WO2023096451A1 - 센서 데이터에 대한 레이블링을 지원하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체 - Google Patents
센서 데이터에 대한 레이블링을 지원하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체 Download PDFInfo
- Publication number
- WO2023096451A1 WO2023096451A1 PCT/KR2022/019022 KR2022019022W WO2023096451A1 WO 2023096451 A1 WO2023096451 A1 WO 2023096451A1 KR 2022019022 W KR2022019022 W KR 2022019022W WO 2023096451 A1 WO2023096451 A1 WO 2023096451A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor data
- labeling
- data
- behavior
- target sensor
- Prior art date
Links
- 238000002372 labelling Methods 0.000 title claims abstract description 175
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000006399 behavior Effects 0.000 claims description 80
- 230000009471 action Effects 0.000 claims description 18
- 238000010801 machine learning Methods 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims description 2
- 238000004891 communication Methods 0.000 description 31
- 230000006870 function Effects 0.000 description 18
- 244000309466 calf Species 0.000 description 12
- 230000001133 acceleration Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 241000283690 Bos taurus Species 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241000282887 Suidae Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000022676 rumination Effects 0.000 description 1
- 208000015212 rumination disease Diseases 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/70—Labelling scene content, e.g. deriving syntactic or semantic representations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/80—Recognising image objects characterised by unique random patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
Definitions
- the present invention relates to a method, system and non-transitory computer readable recording medium for supporting labeling of sensor data.
- the behavior estimation model In order to monitor an object using a machine learning-based behavior estimation model, the behavior estimation model must first be well trained. For this purpose, it is necessary to use a sufficiently large amount of high-quality training data (eg, accurately labeled training data). . Due to this need, people are generating learning data by collecting specific data (eg, sensor data) and labeling it.
- specific data eg, sensor data
- the present inventor(s) obtains labeling target sensor data measured by a sensor for an object, and first corresponding reference data corresponding to the labeling target sensor data and belonging to a different type from the labeling target sensor data and labeling target sensor data
- the sensor data collected for the object is discarded or the sensor data is incorrect.
- a technique for minimizing the case of labeling is proposed.
- the object of the present invention is to solve all the problems of the prior art described above.
- the present invention obtains labeling target sensor data measured by a sensor for an object, and at least one of first corresponding reference data corresponding to the labeling target sensor data and belonging to a different type from the labeling target sensor data and labeling target sensor data.
- Another object is to determine labeling information for labeling target sensor data by referring to the behavior of an object estimated from one.
- Another object of the present invention is to minimize the case where sensor data collected for an object is discarded or the sensor data is incorrectly labeled.
- a data acquisition unit for obtaining labeling target sensor data measured by a sensor for an object, and first corresponding reference data corresponding to the labeling target sensor data and belonging to a different type from the labeling target sensor data.
- a behavior estimator for estimating the behavior of the object from at least one of the target sensor data to be labeled
- a labeling management unit for determining information about labeling of the target sensor data by referring to the estimated behavior of the object.
- labeling target sensor data measured by a sensor for an object is obtained, and at least one of first corresponding reference data corresponding to the labeling target sensor data and belonging to a different type from the labeling target sensor data and labeling target sensor data It is possible to determine information about labeling of sensor data to be labeled by referring to the behavior of the object estimated from .
- FIG. 1 is a diagram showing a schematic configuration of an entire system for supporting labeling of sensor data according to an embodiment of the present invention.
- FIG. 2 is a diagram showing in detail the internal configuration of a labeling support system according to an embodiment of the present invention.
- FIG. 3 is a diagram illustratively illustrating a process of determining labeling information for labeling target sensor data according to an embodiment of the present invention.
- 300b Different type of sensor than 300a
- the embodiments of the present invention are mainly focused on monitoring calves, the present invention can also be applied to monitoring the behavior of other livestock such as horses and pigs, and when monitoring the behavior of patients. It should be understood that it can also be applied to the case of monitoring human behavior, such as
- an action does not necessarily mean only an action with movement of an object, but may mean a state in which an object maintains a specific posture for a predetermined time without a change in posture (or in a state with little movement).
- FIG. 1 is a diagram showing a schematic configuration of an entire system for supporting labeling of sensor data according to an embodiment of the present invention.
- the entire system may include a communication network 100, a labeling support system 200, sensors 300a and 300b, and a device 400.
- the communication network 100 may be configured regardless of communication aspects such as wired communication or wireless communication, and may include a local area network (LAN) and a metropolitan area network (MAN). ), a wide area network (WAN), and the like.
- LAN local area network
- MAN metropolitan area network
- WAN wide area network
- the communication network 100 referred to in this specification may be the well-known Internet or the World Wide Web (WWW).
- WWW World Wide Web
- the communication network 100 may include, at least in part, a known wired/wireless data communication network, a known telephone network, or a known wire/wireless television communication network without being limited thereto.
- the communication network 100 is a wireless data communication network, WiFi communication, WiFi-Direct communication, Long Term Evolution (LTE) communication, 5G communication, Bluetooth communication (low power Bluetooth (BLE) ; Bluetooth Low Energy) communication), infrared communication, ultrasonic communication, and the like may be implemented in at least a part thereof.
- the communication network 100 is an optical communication network, and may implement a conventional communication method such as LiFi (Light Fidelity) in at least a part thereof.
- the labeling support system 200 acquires labeling target sensor data measured by a sensor for an object, corresponds to the labeling target sensor data, and belongs to a different type from the labeling target sensor data.
- a function of determining labeling information for the labeling target sensor data may be performed by referring to a behavior of an object estimated from at least one of the first corresponding reference data and labeling target sensor data.
- sensors 300a and 300b are digital devices having a function to communicate after accessing the labeling support system 200, and may be composed of two or more types of sensors.
- one sensor 300a may include a known 6-axis angular velocity/acceleration sensor
- the other sensor 300b may include an image sensor for photographing an object.
- acceleration and angular velocity i.e., tilting speed in a certain direction
- angular acceleration may be measured together with or instead of angular velocity.
- these sensors 300a and 300b may be worn or inserted into a part (eg, calf's neck) of an object (eg, calf), and It may be installed in a predetermined place (for example, a calf barn).
- a predetermined place for example, a calf barn.
- the type of sensors 300a and 300b according to an embodiment of the present invention and the location or place where the sensors 300a and 300b are worn, inserted, or installed are not particularly limited, and the object of the present invention can be achieved. It can be variously changed within the possible range.
- the sensors 300a and 300b may include other types of sensors such as angular velocity/acceleration sensors and biosignal measurement sensors other than image sensors, and objects (eg, calves). ) may be inserted into the body of the person.
- sensors such as angular velocity/acceleration sensors and biosignal measurement sensors other than image sensors, and objects (eg, calves). ) may be inserted into the body of the person.
- the sensors 300a and 300b may include an application (not shown) that supports the user to receive the function according to the present invention from the labeling support system 200.
- an application may be downloaded from the labeling support system 200 or an external application distribution server (not shown).
- the characteristics of these applications are generally related to the data acquisition unit 210, the behavior estimation unit 220, the labeling management unit 230, the communication unit 240, and the control unit 250 of the labeling support system 200, which will be described later. can be similar
- at least a part of the application may be replaced with a hardware device or a firmware device capable of performing substantially the same or equivalent functions as necessary.
- the device 400 is a digital device having a function to communicate after accessing the labeling support system 200, such as a smartphone, tablet, smart watch, smart band, smart Any digital device equipped with memory means and equipped with a microprocessor, such as glass, desktop computer, notebook computer, workstation, PDA, web pad, mobile phone, etc. can
- the device 400 may include an application (not shown) that supports a user to receive functions according to the present invention from the labeling support system 200 .
- Such an application may be downloaded from the labeling support system 200 or an external application distribution server (not shown).
- the characteristics of these applications are generally related to the data acquisition unit 210, the behavior estimation unit 220, the labeling management unit 230, the communication unit 240, and the control unit 250 of the labeling support system 200, which will be described later. can be similar
- at least a part of the application may be replaced with a hardware device or a firmware device capable of performing substantially the same or equivalent functions as necessary.
- FIG. 2 is a diagram showing in detail the internal configuration of the labeling support system 200 according to an embodiment of the present invention.
- the labeling support system 200 includes a data acquisition unit 210, a behavior estimation unit 220, a labeling management unit 230, a communication unit 240, and a control unit. It may be configured to include (250). According to an embodiment of the present invention, at least some of the data acquisition unit 210, the behavior estimation unit 220, the labeling management unit 230, the communication unit 240, and the control unit 250 are external systems (not shown). It can be a program module that communicates with These program modules may be included in the labeling support system 200 in the form of an operating system, application program modules, or other program modules, and may be physically stored in various well-known storage devices.
- these program modules may be stored in a remote storage device capable of communicating with the labeling support system 200 .
- these program modules include routines, subroutines, programs, objects, components, data structures, etc. that perform specific tasks or execute specific abstract data types according to the present invention, but are not limited thereto.
- labeling support system 200 has been described as above, this description is exemplary, and at least some of the components or functions of the labeling support system 200 are necessary as needed, such as the sensors 300a and 300b, the device 400 ) or a server (not shown), or may be included in an external system (not shown).
- the data acquisition unit 210 may perform a function of obtaining labeling target sensor data measured by the sensors 300a and/or 300b for an object.
- the sensors 300a and/or 300b may measure sensor data from an object.
- the sensors 300a and/or 300b may be worn or inserted into a part of an object, and the above sensor data may include acceleration data and/or angular velocity data.
- the data acquisition unit 210 may acquire the sensor data measured as above as sensor data to be labeled, that is, sensor data to be labeled.
- the action estimator 220 corresponds to the sensor data measured by the sensors 300a and/or 300b for the object and the corresponding sensor data, as will be described later.
- a behavior of the above object may be estimated from at least one of the second corresponding reference data belonging to a different kind.
- the data acquisition unit 210 may obtain the corresponding sensor data as labeling target sensor data when the behavior of the object thus estimated is valid.
- the data acquisition unit 210 may determine whether the behavior of the object estimated by the behavior estimation unit 220 according to an embodiment of the present invention is valid. In addition, when the object's action is determined to be invalid, the data acquisition unit 210 according to an embodiment of the present invention uses sensor data (ie, a sensor corresponding to the object's action) measured according to the object's action. data) as labeling target sensor data, and only when the object's behavior is valid, sensor data measured as the corresponding object behaves may be obtained as labeling target sensor data.
- sensor data ie, a sensor corresponding to the object's action
- the data acquisition unit 210 corresponds to the corresponding sensor data and corresponds to a second corresponding sensor data belonging to a different type.
- Reference data may be obtained as first corresponding reference data corresponding to the above labeling target sensor data.
- the first corresponding reference data and the second corresponding reference data according to an embodiment of the present invention will be described in detail below.
- the data acquisition unit 210 when there is no or insignificant behavior of the object, when the probability that the behavior of the object does not correspond to a predetermined type of behavior is high, such as in the case of When it is determined that there is no need to label sensor data corresponding to the object's behavior (ie, when the object's behavior is determined to be invalid), the sensor data measured according to the object's behavior is labeled as the target sensor data may not be obtained as
- the behavior estimator 220 determines an object from at least one of first corresponding reference data corresponding to the labeling target sensor data and belonging to a different type from the labeling target sensor data and labeling target sensor data. It can perform the function of estimating behavior.
- the first corresponding reference data corresponding to the labeling target sensor data is the location of the target sensor data for the specific object while the labeling target sensor data is measured by the sensor 300a for the specific object. It may mean sensor data that is sensed (eg, measured, photographed, etc.) by a sensor 300b of a different type from the type of sensor 300a of . Accordingly, according to an embodiment of the present invention, the type of the first corresponding reference data may be different from the sensor data to be labeled.
- the data acquisition unit 210 may acquire sensor data sensed by the different type of sensor 300b as first corresponding reference data corresponding to labeling target sensor data as described above. there is.
- signal data measured during a specific time by an angular velocity/acceleration sensor (which may correspond to 300a) worn on a specific object may correspond to sensor data to be labeled.
- the image data obtained by photographing the specific object using the image sensor (which may correspond to 300b) during the specific time during which the labeling target sensor data is measured corresponds to the labeling target sensor data
- the labeling target sensor data and It may correspond to first corresponding reference data belonging to a different type.
- the types of sensor data to be labeled and the first corresponding reference data according to an embodiment of the present invention are not limited to those described above and may be variously changed within a range capable of achieving the object of the present invention.
- the action estimator 220 corresponds to the sensor data measured by the sensor 300a for the object and the corresponding sensor data and corresponds to a second correspondence belonging to a different type from the corresponding sensor data.
- a behavior of the object may be estimated from at least one of the first corresponding reference data and labeling target sensor data using a machine learning-based behavior estimation model learned based on the reference data.
- the second corresponding reference data corresponding to the sensor data is the sensor (300a) for the specific object while the sensor data is measured by the sensor (300a) for the specific object. It may refer to sensor data sensed (eg, measured, photographed, etc.) by a sensor 300b of a different type from the type 300a). Accordingly, according to an embodiment of the present invention, the type of the second corresponding reference data may be different from the sensor data. Meanwhile, according to an embodiment of the present invention, the above sensor data and labeling target sensor data may belong to the same type, and the first corresponding reference data and the second corresponding reference data may belong to the same type.
- signal data measured during a specific time by an angular velocity/acceleration sensor (which may correspond to 300a) worn on a specific object may correspond to sensor data.
- image data obtained by photographing the specific object using the image sensor (which may correspond to 300b) during the specific time during which the sensor data is measured corresponds to the sensor data
- a second type belonging to a different type from the sensor data corresponds to the image data. It may correspond to corresponding reference data.
- the types of sensor data and second corresponding reference data according to an embodiment of the present invention are not limited to those described above, and may be variously changed within a range capable of achieving the object of the present invention.
- the above behavior estimation model is based on sensor data measured by the sensor 300a and second corresponding reference data corresponding to the corresponding sensor data and belonging to a different type from the corresponding sensor data. so it can be learned.
- the action estimator 220 may determine the image data included in the second corresponding reference data for an object.
- a behavior of the corresponding object may be estimated using an image analysis model learned to estimate the behavior of the corresponding object.
- the behavior estimator 220 according to an embodiment of the present invention is based on the estimation result (for example, when the object is a calf, rumination, sucking, negative number, etc. may correspond to the estimation result)
- the sensor data corresponding to the second corresponding data may be labeled.
- labeling in this case may mean preliminary labeling.
- the above behavior estimation model estimates the behavior of the object from the sensor data measured by the sensor 300a by using the above (preliminarily) labeled sensor data as learning data. can be learned to do.
- the behavior estimation model may be implemented using various known machine learning algorithms.
- it may be implemented using an artificial neural network such as a convolutional neural network (CNN) or a recurrent neural network (RNN), but is not limited thereto.
- CNN convolutional neural network
- RNN recurrent neural network
- the labeling management unit 230 refers to the behavior of the object estimated by the behavior estimation unit 220 according to an embodiment of the present invention and performs labeling on the labeling target sensor data. It can perform the function of determining information about
- the action estimator 220 corresponding to the labeling target sensor data and belonging to a different type from the corresponding labeling target sensor data and the corresponding labeling target A behavior of the object may be estimated from at least one of the sensor data.
- the action estimator 220 may use the above-described action estimation model when estimating an object's action from labeling target sensor data (or sensor data), and may use the first corresponding reference data. (or the second corresponding reference data), a separate analysis or estimation model (eg, the above-described image analysis model when the first corresponding reference data includes image data) is used.
- a separate analysis or estimation model eg, the above-described image analysis model when the first corresponding reference data includes image data
- the labeling management unit 230 may determine labeling information for the labeling target sensor data by referring to the behavior of the object estimated in this way.
- information about a result of the above estimation may be included in information about labeling of sensor data to be labeled.
- labeling information for labeling target sensor data may include an estimated behavior type, accuracy or reliability of the estimation, and the like.
- the labeling management unit 230 refers to labeling information on the determined labeling sensor data to label the corresponding labeling sensor data, or transmits the labeling information to the corresponding labeling sensor. It can be provided to a user (eg, a person who performs labeling on labeling sensor data) in a visual way along with the data.
- the labeling management unit 230 when the behavior of the object is not estimated from the first corresponding reference data corresponding to the labeling target sensor data, the corresponding object estimated from the labeling target sensor data Information about labeling of corresponding labeling target sensor data may be determined by referring to the behavior.
- the labeling management unit 230 refers to the behavior of the corresponding object estimated from the labeling target sensor data by the behavior estimation unit 220 according to an embodiment of the present invention.
- Information about labeling of corresponding labeling target sensor data may be determined.
- estimation here is estimation using a behavior estimation model learned based on preliminary labeling, and may correspond to estimation (or incomplete estimation) with insufficient accuracy or reliability.
- the labeling management unit 230 may provide the user with labeling-related information determined as described above so that the user may label sensor data to be labeled. According to an embodiment of the present invention, by doing this, even when the behavior of the specific object cannot be estimated from the first corresponding reference data, the first corresponding reference data or labeling target sensor data can be used as learning data without discarding can do.
- the communication unit 240 may perform a function of enabling data transmission/reception from/to the data acquisition unit 210, the action estimation unit 220, and the labeling management unit 230. there is.
- control unit 250 performs a function of controlling the flow of data between the data acquisition unit 210, the action estimation unit 220, the labeling management unit 230, and the communication unit 240. can do. That is, the control unit 250 according to an embodiment of the present invention controls the data flow from/to the outside of the labeling support system 200 or the data flow between each component of the labeling support system 200, thereby controlling the data acquisition unit 210, the behavior estimation unit 220, the labeling management unit 230, and the communication unit 240 may be controlled to perform unique functions.
- FIG. 3 is a diagram illustratively illustrating a process of determining labeling information for labeling target sensor data according to an embodiment of the present invention.
- acceleration and/or angular velocity data are included in labeling target sensor data and image data are included in first corresponding reference data.
- image data are included in first corresponding reference data.
- the data acquisition unit 210 performs a function of acquiring labeling target sensor data 321 measured by the acceleration/angular velocity sensor 300a for an object (calf or cow). can do. Also, the data acquisition unit 210 according to an embodiment of the present invention may obtain first corresponding reference data 310 corresponding to the labeling target sensor data 321 . The labeling target sensor data 321 and the corresponding first corresponding reference data 310 may be measured or photographed at the same time (330), and the labeling management unit 230 according to an embodiment of the present invention controls such information or data may be provided to the user in a visual manner (310, 320 and 330).
- the labeling target sensor data 321 and the corresponding first corresponding reference data 310 are used when there is movement of an object (calf or cow) (that is, when the object's behavior is valid) may be acquired only. According to an embodiment of the present invention, by doing this, inefficiency of reproducing all captured images for the user to label the labeling target sensor data 321 can be eliminated.
- the behavior estimator 220 determines the behavior of an object (calf or cow) from at least one of the labeling target sensor data 321 and the first corresponding reference data 310 corresponding thereto. can be estimated.
- the labeling management unit 230 may determine labeling information 322 for the labeling target sensor data 321 by referring to the behavior of the object estimated in this way, and visualize it. It may be provided to the user as a method (322).
- the labeling management unit 230 the behavior of the object (calf or cow) from the first corresponding reference data 310 by the behavior estimation unit 220 according to an embodiment of the present invention
- the labeling target sensor data 321 refers to the behavior of the object (calf or cow) estimated (which may be an estimation with insufficient accuracy or reliability or an incomplete estimation) from the labeling target sensor data 321.
- Information 322 about labeling may be determined.
- Embodiments according to the present invention described above may be implemented in the form of program instructions that can be executed through various computer components and recorded on a computer-readable recording medium.
- the computer readable recording medium may include program instructions, data files, data structures, etc. alone or in combination.
- Program instructions recorded on the computer-readable recording medium may be specially designed and configured for the present invention, or may be known and usable to those skilled in the art of computer software.
- Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical recording media such as CD-ROMs and DVDs, and magneto-optical media such as floptical disks. medium), and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
- Examples of program instructions include high-level language codes that can be executed by a computer using an interpreter or the like as well as machine language codes generated by a compiler.
- a hardware device may be modified with one or more software modules to perform processing according to the present invention and vice vers
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Human Computer Interaction (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Psychiatry (AREA)
- General Health & Medical Sciences (AREA)
- Social Psychology (AREA)
- Medical Informatics (AREA)
- Computational Linguistics (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
본 발명의 일 태양에 따르면, 센서 데이터에 대한 레이블링(labeling)을 지원하기 위한 방법으로서, 객체에 대한 센서에 의하여 측정되는 레이블링 대상 센서 데이터를 획득하는 단계, 및 상기 레이블링 대상 센서 데이터에 대응되면서 상기 레이블링 대상 센서 데이터와 다른 종류에 속하는 제1 대응 참조 데이터 및 상기 레이블링 대상 센서 데이터 중 적어도 하나로부터 추정되는 상기 객체의 행동을 참조하여 상기 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정하는 단계를 포함하는 방법이 제공된다.
Description
본 발명은 센서 데이터에 대한 레이블링을 지원하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체에 관한 것이다.
근래에 들어, 머신 러닝 기술에 관한 연구가 활발히 이루어지면서, 머신 러닝 기반의 행동 추정 모델을 이용하여 특정 객체(예를 들면, 송아지와 같은 가축)를 효율적으로 모니터링하기 위한 기술들이 소개된 바 있다.
머신 러닝 기반의 행동 추정 모델을 이용하여 객체를 모니터링하기 위해서는 우선 행동 추정 모델을 잘 학습시켜야 하는데, 이를 위해서는 높은 질의 학습 데이터(예를 들면, 정확하게 레이블링된 학습 데이터)를 충분히 많이 사용하는 것이 필요하다. 이러한 필요에 의하여, 사람들은 특정 데이터(예를 들면, 센서 데이터)를 수집하고 이에 대하여 레이블링을 함으로써 학습 데이터를 생성하고 있는데, 이러한 과정에서 레이블링을 하는 사람의 낮은 판단 숙련도 등으로 인하여 레이블링이 잘못됨에 따라 낮은 질의 학습 데이터가 생성되는 경우나, 수집한 데이터에 대하여 레이블링을 하지 못하게 됨에 따라 수집한 데이터를 학습 데이터로서 활용하지 못하게 되는 경우(예를 들면, 객체를 촬영한 영상 데이터에 기초하여 해당 객체에 대한 센서 데이터에 대하여 레이블링을 하는 경우에, 영상 데이터에서 해당 객체가 가려지는 등의 이유로 해당 객체의 상태를 확인하기 어렵게 되어 위의 센서 데이터에 대하여 레이블링을 할 수 없는 경우 등)가 있다.
이에 본 발명자(들)는, 객체에 대한 센서에 의하여 측정되는 레이블링 대상 센서 데이터를 획득하고, 레이블링 대상 센서 데이터에 대응되면서 레이블링 대상 센서 데이터와 다른 종류에 속하는 제1 대응 참조 데이터 및 레이블링 대상 센서 데이터 중 적어도 하나로부터 객체의 행동을 추정하고, 그 추정되는 객체의 행동을 참조하여 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정함으로써, 객체에 대하여 수집된 센서 데이터가 버려지거나 그 센서 데이터에 대하여 잘못된 레이블링이 되는 경우를 최소화하는 기술을 제안하는 바이다.
본 발명은 전술한 종래 기술의 문제점을 모두 해결하는 것을 그 목적으로 한다.
또한, 본 발명은, 객체에 대한 센서에 의하여 측정되는 레이블링 대상 센서 데이터를 획득하고, 레이블링 대상 센서 데이터에 대응되면서 레이블링 대상 센서 데이터와 다른 종류에 속하는 제1 대응 참조 데이터 및 레이블링 대상 센서 데이터 중 적어도 하나로부터 추정되는 객체의 행동을 참조하여 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정하는 것을 다른 목적으로 한다.
또한, 본 발명은, 객체에 대하여 수집된 센서 데이터가 버려지거나 그 센서 데이터에 대하여 잘못된 레이블링이 되는 경우를 최소화하는 것을 또 다른 목적으로 한다.
상기 목적을 달성하기 위한 본 발명의 대표적인 구성은 다음과 같다.
본 발명의 일 태양에 따르면, 객체에 대한 센서에 의하여 측정되는 레이블링 대상 센서 데이터를 획득하는 단계, 및 상기 레이블링 대상 센서 데이터에 대응되면서 상기 레이블링 대상 센서 데이터와 다른 종류에 속하는 제1 대응 참조 데이터 및 상기 레이블링 대상 센서 데이터 중 적어도 하나로부터 추정되는 상기 객체의 행동을 참조하여 상기 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정하는 단계를 포함하는 방법이 제공된다.
본 발명의 다른 태양에 따르면, 객체에 대한 센서에 의하여 측정되는 레이블링 대상 센서 데이터를 획득하는 데이터 획득부, 상기 레이블링 대상 센서 데이터에 대응되면서 상기 레이블링 대상 센서 데이터와 다른 종류에 속하는 제1 대응 참조 데이터 및 상기 레이블링 대상 센서 데이터 중 적어도 하나로부터 상기 객체의 행동을 추정하는 행동 추정부, 및 상기 추정되는 객체의 행동을 참조하여 상기 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정하는 레이블링 관리부를 포함하는 시스템이 제공된다.
이 외에도, 본 발명을 구현하기 위한 다른 방법, 다른 시스템 및 상기 방법을 실행하기 위한 컴퓨터 프로그램을 기록하는 비일시성의 컴퓨터 판독 가능한 기록 매체가 더 제공된다.
본 발명에 의하면, 객체에 대한 센서에 의하여 측정되는 레이블링 대상 센서 데이터를 획득하고, 레이블링 대상 센서 데이터에 대응되면서 레이블링 대상 센서 데이터와 다른 종류에 속하는 제1 대응 참조 데이터 및 레이블링 대상 센서 데이터 중 적어도 하나로부터 추정되는 객체의 행동을 참조하여 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정할 수 있게 된다.
또한, 본 발명에 의하면, 객체에 대하여 수집된 센서 데이터가 버려지거나 그 센서 데이터에 대하여 잘못된 레이블링이 되는 경우를 최소화할 수 있게 된다.
도 1은 본 발명의 일 실시예에 따라 센서 데이터에 대한 레이블링(labeling)을 지원하기 위한 전체 시스템의 개략적인 구성을 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 레이블링 지원 시스템의 내부 구성을 상세하게 도시하는 도면이다.
도 3은 본 발명의 일 실시예에 따라 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보가 결정되는 과정을 예시적으로 나타내는 도면이다.
<부호의 설명>
100: 통신망
200: 레이블링 지원 시스템
210: 데이터 획득부
220: 행동 추정부
230: 레이블링 관리부
240: 통신부
250: 제어부
300a: 센서
300b: 300a와 다른 종류의 센서
400: 디바이스
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이러한 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 본 명세서에 기재되어 있는 특정 형상, 구조 및 특성은 본 발명의 정신과 범위를 벗어나지 않으면서 일 실시예로부터 다른 실시예로 변경되어 구현될 수 있다. 또한, 각각의 실시예 내의 개별 구성요소의 위치 또는 배치도 본 발명의 정신과 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 행하여지는 것이 아니며, 본 발명의 범위는 특허청구범위의 청구항들이 청구하는 범위 및 그와 균등한 모든 범위를 포괄하는 것으로 받아들여져야 한다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 구성요소를 나타낸다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 여러 바람직한 실시예에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
본 명세서에서는, 본 발명에 관한 실시예가 송아지를 모니터링하는 경우에 주로 초점을 맞추어 설명되지만, 본 발명은 말, 돼지 등 다른 가축의 행동을 모니터링 하는 경우에도 적용될 수 있으며, 환자의 행동을 모니터링하는 경우와 같이 사람의 행동을 모니터링하는 경우에도 적용될 수 있는 것으로 이해되어야 한다.
또한, 본 명세서에서 행동이란, 반드시 객체의 움직임이 있는 동작만을 의미하는 것은 아니고, 객체가 자세의 변화 없이(또는 움직임이 거의 없는 상태로) 소정 시간 동안 특정 자세를 유지하는 상태를 의미할 수도 있는 것으로 이해되어야 한다.
전체 시스템의 구성
도 1은 본 발명의 일 실시예에 따라 센서 데이터에 대한 레이블링(labeling)을 지원하기 위한 전체 시스템의 개략적인 구성을 나타내는 도면이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 전체 시스템은 통신망(100), 레이블링 지원 시스템(200), 센서(300a 및 300b) 및 디바이스(400)를 포함할 수 있다.
먼저, 본 발명의 일 실시예에 따른 통신망(100)은 유선 통신이나 무선 통신과 같은 통신 양태를 가리지 않고 구성될 수 있으며, 근거리 통신망(LAN; Local Area Network), 도시권 통신망(MAN; Metropolitan Area Network), 광역 통신망(WAN; Wide Area Network) 등 다양한 통신망으로 구성될 수 있다. 바람직하게는, 본 명세서에서 말하는 통신망(100)은 공지의 인터넷 또는 월드 와이드 웹(WWW; World Wide Web)일 수 있다. 그러나, 통신망(100)은, 굳이 이에 국한될 필요 없이, 공지의 유무선 데이터 통신망, 공지의 전화망 또는 공지의 유무선 텔레비전 통신망을 그 적어도 일부에 있어서 포함할 수도 있다.
예를 들면, 통신망(100)은 무선 데이터 통신망으로서, 와이파이(WiFi) 통신, 와이파이 다이렉트(WiFi-Direct) 통신, 롱텀 에볼루션(LTE; Long Term Evolution) 통신, 5G 통신, 블루투스 통신(저전력 블루투스(BLE; Bluetooth Low Energy) 통신 포함), 적외선 통신, 초음파 통신 등과 같은 종래의 통신 방법을 적어도 그 일부분에 있어서 구현하는 것일 수 있다. 다른 예를 들면, 통신망(100)은 광 통신망으로서, 라이파이(LiFi; Light Fidelity) 등과 같은 종래의 통신 방법을 적어도 그 일부분에 있어서 구현하는 것일 수 있다.
다음으로, 본 발명의 일 실시예에 따른 레이블링 지원 시스템(200)은 객체에 대한 센서에 의하여 측정되는 레이블링 대상 센서 데이터를 획득하고, 레이블링 대상 센서 데이터에 대응되면서 레이블링 대상 센서 데이터와 다른 종류에 속하는 제1 대응 참조 데이터 및 레이블링 대상 센서 데이터 중 적어도 하나로부터 추정되는 객체의 행동을 참조하여 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정하는 기능을 수행할 수 있다.
본 발명에 따른 레이블링 지원 시스템(200)의 구성과 기능에 관하여는 이하의 상세한 설명을 통하여 자세하게 알아보기로 한다.
다음으로, 본 발명의 일 실시예에 따른 센서(300a 및 300b)는 레이블링 지원 시스템(200)에 접속한 후 통신할 수 있는 기능을 포함하는 디지털 기기로서, 두 종류 이상의 센서로 구성될 수 있다. 예를 들어, 본 발명의 일 실시예에 따르면, 하나의 센서(300a)는 공지의 6축 각속도/가속도 센서를 포함할 수 있고, 다른 하나의 센서(300b)는 객체를 촬영하기 위한 이미지 센서를 포함할 수 있다. 센서(300a)에 공지의 6축 각속도/가속도 센서가 포함되는 경우에는 센서(300a)에 의하여 X축, Y축 및 Z축의 가속도와 각속도(즉, 어떤 방향으로 기울어지는 속도)를 측정할 수 있다. 나아가, 각가속도가 각속도와 함께 또는 각속도를 대신하여 측정될 수도 있다.
한편, 본 발명의 일 실시예에 따르면, 이러한 센서(300a 및 300b)는 객체(예를 들면, 송아지)의 일부(예를 들면, 송아지의 목)에 착용되거나 삽입될 수 있고, 해당 객체에 대하여 소정의 장소(예를 들면, 송아지의 축사)에 설치될 수도 있다. 다만, 본 발명의 일 실시예에 따른 센서(300a 및 300b)의 종류 및 센서(300a 및 300b)가 착용, 삽입 또는 설치되는 위치나 장소에 특별한 제한이 있는 것은 아니며, 본 발명의 목적을 달성할 수 있는 범위 내에서 다양하게 변경될 수 있다. 예를 들면, 본 발명의 일 실시예에 따른 센서(300a 및 300b)에는 각속도/가속도 센서와 이미지 센서가 아닌 생체 신호 측정 센서 등의 다른 종류의 센서가 포함될 수 있고, 객체(예를 들면, 송아지)의 신체 내부에 삽입될 수도 있다.
특히, 본 발명의 일 실시예에 따른 센서(300a 및 300b)는, 사용자가 레이블링 지원 시스템(200)으로부터 본 발명에 따른 기능을 제공받을 수 있도록 지원하는 애플리케이션(미도시됨)을 포함할 수 있다. 이와 같은 애플리케이션은 레이블링 지원 시스템(200) 또는 외부의 애플리케이션 배포 서버(미도시됨)로부터 다운로드된 것일 수 있다. 한편, 이러한 애플리케이션의 성격은 후술할 바와 같은 레이블링 지원 시스템(200)의 데이터 획득부(210), 행동 추정부(220), 레이블링 관리부(230), 통신부(240) 및 제어부(250)와 전반적으로 유사할 수 있다. 여기서, 애플리케이션은 그 적어도 일부가 필요에 따라 그것과 실질적으로 동일하거나 균등한 기능을 수행할 수 있는 하드웨어 장치나 펌웨어 장치로 치환될 수도 있다.
다음으로, 본 발명의 일 실시예에 따른 디바이스(400)는 레이블링 지원 시스템(200)에 접속한 후 통신할 수 있는 기능을 포함하는 디지털 기기로서, 스마트폰, 태블릿, 스마트 워치, 스마트 밴드, 스마트 글래스, 데스크탑 컴퓨터, 노트북 컴퓨터, 워크스테이션, PDA, 웹 패드, 이동 전화기 등과 같이 메모리 수단을 구비하고 마이크로 프로세서를 탑재하여 연산 능력을 갖춘 디지털 기기라면 얼마든지 본 발명에 따른 디바이스(400)로서 채택될 수 있다.
특히, 디바이스(400)는, 사용자가 레이블링 지원 시스템(200)으로부터 본 발명에 따른 기능을 제공받을 수 있도록 지원하는 애플리케이션(미도시됨)을 포함할 수 있다. 이와 같은 애플리케이션은 레이블링 지원 시스템(200) 또는 외부의 애플리케이션 배포 서버(미도시됨)로부터 다운로드된 것일 수 있다. 한편, 이러한 애플리케이션의 성격은 후술할 바와 같은 레이블링 지원 시스템(200)의 데이터 획득부(210), 행동 추정부(220), 레이블링 관리부(230), 통신부(240) 및 제어부(250)와 전반적으로 유사할 수 있다. 여기서, 애플리케이션은 그 적어도 일부가 필요에 따라 그것과 실질적으로 동일하거나 균등한 기능을 수행할 수 있는 하드웨어 장치나 펌웨어 장치로 치환될 수도 있다.
레이블링 지원 시스템의 구성
이하에서는, 본 발명의 구현을 위하여 중요한 기능을 수행하는 레이블링 지원 시스템(200)의 내부 구성과 각 구성요소의 기능에 대하여 살펴보기로 한다.
도 2는 본 발명의 일 실시예에 따른 레이블링 지원 시스템(200)의 내부 구성을 상세하게 도시하는 도면이다.
도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 레이블링 지원 시스템(200)은, 데이터 획득부(210), 행동 추정부(220), 레이블링 관리부(230), 통신부(240) 및 제어부(250)를 포함하여 구성될 수 있다. 본 발명의 일 실시예에 따르면, 데이터 획득부(210), 행동 추정부(220), 레이블링 관리부(230), 통신부(240) 및 제어부(250)는 그 중 적어도 일부가 외부의 시스템(미도시됨)과 통신하는 프로그램 모듈일 수 있다. 이러한 프로그램 모듈은 운영 시스템, 응용 프로그램 모듈 또는 기타 프로그램 모듈의 형태로 레이블링 지원 시스템(200)에 포함될 수 있고, 물리적으로는 여러 가지 공지의 기억 장치에 저장될 수 있다. 또한, 이러한 프로그램 모듈은 레이블링 지원 시스템(200)과 통신 가능한 원격 기억 장치에 저장될 수도 있다. 한편, 이러한 프로그램 모듈은 본 발명에 따라 후술할 특정 업무를 수행하거나 특정 추상 데이터 유형을 실행하는 루틴, 서브루틴, 프로그램, 오브젝트, 컴포넌트, 데이터 구조 등을 포괄하지만, 이에 제한되지는 않는다.
한편, 레이블링 지원 시스템(200)에 관하여 위와 같이 설명되었으나, 이러한 설명은 예시적인 것이고, 레이블링 지원 시스템(200)의 구성요소 또는 기능 중 적어도 일부가 필요에 따라 센서(300a 및 300b), 디바이스(400) 또는 서버(미도시됨) 내에서 실현되거나 외부 시스템(미도시됨) 내에 포함될 수도 있음은 당업자에게 자명하다.
먼저, 본 발명의 일 실시예에 따른 데이터 획득부(210)는, 객체에 대한 센서(300a 및/또는 300b)에 의하여 측정되는 레이블링(labeling) 대상 센서 데이터를 획득하는 기능을 수행할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 센서(300a 및/또는 300b)는, 객체로부터 센서 데이터를 측정할 수 있다. 본 발명의 일 실시예에 따르면, 센서(300a 및/또는 300b)는 객체의 일부에 착용되거나 삽입되는 것일 수 있고, 위의 센서 데이터에는 가속도 데이터 및/또는 각속도 데이터가 포함될 수 있다. 그리고, 본 발명의 일 실시예에 따른 데이터 획득부(210)는, 위와 같이 측정되는 센서 데이터를 레이블링이 되어야 하는 센서 데이터, 즉 레이블링 대상 센서 데이터로서 획득할 수 있다.
한편, 본 발명의 일 실시예에 따른 행동 추정부(220)는, 후술할 바와 같이 객체에 대한 센서(300a 및/또는 300b)에 의하여 측정되는 센서 데이터 및 해당 센서 데이터에 대응되면서 해당 센서 데이터와 다른 종류에 속하는 제2 대응 참조 데이터 중 적어도 하나로부터 위의 객체의 행동을 추정할 수 있다. 그리고, 본 발명의 일 실시예에 따른 데이터 획득부(210)는, 이렇게 추정되는 객체의 행동이 유효한 경우에 해당 센서 데이터를 레이블링 대상 센서 데이터로서 획득할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 데이터 획득부(210)는, 본 발명의 일 실시예에 따른 행동 추정부(220)에 의하여 추정되는 객체의 행동이 유효한지 여부를 판단할 수 있다. 그리고, 본 발명의 일 실시예에 따른 데이터 획득부(210)는, 객체의 행동이 유효하지 않은 것으로 판단되는 경우에는 해당 객체가 행동함에 따라 측정된 센서 데이터(즉, 객체의 행동에 대응되는 센서 데이터)를 레이블링 대상 센서 데이터로서 획득하지 않고, 객체의 행동이 유효한 경우에만 해당 객체가 행동함에 따라 측정된 센서 데이터를 레이블링 대상 센서 데이터로서 획득할 수 있다. 또한, 본 발명의 일 실시예에 따른 데이터 획득부(210)는, 위와 같이 센서 데이터가 레이블링 대상 센서 데이터로서 획득되는 경우에는, 해당 센서 데이터에 대응되면서 해당 센서 데이터와 다른 종류에 속하는 제2 대응 참조 데이터가 위의 레이블링 대상 센서 데이터에 대응되는 제1 대응 참조 데이터로서 획득될 수 있다. 한편, 본 발명의 일 실시예에 따른 제1 대응 참조 데이터와 제2 대응 참조 데이터에 관하여는 이하에서 자세히 설명하기로 한다.
예를 들면, 본 발명의 일 실시예에 따른 데이터 획득부(210)는, 객체의 행동이 없거나 미미한 경우, 객체의 행동이 미리 정해진 종류의 행동에 해당하지 않을 확률이 높은 경우 등의 경우와 같이 객체의 행동에 대응되는 센서 데이터에 대하여 레이블링을 할 필요가 없다고 판단되는 경우(즉, 객체의 행동이 유효하지 않은 것으로 판단되는 경우)에는 해당 객체가 행동함에 따라 측정된 센서 데이터를 레이블링 대상 센서 데이터로서 획득하지 않을 수 있다.
다음으로, 본 발명의 일 실시예에 따른 행동 추정부(220)는, 레이블링 대상 센서 데이터에 대응되면서 레이블링 대상 데이터와 다른 종류에 속하는 제1 대응 참조 데이터 및 레이블링 대상 센서 데이터 중 적어도 하나로부터 객체의 행동을 추정하는 기능을 수행할 수 있다.
구체적으로, 본 발명의 일 실시예에 따르면, 레이블링 대상 센서 데이터에 대응되는 제1 대응 참조 데이터는, 특정 객체에 대한 센서(300a)에 의하여 레이블링 대상 센서 데이터가 측정되는 동안에 그 특정 객체에 대한 위의 센서(300a)의 종류와는 다른 종류의 센서(300b)에 의하여 센싱(예를 들면, 측정, 촬영 등)되는 센서 데이터를 의미할 수 있다. 따라서, 본 발명의 일 실시예에 따르면, 이러한 제1 대응 참조 데이터는 레이블링 대상 센서 데이터와 그 종류가 다를 수 있다. 그리고, 본 발명의 일 실시예에 따른 데이터 획득부(210)는, 위와 같이 다른 종류의 센서(300b)에 의하여 센싱되는 센서 데이터를 레이블링 대상 센서 데이터에 대응되는 제1 대응 참조 데이터로서 획득할 수 있다.
예를 들어, 본 발명의 일 실시예에 따르면, 특정 객체에 착용된 각속도/가속도 센서(300a에 해당할 수 있음)에 의하여 특정 시간 동안에 측정되는 신호 데이터가 레이블링 대상 센서 데이터에 해당할 수 있다. 그리고, 그 레이블링 대상 센서 데이터가 측정되는 그 특정 시간 동안에 이미지 센서(300b에 해당할 수 있음)를 이용하여 그 특정 객체를 촬영한 영상 데이터가 그 레이블링 대상 센서 데이터에 대응되면서 그 레이블링 대상 센서 데이터와 다른 종류에 속하는 제1 대응 참조 데이터에 해당할 수 있다. 다만, 본 발명의 일 실시예에 따른 레이블링 대상 센서 데이터와 제1 대응 참조 데이터의 종류는 위에서 설명된 것에 한정되지 않으며, 본 발명의 목적을 달성할 수 있는 범위 내에서 다양하게 변경될 수 있다.
계속하면, 본 발명의 일 실시예에 따른 행동 추정부(220)는, 객체에 대한 센서(300a)에 의하여 측정되는 센서 데이터 및 해당 센서 데이터에 대응되면서 해당 센서 데이터와 다른 종류에 속하는 제2 대응 참조 데이터에 기초하여 학습되는 머신 러닝 기반의 행동 추정 모델을 이용하여, 제1 대응 참조 데이터 및 레이블링 대상 센서 데이터 중 적어도 하나로부터 객체의 행동을 추정할 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따르면, 센서 데이터에 대응되는 제2 대응 참조 데이터는, 특정 객체에 대한 센서(300a)에 의하여 센서 데이터가 측정되는 동안에 그 특정 객체에 대한 위의 센서(300a)의 종류와는 다른 종류의 센서(300b)에 의하여 센싱(예를 들면, 측정, 촬영 등)되는 센서 데이터를 의미할 수 있다. 따라서, 본 발명의 일 실시예에 따르면, 이러한 제2 대응 참조 데이터는 센서 데이터와 그 종류가 다를 수 있다. 한편, 본 발명의 일 실시예에 따르면, 위의 센서 데이터와 레이블링 대상 센서 데이터가 서로 같은 종류에 속할 수 있고, 제1 대응 참조 데이터와 제2 대응 참조 데이터가 서로 같은 종류에 속할 수 있다.
예를 들어, 본 발명의 일 실시예에 따르면, 특정 객체에 착용된 각속도/가속도 센서(300a에 해당할 수 있음)에 의하여 특정 시간 동안에 측정되는 신호 데이터가 센서 데이터에 해당할 수 있다. 그리고, 그 센서 데이터가 측정되는 그 특정 시간 동안에 이미지 센서(300b에 해당할 수 있음)를 이용하여 그 특정 객체를 촬영한 영상 데이터가 그 센서 데이터에 대응되면서 그 센서 데이터와 다른 종류에 속하는 제2 대응 참조 데이터에 해당할 수 있다. 다만, 본 발명의 일 실시예에 따른 센서 데이터와 제2 대응 참조 데이터의 종류는 위에서 설명된 것에 한정되지 않으며, 본 발명의 목적을 달성할 수 있는 범위 내에서 다양하게 변경될 수 있다.
계속하면, 본 발명의 일 실시예에 따르면, 위의 행동 추정 모델은 센서(300a)에 의하여 측정되는 센서 데이터 및 해당 센서 데이터에 대응되면서 해당 센서 데이터와 다른 종류에 속하는 제2 대응 참조 데이터에 기초하여 학습될 수 있다.
예를 들어, 제2 대응 참조 데이터에 영상 데이터가 포함되는 경우를 가정하면, 본 발명의 일 실시예에 따른 행동 추정부(220)는, 객체에 대한 제2 대응 참조 데이터에 포함되는 영상 데이터로부터 해당 객체의 행동을 추정하도록 학습된 영상 분석 모델을 이용하여 해당 객체의 행동을 추정할 수 있다. 그리고, 본 발명의 일 실시예에 따른 행동 추정부(220)는, 그 추정 결과(예를 들면, 객체가 송아지인 경우에 반추, 포유, 음수 등이 이러한 추정 결과에 해당할 수 있음)에 기초하여 제2 대응 데이터에 대응되는 센서 데이터에 대하여 레이블링을 할 수 있다. 본 발명의 일 실시예에 따르면, 이 경우의 레이블링은 예비적인 레이블링을 의미할 수 있다. 그리고, 본 발명의 일 실시예에 따르면, 위의 행동 추정 모델은 위와 같이 (예비적으로) 레이블링된 센서 데이터를 학습 데이터로서 이용하여 센서(300a)에 의하여 측정되는 센서 데이터로부터 객체의 행동을 추정하도록 학습될 수 있다.
한편, 본 발명의 일 실시예에 따른 행동 추정 모델은 다양한 공지의 머신 러닝 알고리즘을 이용하여 구현될 수 있다. 예를 들면, 합성곱 신경망(Convolutional Neural Network; CNN), 순환 신경망(Recurrent Neural Network; RNN) 등과 같은 인공 신경망을 이용하여 구현될 수 있지만, 이에 제한되는 것은 아니다.
다음으로, 본 발명의 일 실시예에 따른 레이블링 관리부(230)는, 본 발명의 일 실시예에 따른 행동 추정부(220)에 의하여 추정되는 객체의 행동을 참조하여 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정하는 기능을 수행할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 행동 추정부(220)는, 상술한 바와 같이, 레이블링 대상 센서 데이터에 대응되면서 해당 레이블링 대상 센서 데이터와 다른 종류에 속하는 제1 대응 참조 데이터 및 해당 레이블링 대상 센서 데이터 중 적어도 하나로부터 객체의 행동을 추정할 수 있다. 본 발명의 일 실시예에 따른 행동 추정부(220)는, 레이블링 대상 센서 데이터(또는 센서 데이터)로부터 객체의 행동을 추정하는 경우에는 위에서 설명된 행동 추정 모델을 이용할 수 있고, 제1 대응 참조 데이터(또는 제2 대응 참조 데이터)로부터 객체의 행동을 추정하는 경우에는 별도의 분석 또는 추정 모델(예를 들면, 제1 대응 참조 데이터에 영상 데이터가 포함되는 경우에는 위에서 설명된 영상 분석 모델)을 이용할 수 있다.
계속하면, 본 발명의 일 실시예에 따른 레이블링 관리부(230)는, 이렇게 추정되는 객체의 행동을 참조하여 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정할 수 있다. 본 발명의 일 실시예에 따르면, 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보에는 위의 추정에 따른 결과에 관한 정보가 포함될 수 있다. 예를 들어, 본 발명의 일 실시예에 따르면, 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보에는 추정된 행동의 종류, 그 추정의 정확성 내지 신뢰도 등이 포함될 수 있다.
나아가, 본 발명의 일 실시예에 따른 레이블링 관리부(230)는, 이렇게 결정된 레이블링 센서 데이터에 대한 레이블링에 관한 정보를 참조하여 해당 레이블링 센서 데이터에 대하여 레이블링을 하거나, 그 레이블링에 관한 정보를 해당 레이블링 센서 데이터와 함께 시각적인 방법으로 사용자(예를 들면, 레이블링 센서 데이터에 대하여 레이블링을 수행하는 사람)에게 제공할 수 있다.
한편, 본 발명의 일 실시예에 따른 레이블링 관리부(230)는, 레이블링 대상 센서 데이터에 대응되는 제1 대응 참조 데이터로부터 객체의 행동이 추정되지 않는 경우에 해당 레이블링 대상 센서 데이터로부터 추정되는 해당 객체의 행동을 참조하여 해당 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정할 수 있다.
예를 들어, 레이블링 대상 센서 데이터에 대응되는 제1 대응 참조 데이터에 영상 데이터가 포함되는 경우를 가정하면, 특정 객체가 다른 객체에 의하여 가려지거나 그 특정 객체의 자세가 변함으로써, 제1 대응 참조 데이터로부터 그 특정 객체의 행동을 추정할 수 없는 상황이 발생할 수 있다. 이러한 경우에, 본 발명의 일 실시예에 따른 레이블링 관리부(230)는, 본 발명의 일 실시예에 따른 행동 추정부(220)에 의하여 해당 레이블링 대상 센서 데이터로부터 추정되는 해당 객체의 행동을 참조하여 해당 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정할 수 있다. 한편, 본 발명의 일 실시예에 따르면, 여기서의 추정은 예비적인 레이블링에 기초하여 학습된 행동 추정 모델을 이용한 추정으로서, 정확도 내지 신뢰도가 충분히 높지 않은 추정(또는 불완전한 추정)에 해당할 수도 있다. 그리고, 본 발명의 일 실시예에 따른 레이블링 관리부(230)는, 사용자가 레이블링 대상 센서 데이터에 대하여 레이블링을 할 수 있도록 위와 같이 결정되는 레이블링에 관한 정보를 해당 사용자에게 제공할 수 있다. 본 발명의 일 실시예에 따르면, 이렇게 함으로써, 제1 대응 참조 데이터로부터 그 특정 객체의 행동을 추정할 수 없는 경우에도 그 제1 대응 참조 데이터나 레이블링 대상 센서 데이터를 버리지 않고 학습 데이터로서 활용할 수 있도록 할 수 있다.
다음으로, 본 발명의 일 실시예에 따른 통신부(240)는 데이터 획득부(210), 행동 추정부(220) 및 레이블링 관리부(230)로부터의/로의 데이터 송수신이 가능하도록 하는 기능을 수행할 수 있다.
마지막으로, 본 발명의 일 실시예에 따른 제어부(250)는 데이터 획득부(210), 행동 추정부(220), 레이블링 관리부(230) 및 통신부(240) 간의 데이터의 흐름을 제어하는 기능을 수행할 수 있다. 즉, 본 발명의 일 실시예에 따른 제어부(250)는 레이블링 지원 시스템(200)의 외부로부터의/로의 데이터 흐름 또는 레이블링 지원 시스템(200)의 각 구성요소 간의 데이터 흐름을 제어함으로써, 데이터 획득부(210), 행동 추정부(220), 레이블링 관리부(230) 및 통신부(240)에서 각각 고유 기능을 수행하도록 제어할 수 있다.
도 3은 본 발명의 일 실시예에 따라 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보가 결정되는 과정을 예시적으로 나타내는 도면이다.
도 3을 참조하면, 본 발명의 일 실시예에 따르면, 레이블링 대상 센서 데이터에 가속도 및/또는 각속도 데이터가 포함되고, 제1 대응 참조 데이터에 영상 데이터가 포함되는 경우를 가정할 수 있다. 이하에서는, 이러한 경우를 가정하여 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보가 결정되는 과정을 예시적으로 설명하기로 한다.
먼저, 본 발명의 일 실시예에 따른 데이터 획득부(210)는, 객체(송아지 또는 소)에 대한 가속도/각속도 센서(300a)에 의하여 측정되는 레이블링 대상 센서 데이터(321)를 획득하는 기능을 수행할 수 있다. 그리고, 본 발명의 일 실시예에 따른 데이터 획득부(210)는, 레이블링 대상 센서 데이터(321)에 대응되는 제1 대응 참조 데이터(310)를 획득할 수 있다. 레이블링 대상 센서 데이터(321) 및 그에 대응되는 제1 대응 참조 데이터(310)는 동일한 시간에 측정 내지 촬영된 것일 수 있으며(330), 본 발명의 일 실시예에 따른 레이블링 관리부(230)는 이러한 정보 내지 데이터를 사용자에게 시각적인 방법으로 제공할 수 있다(310, 320 및 330).
이때, 본 발명의 일 실시예에 따르면, 이러한 레이블링 대상 센서 데이터(321) 및 그에 대응되는 제1 대응 참조 데이터(310)는 객체(송아지 또는 소)의 움직임이 있는 경우(즉, 객체의 행동이 유효한 경우)에만 획득되는 것일 수 있다. 본 발명의 일 실시예에 따르면, 이렇게 함으로써, 사용자가 레이블링 대상 센서 데이터(321)에 대하여 레이블링을 하기 위해서 촬영되는 영상을 모두 재생하는 비효율이 없어지도록 할 수 있다.
계속하면, 본 발명의 일 실시예에 따른 행동 추정부(220)는, 레이블링 대상 센서 데이터(321) 및 그에 대응되는 제1 대응 참조 데이터(310) 중 적어도 하나로부터 객체(송아지 또는 소)의 행동을 추정할 수 있다. 그리고, 본 발명의 일 실시예에 따른 레이블링 관리부(230)는, 이렇게 추정되는 객체의 행동을 참조하여 레이블링 대상 센서 데이터(321)에 대한 레이블링에 관한 정보(322)를 결정할 수 있고, 이를 시각적인 방법으로 사용자에게 제공할 수도 있다(322).
이때, 본 발명의 일 실시예에 따른 레이블링 관리부(230)는, 본 발명의 일 실시예에 따른 행동 추정부(220)에 의하여 제1 대응 참조 데이터(310)로부터 객체(송아지 또는 소)의 행동이 추정되지 않는 경우에 레이블링 대상 센서 데이터(321)로부터 추정(정확도 내지 신뢰도가 충분히 높지 않은 추정 또는 불완전한 추정일 수 있음)되는 객체(송아지 또는 소)의 행동을 참조하여 레이블링 대상 센서 데이터(321)에 대한 레이블링에 관한 정보(322)를 결정할 수 있다.
이상 설명된 본 발명에 따른 실시예는 다양한 컴퓨터 구성요소를 통하여 실행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등과 같은, 프로그램 명령어를 저장하고 실행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의하여 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위하여 하나 이상의 소프트웨어 모듈로 변경될 수 있으며, 그 역도 마찬가지이다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항과 한정된 실시예 및 도면에 의하여 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위하여 제공된 것일 뿐, 본 발명이 상기 실시예에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정과 변경을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 또는 이로부터 등가적으로 변경된 모든 범위는 본 발명의 사상의 범주에 속한다고 할 것이다.
Claims (13)
- 센서 데이터에 대한 레이블링(labeling)을 지원하기 위한 방법으로서,객체에 대한 센서에 의하여 측정되는 레이블링 대상 센서 데이터를 획득하는 단계, 및상기 레이블링 대상 센서 데이터에 대응되면서 상기 레이블링 대상 센서 데이터와 다른 종류에 속하는 제1 대응 참조 데이터 및 상기 레이블링 대상 센서 데이터 중 적어도 하나로부터 추정되는 상기 객체의 행동을 참조하여 상기 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정하는 단계를 포함하는방법.
- 제1항에 있어서,상기 획득 단계에서, 상기 센서에 의하여 측정되는 센서 데이터 및 상기 센서 데이터에 대응되면서 상기 센서 데이터와 다른 종류에 속하는 제2 대응 참조 데이터 중 적어도 하나로부터 상기 객체의 행동을 추정하고, 상기 추정되는 객체의 행동이 유효한 경우에 상기 센서 데이터를 상기 레이블링 대상 센서 데이터로서 획득하는방법.
- 제1항에 있어서,상기 결정 단계에서, 상기 센서에 의하여 측정되는 센서 데이터 및 상기 센서 데이터에 대응되면서 상기 센서 데이터와 다른 종류에 속하는 제2 대응 참조 데이터에 기초하여 학습되는 머신 러닝 기반의 행동 추정 모델을 이용하여 상기 객체의 행동을 추정하는방법.
- 제1항에 있어서,상기 결정 단계에서, 상기 제1 대응 참조 데이터로부터 상기 객체의 행동이 추정되지 않는 경우에 상기 레이블링 대상 센서 데이터로부터 추정되는 상기 객체의 행동을 참조하여 상기 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정하는방법.
- 제4항에 있어서,상기 제1 대응 참조 데이터는 상기 객체에 대한 영상 데이터를 포함하고,상기 결정 단계에서, 상기 객체가 다른 객체에 의하여 가려지거나 상기 객체의 자세가 변함에 따라 상기 객체의 행동이 추정되지 않는방법.
- 제4항에 있어서,상기 제1 대응 참조 데이터로부터 상기 객체의 행동이 추정되지 않는 경우에 사용자가 상기 레이블링 대상 센서 데이터에 대하여 레이블링을 할 수 있도록 상기 결정되는 레이블링에 관한 정보를 상기 사용자에게 제공하는 단계를 더 포함하는방법.
- 제1항에 따른 방법을 실행하기 위한 컴퓨터 프로그램을 기록하는 비일시성의 컴퓨터 판독 가능 기록 매체.
- 센서 데이터에 대한 레이블링(labeling)을 지원하기 위한 시스템으로서,객체에 대한 센서에 의하여 측정되는 레이블링 대상 센서 데이터를 획득하는 데이터 획득부,상기 레이블링 대상 센서 데이터에 대응되면서 상기 레이블링 대상 센서 데이터와 다른 종류에 속하는 제1 대응 참조 데이터 및 상기 레이블링 대상 센서 데이터 중 적어도 하나로부터 상기 객체의 행동을 추정하는 행동 추정부, 및상기 추정되는 객체의 행동을 참조하여 상기 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정하는 레이블링 관리부를 포함하는시스템.
- 제8항에 있어서,상기 행동 추정부는, 상기 센서에 의하여 측정되는 센서 데이터 및 상기 센서 데이터에 대응되면서 상기 센서 데이터와 다른 종류에 속하는 제2 대응 참조 데이터 중 적어도 하나로부터 상기 객체의 행동을 추정하고,상기 데이터 획득부는, 상기 추정되는 객체의 행동이 유효한 경우에 상기 센서 데이터를 상기 레이블링 대상 센서 데이터로서 획득하는시스템.
- 제8항에 있어서,상기 행동 추정부는, 상기 센서에 의하여 측정되는 센서 데이터 및 상기 센서 데이터에 대응되면서 상기 센서 데이터와 다른 종류에 속하는 제2 대응 참조 데이터에 기초하여 학습되는 머신 러닝 기반의 행동 추정 모델을 이용하여 상기 객체의 행동을 추정하는시스템.
- 제8항에 있어서,상기 레이블링 관리부는, 상기 제1 대응 참조 데이터로부터 상기 객체의 행동이 추정되지 않는 경우에 상기 레이블링 대상 센서 데이터로부터 추정되는 상기 객체의 행동을 참조하여 상기 레이블링 대상 센서 데이터에 대한 레이블링에 관한 정보를 결정하는시스템.
- 제11항에 있어서,상기 제1 대응 참조 데이터는 상기 객체에 대한 영상 데이터를 포함하고,상기 객체가 다른 객체에 의하여 가려지거나 상기 객체의 자세가 변함에 따라 상기 객체의 행동이 추정되지 않는시스템.
- 제11항에 있어서,상기 레이블링 관리부는, 상기 제1 대응 참조 데이터로부터 상기 객체의 행동이 추정되지 않는 경우에 사용자가 상기 레이블링 대상 센서 데이터에 대하여 레이블링을 할 수 있도록 상기 결정되는 레이블링에 관한 정보를 상기 사용자에게 제공하는시스템.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2022398862A AU2022398862A1 (en) | 2021-11-29 | 2022-11-29 | Method, system, and non-transitory computer-readable recording medium for supporting labeling of sensor data |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210167740A KR102714247B1 (ko) | 2021-11-29 | 2021-11-29 | 센서 데이터에 대한 레이블링을 지원하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체 |
KR10-2021-0167740 | 2021-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023096451A1 true WO2023096451A1 (ko) | 2023-06-01 |
Family
ID=86540170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/019022 WO2023096451A1 (ko) | 2021-11-29 | 2022-11-29 | 센서 데이터에 대한 레이블링을 지원하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102714247B1 (ko) |
AU (1) | AU2022398862A1 (ko) |
WO (1) | WO2023096451A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110007946A1 (en) * | 2000-11-24 | 2011-01-13 | Clever Sys, Inc. | Unified system and method for animal behavior characterization with training capabilities |
KR20210001870A (ko) * | 2019-06-28 | 2021-01-06 | (주)하이디어 솔루션즈 | 사용자 생활 상태 모니터링 관리 장치 및 이의 제어 방법 |
KR20210067442A (ko) * | 2019-11-29 | 2021-06-08 | 엘지전자 주식회사 | 객체 인식을 위한 자동 레이블링 장치 및 방법 |
KR20210115204A (ko) * | 2020-03-12 | 2021-09-27 | (주)씽크포비엘 | 가축의 개체별 이상 징후 포착 시스템 및 그 이용 방법 |
KR20210116183A (ko) * | 2020-03-12 | 2021-09-27 | (주)씽크포비엘 | 가축의 설사 탐지 및 설사 위험도 예측 시스템 및 그 이용 방법 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090027000A (ko) * | 2007-09-11 | 2009-03-16 | 한국전자통신연구원 | 상황 인식 시스템 환경에서 발생한 이벤트 로그에 기초하여사용자 행동 패턴을 구축하는 장치 및 방법 |
WO2016103651A1 (ja) * | 2014-12-22 | 2016-06-30 | 日本電気株式会社 | 情報処理システム、情報処理方法、及び、記録媒体 |
KR101879735B1 (ko) | 2017-03-15 | 2018-07-18 | (주)넥셀 | 자동적인 학습데이터 생성 방법 및 장치와 이를 이용하는 자가 학습 장치 및 방법 |
US11042155B2 (en) * | 2017-06-06 | 2021-06-22 | Plusai Limited | Method and system for closed loop perception in autonomous driving vehicles |
US10373027B1 (en) * | 2019-01-30 | 2019-08-06 | StradVision, Inc. | Method for acquiring sample images for inspecting label among auto-labeled images to be used for learning of neural network and sample image acquiring device using the same |
CN111916192B (zh) * | 2020-07-22 | 2023-01-13 | 复旦大学 | 一种医疗行为多模态数据标注方法和系统 |
-
2021
- 2021-11-29 KR KR1020210167740A patent/KR102714247B1/ko active IP Right Grant
-
2022
- 2022-11-29 WO PCT/KR2022/019022 patent/WO2023096451A1/ko active Application Filing
- 2022-11-29 AU AU2022398862A patent/AU2022398862A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110007946A1 (en) * | 2000-11-24 | 2011-01-13 | Clever Sys, Inc. | Unified system and method for animal behavior characterization with training capabilities |
KR20210001870A (ko) * | 2019-06-28 | 2021-01-06 | (주)하이디어 솔루션즈 | 사용자 생활 상태 모니터링 관리 장치 및 이의 제어 방법 |
KR20210067442A (ko) * | 2019-11-29 | 2021-06-08 | 엘지전자 주식회사 | 객체 인식을 위한 자동 레이블링 장치 및 방법 |
KR20210115204A (ko) * | 2020-03-12 | 2021-09-27 | (주)씽크포비엘 | 가축의 개체별 이상 징후 포착 시스템 및 그 이용 방법 |
KR20210116183A (ko) * | 2020-03-12 | 2021-09-27 | (주)씽크포비엘 | 가축의 설사 탐지 및 설사 위험도 예측 시스템 및 그 이용 방법 |
Also Published As
Publication number | Publication date |
---|---|
AU2022398862A1 (en) | 2024-05-16 |
KR102714247B1 (ko) | 2024-10-08 |
KR20230080219A (ko) | 2023-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019132168A1 (ko) | 수술영상데이터 학습시스템 | |
WO2019088462A1 (ko) | 혈압 추정 모델 생성 시스템 및 방법과 혈압 추정 시스템 및 방법 | |
WO2018212423A1 (ko) | 안전도 계산 방법 및 장치 | |
WO2020235939A2 (ko) | 이동통신 단말기에서의 안면 인식을 이용한 관련 질환 모니터링 방법 및 시스템 | |
WO2021182684A1 (ko) | 가축의 개체별 이상 징후 포착 시스템 및 그 이용 방법 | |
WO2012161407A1 (en) | Method of motion tracking | |
WO2021060700A1 (ko) | 비디오투시 연하검사 판독 장치 및 방법 | |
WO2019190076A1 (ko) | 시선 추적 방법 및 이를 수행하기 위한 단말 | |
WO2020111754A2 (ko) | 세미 슈퍼바이즈드 학습을 이용한 진단 시스템 제공방법 및 이를 이용하는 진단 시스템 | |
WO2022131642A1 (ko) | 의료 영상 기반 질환 중증도 결정 장치 및 방법 | |
WO2018155856A1 (ko) | 소의 승가 행위 판독 시스템 | |
WO2021066392A2 (ko) | 골프 스윙에 관한 정보를 추정하기 위한 방법, 디바이스 및 비일시성의 컴퓨터 판독 가능한 기록 매체 | |
WO2023096451A1 (ko) | 센서 데이터에 대한 레이블링을 지원하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체 | |
WO2019164277A1 (ko) | 수술영상을 이용한 출혈 평가 방법 및 장치 | |
WO2022015043A1 (ko) | 신경질환 양방향 모니터링 시스템 | |
WO2019240330A1 (ko) | 영상 기반 힘 예측 시스템 및 그 방법 | |
WO2024049052A1 (ko) | 복합 인공 신경망을 이용하여 부정맥을 추정하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체 | |
WO2020091229A1 (ko) | 인공 신경망을 이용하여 부정맥을 인식하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체 | |
WO2024010390A1 (ko) | 의료용 로봇의 제어를 모니터링 하기 위한 방법, 프로그램 및 장치 | |
WO2019098583A1 (ko) | 반려견 행동분석 방법 및 시스템 | |
WO2023121051A1 (ko) | 환자 정보 제공 방법, 환자 정보 제공 장치, 및 컴퓨터 판독 가능한 기록 매체 | |
WO2023282389A1 (ko) | 두경부 영상 이미지를 이용한 지방량 산출 방법 및 이를 위한 장치 | |
WO2022102958A1 (ko) | 골프 스윙에 관한 정보를 추정하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체 | |
WO2022186432A1 (ko) | 객체를 모니터링하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체 | |
WO2022131390A1 (ko) | 다중 시점 이미지를 사용한 자가지도 학습 기반 3차원 사람 자세 추정 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22899133 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU2022398862 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2022398862 Country of ref document: AU Date of ref document: 20221129 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |