WO2023096266A1 - Silicon nitride film etching composition and preparation method therefor - Google Patents

Silicon nitride film etching composition and preparation method therefor Download PDF

Info

Publication number
WO2023096266A1
WO2023096266A1 PCT/KR2022/018185 KR2022018185W WO2023096266A1 WO 2023096266 A1 WO2023096266 A1 WO 2023096266A1 KR 2022018185 W KR2022018185 W KR 2022018185W WO 2023096266 A1 WO2023096266 A1 WO 2023096266A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride film
silicon nitride
etching
etching composition
phosphoric acid
Prior art date
Application number
PCT/KR2022/018185
Other languages
French (fr)
Korean (ko)
Inventor
허국
우병원
임영진
김기태
Original Assignee
(주)후성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)후성 filed Critical (주)후성
Publication of WO2023096266A1 publication Critical patent/WO2023096266A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means

Definitions

  • the present invention relates to etching compositions, and more particularly to wet etching compositions used to selectively etch silicon nitride films.
  • silicon nitride (Si 3 N 4 ) is a physically and chemically stable thin film, and is widely used as an insulating film, a dielectric film, a protective film, an etch stop film, and the like in semiconductor devices.
  • a silicon oxide film (SiO 2 ) and a silicon nitride film (SiN x ) each have a structure in which one or more layers are alternately stacked.
  • development activities for etching compositions capable of improving the etching selectivity of each film are in progress to compensate for interference between devices.
  • an etching solution in which an aqueous solution of phosphoric acid is heated at 157 to 165° C. is widely used.
  • the etching rate of the silicon nitride film is about 20 to 50 times faster than that of the silicon oxide film, so when pure phosphoric acid is used as an etching solution, the silicon oxide film is finely etched, resulting in fine pattern defects, and the etching selectivity (nitride / oxide film) shows a fairly low level of about 25 to 50:1.
  • a silicon compound or the like is used as an additive to phosphoric acid, but there is a problem in that reliability of a semiconductor device is lowered due to a large amount of particles generated on a wafer after an etching process.
  • an etching solution containing an inorganic acid such as hydrofluoric acid, sulfuric acid, or nitric acid is used as another method of securing the etching selectivity, there is a problem in that the etching selectivity decreases with time.
  • a technical problem to be achieved by the present invention is to provide a silicon nitride film etching composition having an excellent etching selectivity and minimizing generation of particles during an etching process.
  • the silicon nitride film etching composition of the present invention may include phosphoric acid, hydrogen fluoride, silicate ions, and water.
  • the hydrogen fluoride may be included in 0.5 to 1.7 mole parts
  • the silicate ion may be included in 0.1 to 0.3 mole parts
  • the water may be included in 90 to 100 mole parts.
  • the silicate ion may be at least one selected from SiO 3 2- and SiO 4 4- . Specifically, the silicate ion may be SiO 3 2- , but is not limited thereto.
  • the silicate ion may be formed by ionization of an organosilicon compound represented by Chemical Formula 1 below.
  • R 1 to R 3 are each independently hydrogen, a C1 to 3 alkyl group, an acetyl group or a vinyl group
  • R 4 is hydrogen, a C1 to 3 alkyl group, a vinyl group, a C1 to 3 alkoxy group, an acetoxy group or a vinyloxy group.
  • the organosilicon compound may be at least one selected from tetramethylorthosilicate, tetraethylorthosilicate (TEOS), tetra(isopropoxy)silane, triacetoxy(methyl)silane, and triacetoxy(vinyl)silane. .
  • TEOS tetraethylorthosilicate
  • the organosilicon compound may be tetraethylorthosilicate (TEOS), but is not limited thereto.
  • the present invention comprises the steps of preparing a mixed solution by mixing an organosilicon compound and an aqueous hydrogen fluoride solution; adding the mixed solution to an aqueous phosphoric acid solution; and heating the phosphoric acid aqueous solution to which the mixed solution is added.
  • the temperature at which the phosphoric acid aqueous solution to which the mixed solution is added may be heated to 50 to 100 °C.
  • the silicon nitride film etching composition may include silicate ions formed by ionizing the organosilicon compound.
  • the silicate ion may be at least one selected from SiO 3 2- and SiO 4 4- . Specifically, the silicate ion may be SiO 3 2- , but is not limited thereto.
  • the present invention may include a process of wet etching a silicon nitride film using the silicon nitride film etching composition.
  • the etching rate of the silicon nitride film may be 16.6 nm/min or more.
  • the etching selectivity of the silicon nitride film to the silicon oxide film may be ⁇ .
  • the silicon nitride film etching composition containing phosphoric acid, hydrogen fluoride, silicate ions, and water of the present invention maintains an excellent etching selectivity of ⁇ , has a fast etching rate of the silicon nitride film, and There is an excellent effect of suppressing particles.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a silicon nitride film etching composition according to an embodiment of the present invention.
  • FIG. 2 is a graph showing UV / vis absorbance of a silicon nitride film etching composition according to an experimental example of the present invention, Ammonium molybdate, and a mixture.
  • Figure 3 is a graph showing the maximum UV / vis absorbance and its trend line according to the concentration of the silicon nitride film etching composition and Ammonium molybdate and the mixture according to an experimental example of the present invention.
  • the silicon nitride film etching composition of the present invention may include phosphoric acid, hydrogen fluoride, silicate ions and water.
  • the etching composition of the present invention may include silicate ions as a silicon oxide film etching inhibitor.
  • the etching composition of the present invention may contain hydrogen fluoride as an etching rate increasing agent.
  • the silicate ion included in the etching composition of the present invention is a silicon oxide film etching inhibitor and may play a role of suppressing etching of the silicon oxide film.
  • the silicate ion included in the etching composition of the present invention may increase the etching selectivity of the silicon nitride film and effectively suppress particles generated during the etching process.
  • the conventional wet etching method using a silicon compound there was a disadvantage in that a large amount of foreign matter was generated on the surface of the wafer. This is because when the silicon nitride film and/or the silicon oxide film is etched using an etching process, particularly a wet etching process, very small particles generated on the wafer substrate act as growth nuclei and grow into large-sized particles.
  • the silicate ion included in the etching composition of the present invention does not act as a growth nucleus, and thus has an effect of suppressing the foreign material growth process in the etching process.
  • the content of the silicate ions included in the etching composition of the present invention may be included in 0.1 to 0.3 mole parts based on 100 mole parts of phosphoric acid.
  • the silicate ion is included in the etching composition of the present invention so as to correspond to the above content range, the etching composition of the present invention can effectively suppress etching of the silicon oxide film, and also significantly reduces foreign substances generated in the etching process, particularly the wet etching process. may have a diminishing effect.
  • the etching ability of the nitride film and/or the oxide film may be reduced, and if the amount exceeds 0.3 mol part, the etching ability of the oxide film may be improved and the etching selectivity may be reduced.
  • the content of the silicate ion is not limited to the above range, and can be appropriately adjusted according to desired etching characteristics.
  • the silicate ion may be generated from an organosilicon compound. Specifically, the silicate ion may be formed by ionizing the organosilicon compound in the presence of hydrogen fluoride.
  • the organosilicon compound may be represented by Chemical Formula 1 below.
  • R 1 to R 3 may each independently be hydrogen, a C1 to 3 alkyl group, an acetyl group, or a vinyl group
  • R 4 is hydrogen, a C1 to 3 alkyl group, a vinyl group, or a C1 to 3 alkoxy group. , an acetoxy group or a vinyloxy group.
  • the organosilicon compound is at least one selected from tetramethylorthosilicate, tetraethylorthosilicate (TEOS), tetra(isopropoxy)silane, triacetoxy(methyl)silane, and triacetoxy(vinyl)silane.
  • TEOS tetraethylorthosilicate
  • TEOS tetraethylorthosilicate
  • the organosilicon compound may be ionized by breaking covalent bonds in molecules by externally applied energy, such as thermal energy, physical energy, and/or chemical energy, to form silicate ions.
  • energy applied to the organosilicon compound causes covalent bonds between carbon-oxygen (C-O) and/or silicon-carbon (Si-C) present in the molecule of the organosilicon compound to be broken and ionized.
  • Sufficient energy such as thermal energy, light energy, kinetic energy, and the like can be used. More specifically, the external energy may be supplied and the organosilicon compound may be ionized through methods such as heating, sonication, and microwave treatment, but is not limited thereto.
  • the etching composition of the present invention may further include hydrogen fluoride as an etching rate increasing agent together with the silicate ion used as the silicon oxide film etching inhibitor.
  • Hydrogen fluoride as an inorganic acid, may serve to improve etching rates of silicon oxide and silicon nitride films.
  • the content of hydrogen fluoride included in the etching composition of the present invention as a nitride film etching rate increasing agent may be included in 0.5 to 1.7 mole parts based on 100 mole parts of phosphoric acid. If the amount of hydrogen fluoride is too small, less than 0.9 parts by mole, no additive effect on the etching ability can be expected, and if too large an amount exceeding 1.2 parts by mole is included, the etching rate of the oxide film increases and the etching selectivity decreases, or silicon particles There is a problem that they clump together and stick to the wafer.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a silicon nitride film etching composition according to an embodiment of the present invention.
  • a method for preparing a silicon nitride film etching composition comprises preparing a mixed solution by mixing an organosilicon compound and an aqueous hydrogen fluoride solution; adding the mixed solution to an aqueous phosphoric acid solution; and heating the phosphoric acid aqueous solution to which the mixed solution is added.
  • a mixed solution may be prepared by mixing an organosilicon compound and an aqueous hydrogen fluoride solution.
  • the mixed solution may be a homogeneous mixture formed by uniformly mixing an organosilicon compound and an aqueous hydrogen fluoride solution at room temperature.
  • the mixed solution In order to improve the miscibility of the mixed solution or further ionize the organosilicon compound present in the mixed solution, mixing, stirring, and heating are performed when the organosilicon compound and the hydrogen fluoride aqueous solution are mixed. Mixing methods such as heating, ultrasound, microwave, and combinations thereof may additionally be applied.
  • the mixed solution may be heated at a temperature of 50 to 200° C. and/or treated with microwaves at 100 to 2000 W, but is not limited thereto.
  • the organosilicon compound may be ionized to generate silicate ions.
  • the organosilicon compound may be ionized in the presence of an aqueous hydrogen fluoride solution, that is, hydrofluoric acid, and react with highly reactive fluorine ions included in the hydrofluoric acid to generate silicate ions.
  • the organosilicon compound may be ionized by externally applied energy, such as thermal energy or kinetic energy.
  • the ionization process of the organosilicon compound is specifically a covalent bond between carbon-oxygen (C-O) and/or silicon-carbon (Si-C) present in the organosilicon compound by reaction with fluorine ions and/or application of external energy.
  • Si-O and / or Si O bonds
  • the organosilicon compound may be represented by Formula 1 below.
  • R 1 to R 3 are each independently hydrogen, a C1 to 3 alkyl group, an acetyl group or a vinyl group
  • R 4 is hydrogen, a C1 to 3 alkyl group, a vinyl group, a C1 to 3 alkoxy group, an acetoxy group or a vinyloxy group.
  • the organosilicon compound is at least one selected from tetramethylorthosilicate, tetraethylorthosilicate (TEOS), tetra(isopropoxy)silane, triacetoxy(methyl)silane, and triacetoxy(vinyl)silane.
  • TEOS tetraethylorthosilicate
  • the organosilicon compound may be tetraethylorthosilicate (TEOS), but is not limited thereto.
  • the hydrogen fluoride aqueous solution may be used in a concentration range of 10 to 100 wt%, and in detail, one in a concentration range of 40 to 60 wt%. In one embodiment, the hydrogen fluoride aqueous solution may use a 50 wt% aqueous solution, but is not limited thereto.
  • the organosilicon compound and the hydrogen fluoride aqueous solution may be mixed at a mass ratio of 1:1 to 1:5 at room temperature.
  • the mixing ratio of the organosilicon compound and the hydrogen fluoride aqueous solution may be provided in an amount of hydrogen fluoride for generating a sufficient amount of silicate ions by ionizing the organosilicon compound, for example, the hydrogen fluoride aqueous solution in the same amount as the organosilicon compound and/or in excess. If the amount of the organosilicon compound is greater than the hydrogen fluoride aqueous solution, there may be a problem in that foreign matter remains on the wafer during the etching process due to the non-ionized residual compound among the organosilicon compounds.
  • the mixing ratio of the organosilicon compound and the hydrogen fluoride aqueous solution may be used in a mass ratio of 1:1 to 1:2, and in one embodiment, a 1:1 mass ratio may be used, but is not limited thereto.
  • the mixed solution may be added to an aqueous phosphoric acid solution.
  • the mixed solution and the phosphoric acid aqueous solution may be mixed at room temperature in a mass ratio of 0.1:100 to 1:100.
  • Silicate ions and hydrogen fluoride present in the mixed solution may be added to phosphoric acid, which is a main etching material in a wet etching process, and used as additives.
  • the silicate ion may have an effect of inhibiting etching of the silicon oxide film
  • the hydrogen fluoride may be an additive having an effect of increasing an etching rate.
  • the silicate ion and the hydrogen fluoride are included in an aqueous phosphoric acid solution at a mass ratio within the above range and used together, the etching selectivity can be effectively improved and particle formation can be suppressed.
  • the mixing ratio of the mixed solution and the phosphoric acid aqueous solution may be used in a mass ratio of 0.4:100 to 0.9:100, and in one embodiment, a mass ratio of 0.8:100 may be used, but is not limited thereto.
  • the solution After adding the mixed solution to the aqueous phosphoric acid solution, in order to ionize the organosilicon compound present in the solution, mixing, stirring, heating, ultrasound, microwave ( Physical mixing methods such as microwave) and combinations thereof may be additionally applied.
  • the solution may be heated to a temperature of 50 to 200 ° C, and may also be treated with microwaves of 100 to 2000 W, but is not limited thereto.
  • the concentration of the phosphoric acid (H 3 PO 4 ) aqueous solution may be used in the range of 1 to 99 wt%, and specifically, a concentration in the range of 50 to 90 wt% may be used. In one embodiment, the concentration of the phosphoric acid (H 3 PO 4 ) aqueous solution may be 85 wt%, but is not limited thereto.
  • the silicate anion is included in the etching composition, it is not limited to the solubility of 85% phosphoric acid (H 3 PO 4 ) aqueous solution, and another functional additive may be additionally added.
  • the phosphoric acid aqueous solution to which the mixed solution is added may be heated.
  • a wafer having a nitride film and/or an oxide film may be immersed in the mixed solution and heated.
  • the heating temperature may be 50° C. to 100° C., wherein the heating temperature may be a temperature at which a covalent bond between O—C or a covalent bond between Si—C in the organosilicon compound molecule is broken and sufficient thermal energy is provided for ionization.
  • the mixed solution may be heated to a temperature of 80 °C, but is not limited thereto.
  • the organosilicon compound included in the mixed solution is ionized and silicate ions may be formed.
  • the content of hydrogen fluoride contained in the etching composition of the present invention as a nitride film etching rate increasing agent is included in 0.5 to 1.7 mole parts based on 100 mole parts of phosphoric acid. desirable. If the amount of hydrogen fluoride is too small, less than 0.9 parts by mole, no additive effect on the etching ability can be expected, and if too large an amount exceeding 1.2 parts by mole is included, the etching rate of the oxide film increases and the etching selectivity decreases, or silicon particles There is a problem that they clump together and stick to the wafer.
  • the content of silicate ions included in the etching composition of the present invention as an oxide film etching inhibitor is preferably 0.1 to 0.3 parts by mole based on 100 parts by mole of phosphoric acid. If the amount of the silicate ions is less than 0.2 mol part, the etching ability of the nitride film and/or the oxide film may be reduced, and if the amount exceeds 0.3 mol part, the etching ability of the oxide film may be improved and the etching selectivity may be reduced.
  • FIG. 2 is a graph showing UV / vis absorbance of a silicon nitride film etching composition according to an experimental example of the present invention, Ammonium molybdate, and a mixture.
  • Figure 3 is a graph showing the maximum UV / vis absorbance and its trend line according to the concentration of the silicon nitride film etching composition and ammonium molybdate and the mixture according to an experimental example of the present invention.
  • a colorimetric determination method was used to quantitatively analyze the concentration of silicate ions in the silicon nitride film etching composition of the present invention.
  • the silicon nitride film etching composition prepared by the method of the above example was mixed with and reacted with ammonium molybdate to prepare a mixture such that the concentration of silicate was 10, 25 and 50 ppm. Then, the absorbance of the mixture was measured using a UV/vis spectrophotometer, and the maximum absorbance of the mixture at concentrations of 10, 25, and 50 ppm was measured, respectively. Through this, the concentration of silicate ions included in the silicon nitride film etching composition of the present invention was calculated.
  • a mixed solution was prepared by mixing 2.0 g of a 50 wt % hydrofluoric acid aqueous solution and 2.0 g of tetraethyl orthosilicate (TEOS) at room temperature. Thereafter, the mixed solution was added to 500 g of an 85 wt% phosphoric acid aqueous solution to prepare a silicon nitride film etching composition containing silicate ions (Preparation Example 1). Preparation Examples 2 to 5
  • etching compositions were prepared in the same manner as in Preparation Example 1 by varying the amount of 50 wt% hydrofluoric acid aqueous solution and TEOS.
  • Table 1 The compositions included in the etching compositions of Preparation Examples 1 to 5 of the present invention are summarized in Table 1 below.
  • the etching composition of Preparation Example 6 used an 85 wt% phosphoric acid aqueous solution.
  • the etching composition of Preparation Example 7 is prepared by mixing 0.5 g of solid metasilicic acid (H 2 SiO 3 ) and 2.5 g of 35 wt% hexafluorosilicic acid (H 2 SiF 6 ) aqueous solution at room temperature. and prepared by adding it to 500 g of 85 wt% phosphoric acid aqueous solution.
  • the etching composition of Preparation Example 8 was prepared by mixing 0.5 g of solid metasilicic acid (H 2 SiO 3 ) with 2.5 g of 50 wt% hydrofluoric acid aqueous solution at room temperature to prepare a mixed solution, which was mixed with 500 g of 85 wt% phosphoric acid aqueous solution. prepared by adding The compositions included in the etching compositions of Preparation Examples 6 to 8 of the present invention are summarized in Table 2 below.
  • the E / R is an abbreviation of the etching rate (Etch rate), and the etching process performed to measure the etching rate (E / R) is the etching target using the etching composition shown in Table 3 (Silicon oxide film and/or silicon nitride film) was wet etched.
  • etching rate Etch rate
  • Etching rate (E/R) ⁇ initial film thickness (nm)-film thickness after etching (nm) ⁇ /etching treatment time (min)
  • Equation 2 The formula for calculating the etching selectivity is as shown in Equation 2 below.
  • Etching selectivity silicon nitride film etch rate (nm/min) / silicon oxide film etch rate (nm)
  • the surface of the wafer substrate was observed using a scanning electron microscope (SEM), and particles with a size of 0.3 nm or more found using a Zeta-Potential Analyzer (particle size analysis) were determined as particles.
  • SEM scanning electron microscope
  • nitride film etching rates according to the content of silicate ion (SiO 3 2- ) included in the etching composition through Examples 1 to 3.
  • the etching compositions of Examples 1, 2 and 3 sequentially contained 0.221, 0.243 and 0.265 mole parts of silicate ions, and the nitride film etching rates using the same were measured to be 20, 22.4 and 16.8 nm/min.
  • the etching composition of Example 2 containing silicate ions in an amount of 0.243 parts by mole had an oxide film etching rate of 0 nm/min, a nitride film etching rate of 22.4 nm/min, and an etching selectivity of ⁇ , which etched the silicon nitride film. characteristics showed the best results.
  • all of the etching compositions of Examples 1 to 3 have an oxide film etching rate of 0 nm/min. Accordingly, the etching composition of the present invention lowers the oxide film etching rate but improves the nitride film etching rate and has an etching selectivity. It was possible to obtain the effect of maintaining ⁇ .
  • Comparative Example 1 is an etching composition using only 85 wt% phosphoric acid without containing hydrogen fluoride and/or silicate ions.
  • the etching rates of the oxide film and the nitride film were measured to be 0.2 and 6 nm/min, respectively, and the etching selectivity through this was calculated as 30. This indicates a considerably lower level of etching selectivity compared to the etching compositions of Examples 1 to 4. Accordingly, the etching composition containing phosphoric acid, hydrogen fluoride, and silicate ions had a much higher etching selectivity than the etching composition containing only phosphoric acid. However, particles present on the substrate after the etching process using the etching composition of Comparative Example 1 were not detected.
  • Comparative Example 2 did not contain hydrogen fluoride and/or silicate ions, and contained metasilicic acid (H 2 SiO 3 ) and 35 wt% of hexafluorosilicic acid (H 2 SiF 6 ) aqueous solution.
  • Example 3 is an etching composition comprising hydrogen fluoride and metasilicic acid (H 2 SiO 3 ).
  • the etching compositions of Comparative Examples 2 and 3 did not contain hydrogen fluoride and silicate ions (SiO 3 2- ), but did contain fluorine and silicon elements. After performing the etching process through the etching compositions of Comparative Examples 2 and 3, the etching rates of the oxide film and the nitride film were measured. Measured at ⁇ 20 nm/min.
  • the etching rates using the etching compositions of Comparative Examples 2 and 3 showed high etching rates similar to those of Examples 1 to 4, and the etching selectivity was excellently maintained at ⁇ .
  • the etching compositions of Comparative Examples 2 and 3 had a problem in that a large number of particles were found on the substrate after the etching process.
  • the silicon nitride film etching composition of the present invention maintains an excellent etching selectivity of ⁇ , generates no particles after the etching process, and has excellent characteristics such as a high etching rate of the silicon nitride film. Therefore, the silicon nitride film etching composition of the present invention suppresses silicon oxide film etching and simultaneously obtains an effect of increasing the etching rate of the silicon nitride film, thereby securing both etching selectivity and productivity.

Abstract

The present invention relates to a silicon nitride film etching composition and a preparation method therefor, and the silicon nitride film etching composition of the present invention may comprise phosphoric acid, hydrogen fluoride, silicate ions and water. The silicon nitride film etching composition of the present invention can provide the excellent effects of excellent etch selectivity, which is maintained as ∞, a high silicon nitride film etching rate and post-etching particle generation suppression.

Description

실리콘 질화막 에칭 조성물 및 이의 제조방법Silicon nitride film etching composition and manufacturing method thereof
본 발명은 에칭 조성물에 관한 것으로, 자세하게는 실리콘 질화막을 선택적으로 에칭하는데 이용되는 습식 에칭 조성물에 관한 것이다.The present invention relates to etching compositions, and more particularly to wet etching compositions used to selectively etch silicon nitride films.
반도체 제작 공정에서 실리콘 질화막(silicon nitride; Si3N4)은 물리, 화학적으로 안정적인 박막으로서 반도체 소자에서 절연막, 유전막, 보호막, 식각정지막 등으로 많이 사용되고 있다. 특히, 플래시 메모리 소자에서 실리콘 산화막(SiO2)과 실리콘 질화막(SiNx)은 각각 단독, 또는 1층 이상의 막들이 교대로 적층된 구조를 갖는다. 하지만 반도체 소자가 소형화되고 고집적화됨에 따라 소자와 소자간의 간섭현상을 보완하기 위해 각 막의 식각 선택비를 향상시킬 수 있는 에칭 조성물에 대한 개발활동이 진행되고 있다.In a semiconductor manufacturing process, silicon nitride (Si 3 N 4 ) is a physically and chemically stable thin film, and is widely used as an insulating film, a dielectric film, a protective film, an etch stop film, and the like in semiconductor devices. In particular, in a flash memory device, a silicon oxide film (SiO 2 ) and a silicon nitride film (SiN x ) each have a structure in which one or more layers are alternately stacked. However, as semiconductor devices are miniaturized and highly integrated, development activities for etching compositions capable of improving the etching selectivity of each film are in progress to compensate for interference between devices.
상기 실리콘 질화막을 제거하기 위한 습식 에칭 공정에서는 일반적으로 인산(phosphoric acid) 수용액으르 157 내지 165 ℃로 가열하는 에칭 용액이 널리 사용되고 있다. 실리콘 질화막의 에칭속도는 실리콘 산화막의 에칭속도에 비해 약 20~50배 정도 빨라서 순수한 인산을 에칭 용액으로 사용하는 경우, 실리콘 산화막이 미세하게 에칭됨으로써 미세 패턴 불량이 발생하고, 에칭 선택비(질화막/산화막)가 약 25~50:1로 상당히 낮은 수준을 보인다.In the wet etching process for removing the silicon nitride film, an etching solution in which an aqueous solution of phosphoric acid is heated at 157 to 165° C. is widely used. The etching rate of the silicon nitride film is about 20 to 50 times faster than that of the silicon oxide film, so when pure phosphoric acid is used as an etching solution, the silicon oxide film is finely etched, resulting in fine pattern defects, and the etching selectivity (nitride / oxide film) shows a fairly low level of about 25 to 50:1.
에칭 선택비가 감소되는 것을 방지하기 위해 인산에 첨가제로서 실리콘 화합물 등이 사용되었으나, 에칭 공정 후 웨이퍼 상에 다량 발생하는 파티클로 인하여 반도체 소자의 신뢰성을 저하시키는 문제가 있었다. 또한, 에칭 선택비를 확보하는 또 다른 방법으로 불산, 황산, 질산 등의 무기산을 포함하는 에칭액을 사용하는 경우, 시간에 따라 에칭 선택비가 감소되는 문제점이 있다.In order to prevent a decrease in the etching selectivity, a silicon compound or the like is used as an additive to phosphoric acid, but there is a problem in that reliability of a semiconductor device is lowered due to a large amount of particles generated on a wafer after an etching process. In addition, when an etching solution containing an inorganic acid such as hydrofluoric acid, sulfuric acid, or nitric acid is used as another method of securing the etching selectivity, there is a problem in that the etching selectivity decreases with time.
따라서, 실리콘 질화막에 대한 에칭 속도를 높이고, 에칭 선택비를 향상시키며, 에칭 과정에서 파티클의 발생이 최소화되는 에칭 조성물의 개발이 요구되고 있다.Therefore, there is a need to develop an etching composition that increases the etching rate for the silicon nitride film, improves the etching selectivity, and minimizes the generation of particles during the etching process.
본 발명이 이루고자 하는 기술적 과제는 에칭 선택비가 우수하고, 에칭 과정에서 파티클의 발생이 최소화된 실리콘 질화막 에칭 조성물을 제공하는 것이다.A technical problem to be achieved by the present invention is to provide a silicon nitride film etching composition having an excellent etching selectivity and minimizing generation of particles during an etching process.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
상술한 기술적 과제를 해결하기 위해 본 발명의 실리콘 질화막 에칭 조성물은 인산, 불화수소, 실리케이트 이온 및 물을 포함할 수 있다.In order to solve the above technical problem, the silicon nitride film etching composition of the present invention may include phosphoric acid, hydrogen fluoride, silicate ions, and water.
상기 인산 100몰부을 기준으로 상기 불화수소는 0.5 내지 1.7 몰부로 포함되고, 상기 실리케이트 이온은 0.1 내지 0.3몰부로 포함되고, 상기 물은 90 내지 100몰부로 포함될 수 있다.Based on 100 mole parts of the phosphoric acid, the hydrogen fluoride may be included in 0.5 to 1.7 mole parts, the silicate ion may be included in 0.1 to 0.3 mole parts, and the water may be included in 90 to 100 mole parts.
상기 실리케이트 이온은 SiO3 2- 및 SiO4 4- 중 선택되는 적어도 어느 하나일 수 있다. 구체적으로, 상기 실리케이트 이온은 SiO3 2-일 수 있으나, 이에 제한되는 것은 아니다.The silicate ion may be at least one selected from SiO 3 2- and SiO 4 4- . Specifically, the silicate ion may be SiO 3 2- , but is not limited thereto.
상기 실리케이트 이온은 하기 화학식 1로 나타나는 유기 규소 화합물로부터 이온화되어 형성된 것일 수 있다.The silicate ion may be formed by ionization of an organosilicon compound represented by Chemical Formula 1 below.
[화학식 1][Formula 1]
Figure PCTKR2022018185-appb-img-000001
Figure PCTKR2022018185-appb-img-000001
상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 수소, C1 내지 3의 알킬기, 아세틸기 또는 비닐기이고, R4는 수소, C1 내지 3의 알킬기, 비닐기, C1 내지 3의 알콕시기, 아세톡시기 또는 비닐옥시기이다.In Formula 1, R 1 to R 3 are each independently hydrogen, a C1 to 3 alkyl group, an acetyl group or a vinyl group, R 4 is hydrogen, a C1 to 3 alkyl group, a vinyl group, a C1 to 3 alkoxy group, an acetoxy group or a vinyloxy group.
상기 유기 규소 화합물은 테트라메틸오르토실리케이트, 테트라에틸오르토실리케이트(TEOS), 테트라(이소프로폭시)실란, 트리아세톡시(메틸)실란 및 트라이아세톡시(비닐)실란 중에서 선택되는 적어도 1종 이상일 수 있다. 구체적으로, 상기 유기 규소 화합물은 테트라에틸오르토실리케이트(TEOS)일 수 있으나, 이에 제한되는 것은 아니다.The organosilicon compound may be at least one selected from tetramethylorthosilicate, tetraethylorthosilicate (TEOS), tetra(isopropoxy)silane, triacetoxy(methyl)silane, and triacetoxy(vinyl)silane. . Specifically, the organosilicon compound may be tetraethylorthosilicate (TEOS), but is not limited thereto.
다음으로, 상술한 기술적 과제를 해결하기 위해 본 발명은 유기 규소 화합물 및 불화수소 수용액을 혼합하여 혼합용액을 제조하는 단계; 상기 혼합용액을 인산 수용액에 첨가하는 단계; 및 상기 혼합용액이 첨가된 인산 수용액을 가열하는 단계;를 포함하는 실리콘 질화막 에칭 조성물의 제조방법을 포함할 수 있다.Next, in order to solve the above technical problem, the present invention comprises the steps of preparing a mixed solution by mixing an organosilicon compound and an aqueous hydrogen fluoride solution; adding the mixed solution to an aqueous phosphoric acid solution; and heating the phosphoric acid aqueous solution to which the mixed solution is added.
상기 혼합용액이 첨가된 인산 수용액을 가열하는 온도는 50 내지 100 ℃일 수 있다.The temperature at which the phosphoric acid aqueous solution to which the mixed solution is added may be heated to 50 to 100 °C.
상기 실리콘 질화막 에칭 조성물은 상기 유기 규소 화합물이 이온화되어 형성된 실리케이트 이온을 포함할 수 있다.The silicon nitride film etching composition may include silicate ions formed by ionizing the organosilicon compound.
상기 실리케이트 이온은 SiO3 2- 및 SiO4 4- 중 선택되는 적어도 어느 하나일 수 있다. 구체적으로, 상기 실리케이트 이온은 SiO3 2-일 수 있으나, 이에 제한되는 것은 아니다.The silicate ion may be at least one selected from SiO 3 2- and SiO 4 4- . Specifically, the silicate ion may be SiO 3 2- , but is not limited thereto.
또한, 상술한 기술적 과제를 해결하기 위해 본 발명은 상기 실리콘 질화막 에칭 조성물을 사용하여 실리콘 질화막을 습식 에칭하는 공정을 포함할 수 있다.In addition, in order to solve the above-described technical problem, the present invention may include a process of wet etching a silicon nitride film using the silicon nitride film etching composition.
상기 실리콘 질화막 에칭 조성물을 사용하였을 시, 실리콘 질화막의 에칭속도가 16.6 nm/min 이상으로 나타날 수 있다.When the silicon nitride film etching composition is used, the etching rate of the silicon nitride film may be 16.6 nm/min or more.
상기 실리콘 질화막 에칭 조성물을 사용하였을 시, 실리콘 산화막에 대한 실리콘 질화막의 에칭 선택비가 ∞로 나타날 수 있다.When the silicon nitride film etching composition is used, the etching selectivity of the silicon nitride film to the silicon oxide film may be ∞.
상술한 본 발명에 따르면, 본 발명의 인산, 불화수소, 실리케이트 이온 및 물을 포함하는 실리콘 질화막 에칭 조성물은 에칭 선택비가 ∞으로 우수하게 유지되며, 실리콘 질화막의 에칭속도가 빠르고, 에칭 공정동안 생성되는 파티클이 억제되는 우수한 효과가 있다.According to the present invention described above, the silicon nitride film etching composition containing phosphoric acid, hydrogen fluoride, silicate ions, and water of the present invention maintains an excellent etching selectivity of ∞, has a fast etching rate of the silicon nitride film, and There is an excellent effect of suppressing particles.
도 1은 본 발명의 일 실시예에 따른 실리콘 질화막 에칭 조성물의 제조방법을 나타낸 흐름도이다.1 is a flowchart illustrating a method of manufacturing a silicon nitride film etching composition according to an embodiment of the present invention.
도 2는 본 발명의 일 실험예에 따른 실리콘 질화막 에칭 조성물과 Ammonium molybdate과 혼합물에 대한 UV/vis 흡광도를 나타낸 그래프이다.2 is a graph showing UV / vis absorbance of a silicon nitride film etching composition according to an experimental example of the present invention, Ammonium molybdate, and a mixture.
도 3은 본 발명의 일 실험예에 따른 실리콘 질화막 에칭 조성물과 Ammonium molybdate과 혼합물의 농도에 따른 최대 UV/vis 흡광도 및 이의 추세선을 나타낸 그래프이다.Figure 3 is a graph showing the maximum UV / vis absorbance and its trend line according to the concentration of the silicon nitride film etching composition and Ammonium molybdate and the mixture according to an experimental example of the present invention.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시 예를 보다 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 오히려, 여기서 소개되는 실시예는 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in more detail. However, it should be understood that this is not intended to limit the present invention to the specific disclosed form, and includes all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. Rather, the embodiments introduced herein are provided so that the disclosed content will be thorough and complete, and the spirit of the present invention will be sufficiently conveyed to those skilled in the art.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의된 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 예컨대, 본 발명에서 사용된 용어 ‘산화막’ 및 ‘질화막’은 각각 ‘실리콘 산화막’ 및 ‘실리콘 질화막’으로 이해될 수 있다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in this application, they are not interpreted in an ideal or excessively formal meaning. . For example, the terms 'oxide film' and 'nitride film' used in the present invention may be understood as 'silicon oxide film' and 'silicon nitride film', respectively.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, “포함하다” 또는 “가지다” 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안된다.In the specification, expressions in the singular number include plural expressions unless the context clearly dictates otherwise. In addition, terms such as “comprise” or “have” are intended to designate that the features, numbers, steps, components, or combinations thereof described in the specification exist, but one or more other features, numbers, steps, or components. It should not be construed as excluding the possibility of the presence or addition of elements or combinations thereof.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.
실리콘 질화막 에칭 조성물Silicon nitride film etching composition
본 발명의 실리콘 질화막 에칭 조성물은 인산, 불화수소, 실리케이트 이온 및 물을 포함할 수 있다. 특히, 본 발명의 에칭 조성물은 실리콘 산화막 에칭 억제제로서 실리케이트 이온을 포함할 수 있다. 또한, 본 발명의 에칭 조성물은 에칭 속도 증가제로서 불화수소를 포함할 수 있다.The silicon nitride film etching composition of the present invention may include phosphoric acid, hydrogen fluoride, silicate ions and water. In particular, the etching composition of the present invention may include silicate ions as a silicon oxide film etching inhibitor. In addition, the etching composition of the present invention may contain hydrogen fluoride as an etching rate increasing agent.
본 발명의 에칭 조성물에 포함되는 실리케이트 이온은 실리콘 산화막 에칭 억제제로 실리콘 산화막의 식각을 억제하는 역할을 할 수 있다. The silicate ion included in the etching composition of the present invention is a silicon oxide film etching inhibitor and may play a role of suppressing etching of the silicon oxide film.
또한, 본 발명의 에칭 조성물에 포함된 실리케이트 이온은 실리콘 질화막의 에칭 선택성을 증가시킬 뿐만 아니라, 에칭 과정에서 발생하는 파티클을 효과적으로 억제하는 역할을 할 수 있다. 종래에 사용되던 실리콘 화합물을 이용한 습식 에칭방법에서 웨이퍼 표면에 다량의 이물이 생성되는 단점이 있었다. 이는 에칭 공정, 특히 습식 에칭 공정을 사용하여 실리콘 질화막 및/또는 실리콘 산화막을 에칭할 시, 웨이퍼 기판 상에 발생되는 매우 작은 입자들이 성장 핵으로 작용하여 큰 사이즈의 입자로 성장하기 때문이다. 이와 달리, 본 발명의 에칭 조성물에 포함된 상기 실리케이트 이온은 성장 핵으로서 작용되지 않아 에칭 공정에서의 상기 이물 성장 과정을 억제하는 효과가 있다.In addition, the silicate ion included in the etching composition of the present invention may increase the etching selectivity of the silicon nitride film and effectively suppress particles generated during the etching process. In the conventional wet etching method using a silicon compound, there was a disadvantage in that a large amount of foreign matter was generated on the surface of the wafer. This is because when the silicon nitride film and/or the silicon oxide film is etched using an etching process, particularly a wet etching process, very small particles generated on the wafer substrate act as growth nuclei and grow into large-sized particles. In contrast, the silicate ion included in the etching composition of the present invention does not act as a growth nucleus, and thus has an effect of suppressing the foreign material growth process in the etching process.
상기 실리케이트 이온은 실리콘 원자와 산소 원자와의 단일 및/또는 이중결합, 즉 Si-O 및/또는 Si=O 결합의 개수가 적어도 3개 이상을 포함하는 2가 또는 4가의 음이온으로서, 예를 들어 메타실리케이트 이온(SiO3 2-), 오르토실리케이트 이온(SiO4 4-) 및 이들의 조합 중 선택되는 적어도 어느 하나일 수 있다. 일 구체예에서 상기 실리케이트 이온은 메타실리케이트 이온(SiO3 2-)일 수 있으나, 이에 제한되는 것은 아니다.The silicate ion is a divalent or tetravalent anion containing at least three or more single and/or double bonds between silicon atoms and oxygen atoms, that is, Si-O and/or Si=O bonds, for example It may be at least one selected from metasilicate ions (SiO 3 2- ), orthosilicate ions (SiO 4 4- ), and combinations thereof. In one embodiment, the silicate ion may be a metasilicate ion (SiO 3 2- ), but is not limited thereto.
특히, 본 발명의 에칭 조성물 내에 포함되는 상기 실리케이트 이온의 함량은 인산 100몰부를 기준으로 0.1 내지 0.3 몰부로 포함될 수 있다. 상기 실리케이트 이온이 상기 함량 범위에 해당하도록 본 발명의 에칭 조성물에 포함될 시, 본 발명의 에칭 조성물은 실리콘 산화막의 에칭을 효과적으로 억제할 수 있고, 또한 에칭 공정, 특히 습식 에칭 공정에서 발생되는 이물이 현저하게 감소하는 효과를 나타낼 수 있다. 상기 실리케이트 이온의 양이 0.2몰부 미만으로 포함되면 질화막 및/또는 산화막의 에칭능이 저하될 수 있고, 0.3몰부를 초과하면 산화막의 에칭능이 향상되어 에칭 선택비가 저하될 수 있다. 다만, 상기 실리케이트 이온의 함량은 상기 범위에 한정되는 것은 아니며, 원하는 에칭 특성에 따라 적절히 조절 가능하다.In particular, the content of the silicate ions included in the etching composition of the present invention may be included in 0.1 to 0.3 mole parts based on 100 mole parts of phosphoric acid. When the silicate ion is included in the etching composition of the present invention so as to correspond to the above content range, the etching composition of the present invention can effectively suppress etching of the silicon oxide film, and also significantly reduces foreign substances generated in the etching process, particularly the wet etching process. may have a diminishing effect. If the amount of the silicate ions is less than 0.2 mol part, the etching ability of the nitride film and/or the oxide film may be reduced, and if the amount exceeds 0.3 mol part, the etching ability of the oxide film may be improved and the etching selectivity may be reduced. However, the content of the silicate ion is not limited to the above range, and can be appropriately adjusted according to desired etching characteristics.
상기 실리케이트 이온은 유기 규소 화합물로부터 생성된 것일 수 있다. 구체적으로, 상기 실리케이트 이온은 상기 유기 규소 화합물이 불화수소의 존재 하에 이온화되어 형성된 것일 수 있다.The silicate ion may be generated from an organosilicon compound. Specifically, the silicate ion may be formed by ionizing the organosilicon compound in the presence of hydrogen fluoride.
상기 유기 규소 화합물은 하기 화학식 1로 나타나는 것일 수 있다.The organosilicon compound may be represented by Chemical Formula 1 below.
[화학식 1][Formula 1]
Figure PCTKR2022018185-appb-img-000002
Figure PCTKR2022018185-appb-img-000002
상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 수소, C1 내지 3의 알킬기, 아세틸기 또는 비닐기일 수 있고, R4는 수소, C1 내지 3의 알킬기, 비닐기, C1 내지 3의 알콕시기, 아세톡시기 또는 비닐옥시기일 수 있다.In Formula 1, R 1 to R 3 may each independently be hydrogen, a C1 to 3 alkyl group, an acetyl group, or a vinyl group, and R 4 is hydrogen, a C1 to 3 alkyl group, a vinyl group, or a C1 to 3 alkoxy group. , an acetoxy group or a vinyloxy group.
구체적으로, 상기 유기 규소 화합물은 테트라메틸오르토실리케이트, 테트라에틸오르토실리케이트(TEOS), 테트라(이소프로폭시)실란, 트리아세톡시(메틸)실란 및 트라이아세톡시(비닐)실란 중에서 선택되는 적어도 1종 이상일 수 있다. 더욱 구체적으로, 상기 유기 규소 화합물은 테트라에틸오르토실리케이트(TEOS)일 수 있다. Specifically, the organosilicon compound is at least one selected from tetramethylorthosilicate, tetraethylorthosilicate (TEOS), tetra(isopropoxy)silane, triacetoxy(methyl)silane, and triacetoxy(vinyl)silane. may be ideal More specifically, the organosilicon compound may be tetraethylorthosilicate (TEOS).
상기 유기 규소 화합물은 불화수소의 존재 하에 외부에서 인가된 에너지, 예를 들어 열에너지, 물리적 에너지 및/또는 화학적 에너지 등에 의해 분자 내 공유결합이 끊어져 이온화되고, 실리케이트 이온을 형성할 수 있다. 구체적으로, 상기 유기 규소 화합물에 인가되는 에너지는 상기 유기 규소 화합물의 분자 내에 존재하는 탄소-산소(C-O) 간의 공유결합 및/또는 실리콘-탄소(Si-C) 간의 공유결합이 끊어지고 이온화되기에 충분한 에너지, 예를 들어 열에너지, 빛에너지, 운동에너지 등이 사용될 수 있다. 더욱 구체적으로, 가열, 초음파처리, 마이크로파 처리 등의 방법을 통해 상기 외부 에너지를 공급하고, 상기 유기 규소 화합물을 이온화시킬 수 있으나, 이에 제한되는 것은 아니다.In the presence of hydrogen fluoride, the organosilicon compound may be ionized by breaking covalent bonds in molecules by externally applied energy, such as thermal energy, physical energy, and/or chemical energy, to form silicate ions. Specifically, the energy applied to the organosilicon compound causes covalent bonds between carbon-oxygen (C-O) and/or silicon-carbon (Si-C) present in the molecule of the organosilicon compound to be broken and ionized. Sufficient energy, such as thermal energy, light energy, kinetic energy, and the like can be used. More specifically, the external energy may be supplied and the organosilicon compound may be ionized through methods such as heating, sonication, and microwave treatment, but is not limited thereto.
또한, 본 발명의 에칭 조성물은 상기 실리콘 산화막 에칭 억제제로서 사용된 상기 실리케이트 이온과 함께 추가로 에칭 속도 증가제로서 불화수소를 포함할 수 있다. 상기 불화수소는 무기산으로서 실리콘 산화막 및 실리콘 질화막의 에칭속도를 향상시키는 역할을 할 수 있다.In addition, the etching composition of the present invention may further include hydrogen fluoride as an etching rate increasing agent together with the silicate ion used as the silicon oxide film etching inhibitor. Hydrogen fluoride, as an inorganic acid, may serve to improve etching rates of silicon oxide and silicon nitride films.
우수한 실리콘 질화막의 에칭 속도를 확보하기 위해, 질화막 에칭 속도 증가제로서 본 발명의 에칭 조성물 내 포함되는 불화수소의 함량은 인산 100몰부를 기준으로 0.5 내지 1.7 몰부로 포함될 수 있다. 상기 불화수소의 양이 0.9몰부 미만으로 너무 적으면 에칭능에 대한 첨가효과를 전혀 기대할 수 없고, 1.2몰부를 초과하는 너무 많은 양이 포함되면 산화막의 에칭 속도가 증가되어 에칭 선택비가 저하되거나, 실리콘 입자들이 뭉쳐 웨이퍼 상에 달라붙는 문제가 있다. In order to secure an excellent silicon nitride film etching rate, the content of hydrogen fluoride included in the etching composition of the present invention as a nitride film etching rate increasing agent may be included in 0.5 to 1.7 mole parts based on 100 mole parts of phosphoric acid. If the amount of hydrogen fluoride is too small, less than 0.9 parts by mole, no additive effect on the etching ability can be expected, and if too large an amount exceeding 1.2 parts by mole is included, the etching rate of the oxide film increases and the etching selectivity decreases, or silicon particles There is a problem that they clump together and stick to the wafer.
에칭 조성물의 제조방법Manufacturing method of etching composition
도 1은 본 발명의 일 실시예에 따른 실리콘 질화막 에칭 조성물의 제조방법을 나타낸 흐름도이다.1 is a flowchart illustrating a method of manufacturing a silicon nitride film etching composition according to an embodiment of the present invention.
도 1을 참조하면, 본 발명에 따른 실리콘 질화막 에칭 조성물의 제조방법은 유기 규소 화합물 및 불화수소 수용액을 혼합하여 혼합용액을 제조하는 단계; 상기 혼합용액을 인산 수용액에 첨가하는 단계; 및 상기 혼합용액이 첨가된 인산 수용액을 가열하는 단계;를 포함할 수 있다.Referring to FIG. 1 , a method for preparing a silicon nitride film etching composition according to the present invention comprises preparing a mixed solution by mixing an organosilicon compound and an aqueous hydrogen fluoride solution; adding the mixed solution to an aqueous phosphoric acid solution; and heating the phosphoric acid aqueous solution to which the mixed solution is added.
먼저, 유기 규소 화합물 및 불화수소 수용액을 혼합하여 혼합용액을 제조할 수 있다. 상기 혼합용액은 유기 규소 화합물과 불화수소 수용액이 상온에서 고르게 혼합되어 균질한 혼합물이 형성된 것일 수 있다. First, a mixed solution may be prepared by mixing an organosilicon compound and an aqueous hydrogen fluoride solution. The mixed solution may be a homogeneous mixture formed by uniformly mixing an organosilicon compound and an aqueous hydrogen fluoride solution at room temperature.
상기 혼합용액의 혼화성을 향상시키거나, 나아가 상기 혼합용액 내에 존재하는 상기 유기 규소 화합물을 이온화시키기 위하여, 상기 유기 규소 화합물 및 불화수소 수용액을 혼합할 시 혼합(mixing), 교반(stirring), 가열(heating), 초음파(ultrasonication), 마이크로파(microwave) 및 이들의 조합 등과 같은 혼합방법이 추가적으로 적용될 수도 있다. 예를 들어, 상기 혼합용액을 50 내지 200℃의 온도로 가열 및/또는 100 내지 2000 W의 마이크로파로 처리될 수 있으나, 이에 제한되는 것은 아니다.In order to improve the miscibility of the mixed solution or further ionize the organosilicon compound present in the mixed solution, mixing, stirring, and heating are performed when the organosilicon compound and the hydrogen fluoride aqueous solution are mixed. Mixing methods such as heating, ultrasound, microwave, and combinations thereof may additionally be applied. For example, the mixed solution may be heated at a temperature of 50 to 200° C. and/or treated with microwaves at 100 to 2000 W, but is not limited thereto.
상기 제조된 혼합용액 내에서 유기 규소 화합물은 이온화되어 실리케이트 이온을 생성할 수 있다. 상기 유기 규소 화합물은 불화수소 수용액, 즉 불산의 존재 하에 이온화될 수 있으며, 상기 불산에 포함된 반응성이 큰 플루오린 이온과 반응하여 실리케이트 이온을 생성할 수 있다. 또한, 상기 유기 규소 화합물은 외부에서 인가된 에너지, 예를 들어 열에너지, 운동에너지 등에 의해 이온화될 수도 있다. 상기 유기 규소 화합물의 이온화 과정은 구체적으로 플루오린 이온과 반응 및/또는 외부 에너지의 인가에 의해 상기 유기 규소 화합물 내에 존재하는 탄소-산소(C-O) 간의 공유결합 및/또는 실리콘-탄소(Si-C) 간의 공유결합이 끊어지고, 실리콘 원자와 산소 원자와의 단일 및/또는 이중결합, 즉 Si-O 및/또는 Si=O 결합의 개수가 적어도 3개 이상을 포함하는 2가 또는 4가의 음이온, 즉 실리케이트 음이온을 형성하는 것을 의미할 수 있다. In the prepared mixed solution, the organosilicon compound may be ionized to generate silicate ions. The organosilicon compound may be ionized in the presence of an aqueous hydrogen fluoride solution, that is, hydrofluoric acid, and react with highly reactive fluorine ions included in the hydrofluoric acid to generate silicate ions. In addition, the organosilicon compound may be ionized by externally applied energy, such as thermal energy or kinetic energy. The ionization process of the organosilicon compound is specifically a covalent bond between carbon-oxygen (C-O) and/or silicon-carbon (Si-C) present in the organosilicon compound by reaction with fluorine ions and/or application of external energy. ) is broken, and the number of single and / or double bonds between silicon atoms and oxygen atoms, that is, Si-O and / or Si = O bonds, is a divalent or tetravalent anion containing at least three or more, That is, it may mean forming silicate anions.
상기 실리케이트 이온은 실리콘 원자와 산소 원자와의 단일 및/또는 이중결합, 즉 Si-O 및/또는 Si=O 결합의 개수가 적어도 3개 이상을 포함하는 2가 또는 4가의 음이온으로서, 예를 들어 메타실리케이트 이온(SiO3 2-), 오르토실리케이트 이온(SiO4 4-) 및 이들의 조합 중 선택되는 적어도 어느 하나일 수 있다. 일 구체예에서 상기 실리케이트 이온은 메타실리케이트 이온(SiO3 2-)일 수 있으나, 이에 제한되는 것은 아니다.The silicate ion is a divalent or tetravalent anion containing at least three or more single and/or double bonds between silicon atoms and oxygen atoms, that is, Si-O and/or Si=O bonds, for example It may be at least one selected from metasilicate ions (SiO 3 2- ), orthosilicate ions (SiO 4 4- ), and combinations thereof. In one embodiment, the silicate ion may be a metasilicate ion (SiO 3 2- ), but is not limited thereto.
상기 유기 규소 화합물은 하기 화학식 1로 나타낼 수 있다.The organosilicon compound may be represented by Formula 1 below.
[화학식 1][Formula 1]
Figure PCTKR2022018185-appb-img-000003
Figure PCTKR2022018185-appb-img-000003
상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 수소, C1 내지 3의 알킬기, 아세틸기 또는 비닐기이고, R4는 수소, C1 내지 3의 알킬기, 비닐기, C1 내지 3의 알콕시기, 아세톡시기 또는 비닐옥시기이다.In Formula 1, R 1 to R 3 are each independently hydrogen, a C1 to 3 alkyl group, an acetyl group or a vinyl group, R 4 is hydrogen, a C1 to 3 alkyl group, a vinyl group, a C1 to 3 alkoxy group, an acetoxy group or a vinyloxy group.
구체적으로, 상기 유기 규소 화합물은 테트라메틸오르토실리케이트, 테트라에틸오르토실리케이트(TEOS), 테트라(이소프로폭시)실란, 트리아세톡시(메틸)실란 및 트라이아세톡시(비닐)실란 중에서 선택되는 적어도 1종 이상일 수 있다. 일 구체예에서, 상기 유기 규소 화합물은 테트라에틸오르토실리케이트(TEOS)일 수 있으나, 이에 제한되는 것은 아니다.Specifically, the organosilicon compound is at least one selected from tetramethylorthosilicate, tetraethylorthosilicate (TEOS), tetra(isopropoxy)silane, triacetoxy(methyl)silane, and triacetoxy(vinyl)silane. may be ideal In one embodiment, the organosilicon compound may be tetraethylorthosilicate (TEOS), but is not limited thereto.
상기 불화수소 수용액은 10 내지 100 wt% 농도 범위의 것을 사용할 수 있으며, 자세하게는 40 내지 60 wt% 농도 범위의 것을 사용할 수 있다. 일 구체예에서 상기 불화수소 수용액은 50 wt% 농도의 수용액을 사용할 수 있으나, 이에 제한되는 것은 아니다.The hydrogen fluoride aqueous solution may be used in a concentration range of 10 to 100 wt%, and in detail, one in a concentration range of 40 to 60 wt%. In one embodiment, the hydrogen fluoride aqueous solution may use a 50 wt% aqueous solution, but is not limited thereto.
상기 유기 규소 화합물과 상기 불화수소 수용액은 상온에서 1:1 내지 1:5의 질량비로 혼합될 수 있다. 상기 유기 규소 화합물과 상기 불화수소 수용액의 혼합비는 상기 유기 규소 화합물이 이온화하여 충분한 양의 실리케이트 이온을 생성하기 위한 불화수소의 양으로 제공될 수 있으며, 예컨대 상기 불화수소 수용액은 상기 유기 규소 화합물과 동량 및/또는 과량일 수 있다. 만일, 상기 유기 규소 화합물의 양이 상기 불화수소 수용액보다 많게 되면 상기 유기 규소 화합물 중 이온화되지 않은 잔류 화합물로 인해 에칭 공정 시 웨이퍼에 이물이 남는 문제가 있을 수 있다. 자세하게는 상기 유기 규소 화합물과 상기 불화수소 수용액의 혼합비는 1:1 내지 1:2 질량비로 사용될 수 있고, 일 구체예에서 1:1 질량비가 사용될 수 있으나, 이에 제한되는 것은 아니다.The organosilicon compound and the hydrogen fluoride aqueous solution may be mixed at a mass ratio of 1:1 to 1:5 at room temperature. The mixing ratio of the organosilicon compound and the hydrogen fluoride aqueous solution may be provided in an amount of hydrogen fluoride for generating a sufficient amount of silicate ions by ionizing the organosilicon compound, for example, the hydrogen fluoride aqueous solution in the same amount as the organosilicon compound and/or in excess. If the amount of the organosilicon compound is greater than the hydrogen fluoride aqueous solution, there may be a problem in that foreign matter remains on the wafer during the etching process due to the non-ionized residual compound among the organosilicon compounds. Specifically, the mixing ratio of the organosilicon compound and the hydrogen fluoride aqueous solution may be used in a mass ratio of 1:1 to 1:2, and in one embodiment, a 1:1 mass ratio may be used, but is not limited thereto.
그 다음, 상기 혼합용액을 인산 수용액에 첨가할 수 있다. 상기 혼합용액과 상기 인산 수용액은 0.1:100 내지 1:100의 질량비로 상온에서 혼합될 수 있다. 상기 혼합용액에 존재하는 실리케이트 이온과 불화수소는 습식 에칭공정에서 주된 에칭물질인 인산에 첨가되어 첨가제로서 사용될 수 있다. 상기 실리케이트 이온은 실리콘 산화막의 에칭 억제 효과가 있으며, 상기 불화수소는 에칭 속도 증가 효과가 있는 첨가제일 수 있다. 상기 실리케이트 이온과 상기 불화수소를 상기 범위의 질량비로 인산 수용액에 포함하여 함께 사용할 시 에칭 선택비를 효과적으로 향상하는 동시에 파티클 형성을 억제할 수 있는 특징이 있다. 구체적으로, 상기 혼합용액과 상기 인산 수용액의 혼합비는 0.4:100 내지 0.9:100의 질량비로 사용될 수 있고, 일 구체예에서 0.8:100 질량비로 사용될 수 있으나, 이에 제한되는 것은 아니다.Then, the mixed solution may be added to an aqueous phosphoric acid solution. The mixed solution and the phosphoric acid aqueous solution may be mixed at room temperature in a mass ratio of 0.1:100 to 1:100. Silicate ions and hydrogen fluoride present in the mixed solution may be added to phosphoric acid, which is a main etching material in a wet etching process, and used as additives. The silicate ion may have an effect of inhibiting etching of the silicon oxide film, and the hydrogen fluoride may be an additive having an effect of increasing an etching rate. When the silicate ion and the hydrogen fluoride are included in an aqueous phosphoric acid solution at a mass ratio within the above range and used together, the etching selectivity can be effectively improved and particle formation can be suppressed. Specifically, the mixing ratio of the mixed solution and the phosphoric acid aqueous solution may be used in a mass ratio of 0.4:100 to 0.9:100, and in one embodiment, a mass ratio of 0.8:100 may be used, but is not limited thereto.
상기 혼합용액을 인산 수용액에 첨가한 이후, 이 용액 내에 존재하는 상기 유기 규소 화합물을 이온화시키기 위하여, 첨가할 시 혼합(mixing), 교반(stirring), 가열(heating), 초음파(ultrasonication), 마이크로파(microwave) 및 이들의 조합 등과 같은 물리적 혼합방법이 추가적으로 적용될 수도 있다. 예를 들어, 상기 용액을 50 내지 200℃의 온도로 가열할 수도 있고, 또한 100 내지 2000 W의 마이크로파로 처리될 수도 있으나, 이에 제한되는 것은 아니다.After adding the mixed solution to the aqueous phosphoric acid solution, in order to ionize the organosilicon compound present in the solution, mixing, stirring, heating, ultrasound, microwave ( Physical mixing methods such as microwave) and combinations thereof may be additionally applied. For example, the solution may be heated to a temperature of 50 to 200 ° C, and may also be treated with microwaves of 100 to 2000 W, but is not limited thereto.
상기 인산(H3PO4) 수용액의 농도는 1 내지 99 wt% 범위의 것을 사용할 수 있고, 구체적으로 50 내지 90 wt% 범위의 농도를 사용할 수 있다. 일 구체예에서 상기 인산(H3PO4) 수용액의 농도는 85 wt%일 수 있으나, 이에 제한되는 것은 아니다.The concentration of the phosphoric acid (H 3 PO 4 ) aqueous solution may be used in the range of 1 to 99 wt%, and specifically, a concentration in the range of 50 to 90 wt% may be used. In one embodiment, the concentration of the phosphoric acid (H 3 PO 4 ) aqueous solution may be 85 wt%, but is not limited thereto.
상기 실리케이트 음이온이 에칭 조성물에 포함될 시 85%의 인산(H3PO4) 수용액의 용해도(solubility)에 국한되지 않고 추가적으로 또 다른 기능성 첨가제의 첨가가 가능할 수도 있다. When the silicate anion is included in the etching composition, it is not limited to the solubility of 85% phosphoric acid (H 3 PO 4 ) aqueous solution, and another functional additive may be additionally added.
그 후, 상기 혼합용액이 첨가된 인산 수용액을 가열할 수 있다. 또한, 습식 에칭공정을 동시에 수행하기 위해 상기 혼합용액에 질화막 및/또는 산화막이 형성된 웨이퍼를 침지시키고 가열할 수도 있다. After that, the phosphoric acid aqueous solution to which the mixed solution is added may be heated. In addition, in order to simultaneously perform a wet etching process, a wafer having a nitride film and/or an oxide film may be immersed in the mixed solution and heated.
상기 가열온도는 50℃ 내지 100℃일 수 있으며, 이때 상기 가열온도는 상기 유기 규소 화합물 분자 내 O-C 간의 공유결합 또는 Si-C 간의 공유결합이 끊어지고 이온화되기에 충분한 열에너지를 제공하는 온도일 수 있다. 일 구체예에서, 상기 혼합용액은 80℃의 온도로 가열될 수 있으나, 이에 제한되는 것은 아니다.The heating temperature may be 50° C. to 100° C., wherein the heating temperature may be a temperature at which a covalent bond between O—C or a covalent bond between Si—C in the organosilicon compound molecule is broken and sufficient thermal energy is provided for ionization. . In one embodiment, the mixed solution may be heated to a temperature of 80 ℃, but is not limited thereto.
상기 언급한 가열온도 범위에서 열에너지를 인가받아 상기 혼합용액에 포함된 상기 유기 규소 화합물이 이온화되고, 실리케이트 이온을 형성할 수 있다. 자세하게는 상기 실리케이트 이온은 상기 유기 규소 화합물을 포함하는 상기 혼합용액이 50 내지 100 ℃의 온도로 가열되어 형성된 것으로서, 실리콘 원자와 산소 원자와의 단일 및/또는 이중결합, 즉 Si-O 및/또는 Si=O 결합의 개수가 적어도 3개 이상을 포함하는 2가 또는 4가의 음이온일 수 있다. By applying thermal energy in the aforementioned heating temperature range, the organosilicon compound included in the mixed solution is ionized and silicate ions may be formed. Specifically, the silicate ion is formed by heating the mixed solution containing the organosilicon compound at a temperature of 50 to 100 ° C., and single and / or double bonds between silicon atoms and oxygen atoms, that is, Si-O and / or It may be a divalent or tetravalent anion containing at least three or more Si=O bonds.
특히, 일 구체예에서 우수한 실리콘 질화막의 에칭 속도를 확보하기 위해, 질화막 에칭 속도 증가제로서 본 발명의 에칭 조성물 내 포함되는 불화수소의 함량은 인산 100몰부를 기준으로 0.5 내지 1.7 몰부로 포함되는 것이 바람직하다. 상기 불화수소의 양이 0.9몰부 미만으로 너무 적으면 에칭능에 대한 첨가효과를 전혀 기대할 수 없고, 1.2몰부를 초과하는 너무 많은 양이 포함되면 산화막의 에칭 속도가 증가되어 에칭 선택비가 저하되거나, 실리콘 입자들이 뭉쳐 웨이퍼 상에 달라붙는 문제가 있다. In particular, in one embodiment, in order to secure an excellent silicon nitride film etching rate, the content of hydrogen fluoride contained in the etching composition of the present invention as a nitride film etching rate increasing agent is included in 0.5 to 1.7 mole parts based on 100 mole parts of phosphoric acid. desirable. If the amount of hydrogen fluoride is too small, less than 0.9 parts by mole, no additive effect on the etching ability can be expected, and if too large an amount exceeding 1.2 parts by mole is included, the etching rate of the oxide film increases and the etching selectivity decreases, or silicon particles There is a problem that they clump together and stick to the wafer.
또한, 우수한 에칭 선택비를 유지하기 위해, 산화막 에칭 억제제로서 본 발명의 에칭 조성물 내 포함되는 실리케이트 이온의 함량은 인산 100몰부를 기준으로 0.1 내지 0.3 몰부로 포함되는 것이 바람직하다. 상기 실리케이트 이온의 양이 0.2몰부 미만으로 포함되면 질화막 및/또는 산화막의 에칭능이 저하될 수 있고, 0.3몰부를 초과하면 산화막의 에칭능이 향상되어 에칭 선택비가 저하될 수 있다. In addition, in order to maintain an excellent etching selectivity, the content of silicate ions included in the etching composition of the present invention as an oxide film etching inhibitor is preferably 0.1 to 0.3 parts by mole based on 100 parts by mole of phosphoric acid. If the amount of the silicate ions is less than 0.2 mol part, the etching ability of the nitride film and/or the oxide film may be reduced, and if the amount exceeds 0.3 mol part, the etching ability of the oxide film may be improved and the etching selectivity may be reduced.
<실험예: 실리케이트 이온의 농도 분석><Experimental Example: Concentration analysis of silicate ions>
도 2는 본 발명의 일 실험예에 따른 실리콘 질화막 에칭 조성물과 Ammonium molybdate과 혼합물에 대한 UV/vis 흡광도를 나타낸 그래프이다. 또한, 도 3은 본 발명의 일 실험예에 따른 실리콘 질화막 에칭 조성물과 Ammonium molybdate과 혼합물의 농도에 따른 최대 UV/vis 흡광도 및 이의 추세선을 나타낸 그래프이다.2 is a graph showing UV / vis absorbance of a silicon nitride film etching composition according to an experimental example of the present invention, Ammonium molybdate, and a mixture. In addition, Figure 3 is a graph showing the maximum UV / vis absorbance and its trend line according to the concentration of the silicon nitride film etching composition and ammonium molybdate and the mixture according to an experimental example of the present invention.
도 2 및 3을 참조하면, 본 발명의 실리콘 질화막 에칭 조성물의 실리케이트 이온의 농도에 대하여 정량분석을 실시하기 위해 colorimetric determination 방법을 이용하였다. 상기 실시예의 방법으로 제조된 실리콘 질화막 에칭 조성물을 Ammonium molybdate과 혼합하고 반응시켜 실리케이트의 농도가 10, 25 및 50 ppm이 되도록 혼합물을 제조하였다. 그다음, 상기 혼합물에 대하여 UV/vis spectrophotometer를 이용한 흡광도를 측정하였고, 각각 10, 25, 50 ppm 농도의 혼합물에서 갖는 최대 흡광도를 측정하였다. 이를 통해 본 발명의 실리콘 질화막 에칭 조성물에 포함된 실리케이트 이온의 농도를 계산하였다.2 and 3, a colorimetric determination method was used to quantitatively analyze the concentration of silicate ions in the silicon nitride film etching composition of the present invention. The silicon nitride film etching composition prepared by the method of the above example was mixed with and reacted with ammonium molybdate to prepare a mixture such that the concentration of silicate was 10, 25 and 50 ppm. Then, the absorbance of the mixture was measured using a UV/vis spectrophotometer, and the maximum absorbance of the mixture at concentrations of 10, 25, and 50 ppm was measured, respectively. Through this, the concentration of silicate ions included in the silicon nitride film etching composition of the present invention was calculated.
<제조예 1~5 : 실리케이트 이온을 포함하는 실리콘 질화막 에칭 조성물의 제조><Preparation Examples 1 to 5: Preparation of Silicon Nitride Film Etching Composition Containing Silicate Ions>
먼저, 50 wt%의 불산 수용액 2.0g과 테트라에틸오르토실리케이트(TEOS) 2.0g를 실온에서 혼합하여 혼합용액을 제조하였다. 이후, 상기 혼합용액을 85 wt%의 인산 수용액 500g에 첨가하여 실리케이트 이온을 포함하는 실리콘 질화막 에칭 조성물을 제조하였다(제조예 1). 제조예 2 내지 5 또한 50 wt%의 불산 수용액 및 TEOS의 양을 달리하여 제조예 1과 동일한 방법으로 에칭 조성물을 제조하였다. 본 발명의 제조예 1 내지 5의 에칭 조성물에 포함된 조성을 하기 표 1에 정리하였다.First, a mixed solution was prepared by mixing 2.0 g of a 50 wt % hydrofluoric acid aqueous solution and 2.0 g of tetraethyl orthosilicate (TEOS) at room temperature. Thereafter, the mixed solution was added to 500 g of an 85 wt% phosphoric acid aqueous solution to prepare a silicon nitride film etching composition containing silicate ions (Preparation Example 1). Preparation Examples 2 to 5 In addition, etching compositions were prepared in the same manner as in Preparation Example 1 by varying the amount of 50 wt% hydrofluoric acid aqueous solution and TEOS. The compositions included in the etching compositions of Preparation Examples 1 to 5 of the present invention are summarized in Table 1 below.
인산
(몰부)
phosphoric acid
(mol part)

(몰부)
water
(mol part)
불화수소
(몰부)
hydrogen fluoride
(mol part)
실리케이트 이온 (몰부)Silicate ion (parts by mole)
제조예 1Preparation Example 1 100100 97.397.3 1.151.15 0.2210.221
제조예 2Preparation Example 2 100100 97.397.3 1.041.04 0.2430.243
제조예 3Preparation Example 3 100100 97.397.3 0.920.92 0.2650.265
제조예 4Production Example 4 100100 96.896.8 0.580.58 0.1110.111
제조예 5Preparation Example 5 100100 98.098.0 1.731.73 0.3320.332
<제조예 6~8: 실리케이트 이온을 포함하지 않는 실리콘 질화막 에칭 조성물의 제조><Preparation Examples 6 to 8: Preparation of silicon nitride film etching composition not containing silicate ions>
먼저, 제조예 6의 에칭 조성물은 85 wt% 인산 수용액을 사용한 것이다. 또한, 제조예 7의 에칭 조성물은 고체의 메타실리식산(H2SiO3) 0.5g과 35 wt%의 헥사플루오로실리식산(H2SiF6) 수용액 2.5g을 실온에서 혼합하여 혼합용액을 제조하고, 이를 85 wt% 인산 수용액 500g에 첨가하여 제조하였다. 다음으로, 제조예 8의 에칭 조성물은 고체의 메타실리식산(H2SiO3) 0.5g을 50 wt% 불산 수용액 2.5g과 실온에서 혼합하여 혼합용액을 제조하고, 이를 85 wt% 인산 수용액 500g에 첨가하여 제조하였다. 본 발명의 제조예 6 내지 8의 에칭 조성물에 포함된 조성을 하기 표 2에 정리하였다.First, the etching composition of Preparation Example 6 used an 85 wt% phosphoric acid aqueous solution. In addition, the etching composition of Preparation Example 7 is prepared by mixing 0.5 g of solid metasilicic acid (H 2 SiO 3 ) and 2.5 g of 35 wt% hexafluorosilicic acid (H 2 SiF 6 ) aqueous solution at room temperature. and prepared by adding it to 500 g of 85 wt% phosphoric acid aqueous solution. Next, the etching composition of Preparation Example 8 was prepared by mixing 0.5 g of solid metasilicic acid (H 2 SiO 3 ) with 2.5 g of 50 wt% hydrofluoric acid aqueous solution at room temperature to prepare a mixed solution, which was mixed with 500 g of 85 wt% phosphoric acid aqueous solution. prepared by adding The compositions included in the etching compositions of Preparation Examples 6 to 8 of the present invention are summarized in Table 2 below.
인산
(몰부)
phosphoric acid
(mol part)

(몰부)
water
(mol part)
불화수소 (HF)
(몰부)
Hydrogen Fluoride (HF)
(mol part)
H2SiO3
(몰부)
H 2 SiO 3
(mol part)
H2SiF6
(몰부)
H 2 SiF 6
(mol part)
제조예 6Preparation Example 6 100100 96.196.1 00 00 00
제조예 7Preparation Example 7 100100 98.298.2 00 0.150.15 0.140.14
제조예 8Preparation Example 8 100100 97.797.7 1.441.44 0.150.15 00
<실시예: 에칭 조성물의 조성에 따른 에칭 선택비 및 파티클 생성에 대한 실험결과><Example: Experimental results on etching selectivity and particle generation according to the composition of the etching composition>
에칭조성물 etching composition 산화막 E/R (nm/min)Oxide film E/R (nm/min) 질화막 E/R (nm/min)Nitride film E/R (nm/min) 에칭 선택비
(질화막/산화막)
Etch selectivity
(Nitride/Oxide)
파티클 유무presence or absence of particles
실시예 1Example 1 제조예 1Preparation Example 1 00 2020 없음doesn't exist
실시예 2Example 2 제조예 2Preparation Example 2 00 22.422.4 없음doesn't exist
실시예 3Example 3 제조예 3Preparation Example 3 00 16.816.8 없음doesn't exist
실시예 4Example 4 제조예 4Preparation Example 4 00 16.616.6 없음doesn't exist
실시예 5Example 5 제조예 5Preparation Example 5 1.51.5 3535 23.323.3 없음doesn't exist
비교예 1Comparative Example 1 제조예 6Preparation Example 6 0.20.2 66 3030 없음doesn't exist
비교예 2Comparative Example 2 제조예 7Preparation Example 7 00 2020 있음has exist
비교예 3Comparative Example 3 제조예 8Preparation Example 8 00 1919 있음has exist
상기 표 3에서, 상기 E/R은 에칭 속도(Etch rate)의 약어이고, 상기 에칭 속도(E/R)를 측정하기 위하여 수행되는 에칭 공정은 상기 표 3에 표기된 에칭 조성물을 이용하여 피에칭물(실리콘 산화막 및/또는 실리콘 질화막)을 습식 에칭하였다. 습식 에칭 공정은 질화막 및 산화막이 형성된 웨이퍼를 본 발명의 에칭 조성물에 침지시키고, 80℃로 가열한 후, 시간에 따른 에칭속도 및 에칭 선택비를 측정하였다. 상기 에칭 속도(E/R) 산출을 위한 계산식은 하기 식 1과 같다.In Table 3, the E / R is an abbreviation of the etching rate (Etch rate), and the etching process performed to measure the etching rate (E / R) is the etching target using the etching composition shown in Table 3 (Silicon oxide film and/or silicon nitride film) was wet etched. In the wet etching process, a wafer having a nitride film and an oxide film was immersed in the etching composition of the present invention, heated to 80° C., and then the etching rate and etching selectivity over time were measured. The formula for calculating the etching rate (E/R) is shown in Equation 1 below.
[식 1][Equation 1]
에칭 속도(E/R)={초기 막질 두께(nm)-에칭 후 막질 두께(nm)}/에칭 처리 시간(min)Etching rate (E/R) = {initial film thickness (nm)-film thickness after etching (nm)}/etching treatment time (min)
상기 에칭 선택비 산출을 위한 계산식은 하기 식 2와 같다.The formula for calculating the etching selectivity is as shown in Equation 2 below.
[식 2][Equation 2]
에칭 선택비=실리콘 질화막 식각속도(nm/min)/실리콘 산화막 식각속도(nm)Etching selectivity = silicon nitride film etch rate (nm/min) / silicon oxide film etch rate (nm)
상기 파티클 유무에 대한 검출은 웨이퍼 기판을 주사전자현미경(SEM)을 사용하여 기판 표면을 관측하고, Zeta-Potential Analyzer(입도분석)을 사용하여 발견되는 0.3 nm크기 이상의 입자에 대하여 파티클로 판별하였다.To detect the presence or absence of the particles, the surface of the wafer substrate was observed using a scanning electron microscope (SEM), and particles with a size of 0.3 nm or more found using a Zeta-Potential Analyzer (particle size analysis) were determined as particles.
표 3을 참조하면, 실시예 1 내지 3을 통해 에칭 조성물에 포함된 실리케이트 이온(SiO3 2-)의 함량에 따른 질화막 에칭 속도를 비교할 수 있다. 실시예 1, 2 및 3의 에칭 조성물은 순서대로 실리케이트 이온을 0.221, 0.243 및 0.265몰부을 포함하고 있고, 이를 이용한 질화막 에칭속도는 20, 22.4 및 16.8 nm/min로 측정되었다. 즉, 실리케이트 이온이 0.243몰부로 포함되는 실시예 2의 에칭 조성물은 산화막의 에칭속도가 0 nm/min이면서 질화막의 에칭속도가 22.4 nm/min으로, 에칭 선택비가 ∞로 산출되어, 실리콘 질화막의 에칭특성에서 가장 우수한 결과를 보였다. 다만, 실시예 1 내지 3의 에칭 조성물은 모두 산화막의 에칭속도가 0 nm/min으로 측정되는데, 이에 따라 본 발명의 에칭 조성물은 산화막의 에칭속도를 낮추되 질화막의 에칭속도는 향상시키고 에칭 선택비를 ∞로 유지하는 효과를 얻을 수 있었다. 또한, 에칭 후에 기판 상에 존재하는 파티클 또한 발견되지 않았다. 따라서, 상기 실시예 1 내지 3의 에칭 조성물은 실리콘 질화막과 실리콘 산화막을 포함하는 반도체 패턴에 적용할 시, 실리콘 질화막만을 선택적으로 에칭할 수 있고, 실리콘 질화막의 에칭 속도 또한 저하되지 않는 특징이 있다.Referring to Table 3, it is possible to compare nitride film etching rates according to the content of silicate ion (SiO 3 2- ) included in the etching composition through Examples 1 to 3. The etching compositions of Examples 1, 2 and 3 sequentially contained 0.221, 0.243 and 0.265 mole parts of silicate ions, and the nitride film etching rates using the same were measured to be 20, 22.4 and 16.8 nm/min. That is, the etching composition of Example 2 containing silicate ions in an amount of 0.243 parts by mole had an oxide film etching rate of 0 nm/min, a nitride film etching rate of 22.4 nm/min, and an etching selectivity of ∞, which etched the silicon nitride film. characteristics showed the best results. However, all of the etching compositions of Examples 1 to 3 have an oxide film etching rate of 0 nm/min. Accordingly, the etching composition of the present invention lowers the oxide film etching rate but improves the nitride film etching rate and has an etching selectivity. It was possible to obtain the effect of maintaining ∞. Also, no particles present on the substrate after etching were found. Accordingly, when the etching compositions of Examples 1 to 3 are applied to a semiconductor pattern including a silicon nitride film and a silicon oxide film, only the silicon nitride film can be selectively etched, and the etching rate of the silicon nitride film is not reduced.
한편, 비교예 1은 불화수소 및/또는 실리케이트 이온을 포함하지 않고, 85 wt% 인산만을 단독으로 사용한 에칭 조성물이다. 비교예 1의 에칭 조성물은 산화막 및 질화막의 에칭속도는 각각 0.2 및 6 nm/min로 측정되었고, 이를 통한 에칭 선택비는 30으로 산출되었다. 이는 상기 실시예 1 내지 4의 에칭 조성물과 대비하여 상당히 낮은 수준의 에칭 선택비를 나타내는 것이다. 따라서, 에칭 조성물에 인산만이 포함된 경우보다 인산, 불화수소 및 실리케이트 이온을 포함하는 에칭 조성물이 훨씬 높은 에칭 선택비를 얻을 수 있었다. 다만, 비교예 1의 에칭 조성물을 이용한 에칭 공정 후 기판 상에 존재하는 파티클은 검출되지 않았다.Meanwhile, Comparative Example 1 is an etching composition using only 85 wt% phosphoric acid without containing hydrogen fluoride and/or silicate ions. In the etching composition of Comparative Example 1, the etching rates of the oxide film and the nitride film were measured to be 0.2 and 6 nm/min, respectively, and the etching selectivity through this was calculated as 30. This indicates a considerably lower level of etching selectivity compared to the etching compositions of Examples 1 to 4. Accordingly, the etching composition containing phosphoric acid, hydrogen fluoride, and silicate ions had a much higher etching selectivity than the etching composition containing only phosphoric acid. However, particles present on the substrate after the etching process using the etching composition of Comparative Example 1 were not detected.
다른 한편, 비교예 2는 불화수소 및/또는 실리케이트 이온을 포함하지 않고, 메타실리식산(H2SiO3) 및 35 wt%의 헥사플루오로실리식산(H2SiF6) 수용액을 포함하고, 비교예 3은 불화수소 및 메타실리식산(H2SiO3)을 포함하는 에칭 조성물이다. 비교예 2 및 3의 에칭 조성물은 불화수소 및 실리케이트 이온(SiO3 2-)를 함유하지는 않지만, 불소와 실리콘 원소를 함유하고 있다. 비교예 2 및 3의 에칭 조성물을 통해 에칭 공정을 실시한 후 산화막 및 질화막의 에칭속도를 측정한 결과, 산화막의 에칭속도는 비교예 2 및 3 모두 0 nm/min으로 측정되고 질화막의 에칭속도 또한 19~20 nm/min으로 측정되었다. 즉 비교예 2 및 3의 에칭조성물을 이용한 에칭속도는 상기 실시예 1 내지 4와 유사한 수준의 높은 에칭속도를 나타내었고, 또한 에칭 선택비는 ∞으로 우수하게 유지되었다. 그러나, 비교예 2 및 3의 에칭 조성물은 에칭 공정 후 기판 상에 존재하는 파티클이 다수 발견되는 문제가 있었다.On the other hand, Comparative Example 2 did not contain hydrogen fluoride and/or silicate ions, and contained metasilicic acid (H 2 SiO 3 ) and 35 wt% of hexafluorosilicic acid (H 2 SiF 6 ) aqueous solution. Example 3 is an etching composition comprising hydrogen fluoride and metasilicic acid (H 2 SiO 3 ). The etching compositions of Comparative Examples 2 and 3 did not contain hydrogen fluoride and silicate ions (SiO 3 2- ), but did contain fluorine and silicon elements. After performing the etching process through the etching compositions of Comparative Examples 2 and 3, the etching rates of the oxide film and the nitride film were measured. Measured at ~20 nm/min. That is, the etching rates using the etching compositions of Comparative Examples 2 and 3 showed high etching rates similar to those of Examples 1 to 4, and the etching selectivity was excellently maintained at ∞. However, the etching compositions of Comparative Examples 2 and 3 had a problem in that a large number of particles were found on the substrate after the etching process.
상술한 본 발명에 따르면, 본 발명의 실리콘 질화막 에칭 조성물은 에칭 선택비가 ∞으로 우수하게 유지되고, 에칭 공정 후 파티클이 생성되지 않으면서, 실리콘 질화막의 에칭속도가 높은 우수한 특성이 확인된다. 따라서, 본 발명의 실리콘 질화막 에칭 조성물은 실리콘 산화막 에칭을 억제하며 실리콘 질화막의 에칭속도 증가 효과를 동시에 얻을 수 있어 에칭 선택비와 생산성 모두 확보할 수 있는 장점이 있다.According to the present invention described above, the silicon nitride film etching composition of the present invention maintains an excellent etching selectivity of ∞, generates no particles after the etching process, and has excellent characteristics such as a high etching rate of the silicon nitride film. Therefore, the silicon nitride film etching composition of the present invention suppresses silicon oxide film etching and simultaneously obtains an effect of increasing the etching rate of the silicon nitride film, thereby securing both etching selectivity and productivity.
본 명세서와 도면에 개시된 본 발명의 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.Embodiments of the present invention disclosed in this specification and drawings are only presented as specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is obvious to those skilled in the art that other modified examples based on the technical idea of the present invention can be implemented in addition to the embodiments disclosed herein.

Claims (12)

  1. 인산, 불화수소, 실리케이트 이온 및 물을 포함하고,containing phosphoric acid, hydrogen fluoride, silicate ions and water;
    상기 인산 100몰부을 기준으로 상기 실리케이트 이온은 0.1 내지 0.3 몰부로 포함되는 실리콘 질화막 에칭 조성물.Silicon nitride film etching composition containing 0.1 to 0.3 mole parts of the silicate ion based on 100 mole parts of the phosphoric acid.
  2. 제1항에 있어서,According to claim 1,
    상기 인산 100몰부을 기준으로 상기 불화수소는 0.5 내지 1.7 몰부로 포함되고, 상기 물은 90 내지 100몰부로 포함되는 실리콘 질화막 에칭 조성물.Based on 100 mole parts of the phosphoric acid, the hydrogen fluoride is contained in 0.5 to 1.7 mole parts, and the water is contained in 90 to 100 mole parts. Silicon nitride film etching composition.
  3. 제1항에 있어서,According to claim 1,
    상기 실리케이트 이온은 SiO3 2- 및 SiO4 4- 중 선택되는 적어도 어느 하나인 실리콘 질화막 에칭 조성물.The silicate ion is at least one selected from SiO 3 2- and SiO 4 4- silicon nitride film etching composition.
  4. 제1항에 있어서,According to claim 1,
    상기 실리케이트 이온은 하기 화학식 1로 나타나는 유기 규소 화합물로부터 이온화되어 형성된 것인 실리콘 질화막 에칭 조성물:The silicate ion is a silicon nitride film etching composition formed by ionization from an organosilicon compound represented by Formula 1 below:
    [화학식 1][Formula 1]
    Figure PCTKR2022018185-appb-img-000004
    Figure PCTKR2022018185-appb-img-000004
    상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 수소, C1 내지 3의 알킬기, 아세틸기 또는 비닐기이고, R4는 수소, C1 내지 3의 알킬기, 비닐기, C1 내지 3의 알콕시기, 아세톡시기 또는 비닐옥시기이다.In Formula 1, R 1 to R 3 are each independently hydrogen, a C1 to 3 alkyl group, an acetyl group or a vinyl group, R 4 is hydrogen, a C1 to 3 alkyl group, a vinyl group, a C1 to 3 alkoxy group, an acetoxy group or a vinyloxy group.
  5. 제4항에 있어서,According to claim 4,
    상기 유기 규소 화합물은 테트라메틸오르토실리케이트, 테트라에틸오르토실리케이트(TEOS), 테트라(이소프로폭시)실란, 트리아세톡시(메틸)실란 및 트라이아세톡시(비닐)실란 중에서 선택되는 적어도 어느 하나인 실리콘 질화막 에칭 조성물.The organosilicon compound is a silicon nitride film of at least one selected from tetramethylorthosilicate, tetraethylorthosilicate (TEOS), tetra(isopropoxy)silane, triacetoxy(methyl)silane, and triacetoxy(vinyl)silane. etching composition.
  6. 유기 규소 화합물 및 불화수소 수용액을 혼합하여 혼합용액을 제조하는 단계;preparing a mixed solution by mixing an organosilicon compound and an aqueous hydrogen fluoride solution;
    상기 혼합용액을 인산 수용액에 첨가하는 단계; 및adding the mixed solution to an aqueous phosphoric acid solution; and
    상기 혼합용액이 첨가된 인산 수용액을 가열하는 단계;를 포함하는 실리콘 질화막 에칭 조성물의 제조방법.Method for producing a silicon nitride film etching composition comprising the step of heating the phosphoric acid aqueous solution to which the mixed solution is added.
  7. 제6항에 있어서,According to claim 6,
    상기 혼합용액이 첨가된 인산 수용액을 가열하는 온도는 50 내지 100 ℃인 실리콘 질화막 에칭 조성물의 제조방법.Method for producing a silicon nitride film etching composition wherein the temperature for heating the phosphoric acid aqueous solution to which the mixed solution is added is 50 to 100 ° C.
  8. 제6항에 있어서,According to claim 6,
    상기 실리콘 질화막 에칭 조성물은 상기 유기 규소 화합물이 이온화되어 형성된 실리케이트 이온을 포함하는 실리콘 질화막 에칭 조성물의 제조방법.The silicon nitride film etching composition is a method of producing a silicon nitride film etching composition comprising silicate ions formed by ionizing the organosilicon compound.
  9. 제8항에 있어서,According to claim 8,
    상기 실리케이트 이온은 SiO3 2- 및 SiO4 4- 중 선택되는 적어도 어느 하나인 실리콘 질화막 에칭 조성물의 제조방법.The silicate ion is at least one selected from SiO 3 2- and SiO 4 4- Method of producing a silicon nitride film etching composition.
  10. 청구항 1 내지 9 중 어느 한 항의 에칭 조성물을 사용하여 실리콘 질화막 및 실리콘 산화막 중 선택되는 적어도 어느 하나를 습식 에칭하는 공정을 포함하는 실리콘 질화막 에칭방법.A silicon nitride film etching method comprising the step of wet etching at least one selected from a silicon nitride film and a silicon oxide film using the etching composition of any one of claims 1 to 9.
  11. 청구항 1 내지 9 중 어느 한 항의 에칭 조성물을 사용하였을 시, 실리콘 질화막의 에칭속도가 16.6 nm/min 이상으로 나타나는 실리콘 질화막 에칭방법.A silicon nitride film etching method in which the etching rate of the silicon nitride film is 16.6 nm/min or more when the etching composition of any one of claims 1 to 9 is used.
  12. 청구항 1 내지 9 중 어느 한 항의 에칭 조성물을 사용하였을 시, 실리콘 산화막에 대한 실리콘 질화막의 에칭 선택비가 ∞로 나타나는 실리콘 질화막 에칭방법.A silicon nitride film etching method in which the etching selectivity of the silicon nitride film to the silicon oxide film appears to be ∞ when the etching composition of any one of claims 1 to 9 is used.
PCT/KR2022/018185 2021-11-29 2022-11-17 Silicon nitride film etching composition and preparation method therefor WO2023096266A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210167118A KR20230079903A (en) 2021-11-29 2021-11-29 Etching composition and method for preparing the same
KR10-2021-0167118 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023096266A1 true WO2023096266A1 (en) 2023-06-01

Family

ID=86539967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018185 WO2023096266A1 (en) 2021-11-29 2022-11-17 Silicon nitride film etching composition and preparation method therefor

Country Status (3)

Country Link
KR (1) KR20230079903A (en)
TW (1) TW202321421A (en)
WO (1) WO2023096266A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064460A (en) * 2007-01-05 2008-07-09 주식회사 하이닉스반도체 Etchant compositon for preventing leaning of capacitor and method for manufacturing capacitor using the same
KR101097277B1 (en) * 2009-10-07 2011-12-22 솔브레인 주식회사 A Composition for wet etching
KR101539375B1 (en) * 2014-07-17 2015-07-27 솔브레인 주식회사 Composition for etching and manufacturing method of semiconductor device using the same
KR20160037998A (en) * 2013-07-31 2016-04-06 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 AQUEOUS FORMULATIONS FOR REMOVING METAL HARD MASK AND POST-ETCH RESIDUE WITH Cu/W COMPATIBILITY
KR20210066007A (en) * 2018-11-15 2021-06-04 엔테그리스, 아이엔씨. Silicon Nitride Etching Compositions and Methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064460A (en) * 2007-01-05 2008-07-09 주식회사 하이닉스반도체 Etchant compositon for preventing leaning of capacitor and method for manufacturing capacitor using the same
KR101097277B1 (en) * 2009-10-07 2011-12-22 솔브레인 주식회사 A Composition for wet etching
KR20160037998A (en) * 2013-07-31 2016-04-06 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 AQUEOUS FORMULATIONS FOR REMOVING METAL HARD MASK AND POST-ETCH RESIDUE WITH Cu/W COMPATIBILITY
KR101539375B1 (en) * 2014-07-17 2015-07-27 솔브레인 주식회사 Composition for etching and manufacturing method of semiconductor device using the same
KR20210066007A (en) * 2018-11-15 2021-06-04 엔테그리스, 아이엔씨. Silicon Nitride Etching Compositions and Methods

Also Published As

Publication number Publication date
KR20230079903A (en) 2023-06-07
TW202321421A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
TWI684640B (en) Compositions and methods for etching silicon nitride-containing substrates
KR101380487B1 (en) Etching solution for silicon nitride layer
EP1026213B1 (en) Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
US6303514B1 (en) Composition and method for selectively etching a silicon nitride film
US6451436B1 (en) Coating liquid for forming a silica-containing film with a low-dielectric constant and substrate coated with such a film
US5472488A (en) Coating solution for forming glassy layers
US10995268B2 (en) Etching composition effective to selectively wet etch a silicon nitride film
WO2017026676A1 (en) Method for manufacturing silicon nitride thin film using plasma atomic layer deposition method
US20070259106A1 (en) Polysilazane coating composition and siliceous film
US20090294922A1 (en) Organic silicon oxide fine particle and preparation method thereof, porous film-forming composition, porous film and formation method thereof, and semiconductor device
WO2009110449A1 (en) Dipping solution for use in production of siliceous film and process for producing siliceous film using the dipping solution
KR100727277B1 (en) Low-permittivity porous siliceous film and semiconductor devices having such films
WO2022030765A1 (en) Etchant composition for adjusting etching selectivity of titanium nitride film with respect to tungsten film, and etching method using same
KR20190081343A (en) Composition for etching and manufacturing method of semiconductor device using the same
WO2020180016A1 (en) Etching composition for silicon nitride film
JP2001098224A (en) Silica-based film, method of forming silica-based film, and electronic component having silica-based film
US20070088144A1 (en) Organic silicate polymer and insulation film comprising the same
WO2023096266A1 (en) Silicon nitride film etching composition and preparation method therefor
WO2020197056A1 (en) Composition for etching laminate of titanium nitride film and tungsten film, and method for etching semiconductor device by using same
US20050136687A1 (en) Porous silica dielectric having improved etch selectivity towards inorganic anti-reflective coating materials for integrated circuit applications, and methods of manufacture
JP2012104616A (en) Precursor composition of low dielectric constant film and method for manufacturing low dielectric constant film using the same
JP3319014B2 (en) Film forming method, film forming apparatus, and semiconductor device manufacturing method
JP5233127B2 (en) Low dielectric constant film modifier and manufacturing method
WO2021225263A1 (en) Plasma etching method using pentafluoropropanol
KR20200021389A (en) Insulation layer etchant composition and method of forming pattern using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898948

Country of ref document: EP

Kind code of ref document: A1