括以下步骤:
在步骤S801中,确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围;
在步骤S802中,根据所述时域资源范围发送所述SAS-CSI RS。
在一个实施例中,网络侧设备可以发送(例如广播、单播、组播)辅小区激活专属的信道状态信息参考信号SAS-CSI RS,全称可以为SCell activation specific CSI RS,为了方便描述,以下简称为SAS-CSI RS。
网络侧设备和终端可以分别确定SAS-CSI RS的时域资源范围,例如可以是时 间窗,网络侧设备可以在确定的时域资源范围内发送SAS-CSI RS,并且可以在确定的时域资源范围内按照配置给所述终端的配置信息发送SAS-CSI RS。
配置信息可以包括SAS-CSI RS的周期、周期数量(可以理解为发送次数)等,例如周期为N个时隙slot,N小于周期阈值M,M可以根据需要进行设置,例如可以设置M=10,一般情况下,N的最小值为4,可以适当将N值设置的相对较小,以便终端能够尽快接收到SAS-CSI RS。
终端可以在确定的时域资源范围内接收SAS-CSI RS,例如在确定的时域资源范围内按照网络侧设备配置的配置信息发送SAS-CSI RS。接收到SAS-CSI RS后,终端可以根据SAS-CSI RS生成valid CSI发送至网络侧设备,网络侧设备根据valid CSI可以确定辅小区SCell是否激活。
根据本公开的实施例,网络侧设备并不是持续发送辅小区激活专属的信道状态信息参考信号SAS-CSI RS,而是仅在所述时域资源范围内发送SAS-CSI RS,相应地,终端也只需要在所述时域资源范围内接收SAS-CSI RS。
据此,即使将SAS-CSI RS的周期设置的相对较小,由于网络侧设备仅在所述时域资源范围内发送SAS-CSI RS,在所述时域资源范围外则不发送SAS-CSI RS,因此对于网络侧设备开销的影响很小,终端则相应地仅在所述时域资源范围内接收SAS-CSI RS,在所述时域资源范围外则不接收SAS-CSI RS。有利于确保在不显著增加网络开销的情况下,缩短SAS-CSI RS的周期,使得终端可以更快接收到SAS-CSI RS,进而更快完成valid CSI的上报以完成辅小区的激活。
在一个实施例中,确定所述时域资源范围的方式包括以下至少之一:
由所述网络侧设备设置;
根据协议约定确定。
在一个实施例中,SAS-CSI RS的时域资源范围可以根据协议约定确定,在这种情况下,网络侧设备和终端均可根据协议约定确定SAS-CSI RS的时域资源范围,进而网络侧设备可以在该时域资源范围内发送SAS-CSI RS,终端可以在该时域资源范围内接收SAS-CSI RS。
在一个实施例中,SAS-CSI RS的时域资源范围可以由网络侧设备根据需要设置,进而通过指示信息发送给终端,在这种情况下,网络侧设备可以自主确定SAS-CSI RS的时域资源范围,然后通过指示信息指示终端所述时域资源范围,进而网络侧设备 可以在所述时域资源范围内发送SAS-CSI RS,终端可以在该时域资源范围内接收SAS-CSI RS。
其中,所述指示信息可以携带在MAC CE中,携带所述指示信息的MAC CE可以与激活temporary RS的MAC CE复用同一个MAC CE,也可以采用其他MAC CE携带所述指示信息。
图9是根据本公开的实施例示出的另一种参考信号发送方法的示意流程图。如图9所示,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
在步骤S901中,在接收到临时参考信号temporary RS之后的时域资源中确定所述时域资源范围的起始位置。
在一个实施例中,网络侧设备可以根据协议约定确定在发送temporary RS之后的时域资源中确定所述时域资源范围的起始位置,相应地,终端可以基于协议约定确定在接收到temporary RS之后的时域资源中确定所述时域资源范围的起始位置。
例如可以根据temporary RS所在时隙和偏移量offset(大于或等于0个时隙)确定所述起始位置,例如起始位置为temporary RS所在时隙加上所述偏移量,其中,所述偏移量可以是网络侧设备指示的,或者也是根据协议约定确定的。
在一个实施例中,网络侧设备可以根据需要设置在发送temporary RS之后的时域资源中确定所述时域资源范围的起始位置,进而可以向终端发送指示信息,通过指示信息指示终端在接收到temporary RS之后的时域资源中确定所述时域资源范围的起始位置。
例如可以根据temporary RS所在时隙和偏移量offset确定所述起始位置,例如起始位置为temporary RS所在时隙加上所述偏移量,其中,所述偏移量可以是根据协议约定确定的,或者也是由网络侧设备指示的。
在一个实施例中,由于网络侧设备在给终端配置了temporary RS,且在激活终端接收temporary RS的情况下,才确定存在尽快上报valid CSI的需要,因此,可以在接收到temporary RS之后的时域资源中确定所述时域资源范围的起始位置,以便在接收到temporary RS,确定存在尽快上报valid CSI的需要,终端才从起始位置开始接收SAS-CSI RS,相应地,网络侧设备可以在发送temporary RS之后,才开始发送SAS-CSI RS。有利于避免在无需尽快上报valid CSI的情况下终端接收SAS-CSI RS、网络侧发 送SAS-CSI RS而造成资源浪费。
在一个实施例中,确定所述时域资源范围的方式包括由所述网络侧设备设置,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:根据所述网络侧设备设置的绝对时间位置确定所述时域资源范围的起始位置。
在网络侧设备通过指示信息指示终端确定时域资源范围的情况下,网络侧设备可以通过指示信息指示绝对时间位置作为时域资源范围的起始位置。
在一个实施例中,确定所述时域资源范围的方式包括由所述网络侧设备设置,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:根据所述网络侧设备设置的相对于预设时域位置的偏移量确定所述时域资源范围的起始位置。
在网络侧设备通过指示信息指示终端确定时域资源范围的情况下,网络侧设备可以向终端指示偏移量,终端可以根据预设时域位置和网络侧设备指示的偏移量确定时域资源范围的起始位置,网络侧设备也可以根据预设时域位置和网络侧设备指示的偏移量确定时域资源范围的起始位置。
所述预设时域位置可以是基于协议约定确定的,或者也可以是网络侧设备预先指示的。其中,对于网络侧设备和终端而言,偏移量可以相同,但是预设时域位置可以不同。
例如对于网络侧设备而言,所述预设时域位置包括以下至少之一:
发送temporary RS的时域位置;
向所述终端发送指示信息的时域位置,其中,所述指示信息用于指示所述时域资源范围;
接收到所述终端发送的所述指示信息对应的混合自动重传请求HARQ的时域位置对应的下行时隙。
而对于终端而言,所述预设时域位置则包括以下至少之一:
接收到temporary RS的时域位置;
接收到所述指示信息的时域位置;
发送所述指示信息对应的混合自动重传请求HARQ的时域位置对应的下行时隙。
图10是根据本公开的实施例示出的又一种参考信号发送方法的示意流程图。如图10所示,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
在步骤S1001中,确定接收到所述终端根据所述SAS-CSI RS生成的有效信道状态信息valid CSI的时域位置为所述时域资源范围的结束位置。
在一个实施例中,由于终端在发送valid CSI后,就已经完成了辅小区的激活/去激活进程,因此在发送valid CSI之后(到下一次需要激活/去激活辅小区之前),就没有接收SAS-CSI RS了,因此,可以将发送valid CSI的时域位置(例如时隙slot)确定为接收SAS-CSI RS的时域资源范围的结束位置,在结束位置之后,终端停止接收SAS-CSI RS。
相对应地,网络侧设备可以将接收到valid CSI的时域位置确定为发送SAS-CSI RS的时域资源范围的结束位置,在结束位置之后,网络侧设备停止发送SAS-CSI RS。
图11是根据本公开的实施例示出的又一种参考信号发送方法的示意流程图。如图11所示,所述根据所述时域资源范围发送所述SAS-CSI RS包括:
在步骤S1101中,在确定给所述终端配置了temporary RS,且激活所述终端接收temporary RS的情况下,根据所述时域资源范围发送所述SAS-CSI RS。
在一个实施例中,所述方法还包括:
在步骤S1102中,在确定未激活所述终端接收temporary RS或未给所述终端配置temporary RS的情况下,不根据所述时域资源范围发送所述SAS-CSI RS。
在一个实施例中,由于网络侧设备在给终端配置了temporary RS,且在激活终端接收temporary RS的情况下,才确定存在尽快上报valid CSI的需要。
因此,终端可以在确定所述网络侧设备给所述终端配置了temporary RS,且激活所述终端接收temporary RS的情况下,才根据所述时域资源范围接收SAS-CSI RS,而在确定所述网络侧设备未激活所述终端接收temporary RS或未给所述终端配置temporary RS的情况下,则不根据所述时域资源范围接收SAS-CSI RS。
相对应地,网络侧设备可以在确定给所述终端配置了temporary RS,且激活所述终端接收temporary RS的情况下,才根据所述时域资源范围发送SAS-CSI RS,而在确定未激活所述终端接收temporary RS或未给所述终端配置temporary RS的情况下, 则不根据所述时域资源范围发送SAS-CSI RS。
据此,可以避免在无需尽快上报valid CSI的情况下终端接收SAS-CSI RS、网络侧发送SAS-CSI RS而造成资源浪费。
在一个实施例中,所述方法还包括:在根据所述时域资源范围发送所述SAS-CSI RS的情况下,停止发送其他与激活所述辅小区相关的CSI-RS。
由于网络侧设备在所述时域资源范围发送所述SAS-CSI RS的情况下,就终端可以根据SAS-CSI RS得到valid CSI进行上报,无需根据其他与激活所述辅小区相关的CSI-RS再生成valid CSI了,所以网络侧设备可以停止(例如在所述时域资源范围内停止)发送其他与激活所述辅小区相关的CSI-RS(例如相关技术中心的P-CSI-RS),以免浪费网络资源。
与前述的信道状态信息发送方法和参考信号发送方法的实施例相对应,本公开还提供了信道状态信息发送装置和参考信号发送装置的实施例。
本公开的实施例提出一种信道状态信息发送装置,所述信道状态信息发送装置可以适用于终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述终端可以与网络侧设备通信,所述网络侧设备包括但不限于4G、5G、6G等通信系统中的网络侧设备,例如基站、核心网等。
在一个实施例中,所述信道状态信息发送装置包括一个或多个处理器,所述处理器被配置为执行:确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围;根据所述时域资源范围接收所述SAS-CSI RS;根据所述SAS-CSI RS生成有效信道状态信息valid CSI发送至网络侧设备。
在一个实施例中,确定所述时域资源范围的方式包括以下至少之一:
根据所述网络侧设备发送的指示信息确定;
根据协议约定确定。
在一个实施例中,所述处理器被配置为执行:在接收到临时参考信号temporary RS之后的时域资源中确定所述时域资源范围的起始位置。
在一个实施例中,所述处理器被配置为执行:在完成自动增益控制设置AGC settling和时频跟踪T/F tracking之后的时域资源中确定所述时域资源范围的起始位置。
在一个实施例中,确定所述时域资源范围的方式包括根据所述网络侧设备的指 示信息确定,所述处理器被配置为执行:根据所述指示信息所指示的绝对时间位置确定所述时域资源范围的起始位置。
在一个实施例中,确定所述时域资源范围的方式包括根据所述网络侧设备的指示信息确定,所述处理器被配置为执行:根据所述指示信息所指示的相对于预设时域位置的偏移量确定所述时域资源范围的起始位置。
在一个实施例中,所述预设时域位置包括以下至少之一:
接收到temporary RS的时域位置;
接收到所述指示信息的时域位置;
发送所述指示信息对应的混合自动重传请求HARQ的时域位置对应的下行时隙。
在一个实施例中,所述处理器被配置为执行:确定发送所述valid CSI的时域位置为所述时域资源范围的结束位置。
在一个实施例中,所述处理器被配置为执行:在确定所述网络侧设备给终端配置了temporary RS,且激活所述终端接收temporary RS的情况下,根据所述时域资源范围接收所述SAS-CSI RS。
在一个实施例中,所述处理器还被配置为执行:在确定所述网络侧设备未激活所述终端接收temporary RS或未给所述终端配置temporary RS的情况下,不根据所述时域资源范围接收所述SAS-CSI RS。
在一个实施例中,所述处理器还被配置为执行:
基于所述SAS-CSI RS执行以下至少一项操作:
将所述SAS-CSI RS作为接收到预设RS之前的其他RS的准共址源QCL source;
根据所述SAS-CSI RS进行干扰测量;
根据所述SAS-CSI RS进行移动性管理。
本公开的实施例提出一种参考信号发送装置,所述参考信号发送装置可以适用于网络侧设备,所述终端可以与网络侧设备通信,所述网络侧设备包括但不限于4G、5G、6G等通信系统中的网络侧设备,例如基站、核心网等,所述网络侧设备可以与 终端通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。
在一个实施例中,所述参考信号发送装置包括一个或多个处理器,所述处理器被配置为执行:确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围;根据所述时域资源范围发送所述SAS-CSI RS。
在一个实施例中,确定所述时域资源范围的方式包括以下至少之一:
由网络侧设备设置;
根据协议约定确定。
在一个实施例中,所述处理器被配置为执行:在接收到临时参考信号temporary RS之后的时域资源中确定所述时域资源范围的起始位置。
在一个实施例中,确定所述时域资源范围的方式包括由网络侧设备设置,所述处理器被配置为执行:根据所述网络侧设备设置的绝对时间位置确定所述时域资源范围的起始位置。
在一个实施例中,确定所述时域资源范围的方式包括由网络侧设备设置,所述处理器被配置为执行:根据所述网络侧设备设置的相对于预设时域位置的偏移量确定所述时域资源范围的起始位置。
在一个实施例中,所述预设时域位置包括以下至少之一:
发送temporary RS的时域位置;
向所述终端发送指示信息的时域位置,其中,所述指示信息用于指示所述时域资源范围;
接收到所述终端发送的所述指示信息对应的混合自动重传请求HARQ的时域位置对应的下行时隙。
在一个实施例中,所述处理器被配置为执行:确定接收到所述终端根据所述SAS-CSI RS生成的有效信道状态信息valid CSI的时域位置为所述时域资源范围的结束位置。
在一个实施例中,所述处理器被配置为执行:在确定给所述终端配置了temporary RS,且激活所述终端接收temporary RS的情况下,根据所述时域资源范围发送所述SAS-CSI RS。
在一个实施例中,所述处理器还被配置为执行:在确定未激活所述终端接收temporary RS或未给所述终端配置temporary RS的情况下,不根据所述时域资源范围发送所述SAS-CSI RS。
在一个实施例中,所述处理器还被配置为执行:在根据所述时域资源范围发送所述SAS-CSI RS的情况下,停止发送其他与激活所述辅小区相关的CSI-RS。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的信道状态信息发送方法。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的参考信号发送方法。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的信道状态信息发送方法中的步骤。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的参考信号发送方法中的步骤。
如图12所示,图12是根据本公开的实施例示出的一种用于参考信号发送的装置1200的示意框图。装置1200可以被提供为一基站。参照图12,装置1200包括处理组件1222、无线发射/接收组件1224、天线组件1226、以及无线接口特有的信号处理部分,处理组件1222可进一步包括一个或多个处理器。处理组件1222中的其中一 个处理器可以被配置为实现上述任一实施例所述的参考信号发送方法。
图13是根据本公开的实施例示出的一种用于信道状态信息发送的装置1300的示意框图。例如,装置1300可以是移动电话、计算机、数字广播终端、消息收发设备、游戏控制台、平板设备、医疗设备、健身设备、个人数字助理等。
参照图13,装置1300可以包括以下一个或多个组件:处理组件1302、存储器1304、电源组件1306、多媒体组件1308、音频组件1310、输入/输出(I/O)的接口1312、传感器组件1314以及通信组件1316。
处理组件1302通常控制装置1300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1302可以包括一个或多个处理器1320来执行指令,以完成上述的信道状态信息发送方法的全部或部分步骤。此外,处理组件1302可以包括一个或多个模块,便于处理组件1302和其他组件之间的交互。例如,处理组件1302可以包括多媒体模块,以方便多媒体组件1308和处理组件1302之间的交互。
存储器1304被配置为存储各种类型的数据以支持在装置1300的操作。这些数据的示例包括用于在装置1300上操作的任何应用程序或方法的指令、联系人数据、电话簿数据、消息、图片、视频等。存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM)、电可擦除可编程只读存储器(EEPROM)、可擦除可编程只读存储器(EPROM)、可编程只读存储器(PROM),只读存储器(ROM)、磁存储器、快闪存储器、磁盘或光盘。
电源组件1306为装置1300的各种组件提供电力。电源组件1306可以包括电源管理系统,一个或多个电源,及其他与为装置1300生成、管理和分配电力相关联的组件。
多媒体组件1308包括在所述装置1300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1308包括一个前置摄像头和/或后置摄像头。当装置1300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄 像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1310被配置为输出和/或输入音频信号。例如,音频组件1310包括一个麦克风(MIC),当装置1300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1304或经由通信组件1316发送。在一些实施例中,音频组件1310还包括一个扬声器,用于输出音频信号。
I/O接口1312为处理组件1302和外围接口模块之间提供接口,上述外围接口模块可以是键盘、点击轮、按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1314包括一个或多个传感器,用于为装置1300提供各个方面的状态评估。例如,传感器组件1314可以检测到装置1300的打开/关闭状态,组件的相对定位,例如所述组件为装置1300的显示器和小键盘,传感器组件1314还可以检测装置1300或装置1300一个组件的位置改变,用户与装置1300接触的存在或不存在,装置1300方位或加速/减速和装置1300的温度变化。传感器组件1314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1314还可以包括加速度传感器、陀螺仪传感器、磁传感器、压力传感器或温度传感器。
通信组件1316被配置为便于装置1300和其他设备之间有线或无线方式的通信。装置1300可以接入基于通信标准的无线网络,如WiFi、2G、3G、4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件1316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术、红外数据协会(IrDA)技术、超宽带(UWB)技术、蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述信道状态信息发送方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1304,上述指令可由装置1300的处理器1320执行以完成上述信道状态信息发送方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (27)

  1. 一种信道状态信息发送方法,其特征在于,由终端执行,所述方法包括:
    确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围;
    根据所述时域资源范围接收所述SAS-CSI RS;
    根据所述SAS-CSI RS生成有效信道状态信息valid CSI发送至网络侧设备。
  2. 根据权利要求1所述的方法,其特征在于,确定所述时域资源范围的方式包括以下至少之一:
    根据所述网络侧设备发送的指示信息确定;
    根据协议约定确定。
  3. 根据权利要求1所述的方法,其特征在于,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
    在接收到临时参考信号temporary RS之后的时域资源中确定所述时域资源范围的起始位置。
  4. 根据权利要求1所述的方法,其特征在于,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
    在完成自动增益控制设置AGC settling和时频跟踪T/F tracking之后的时域资源中确定所述时域资源范围的起始位置。
  5. 根据权利要求2所述的方法,其特征在于,确定所述时域资源范围的方式包括根据所述网络侧设备的指示信息确定,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
    根据所述指示信息所指示的绝对时间位置确定所述时域资源范围的起始位置。
  6. 根据权利要求2所述的方法,其特征在于,确定所述时域资源范围的方式包括根据所述网络侧设备的指示信息确定,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
    根据所述指示信息所指示的相对于预设时域位置的偏移量确定所述时域资源范围的起始位置。
  7. 根据权利要求6所述的方法,其特征在于,所述预设时域位置包括以下至少之一:
    接收到temporary RS的时域位置;
    接收到所述指示信息的时域位置;
    发送所述指示信息对应的混合自动重传请求HARQ的时域位置对应的下行时隙。
  8. 根据权利要求1所述的方法,其特征在于,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
    确定发送所述valid CSI的时域位置为所述时域资源范围的结束位置。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述根据所述时域资源范围接收所述SAS-CSI RS包括:
    在确定所述网络侧设备给所述终端配置了temporary RS,且激活所述终端接收temporary RS的情况下,根据所述时域资源范围接收所述SAS-CSI RS。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    在确定所述网络侧设备未激活所述终端接收temporary RS或未给所述终端配置temporary RS的情况下,不根据所述时域资源范围接收所述SAS-CSI RS。
  11. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    基于所述SAS-CSI RS执行以下至少一项操作:
    将所述SAS-CSI RS作为接收到预设RS之前的其他RS的准共址源QCL source;
    根据所述SAS-CSI RS进行干扰测量;
    根据所述SAS-CSI RS进行移动性管理。
  12. 一种参考信号发送方法,其特征在于,由网络侧设备执行,所述方法包括:
    确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围;
    根据所述时域资源范围发送所述SAS-CSI RS。
  13. 根据权利要求12所述的方法,其特征在于,确定所述时域资源范围的方式包括以下至少之一:
    由所述网络侧设备设置;
    根据协议约定确定。
  14. 根据权利要求12所述的方法,其特征在于,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
    在接收到临时参考信号temporary RS之后的时域资源中确定所述时域资源范围的起始位置。
  15. 根据权利要求13所述的方法,其特征在于,确定所述时域资源范围的方式包括由所述网络侧设备设置,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
    根据所述网络侧设备设置的绝对时间位置确定所述时域资源范围的起始位置。
  16. 根据权利要求13所述的方法,其特征在于,确定所述时域资源范围的方式包 括由所述网络侧设备设置,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
    根据所述网络侧设备设置的相对于预设时域位置的偏移量确定所述时域资源范围的起始位置。
  17. 根据权利要求16所述的方法,其特征在于,所述预设时域位置包括以下至少之一:
    发送temporary RS的时域位置;
    向终端发送指示信息的时域位置,其中,所述指示信息用于指示所述时域资源范围;
    接收到所述终端发送的所述指示信息对应的混合自动重传请求HARQ的时域位置对应的下行时隙。
  18. 根据权利要求12所述的方法,其特征在于,所述确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围包括:
    确定接收到终端根据所述SAS-CSI RS生成的有效信道状态信息valid CSI的时域位置为所述时域资源范围的结束位置。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,所述根据所述时域资源范围发送所述SAS-CSI RS包括:
    在确定给终端配置了temporary RS,且激活所述终端接收temporary RS的情况下,根据所述时域资源范围发送所述SAS-CSI RS。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    在确定未激活所述终端接收temporary RS或未给所述终端配置temporary RS的情况下,不根据所述时域资源范围发送所述SAS-CSI RS。
  21. 根据权利要求12至18中任一项所述的方法,其特征在于,所述方法还包括:
    在根据所述时域资源范围发送所述SAS-CSI RS的情况下,停止发送其他与激活所述辅小区相关的CSI-RS。
  22. 一种信道状态信息发送装置,其特征在于,包括一个或多个处理器,所述处理器被配置为执行:
    确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围;
    根据所述时域资源范围接收所述SAS-CSI RS;
    根据所述SAS-CSI RS生成有效信道状态信息valid CSI发送至网络侧设备。
  23. 一种参考信号发送装置,其特征在于,包括一个或多个处理器,所述处理器 被配置为执行:
    确定辅小区激活专属的信道状态信息参考信号SAS-CSI RS的时域资源范围;
    根据所述时域资源范围发送所述SAS-CSI RS。
  24. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求1至11中任一项所述的信道状态信息发送方法。
  25. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求12至21中任一项所述的参考信号发送方法。
  26. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求1至11中任一项所述的信道状态信息发送方法中的步骤。
  27. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求12至21中任一项所述的参考信号发送方法中的步骤。
PCT/CN2021/134666 2021-11-30 2021-11-30 信道状态信息、参考信号发送方法和装置 WO2023097526A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180004045.4A CN114287120A (zh) 2021-11-30 2021-11-30 信道状态信息、参考信号发送方法和装置
PCT/CN2021/134666 WO2023097526A1 (zh) 2021-11-30 2021-11-30 信道状态信息、参考信号发送方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134666 WO2023097526A1 (zh) 2021-11-30 2021-11-30 信道状态信息、参考信号发送方法和装置

Publications (1)

Publication Number Publication Date
WO2023097526A1 true WO2023097526A1 (zh) 2023-06-08

Family

ID=80880014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134666 WO2023097526A1 (zh) 2021-11-30 2021-11-30 信道状态信息、参考信号发送方法和装置

Country Status (2)

Country Link
CN (1) CN114287120A (zh)
WO (1) WO2023097526A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166192A (zh) * 2018-02-12 2019-08-23 维沃移动通信有限公司 小区处理方法、终端设备及网络设备
US20200305013A1 (en) * 2016-05-13 2020-09-24 Nokia Technologies Oy Maximum time for unlicensed secondary cell detection, measurements and activation in licensed assisted access
WO2021056334A1 (zh) * 2019-09-26 2021-04-01 华为技术有限公司 用于激活辅小区的通信方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200305013A1 (en) * 2016-05-13 2020-09-24 Nokia Technologies Oy Maximum time for unlicensed secondary cell detection, measurements and activation in licensed assisted access
CN110166192A (zh) * 2018-02-12 2019-08-23 维沃移动通信有限公司 小区处理方法、终端设备及网络设备
WO2021056334A1 (zh) * 2019-09-26 2021-04-01 华为技术有限公司 用于激活辅小区的通信方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Support efficient activation/de-activation mechanism for SCells", 3GPP TSG RAN WG1 #103-E R1-2007548, 1 November 2020 (2020-11-01), XP052348902 *

Also Published As

Publication number Publication date
CN114287120A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2020034074A1 (zh) 唤醒方法、唤醒装置、电子设备和计算机可读存储介质
WO2019183854A1 (zh) 寻呼同步指示方法及装置、寻呼同步方法及装置和基站
WO2019024087A1 (zh) 获取剩余关键系统信息的公共控制资源集时频资源位置的方法
WO2023070563A1 (zh) 传输配置指示状态确定方法、装置及存储介质
WO2023070562A1 (zh) 传输配置指示状态确定方法、装置及存储介质
WO2019095296A1 (zh) 混合自动重传请求反馈指示、反馈方法及装置和基站
WO2019196034A1 (zh) 非授权小区中的数据传输方法及装置、基站和用户设备
WO2021046674A1 (zh) 数据处理方法、装置、电子设备和计算机可读存储介质
WO2019218366A1 (zh) 前导码和调度请求的发送方法及装置
WO2023097525A1 (zh) 工作模式指示、确定方法和装置、通信装置和存储介质
WO2019047168A1 (zh) 寻呼配置方法及装置、寻呼消息接收方法及装置和基站
WO2023240647A1 (zh) 调度确定、下行控制信息发送方法和装置
WO2019041348A1 (zh) 波束上报和调整方法及装置、用户设备、基站
WO2019174047A1 (zh) 系统消息请求停止方法及装置、用户设备和基站
WO2018205279A1 (zh) 用于接收和发送系统消息的方法、装置、用户设备及基站
WO2018120779A1 (zh) 下行链路数据的传输方法及装置
WO2023097526A1 (zh) 信道状态信息、参考信号发送方法和装置
WO2023130466A1 (zh) 传输控制方法、装置、通信装置和存储介质
WO2023123097A1 (zh) 资源元素群组捆确定、映射方法和装置
WO2019023880A1 (zh) 传输方向的指示方法及装置
WO2023130476A1 (zh) 搜索空间配置、确定方法和装置、通信装置和存储介质
WO2023168579A1 (zh) 保护时间间隔确定方法、装置、通信装置和存储介质
WO2023168578A1 (zh) 保护时间间隔确定、指示方法和装置
WO2023206037A1 (zh) 定位参考信号发送、定位参考信号接收方法和装置
WO2023123459A1 (zh) 信息接收、传输方法和装置、通信装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965963

Country of ref document: EP

Kind code of ref document: A1