WO2023095991A1 - System for automatically extracting question area and type within content for learning included in electronic document and method therefor - Google Patents

System for automatically extracting question area and type within content for learning included in electronic document and method therefor Download PDF

Info

Publication number
WO2023095991A1
WO2023095991A1 PCT/KR2021/018277 KR2021018277W WO2023095991A1 WO 2023095991 A1 WO2023095991 A1 WO 2023095991A1 KR 2021018277 W KR2021018277 W KR 2021018277W WO 2023095991 A1 WO2023095991 A1 WO 2023095991A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
area
question
automatically extracting
answer
Prior art date
Application number
PCT/KR2021/018277
Other languages
French (fr)
Korean (ko)
Inventor
신은영
Original Assignee
신은영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신은영 filed Critical 신은영
Publication of WO2023095991A1 publication Critical patent/WO2023095991A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/28Databases characterised by their database models, e.g. relational or object models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/31Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/35Clustering; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/38Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/383Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/93Document management systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/20Education
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B7/00Electrically-operated teaching apparatus or devices working with questions and answers

Definitions

  • the present invention relates to a system and method for automatically extracting an area and type of an item from contents for learning an electronic document.
  • online learning can be performed using a PC, laptop, smart phone, tablet PC, etc. without time and space limitations.
  • the method of collecting item text information in electronic documents and generating problem-solving data has a problem in that the data capacity is large and it is impossible to collect information about special symbols, mathematical symbols, and images.
  • the present invention has been proposed to solve the above problems, and an object of the present invention is to provide a system and method capable of automatically extracting and storing question areas and types within electronic document learning contents using machine learning.
  • the present invention relates to a system and method for automatically extracting an area and type of an item from contents for learning an electronic document.
  • a system for automatically extracting item areas and types in contents for learning electronic documents executes a memory and a program in which an input unit for registering electronic documents and a program for automatically extracting item areas and types from learning contents included in electronic documents are stored. and a processor that executes the task, and the processor extracts a page on which the question exists, extracts the area and type of the question from the extracted page, and builds a question information database.
  • the processor performs automatic extraction using an object detection model that detects information on questions, answers, explanations, and correct answers.
  • the processor extracts the type of the question based on a criterion including at least one of a true/false type, a selective type, a connection type, a short answer type, a complete type, and a descriptive type.
  • the processor extracts information of the question, correct answer information, and explanation information, checks whether they match, checks the accuracy of the object detection model, adjusts a threshold value when matching criteria are not met, and matches matching criteria. If it is, the detailed area for the above question is extracted.
  • the processor determines whether an example number area for each type of question, whether or not an example text area exists, whether an answer area for writing short answers, whether a view area for selecting authenticity or falseness exists, and whether a paired answer group area exists. Check whether it exists and whether the view area and answer input area are included.
  • the present invention by predicting the area and type of an item together from the learning content, detecting a detailed area according to the type within the item area, and storing the detected information, the speed and reliability of object detection in the learning content are increased. There are possible effects.
  • FIG. 1 illustrates a system for automatically extracting item areas and types in contents for learning electronic documents according to an embodiment of the present invention.
  • FIG. 2 shows an object area of a question sheet according to an embodiment of the present invention.
  • FIG. 3 illustrates a method for automatically extracting a question area and type from contents for learning electronic documents according to an embodiment of the present invention.
  • FIG. 1 illustrates a system for automatically extracting item areas and types in contents for learning electronic documents according to an embodiment of the present invention.
  • a system for automatically extracting item areas and types in content for learning electronic documents includes an input unit 110 for registering electronic documents, and areas and types (labels) of items in learning contents included in the electronic documents. It includes a memory 120 in which a program to be extracted is stored and a processor 130 that executes the program, and the processor 130 extracts a page on which the question exists, extracts the area and type of the question from the extracted page, and Build an information database.
  • the processor 130 uses a pre-learned object detection model, and this object detection model is a model for detecting item, answer, commentary, and correct answer information.
  • This object detection model is a model for detecting item, answer, commentary, and correct answer information.
  • Machine learning algorithms, artificial neural network algorithms, etc. may be used.
  • the processor 130 classifies the type of item existing within the domain of the item using a criterion including at least one of true/false type, optional type, connection type, short answer type, complete type, and descriptive type.
  • the processor predicts an item having the highest class score (probability value) by using an object detection model, finds a region of interest (ROI), and predicts coordinate values.
  • class score probability value
  • ROI region of interest
  • the processor 130 estimates an area in which items are estimated to exist. At this time, the processor quickly finds a region in which the object is expected to exist in the input image, makes the size the same for the estimated region in the form of an image in a rectangular bounding box, and then CNN (Convolutional Classification is performed through a Neural Network), and an object is predicted using a confidence score value.
  • CNN Convolutional Classification is performed through a Neural Network
  • the processor 130 classifies each region of the image into an object region and a non-object region, and classifies a region matching the detection result among predicted object regions as a normal detection region.
  • the processor 130 classifies each region of the image into an object region and a non-object region, and predicts the type of object by ensembling results obtained through a plurality of classifiers.
  • the processor 130 extracts location information corresponding to the question number, question number, answer number, example, and answer input within the area of the question.
  • Processor 130 creates the necessary additional locations within the item area.
  • the processor 130 classifies the area and type of the object within the learning content, but predicts whether it is an item or a correct answer and a commentary in relation to the type of object.
  • the processor 130 extracts item information, extracts correct answers and explanation information, and compares the extracted information to check the accuracy of values predicted by the object detection model.
  • the processor 130 adjusts the threshold value when the matching criterion is not satisfied.
  • the processor 130 extracts detailed areas for each item type.
  • the processor 130 detects a detailed area from the detected question area. At this time, it is possible to select the existence or non-existence of an answer number area and an example text area for each type of question, the existence or non-existence of an answer area for composing a brief short answer, and whether or not it is true. It checks whether there is a viewing area, whether there is a paired answer group area, and whether the viewing area and answer input area are included.
  • the processor 130 may use a second object detection model different from the object detection model that finds the region and type of the object or extract object information through text analysis.
  • the processor 130 provides information of the electronic document along with location information through the electronic document viewer.
  • the processor 130 stores detected object information (item information) for each predicted object type.
  • the processor 130 in the process of simultaneously extracting item areas and types, i) characteristic information of item areas and types acquired in the learning process or ii) information included in the database for each publisher It is possible to improve the speed of extraction by considering the characteristic information of the item domain and type.
  • the processor 130 simultaneously extracts the item area and type for each test item (conceptual test, descriptive test, thinking test, creativity/convergence/coding test, midterm/final basic test), object detection model and question It is possible to perform learning while updating the information database, and to increase the extraction speed for item areas and types to be subsequently classified based on the learned results.
  • the processor 130 displays characteristic information included in the database for each publisher (eg, AA education 2nd grade math problem book, RR education 1st grade math problem book, etc., each test item and each test item for each publisher) It is possible to extract the item area and type at the same time by using the form information stored as feature information. Through this, it is possible to more quickly extract the area and type of an item based on feature information without scanning and classifying the entire area within the extracted page.
  • characteristic information included in the database for each publisher eg, AA education 2nd grade math problem book, RR education 1st grade math problem book, etc., each test item and each test item for each publisher
  • FIG. 2 shows an object area of a question sheet according to an embodiment of the present invention.
  • the processor 130 determines whether the item number area and the item text area are included in the detected item area, and if the item number area (QN) and the item text area (QT) are included, the corresponding object is an item unit object. to decide
  • the type of question is determined through the existence or non-existence of the view area for selecting, the existence of the answer sheet group area, which is a paired view number area, and the existence of the view area and answer input area.
  • page information and coordinate information for the detected object are stored.
  • FIG. 3 illustrates a method for automatically extracting the position and type of a question in contents for learning electronic documents according to an embodiment of the present invention.
  • the method for automatically extracting the location and type of items in contents for learning electronic documents includes the steps of receiving contents for learning (S310), simultaneously predicting the area and type of an object based on an object detection model (S320), , Extracting item information and extracting correct answer and commentary information (S330), checking whether the item, correct answer, and commentary information match (S340), and extracting detailed areas for each item type (S350) and storing object information extracted for each object type (S360).
  • step S320 in simultaneously predicting the area and type of an object within the learning content, whether it is an item or a correct answer and a commentary is predicted in relation to the object type.
  • step S320 after making the estimated region, which is an image form in a rectangular bounding box, the same size according to the region estimation method, classification is performed through a Convolutional Neural Network (CNN), and a confidence score (confidence score) is performed. score) value to estimate the area of the object.
  • CNN Convolutional Neural Network
  • step S320 it is possible to classify each region of the image into an object region and a non-object region, and classify a region matching the detection result among the predicted object regions as a normal detection region.
  • step S320 classification is performed for each region of the image into an object region and a non-object region, and it is possible to predict the type of object by ensembling the results obtained through a plurality of classifiers.
  • Step S320 classifies the type of question existing in the domain of the question into at least one of a true/false type, a selective type, a connection type, a short answer type, a complete type, and a narrative type in relation to the item type.
  • Step S320 extracts location information corresponding to the question number, question number, answer number, answer, and answer input within the area of the question.
  • step S330 unit information, number of problems, problem type, problem number, problem type, and page information are extracted in extracting information.
  • Step S340 checks the accuracy of the value predicted by the object detection model using the item information extracted in step S330, the correct answer, and the commentary information.
  • step S340 when it is determined that the matching is less than or equal to the standard, a step of adjusting the threshold value is performed.
  • step S350 as a result of checking in step S340, if it is confirmed that the matching criterion is satisfied, detailed areas are extracted for each item type.
  • step S350 whether there is an example number area for each type of question, whether there is an example text area, whether or not an answer area for writing a short answer, whether a view area for selecting authenticity or falseness exists, and existence of a paired answer group area Check whether and whether the view area and answer input area are included.
  • step S350 it is possible to use a second object detection model different from the object detection model in step S320 or to extract object information through text analysis.
  • operation S360 object information detected for each type of object is stored, and electronic document information is displayed along with object location information through an electronic document viewer.
  • a computer system may include at least one processor, a memory, a user input device, a data communication bus, a user output device, and a storage. Each of the aforementioned components communicates data through a data communication bus.
  • the computer system may further include a network interface coupled to the network.
  • the processor may be a central processing unit (CPU) or a semiconductor device that processes instructions stored in memory and/or storage.
  • the memory and storage may include various types of volatile or non-volatile storage media.
  • memory may include ROM and RAM.
  • the method for automatically extracting the location and type of questions in the content for learning electronic documents according to an embodiment of the present invention can be implemented in a computer-executable manner.
  • computer-readable instructions perform the method of automatically extracting the location and type of items in the contents for learning electronic documents according to the present invention. can be done
  • Computer-readable recording media includes all types of recording media in which data that can be decoded by a computer system is stored. For example, there may be read only memory (ROM), random access memory (RAM), a magnetic tape, a magnetic disk, a flash memory, an optical data storage device, and the like.
  • ROM read only memory
  • RAM random access memory
  • magnetic tape magnetic tape
  • magnetic disk magnetic disk
  • flash memory an optical data storage device
  • the computer-readable recording medium may be distributed in computer systems connected through a computer communication network, and stored and executed as readable codes in a distributed manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Software Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Library & Information Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention relates to a system for automatically extracting an area and type of questions within content for learning included in an electronic document, and a method therefor. The system for automatically extracting an area and type of questions within content for learning included in an electronic document, according to the present invention, comprises: an input unit that registers an electronic document; a memory that stores a program for automatically extracting an area and type of questions from content for learning included in the electronic document; and a processor that executes the program, wherein the processor extracts a page on which questions are present, extracts an area and type of the questions from the extracted page, and constructs a question information database.

Description

전자 문서 학습용 컨텐츠 내 문항 영역 및 유형 자동 추출 시스템 및 그 방법System and method for automatically extracting question areas and types in contents for learning electronic documents
본 발명은 전자 문서 학습용 컨텐츠 내에서 문항의 영역과 유형을 자동으로 추출하는 시스템 및 그 방법에 관한 것이다. The present invention relates to a system and method for automatically extracting an area and type of an item from contents for learning an electronic document.
전통적인 인쇄 출판 방식에서 벗어나, 전자 문서, 전자책을 이용한 학습 컨텐츠 제공이 보편화되는 추세이다. Moving away from the traditional print publishing method, the provision of learning contents using electronic documents and e-books is becoming more common.
종래 기술에 따르면, 전자 문서 형식의 학습용 컨텐츠 제공에 따라, PC, 랩탑, 스마트폰, 태블릿 PC 등을 이용하여 시간적, 공간적 제약 없이 온라인 학습을 수행할 수 있다. According to the prior art, according to the provision of learning content in the form of an electronic document, online learning can be performed using a PC, laptop, smart phone, tablet PC, etc. without time and space limitations.
그런데, 종래 기술에 따르면 단지 종이 책에서 전자 문서로, 컨텐츠를 담는 방식만이 바뀌었을 뿐, 전자 문서의 특성을 이용한 다양한 서비스를 제공하여 학습자로 하여금 보다 편리하게 학습을 수행할 수 있도록 하는 플랫폼의 제공이 이루어지지 못한 한계가 있다. However, according to the prior art, only the method of containing content has changed from paper books to electronic documents, and it is a platform that provides various services using the characteristics of electronic documents so that learners can learn more conveniently. There are limitations to which provision has not been made.
종래 기술에 따르면 학습용 컨텐츠에서 이용자가 수동으로 문항 영역을 지정하는 방식을 통해 데이터를 추출하고자 하는 제안이 있었으나, 이는 인터랙션 측면에서 학습자의 다양한 니즈를 반영하기 어려운 문제점을 여전히 내포하고 있다. According to the prior art, there has been a proposal to extract data through a method in which a user manually designates an item area in learning content, but this still has a problem in that it is difficult to reflect the various needs of learners in terms of interaction.
또한, 전자 문서 내 문항 텍스트 정보를 수집하고, 문제 풀이 데이터를 생성하는 방식은 데이터 용량이 크고, 특수기호, 수학기호, 이미지 등에 대한 정보 수집이 불가한 문제점이 있다. In addition, the method of collecting item text information in electronic documents and generating problem-solving data has a problem in that the data capacity is large and it is impossible to collect information about special symbols, mathematical symbols, and images.
본 발명은 전술한 문제점을 해결하기 위해 제안된 것으로, 기계학습을 이용하여 전자 문서 학습용 컨텐츠 내에서 문항 영역 및 유형을 자동으로 추출하여 저장하는 것이 가능한 시스템 및 방법을 제공하는데 그 목적이 있다. The present invention has been proposed to solve the above problems, and an object of the present invention is to provide a system and method capable of automatically extracting and storing question areas and types within electronic document learning contents using machine learning.
본 발명은 전자 문서 학습용 컨텐츠 내에서 문항의 영역과 유형을 자동으로 추출하는 시스템 및 그 방법에 관한 것이다. The present invention relates to a system and method for automatically extracting an area and type of an item from contents for learning an electronic document.
본 발명에 따른 전자 문서 학습용 컨텐츠 내 문항 영역 및 유형 자동 추출 시스템은 전자 문서를 등록하는 입력부와, 전자 문서에 포함되는 학습용 컨텐츠에서 문항의 영역과 유형을 자동 추출하는 프로그램이 저장된 메모리 및 프로그램을 실행시키는 프로세서를 포함하고, 프로세서는 문항이 존재하는 페이지를 추출하고, 추출된 페이지에서 문항의 영역 및 유형을 추출하고, 문항 정보 데이터베이스를 구축한다. A system for automatically extracting item areas and types in contents for learning electronic documents according to the present invention executes a memory and a program in which an input unit for registering electronic documents and a program for automatically extracting item areas and types from learning contents included in electronic documents are stored. and a processor that executes the task, and the processor extracts a page on which the question exists, extracts the area and type of the question from the extracted page, and builds a question information database.
상기 프로세서는 문항, 답안, 해설 및 정답 정보를 검출하는 객체 검출 모델을 이용하여 자동 추출을 수행한다. The processor performs automatic extraction using an object detection model that detects information on questions, answers, explanations, and correct answers.
상기 프로세서는 진위형, 선택형, 연결형, 단답형, 완성형, 서술형 중 적어도 어느 하나를 포함하는 기준으로 상기 문항의 유형을 추출한다. The processor extracts the type of the question based on a criterion including at least one of a true/false type, a selective type, a connection type, a short answer type, a complete type, and a descriptive type.
상기 프로세서는 상기 문항의 정보와, 정답 및 해설 정보를 추출하고, 이들의 매칭 여부를 확인하여 객체 검출 모델의 정확도를 확인하고, 매칭 기준이 충족되지 않는 경우 임계값을 조절하고, 매칭 기준이 충족되는 경우 상기 문항에 대한 세부 영역을 추출한다. The processor extracts information of the question, correct answer information, and explanation information, checks whether they match, checks the accuracy of the object detection model, adjusts a threshold value when matching criteria are not met, and matches matching criteria. If it is, the detailed area for the above question is extracted.
상기 프로세서는 상기 문항의 유형 별로 보기 번호 영역, 보기 텍스트 영역의 존재 여부, 서술형 단답을 작성하기 위한 답안 영역의 존재 여부, 진위 여부를 선택할 수 있는 보기 영역의 존재 여부, 쌍으로 이루어진 답지군 영역의 존재 여부 및 보기 영역과 답안 입력 영역이 포함되어 있는지 여부를 확인한다. The processor determines whether an example number area for each type of question, whether or not an example text area exists, whether an answer area for writing short answers, whether a view area for selecting authenticity or falseness exists, and whether a paired answer group area exists. Check whether it exists and whether the view area and answer input area are included.
본 발명에 따르면, 학습용 컨텐츠로부터 문항의 영역과 유형을 함께 예측하고, 문항 영역 내에서 그 유형에 따른 세부 영역을 검출하고, 검출된 정보를 저장함으로써, 학습용 컨텐츠 내에서 객체 검출 속도와 신뢰성을 높이는 것이 가능한 효과가 있다. According to the present invention, by predicting the area and type of an item together from the learning content, detecting a detailed area according to the type within the item area, and storing the detected information, the speed and reliability of object detection in the learning content are increased. There are possible effects.
본 발명에 따르면, 문항 데이터의 영역을 좌표로 저장하게 되므로, 데이터 용량이 줄어들며, 수학기호나 이미지에 구애받지 않고 문항 정보를 저장하는 것이 가능한 효과가 있다. According to the present invention, since the area of item data is stored as coordinates, data capacity is reduced, and item information can be stored regardless of mathematical symbols or images.
본 발명의 효과는 이상에서 언급한 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to those mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below.
도 1은 본 발명의 실시예에 따른 전자 문서 학습용 컨텐츠 내 문항 영역 및 유형 자동 추출 시스템을 도시한다. 1 illustrates a system for automatically extracting item areas and types in contents for learning electronic documents according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 문제지의 객체 영역을 도시한다. 2 shows an object area of a question sheet according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 전자 문서 학습용 컨텐츠 내 문항 영역 및 유형 자동 추출 방법을 도시한다. 3 illustrates a method for automatically extracting a question area and type from contents for learning electronic documents according to an embodiment of the present invention.
본 발명의 전술한 목적 및 그 이외의 목적과 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. The foregoing and other objects, advantages and characteristics of the present invention, and a method of achieving them will become clear with reference to the detailed embodiments described below in conjunction with the accompanying drawings.
그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 이하의 실시예들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 목적, 구성 및 효과를 용이하게 알려주기 위해 제공되는 것일 뿐으로서, 본 발명의 권리범위는 청구항의 기재에 의해 정의된다. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms, and only the following embodiments provide the purpose of the invention, As only provided to easily inform the configuration and effect, the scope of the present invention is defined by the description of the claims.
한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성소자, 단계, 동작 및/또는 소자가 하나 이상의 다른 구성소자, 단계, 동작 및/또는 소자의 존재 또는 추가됨을 배제하지 않는다.Meanwhile, terms used in this specification are for describing the embodiments and are not intended to limit the present invention. In this specification, singular forms also include plural forms unless specifically stated otherwise in a phrase. As used herein, “comprises” and/or “comprising” means the presence of one or more other components, steps, operations, and/or elements in which a stated component, step, operation, and/or element is present. or added.
도 1은 본 발명의 실시예에 따른 전자 문서 학습용 컨텐츠 내 문항 영역 및 유형 자동 추출 시스템을 도시한다. 1 illustrates a system for automatically extracting item areas and types in contents for learning electronic documents according to an embodiment of the present invention.
본 발명의 실시예에 따른 전자 문서 학습용 컨텐츠 내 문항 영역 및 유형 자동 추출 시스템은 전자 문서를 등록하는 입력부(110)와, 상기 전자 문서에 포함되는 학습용 컨텐츠에서 문항의 영역과 유형(라벨)을 자동 추출하는 프로그램이 저장된 메모리(120) 및 프로그램을 실행시키는 프로세서(130)를 포함하고, 프로세서(130)는 문항이 존재하는 페이지를 추출하고, 추출된 페이지에서 문항의 영역 및 유형을 추출하고, 문항 정보 데이터베이스를 구축한다. A system for automatically extracting item areas and types in content for learning electronic documents according to an embodiment of the present invention includes an input unit 110 for registering electronic documents, and areas and types (labels) of items in learning contents included in the electronic documents. It includes a memory 120 in which a program to be extracted is stored and a processor 130 that executes the program, and the processor 130 extracts a page on which the question exists, extracts the area and type of the question from the extracted page, and Build an information database.
프로세서(130)는 기학습된 객체 검출 모델을 이용하는데, 이러한 객체 검출 모델은 문항, 답안, 해설 및 정답 정보를 검출하기 위한 모델로서. 머신 러닝(Machine Learning) 알고리즘, 인공 신경망 알고리즘 등이 이용될 수 있다 The processor 130 uses a pre-learned object detection model, and this object detection model is a model for detecting item, answer, commentary, and correct answer information. Machine learning algorithms, artificial neural network algorithms, etc. may be used.
프로세서(130)는 문항 유형과 관련하여, 문항의 영역 내에 존재하는 문항의 유형을 진위형, 선택형, 연결형, 단답형, 완성형, 서술형 중 적어도 어느 하나를 포함하는 기준을 이용하여 분류를 수행한다. With respect to the item type, the processor 130 classifies the type of item existing within the domain of the item using a criterion including at least one of true/false type, optional type, connection type, short answer type, complete type, and descriptive type.
프로세서는 객체 검출 모델을 이용하여 클래스 스코어(확률값)이 가장 높은 항목을 예측하고, ROI(관심 영역)을 찾아서 좌표값을 예측한다. The processor predicts an item having the highest class score (probability value) by using an object detection model, finds a region of interest (ROI), and predicts coordinate values.
프로세서(130)는 문항이 존재할 것으로 추정되는 영역을 추정한다. 이 때, 프로세서는 입력 이미지에서 객체가 존재할 것으로 예상되는 영역을 빠른 속도로 찾아내며, 사각형 모양의 바운딩 박스(Bounding Box) 안의 이미지 형태인 추정 영역에 대해 그 크기를 동일하게 만든 후, CNN(Convolutional Neural Network)을 거쳐 분류를 수행하고, 컨피던스 스코어(confidence score) 값을 이용하여 객체를 예측하게 된다. The processor 130 estimates an area in which items are estimated to exist. At this time, the processor quickly finds a region in which the object is expected to exist in the input image, makes the size the same for the estimated region in the form of an image in a rectangular bounding box, and then CNN (Convolutional Classification is performed through a Neural Network), and an object is predicted using a confidence score value.
다른 예로서, 프로세서(130)는 이미지의 각 영역에 대해 객체 영역, 비객체 영역으로 분류를 수행하고, 예측된 객체 영역 중에서 검출 결과에 매칭되는 영역을 정상 검출 영역으로 분류한다. As another example, the processor 130 classifies each region of the image into an object region and a non-object region, and classifies a region matching the detection result among predicted object regions as a normal detection region.
또 다른 예로서, 프로세서(130)는 이미지의 각 영역에 대해 객체 영역, 비객체 영역으로 분류를 수행하되, 복수의 분류기를 통해 나온 결과를 앙상블하여 객체의 유형을 예측한다. As another example, the processor 130 classifies each region of the image into an object region and a non-object region, and predicts the type of object by ensembling results obtained through a plurality of classifiers.
프로세서(130)는 문항의 영역 내에서 문제 번호, 문제, 보기 번호, 보기, 답안 입력에 해당하는 위치 정보를 추출한다. The processor 130 extracts location information corresponding to the question number, question number, answer number, example, and answer input within the area of the question.
프로세서(130)는 문항 영역 내 필요한 추가 위치를 생성한다. Processor 130 creates the necessary additional locations within the item area.
프로세서(130)는 학습용 컨텐츠 내에서 객체의 영역과 유형을 분류하되, 객체의 유형과 관련하여서는 문항인지, 또는 정답과 해설인지 여부를 예측한다. The processor 130 classifies the area and type of the object within the learning content, but predicts whether it is an item or a correct answer and a commentary in relation to the type of object.
프로세서(130)는 문항의 정보를 추출하고, 정답과 해설 정보를 추출하며, 추출된 정보들을 비교하여 객체 검출 모델이 예측한 값의 정확도를 확인한다. The processor 130 extracts item information, extracts correct answers and explanation information, and compares the extracted information to check the accuracy of values predicted by the object detection model.
이를 통해, 프로세서(130)는 매칭 기준이 충족되지 않는 경우, 임계값을 조절하게 된다. Through this, the processor 130 adjusts the threshold value when the matching criterion is not satisfied.
프로세서(130)는 매칭 기준이 충족되는 것으로 확인하면, 문항의 유형 별로 세부 영역을 추출한다. When it is confirmed that the matching criterion is satisfied, the processor 130 extracts detailed areas for each item type.
프로세서(130)는 검출된 문항 영역에서 세부 영역을 검출하는데, 이 때 문항의 유형 별로 보기 번호 영역, 보기 텍스트 영역의 존재 여부, 서술형 단답을 작성하기 위한 답안 영역의 존재 여부, 진위 여부를 선택할 수 있는 보기 영역의 존재 여부, 쌍으로 이루어진 답지군 영역의 존재 여부 및 보기 영역과 답안 입력 영역이 포함되어 있는지 여부를 확인한다. The processor 130 detects a detailed area from the detected question area. At this time, it is possible to select the existence or non-existence of an answer number area and an example text area for each type of question, the existence or non-existence of an answer area for composing a brief short answer, and whether or not it is true. It checks whether there is a viewing area, whether there is a paired answer group area, and whether the viewing area and answer input area are included.
프로세서(130)는 세부 영역을 검출함에 있어서 객체의 영역과 유형을 찾는 객체 검출 모델과는 상이한 제2 객체 검출 모델을 사용하거나, 텍스트 분석을 통해 객체의 정보를 추출하는 것이 가능하다. In detecting the detailed region, the processor 130 may use a second object detection model different from the object detection model that finds the region and type of the object or extract object information through text analysis.
프로세서(130)는 전자 문서 뷰어를 통해, 위치 정보와 함께 전자 문서의 정보를 제공한다. The processor 130 provides information of the electronic document along with location information through the electronic document viewer.
프로세서(130)는 예측한 객체의 유형 별로 검출된 객체 정보(문항 정보)를 저장한다. The processor 130 stores detected object information (item information) for each predicted object type.
본 발명의 다른 실시예에 따르면, 프로세서(130)는 문항 영역 및 유형의 동시 추출을 수행하는 과정에서, i) 학습 과정에서 습득된 문항 영역 및 유형의 특징 정보 또는 ii) 출판사별 데이터베이스에 포함된 문항 영역 및 유형의 특징 정보를 고려하여 추출의 속도를 향상시키는 것이 가능하다. According to another embodiment of the present invention, the processor 130, in the process of simultaneously extracting item areas and types, i) characteristic information of item areas and types acquired in the learning process or ii) information included in the database for each publisher It is possible to improve the speed of extraction by considering the characteristic information of the item domain and type.
예컨대, 'AA 교육' 출판사가 출판한(또는 e-book으로 발행한) 문제집의 경우, 개념별 테스트, 서술형 테스트, 사고력 테스트, 창의/융합/코딩 테스트, 중간고사/기말고사 기본 테스트 별로 문항이 표시되는 형태가 동일하거나 유사하다. For example, in the case of the workbook published by 'AA Education' publisher (or published as an e-book), questions are provided for each concept test, descriptive test, thinking test, creativity/convergence/coding test, and midterm/final basic test. The displayed form is the same or similar.
프로세서(130)는 각 테스트 항목(개념별 테스트, 서술형 테스트, 사고력 테스트, 창의/융합/코딩 테스트, 중간고사/기말고사 기본 테스트)별로 문항 영역과 유형을 동시 추출하는 과정에서 객체 검출 모델 및 문항 정보 데이터베이스를 갱신하며 학습을 수행하고, 학습된 결과를 바탕으로 후속하여 분류하게 되는 문항 영역 및 유형에 대한 추출 속도를 증가시킬 수 있다. The processor 130 simultaneously extracts the item area and type for each test item (conceptual test, descriptive test, thinking test, creativity/convergence/coding test, midterm/final basic test), object detection model and question It is possible to perform learning while updating the information database, and to increase the extraction speed for item areas and types to be subsequently classified based on the learned results.
또는, 프로세서(130)는 출판사별 데이터베이스에 포함된 특징정보(예컨대, AA교육의 중학교 2학년 수학 문제집, RR교육의 중학교 1학년 수학 문제집 등, 출판사별로 각각의 테스트 항목과 각각의 테스트 항목이 표시되는 형태 정보를 특징 정보로 저장한 것으로, 이 때의 형태 정보는 그래픽, 이미지, 글씨체, 색상, 배치 위치 등을 포함할 수 있다)를 이용하여, 문항 영역과 유형을 동시에 추출하는 것이 가능하다. 이를 통해, 추출된 페이지 내에서 전체 영역에 대한 스캔(scan) 및 분류를 수행하지 않고, 특징 정보를 토대로 문항의 영역과 유형을 보다 빠르게 추출하는 것이 가능하다.Alternatively, the processor 130 displays characteristic information included in the database for each publisher (eg, AA education 2nd grade math problem book, RR education 1st grade math problem book, etc., each test item and each test item for each publisher) It is possible to extract the item area and type at the same time by using the form information stored as feature information. Through this, it is possible to more quickly extract the area and type of an item based on feature information without scanning and classifying the entire area within the extracted page.
도 2는 본 발명의 실시예에 따른 문제지의 객체 영역을 도시한다. 2 shows an object area of a question sheet according to an embodiment of the present invention.
프로세서(130)는 검출된 문항 영역 내에, 문항 번호 영역과 문항 텍스트 영역이 포함되어 있는지를 판단하고, 문항 번호 영역(QN)과 문항 텍스트 영역(QT)이 포함되어 있으면, 해당 객체를 문항 단위 객체로 결정한다. The processor 130 determines whether the item number area and the item text area are included in the detected item area, and if the item number area (QN) and the item text area (QT) are included, the corresponding object is an item unit object. to decide
문항 단위 객체가 결정되면, 보기 번호 영역(EN1 내지 EN5), 보기 텍스트 영역(ET1 내지 ET5)의 존재 여부, 서술형 단답을 작성하기 위한 답안 영역(ab)의 존재 여부, 진위(O, X) 여부를 선택할 수 있는 보기 영역의 존재 여부, 쌍으로 이루어진 보기 번호 영역인 답지군 영역의 존재 여부, 및 보기 영역과 답안 입력 영역의 존재 여부를 통해 문항의 유형을 결정한다. When the question unit object is determined, whether there is an example number area (EN1 to EN5), an example text area (ET1 to ET5), an answer area (ab) for writing a short answer, and whether or not it is true (O, X) The type of question is determined through the existence or non-existence of the view area for selecting, the existence of the answer sheet group area, which is a paired view number area, and the existence of the view area and answer input area.
문항 유형 결정에 따라, 검출된 해당 객체에 대한 페이지 정보 및 좌표 정보를 저장하게 된다. According to the determination of the item type, page information and coordinate information for the detected object are stored.
도 3은 본 발명의 실시예에 따른 전자 문서 학습용 컨텐츠 내 문항 위치 및 유형 자동 추출 방법을 도시한다. 3 illustrates a method for automatically extracting the position and type of a question in contents for learning electronic documents according to an embodiment of the present invention.
본 발명의 실시예에 따른 전자 문서 학습용 컨텐츠 내 문항 위치 및 유형 자동 추출 방법은 학습용 컨텐츠를 수신하는 단계(S310)와, 객체 검출 모델 기반으로 객체의 영역과 유형을 동시에 예측하는 단계(S320)와, 문항 정보를 추출하고, 정답 및 해설 정보를 추출하는 단계(S330)와, 문항, 정답 및 해설 정보의 매칭 여부를 확인하는 단계(S340)와, 문항 유형 별 세부 영역을 추출하는 단계(S350) 및 객체 유형 별로 추출된 객체 정보를 저장하는 단계(S360)를 포함한다. The method for automatically extracting the location and type of items in contents for learning electronic documents according to an embodiment of the present invention includes the steps of receiving contents for learning (S310), simultaneously predicting the area and type of an object based on an object detection model (S320), , Extracting item information and extracting correct answer and commentary information (S330), checking whether the item, correct answer, and commentary information match (S340), and extracting detailed areas for each item type (S350) and storing object information extracted for each object type (S360).
S320 단계는 학습용 컨텐츠 내에서 객체의 영역과 유형을 동시에 예측함에 있어서, 객체의 유형과 관련하여서는 문항인지, 또는 정답과 해설인지 여부를 예측한다. In step S320, in simultaneously predicting the area and type of an object within the learning content, whether it is an item or a correct answer and a commentary is predicted in relation to the object type.
S320 단계는 영역 추정 방식에 따라 사각형 모양의 바운딩 박스(Bounding Box) 안의 이미지 형태인 추정 영역에 대해 그 크기를 동일하게 만든 후, CNN(Convolutional Neural Network)을 거쳐 분류를 수행하고, 컨피던스 스코어(confidence score) 값을 이용하여 객체의 영역을 추정한다. In step S320, after making the estimated region, which is an image form in a rectangular bounding box, the same size according to the region estimation method, classification is performed through a Convolutional Neural Network (CNN), and a confidence score (confidence score) is performed. score) value to estimate the area of the object.
S320 단계는 이미지의 각 영역에 대해 객체 영역, 비객체 영역으로 분류를 수행하고, 예측된 객체 영역 중에서 검출 결과에 매칭되는 영역을 정상 검출 영역으로 분류하는 것이 가능하다. In step S320, it is possible to classify each region of the image into an object region and a non-object region, and classify a region matching the detection result among the predicted object regions as a normal detection region.
S320 단계는 이미지의 각 영역에 대해 객체 영역, 비객체 영역으로 분류를 수행하되, 복수의 분류기를 통해 나온 결과를 앙상블하여 객체의 유형을 예측하는 것이 가능하다. In step S320, classification is performed for each region of the image into an object region and a non-object region, and it is possible to predict the type of object by ensembling the results obtained through a plurality of classifiers.
S320 단계는 문항 유형과 관련하여, 문항의 영역 내에 존재하는 문항의 유형을 진위형, 선택형, 연결형, 단답형, 완성형, 서술형 중 적어도 어느 하나로 분류한다. Step S320 classifies the type of question existing in the domain of the question into at least one of a true/false type, a selective type, a connection type, a short answer type, a complete type, and a narrative type in relation to the item type.
S320 단계는 문항의 영역 내에서 문제 번호, 문제, 보기 번호, 보기, 답안 입력에 해당하는 위치 정보를 추출한다. Step S320 extracts location information corresponding to the question number, question number, answer number, answer, and answer input within the area of the question.
S330 단계는 정보를 추출함에 있어서, 단원 정보, 문제 수, 문제 종류, 문제 번호, 문제 유형, 페이지 정보를 추출한다. In step S330, unit information, number of problems, problem type, problem number, problem type, and page information are extracted in extracting information.
S340 단계는 S330 단계에서 추출된 문항 정보, 정답 및 해설 정보를 이용하여 객체 검출 모델이 예측한 값의 정확도를 확인한다. Step S340 checks the accuracy of the value predicted by the object detection model using the item information extracted in step S330, the correct answer, and the commentary information.
S340 단계에서 매칭 여부가 기준 이하인 것으로 확인되면, 임계값을 조절하는 단계를 수행하게 된다. In step S340, when it is determined that the matching is less than or equal to the standard, a step of adjusting the threshold value is performed.
S350 단계는 S340 단계에서의 확인 결과 매칭 기준이 충족되는 것으로 확인하면, 문항의 유형 별로 세부 영역을 추출한다. In step S350, as a result of checking in step S340, if it is confirmed that the matching criterion is satisfied, detailed areas are extracted for each item type.
S350 단계는 문항의 유형 별로 보기 번호 영역, 보기 텍스트 영역의 존재 여부, 서술형 단답을 작성하기 위한 답안 영역의 존재 여부, 진위 여부를 선택할 수 있는 보기 영역의 존재 여부, 쌍으로 이루어진 답지군 영역의 존재 여부 및 보기 영역과 답안 입력 영역이 포함되어 있는지 여부를 확인한다. In step S350, whether there is an example number area for each type of question, whether there is an example text area, whether or not an answer area for writing a short answer, whether a view area for selecting authenticity or falseness exists, and existence of a paired answer group area Check whether and whether the view area and answer input area are included.
이 때, S350 단계는 S320 단계에서의 객체 검출 모델과는 상이한 제2 객체 검출 모델을 사용하거나, 텍스트 분석을 통해 객체의 정보를 추출하는 것이 가능하다. At this time, in step S350, it is possible to use a second object detection model different from the object detection model in step S320 or to extract object information through text analysis.
S360 단계는 객체의 유형 별로 검출된 객체 정보를 저장하고, 전자 문서 뷰어를 통해 객체의 위치 정보와 함께 전자문서 정보를 디스플레이하도록 제어한다. In operation S360 , object information detected for each type of object is stored, and electronic document information is displayed along with object location information through an electronic document viewer.
한편, 본 발명의 실시예에 따른 전자 문서 학습용 컨텐츠 내 문항 위치 및 유형 자동 추출 방법은 컴퓨터 시스템에서 구현되거나, 또는 기록매체에 기록될 수 있다. 컴퓨터 시스템은 적어도 하나 이상의 프로세서와, 메모리와, 사용자 입력 장치와, 데이터 통신 버스와, 사용자 출력 장치와, 저장소를 포함할 수 있다. 전술한 각각의 구성 요소는 데이터 통신 버스를 통해 데이터 통신을 한다.Meanwhile, the method for automatically extracting the position and type of a question in contents for learning electronic documents according to an embodiment of the present invention may be implemented in a computer system or recorded in a recording medium. A computer system may include at least one processor, a memory, a user input device, a data communication bus, a user output device, and a storage. Each of the aforementioned components communicates data through a data communication bus.
컴퓨터 시스템은 네트워크에 커플링된 네트워크 인터페이스를 더 포함할 수 있다. 프로세서는 중앙처리 장치(central processing unit (CPU))이거나, 혹은 메모리 및/또는 저장소에 저장된 명령어를 처리하는 반도체 장치일 수 있다. The computer system may further include a network interface coupled to the network. The processor may be a central processing unit (CPU) or a semiconductor device that processes instructions stored in memory and/or storage.
메모리 및 저장소는 다양한 형태의 휘발성 혹은 비휘발성 저장매체를 포함할 수 있다. 예컨대, 메모리는 ROM 및 RAM을 포함할 수 있다.The memory and storage may include various types of volatile or non-volatile storage media. For example, memory may include ROM and RAM.
따라서, 본 발명의 실시예에 따른 전자 문서 학습용 컨텐츠 내 문항 위치 및 유형 자동 추출 방법은 컴퓨터에서 실행 가능한 방법으로 구현될 수 있다. 본 발명의 실시예에 따른 전자 문서 학습용 컨텐츠 내 문항 위치 및 유형 자동 추출 방법이 컴퓨터 장치에서 수행될 때, 컴퓨터로 판독 가능한 명령어들이 본 발명에 따른 전자 문서 학습용 컨텐츠 내 문항 위치 및 유형 자동 추출 방법을 수행할 수 있다.Accordingly, the method for automatically extracting the location and type of questions in the content for learning electronic documents according to an embodiment of the present invention can be implemented in a computer-executable manner. When the method of automatically extracting the location and type of items in the content for learning electronic documents according to an embodiment of the present invention is performed in a computer device, computer-readable instructions perform the method of automatically extracting the location and type of items in the contents for learning electronic documents according to the present invention. can be done
한편, 상술한 본 발명에 따른 전자 문서 학습용 컨텐츠 내 문항 위치 및 유형 자동 추출 방법은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현되는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록 매체로는 컴퓨터 시스템에 의하여 해독될 수 있는 데이터가 저장된 모든 종류의 기록 매체를 포함한다. 예를 들어, ROM(Read Only Memory), RAM(Random Access Memory), 자기 테이프, 자기 디스크, 플래시 메모리, 광 데이터 저장장치 등이 있을 수 있다. 또한, 컴퓨터로 판독 가능한 기록매체는 컴퓨터 통신망으로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 읽을 수 있는 코드로서 저장되고 실행될 수 있다.Meanwhile, the above-described method for automatically extracting the location and type of questions in contents for learning electronic documents according to the present invention can be implemented as computer-readable codes on a computer-readable recording medium. Computer-readable recording media includes all types of recording media in which data that can be decoded by a computer system is stored. For example, there may be read only memory (ROM), random access memory (RAM), a magnetic tape, a magnetic disk, a flash memory, an optical data storage device, and the like. In addition, the computer-readable recording medium may be distributed in computer systems connected through a computer communication network, and stored and executed as readable codes in a distributed manner.

Claims (5)

  1. 전자 문서를 등록하는 입력부; an input unit for registering an electronic document;
    상기 전자 문서에 포함되는 학습용 컨텐츠에서 문항의 영역과 유형을 자동 추출하는 프로그램이 저장된 메모리; 및a memory storing a program for automatically extracting an area and type of an item from learning contents included in the electronic document; and
    상기 프로그램을 실행시키는 프로세서를 포함하고, A processor for executing the program;
    상기 프로세서는 문항이 존재하는 페이지를 추출하고, 추출된 페이지에서 문항의 영역 및 유형을 추출하고, 문항 정보 데이터베이스를 구축하는 것The processor extracts the page where the question exists, extracts the area and type of the question from the extracted page, and builds the question information database.
    인 전자 문서 학습용 컨텐츠 내 문항 영역 및 유형 자동 추출 시스템. A system for automatically extracting question areas and types within content for learning electronic documents.
  2. 제1항에 있어서, According to claim 1,
    상기 프로세서는 문항, 답안, 해설 및 정답 정보를 검출하는 객체 검출 모델을 이용하여 자동 추출을 수행하는 것The processor performs automatic extraction using an object detection model that detects item, answer, commentary, and correct answer information.
    인 전자 문서 학습용 컨텐츠 내 문항 영역 및 유형 자동 추출 시스템. A system for automatically extracting question areas and types within content for learning electronic documents.
  3. 제1항에 있어서, According to claim 1,
    상기 프로세서는 진위형, 선택형, 연결형, 단답형, 완성형, 서술형 중 적어도 어느 하나를 포함하는 기준으로 상기 문항의 유형을 추출하는 것The processor extracts the type of the question based on a criterion including at least one of a true/false type, a selection type, a connection type, a short answer type, a complete type, and a descriptive type.
    인 전자 문서 학습용 컨텐츠 내 문항 영역 및 유형 자동 추출 시스템. A system for automatically extracting question areas and types within content for learning electronic documents.
  4. 제1항에 있어서, According to claim 1,
    상기 프로세서는 상기 문항의 정보와, 정답 및 해설 정보를 추출하고, 이들의 매칭 여부를 확인하여 객체 검출 모델의 정확도를 확인하고, 매칭 기준이 충족되지 않는 경우 임계값을 조절하고, 매칭 기준이 충족되는 경우 상기 문항에 대한 세부 영역을 추출하는 것The processor extracts information of the question, correct answer information, and explanation information, checks whether they match, checks the accuracy of the object detection model, adjusts a threshold value when matching criteria are not met, and matches matching criteria. If it is, extracting the detailed area for the above question
    인 전자 문서 학습용 컨텐츠 내 문항 영역 및 유형 자동 추출 시스템. A system for automatically extracting question areas and types within content for learning electronic documents.
  5. 제1항에 있어서, According to claim 1,
    상기 프로세서는 상기 문항의 유형 별로 보기 번호 영역, 보기 텍스트 영역의 존재 여부, 서술형 단답을 작성하기 위한 답안 영역의 존재 여부, 진위 여부를 선택할 수 있는 보기 영역의 존재 여부, 쌍으로 이루어진 답지군 영역의 존재 여부 및 보기 영역과 답안 입력 영역이 포함되어 있는지 여부를 확인하는 것The processor determines whether an example number area for each type of question, whether or not an example text area exists, whether an answer area for writing short answers, whether a view area for selecting authenticity or falseness exists, and whether a paired answer group area exists. To check whether it exists and whether the view area and answer input area are included
    인 전자 문서 학습용 컨텐츠 내 문항 영역 및 유형 자동 추출 시스템. A system for automatically extracting question areas and types within content for learning electronic documents.
PCT/KR2021/018277 2021-11-29 2021-12-03 System for automatically extracting question area and type within content for learning included in electronic document and method therefor WO2023095991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0167546 2021-11-29
KR1020210167546A KR20230080113A (en) 2021-11-29 2021-11-29 System and method for extracting location and type of question automatically in learning contents in the form of electronic documents

Publications (1)

Publication Number Publication Date
WO2023095991A1 true WO2023095991A1 (en) 2023-06-01

Family

ID=86539799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018277 WO2023095991A1 (en) 2021-11-29 2021-12-03 System for automatically extracting question area and type within content for learning included in electronic document and method therefor

Country Status (2)

Country Link
KR (1) KR20230080113A (en)
WO (1) WO2023095991A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110255784A1 (en) * 2010-01-15 2011-10-20 Copanion, Inc. Systems and methods for automatically extracting data from eletronic documents using multiple character recognition engines
KR20120044592A (en) * 2010-10-28 2012-05-08 삼성에스디에스 주식회사 Method and apparatus for extracting data of contents for studying book
KR20170130222A (en) * 2016-05-18 2017-11-28 한밭대학교 산학협력단 A system for solving problems and using corresponding explanation contents and its systematic building method
KR20180117458A (en) * 2017-04-19 2018-10-29 아시아나아이디티 주식회사 Method for automatic document classification using sentence classification and device thereof
KR20190028045A (en) * 2017-09-08 2019-03-18 주식회사 듀코젠 A learning system capable of providing a cloud-based digital item authoring solution and distribution service platform, and the control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110255784A1 (en) * 2010-01-15 2011-10-20 Copanion, Inc. Systems and methods for automatically extracting data from eletronic documents using multiple character recognition engines
KR20120044592A (en) * 2010-10-28 2012-05-08 삼성에스디에스 주식회사 Method and apparatus for extracting data of contents for studying book
KR20170130222A (en) * 2016-05-18 2017-11-28 한밭대학교 산학협력단 A system for solving problems and using corresponding explanation contents and its systematic building method
KR20180117458A (en) * 2017-04-19 2018-10-29 아시아나아이디티 주식회사 Method for automatic document classification using sentence classification and device thereof
KR20190028045A (en) * 2017-09-08 2019-03-18 주식회사 듀코젠 A learning system capable of providing a cloud-based digital item authoring solution and distribution service platform, and the control method thereof

Also Published As

Publication number Publication date
KR20230080113A (en) 2023-06-07

Similar Documents

Publication Publication Date Title
US10706320B2 (en) Determining a document type of a digital document
CN108564035B (en) Method and system for identifying information recorded on document
CN111931664A (en) Mixed note image processing method and device, computer equipment and storage medium
CN111062259A (en) Form recognition method and device
WO2023279045A1 (en) Ai-augmented auditing platform including techniques for automated document processing
CN112800848A (en) Structured extraction method, device and equipment of information after bill identification
CN111242083B (en) Text processing method, device, equipment and medium based on artificial intelligence
CN109858036A (en) A kind of document partitioning method and device
CN110135225B (en) Sample labeling method and computer storage medium
Dutta et al. Multi-lingual text localization from camera captured images based on foreground homogenity analysis
CN111932418A (en) Student learning condition identification method and system, teaching terminal and storage medium
US10095677B1 (en) Detection of layouts in electronic documents
WO2023095991A1 (en) System for automatically extracting question area and type within content for learning included in electronic document and method therefor
CN111553361B (en) Pathological section label identification method
CN116030469A (en) Processing method, processing device, processing equipment and computer readable storage medium
CN113537221A (en) Image recognition method, device and equipment
CN112949672A (en) Commodity identification method, commodity identification device, commodity identification equipment and computer readable storage medium
CN110852082A (en) Synonym determination method and device
CN109886093A (en) A kind of formula detection method, equipment and computer readable storage medium
Lin et al. Multilingual corpus construction based on printed and handwritten character separation
CN117859122A (en) AI-enhanced audit platform including techniques for automated document processing
Govindaraju et al. Newspaper image understanding
CN114036297A (en) Statement classification method and device, terminal equipment and storage medium
JP2021125040A (en) Document sorting system, document sorting method and program
CN110956366A (en) Method for testing construction consistency of optical splitter in dimensional quality inspection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE