WO2023096185A1 - Procédé pour diagnostiquer une défaillance de machine sur la base de l'apprentissage profond en utilisant des sons et des vibrations, et dispositif de diagnostic l'utilisant - Google Patents

Procédé pour diagnostiquer une défaillance de machine sur la base de l'apprentissage profond en utilisant des sons et des vibrations, et dispositif de diagnostic l'utilisant Download PDF

Info

Publication number
WO2023096185A1
WO2023096185A1 PCT/KR2022/016624 KR2022016624W WO2023096185A1 WO 2023096185 A1 WO2023096185 A1 WO 2023096185A1 KR 2022016624 W KR2022016624 W KR 2022016624W WO 2023096185 A1 WO2023096185 A1 WO 2023096185A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure
classification information
feature
failure classification
deep learning
Prior art date
Application number
PCT/KR2022/016624
Other languages
English (en)
Korean (ko)
Inventor
김병희
이충연
Original Assignee
주식회사 써로마인드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 써로마인드 filed Critical 주식회사 써로마인드
Publication of WO2023096185A1 publication Critical patent/WO2023096185A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning

Definitions

  • the present invention intends to propose a method for diagnosing machine failures based on deep learning regardless of the type of data.
  • the first to n-th deep learning models may include at least one supervised learning model and at least one unsupervised learning model for classifying the failure state of the machine.
  • the first feature to the mth feature include a Mel spectrogram divided by a frequency range in consideration of human hearing, an MFCC that is a coefficient when the Mel spectrogram is regarded as one signal and cosine-transformed, and a signal sign for a unit time Zero crossing rate, which is the number of transitions, spectral Roll-Off, which is the value of f when the energy corresponding to the frequency below f matches a specific ratio of the total energy, spectral centroid, which is the center of gravity or weighted average of the spectrum, and the variance of the spectral distribution It may include at least two of spectral bandwidth, spectral contrast, which is a difference between maximum and minimum energies in a partial spectrum, spectral flatness, which is a flatness of a spectrum, and chromagram, which is a harmonic characteristic of a spectrum.
  • the diagnosis device determines the failure of the machine among the 1_1 th failure classification information to the n_m th failure classification information by referring to the probability of answering each of the 1_1 th failure classification information to the n_m th failure classification information. It is possible to select specific failure classification information for , and output the specific failure classification information as the failure diagnosis information.
  • the diagnosis apparatus may output the failure diagnosis information by performing a weighted sum of the 1_1 th failure classification information to the n_m th failure classification information.
  • the diagnostic apparatus for diagnosing machine failures using sound or vibration based on deep learning instructions for diagnosing machine failures using sound or vibration based on deep learning memory in which they are stored; and a processor configured to perform an operation for diagnosing a failure of a machine using sound or vibration based on the deep learning according to the instructions stored in the memory.
  • the present invention can actively cope with unlearned failure types by using sound data or vibration data based on deep learning.
  • FIG. 2 is a flow chart schematically showing a method for diagnosing a machine failure using sound or vibration based on deep learning according to an embodiment of the present invention

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Human Computer Interaction (AREA)

Abstract

La présente invention concerne un procédé pour diagnostiquer une défaillance de machine sur la base de l'apprentissage profond en utilisant des sons ou des vibrations. Le procédé comprend les étapes suivantes : (A) lorsque des données sonores ou des données de vibration détectées à partir d'une machine sont acquises, un dispositif de diagnostic introduit les données sonores ou les données de vibration dans une unité d'extraction de caractéristiques de sorte que l'unité d'extraction de caractéristiques extrait des caractéristiques 1 à m à partir des données sonores ou des données de vibration ; (b) le dispositif de diagnostic introduit les caractéristiques 1 à m dans des modèles d'apprentissage profond 1 à n de façon à amener les modèles d'apprentissage profond 1 à n à apprendre les caractéristiques 1 à m et délivrer en sortie des informations de classification de défaillance 1_1 à n_m qui classent des états de défaillance pour les caractéristiques 1 à m ; et (c) le dispositif de diagnostic délivre en sortie des informations de diagnostic de défaillance qui diagnostiquent la défaillance de la machine en assemblant les informations de classification de défaillance 1_1 à n_m
PCT/KR2022/016624 2021-11-29 2022-10-27 Procédé pour diagnostiquer une défaillance de machine sur la base de l'apprentissage profond en utilisant des sons et des vibrations, et dispositif de diagnostic l'utilisant WO2023096185A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210167790A KR20230080242A (ko) 2021-11-29 2021-11-29 딥 러닝 기반으로 음향 및 진동을 이용하여 기계의 고장을 진단하는 방법 및 이를 이용한 진단 장치
KR10-2021-0167790 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023096185A1 true WO2023096185A1 (fr) 2023-06-01

Family

ID=86539789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016624 WO2023096185A1 (fr) 2021-11-29 2022-10-27 Procédé pour diagnostiquer une défaillance de machine sur la base de l'apprentissage profond en utilisant des sons et des vibrations, et dispositif de diagnostic l'utilisant

Country Status (2)

