WO2023095934A1 - Method and system for lightening head neural network of object detector - Google Patents

Method and system for lightening head neural network of object detector Download PDF

Info

Publication number
WO2023095934A1
WO2023095934A1 PCT/KR2021/017317 KR2021017317W WO2023095934A1 WO 2023095934 A1 WO2023095934 A1 WO 2023095934A1 KR 2021017317 W KR2021017317 W KR 2021017317W WO 2023095934 A1 WO2023095934 A1 WO 2023095934A1
Authority
WO
WIPO (PCT)
Prior art keywords
neural network
anchor
object detector
detector model
pruning
Prior art date
Application number
PCT/KR2021/017317
Other languages
French (fr)
Korean (ko)
Inventor
채명수
김태호
박한철
Original Assignee
주식회사 노타
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 노타 filed Critical 주식회사 노타
Priority to PCT/KR2021/017317 priority Critical patent/WO2023095934A1/en
Priority to KR1020237036978A priority patent/KR20230162676A/en
Publication of WO2023095934A1 publication Critical patent/WO2023095934A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks

Definitions

  • Embodiments of the present invention relate to objects, detectors, heads, neural networks, weight reduction methods, and systems, and more particularly, to weight reduction methods and systems specialized for weight reduction of head neural networks rather than weight reduction centered on backbone neural networks.
  • the present invention is a study conducted with the support of the Information and Communications Planning and Evaluation Institute with financial resources from the government (Ministry of Science and ICT) in 2021 (No. This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2021-0-00907, Development of Adaptive and Lightweight Edge-Collaborative Analysis Technology for Enabling Proactively Immediate Response and Rapid Learning)).
  • the deep neural network-based object detector model consists of a backbone neural network that extracts features for input and a head neural network that predicts the coordinates and object type of an object.
  • a method of using an efficient convolutional neural network such as MobileNet instead of a convolutional neural network model having a relatively large size and excellent performance has been mainly used.
  • the model of the backbone neural network is compressed using lightweight techniques such as pruning and low-rank approximation of the backbone neural network.
  • a lightweight method performed by a computer device including at least one processor comprising: receiving, by the at least one processor, an object detector model; replacing, by the at least one processor, a head neural network of the input object detector model; determining, by the at least one processor, whether to perform anchor pruning; performing anchor pruning on the object detector model replaced by the head neural network, when it is determined by the at least one processor to perform the anchor pruning; and outputting, by the at least one processor, a lightweight object detector model.
  • the step of replacing the head neural network may be characterized by reducing the number of output channels of a convolutional layer constituting the head neural network of the input object detector model.
  • the step of replacing the head neural network may include converting a convolutional layer constituting the head neural network of the input object detector model to another efficient convolutional layer or block (eg, a shuffle block) It can be characterized by replacing with.
  • the head neural network of the input object detector model is replaced with a head neural network searched using a neural architecture search (NAS) method. can do.
  • NAS neural architecture search
  • the pruning of anchors may include measuring importance of anchors; removing anchors belonging to a predetermined ratio or less based on the importance of the anchors; and re-learning an object detector model from which anchors belonging to the predetermined ratio or less are removed.
  • the step of measuring the importance of each anchor may be characterized in that the importance of each independent anchor is determined based on the extent of performance degradation before and after removing the output of each independent anchor.
  • the step of measuring the importance of the anchor may be characterized in that the importance of the anchor is determined based on the degree of redundancy of the bounding box predicted by each anchor.
  • the redundancy of the bounding box is a value obtained by dividing the number of anchors whose Intersection over Union (IoU) score with the bounding box predicted by the first anchor is equal to or greater than a preset value by the number of bounding boxes predicted by one anchor It can be characterized in that it is calculated based on.
  • IoU Intersection over Union
  • the IoU score may be calculated based on a value obtained by dividing the area of an overlapping region of two bounding boxes predicted by two anchors by the total area of the two bounding boxes.
  • the outputting of the lightweight object detector model may include outputting, as the lightweight object detector model, an object detector model in which the head neural network is replaced when the anchor pruning is not performed, and the anchor pruning is not performed.
  • the head neural network is replaced and the object detector model for which the anchor pruning is performed may be output as the lightweight object detector model.
  • a computer program stored in a computer readable recording medium is provided in combination with a computer device to execute the method on the computer device.
  • a computer readable recording medium having a program for executing the method in a computer device is recorded.
  • It includes at least one processor implemented to execute instructions readable by a computer device, receiving an object detector model by the at least one processor, replacing a head neural network of the received object detector model, and pruning anchors. , and if it is determined to perform the anchor pruning, the head neural network performs anchor pruning on the replaced object detector model and outputs a lightweight object detector model.
  • a computer device that performs the device.
  • FIG. 1 is a diagram illustrating an example of a network environment according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an example of a computer device according to one embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a structure of an object detector according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of an original image and a feature map according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating an example of a weight reduction method according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of calculating an IoU score according to an embodiment of the present invention.
  • a lightweight system according to embodiments of the present invention may be implemented by at least one computer device.
  • a computer program according to an embodiment of the present invention may be installed and driven in the computer device, and the computer device may perform the weight reduction method according to the embodiments of the present invention under the control of the driven computer program.
  • the above-described computer program may be combined with a computer device and stored in a computer readable recording medium to execute the weight reduction method on a computer.
  • FIG. 1 is a diagram illustrating an example of a network environment according to an embodiment of the present invention.
  • the network environment of FIG. 1 shows an example including a plurality of electronic devices 110 , 120 , 130 , and 140 , a plurality of servers 150 and 160 , and a network 170 .
  • 1 is an example for explanation of the invention, and the number of electronic devices or servers is not limited as shown in FIG. 1 .
  • the network environment of FIG. 1 only describes one example of environments applicable to the present embodiments, and the environment applicable to the present embodiments is not limited to the network environment of FIG. 1 .
  • the plurality of electronic devices 110, 120, 130, and 140 may be fixed terminals implemented as computer devices or mobile terminals.
  • Examples of the plurality of electronic devices 110, 120, 130, and 140 include a smart phone, a mobile phone, a navigation device, a computer, a laptop computer, a digital broadcast terminal, a personal digital assistant (PDA), and a portable multimedia player (PMP). ), and tablet PCs.
  • FIG. 1 shows the shape of a smartphone as an example of the electronic device 110, but in the embodiments of the present invention, the electronic device 110 substantially uses a wireless or wired communication method to transmit other information via the network 170. It may refer to one of various physical computer devices capable of communicating with the electronic devices 120 , 130 , and 140 and/or the servers 150 and 160 .
  • the communication method is not limited, and short-distance wireless communication between devices as well as a communication method utilizing a communication network (eg, a mobile communication network, a wired Internet, a wireless Internet, and a broadcasting network) that the network 170 may include may also be included.
  • a communication network eg, a mobile communication network, a wired Internet, a wireless Internet, and a broadcasting network
  • the network 170 may include a personal area network (PAN), a local area network (LAN), a campus area network (CAN), a metropolitan area network (MAN), a wide area network (WAN), and a broadband network (BBN). , one or more arbitrary networks such as the Internet.
  • PAN personal area network
  • LAN local area network
  • CAN campus area network
  • MAN metropolitan area network
  • WAN wide area network
  • BBN broadband network
  • the network 170 may include any one or more of network topologies including a bus network, a star network, a ring network, a mesh network, a star-bus network, a tree or a hierarchical network, and the like. Not limited.
  • Each of the servers 150 and 160 communicates with the plurality of electronic devices 110, 120, 130, and 140 through the network 170 to provide commands, codes, files, contents, services, and the like, or a computer device or a plurality of computers. It can be implemented in devices.
  • the server 150 provides a service (eg, an instant messaging service, a social network service, a payment service, a virtual exchange) to a plurality of electronic devices 110, 120, 130, and 140 connected through the network 170. service, risk monitoring service, game service, group call service (or voice conference service), messaging service, mail service, map service, translation service, financial service, search service, content provision service, etc.).
  • FIG. 2 is a block diagram illustrating an example of a computer device according to one embodiment of the present invention.
  • Each of the plurality of electronic devices 110 , 120 , 130 , and 140 or each of the servers 150 and 160 described above may be implemented by the computer device 200 shown in FIG. 2 .
  • the computer device 200 may include a memory 210, a processor 220, a communication interface 230, and an input/output interface 240.
  • the memory 210 is a computer-readable recording medium and may include a random access memory (RAM), a read only memory (ROM), and a permanent mass storage device such as a disk drive.
  • RAM random access memory
  • ROM read only memory
  • a permanent mass storage device such as a disk drive.
  • a non-perishable mass storage device such as a ROM and a disk drive may be included in the computer device 200 as a separate permanent storage device distinct from the memory 210 .
  • an operating system and at least one program code may be stored in the memory 210 . These software components may be loaded into the memory 210 from a computer-readable recording medium separate from the memory 210 .
  • the separate computer-readable recording medium may include a computer-readable recording medium such as a floppy drive, a disk, a tape, a DVD/CD-ROM drive, and a memory card.
  • software components may be loaded into the memory 210 through the communication interface 230 rather than a computer-readable recording medium.
  • software components may be loaded into memory 210 of computer device 200 based on a computer program installed by files received over network 170 .
  • the processor 220 may be configured to process commands of a computer program by performing basic arithmetic, logic, and input/output operations. Instructions may be provided to processor 220 by memory 210 or communication interface 230 . For example, processor 220 may be configured to execute received instructions according to program codes stored in a recording device such as memory 210 .
  • the communication interface 230 may provide a function for the computer device 200 to communicate with other devices (eg, storage devices described above) through the network 170 .
  • a request, command, data, file, etc. generated according to a program code stored in a recording device such as the memory 210 by the processor 220 of the computer device 200 is controlled by the communication interface 230 to the network ( 170) to other devices.
  • signals, commands, data, files, etc. from other devices may be received by the computer device 200 through the communication interface 230 of the computer device 200 via the network 170 .
  • Signals, commands, data, etc. received through the communication interface 230 may be transferred to the processor 220 or the memory 210, and files, etc. may be stored as storage media that the computer device 200 may further include (described above). permanent storage).
  • the input/output interface 240 may be a means for interface with the input/output device 250 .
  • the input device may include a device such as a microphone, keyboard, or mouse
  • the output device may include a device such as a display or speaker.
  • the input/output interface 240 may be a means for interface with a device in which functions for input and output are integrated into one, such as a touch screen.
  • At least one of the input/output devices 250 may be configured as one device with the computer device 200 . For example, like a smart phone, a touch screen, a microphone, a speaker, and the like may be implemented in a form included in the computer device 200 .
  • computer device 200 may include fewer or more elements than those of FIG. 2 . However, there is no need to clearly show most of the prior art components.
  • the computer device 200 may be implemented to include at least some of the aforementioned input/output devices 250 or may further include other components such as a transceiver and a database.
  • FIG. 3 is a diagram showing an example of a structure of an object detector according to an embodiment of the present invention.
  • the object detector may be divided into a backbone neural network, a neck neural network, and a head neural network, but in the object detector according to the present embodiment, the head neural network may be defined as both the intermediate neural network and the head neural network.
  • the pixels of the input image can be compressed into abstract values while passing through the convolutional layer of the backbone neural network, and can be expressed as a feature map with a smaller resolution than before passing through the convolutional layer.
  • (1/n) of “Convolutional layer (1/n)” shown in FIG. 3 may mean a reduction in the spatial size of an image after passing through the corresponding convolutional layer. For example, when an image with a resolution of 800 ⁇ 800 passes through a "convolutional layer (1/2)", it can be reduced to a resolution of 400 ⁇ 400.
  • a new feature map can be generated by passing feature maps of different sizes through another convolutional layer. At this time, except for the feature map of the smallest size ("Feature map (1/32)" in the embodiment of FIG. After upsampling the size of the maps, they are combined to create a new feature map, which is then passed through a convolutional layer.
  • Each grid of each feature map reduced to 1/n size represents n cells of the original image, and how m anchors pre-specified for each grid must be calibrated to form a bounding box that encloses the object. box) and object types nested within the bounding box.
  • m identical anchors are applied to each feature map, and different anchors can be defined in different feature maps. If 9 predefined anchors exist for each feature map and 4 feature maps are generated, a total of 36 independent anchors can be defined.
  • the weight reduction method according to the present embodiment may be performed by at least one computer device 200 implementing the weight reduction system.
  • the processor 220 of the computer device 200 may be implemented to execute a control instruction according to an operating system code or at least one computer program code included in the memory 210 .
  • the processor 220 controls the computer device 200 so that the computer device 200 performs the steps 510 to 550 included in the method of FIG. 5 according to a control command provided by a code stored in the computer device 200. can control.
  • the computer device 200 may receive an object detector model.
  • the computer device 200 may receive an original model of an object detector for lightening a head neural network out of an overall structure.
  • the computer device 200 may replace the head neural network of the input object detector model.
  • the computer device 200 may replace the head neural network included in the original model of the object detector with a relatively small head neural network (lightweight head neural network). Since the backbone neural network trained on a large-sized model has a better feature extraction ability, in step 520, the computer device 200 maintains the parameters of the backbone neural network of the pre-trained input model while maintaining the head If you modify the neural network, you can get better performance.
  • the computer device 200 may replace the head neural network with a lightweight head neural network through at least one of methods (1) to (3) below.
  • a method of searching for a high-performance, high-efficiency head neural network using a Neural Architecture Search for example, the computer device 200 automatically searches for the neural network structure of the head neural network of the object detector model input. It can be replaced with the head neural network searched using the technique.
  • NAS Neural Architecture Search
  • a method of reducing the number of output channels of the convolutional layer constituting the head neural network for example, the computer device 200 reduces the number of output channels of the convolutional layer constituting the head neural network of the received object detector model, thereby reducing the number of output channels of the head neural network can be replaced.
  • a method of replacing the convolution layer constituting the head neural network with a more efficient convolution layer or block eg, a shuffle block
  • the computer device 200 calculates the input object detector model
  • a convolutional layer constituting the head neural network may be replaced with another convolutional layer block.
  • the head neural network After replacing the head neural network, since the parameters of the replaced head neural network are set to initial values, in order to increase the performance of the model replaced by the head neural network as much as the performance of the original model of the object detector, the head neural network is used with training data from the original model. Retraining can be performed on this replaced model. At this time, as in the transfer learning method, learning is started from the parameters of the backbone neural network that is learned from a large model and has good parameters, but both the method of learning only the replaced (lightened) head neural network or the method of updating the backbone neural network together are used this is possible
  • method (2) of reducing the number of output channels of the convolutional neural network layer is the easiest method to use, and the head neural network while maintaining the parameters of the backbone neural network through experiments. It was confirmed that latency (inference speed) can be improved while achieving better performance than the original model when applying the method of retraining the entire backbone and head neural network after adjusting the number of channels.
  • the object detector model used in the experiment is "Yolo v5", and while maintaining the parameters of the backbone neural network of the input object detector model, the head neural network was replaced with a head neural network composed of convolutional layers with a smaller number of output channels. .
  • the data used at this time was OCR (Optical Character Reader) data for recognizing string objects on images, which was learned with 36,939 images and evaluated with 3,000 evaluation data. At this time, the F1 score was used as a performance indicator of the object detector.
  • the performance evaluation results are shown in Table 1 below.
  • the computer device 200 may determine whether to perform anchor pruning.
  • Anchor pruning can be performed to further improve inference speed after the head neural network is replaced.
  • anchor pruning can improve inference speed in two aspects (1) and (2) by removing predefined anchors in object detectors: Reduced the number of modifiers for each anchor
  • Inference speed can be improved by reducing the number of bounding boxes used in the NMS (Non-Maximum Suppression) process of pairing and comparing predicted bounding boxes to select the best bounding box among overlapping bounding boxes.
  • Anchor pruning is difficult to use if the total number of predefined anchors is small or if the anchor-free object detector is an anchor-free object detector, but most high-performance object detectors have a large number of anchors. Anchor pruning is possible for detectors.
  • step 540 may be performed, and if it is determined not to perform anchor pruning, step 550 may be performed.
  • the computer device 200 may perform anchor pruning on the model in which the head neural network is replaced.
  • anchor pruning can be performed in three steps (1) to (3) below.
  • Anchor importance measurement for example, the computer device 200 may measure the anchor importance.
  • the computer device 200 may remove r% of anchors based on the importance of the anchors.
  • r may be a natural number, and the computer device 200 may remove anchors belonging to r% or less based on importance among all anchors.
  • Model re-learning for example, the computer device 200 may re-learn a model from which r% anchors have been removed.
  • Anchor importance measurement (1) can be performed through one of two of the following (a) and (b).
  • the computer device 200 may perform performance evaluation on the verification data set after removing outputs of independent anchors with respect to the stored prediction value for each anchor. At this time, the computer device 200 may measure the extent of performance degradation compared to the conventional one, consider anchors with a relatively small extent of performance degradation as important anchors, and consider anchors with a relatively large extent of performance degradation as unimportant anchors and sort them. there is. In other words, the computer device 200 may sort the anchors by determining the importance of each independent anchor based on the extent of performance degradation before and after removing the output of each independent anchor.
  • each bounding box may be calculated as a value obtained by dividing the number of anchors whose Intersection over Union (IoU) scores of x or more with bounding boxes predicted by other anchors by the number of bounding boxes predicted by one anchor.
  • the computer device 200 may determine the importance of anchors based on the degree of redundancy of the bounding box predicted by each anchor.
  • the score of IoU measures the degree to which two bounding boxes overlap, and can be calculated as a value obtained by dividing the area of the area where the two bounding boxes overlap by the area of the entire area of the two bounding boxes. The closer the score of IoU is to 1, the two bounding boxes can be regarded as identical, and the closer to 0, the two bounding boxes can be regarded as different.
  • Score may correspond to an IoU score
  • Area of overlap means the area of overlapping two bounding boxes
  • Area of union means the total area of two bounding boxes, respectively. can do.
  • Score may be calculated as a value obtained by dividing "Area of overlap” by "Area of union”.
  • the computer device 200 may remove anchors of the lower r% of the ordered anchors among the predefined anchors.
  • the value of r may be preset in consideration of the degree of improvement in inference speed versus performance degradation using the verification data set.
  • the computer device 200 retrains the model using the training data used when the original object detector was trained similarly in order to adapt the model to the newly defined anchor after anchor pruning. can be done
  • the computer device 200 may output a lightweight object detector model.
  • the computer device 200 may output a lightweight object detector model in which the head neural network is replaced, and when step 540 is performed, the computer device 200 replaces the head neural network. and a lightweight object detector model with anchor pruning performed can be output.
  • the system or device described above may be implemented as a hardware component or a combination of hardware components and software components.
  • devices and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable gate array (FPGA) , a programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions.
  • the processing device may run an operating system (OS) and one or more software applications running on the operating system.
  • a processing device may also access, store, manipulate, process, and generate data in response to execution of software.
  • the processing device includes a plurality of processing elements and/or a plurality of types of processing elements. It can be seen that it can include.
  • a processing device may include a plurality of processors or a processor and a controller. Other processing configurations are also possible, such as parallel processors.
  • Software may include a computer program, code, instructions, or a combination of one or more of the foregoing, which configures a processing device to operate as desired or processes independently or collectively. You can command the device.
  • Software and/or data may be any tangible machine, component, physical device, virtual equipment, computer storage medium or device, intended to be interpreted by or provide instructions or data to a processing device.
  • can be embodied in Software may be distributed on networked computer systems and stored or executed in a distributed manner.
  • Software and data may be stored on one or more computer readable media.
  • the method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the medium may continuously store programs executable by a computer or temporarily store them for execution or download.
  • the medium may be various recording means or storage means in the form of a single or combined hardware, but is not limited to a medium directly connected to a certain computer system, and may be distributed on a network. Examples of the medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical recording media such as CD-ROM and DVD, magneto-optical media such as floptical disks, and ROM, RAM, flash memory, etc.
  • examples of other media include recording media or storage media managed by an app store that distributes applications, a site that supplies or distributes various other software, and a server.
  • Examples of program instructions include high-level language codes that can be executed by a computer using an interpreter, as well as machine language codes such as those produced by a compiler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Image Analysis (AREA)

Abstract

A method and system for lightening a head neural network of an object detector are disclosed. The method for lightening according to an embodiment may comprise the steps of: receiving an object detector model as an input; replacing a head neural network of the object detector model that has been received as an input; determining whether or not to perform anchor pruning; if it is determined to perform the anchor pruning, performing anchor pruning on the object detector model in which the head neural network has been replaced; and outputting the lightened object detector model.

Description

객체 탐지기의 헤드 신경망 경량화 방법 및 시스템Objects, detectors, heads, neural networks, lightweight methods, and systems
본 발명의 실시예들은 객체 탐지기의 헤드 신경망 경량화 방법 및 시스템에 관한 것으로, 보다 상세하게는 백본 신경망 중심의 경량화가 아닌, 헤드 신경망 경량화에 특화된 경량화 방법 및 시스템에 관한 것이다.Embodiments of the present invention relate to objects, detectors, heads, neural networks, weight reduction methods, and systems, and more particularly, to weight reduction methods and systems specialized for weight reduction of head neural networks rather than weight reduction centered on backbone neural networks.
본 발명은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구이다(No. 2021-0-00907, 능동적 즉시 대응 및 빠른 학습이 가능한 적응형 경량 엣지 연동분석 기술개발. This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2021-0-00907, Development of Adaptive and Lightweight Edge-Collaborative Analysis Technology for Enabling Proactively Immediate Response and Rapid Learning)).The present invention is a study conducted with the support of the Information and Communications Planning and Evaluation Institute with financial resources from the government (Ministry of Science and ICT) in 2021 (No. This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2021-0-00907, Development of Adaptive and Lightweight Edge-Collaborative Analysis Technology for Enabling Proactively Immediate Response and Rapid Learning)).
자율 주행 자동차, 스마트 신호 제어와 같은 시스템은 실시간성이 요구되지만, 리소스의 크기가 상대적으로 작은 디바이스 상에서 심층 신경망(deep neural network) 기반 객체 탐지기를 작동시키기 때문에 심층 신경망 모델에 대한 경량화가 필수적으로 수반되어야 한다. Systems such as self-driving cars and smart signal control require real-time performance, but because a deep neural network-based object detector operates on a device with a relatively small resource size, lightweighting of the deep neural network model is essential. It should be.
심층 신경망 기반 객체 탐지기 모델은 입력에 대한 자질(feature)을 추출하는 백본(backbone) 신경망과 객체의 좌표와 객체 유형을 예측하는 헤드(head) 신경망으로 구성되어 있는데, 기존에는 백본 신경망 경량화에 대해서만 연구가 집중되었다.The deep neural network-based object detector model consists of a backbone neural network that extracts features for input and a head neural network that predicts the coordinates and object type of an object. Previously, only studies on lightweight backbone neural networks have been conducted. has been focused
백본 신경망의 경량화 방법으로는 크기가 상대적으로 크고 성능이 우수한 합성곱 신경망(convolutional neural network) 모델 대신 모바일넷(MobileNet)과 같이 효율적인 합성곱 신경망을 사용하는 방식이 주로 이용되었다. 또한 백본 신경망을 가지치기(pruning), 로우 랭크 근사화(low-rank approximation)와 같은 경량 화 기법을 이용하여 백본 신경망의 모델을 압축하기도 한다.As a method of lightening the backbone neural network, a method of using an efficient convolutional neural network such as MobileNet instead of a convolutional neural network model having a relatively large size and excellent performance has been mainly used. In addition, the model of the backbone neural network is compressed using lightweight techniques such as pruning and low-rank approximation of the backbone neural network.
최근 효율적인 백본 신경망에 대한 연구가 활발히 이뤄지고 있으며, 백본 신경망의 경량화 기법들이 고도화되면서 백본 신경망의 연산량의 비중이 줄어들고 실제 예측을 수행하는 헤드 신경망의 연산량의 비중이 상대적으로 커지고 있다. 그러나 객체 탐지기의 헤드 신경망 경량화에 대한 논의와 연구는 활발하게 이뤄지지 않고 있다.Recently, research on efficient backbone neural networks has been actively conducted, and as lightweight techniques of backbone neural networks have been advanced, the proportion of computations in backbone neural networks is decreasing and the proportion of computations in head neural networks that perform actual predictions is relatively increasing. However, discussions and research on weight reduction of the head neural network of object detectors have not been actively conducted.
기존에 주로 연구되어왔던 백본 신경망 중심의 경량화가 아닌, 헤드 신경망 경량화에 특화된 객체 탐지기의 헤드 신경망 경량화 방법 및 시스템을 제공한다.We provide a method and system for reducing the weight of the head neural network of an object detector, which is specialized for weight reduction of the head neural network, rather than the weight reduction of the backbone neural network, which has been mainly studied in the past.
적어도 하나의 프로세서를 포함하는 컴퓨터 장치에 의해 수행되는 경량화 방법에 있어서, 상기 적어도 하나의 프로세서에 의해, 객체 탐지기 모델을 입력받는 단계; 상기 적어도 하나의 프로세서에 의해, 상기 입력받은 객체 탐지기 모델의 헤드 신경망을 교체하는 단계; 상기 적어도 하나의 프로세서에 의해, 앵커 가지치기의 수행 여부를 결정하는 단계; 상기 적어도 하나의 프로세서에 의해, 상기 앵커 가지치기를 수행하는 것으로 결정되는 경우, 상기 헤드 신경망이 교체된 객체 탐지기 모델에 대해 앵커 가지치기를 수행하는 단계; 및 상기 적어도 하나의 프로세서에 의해, 경량화된 객체 탐지기 모델을 출력하는 단계를 포함하는 경량화 방법을 제공한다.A lightweight method performed by a computer device including at least one processor, comprising: receiving, by the at least one processor, an object detector model; replacing, by the at least one processor, a head neural network of the input object detector model; determining, by the at least one processor, whether to perform anchor pruning; performing anchor pruning on the object detector model replaced by the head neural network, when it is determined by the at least one processor to perform the anchor pruning; and outputting, by the at least one processor, a lightweight object detector model.
일측에 따르면, 상기 헤드 신경망을 교체하는 단계는, 상기 입력받은 객체 탐지기 모델의 헤드 신경망을 구성하는 합성곱 레이어(convolutional layer)의 출력 채널수를 줄이는 것을 특징으로 할 수 있다.According to one side, the step of replacing the head neural network may be characterized by reducing the number of output channels of a convolutional layer constituting the head neural network of the input object detector model.
다른 측면에 따르면, 상기 헤드 신경망을 교체하는 단계는, 상기 입력받은 객체 탐지기 모델의 헤드 신경망을 구성하는 합성곱 레이어를 다른 효율적인 형태의 합성곱 레이어 또는 블록(일례로, 셔플 블록(shuffle block))으로 교체하는 것을 특징으로 할 수 있다.According to another aspect, the step of replacing the head neural network may include converting a convolutional layer constituting the head neural network of the input object detector model to another efficient convolutional layer or block (eg, a shuffle block) It can be characterized by replacing with.
또 다른 측면에 따르면, 상기 헤드 신경망을 교체하는 단계는, 상기 입력받은 객체 탐지기 모델의 헤드 신경망을 신경망 구조 자동 탐색 기법(Neural Architecture Search, NAS)을 이용하여 탐색된 헤드 신경망으로 교체하는 것을 특징으로 할 수 있다.According to another aspect, in the replacing of the head neural network, the head neural network of the input object detector model is replaced with a head neural network searched using a neural architecture search (NAS) method. can do.
또 다른 측면에 따르면, 상기 앵커 가지치기를 수행하는 단계는, 앵커의 중요도를 측정하는 단계; 상기 앵커의 중요도에 기반하여 일정 비율 이하에 속하는 앵커들을 제거하는 단계; 및 상기 일정 비율 이하에 속하는 앵커들이 제거된 객체 탐지기 모델을 재학습하는 단계를 포함하는 것을 특징으로 할 수 있다.According to another aspect, the pruning of anchors may include measuring importance of anchors; removing anchors belonging to a predetermined ratio or less based on the importance of the anchors; and re-learning an object detector model from which anchors belonging to the predetermined ratio or less are removed.
또 다른 측면에 따르면, 상기 앵커의 중요도를 측정하는 단계는, 각 독립적인 앵커의 출력을 제거하기 전과 후의 성능 하락 폭에 기반하여 각 독립적인 앵커의 중요도를 결정하는 것을 특징으로 할 수 있다.According to another aspect, the step of measuring the importance of each anchor may be characterized in that the importance of each independent anchor is determined based on the extent of performance degradation before and after removing the output of each independent anchor.
또 다른 측면에 따르면, 상기 앵커의 중요도를 측정하는 단계는, 각 앵커가 예측하는 바운딩 박스의 잉여도에 기초하여 앵커의 중요도를 결정하는 것을 특징으로 할 수 있다.According to another aspect, the step of measuring the importance of the anchor may be characterized in that the importance of the anchor is determined based on the degree of redundancy of the bounding box predicted by each anchor.
또 다른 측면에 따르면, 상기 바운딩 박스의 잉여도는 제1 앵커가 예측한 바운딩 박스와의 IoU(Intersection over Union) 스코어가 기설정된 값 이상인 앵커 수를 한 앵커가 예측하는 바운딩 박스의 수로 나눈 값에 기초하여 계산되는 것을 특징으로 할 수 있다.According to another aspect, the redundancy of the bounding box is a value obtained by dividing the number of anchors whose Intersection over Union (IoU) score with the bounding box predicted by the first anchor is equal to or greater than a preset value by the number of bounding boxes predicted by one anchor It can be characterized in that it is calculated based on.
또 다른 측면에 따르면, 상기 IoU 스코어는 두 앵커가 각각 예측한 두 바운딩 박스가 오버랩되는 영역의 넓이를 상기 두 바운딩 박스의 전체 영역의 넓이로 나눈 값에 기초하여 계산되는 것을 특징으로 할 수 있다.According to another aspect, the IoU score may be calculated based on a value obtained by dividing the area of an overlapping region of two bounding boxes predicted by two anchors by the total area of the two bounding boxes.
또 다른 측면에 따르면, 상기 경량화된 객체 탐지기 모델을 출력하는 단계는, 상기 앵커 가지치기가 수행되지 않은 경우에 상기 헤드 신경망을 교체한 객체 탐지기 모델을 상기 경량화된 객체 탐지기 모델로서 출력하고, 상기 앵커 가지치기가 수행된 경우에 상기 헤드 신경망을 교체하고 상기 앵커 가지치기가 수행된 객체 탐지기 모델을 상기 경량화된 객체 탐지기 모델로서 출력하는 것을 특징으로 할 수 있다.According to another aspect, the outputting of the lightweight object detector model may include outputting, as the lightweight object detector model, an object detector model in which the head neural network is replaced when the anchor pruning is not performed, and the anchor pruning is not performed. When pruning is performed, the head neural network is replaced and the object detector model for which the anchor pruning is performed may be output as the lightweight object detector model.
컴퓨터 장치와 결합되어 상기 방법을 컴퓨터 장치에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장된 컴퓨터 프로그램을 제공한다.A computer program stored in a computer readable recording medium is provided in combination with a computer device to execute the method on the computer device.
상기 방법을 컴퓨터 장치에 실행시키기 위한 프로그램이 기록되어 있는 컴퓨터 판독 가능한 기록매체를 제공한다.A computer readable recording medium having a program for executing the method in a computer device is recorded.
컴퓨터 장치에서 판독 가능한 명령을 실행하도록 구현되는 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서에 의해, 객체 탐지기 모델을 입력받고, 상기 입력받은 객체 탐지기 모델의 헤드 신경망을 교체하고, 앵커 가지치기의 수행 여부를 결정하고, 상기 앵커 가지치기를 수행하는 것으로 결정되는 경우, 상기 헤드 신경망이 교체된 객체 탐지기 모델에 대해 앵커 가지치기를 수행하고, 경량화된 객체 탐지기 모델을 출력하는 것을 특징으로 하는 컴퓨터 장치 하는 컴퓨터 장치를 제공한다.It includes at least one processor implemented to execute instructions readable by a computer device, receiving an object detector model by the at least one processor, replacing a head neural network of the received object detector model, and pruning anchors. , and if it is determined to perform the anchor pruning, the head neural network performs anchor pruning on the replaced object detector model and outputs a lightweight object detector model. Provides a computer device that performs the device.
기존에 주로 연구되어왔던 백본 신경망 중심의 경량화가 아닌, 헤드 신경망 경량화에 특화된 객체 탐지기의 헤드 신경망 경량화 방법 및 시스템을 제공할 수 있다.It is possible to provide a method and system for reducing the weight of the head neural network of an object detector, which is specialized for weight reduction of the head neural network, rather than weight reduction centered on the backbone neural network, which has been mainly studied in the past.
도 1은 본 발명의 일실시예에 따른 네트워크 환경의 예를 도시한 도면이다.1 is a diagram illustrating an example of a network environment according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 컴퓨터 장치의 예를 도시한 블록도이다.2 is a block diagram illustrating an example of a computer device according to one embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 객체 탐지기의 구조의 예를 도시한 도면이다.3 is a diagram showing an example of a structure of an object detector according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 있어서, 원본 이미지 및 특징맵의 예를 도시한 도면이다.4 is a diagram illustrating an example of an original image and a feature map according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 경량화 방법의 예를 도시한 흐름도이다.5 is a flowchart illustrating an example of a weight reduction method according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 있어서, IoU의 스코어를 계산하는 예를 도시한 도면이다.6 is a diagram illustrating an example of calculating an IoU score according to an embodiment of the present invention.
이하, 실시예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, an embodiment will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들에 따른 경량화 시스템은 적어도 하나의 컴퓨터 장치에 의해 구현될 수 있다. 이때, 컴퓨터 장치에는 본 발명의 일실시예에 따른 컴퓨터 프로그램이 설치 및 구동될 수 있고, 컴퓨터 장치는 구동된 컴퓨터 프로그램의 제어에 따라 본 발명의 실시예들에 따른 경량화 방법을 수행할 수 있다. 상술한 컴퓨터 프로그램은 컴퓨터 장치와 결합되어 경량화 방법을 컴퓨터에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장될 수 있다.A lightweight system according to embodiments of the present invention may be implemented by at least one computer device. At this time, a computer program according to an embodiment of the present invention may be installed and driven in the computer device, and the computer device may perform the weight reduction method according to the embodiments of the present invention under the control of the driven computer program. The above-described computer program may be combined with a computer device and stored in a computer readable recording medium to execute the weight reduction method on a computer.
도 1은 본 발명의 일실시예에 따른 네트워크 환경의 예를 도시한 도면이다. 도 1의 네트워크 환경은 복수의 전자 기기들(110, 120, 130, 140), 복수의 서버들(150, 160) 및 네트워크(170)를 포함하는 예를 나타내고 있다. 이러한 도 1은 발명의 설명을 위한 일례로 전자 기기의 수나 서버의 수가 도 1과 같이 한정되는 것은 아니다. 또한, 도 1의 네트워크 환경은 본 실시예들에 적용 가능한 환경들 중 하나의 예를 설명하는 것일 뿐, 본 실시예들에 적용 가능한 환경이 도 1의 네트워크 환경으로 한정되는 것은 아니다.1 is a diagram illustrating an example of a network environment according to an embodiment of the present invention. The network environment of FIG. 1 shows an example including a plurality of electronic devices 110 , 120 , 130 , and 140 , a plurality of servers 150 and 160 , and a network 170 . 1 is an example for explanation of the invention, and the number of electronic devices or servers is not limited as shown in FIG. 1 . In addition, the network environment of FIG. 1 only describes one example of environments applicable to the present embodiments, and the environment applicable to the present embodiments is not limited to the network environment of FIG. 1 .
복수의 전자 기기들(110, 120, 130, 140)은 컴퓨터 장치로 구현되는 고정형 단말이거나 이동형 단말일 수 있다. 복수의 전자 기기들(110, 120, 130, 140)의 예를 들면, 스마트폰(smart phone), 휴대폰, 네비게이션, 컴퓨터, 노트북, 디지털방송용 단말, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 태블릿 PC 등이 있다. 일례로 도 1에서는 전자 기기(110)의 예로 스마트폰의 형상을 나타내고 있으나, 본 발명의 실시예들에서 전자 기기(110)는 실질적으로 무선 또는 유선 통신 방식을 이용하여 네트워크(170)를 통해 다른 전자 기기들(120, 130, 140) 및/또는 서버(150, 160)와 통신할 수 있는 다양한 물리적인 컴퓨터 장치들 중 하나를 의미할 수 있다.The plurality of electronic devices 110, 120, 130, and 140 may be fixed terminals implemented as computer devices or mobile terminals. Examples of the plurality of electronic devices 110, 120, 130, and 140 include a smart phone, a mobile phone, a navigation device, a computer, a laptop computer, a digital broadcast terminal, a personal digital assistant (PDA), and a portable multimedia player (PMP). ), and tablet PCs. As an example, FIG. 1 shows the shape of a smartphone as an example of the electronic device 110, but in the embodiments of the present invention, the electronic device 110 substantially uses a wireless or wired communication method to transmit other information via the network 170. It may refer to one of various physical computer devices capable of communicating with the electronic devices 120 , 130 , and 140 and/or the servers 150 and 160 .
통신 방식은 제한되지 않으며, 네트워크(170)가 포함할 수 있는 통신망(일례로, 이동통신망, 유선 인터넷, 무선 인터넷, 방송망)을 활용하는 통신 방식뿐만 아니라 기기들간의 근거리 무선 통신 역시 포함될 수 있다. 예를 들어, 네트워크(170)는, PAN(personal area network), LAN(local area network), CAN(campus area network), MAN(metropolitan area network), WAN(wide area network), BBN(broadband network), 인터넷 등의 네트워크 중 하나 이상의 임의의 네트워크를 포함할 수 있다. 또한, 네트워크(170)는 버스 네트워크, 스타 네트워크, 링 네트워크, 메쉬 네트워크, 스타-버스 네트워크, 트리 또는 계층적(hierarchical) 네트워크 등을 포함하는 네트워크 토폴로지 중 임의의 하나 이상을 포함할 수 있으나, 이에 제한되지 않는다.The communication method is not limited, and short-distance wireless communication between devices as well as a communication method utilizing a communication network (eg, a mobile communication network, a wired Internet, a wireless Internet, and a broadcasting network) that the network 170 may include may also be included. For example, the network 170 may include a personal area network (PAN), a local area network (LAN), a campus area network (CAN), a metropolitan area network (MAN), a wide area network (WAN), and a broadband network (BBN). , one or more arbitrary networks such as the Internet. In addition, the network 170 may include any one or more of network topologies including a bus network, a star network, a ring network, a mesh network, a star-bus network, a tree or a hierarchical network, and the like. Not limited.
서버(150, 160) 각각은 복수의 전자 기기들(110, 120, 130, 140)과 네트워크(170)를 통해 통신하여 명령, 코드, 파일, 컨텐츠, 서비스 등을 제공하는 컴퓨터 장치 또는 복수의 컴퓨터 장치들로 구현될 수 있다. 예를 들어, 서버(150)는 네트워크(170)를 통해 접속한 복수의 전자 기기들(110, 120, 130, 140)로 서비스(일례로, 인스턴트 메시징 서비스, 소셜 네트워크 서비스, 결제 서비스, 가상 거래소 서비스, 리스크 모니터링 서비스, 게임 서비스, 그룹 통화 서비스(또는 음성 컨퍼런스 서비스), 메시징 서비스, 메일 서비스, 지도 서비스, 번역 서비스, 금융 서비스, 검색 서비스, 컨텐츠 제공 서비스 등)를 제공하는 시스템일 수 있다.Each of the servers 150 and 160 communicates with the plurality of electronic devices 110, 120, 130, and 140 through the network 170 to provide commands, codes, files, contents, services, and the like, or a computer device or a plurality of computers. It can be implemented in devices. For example, the server 150 provides a service (eg, an instant messaging service, a social network service, a payment service, a virtual exchange) to a plurality of electronic devices 110, 120, 130, and 140 connected through the network 170. service, risk monitoring service, game service, group call service (or voice conference service), messaging service, mail service, map service, translation service, financial service, search service, content provision service, etc.).
도 2는 본 발명의 일실시예에 따른 컴퓨터 장치의 예를 도시한 블록도이다. 앞서 설명한 복수의 전자 기기들(110, 120, 130, 140) 각각이나 서버들(150, 160) 각각은 도 2를 통해 도시된 컴퓨터 장치(200)에 의해 구현될 수 있다.2 is a block diagram illustrating an example of a computer device according to one embodiment of the present invention. Each of the plurality of electronic devices 110 , 120 , 130 , and 140 or each of the servers 150 and 160 described above may be implemented by the computer device 200 shown in FIG. 2 .
이러한 컴퓨터 장치(200)는 도 2에 도시된 바와 같이, 메모리(210), 프로세서(220), 통신 인터페이스(230) 그리고 입출력 인터페이스(240)를 포함할 수 있다. 메모리(210)는 컴퓨터에서 판독 가능한 기록매체로서, RAM(random access memory), ROM(read only memory) 및 디스크 드라이브와 같은 비소멸성 대용량 기록장치(permanent mass storage device)를 포함할 수 있다. 여기서 ROM과 디스크 드라이브와 같은 비소멸성 대용량 기록장치는 메모리(210)와는 구분되는 별도의 영구 저장 장치로서 컴퓨터 장치(200)에 포함될 수도 있다. 또한, 메모리(210)에는 운영체제와 적어도 하나의 프로그램 코드가 저장될 수 있다. 이러한 소프트웨어 구성요소들은 메모리(210)와는 별도의 컴퓨터에서 판독 가능한 기록매체로부터 메모리(210)로 로딩될 수 있다. 이러한 별도의 컴퓨터에서 판독 가능한 기록매체는 플로피 드라이브, 디스크, 테이프, DVD/CD-ROM 드라이브, 메모리 카드 등의 컴퓨터에서 판독 가능한 기록매체를 포함할 수 있다. 다른 실시예에서 소프트웨어 구성요소들은 컴퓨터에서 판독 가능한 기록매체가 아닌 통신 인터페이스(230)를 통해 메모리(210)에 로딩될 수도 있다. 예를 들어, 소프트웨어 구성요소들은 네트워크(170)를 통해 수신되는 파일들에 의해 설치되는 컴퓨터 프로그램에 기반하여 컴퓨터 장치(200)의 메모리(210)에 로딩될 수 있다.As shown in FIG. 2 , the computer device 200 may include a memory 210, a processor 220, a communication interface 230, and an input/output interface 240. The memory 210 is a computer-readable recording medium and may include a random access memory (RAM), a read only memory (ROM), and a permanent mass storage device such as a disk drive. Here, a non-perishable mass storage device such as a ROM and a disk drive may be included in the computer device 200 as a separate permanent storage device distinct from the memory 210 . Also, an operating system and at least one program code may be stored in the memory 210 . These software components may be loaded into the memory 210 from a computer-readable recording medium separate from the memory 210 . The separate computer-readable recording medium may include a computer-readable recording medium such as a floppy drive, a disk, a tape, a DVD/CD-ROM drive, and a memory card. In another embodiment, software components may be loaded into the memory 210 through the communication interface 230 rather than a computer-readable recording medium. For example, software components may be loaded into memory 210 of computer device 200 based on a computer program installed by files received over network 170 .
프로세서(220)는 기본적인 산술, 로직 및 입출력 연산을 수행함으로써, 컴퓨터 프로그램의 명령을 처리하도록 구성될 수 있다. 명령은 메모리(210) 또는 통신 인터페이스(230)에 의해 프로세서(220)로 제공될 수 있다. 예를 들어 프로세서(220)는 메모리(210)와 같은 기록 장치에 저장된 프로그램 코드에 따라 수신되는 명령을 실행하도록 구성될 수 있다.The processor 220 may be configured to process commands of a computer program by performing basic arithmetic, logic, and input/output operations. Instructions may be provided to processor 220 by memory 210 or communication interface 230 . For example, processor 220 may be configured to execute received instructions according to program codes stored in a recording device such as memory 210 .
통신 인터페이스(230)는 네트워크(170)를 통해 컴퓨터 장치(200)가 다른 장치(일례로, 앞서 설명한 저장 장치들)와 서로 통신하기 위한 기능을 제공할 수 있다. 일례로, 컴퓨터 장치(200)의 프로세서(220)가 메모리(210)와 같은 기록 장치에 저장된 프로그램 코드에 따라 생성한 요청이나 명령, 데이터, 파일 등이 통신 인터페이스(230)의 제어에 따라 네트워크(170)를 통해 다른 장치들로 전달될 수 있다. 역으로, 다른 장치로부터의 신호나 명령, 데이터, 파일 등이 네트워크(170)를 거쳐 컴퓨터 장치(200)의 통신 인터페이스(230)를 통해 컴퓨터 장치(200)로 수신될 수 있다. 통신 인터페이스(230)를 통해 수신된 신호나 명령, 데이터 등은 프로세서(220)나 메모리(210)로 전달될 수 있고, 파일 등은 컴퓨터 장치(200)가 더 포함할 수 있는 저장 매체(상술한 영구 저장 장치)로 저장될 수 있다.The communication interface 230 may provide a function for the computer device 200 to communicate with other devices (eg, storage devices described above) through the network 170 . For example, a request, command, data, file, etc. generated according to a program code stored in a recording device such as the memory 210 by the processor 220 of the computer device 200 is controlled by the communication interface 230 to the network ( 170) to other devices. Conversely, signals, commands, data, files, etc. from other devices may be received by the computer device 200 through the communication interface 230 of the computer device 200 via the network 170 . Signals, commands, data, etc. received through the communication interface 230 may be transferred to the processor 220 or the memory 210, and files, etc. may be stored as storage media that the computer device 200 may further include (described above). permanent storage).
입출력 인터페이스(240)는 입출력 장치(250)와의 인터페이스를 위한 수단일 수 있다. 예를 들어, 입력 장치는 마이크, 키보드 또는 마우스 등의 장치를, 그리고 출력 장치는 디스플레이, 스피커와 같은 장치를 포함할 수 있다. 다른 예로 입출력 인터페이스(240)는 터치스크린과 같이 입력과 출력을 위한 기능이 하나로 통합된 장치와의 인터페이스를 위한 수단일 수도 있다. 입출력 장치(250) 중 적어도 하나는 컴퓨터 장치(200)와 하나의 장치로 구성될 수도 있다. 예를 들어, 스마트폰과 같이 터치스크린, 마이크, 스피커 등이 컴퓨터 장치(200)에 포함된 형태로 구현될 수 있다. The input/output interface 240 may be a means for interface with the input/output device 250 . For example, the input device may include a device such as a microphone, keyboard, or mouse, and the output device may include a device such as a display or speaker. As another example, the input/output interface 240 may be a means for interface with a device in which functions for input and output are integrated into one, such as a touch screen. At least one of the input/output devices 250 may be configured as one device with the computer device 200 . For example, like a smart phone, a touch screen, a microphone, a speaker, and the like may be implemented in a form included in the computer device 200 .
또한, 다른 실시예들에서 컴퓨터 장치(200)는 도 2의 구성요소들보다 더 적은 혹은 더 많은 구성요소들을 포함할 수도 있다. 그러나, 대부분의 종래기술적 구성요소들을 명확하게 도시할 필요성은 없다. 예를 들어, 컴퓨터 장치(200)는 상술한 입출력 장치(250) 중 적어도 일부를 포함하도록 구현되거나 또는 트랜시버(transceiver), 데이터베이스 등과 같은 다른 구성요소들을 더 포함할 수도 있다.Also, in other embodiments, computer device 200 may include fewer or more elements than those of FIG. 2 . However, there is no need to clearly show most of the prior art components. For example, the computer device 200 may be implemented to include at least some of the aforementioned input/output devices 250 or may further include other components such as a transceiver and a database.
도 3은 본 발명의 일실시예에 따른 객체 탐지기의 구조의 예를 도시한 도면이다. 객체 탐지기는 백본(Backbone) 신경망, 중간(Neck) 신경망 및 헤드(Head) 신경망으로 구분될 수 있으나, 본 실시예에 따른 객체 탐지기에서는 중간 신경망과 헤드 신경망을 통틀어 헤드 신경망으로 정의할 수도 있다.3 is a diagram showing an example of a structure of an object detector according to an embodiment of the present invention. The object detector may be divided into a backbone neural network, a neck neural network, and a head neural network, but in the object detector according to the present embodiment, the head neural network may be defined as both the intermediate neural network and the head neural network.
입력 이미지의 픽셀들은 백본 신경망의 합성곱 레이어(convolutional layer)를 통과하면서 추상화된 값으로 압축될 수 있으며, 해당 합성곱 레이어를 통과하기 전 보다 더 작은 해상도의 특징맵(feature map)으로 표현될 수 있다. 도 3에서 나타난 "Convolutional layer (1/n)"의 (1/n)은 해당 합성곱 레이어를 통과하고 난 후 이미지의 공간 크기(spatial size)의 감소량을 의미할 수 있다. 일례로, 800Х800 해상도의 이미지가 "convolutional layer (1/2)"을 통과하게 되면 400Х400의 해상도로 축소될 수 있다.The pixels of the input image can be compressed into abstract values while passing through the convolutional layer of the backbone neural network, and can be expressed as a feature map with a smaller resolution than before passing through the convolutional layer. there is. (1/n) of “Convolutional layer (1/n)” shown in FIG. 3 may mean a reduction in the spatial size of an image after passing through the corresponding convolutional layer. For example, when an image with a resolution of 800Х800 passes through a "convolutional layer (1/2)", it can be reduced to a resolution of 400Х400.
중간(Neck) 신경망에서는 서로 다른 크기의 특징맵을 또 다른 합성곱 레이어에 통과시켜 새로운 특징맵을 생성할 수 있다. 이때, 가장 작은 크기의 특징맵(도 3의 실시예에서는 "Feature map (1/32)")을 제외한 나머지 특징맵은 상단 백본 신경망의 고도로 추상화된 정보를 참조하기 위해서 자신 보다 상단에 존재하는 특징맵의 크기를 업샘플링(upsampling)시킨 후 결합시켜 새로운 특징맵을 생성한 후 합성곱 레이어를 통과시키게 된다.In the neck neural network, a new feature map can be generated by passing feature maps of different sizes through another convolutional layer. At this time, except for the feature map of the smallest size ("Feature map (1/32)" in the embodiment of FIG. After upsampling the size of the maps, they are combined to create a new feature map, which is then passed through a convolutional layer.
도 4는 본 발명의 일실시예에 있어서, 원본 이미지 및 특징맵의 예를 도시한 도면이다. 1/n크기로 축소된 각 특징맵의 각 그리드(grid)는 원본 이미지의 n개 셀(cell)을 표현하게 되며, 각 그리드마다 사전 지정된 m개의 앵커가 어떻게 보정되어야 객체를 감싸는 바운딩 박스(bounding box)가 될 수 있는지와 해당 바운딩 박스안에 내포된 객체 유형에 대한 예측을 수행하게 된다. 각 특징맵마다 m개의 동일한 앵커들이 적용되며, 다른 특징맵에서는 다른 앵커들이 정의될 수 있다. 만약 각 특징맵마다 9개의 사전 정의된 앵커가 존재하고 4개의 특징맵이 생성된다면, 총 36개의 독립적인 앵커가 정의될 수 있다.4 is a diagram illustrating an example of an original image and a feature map according to an embodiment of the present invention. Each grid of each feature map reduced to 1/n size represents n cells of the original image, and how m anchors pre-specified for each grid must be calibrated to form a bounding box that encloses the object. box) and object types nested within the bounding box. m identical anchors are applied to each feature map, and different anchors can be defined in different feature maps. If 9 predefined anchors exist for each feature map and 4 feature maps are generated, a total of 36 independent anchors can be defined.
도 5는 본 발명의 일실시예에 따른 경량화 방법의 예를 도시한 흐름도이다. 본 실시예에 따른 경량화 방법은 경량화 시스템을 구현하는 적어도 하나의 컴퓨터 장치(200)에 의해 수행될 수 있다. 일례로, 컴퓨터 장치(200)의 프로세서(220)는 메모리(210)가 포함하는 운영체제의 코드나 적어도 하나의 컴퓨터 프로그램의 코드에 따른 제어 명령(instruction)을 실행하도록 구현될 수 있다. 여기서, 프로세서(220)는 컴퓨터 장치(200)에 저장된 코드가 제공하는 제어 명령에 따라 컴퓨터 장치(200)가 도 5의 방법이 포함하는 단계들(510 내지 550)을 수행하도록 컴퓨터 장치(200)를 제어할 수 있다.5 is a flowchart illustrating an example of a weight reduction method according to an embodiment of the present invention. The weight reduction method according to the present embodiment may be performed by at least one computer device 200 implementing the weight reduction system. For example, the processor 220 of the computer device 200 may be implemented to execute a control instruction according to an operating system code or at least one computer program code included in the memory 210 . Here, the processor 220 controls the computer device 200 so that the computer device 200 performs the steps 510 to 550 included in the method of FIG. 5 according to a control command provided by a code stored in the computer device 200. can control.
단계(510)에서 컴퓨터 장치(200)는 객체 탐지기 모델을 입력받을 수 있다. 예를 들어, 컴퓨터 장치(200)는 전체 구조 중 헤드 신경망을 경량화하기 위한 객체 탐지기의 원본 모델을 입력받을 수 있다.In step 510, the computer device 200 may receive an object detector model. For example, the computer device 200 may receive an original model of an object detector for lightening a head neural network out of an overall structure.
단계(520)에서 컴퓨터 장치(200)는 입력받은 객체 탐지기 모델의 헤드 신경망을 교체할 수 있다. 일례로, 컴퓨터 장치(200)는 객체 탐지기의 원본 모델이 포함하는 헤드 신경망을 상대적으로 소형인 헤드 신경망(경량화된 헤드 신경망)으로 교체할 수 있다. 큰 사이즈의 모델에서 학습된 백본 신경망일수록 더 좋은 특징 추출(feature extraction) 능력을 가지기 때문에, 단계(520)에서 컴퓨터 장치(200)는 사전 학습된 입력 모델의 백본 신경망의 파라미터를 유지한 상태에서 헤드 신경망을 수정하게 된다면 더 좋은 성능을 얻을 수 있다.In step 520, the computer device 200 may replace the head neural network of the input object detector model. For example, the computer device 200 may replace the head neural network included in the original model of the object detector with a relatively small head neural network (lightweight head neural network). Since the backbone neural network trained on a large-sized model has a better feature extraction ability, in step 520, the computer device 200 maintains the parameters of the backbone neural network of the pre-trained input model while maintaining the head If you modify the neural network, you can get better performance.
이때, 컴퓨터 장치(200)는 아래 (1) 내지 (3) 중 적어도 하나의 방법을 통해 헤드 신경망을 경량화된 헤드 신경망으로 교체할 수 있다.In this case, the computer device 200 may replace the head neural network with a lightweight head neural network through at least one of methods (1) to (3) below.
(1) 신경망 구조 자동 탐색 기법(Neural Architecture Search, NAS)를 이용하여 고성능 고 효율의 헤드 신경망을 탐색하는 방법, 일례로 컴퓨터 장치(200)는 입력받은 객체 탐지기 모델의 헤드 신경망을 신경망 구조 자동 탐색 기법을 이용하여 탐색된 헤드 신경망으로 교체할 수 있다.(1) A method of searching for a high-performance, high-efficiency head neural network using a Neural Architecture Search (NAS), for example, the computer device 200 automatically searches for the neural network structure of the head neural network of the object detector model input. It can be replaced with the head neural network searched using the technique.
(2) 헤드 신경망을 구성하는 합성곱 레이어의 출력 채널수를 줄이는 방법, 일례로 컴퓨터 장치(200)는 입력받은 객체 탐지기 모델의 헤드 신경망을 구성하는 합성곱 레이어의 출력 채널수를 줄임으로써 헤드 신경망을 교체할 수 있다.(2) A method of reducing the number of output channels of the convolutional layer constituting the head neural network, for example, the computer device 200 reduces the number of output channels of the convolutional layer constituting the head neural network of the received object detector model, thereby reducing the number of output channels of the head neural network can be replaced.
(3) 헤드 신경망을 구성하는 합성곱 레어어를 더 효율적인 합성곱 레이어 혹은 블록(일례로, 셔플 블록(Shuffle block))으로 교체하는 방법, 일례로 컴퓨터 장치(200)는 입력받은 객체 탐지기 모델의 헤드 신경망을 구성하는 합성곱 레이어를 다른 합성곱 레이어 블록으로 교체할 수 있다.(3) A method of replacing the convolution layer constituting the head neural network with a more efficient convolution layer or block (eg, a shuffle block), for example, the computer device 200 calculates the input object detector model A convolutional layer constituting the head neural network may be replaced with another convolutional layer block.
헤드 신경망을 교체한 후, 교체된 헤드 신경망의 파라미터가 초기값으로 되어있으므로, 헤드 신경망이 교체된 모델의 성능을 객체 탐지기의 원본 모델의 성능만큼 끌어올리기 위해 원본 모델을 학습한 학습 데이터로 헤드 신경망이 교체된 모델에 대한 재학습을 수행할 수 있다. 이때 전이학습(transfer learning) 방식과 마찬가지로 큰 모델에서 학습되어 좋은 파라미터를 가진 백본 신경망의 파라미터에서 학습을 시작하되, 교체(경량화)된 헤드 신경망만 학습시키는 방식 혹은 백본 신경망도 함께 업데이트 시키는 방식 모두 사용이 가능하다.After replacing the head neural network, since the parameters of the replaced head neural network are set to initial values, in order to increase the performance of the model replaced by the head neural network as much as the performance of the original model of the object detector, the head neural network is used with training data from the original model. Retraining can be performed on this replaced model. At this time, as in the transfer learning method, learning is started from the parameters of the backbone neural network that is learned from a large model and has good parameters, but both the method of learning only the replaced (lightened) head neural network or the method of updating the backbone neural network together are used this is possible
상술한 (1) 내지 (3)의 방법들 가운데 합성곱 신경망 레이어의 출력 채널수를 줄이는 방법(2)이 가장 쉽게 사용될 수 있는 방법이며, 실험을 통해 백본 신경망의 파라미터를 유지한 상태에서 헤드 신경망의 채널 수를 조절한 후 백본 및 헤드 신경망 전체를 재학습시키는 방식을 적용했을 때 입력된 원본 모델보다 더 좋은 성능을 내면서도 레이턴시(latency, 추론 속도)를 개선할 수 있음을 확인하였다.Among the methods (1) to (3) described above, method (2) of reducing the number of output channels of the convolutional neural network layer is the easiest method to use, and the head neural network while maintaining the parameters of the backbone neural network through experiments. It was confirmed that latency (inference speed) can be improved while achieving better performance than the original model when applying the method of retraining the entire backbone and head neural network after adjusting the number of channels.
실험에 사용된 객체 탐지기 모델은 "Yolo v5"이며, 입력된 객체 탐지기 모델의 백본 신경망의 파라미터를 유지한 상태에서 헤드 신경망을 더 작은 수의 출력 채널을 갖는 합성곱 레이어로 구성된 헤드 신경망으로 교체하였다. 이때 사용된 데이터는 이미지 상에서 문자열 객체를 인식하는 OCR(Optical Character Reader) 데이터로 36,939장의 이미지로 학습되었으며, 3,000장의 평가 데이터로 평가되었다. 이때 객체 탐지기의 성능 지표로는 F1 스코어가 사용되었다. 성능 평가 결과는 아래 표 1과 같다.The object detector model used in the experiment is "Yolo v5", and while maintaining the parameters of the backbone neural network of the input object detector model, the head neural network was replaced with a head neural network composed of convolutional layers with a smaller number of output channels. . The data used at this time was OCR (Optical Character Reader) data for recognizing string objects on images, which was learned with 36,939 images and evaluated with 3,000 evaluation data. At this time, the F1 score was used as a performance indicator of the object detector. The performance evaluation results are shown in Table 1 below.
F1 스코어F1 score Latency (ms)Latency (ms) 파라미터 수number of parameters
원본 객체 탐지기original object detector 0.79450.7945 137.06137.06 36.3436.34
헤드 신경망이 교체된 객체 탐지기Object detector with head neural network replaced 0.79980.7998 116.02116.02 24.5624.56
단계(530)에서 컴퓨터 장치(200)는 앵커 가지치기(anchor pruning)의 수행 여부를 결정할 수 있다. 앵커 가지치기는 헤드 신경망이 교체된 이후 추가적인 추론 속도 개선을 위해 수행될 수 있다. 예를 들어, 앵커 가지치기는 객체 탐지기에 사전 정의된 앵커를 제거함으로써, 다음 (1) 및 (2)의 두 가지 측면에서 추론 속도를 개선시킬 수 있다.(1) 예측해야 하는 바운딩 박스에 대한 각 앵커의 보정치 개수를 줄임In step 530, the computer device 200 may determine whether to perform anchor pruning. Anchor pruning can be performed to further improve inference speed after the head neural network is replaced. For example, anchor pruning can improve inference speed in two aspects (1) and (2) by removing predefined anchors in object detectors: Reduced the number of modifiers for each anchor
(2) 중복되는 바운딩 박스 중 가장 좋은 바운딩 박스를 선택하기 위해 예측된 바운딩 박스를 페어링해서 비교하는 NMS(Non-Maximum Suppression) 과정에 사용되는 바운딩 박스의 수를 줄여 추론 속도를 개선시킬 수 있음(2) Inference speed can be improved by reducing the number of bounding boxes used in the NMS (Non-Maximum Suppression) process of pairing and comparing predicted bounding boxes to select the best bounding box among overlapping bounding boxes.
사전 정의된 전체 앵커의 개수가 소수이거나 앵커가 사용되지 않는 객체 탐지기(anchor-free object detector)인 경우에는 앵커 가지치기를 사용하기 어렵지만, 대부분 고 성능의 객체 탐지기는 앵커의 개수가 많기 때문에 이러한 객체탐지기에 대해서는 앵커 가지치기가 가능하다.Anchor pruning is difficult to use if the total number of predefined anchors is small or if the anchor-free object detector is an anchor-free object detector, but most high-performance object detectors have a large number of anchors. Anchor pruning is possible for detectors.
앵커 가지치기를 수행하는 것으로 결정하는 경우에는 단계(540)이 수행될 수 있고, 앵커 가지치기를 수행하지 않는 것으로 결정하는 경우에는 단계(550)이 수행될 수 있다.If it is determined to perform anchor pruning, step 540 may be performed, and if it is determined not to perform anchor pruning, step 550 may be performed.
단계(540)에서 컴퓨터 장치(200)는 헤드 신경망이 교체된 모델에 대해 앵커 가지치기를 수행할 수 있다. 앵커 가지치기를 수행하기 전에 경량화된 모델에 대해서 검증 데이터 셋(validation dataset)을 통해 각 앵커로부터 얻은 모든 바운딩 박스 및 객체 유형에 대한 예측 값을 사전에 저장할 수 있다. 이때, 앵커 가지치기는 아래 (1) 내지 (3)의 세 단계로 수행될 수 있다.In step 540, the computer device 200 may perform anchor pruning on the model in which the head neural network is replaced. Before performing anchor pruning, prediction values for all bounding boxes and object types obtained from each anchor can be stored in advance through a validation dataset for the lightweight model. At this time, anchor pruning can be performed in three steps (1) to (3) below.
(1) 앵커 중요도 측정, 일례로 컴퓨터 장치(200)는 앵커의 중요도를 측정할 수 있다. (1) Anchor importance measurement, for example, the computer device 200 may measure the anchor importance.
(2) 일정 비율(일례로, r%)의 중요하지 않은 앵커 제거, 일례로 컴퓨터 장치(200)는 앵커의 중요도에 기반하여 r%의 앵커를 제거할 수 있다. 여기서, r은 자연수일 수 있으며, 컴퓨터 장치(200)는 전체 앵커들 중 중요도를 기반으로 r% 이하에 속하는 앵커들을 제거할 수 있다.(2) Remove a certain percentage (eg, r%) of unimportant anchors, for example, the computer device 200 may remove r% of anchors based on the importance of the anchors. Here, r may be a natural number, and the computer device 200 may remove anchors belonging to r% or less based on importance among all anchors.
(3) 모델 재학습, 일례로 컴퓨터 장치(200)는 r%의 앵커가 제거된 모델을 재학습할 수 있다.(3) Model re-learning, for example, the computer device 200 may re-learn a model from which r% anchors have been removed.
앵커 중요도 측정(1)은 다음 (a) 및 (b)의 두 가지 중 하나를 통해 수행될 수 있다.Anchor importance measurement (1) can be performed through one of two of the following (a) and (b).
(a) 성능 기반 중요도 측정(a) performance-based importance measures
(b) 잉여(redundant) 앵커 측정(b) redundant anchor measurement
성능 기반 중요도 측정(a)을 위해, 컴퓨터 장치(200)는 저장된 각 앵커별 예측 값에 대해서, 각 독립적인 앵커들의 출력들을 제거한 후 검증 데이터 셋에서 성능 평가를 수행할 수 있다. 이때, 컴퓨터 장치(200)는 기존 대비 성능 하락 폭을 측정한 후, 성능 하락 폭이 상대적으로 적은 앵커를 중요한 앵커로, 성능 하락 폭이 상대적으로 큰 앵커를 중요하지 않은 앵커로 간주하여 정렬할 수 있다. 다시 말해, 컴퓨터 장치(200)는 각 독립적인 앵커의 출력을 제거하기 전과 후의 성능 하락 폭에 기반하여 각 독립적인 앵커의 중요도를 결정하여 앵커들을 정렬할 수 있다.For the performance-based importance measurement (a), the computer device 200 may perform performance evaluation on the verification data set after removing outputs of independent anchors with respect to the stored prediction value for each anchor. At this time, the computer device 200 may measure the extent of performance degradation compared to the conventional one, consider anchors with a relatively small extent of performance degradation as important anchors, and consider anchors with a relatively large extent of performance degradation as unimportant anchors and sort them. there is. In other words, the computer device 200 may sort the anchors by determining the importance of each independent anchor based on the extent of performance degradation before and after removing the output of each independent anchor.
잉여 앵커 측정(b)과 관련하여, 각 특징맵에 정의된 하나의 앵커는 다른 특징맵에서의 앵커와 거의 동일한 바운딩 박스를 예측하는 경우가 많다. 이러한 잉여 바운딩 박스를 찾아 제거하면 불필요하게 예측되는 바운딩 박스의 수를 줄일 수 있다. 각 바운딩 박스의 잉여도(redundancy)는 다른 앵커가 예측한 바운딩 박스와의 IoU(Intersection over Union) 스코어가 x 이상인 앵커 수를 한 앵커가 예측하는 바운딩 박스의 수로 나눈 값으로 계산될 수 있다. 이때, 컴퓨터 장치(200)는 각 앵커가 예측하는 바운딩 박스의 잉여도에 기초하여 앵커의 중요도를 결정할 수 있다. 여기서, IoU의 스코어는 두 바운딩 박스가 겹치는 정도를 측정하는 것으로, 두 바운딩 박스가 오버랩되는 영역의 넓이를 두 바운딩 박스의 전체 영역의 넓이로 나눈 값으로 계산될 수 있다. 이러한 IoU의 스코어가 1에 가까울수록 두 바운딩 박스는 동일하다고 볼 수 있으며, 0에 가까울수록 두 바운딩 박스가 서로 다르다고 볼 수 있다. Regarding redundant anchor measurement (b), one anchor defined in each feature map often predicts almost the same bounding box as anchors in other feature maps. By finding and removing these redundant bounding boxes, the number of unnecessarily predicted bounding boxes can be reduced. The redundancy of each bounding box may be calculated as a value obtained by dividing the number of anchors whose Intersection over Union (IoU) scores of x or more with bounding boxes predicted by other anchors by the number of bounding boxes predicted by one anchor. In this case, the computer device 200 may determine the importance of anchors based on the degree of redundancy of the bounding box predicted by each anchor. Here, the score of IoU measures the degree to which two bounding boxes overlap, and can be calculated as a value obtained by dividing the area of the area where the two bounding boxes overlap by the area of the entire area of the two bounding boxes. The closer the score of IoU is to 1, the two bounding boxes can be regarded as identical, and the closer to 0, the two bounding boxes can be regarded as different.
도 6은 본 발명의 일실시예에 있어서, IoU의 스코어를 계산하는 예를 도시한 도면이다. 도 6에서 "Score"는 IoU의 스코어에 대응될 수 있으며, "Area of overlap"은 두 바운딩 박스가 오버랩되는 영역의 넓이를, "Area of union"은 두 바운딩 박스의 전체 영역의 넓이를 각각 의미할 수 있다. 도 6에 도시된 바와 같이 "Score"는 "Area of overlap"를 "Area of union"로 나눈 값으로 계산될 수 있다.6 is a diagram illustrating an example of calculating an IoU score according to an embodiment of the present invention. In FIG. 6, "Score" may correspond to an IoU score, "Area of overlap" means the area of overlapping two bounding boxes, and "Area of union" means the total area of two bounding boxes, respectively. can do. As shown in FIG. 6, "Score" may be calculated as a value obtained by dividing "Area of overlap" by "Area of union".
r%의 중요하지 않은 앵커 제거(2)를 위해, 컴퓨터 장치(200)는 사전에 정의된 앵커들 중에서 정렬된 앵커의 하위 r%의 앵커를 제거할 수 있다. 이때, r의 값은 검증 데이터 셋을 이용하여 성능 하락 대비 추론 속도 개선 정도를 고려하여 기설정될 수 있다. For r% unimportant anchor removal (2), the computer device 200 may remove anchors of the lower r% of the ordered anchors among the predefined anchors. In this case, the value of r may be preset in consideration of the degree of improvement in inference speed versus performance degradation using the verification data set.
모델 재학습(3)을 위해, 컴퓨터 장치(200)는 앵커 가지치기 후 새롭게 정의된 앵커에 대해서 모델을 적응시키기 위해 마찬가지로 원본 객체 탐지기를 학습시켰을 때 사용된 학습 데이터를 이용하여 모델의 재학습을 수행할 수 있다.For model retraining (3), the computer device 200 retrains the model using the training data used when the original object detector was trained similarly in order to adapt the model to the newly defined anchor after anchor pruning. can be done
단계(550)에서 컴퓨터 장치(200)는 경량화된 객체 탐지기 모델을 출력할 수 있다. 단계(540)이 생략된 경우에 컴퓨터 장치(200)는 헤드 신경망이 교체된 경량화된 객체 탐지기 모델을 출력할 수 있으며, 단계(540)이 수행된 경우에 컴퓨터 장치(200)는 헤드 신경망이 교체되고 앵커 가지치기가 수행된 경량화된 객체 탐지기 모델을 출력할 수 있다.In step 550, the computer device 200 may output a lightweight object detector model. When step 540 is omitted, the computer device 200 may output a lightweight object detector model in which the head neural network is replaced, and when step 540 is performed, the computer device 200 replaces the head neural network. and a lightweight object detector model with anchor pruning performed can be output.
이처럼, 본 발명의 실시예들에 따르면, 기존에 주로 연구되어왔던 백본 신경망 중심의 경량화가 아닌, 헤드 신경망 경량화에 특화된 객체 탐지기의 헤드 신경망 경량화 방법 및 시스템을 제공할 수 있다.As such, according to the embodiments of the present invention, it is possible to provide a method and system for reducing the weight of the head neural network of an object detector, which is specialized for weight reduction of the head neural network, rather than the weight reduction of the backbone neural network, which has been mainly studied in the past.
이상에서 설명된 시스템 또는 장치는 하드웨어 구성요소, 또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 어플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.The system or device described above may be implemented as a hardware component or a combination of hardware components and software components. For example, devices and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable gate array (FPGA) , a programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions. The processing device may run an operating system (OS) and one or more software applications running on the operating system. A processing device may also access, store, manipulate, process, and generate data in response to execution of software. For convenience of understanding, there are cases in which one processing device is used, but those skilled in the art will understand that the processing device includes a plurality of processing elements and/or a plurality of types of processing elements. It can be seen that it can include. For example, a processing device may include a plurality of processors or a processor and a controller. Other processing configurations are also possible, such as parallel processors.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치에 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록매체에 저장될 수 있다.Software may include a computer program, code, instructions, or a combination of one or more of the foregoing, which configures a processing device to operate as desired or processes independently or collectively. You can command the device. Software and/or data may be any tangible machine, component, physical device, virtual equipment, computer storage medium or device, intended to be interpreted by or provide instructions or data to a processing device. can be embodied in Software may be distributed on networked computer systems and stored or executed in a distributed manner. Software and data may be stored on one or more computer readable media.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 매체는 컴퓨터로 실행 가능한 프로그램을 계속 저장하거나, 실행 또는 다운로드를 위해 임시 저장하는 것일 수도 있다. 또한, 매체는 단일 또는 수개 하드웨어가 결합된 형태의 다양한 기록수단 또는 저장수단일 수 있는데, 어떤 컴퓨터 시스템에 직접 접속되는 매체에 한정되지 않고, 네트워크 상에 분산 존재하는 것일 수도 있다. 매체의 예시로는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등을 포함하여 프로그램 명령어가 저장되도록 구성된 것이 있을 수 있다. 또한, 다른 매체의 예시로, 애플리케이션을 유통하는 앱 스토어나 기타 다양한 소프트웨어를 공급 내지 유통하는 사이트, 서버 등에서 관리하는 기록매체 내지 저장매체도 들 수 있다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다.The method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer readable medium. The computer readable medium may include program instructions, data files, data structures, etc. alone or in combination. The medium may continuously store programs executable by a computer or temporarily store them for execution or download. In addition, the medium may be various recording means or storage means in the form of a single or combined hardware, but is not limited to a medium directly connected to a certain computer system, and may be distributed on a network. Examples of the medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical recording media such as CD-ROM and DVD, magneto-optical media such as floptical disks, and ROM, RAM, flash memory, etc. configured to store program instructions. In addition, examples of other media include recording media or storage media managed by an app store that distributes applications, a site that supplies or distributes various other software, and a server. Examples of program instructions include high-level language codes that can be executed by a computer using an interpreter, as well as machine language codes such as those produced by a compiler.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.As described above, although the embodiments have been described with limited examples and drawings, those skilled in the art can make various modifications and variations from the above description. For example, the described techniques may be performed in an order different from the method described, and/or components of the described system, structure, device, circuit, etc. may be combined or combined in a different form than the method described, or other components may be used. Or even if it is replaced or substituted by equivalents, appropriate results can be achieved.
그러므로, 다른 구현들, 다른 실시예들 및 청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents of the claims are within the scope of the following claims.

Claims (16)

  1. 적어도 하나의 프로세서를 포함하는 컴퓨터 장치에 의해 수행되는 경량화 방법에 있어서,A lightweight method performed by a computer device including at least one processor,
    상기 적어도 하나의 프로세서에 의해, 객체 탐지기 모델을 입력받는 단계;receiving an object detector model as an input by the at least one processor;
    상기 적어도 하나의 프로세서에 의해, 상기 입력받은 객체 탐지기 모델의 헤드 신경망을 교체하는 단계;replacing, by the at least one processor, a head neural network of the input object detector model;
    상기 적어도 하나의 프로세서에 의해, 앵커 가지치기의 수행 여부를 결정하는 단계;determining, by the at least one processor, whether to perform anchor pruning;
    상기 적어도 하나의 프로세서에 의해, 상기 앵커 가지치기를 수행하는 것으로 결정되는 경우, 상기 헤드 신경망이 교체된 객체 탐지기 모델에 대해 앵커 가지치기를 수행하는 단계; 및performing anchor pruning on the object detector model replaced by the head neural network, when it is determined by the at least one processor to perform the anchor pruning; and
    상기 적어도 하나의 프로세서에 의해, 경량화된 객체 탐지기 모델을 출력하는 단계Outputting, by the at least one processor, a lightweight object detector model
    를 포함하는 경량화 방법.A lightweight method comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 헤드 신경망을 교체하는 단계는,Replacing the head neural network,
    상기 입력받은 객체 탐지기 모델의 헤드 신경망을 구성하는 합성곱 레이어(convolutional layer)의 출력 채널수를 줄이는 것을 특징으로 하는 경량화 방법.The weight reduction method characterized in that for reducing the number of output channels of the convolutional layer constituting the head neural network of the input object detector model.
  3. 제1항에 있어서,According to claim 1,
    상기 헤드 신경망을 교체하는 단계는,Replacing the head neural network,
    상기 입력받은 객체 탐지기 모델의 헤드 신경망을 구성하는 합성곱 레이어를 다른 합성곱 레이어 블록으로 교체하는 것을 특징으로 하는 경량화 방법.The lightweight method characterized in that replacing the convolutional layer constituting the head neural network of the input object detector model with another convolutional layer block.
  4. 제1항에 있어서,According to claim 1,
    상기 헤드 신경망을 교체하는 단계는,Replacing the head neural network,
    상기 입력받은 객체 탐지기 모델의 헤드 신경망을 신경망 구조 자동 탐색 기법(Neural Architecture Search, NAS)을 이용하여 탐색된 헤드 신경망으로 교체하는 것을 특징으로 하는 경량화 방법.The weight reduction method characterized in that replacing the head neural network of the input object detector model with the head neural network searched using a neural network structure automatic search technique (Neural Architecture Search, NAS).
  5. 제1항에 있어서,According to claim 1,
    상기 앵커 가지치기를 수행하는 단계는,The step of performing the anchor pruning,
    앵커의 중요도를 측정하는 단계;measuring anchor importance;
    상기 앵커의 중요도에 기반하여 일정 비율 이하에 속하는 앵커들을 제거하는 단계; 및removing anchors belonging to a predetermined ratio or less based on the importance of the anchors; and
    상기 일정 비율 이하에 속하는 앵커들이 제거된 객체 탐지기 모델을 재학습하는 단계Re-learning an object detector model from which anchors belonging to the predetermined ratio or less are removed
    를 포함하는 것을 특징으로 하는 경량화 방법.Weight reduction method comprising a.
  6. 제5항에 있어서,According to claim 5,
    상기 앵커의 중요도를 측정하는 단계는,The step of measuring the importance of the anchor,
    각 독립적인 앵커의 출력을 제거하기 전과 후의 성능 하락 폭에 기반하여 각 독립적인 앵커의 중요도를 결정하는 것을 특징으로 하는 경량화 방법.A lightweight method characterized by determining the importance of each independent anchor based on the extent of performance degradation before and after removing the output of each independent anchor.
  7. 제5항에 있어서,According to claim 5,
    상기 앵커의 중요도를 측정하는 단계는,The step of measuring the importance of the anchor,
    각 앵커가 예측하는 바운딩 박스의 잉여도에 기초하여 앵커의 중요도를 결정하는 것을 특징으로 하는 경량화 방법.A lightweight method characterized in that the importance of anchors is determined based on the redundancy of the bounding box predicted by each anchor.
  8. 제7항에 있어서,According to claim 7,
    상기 바운딩 박스의 잉여도는 제1 앵커가 예측한 바운딩 박스와의 IoU(Intersection over Union) 스코어가 기설정된 값 이상인 앵커 수를 한 앵커가 예측하는 바운딩 박스의 수로 나눈 값에 기초하여 계산되는 것을 특징으로 하는 경량화 방법.The redundancy of the bounding box is calculated based on a value obtained by dividing the number of anchors whose Intersection over Union (IoU) score with the bounding box predicted by the first anchor is equal to or greater than a preset value by the number of bounding boxes predicted by one anchor. lightweight method.
  9. 제8항에 있어서,According to claim 8,
    상기 IoU 스코어는 두 앵커가 각각 예측한 두 바운딩 박스가 오버랩되는 영역의 넓이를 상기 두 바운딩 박스의 전체 영역의 넓이로 나눈 값에 기초하여 계산되는 것을 특징으로 하는 경량화 방법.The weight reduction method of claim 1 , wherein the IoU score is calculated based on a value obtained by dividing an area of an overlapping area of two bounding boxes predicted by two anchors by an area of a total area of the two bounding boxes.
  10. 제1항에 있어서,According to claim 1,
    상기 경량화된 객체 탐지기 모델을 출력하는 단계는,In the step of outputting the lightweight object detector model,
    상기 앵커 가지치기가 수행되지 않은 경우에 상기 헤드 신경망을 교체한 객체 탐지기 모델을 상기 경량화된 객체 탐지기 모델로서 출력하고, 상기 앵커 가지치기가 수행된 경우에 상기 헤드 신경망을 교체하고 상기 앵커 가지치기가 수행된 객체 탐지기 모델을 상기 경량화된 객체 탐지기 모델로서 출력하는 것을 특징으로 하는 경량화 방법.When the anchor pruning is not performed, the object detector model in which the head neural network is replaced is output as the lightweight object detector model, and when the anchor pruning is performed, the head neural network is replaced and the anchor pruning is performed. A lightweight method characterized in that for outputting the performed object detector model as the lightweight object detector model.
  11. 컴퓨터 장치와 결합되어 제1항 내지 제10항 중 어느 한 항의 방법을 컴퓨터 장치에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장된 컴퓨터 프로그램.A computer program stored in a computer readable recording medium to be combined with a computer device to execute the method of any one of claims 1 to 10 in the computer device.
  12. 제1항 내지 제10항 중 어느 한 항의 방법을 컴퓨터 장치에 실행시키기 위한 프로그램이 기록되어 있는 컴퓨터 판독 가능한 기록매체.A computer readable recording medium in which a program for executing the method of any one of claims 1 to 10 is recorded in a computer device.
  13. 컴퓨터 장치에서 판독 가능한 명령을 실행하도록 구현되는 적어도 하나의 프로세서at least one processor implemented to execute instructions readable by a computer device;
    를 포함하고,including,
    상기 적어도 하나의 프로세서에 의해,by the at least one processor,
    객체 탐지기 모델을 입력받고,Take the object detector model as input,
    상기 입력받은 객체 탐지기 모델의 헤드 신경망을 교체하고,Replace the head neural network of the input object detector model,
    앵커 가지치기의 수행 여부를 결정하고,determine whether to perform anchor pruning;
    상기 앵커 가지치기를 수행하는 것으로 결정되는 경우, 상기 헤드 신경망이 교체된 객체 탐지기 모델에 대해 앵커 가지치기를 수행하고,If it is determined that anchor pruning is to be performed, anchor pruning is performed on the object detector model in which the head neural network has been replaced;
    경량화된 객체 탐지기 모델을 출력하는 것Outputting a lightweight object detector model
    을 특징으로 하는 컴퓨터 장치.Characterized by a computer device.
  14. 제13항에 있어서,According to claim 13,
    상기 헤드 신경망을 교체하기 위해, 상기 적어도 하나의 프로세서에 의해,To replace the head neural network, by the at least one processor,
    상기 입력받은 객체 탐지기 모델의 헤드 신경망을 구성하는 합성곱 레이어(convolutional layer)의 출력 채널수를 줄이거나, 상기 입력받은 객체 탐지기 모델의 헤드 신경망을 구성하는 합성곱 레이어를 다른 합성곱 레이어 블록으로 교체하거나 또는 상기 입력받은 객체 탐지기 모델의 헤드 신경망을 신경망 구조 자동 탐색 기법(Neural Architecture Search, NAS)을 이용하여 탐색된 헤드 신경망으로 교체하는 것Reduce the number of output channels of the convolutional layer constituting the head neural network of the input object detector model, or replace the convolutional layer constituting the head neural network of the input object detector model with another convolutional layer block. Or replacing the head neural network of the input object detector model with a head neural network searched using a neural network structure automatic search technique (Neural Architecture Search, NAS)
    을 특징으로 하는 컴퓨터 장치.Characterized by a computer device.
  15. 제13항에 있어서,According to claim 13,
    상기 앵커 가지치기를 수행하기 위해, 상기 적어도 하나의 프로세서에 의해,To perform the anchor pruning, by the at least one processor:
    앵커의 중요도를 측정하고,measure the importance of anchors,
    상기 앵커의 중요도에 기반하여 일정 비율 이하에 속하는 앵커들을 제거하고,Remove anchors belonging to a certain ratio or less based on the importance of the anchors;
    상기 일정 비율 이하에 속하는 앵커들이 제거된 객체 탐지기 모델을 재학습하는 것Re-learning an object detector model from which anchors belonging to the predetermined ratio or less are removed
    을 특징으로 하는 컴퓨터 장치.Characterized by a computer device.
  16. 제15항에 있어서,According to claim 15,
    상기 앵커의 중요도를 측정하기 위해, 상기 적어도 하나의 프로세서에 의해,to measure the importance of the anchor, by the at least one processor;
    각 독립적인 앵커의 출력을 제거하기 전과 후의 성능 하락 폭에 기반하여 각 독립적인 앵커의 중요도를 결정하거나 또는 각 앵커가 예측하는 바운딩 박스의 잉여도에 기초하여 앵커의 중요도를 결정하는 것Determining the importance of each independent anchor based on the extent of performance degradation before and after removing the output of each independent anchor, or determining the importance of each anchor based on the degree of redundancy of the bounding box predicted by each anchor
    을 특징으로 하는 컴퓨터 장치.Characterized by a computer device.
PCT/KR2021/017317 2021-11-23 2021-11-23 Method and system for lightening head neural network of object detector WO2023095934A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2021/017317 WO2023095934A1 (en) 2021-11-23 2021-11-23 Method and system for lightening head neural network of object detector
KR1020237036978A KR20230162676A (en) 2021-11-23 2021-11-23 Method and system for lightweighting head neural network of object detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/017317 WO2023095934A1 (en) 2021-11-23 2021-11-23 Method and system for lightening head neural network of object detector

Publications (1)

Publication Number Publication Date
WO2023095934A1 true WO2023095934A1 (en) 2023-06-01

Family

ID=86539786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017317 WO2023095934A1 (en) 2021-11-23 2021-11-23 Method and system for lightening head neural network of object detector

Country Status (2)

Country Link
KR (1) KR20230162676A (en)
WO (1) WO2023095934A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200250459A1 (en) * 2019-01-11 2020-08-06 Capital One Services, Llc Systems and methods for text localization and recognition in an image of a document
CN112614133A (en) * 2021-03-05 2021-04-06 北京小白世纪网络科技有限公司 Three-dimensional pulmonary nodule detection model training method and device without anchor point frame

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200250459A1 (en) * 2019-01-11 2020-08-06 Capital One Services, Llc Systems and methods for text localization and recognition in an image of a document
CN112614133A (en) * 2021-03-05 2021-04-06 北京小白世纪网络科技有限公司 Three-dimensional pulmonary nodule detection model training method and device without anchor point frame

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAXIM BONNAERENS; MATTHIAS FREIBERGER; JONI DAMBRE: "Anchor Pruning for Object Detection", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 1 June 2022 (2022-06-01), 201 Olin Library Cornell University Ithaca, NY 14853, XP091236196, DOI: 10.1016/j.cviu.2022.103445 *
WANG NING; GAO YANG; CHEN HAO; WANG PENG; TIAN ZHI; SHEN CHUNHUA; ZHANG YANNING: "NAS-FCOS: Fast Neural Architecture Search for Object Detection", 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), IEEE, 13 June 2020 (2020-06-13), pages 11940 - 11948, XP033804595, DOI: 10.1109/CVPR42600.2020.01196 *
ZHU XINGKUI; LYU SHUCHANG; WANG XU; ZHAO QI: "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios", 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), IEEE, 11 October 2021 (2021-10-11), pages 2778 - 2788, XP034028164, DOI: 10.1109/ICCVW54120.2021.00312 *

Also Published As

Publication number Publication date
KR20230162676A (en) 2023-11-28

Similar Documents

Publication Publication Date Title
CN109815868B (en) Image target detection method and device and storage medium
US20210295082A1 (en) Zero-shot object detection
WO2012108623A1 (en) Method, system and computer-readable recording medium for adding a new image and information on the new image to an image database
CN109961442B (en) Training method and device of neural network model and electronic equipment
CN109828845B (en) Insulator thermal imaging real-time diagnosis system based on edge calculation
KR101963404B1 (en) Two-step optimized deep learning method, computer-readable medium having a program recorded therein for executing the same and deep learning system
CN109743311A (en) A kind of WebShell detection method, device and storage medium
CN112232524B (en) Multi-label information identification method and device, electronic equipment and readable storage medium
WO2020246655A1 (en) Situation recognition method and device for implementing same
CN113313241A (en) Method and computing device for determining tensor information of deep learning model
CN107992366A (en) Method, system and the electronic equipment that multiple destination objects are detected and tracked
CN110503135A (en) Deep learning model compression method and system for the identification of power equipment edge side
WO2023095934A1 (en) Method and system for lightening head neural network of object detector
WO2023017884A1 (en) Method and system for predicting latency of deep learning model by device
CN110489955A (en) Applied to the image procossing of electronic equipment, device, calculate equipment, medium
WO2022107925A1 (en) Deep learning object detection processing device
CN115457365A (en) Model interpretation method and device, electronic equipment and storage medium
WO2022164031A1 (en) Method and system for detecting character string by using high-dimensional polynomial regression
CN113033337A (en) TensorRT-based pedestrian re-identification method and device
CN111652102A (en) Power transmission channel target object identification method and system
WO2022234985A1 (en) Virtual negative edge-based directed network embedding method and system
CN115984302B (en) Multi-mode remote sensing image processing method based on sparse hybrid expert network pre-training
WO2022131733A1 (en) Method, system, and non-transitory computer-readable recording medium for estimating information regarding object on basis of images in low power wide area network (lpwan) environment
CN113408488B (en) Capsule network-based flame target identification method, device and medium
WO2021125431A1 (en) Method and device for initializing deep learning model via distributed equalization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237036978

Country of ref document: KR

Kind code of ref document: A