Country Link
KR (1) KR20230080242A (fr)
WO (1) WO2023096185A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116595444A (zh) * 2023-07-19 2023-08-15 北京大学第一医院 一种基于深度学习的医疗器械的故障类别检测方法和系统
CN118335118A (zh) * 2024-06-12 2024-07-12 陕西骏景索道运营管理有限公司 基于声纹分析的索道入侵事件快速分析预警方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102027389B1 (ko) * 2019-03-20 2019-10-01 (주)브이엠에스 오토인코더와 딥러닝을 이용한 기계 장비 고장 진단 장치
KR20210055992A (ko) * 2019-11-08 2021-05-18 엘지전자 주식회사 인공지능 모델 관리 방법 및 장치
KR20210077389A (ko) * 2019-12-17 2021-06-25 (주)유코아시스템 기계설비의 기계음을 이용한 딥러닝기반 이상징후 감지시스템
KR20210081145A (ko) * 2019-12-23 2021-07-01 시그널링크 주식회사 진동과 소음신호를 이용한 기계결함진단장치 및 그 신호를 이용한 빅데이터 기반의 스마트 센서 시스템
KR20210082596A (ko) * 2019-12-26 2021-07-06 주식회사 모트롤 감속 장치의 고장진단 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102027389B1 (ko) * 2019-03-20 2019-10-01 (주)브이엠에스 오토인코더와 딥러닝을 이용한 기계 장비 고장 진단 장치
KR20210055992A (ko) * 2019-11-08 2021-05-18 엘지전자 주식회사 인공지능 모델 관리 방법 및 장치
KR20210077389A (ko) * 2019-12-17 2021-06-25 (주)유코아시스템 기계설비의 기계음을 이용한 딥러닝기반 이상징후 감지시스템
KR20210081145A (ko) * 2019-12-23 2021-07-01 시그널링크 주식회사 진동과 소음신호를 이용한 기계결함진단장치 및 그 신호를 이용한 빅데이터 기반의 스마트 센서 시스템
KR20210082596A (ko) * 2019-12-26 2021-07-06 주식회사 모트롤 감속 장치의 고장진단 장치 및 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116595444A (zh) * 2023-07-19 2023-08-15 北京大学第一医院 一种基于深度学习的医疗器械的故障类别检测方法和系统
CN116595444B (zh) * 2023-07-19 2023-09-26 北京大学第一医院 一种基于深度学习的医疗器械的故障类别检测方法和系统
CN118335118A (zh) * 2024-06-12 2024-07-12 陕西骏景索道运营管理有限公司 基于声纹分析的索道入侵事件快速分析预警方法及装置

Also Published As

Publication number Publication date
KR20230080242A (ko) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2023096185A1 (fr) Procédé pour diagnostiquer une défaillance de machine sur la base de l'apprentissage profond en utilisant des sons et des vibrations, et dispositif de diagnostic l'utilisant
WO2021107342A1 (fr) Dispositif et procédé de surveillance de l'état de vibration d'un équipement rotatif à l'aide d'une analyse chronologique basée sur un apprentissage profond
KR102270347B1 (ko) 딥러닝 앙상블 모델을 이용한 이상 상황 탐지 장치 및 그 방법
WO2019027208A1 (fr) Procédé d'apprentissage pour un réseau neuronal artificiel
WO2020005049A1 (fr) Procédé d'apprentissage pour réseau neuronal artificiel
WO2021107422A1 (fr) Procédé de surveillance de charge non intrusive utilisant des données de consommation d'énergie
WO2021040236A1 (fr) Dispositif et procédé de prédiction de durée de vie et de diagnostic d'état de batterie de systeme ess
WO2022146080A1 (fr) Algorithme et procédé de modification dynamique de la précision de quantification d'un réseau d'apprentissage profond
CN104301617B (zh) 闪烁检测方法和闪烁检测设备
WO2022211301A1 (fr) Procédé et système de détection d'un comportement anormal sur la base d'un ensemble d'auto-codeur
WO2023101480A1 (fr) Systèmes et procédés de gestion intelligente d'une batterie
KR20220064098A (ko) 기계학습 기반 고장 진단 장치 및 방법
WO2022203127A1 (fr) Procédé d'apprentissage en continu de détection d'anomalie d'objet et modèle de classification d'états, et appareil associé
CN114863221A (zh) 检测模型的训练方法、装置、系统、设备及存储介质
CN110040107A (zh) 车辆入侵检测及预测模型训练方法、装置及存储介质
WO2023063486A1 (fr) Procédé de création de modèle d'apprentissage automatique et dispositif associé
JP4886460B2 (ja) 異常監視装置
WO2020153597A1 (fr) Procédé et appareil de génération de modèle de classification à plusieurs niveaux
Hasegawa et al. Adaptive training of vibration-based anomaly detector for wind turbine condition monitoring
WO2016208817A1 (fr) Appareil et procédé d'interfaçage d'entrée de touches
CN113065395A (zh) 一种基于生成对抗网络的雷达目标新类检测方法
CN112016597A (zh) 一种机器学习中基于贝叶斯不平衡度量的深度采样方法
Mei et al. Cross-domain open-set fault diagnosis using prototype learning and extreme value theory
WO2022092670A1 (fr) Procédé d'analyse de l'épaisseur d'une région corticale cérébrale
US20220187789A1 (en) Equipment failure diagnosis apparatus, equipment failure diagnosis method, smart factory system and application agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE