WO2023095929A1 - Agent for treatment of malignant tumors - Google Patents

Agent for treatment of malignant tumors Download PDF

Info

Publication number
WO2023095929A1
WO2023095929A1 PCT/JP2022/044053 JP2022044053W WO2023095929A1 WO 2023095929 A1 WO2023095929 A1 WO 2023095929A1 JP 2022044053 W JP2022044053 W JP 2022044053W WO 2023095929 A1 WO2023095929 A1 WO 2023095929A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
malignant
immune checkpoint
tumor
checkpoint inhibitor
Prior art date
Application number
PCT/JP2022/044053
Other languages
French (fr)
Japanese (ja)
Inventor
宏之 道上
Original Assignee
国立大学法人 岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学 filed Critical 国立大学法人 岡山大学
Publication of WO2023095929A1 publication Critical patent/WO2023095929A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/69Boron compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a therapeutic drug for malignant tumors that is effective even for patients who do not respond to immunotherapy (immunotherapy alone does not work).
  • Immune checkpoint inhibitor Opdivo nivolumab
  • Anti-PD-1 antibodies which are immune checkpoint inhibitors, release the brakes on cancer cells by inhibiting the binding of PD-L1 on the surface of cancer cells and PD-1 on the surface of immune cells. as a drug that allows immune cells to attack cancer cells.
  • Immune checkpoint inhibitors currently approved in Japan include anti-PD-1/PD-L1 antibodies and anti-CTLA-4 antibodies.
  • Non-Patent Document 1 melanoma was the earliest clinical application of cancer immunotherapy using immune checkpoint inhibitors in patients, and it is one of the malignant tumors with the highest response rate to immunotherapy in clinical cancer.
  • Boron neutron capture therapy administers a boron drug, irradiates the same site with neutrons at the timing when the boron drug accumulates in the cancer site, uses the nuclear reaction ( ⁇ decay) between boron and neutrons, and cancer cells It is a treatment that kills Since the extent of cell killing is at the cellular level, damage to neighboring normal cells is very low.
  • Clinical research has been conducted in nuclear reactors so far, and in March 2020, the accelerator neutron source installed in the hospital received medical device approval, and the boron drug received drug approval, and from June 2020, recurrent head and neck cancer Medical insurance coverage has started.
  • BNCT is positioned in the field of cancer particle radiotherapy and is a powerful local treatment method.
  • the key to the success of BNCT relies heavily on tumor-specific boron drug uptake.
  • the current insurance-approved BPA borofarane ( 10 B): 4-[( 10 B)borono]-L-phenylalanine) is taken up malignant-specifically via the amino acid transporter LAT1.
  • Non-Patent Document 2 the therapeutic response rate of immune checkpoint inhibitors for melanoma is about 30%, and there is currently no treatment for the remaining 70% of melanoma patients who are unresponsive to immunotherapy. is. Also, in Patent Document 1, the subject is a patient who is negative for a specific checkpoint inhibitor, and there is no description of a patient who does not respond to other checkpoint inhibitors. In addition, the response rate of Opdivo for various solid cancers such as advanced hepatocellular carcinoma and ovarian cancer is about 10 to 25% (Non-Patent Document 3, Non-Patent Document 4), and further immunotherapy and chemotherapy. Various combination therapies such as viral therapy have been investigated, but no reports have been made based on clear evidence.
  • an object of the present invention is to provide a therapeutic drug for malignant tumors that is effective even for patients who do not respond to immunotherapy (immunotherapy is not successful).
  • the present inventor found that by combining BNCT with an immune checkpoint inhibitor, it was possible to treat malignant tumors even in patients who did not respond to immunotherapy, and completed the present invention.
  • a therapeutic drug for malignant tumors which contains an immune checkpoint inhibitor and is used in combination with boron neutron capture therapy;
  • immune checkpoint inhibitors are anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody, PD-
  • the drug for treating malignant tumors according to [1] above which is selected from the group consisting of an L1/TGF ⁇ trap inhibitory fusion protein and an anti-PD-1/CTLA-4 bispecific antibody;
  • the immune checkpoint inhibitor is a humanized monoclonal antibody;
  • the drug for treating malignant tumors according to [2] or [3] above, wherein the anti-PD-1 antibody is nivolumab, pembrolizumab, spartalizumab, or semiplimab;
  • the drug for treating malignant tumor is nivolumab, pembrolizumab, spartalizumab, or semiplima
  • malignant tumors [9] The malignant tumor according to any one of [1] to [8] above, wherein the malignant tumor is selected from the group consisting of carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, leukemia, glioma, malignant melanoma, and lymphoma.
  • malignant tumor drug [10] The therapeutic agent for malignant tumor according to [9] above, wherein the malignant tumor is malignant melanoma; [11] The therapeutic agent for malignant tumor according to [10] above, wherein the malignant melanoma is advanced stage malignant melanoma; [12] (i) anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody, PD-L1/TGF ⁇ trap an immune checkpoint inhibitor selected from the group consisting of an inhibitory fusion protein and an anti-PD-1/CTLA-4 bispecific antibody; and (ii) said immune checkpoint comprising a boron compound for use in boron neutron capture therapy.
  • combination drugs for the treatment of malignancies in patients who do not respond to treatment with inhibitors [13] The combination drug for treating malignant tumor according to [12] above, wherein the malignant tumor is selected from the group consisting of carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, leukemia, glioma, malignant melanoma, and lymphoma, [14] The combination drug for treatment of malignant tumor according to [13] above, wherein the malignant tumor is malignant melanoma, and [15] The treatment for malignant tumor according to [14] above, wherein the malignant melanoma is advanced stage melanoma. It relates to combination medicaments for use.
  • the present invention by combining treatment with an immune checkpoint inhibitor with BNCT, it is possible to treat malignant tumors even in patients who do not respond to immunotherapy (immunotherapy does not work).
  • FIG. 4 is a graph showing changes in tumor volume of a tumor site in the right femoral muscle, which is an irradiation site. It is a graph which shows the change of the tumor volume of the left flank subcutaneous tumor part which is a shielding part.
  • 2 is a graph of flow cytometry results showing the ratio of tumor tissue infiltrating lymphocytes (TIL) in neutron-irradiated tumors. It is the data of the fluorescence microscope photograph which shows the result of the immunohistochemical staining in the neutron irradiation part tumor.
  • FIG. 10 is a graph of flow cytometry results showing the percentage of TILs in neutron shielding tumors.
  • FIG. 10 is a graph of flow cytometry results showing the percentage of TILs in neutron shielding tumors.
  • FIG. 1 is a graph showing concentrations of HMGB1 in serum.
  • FIG. 2 is a graph of flow cytometry results showing the percentage of effector memory T cells (Tem) in neutron-irradiated tumors.
  • FIG. 2 is a graph of flow cytometry results showing the percentage of effector memory T cells (Tem) within neutron shielding tumors.
  • 4 is a graph showing the ratio of TILs in the spleen in neutron irradiation experiments.
  • FIG. 10 is a graph showing the ratio of TILs in the spleen in experiments without neutron irradiation.
  • the present invention relates to a therapeutic agent for malignant tumors, which contains an immune checkpoint inhibitor and is characterized by being used in combination with boron neutron capture therapy (BNCT), and combines immunotherapy and BNCT (BNCT immune combination therapy: By Boron-Neutron Immuno Therapy (B-NIT), BNCT can enhance responsiveness to immunotherapy and provide effective treatment to patients who are unresponsive to immunotherapy alone.
  • BNCT is a high-dose particle beam therapy for local treatment, it is usually not possible to perform simultaneous irradiation to multiple sites or whole-body irradiation, so it is not indicated for advanced cancer with lesions outside the neutron irradiation site.
  • the BNCT immune combination therapy of the present invention utilizes BNCT as a local treatment for patients who are unresponsive to immunotherapy, and by enhancing immunotherapy, not only local malignant tumors but also advanced malignant tumors. It is an epoch-making product that can be used for systemic treatment of tumors.
  • the present invention demonstrates that combined therapy with BNCT treatment, which exhibits direct effects, and immunotherapy using an immune checkpoint inhibitor was effective against remote sites (shielded sites) that are not irradiated with neutrons. is shown.
  • BNCT in combination therapy with immunotherapy, thus has therapeutic efficacy against advanced malignancies at distant sites as well.
  • BNCT can generally be completed in one day, and can be combined with immunotherapy performed every 2-3 weeks without affecting it.
  • the expressions “non-responsive to immunotherapy”, “non-responsive to immunotherapy”, and “unsuccessful to immunotherapy” are all used in the treatment of malignant tumors.
  • immunotherapy using a point inhibitor it means a state in which the treatment does not effectively reduce the malignant tumor and does not show remission.
  • These expressions are also referred to as "resistant to immunotherapy” and can be used interchangeably. The same applies to the case of "not responding to treatment with immune checkpoint inhibitors.”
  • the malignant tumor to which the present invention is applied is selected from the group consisting of solid cancer, carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, leukemia, malignant brain tumor (such as glioma), neuroma, malignant melanoma, and lymphoma.
  • the selected malignant tumor is preferably, but not particularly limited to, a malignant tumor already known to partially respond to an immune checkpoint inhibitor.
  • Specific examples of squamous cell carcinoma include those occurring in the cervix, eyelids, conjunctiva, vagina, lungs, oral cavity, skin, bladder, tongue, trachea, bronchi, larynx, pharynx, esophagus, and the like.
  • adenocarcinoma include those occurring in the prostate, small intestine, endometrium, cervix, large intestine, lung, pancreas, esophagus, rectum, uterus, stomach, breast, ovary, and the like.
  • sarcoma include myogenic sarcoma.
  • malignant brain tumors include glioma, glioblastoma, malignant meningioma, primary central nervous system malignant lymphoma, and the like.
  • the malignant tumor is from hepatocellular carcinoma, colon cancer, urothelial cancer, nasopharyngeal cancer, non-small cell lung cancer, ovarian cancer, esophageal cancer, anal cancer, etc. may be selected.
  • the malignant tumor to which the present invention is applied is preferably a malignant tumor for which a known immune checkpoint inhibitor has already been approved, and such a malignant tumor is a malignant Melanoma, non-small cell lung cancer, renal cell carcinoma, Hodgkin's lymphoma, head and neck cancer, gastric cancer, pleural mesothelioma, colorectal cancer, esophageal cancer, urothelial cancer, solid tumor, Merkel cells It is selected from the group consisting of cancer, small cell lung cancer, hepatocellular carcinoma and breast cancer.
  • malignant tumors can be selected from non-small cell lung cancer, colon cancer, uterine cancer, bladder cancer, head and neck cancer, or malignant melanoma because of their many gene mutations.
  • Immune checkpoint inhibitor means a molecule capable of inhibiting an immune checkpoint.
  • Immune checkpoint inhibitors include, in particular, molecules that inhibit immune checkpoint functions of PD-1, PD-L1, CTLA-4, LAG-3, TIM-3, TIGIT, KIR, PD-L1/TGF ⁇ trap, Specifically, anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody, PD-L1/TGF ⁇ trap inhibition Fusion proteins, anti-PD-1/CTLA-4 dual antibodies, and the like. Among them, anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody are preferred, and anti-PD-1 antibody is more preferred.
  • antibodies as immune checkpoint inhibitors used in the present invention are capable of specifically binding to their corresponding antigens, and are human-derived antibodies, mouse-derived antibodies, rat-derived antibodies, rabbit-derived antibodies, or goat-derived antibodies. It may be derived from any antibody, and may be either a polyclonal antibody or a monoclonal antibody, and may be a complete form or a fragment such as an F(ab')2, Fab', Fab or Fv fragment. , chimerized antibodies, humanized antibodies or fully human antibodies. Among them, monoclonal antibodies are preferred, and humanized monoclonal antibodies and fully human monoclonal antibodies are more preferred.
  • immune checkpoint inhibitors used in the present invention inhibit immune checkpoints by binding PD-1, PD-L1, CTLA-4, LAG-3, TIM-3, TIGIT, KIR, etc. It can be prepared according to a method known in the technical field, using a region capable of as an antigen. For monoclonal antibodies, after determining the amino acid sequence or DNA sequence of the antibody, it can be modified by genetic recombination techniques to produce a genetically modified antibody. It can also be produced by a known method using Antibodies against PD-1, PD-L1, CTLA-4, LAG-3, TIM-3, TIGIT, KIR may also be obtained commercially.
  • an antibody reported to be effective against malignant tumors as an immune checkpoint inhibitor such as Nivolumab, pembrolizumab, spartalizumab, semiplimab, etc. are preferred, especially from the viewpoint of reducing the time and cost required for clinical application, which are already presently used as immune checkpoint inhibitors, e.g., malignant melanoma, non-small cell Nivolumab used in lung cancer, renal cell carcinoma, Hodgkin lymphoma, head and neck cancer, gastric cancer, malignant pleural mesothelioma, colorectal cancer, esophageal cancer, or e.g.
  • nivolumab as an active ingredient is available from Ono Pharmaceutical Co., Ltd. as “Opdivo (registered trademark),” and a formulation containing pembrolizumab as an active ingredient is available from MSD Co., Ltd. as “Keytruda (registered trademark).” )”.
  • a commercially available antibody can be used as the anti-PD-L1 antibody used in the present invention.
  • an inhibitor e.g. avelumab, known for use in Merkel cell carcinoma, renal cell carcinoma, urothelial carcinoma, or atezolizumab, known for e.g. or durvalumab, which is known to be used for non-small cell lung cancer, extensive small cell lung cancer, for example.
  • a formulation containing avelumab as an active ingredient is available from Merck BioPharma K.K. under the name BAVENCIO®. Trademark)” and a formulation with durvalumab as the active ingredient is available from AstraZeneca as “Imfinzi®”.
  • an antibody reported to be effective against malignant tumors as an immune checkpoint inhibitor such as Ibilimumab, tremelimumab and the like are preferred, and especially from the viewpoint of reducing the time and cost required for clinical application, currently already as immune checkpoint inhibitors, for example malignant melanoma, renal cell carcinoma, colorectal cancer, Known ibilimumab, which is used for non-small cell lung cancer and malignant pleural mesothelioma, is preferred.
  • a formulation containing ibilimumab as an active ingredient is available as "Yervoy (registered trademark)" from Bristol-Myers Squibb K.K.
  • the malignant tumor therapeutic drug of the present invention can be administered systemically or locally, and can be administered orally or parenterally.
  • Parenteral routes of administration include intramuscular, intraperitoneal, intrasternal, intravenous, subcutaneous, and the like.
  • the therapeutic drug for malignant tumor of the present invention is preferably administered intraperitoneally or intravenously, especially by intravenous drip.
  • the therapeutic agent for malignant tumors of the present invention may be administered as an active ingredient, the immune checkpoint inhibitor itself, but in general, at least one pharmaceutically acceptable additive is added according to the route of administration. It is preferably administered in the form of a pharmaceutical composition containing, for example.
  • the dosage forms of the drug for treating malignant tumors of the present invention include, for oral administration, liquids, tablets (including orally disintegrating tablets, sublingual tablets, oral patch tablets, etc.), pills, capsules, powders, and granules.
  • oral administration liquids, tablets (including orally disintegrating tablets, sublingual tablets, oral patch tablets, etc.), pills, capsules, powders, and granules.
  • parenteral administration injections, infusions, external preparations, suppositories, inhalants, intranasal preparations and the like can be mentioned.
  • Injections and infusions may be liquid formulations such as solutions, suspensions and emulsions, and may also include solid formulations such as freeze-dried formulations prepared as liquid formulations at the time of use.
  • the additives used in the drug for treating malignant tumors of the present invention are not particularly limited, but are tonicity agents, buffers, pH adjusters, and other additives (excipients, binders, disintegrants, , preservatives, lubricants, stabilizers, swelling agents, etc.), and can be appropriately selected and used according to the dosage form.
  • the drug for treating malignant tumors of the present invention can be made into an infusion, especially a liquid for intravenous infusion, using tonicity agents, buffers, pH adjusters and other additives. preferable.
  • the tonicity agent is not particularly limited, but is selected from the group consisting of sodium chloride, potassium chloride, sodium citrate, sucrose, glucose, mannitol, sorbitol, xylitol, arginine, cysteine, histidine and glycine. At least one tonicity agent and the like are included. A tonicity agent may be used alone or in combination of two or more.
  • buffering agents include, but are not limited to, histidine, histidine hydrochloride, phosphoric acid, citric acid, maleic acid, acetic acid, glacial acetic acid, succinic acid, tartaric acid, lactic acid, malic acid, boric acid, ascorbic acid, at least one buffer selected from the group consisting of glycine, glutamic acid, arginine, tris-(hydroxymethyl)-aminomethane (tris) and diethanolamine or salts thereof;
  • a buffering agent may be used individually and may be used in combination of 2 or more types.
  • pH adjusters include, but are not limited to, bases such as sodium hydroxide, aqueous ammonia, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium hydrogen carbonate, and sodium carbonate, as well as hydrochloric acid, citric acid, Acids such as succinic acid, acetic acid, glacial acetic acid, tartaric acid, carbon dioxide, lactic acid, sulfuric acid and phosphoric acid.
  • bases such as sodium hydroxide, aqueous ammonia, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium hydrogen carbonate, and sodium carbonate
  • bases such as sodium hydroxide, aqueous ammonia, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium hydrogen carbonate, and sodium carbonate
  • hydrochloric acid citric acid
  • Acids such as succinic acid, acetic acid, glacial acetic acid, tartaric acid, carbon dioxide, lactic acid, sulfuric acid and phosphoric acid.
  • the pH adjusters may be used
  • additives include, but are not limited to, mannitol, sorbitol, sucrose, refined sucrose, trehalose, xylitol, glucose, lactose, glycerol, maltose, inositol, bovine serum albumin (BSA), dextran, PVA, hydroxyl Propylmethylcellulose (HPMC), polyethyleneimine, gelatin, polyvinylpyrrolidone (PVP), hydroxyethylcellulose (HEC), polyethylene glycol, ethylene glycol, dimethylsulfoxide (DMSO), dimethylformamide (DMF), proline, sodium L-serine glutamate, glutamic acid.
  • BSA bovine serum albumin
  • HPMC hydroxyl Propylmethylcellulose
  • HPMC hydroxyl Propylmethylcellulose
  • PVP polyvinylpyrrolidone
  • HEC hydroxyethylcellulose
  • proline sodium L-serine glutamate, glutamic acid.
  • the dose and frequency of administration of the drug for treating malignant tumors of the present invention are not particularly limited. Although it varies depending on the administration method, etc., it is determined by the general condition, responsiveness to treatment, degree of side effects, social factors, and the like.
  • the therapeutic drug for malignant tumor of the present invention is preferably 0.01 to 10000 mg, more preferably 0.1 to 5000 mg, more preferably 1 to 2000 mg as an immune checkpoint inhibitor per administration for adults. preferable.
  • Any immune checkpoint inhibitor of the present invention for example, every day, every 2 days, every 3 days, every 4 days, every 5 days, every 6 days, every week, every 2 weeks, every 3 weeks, every 4 weeks, every 5 weeks, multiple times, such as 2, 3, 4, 5, 6, 7, 8, 9, or 10 times every 6, 7, 8, 9 or 10 weeks administered more than once.
  • BNCT BNCT It can also be changed and used in consideration of the combined use with.
  • the package insert of the immune checkpoint inhibitor clearly states that it is used in combination with BNCT.
  • nivolumab when the immune checkpoint inhibitor is nivolumab, 1 to 1000 mg of nivolumab, preferably 10 to 700 mg, more preferably 80 to 480 mg of nivolumab is intravenously administered multiple times at intervals of 1 to 6 weeks to adults. Specifically, 240 mg can be administered as multiple doses at 2- to 3-week intervals, or 480 mg can be administered as multiple doses at 4-week intervals.
  • the immune checkpoint inhibitor is pembrolizumab
  • 1 to 1000 mg of pembrolizumab, preferably 10 to 500 mg, more preferably 200 mg of pembrolizumab is intravenously infused multiple times at 3-week intervals to adults. can be done.
  • the dose of avelumab to adults is 1 to 100 mg/kg (body weight), preferably 5 to 50 mg/kg (body weight), more preferably 10 mg/kg. (body weight) can be administered intravenously multiple times at intervals of 1 to 3 weeks, preferably at intervals of 2 weeks.
  • an adult receives 100-1500 mg, preferably 500-1500 mg, preferably 840-1200 mg of atezolizumab once every 2-4 weeks, preferably 2-4 weeks. It can be intravenously infused multiple times at 3-week intervals. Specifically, 1200 mg can be intravenously infused multiple times at 3-week intervals, or 840 mg can be intravenously infused multiple times at 1- to 2-week intervals. .
  • 0.1 to 5000 mg/kg (body weight), preferably 1 to 1500 mg/kg (body weight), more preferably 5 mg/kg (body weight), more preferably 5 mg/kg (body weight) of durvalumab is administered to an adult once.
  • Up to 1300 mg/kg (body weight) can be intravenously infused multiple times at intervals of 2 to 4 weeks, preferably at intervals of 2 to 3 weeks, specifically, 10 mg/kg (body weight) once at intervals of 2 weeks.
  • Multiple doses or multiple doses of 1500 mg/kg (body weight) can be intravenously infused at 4-week intervals.
  • the immune checkpoint inhibitor is ibilimumab
  • 0.05 to 100 mg/kg (body weight), preferably 0.1 to 50 mg/kg (body weight), more preferably 0.1 to 50 mg/kg (body weight) of ibilimumab is administered to an adult once.
  • 0.5 to 5 mg/kg (body weight) can be intravenously infused multiple times at intervals of 1 to 8 weeks, preferably at intervals of 2 to 7 weeks, specifically, 3 mg/kg (body weight) once.
  • Multiple intravenous infusions, for example 4 times, can be performed at 3-week intervals.
  • BNCT is preferably performed after starting administration of an immune checkpoint inhibitor. Specifically, after administering an immune checkpoint inhibitor once, twice or three times or more, administering a boron compound, 1 to 3 hours after that, neutron irradiation, and then further immune checkpoint inhibitor It is preferable to administer once, twice, or three times or more, and further preferably to continuously administer an immune checkpoint inhibitor.
  • the boron compound used for BNCT in the present invention is not particularly limited, and various compounds conventionally used in particle beam therapy can be used. Specifically, BPA, BSH, BSH Derivatives, and other known boron compounds for BNCT that further contain boron. Cluster molecules such as BSH and BSH derivatives are preferred because they contain many boron atoms in one molecule, and BPA is more preferred because it is a drug targeting malignant tumors focused on melanin biosynthesis. These boron compounds can be produced by known methods and are commercially available. A preparation containing BPA is available from Stella Pharma Co., Ltd. as "Stebronine (registered trademark)". Of course, according to the present invention, the package insert of the boron compound preferably clearly states that it is used in combination with an immune checkpoint inhibitor.
  • the boron compound used in the present invention is generally administered intravenously or intraarterially.
  • administration by oral medicine, administration by intramuscular injection, transdermal administration, etc. can also be effectively used. .
  • the boron compound used in the present invention is administered in a concentration and amount that allows it to accumulate in tumor cells in a therapeutically effective amount. It is preferable to administer so that the final boron concentration in the tumor tissue area is 25 ppm or more. Further, it is more preferable that the ratio of the boron concentration in the tumor tissue to that in the normal tissue is 2 times or more. For example, in the case of BPA, such dosage is preferably 100-500 mg/kg, more preferably 250-500 mg/kg. It is preferable to administer such a dose by intravenous drip infusion over 1 to 3 hours at a rate of 100 to 200 mg/kg per hour, and neutron irradiation is preferably performed after administration or during continuous administration. Further, the boron compound can be additionally administered during neutron irradiation, and can be intravenously infused at a rate of 50 to 500 mg/kg, preferably 50 to 100 mg/kg per hour.
  • Neutron irradiation is preferably performed after sufficient time for the boron compound to reach the site to be treated and before the boron compound is reduced from the neutron-irradiated tumor site. It is more preferable to carry out after ⁇ 4 hours, more preferably after 1 to 3 hours.
  • treatment such as neutron dose, irradiation time, tumor site boron concentration, blood boron concentration, pharmacokinetic results by boron compound-PET (BPA-PET, etc.) determine the conditions necessary for
  • BNCT is radiotherapy, it targets a limited area.
  • BNCT treatment should preferably be performed as few times as possible.
  • the drug for treating malignant tumors of the present invention when used, it should be performed once during combination therapy with an immune checkpoint inhibitor.
  • the range of the irradiation site, etc. it may be considered to perform the treatment two or more times.
  • the BNCT immune combination therapy with the therapeutic agent for malignant tumors of the present invention can effectively treat patients who do not respond to immunotherapy, especially treatment with immune checkpoint inhibitors, and patients at advanced stage who have metastasis.
  • patients suffering from advanced-stage malignant melanoma can be expected to be particularly effective as described above.
  • an immune checkpoint inhibitor selected from the group consisting of a PD-L1/TGF ⁇ trap inhibitory fusion protein and an anti-PD-1/CTLA-4 bispecific antibody
  • boron for use in boron neutron capture therapy is provided, comprising the compound.
  • the form of this combination medicine is not particularly limited, and (i) anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT an immune checkpoint inhibitor selected from the group consisting of antibodies, anti-KIR antibodies, PD-L1/TGF ⁇ trap inhibitory fusion proteins and anti-PD-1/CTLA-4 bispecific antibodies, and (ii) boron neutron capture therapy. and the kit can include instructions describing the relationship between administration of the immune checkpoint inhibitor and administration of BNCT.
  • Mouse melanoma cells B16F10 were purchased from National University Corporation Tohoku University Institute of Aging and Cancer Medical Cell Resource Center/Cell Bank. Culture was performed using RPMI-1640+10% FBS (fetal bovine serum)+1% P/S (penicillin/streptomycin) using a 5% CO 2 cell culture incubator. Cells were harvested using 0.25% trypsin under 70-90% confluent conditions to prepare a cell suspension of 1.0 ⁇ 10 4 cells/ ⁇ L.
  • FBS fetal bovine serum
  • P/S penicillin/streptomycin
  • the boron concentration in the tumor site in the muscle of the right lower limb, which is the site to be irradiated was 29.9 ppm, while the boron concentration in the normal muscle of the same site was 10 ppm.
  • the boron concentration in the subcutaneous tumor site (planned shielding site) on the left side of the abdomen and the boron concentration in the normal skin of the right thigh, which is the planned irradiation site were almost the same at 13.2 ppm and 13.1 ppm, respectively. .
  • the melanoma cells used for the left flank subcutaneous tumor and the right thigh intramuscular tumor are the same cell line (B16-F10), but the boron concentration in the subcutaneous tumor area is 29
  • the low value of 13.2 ppm compared to 0.9 ppm is due to the fact that intramuscular tumor blood vessels are more likely to be formed and more likely to contribute to tumorigenesis.
  • Neutron irradiation which will be described later, was performed 2 hours after administration of the boron drug because the boron concentration in the right thigh was stable from 29.9 ppm to 31.8 ppm from 2 hours to 3 hours.
  • mice anti-PD-1 antibody manufactured by Bio X cell, InVivoMab anti -mouse PD-1 (CD279), clone#RMP1-14 was administered intraperitoneally at 250 mg per mouse.
  • Boron drug BPA administration Boron drug borofarane ( 10 B) (trade name: steboronine, manufactured by Stella Chemifa Co., Ltd.) was subcutaneously administered to advanced melanoma model mice at 500 mg/kg body weight. Two hours after administration, neutron irradiation was performed.
  • neutron irradiation On the 8th day after the model mouse was produced, neutron irradiation was performed at the trolley animal irradiation facility in Kyoto University's Institute for Integrated Radiation and Nuclear Science during operation of the 5 MW nuclear reactor. An outline of the irradiation method is shown in FIG. Neutron irradiation was performed for 12 minutes on the entire lower extremity (irradiated part) including the tumor in the right thigh muscle of the melanoma model mouse from a neutron source, and the left flank subcutaneous tumor was used as the tumor in the shielded part. High-concentration lithium fluoride was used for neutron shielding. That is, as shown in FIG.
  • a model mouse was placed on a ring-shaped shielding material made of high-concentration lithium fluoride, and neutron irradiation was performed from the shielding material side from a neutron source.
  • neutrons were irradiated to the left thigh intramuscular tumor located where there was no shielding material, and neutrons did not reach the left abdominal tumor blocked by the shielding material.
  • Experiments were performed on model mice under general anesthesia in order to minimize the effects of mouse movement.
  • the average thermal neutron fluence in the irradiated area of the right lower extremity is 2.67E+12 (cm -2 ), and the average thermal neutron fluence within the shield of the left abdomen is 6.427E+11 (cm -2 ), which is about 1/4 of the irradiated area. Sufficient neutron shielding was confirmed.
  • FIG. 2 shows the results of measuring the tumor volume of the tumor in the right thigh muscle. From FIG. 2, 27 days after transplantation, the anti-PD-1 antibody administration + BNCT treatment group had the smallest tumor volume (mean 926 (mm 3 )). On the other hand, the BNCT-treated group showed the effect of BNCT at 1850 (mm 3 ). In the anti-PD-1 antibody-administered group, it was 3242 (mm 3 ). Twenty-three days after transplantation, the control group already exceeded 2200 (mm 3 ) and had the largest tumor volume compared to the other treatment groups.
  • FIG. 3 shows the results of measuring the left flank subcutaneous tumor volume. From FIG. 3, 27 days after transplantation, the tumor volume was the smallest in the anti-PD-1 antibody administration+BNCT treatment group (average 1291 (mm 3 )). On the other hand, the BNCT-treated group showed the effect of BNCT at 2015 (mm 3 ). The anti-PD-1 antibody-administered group was 4127 (mm 3 ). The control group already exceeded 5700 (mm 3 ) 23 days after transplantation, and had the largest tumor volume compared to the other treatment groups.
  • Table 2 shows the dose of each tissue converted to radiation.
  • this B16F10 transplanted melanoma model is resistant to anti-PD-1 antibodies, that is, it is an immunotherapy-resistant melanoma model that does not respond (does not respond) to anti-PD-1 antibody therapy. .
  • the BNCT treatment group with BNCT alone has a certain degree of local tumor suppressive effect, but the effect is not so great, and the combined use of immunotherapy (administration of anti-PD-1 antibody + BNCT treatment group), the tumor volume was significantly reduced to less than half that of the BNCT treatment group at 27 days after transplantation.
  • the radiation dose to the intramuscular tumor site of the right thigh was extremely high at 24.8 Gy-eq, while the dose to the surrounding normal tissue was 5.9 Gy-eq for the muscle and 2.0 Gy-eq for the skin. eq is very small, and it can be seen that damage to surrounding normal tissues is suppressed.
  • the anti-PD-1 antibody administration + BNCT treatment group was able to significantly suppress tumor growth at distant sites.
  • B-NIT Boron neutron capture therapy combined immunotherapy
  • TIL tumor infiltrating lymphocytes
  • the results are shown in FIG.
  • the CD8+/CD45+ tumor-infiltrating lymphocytes were 24.5% and 25.34% in the control group and the anti-PD-1 antibody-administered group, respectively, and there was no change.
  • it increased to 49.2% in the BNCT treatment group, and further increased to 64.6% in the anti-PD-1 antibody administration + BNCT treatment group (Fig. 4).
  • a sample collected from the tumor tissue with 4% paraformaldehyde a frozen pathological section sample was prepared, and immunohistochemical staining of the tumor area was performed using an anti-CD8 antibody.
  • FIG. 5 shows fluorescence photomicrograph data ( ⁇ 10) of the boundary region with the normal region around the tumor.
  • 1 indicates nuclei (Hoechst staining: blue) and 2 indicates tumor-infiltrating lymphocytes (anti-CD8 antibody: red).
  • TIL tumor infiltrating lymphocytes
  • lymphocyte infiltration is low in the control group and the anti-PD-1 antibody-administered group, indicating that this model mouse is anti-PD-1 antibody-resistant. It is shown that. Even in such mice, the infiltration of lymphocytes attacking the tumor is significantly observed in the BNCT-treated group and the anti-PD-1 antibody-administered + BNCT-treated group.
  • TIL tumor tissue infiltrating lymphocytes
  • CD8a monoclonal antibody (4SM15) and eBioscience were used as the primary antibody for immunohistochemical staining
  • Alexa Flour 594 anti-mouse manufactured by Thermo Fisher Scientific was used as the secondary antibody. board.
  • TIL tumor-infiltrating lymphocytes
  • TIL tumor tissue infiltrating lymphocytes
  • HMGB1 high mobility group box 1 in serum
  • DAMPs damage-associated molecular patterns
  • this blood (serum) HMGB1 level is considered to be a new biomarker in BNCT immune combination therapy (B-NIT).
  • TIL tumor infiltrating lymphocytes
  • CTLs Cytotoxic T cells
  • effector T cells differentiate into T cells with various functions in the extracellular environment. Effector T cells are mostly dead after 1-2 weeks unless exposure to the same antigen is sustained.
  • Some remaining effector T-cells exist as effector memory T-cells (Tem) capable of rapid immune response over a long period of time in the tumor rather than in secondary lymphoid tissues. Tem present within the tumor microenvironment circulates primarily in secondary lymphoid and tumor tissues and responds rapidly upon re-exposure to the same antigen.
  • mice in each group were sacrificed 22 to 27 days after neutron irradiation, and the above [tumor-infiltrating lymphocytes (TIL) in the neutron-irradiated part] and [tumor-infiltrating lymphocytes (TIL) in the shielded part] TILs were sorted by flow cytometry as in .
  • TIL tumor-infiltrating lymphocytes
  • TIL tumor-infiltrating lymphocytes
  • Tem (effector memory T cells) in the neutron-irradiated tumor showed a high Tem presence of 24.5% in the control group and 66.1% in the anti-PD-1 antibody administration + BNCT treatment group ( Figure 9A).
  • Tem in the tumor of the shielded part was 82.7% in the anti-PD-1 antibody administration + BNCT treatment group compared to 43.0% in the control group, which also showed the presence of high Tem in the combined therapy (Fig. 9B).
  • Tem T cells capable of immune response (tumor immune memory) are induced by treatment over a period of time.
  • Example 3 Boron neutron capture therapy combined immunotherapy which is a combination of boron neutron therapy and immunotherapy, was performed using the developed advanced-stage melanoma model mice.
  • B-NIT Boron neutron capture therapy combined immunotherapy
  • T cells in spleen tissue Immune cells are cells differentiated from hematopoietic stem cells present in the bone marrow. Tissues such as bone marrow where immune cells are produced and proliferate are called primary lymphoid tissues, and tissues such as lymph nodes and spleen where the produced immune cells are activated and immune reactions occur are called secondary lymphoid tissues. In this secondary lymphoid tissue, the spleen, immune cells recognize antigens at antigen receptors and become more potent T cells. Therefore, by looking at the number of T cells in the splenic tissue, it is possible to evaluate whether a systemic cell-mediated immune response is taking place.
  • CD8 + / CD45 + T cells (activated T cells) in the spleen are increased in the BNCT treatment group subjected to neutron irradiation, and are further increased in the anti-PD-1 antibody administration + BNCT treatment group. Therefore, it is considered that a systemic cellular immune response occurs in the anti-PD-1 antibody administration+BNCT treatment group.
  • Embodiment 1 A method of treating a malignant tumor comprising administering an immune checkpoint inhibitor to a patient, the method of treatment being combined with boron neutron capture therapy.
  • Embodiment 2 A method of treating a malignant tumor comprising administering to a patient an immune checkpoint inhibitor and a boron compound for use in boron neutron therapy, wherein the patient is unresponsive to treatment with the immune checkpoint inhibitor, Immune checkpoint inhibitor is anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody, PD-L1/TGF ⁇ A therapeutic method selected from the group consisting of a trap-inhibiting fusion protein and an anti-PD-1/CTLA-4 bispecific antibody.
  • Embodiment 1 or 2 above it is preferable to administer the immune checkpoint inhibitor at least once, then administer the boron compound, and then irradiate with neutrons, since the effect of the combination is likely to be exhibited.
  • Embodiment 3 A medicament comprising an immune checkpoint inhibitor for use in treating malignant tumors in combination with boron neutron capture therapy.
  • Embodiment 4 (i) anti-PD-1 antibodies, anti-PD-L1 antibodies, anti-CTLA-4 antibodies, anti-LAG-3 antibodies for use in the treatment of malignancies in patients who do not respond to treatment with immune checkpoint inhibitors an immune checkpoint inhibitor selected from the group consisting of an antibody, an anti-TIM-3 antibody, an anti-TIGIT antibody, an anti-KIR antibody, a PD-L1/TGF beta trap inhibitory fusion protein and an anti-PD-1/CTLA-4 bispecific antibody and (ii) a pharmaceutical combination comprising a boron compound for use in boron neutron capture therapy.
  • an immune checkpoint inhibitor selected from the group consisting of an antibody, an anti-TIM-3 antibody, an anti-TIGIT antibody, an anti-KIR antibody, a PD-L1/TGF beta trap inhibitory fusion protein and an anti-PD-1/CTLA-4 bispecific antibody
  • a pharmaceutical combination comprising a boron compound for use in boron neutron capture therapy.
  • Embodiment 5 Use of an immune checkpoint inhibitor for the manufacture of a medicament for treating malignant tumors, wherein the medicament for treating malignant tumors is used in combination with boron neutron capture therapy.
  • Embodiment 6 for the manufacture of a combination medicament for the treatment of malignant tumors in patients who do not respond to treatment with said immune checkpoint inhibitor, (i) anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody, PD-L1/TGF ⁇ trap blocking fusion protein and an immune checkpoint inhibitor selected from the group consisting of anti-PD-1/CTLA-4 bispecific antibodies, and (ii) the use of boron compounds for use in boron neutron capture therapy.
  • the immune checkpoint inhibitor is an anti-PD-1 antibody, an anti-PD-L1 antibody, an anti-CTLA-4 antibody, an anti-LAG-3 antibody, an anti-TIM-3 antibody, preferably selected from the group consisting of anti-TIGIT antibodies, anti-KIR antibodies, PD-L1/TGF ⁇ -trap inhibitory fusion proteins and anti-PD-1/CTLA-4 bispecific antibodies, wherein the immune checkpoint inhibitor is a human
  • the anti-PD-1 antibody is nivolumab, pembrolizumab, spartalizumab, or semiplimab
  • the anti-PD-L1 antibody is preferably avelumab, atezolizumab, or durvalumab.
  • the anti-CTLA-4 antibody is preferably ibilimumab or tremelimumab
  • the boron compound used in boron neutron capture therapy is preferably borofarane ( 10 B)
  • the subject and the immune checkpoint inhibitor is an immune checkpoint inhibitor to which the patient did not respond
  • the malignant tumor is carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, leukemia, glioma, It is preferably selected from the group consisting of malignant melanoma and lymphoma, the malignant tumor is more preferably malignant melanoma, and the malignant melanoma is more preferably advanced stage malignant melanoma.
  • the malignant tumor is preferably selected from the group consisting of carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, leukemia, glioma, malignant melanoma, and lymphoma. is more preferably malignant melanoma, and more preferably the malignant melanoma is advanced stage malignant melanoma.
  • TIL tumor infiltrating lymphocytes

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Provided are: an agent for treatment of malignant tumors, the agent being characterized by containing an immune checkpoint inhibitor and by being used in combination with a boron neutron capture therapy; (i) an immune checkpoint inhibitor selected from the group consisting of an anti-PD-1 antibody, an anti-PD-L1 antibody, an anti-CTLA-4 antibody, an anti-LAG-3 antibody, an anti-TIM-3 antibody, an anti-TIGIT antibody, an anti-KIR antibody, a PD-L1/TGFβ trap inhibition fusion protein, and an anti-PD-1/CTLA-4 bispecific antibody; and (ii) a combination drug for treatment of malignant tumors, which is for patients who do not respond to the treatments with the immune checkpoint inhibitors containing a boron compound for use in a boron neutron capture therapy.

Description

悪性腫瘍治療薬Malignant tumor drug
 本発明は、免疫療法に応答しない(免疫療法のみでは奏功しない)患者にも有効な悪性腫瘍の治療薬に関する。 The present invention relates to a therapeutic drug for malignant tumors that is effective even for patients who do not respond to immunotherapy (immunotherapy alone does not work).
 癌治療の分野では、外科治療、放射線治療、化学療法の3大治療が中心であったが、2014年に発売された免疫チェックポイント阻害薬オプジーボ(ニボルマブ)により免疫治療という第4の治療法が加わり、大きく様変わりした。免疫チェックポイント阻害薬である抗PD-1抗体は、がん細胞表面にあるPD-L1と免疫細胞表面にあるPD-1の結合を阻害することにより、がん細胞が掛けているブレーキを解除して、免疫細胞ががん細胞を攻撃することを可能にする薬剤である。現在国内において承認されている免疫チェックポイント阻害薬には、抗PD-1/PD-L1抗体や抗CTLA-4抗体などがある。 In the field of cancer treatment, surgery, radiotherapy, and chemotherapy were the three major treatments, but the immune checkpoint inhibitor Opdivo (nivolumab), which was launched in 2014, opened the door to a fourth treatment, immunotherapy. Joined and changed a lot. Anti-PD-1 antibodies, which are immune checkpoint inhibitors, release the brakes on cancer cells by inhibiting the binding of PD-L1 on the surface of cancer cells and PD-1 on the surface of immune cells. as a drug that allows immune cells to attack cancer cells. Immune checkpoint inhibitors currently approved in Japan include anti-PD-1/PD-L1 antibodies and anti-CTLA-4 antibodies.
 一方、それまで進行期の悪性黒色腫(メラノーマ)への標準治療は無く、進行期における予後は極めて不良であった。免疫チェックポイント阻害薬の対象疾患は種々報告されているが、最初に承認された対象疾患はメラノーマであり、免疫療法の奏効性が高い疾患として挙げられている。その理由については未だ未解明の部分が多いが、一つには、がん遺伝子の変異の数が免疫療法への応答性に関与していると考えられており、数の多い順に悪性腫瘍を順位付けすると、メラノーマが最も変異が多いと報告されている。 On the other hand, there was no standard treatment for advanced stage malignant melanoma (melanoma), and the prognosis in advanced stage was extremely poor. Various target diseases of immune checkpoint inhibitors have been reported, but the first target disease approved was melanoma, which is cited as a disease for which immunotherapy is highly effective. The reason for this is still largely unknown, but one of the reasons is that the number of cancer gene mutations is thought to be involved in responsiveness to immunotherapy. When ranked, melanoma is reported to have the most mutations.
 メラノーマにおける変異の多さは、メラノーマの発生原因として、紫外線(UV)による影響が大きいとされ、UV照射が常に起こっている環境下にあることが多いため、UVによる遺伝子の変異誘導が原因であると考えられている。さらに、遺伝子変異が多いことが、免疫治療の奏効率と相関するがん抗原の多さと比例しており、その結果、この順位付けと免疫チェックポイント阻害薬を使った免疫治療の奏効率はほぼ一致している(非特許文献1)。つまり、免疫チェックポイント阻害薬によるがん免疫療法において、最も早く患者での臨床応用がされたのがメラノーマであり、がん臨床において、最も免疫療法による奏効率の高い悪性腫瘍の1つである(非特許文献2)。 The large number of mutations in melanoma is attributed to the induction of mutations in genes by UV radiation, as it is believed that ultraviolet rays (UV) have a large effect on the occurrence of melanoma. It is believed that there are Moreover, higher genetic mutations correlated with higher cancer antigen abundance, which correlated with immunotherapeutic response rates; They match (Non-Patent Document 1). In other words, melanoma was the earliest clinical application of cancer immunotherapy using immune checkpoint inhibitors in patients, and it is one of the malignant tumors with the highest response rate to immunotherapy in clinical cancer. (Non-Patent Document 2).
 さらに、世界各国で、免疫療法の奏効率を挙げるための併用療法の検討がなされており、例えば、特許文献1には、PD-L1陰性黒色腫腫瘍の患者に対する抗PD-1抗体および抗CTLA-4抗体による治療方法が開示されている。 Furthermore, in countries around the world, combination therapy has been studied to increase the response rate of immunotherapy. Methods of treatment with -4 antibodies have been disclosed.
 ホウ素中性子捕捉療法(BNCT)は、ホウ素薬剤を投与し、ホウ素薬剤ががん部位に集積したタイミングで同部位に中性子照射し、ホウ素と中性子の核反応(α崩壊)を利用し、がん細胞を殺傷する治療法である。細胞殺傷の範囲が、細胞レベルであるため、隣り合う正常細胞へのダメージが非常に低い。これまで原子炉での臨床研究がなされており、2020年3月に病院内設置の加速器中性子源が医療機器承認を、またホウ素薬剤が医薬品承認を受け、2020年6月より再発頭頸部癌を対象としての保険医療がスタートした。 Boron neutron capture therapy (BNCT) administers a boron drug, irradiates the same site with neutrons at the timing when the boron drug accumulates in the cancer site, uses the nuclear reaction (α decay) between boron and neutrons, and cancer cells It is a treatment that kills Since the extent of cell killing is at the cellular level, damage to neighboring normal cells is very low. Clinical research has been conducted in nuclear reactors so far, and in March 2020, the accelerator neutron source installed in the hospital received medical device approval, and the boron drug received drug approval, and from June 2020, recurrent head and neck cancer Medical insurance coverage has started.
 BNCTは、がん粒子線治療の一分野に位置付けられ、強力な局所治療法である。BNCTの成功の鍵は、腫瘍特異的なホウ素薬剤の集積に大きく依存する。現行の保険承認されたBPA(ボロファラン(10B):4-[(10B)ボロノ]-L-フェニルアラニン)は、アミノ酸輸送体LAT1を介して悪性腫瘍特異的に取り込まれる。 BNCT is positioned in the field of cancer particle radiotherapy and is a powerful local treatment method. The key to the success of BNCT relies heavily on tumor-specific boron drug uptake. The current insurance-approved BPA (borofarane ( 10 B): 4-[( 10 B)borono]-L-phenylalanine) is taken up malignant-specifically via the amino acid transporter LAT1.
特表2018-514550号公報Japanese translation of PCT publication No. 2018-514550
 非特許文献2に記載されているように、メラノーマに対する免疫チェックポイント阻害薬の治療奏効率は30%程度であり、残り70%の免疫治療非奏効のメラノーマ患者への治療法はないのが現状である。また、特許文献1においても、対象は特定のチェックポイント阻害薬に対して陰性の患者であり、その他のチェックポイント阻害薬に応答しない患者に関する記載はない。その他、進行肝細胞がん、卵巣がんなど、種々の固形がんについてもオプジーボの奏効率は10~25%程度であり(非特許文献3、非特許文献4)、さらなる免疫療法や化学療法、ウイルス療法など様々な併用療法が検討されているが、明らかなエビデンスに基づく報告は未だになされていない。 As described in Non-Patent Document 2, the therapeutic response rate of immune checkpoint inhibitors for melanoma is about 30%, and there is currently no treatment for the remaining 70% of melanoma patients who are unresponsive to immunotherapy. is. Also, in Patent Document 1, the subject is a patient who is negative for a specific checkpoint inhibitor, and there is no description of a patient who does not respond to other checkpoint inhibitors. In addition, the response rate of Opdivo for various solid cancers such as advanced hepatocellular carcinoma and ovarian cancer is about 10 to 25% (Non-Patent Document 3, Non-Patent Document 4), and further immunotherapy and chemotherapy. Various combination therapies such as viral therapy have been investigated, but no reports have been made based on clear evidence.
 そこで、本発明は、免疫療法に応答しない(免疫療法が奏功しない)患者にも有効な悪性腫瘍治療薬を提供することを課題とする。 Therefore, an object of the present invention is to provide a therapeutic drug for malignant tumors that is effective even for patients who do not respond to immunotherapy (immunotherapy is not successful).
 本発明者は、上記課題を検討した結果、免疫チェックポイント阻害薬に、BNCTを組み合わせることにより、免疫療法に応答しない患者においても悪性腫瘍が治療できることを見出し、本発明を完成した。 As a result of examining the above problems, the present inventor found that by combining BNCT with an immune checkpoint inhibitor, it was possible to treat malignant tumors even in patients who did not respond to immunotherapy, and completed the present invention.
 すなわち、本発明は、
[1]免疫チェックポイント阻害薬を含み、ホウ素中性子捕捉療法と組み合わせて使用することを特徴とする悪性腫瘍治療薬、
[2]免疫チェックポイント阻害薬が、抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗LAG-3抗体、抗TIM-3抗体、抗TIGIT抗体、抗KIR抗体、PD-L1/TGFβトラップ阻害融合タンパク質および抗PD-1/CTLA-4二重特異性抗体からなる群より選択される上記[1]記載の悪性腫瘍治療薬、
[3]免疫チェックポイント阻害薬が、ヒト化モノクローナル抗体である上記[2]記載の悪性腫瘍治療薬、
[4]抗PD-1抗体が、ニボルマブ、ペムブロリズマブ、スパルタリズマブ、またはセミプリマブである上記[2]または[3]記載の悪性腫瘍治療薬、
[5]抗PD-L1抗体が、アベルマブ、アテゾリズマブ、またはデュルバルマブである上記[2]または[3]記載の悪性腫瘍治療薬、
[6]抗CTLA-4抗体が、イビリムマブ、またはトレメリムマブである上記[2]または[3]記載の悪性腫瘍治療薬、
[7]ホウ素中性子捕捉療法において使用するホウ素化合物がボロファラン(10B)である上記[1]~[6]のいずれかに記載の悪性腫瘍治療薬、
[8]免疫チェックポイント阻害薬に応答しない患者を対象とし、免疫チェックポイント阻害薬が、該患者が応答しなかった免疫チェックポイント阻害薬である上記[1]~[7]のいずれかに記載の悪性腫瘍治療薬、
[9]悪性腫瘍が癌腫、扁平上皮癌、腺癌、肉腫、白血病、神経膠腫、悪性黒色腫、およびリンパ腫からなる群より選択される上記[1]~[8]のいずれかに記載の悪性腫瘍治療薬、
[10]悪性腫瘍が、悪性黒色腫である上記[9]記載の悪性腫瘍治療薬、
[11]悪性黒色腫が、進行期悪性黒色腫である上記[10]記載の悪性腫瘍治療薬、
[12](i)抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗LAG-3抗体、抗TIM-3抗体、抗TIGIT抗体、抗KIR抗体、PD-L1/TGFβトラップ阻害融合タンパク質および抗PD-1/CTLA-4二重特異性抗体からなる群より選択される免疫チェックポイント阻害薬、および
(ii)ホウ素中性子捕捉療法に用いるためのホウ素化合物
を含む前記免疫チェックポイント阻害薬による治療に応答しない患者を対象とする悪性腫瘍治療用組み合わせ医薬、
[13]悪性腫瘍が、癌腫、扁平上皮癌、腺癌、肉腫、白血病、神経膠腫、悪性黒色腫、およびリンパ腫からなる群より選択される上記[12]記載の悪性腫瘍治療用組み合わせ医薬、
[14]悪性腫瘍が、悪性黒色腫である上記[13]記載の悪性腫瘍治療用組み合わせ医薬、ならびに
[15]悪性黒色腫が、進行期悪性黒色腫である上記[14]記載の悪性腫瘍治療用組み合わせ医薬
に関する。
That is, the present invention
[1] A therapeutic drug for malignant tumors, which contains an immune checkpoint inhibitor and is used in combination with boron neutron capture therapy;
[2] immune checkpoint inhibitors are anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody, PD- The drug for treating malignant tumors according to [1] above, which is selected from the group consisting of an L1/TGFβ trap inhibitory fusion protein and an anti-PD-1/CTLA-4 bispecific antibody;
[3] The therapeutic drug for malignant tumors according to [2] above, wherein the immune checkpoint inhibitor is a humanized monoclonal antibody;
[4] The drug for treating malignant tumors according to [2] or [3] above, wherein the anti-PD-1 antibody is nivolumab, pembrolizumab, spartalizumab, or semiplimab;
[5] The drug for treating malignant tumors according to [2] or [3] above, wherein the anti-PD-L1 antibody is avelumab, atezolizumab, or durvalumab;
[6] The therapeutic agent for malignant tumor according to [2] or [3] above, wherein the anti-CTLA-4 antibody is ibilimumab or tremelimumab;
[7] The therapeutic drug for malignant tumors according to any one of [1] to [6] above, wherein the boron compound used in boron neutron capture therapy is borofaran ( 10 B);
[8] Any one of the above [1] to [7], wherein the subject is a patient who does not respond to an immune checkpoint inhibitor, and the immune checkpoint inhibitor is an immune checkpoint inhibitor to which the patient did not respond. of malignant tumors,
[9] The malignant tumor according to any one of [1] to [8] above, wherein the malignant tumor is selected from the group consisting of carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, leukemia, glioma, malignant melanoma, and lymphoma. malignant tumor drug,
[10] The therapeutic agent for malignant tumor according to [9] above, wherein the malignant tumor is malignant melanoma;
[11] The therapeutic agent for malignant tumor according to [10] above, wherein the malignant melanoma is advanced stage malignant melanoma;
[12] (i) anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody, PD-L1/TGFβ trap an immune checkpoint inhibitor selected from the group consisting of an inhibitory fusion protein and an anti-PD-1/CTLA-4 bispecific antibody; and (ii) said immune checkpoint comprising a boron compound for use in boron neutron capture therapy. combination drugs for the treatment of malignancies in patients who do not respond to treatment with inhibitors;
[13] The combination drug for treating malignant tumor according to [12] above, wherein the malignant tumor is selected from the group consisting of carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, leukemia, glioma, malignant melanoma, and lymphoma,
[14] The combination drug for treatment of malignant tumor according to [13] above, wherein the malignant tumor is malignant melanoma, and [15] The treatment for malignant tumor according to [14] above, wherein the malignant melanoma is advanced stage melanoma. It relates to combination medicaments for use.
 本発明によれば、免疫チェックポイント阻害薬による治療をBNCTと組み合わせることにより、免疫療法に応答しない(免疫療法が奏功しない)患者に対しても悪性腫瘍を治療することができる。 According to the present invention, by combining treatment with an immune checkpoint inhibitor with BNCT, it is possible to treat malignant tumors even in patients who do not respond to immunotherapy (immunotherapy does not work).
中性子照射の実験手法を説明する模式図である。It is a schematic diagram explaining the experimental method of neutron irradiation. 照射部である右大腿部筋肉内腫瘍部の腫瘍体積の変化を示すグラフである。4 is a graph showing changes in tumor volume of a tumor site in the right femoral muscle, which is an irradiation site. 遮蔽部である左側腹皮下腫瘍部の腫瘍体積の変化を示すグラフである。It is a graph which shows the change of the tumor volume of the left flank subcutaneous tumor part which is a shielding part. 中性子照射部腫瘍内の腫瘍組織浸潤リンパ球(TIL)の割合を示すフローサイトメトリー結果のグラフである。2 is a graph of flow cytometry results showing the ratio of tumor tissue infiltrating lymphocytes (TIL) in neutron-irradiated tumors. 中性子照射部腫瘍内の免疫組織染色の結果を示す蛍光顕微鏡写真のデータである。It is the data of the fluorescence microscope photograph which shows the result of the immunohistochemical staining in the neutron irradiation part tumor. 中性子遮蔽部腫瘍内のTILの割合を示すフローサイトメトリー結果のグラフである。FIG. 10 is a graph of flow cytometry results showing the percentage of TILs in neutron shielding tumors. FIG. 中性子遮蔽部腫瘍内の免疫組織染色の結果を示す蛍光顕微鏡写真のデータである。It is the data of the fluorescence micrograph which shows the result of the immunohistochemical staining in the neutron shielding part tumor. 血清中のHMGB1の濃度を示すグラフである。1 is a graph showing concentrations of HMGB1 in serum. 中性子照射部腫瘍内のエフェクターメモリーT細胞(Tem)の割合を示すフローサイトメトリー結果のグラフである。FIG. 2 is a graph of flow cytometry results showing the percentage of effector memory T cells (Tem) in neutron-irradiated tumors. FIG. 中性子遮蔽部腫瘍内のエフェクターメモリーT細胞(Tem)の割合を示すフローサイトメトリー結果のグラフである。FIG. 2 is a graph of flow cytometry results showing the percentage of effector memory T cells (Tem) within neutron shielding tumors. 中性子照射実験における脾臓内のTILの割合を示すグラフである。4 is a graph showing the ratio of TILs in the spleen in neutron irradiation experiments. 中性子非照射実験における脾臓内のTILの割合を示すグラフである。FIG. 10 is a graph showing the ratio of TILs in the spleen in experiments without neutron irradiation. FIG.
 本発明は、免疫チェックポイント阻害薬を含み、ホウ素中性子捕捉療法(BNCT)と組み合わせて使用することを特徴とする悪性腫瘍治療薬に関するものであり、免疫療法とBNCTを組み合わせる(BNCT免疫複合療法:Boron-Neutron Immuno Therapy(B-NIT)ことにより、免疫療法単独では不応答である患者に対して、BNCTにより免疫治療への応答性を増強させ、有効な治療を施すことができるものである。また、BNCTは局所治療の高線量粒子線治療であり、通常複数部位への同時照射、全身照射は行うことができないため、中性子照射部位外に病変を有する進行がんに対しては、適応外である。しかし、本発明のBNCT免疫複合療法は、局所治療のBNCTを免疫治療不応答の患者へ利用し、免疫治療を増強させることにより局所的な悪性腫瘍のみならず、進行期にある悪性腫瘍に対する全身治療への使用も可能にする画期的なものである。 The present invention relates to a therapeutic agent for malignant tumors, which contains an immune checkpoint inhibitor and is characterized by being used in combination with boron neutron capture therapy (BNCT), and combines immunotherapy and BNCT (BNCT immune combination therapy: By Boron-Neutron Immuno Therapy (B-NIT), BNCT can enhance responsiveness to immunotherapy and provide effective treatment to patients who are unresponsive to immunotherapy alone. In addition, since BNCT is a high-dose particle beam therapy for local treatment, it is usually not possible to perform simultaneous irradiation to multiple sites or whole-body irradiation, so it is not indicated for advanced cancer with lesions outside the neutron irradiation site. However, the BNCT immune combination therapy of the present invention utilizes BNCT as a local treatment for patients who are unresponsive to immunotherapy, and by enhancing immunotherapy, not only local malignant tumors but also advanced malignant tumors. It is an epoch-making product that can be used for systemic treatment of tumors.
 このように、本発明は、中性子照射がなされない遠隔部位(遮蔽部位)に対して、直接的な効果を示すBNCT治療と免疫チェックポイント阻害薬を用いた免疫治療とによる複合療法が奏効したことを示すものである。BNCTは、免疫治療との併用療法において、このように遠隔部位における進行性の悪性腫瘍に対しても治療効果を有する。 Thus, the present invention demonstrates that combined therapy with BNCT treatment, which exhibits direct effects, and immunotherapy using an immune checkpoint inhibitor was effective against remote sites (shielded sites) that are not irradiated with neutrons. is shown. BNCT, in combination therapy with immunotherapy, thus has therapeutic efficacy against advanced malignancies at distant sites as well.
 また、一般的にBNCTは一日にて治療完結可能であり、2~3週間毎に行う免疫治療に影響を与えず組み合わせることが可能である。 In addition, BNCT can generally be completed in one day, and can be combined with immunotherapy performed every 2-3 weeks without affecting it.
 本明細書において、悪性腫瘍の治療において、「免疫療法に応答しない」、「免疫治療不応答」、「免疫療法が奏功しない」という表現は、いずれも悪性腫瘍の治療に免疫療法、特に免疫チェックポイント阻害薬を使用した免疫療法を施した場合に、治療により悪性腫瘍の有効な低減、寛解を示さない状態を意味し、ある程度の改善を示した後に寛解の状態まで達することなく、再度悪性腫瘍が増殖するなどの場合も含むものであり、継続した免疫チェックポイント阻害薬使用時に主要組織の再増大や転移巣の増大などを、CT、MRI、RETなどの画像再検査や血液・腫瘍組織内の腫瘍マーカーやバイオマーカー等を測定・検討することにより評価することができる。これらの表現は、「免疫療法に抵抗性である」ともいい、いずれも相互に置き換えて使用可能である。また、「免疫チェックポイント阻害薬による治療に応答しない」という場合も同様である。 As used herein, in the treatment of malignant tumors, the expressions "non-responsive to immunotherapy", "non-responsive to immunotherapy", and "unsuccessful to immunotherapy" are all used in the treatment of malignant tumors. When immunotherapy using a point inhibitor is given, it means a state in which the treatment does not effectively reduce the malignant tumor and does not show remission. This includes cases such as the growth of the immune checkpoint inhibitors, and re-expansion of major tissues and growth of metastatic foci during continuous use of immune checkpoint inhibitors can be confirmed by reexamination of images such as CT, MRI, and RET, and blood and tumor tissue. can be evaluated by measuring and examining tumor markers, biomarkers, etc. These expressions are also referred to as "resistant to immunotherapy" and can be used interchangeably. The same applies to the case of "not responding to treatment with immune checkpoint inhibitors."
 本発明の適用対象となる悪性腫瘍は、固形がん、癌腫、扁平上皮癌、腺癌、肉腫、白血病、悪性脳腫瘍(神経膠腫など)、神経腫、悪性黒色腫、およびリンパ腫からなる群より選択され、特に限定されるものではないが、すでに免疫チェックポイント阻害薬が一部奏効することが知られている悪性腫瘍であることが好ましい。扁平上皮癌の具体例としては、例えば、子宮頚管、瞼、結膜、膣、肺、口腔、皮膚、膀胱、舌、気管、気管支、喉頭、咽頭、食道などに生じるものが挙げられる。腺癌の具体例としては、例えば、前立腺、小腸、子宮内膜、子宮頚管、大腸、肺、膵、食道、直腸、子宮、胃、乳房、卵巣などに生じるものが挙げられる。肉腫の具体例としては、筋原性肉腫などが挙げられる。悪性脳腫瘍の具体例としては、例えば、神経膠腫、膠芽腫、悪性髄膜腫、中枢神経原発悪性リンパ腫などが挙げられる。また別の実施態様においては、悪性腫瘍は、肝細胞がん、大腸がん、尿路上皮がん、上咽頭がん、非小細胞肺がん、卵巣がん、食道がん、肛門がんなどから選択されてもよい。さらに別の実施態様としては、本発明の適用対象となる悪性腫瘍は、すでに公知の免疫チェックポイント阻害薬について承認の得られている悪性腫瘍であることが好ましく、そのような悪性腫瘍は、悪性黒色腫、非小細胞肺がん、腎細胞がん、ホジキリンパ腫、頭頸部がん、胃がん、胸膜中皮腫、結腸・直腸がん、食道がん、尿路上皮がん、固形がん、メルケル細胞がん、小細胞肺がん、肝細胞がん、乳がんからなる群より選択される。さらに別の観点として、遺伝子に変異が多いという理由から、悪性腫瘍は、非小細胞肺癌、大腸がん、子宮がん、膀胱癌、頭頸部がんまたは悪性黒色腫から選択することができる。 The malignant tumor to which the present invention is applied is selected from the group consisting of solid cancer, carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, leukemia, malignant brain tumor (such as glioma), neuroma, malignant melanoma, and lymphoma. The selected malignant tumor is preferably, but not particularly limited to, a malignant tumor already known to partially respond to an immune checkpoint inhibitor. Specific examples of squamous cell carcinoma include those occurring in the cervix, eyelids, conjunctiva, vagina, lungs, oral cavity, skin, bladder, tongue, trachea, bronchi, larynx, pharynx, esophagus, and the like. Specific examples of adenocarcinoma include those occurring in the prostate, small intestine, endometrium, cervix, large intestine, lung, pancreas, esophagus, rectum, uterus, stomach, breast, ovary, and the like. Specific examples of sarcoma include myogenic sarcoma. Specific examples of malignant brain tumors include glioma, glioblastoma, malignant meningioma, primary central nervous system malignant lymphoma, and the like. In yet another embodiment, the malignant tumor is from hepatocellular carcinoma, colon cancer, urothelial cancer, nasopharyngeal cancer, non-small cell lung cancer, ovarian cancer, esophageal cancer, anal cancer, etc. may be selected. In yet another embodiment, the malignant tumor to which the present invention is applied is preferably a malignant tumor for which a known immune checkpoint inhibitor has already been approved, and such a malignant tumor is a malignant Melanoma, non-small cell lung cancer, renal cell carcinoma, Hodgkin's lymphoma, head and neck cancer, gastric cancer, pleural mesothelioma, colorectal cancer, esophageal cancer, urothelial cancer, solid tumor, Merkel cells It is selected from the group consisting of cancer, small cell lung cancer, hepatocellular carcinoma and breast cancer. In yet another aspect, malignant tumors can be selected from non-small cell lung cancer, colon cancer, uterine cancer, bladder cancer, head and neck cancer, or malignant melanoma because of their many gene mutations.
 本明細書において、「免疫チェックポイント阻害薬」とは、免疫チェックポイントを阻害することができる分子を意味する。免疫チェックポイント阻害薬としては、特に、PD-1、PD-L1、CTLA-4、LAG-3、TIM-3、TIGIT、KIR、PD-L1/TGFβトラップの免疫チェックポイント機能を阻害する分子、具体的には、抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗LAG-3抗体、抗TIM-3抗体、抗TIGIT抗体、抗KIR抗体、PD-L1/TGFβトラップ阻害融合タンパク質、抗PD-1/CTLA-4二重抗体などが挙げられる。なかでも、抗PD-1抗体、抗PD-L1抗体、および抗CTLA-4抗体が好ましく、抗PD-1抗体がより好ましい。 As used herein, the term "immune checkpoint inhibitor" means a molecule capable of inhibiting an immune checkpoint. Immune checkpoint inhibitors include, in particular, molecules that inhibit immune checkpoint functions of PD-1, PD-L1, CTLA-4, LAG-3, TIM-3, TIGIT, KIR, PD-L1/TGFβ trap, Specifically, anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody, PD-L1/TGFβ trap inhibition Fusion proteins, anti-PD-1/CTLA-4 dual antibodies, and the like. Among them, anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody are preferred, and anti-PD-1 antibody is more preferred.
 本発明に用いる免疫チェックポイント阻害薬としてのこれらの抗体は、対応する抗原に特異的に結合することのできるものであり、ヒト由来抗体、マウス由来抗体、ラット由来抗体、ウサギ由来抗体またはヤギ由来抗体のいずれの由来であってもよく、またポリクローナル抗体またはモノクローナル抗体のいずれでもよく、完全型であってもF(ab’)2、Fab’、FabまたはFv断片などの断片であってもよく、キメラ化抗体、ヒト化抗体または完全ヒト型抗体のいずれであってもよい。なかでも、モノクローナル抗体が好ましく、ヒト化モノクローナル抗体や完全ヒト型モノクローナル抗体がより好ましい。 These antibodies as immune checkpoint inhibitors used in the present invention are capable of specifically binding to their corresponding antigens, and are human-derived antibodies, mouse-derived antibodies, rat-derived antibodies, rabbit-derived antibodies, or goat-derived antibodies. It may be derived from any antibody, and may be either a polyclonal antibody or a monoclonal antibody, and may be a complete form or a fragment such as an F(ab')2, Fab', Fab or Fv fragment. , chimerized antibodies, humanized antibodies or fully human antibodies. Among them, monoclonal antibodies are preferred, and humanized monoclonal antibodies and fully human monoclonal antibodies are more preferred.
 本発明に用いる免疫チェックポイント阻害薬としてのこれらの抗体は、PD-1、PD-L1、CTLA-4、LAG-3、TIM-3、TIGIT、KIRなどの結合により免疫チェックポイントを阻害することのできる領域を抗原として、本技術分野における公知の方法にしたがって製造することができる。モノクローナル抗体については、抗体のアミノ酸配列またはDNA配列を決定した後に、遺伝子組み換え技術により改変し、遺伝子改変抗体とすることもでき、これらのモノクローナル抗体は、本技術分野において公知の適切な宿主細胞を用いて公知の方法により製造することもできる。また、PD-1、PD-L1、CTLA-4、LAG-3、TIM-3、TIGIT、KIRに対する抗体は、商業的に入手してもよい。 These antibodies as immune checkpoint inhibitors used in the present invention inhibit immune checkpoints by binding PD-1, PD-L1, CTLA-4, LAG-3, TIM-3, TIGIT, KIR, etc. It can be prepared according to a method known in the technical field, using a region capable of as an antigen. For monoclonal antibodies, after determining the amino acid sequence or DNA sequence of the antibody, it can be modified by genetic recombination techniques to produce a genetically modified antibody. It can also be produced by a known method using Antibodies against PD-1, PD-L1, CTLA-4, LAG-3, TIM-3, TIGIT, KIR may also be obtained commercially.
 本発明に使用される抗PD-1抗体としては、市販されている抗体を用いることができ、特に免疫チェックポイント阻害薬として悪性腫瘍に対して効果を奏することが報告されている抗体、例えば、ニボルマブ、ペムブロリズマブ、スパルタリズマブ、セミプリマブ等が好ましく、特に臨床応用のために必要とされる時間と費用を削減する観点からは、現在すでに免疫チェックポイント阻害薬として、例えば悪性黒色腫、非小細胞肺癌、腎細胞癌、ホジキリンパ腫、頭頸部癌、胃癌、悪性胸膜中皮腫、結腸・直腸癌、食道がんに使用されているニボルマブ、または例えば悪性黒色腫、非小細胞肺癌、腎細胞癌、ホジキリンパ腫、頭頸部癌、尿路上皮癌、固形癌に使用されているペムブロリズマブが好ましい。なお、ニボルマブを有効成分とする製剤は、小野薬品工業(株)から「オプジーボ(登録商標)」として入手可能であり、ペムブロリズマブを有効成分とする製剤は、MSD(株)から「キイトルーダ(登録商標)」として入手可能である。 As the anti-PD-1 antibody used in the present invention, a commercially available antibody can be used, particularly an antibody reported to be effective against malignant tumors as an immune checkpoint inhibitor, such as Nivolumab, pembrolizumab, spartalizumab, semiplimab, etc. are preferred, especially from the viewpoint of reducing the time and cost required for clinical application, which are already presently used as immune checkpoint inhibitors, e.g., malignant melanoma, non-small cell Nivolumab used in lung cancer, renal cell carcinoma, Hodgkin lymphoma, head and neck cancer, gastric cancer, malignant pleural mesothelioma, colorectal cancer, esophageal cancer, or e.g. malignant melanoma, non-small cell lung cancer, renal cell carcinoma Pembrolizumab, which has been used in , Hodgkin's lymphoma, head and neck cancer, urothelial cancer, and solid tumors, is preferred. A formulation containing nivolumab as an active ingredient is available from Ono Pharmaceutical Co., Ltd. as “Opdivo (registered trademark),” and a formulation containing pembrolizumab as an active ingredient is available from MSD Co., Ltd. as “Keytruda (registered trademark).” )”.
 本発明に使用される抗PD-L1抗体としては、市販されている抗体を用いることができ、特に臨床応用のために必要とされる時間と費用を削減する観点からは、現在すでに免疫チェックポイント阻害薬として、例えばメルケル細胞癌、腎細胞癌、尿路上皮癌に使用されている公知のアベルマブ、または例えば非小細胞肺癌、進展型小細胞肺癌、肝細胞癌に使用されている公知のアテゾリズマブ、または例えば非小細胞肺癌、進展型小細胞肺癌に使用されている公知のデュルバルマブが好ましい。なお、アベルマブを有効成分とする製剤は、メルクバイオファーマ(株)から「バベンチオ(登録商標)」として入手可能であり、アテゾリズマブを有効成分とする製剤は、中外製薬(株)から「テセントリク(登録商標)」として入手可能であり、デュルバルマブを有効成分とする製剤は、アストラゼネカ(株)から「イミフィンジ(登録商標)」として入手可能である。 As the anti-PD-L1 antibody used in the present invention, a commercially available antibody can be used. As an inhibitor, e.g. avelumab, known for use in Merkel cell carcinoma, renal cell carcinoma, urothelial carcinoma, or atezolizumab, known for e.g. or durvalumab, which is known to be used for non-small cell lung cancer, extensive small cell lung cancer, for example. A formulation containing avelumab as an active ingredient is available from Merck BioPharma K.K. under the name BAVENCIO®. Trademark)” and a formulation with durvalumab as the active ingredient is available from AstraZeneca as “Imfinzi®”.
 本発明に使用される抗CTLA-4抗体としては、市販されている抗体を用いることができ、特に免疫チェックポイント阻害薬として悪性腫瘍に対して効果を奏することが報告されている抗体、例えば、イビリムマブ、トレメリムマブ等が好ましく、特に臨床応用のために必要とされる時間と費用を削減する観点からは、現在すでに免疫チェックポイント阻害薬として、例えば悪性黒色腫、腎細胞癌、結腸・直腸癌、非小細胞肺癌、悪性胸膜中皮腫に使用されている、公知のイビリムマブが好ましい。なお、イビリムマブを有効成分とする製剤は、ブリストル・マイヤーズ スクイブ(株)から「ヤーボイ(登録商標)」として入手可能である。 As the anti-CTLA-4 antibody used in the present invention, a commercially available antibody can be used, particularly an antibody reported to be effective against malignant tumors as an immune checkpoint inhibitor, such as Ibilimumab, tremelimumab and the like are preferred, and especially from the viewpoint of reducing the time and cost required for clinical application, currently already as immune checkpoint inhibitors, for example malignant melanoma, renal cell carcinoma, colorectal cancer, Known ibilimumab, which is used for non-small cell lung cancer and malignant pleural mesothelioma, is preferred. A formulation containing ibilimumab as an active ingredient is available as "Yervoy (registered trademark)" from Bristol-Myers Squibb K.K.
 本発明の悪性腫瘍治療薬は、全身的または局所的に投与することができ、また経口または非経口で投与することができる。非経口の場合の投与経路としては、筋肉内、腹腔内、胸骨内、静脈内、皮下などが挙げられる。特定の態様によれば、本発明の悪性腫瘍治療薬は腹腔内投与、または静脈内投与、とりわけ点滴静注されることが好ましい。 The malignant tumor therapeutic drug of the present invention can be administered systemically or locally, and can be administered orally or parenterally. Parenteral routes of administration include intramuscular, intraperitoneal, intrasternal, intravenous, subcutaneous, and the like. According to a specific embodiment, the therapeutic drug for malignant tumor of the present invention is preferably administered intraperitoneally or intravenously, especially by intravenous drip.
 本発明の悪性腫瘍治療薬は、有効成分である免疫チェックポイント阻害薬自体をそのまま投与しても良いが、一般的には、投与経路に合わせて、少なくとも1つの薬学的に許容され得る添加剤などを含む医薬組成物の形態で投与することが好ましい。 The therapeutic agent for malignant tumors of the present invention may be administered as an active ingredient, the immune checkpoint inhibitor itself, but in general, at least one pharmaceutically acceptable additive is added according to the route of administration. It is preferably administered in the form of a pharmaceutical composition containing, for example.
 本発明の悪性腫瘍治療薬の剤形としては、経口投与用については、液剤、錠剤(口腔内崩壊錠、舌下錠、口腔内貼付錠なども含む)、丸剤、カプセル剤、散剤、顆粒剤などが挙げられ、非経口投与用については、注射剤、注入剤、外用剤、坐剤、吸入剤、経鼻剤などが挙げられる。注射剤や注入剤は、溶液、懸濁液、乳化液などの液剤であってもよく、用時に液剤として調製する凍結乾燥剤などの固形剤を含むものでもよい。 The dosage forms of the drug for treating malignant tumors of the present invention include, for oral administration, liquids, tablets (including orally disintegrating tablets, sublingual tablets, oral patch tablets, etc.), pills, capsules, powders, and granules. For parenteral administration, injections, infusions, external preparations, suppositories, inhalants, intranasal preparations and the like can be mentioned. Injections and infusions may be liquid formulations such as solutions, suspensions and emulsions, and may also include solid formulations such as freeze-dried formulations prepared as liquid formulations at the time of use.
 本発明の悪性腫瘍治療薬に用いられる添加剤としては、特に限定されるものではないが、等張化剤、緩衝剤、pH調整剤、その他の添加剤(賦形剤、結合剤、崩壊剤、保存剤、滑沢剤、安定剤、膨潤剤など)などが挙げられ、剤形に合わせて適宜選択して用いることができる。特定の実施態様においては、本発明の悪性腫瘍治療薬は、等張化剤、緩衝剤、pH調整剤、そのほかの添加剤を用いて注入剤、特に点滴静注するための液剤とすることが好ましい。 The additives used in the drug for treating malignant tumors of the present invention are not particularly limited, but are tonicity agents, buffers, pH adjusters, and other additives (excipients, binders, disintegrants, , preservatives, lubricants, stabilizers, swelling agents, etc.), and can be appropriately selected and used according to the dosage form. In a specific embodiment, the drug for treating malignant tumors of the present invention can be made into an infusion, especially a liquid for intravenous infusion, using tonicity agents, buffers, pH adjusters and other additives. preferable.
 等張化剤としては、特に限定されるものではないが、塩化ナトリウム、塩化カリウム、クエン酸ナトリウム、スクロース、グルコース、マンニトール、ソルビトール、キシリトール、アルギニン、システイン、ヒスチジン、グリシンからなる群から選択される少なくとも1つの等張化剤などが挙げられる。等張化剤は、単独で使用してもよく、2種以上を組み合わせて用いてもよい。 The tonicity agent is not particularly limited, but is selected from the group consisting of sodium chloride, potassium chloride, sodium citrate, sucrose, glucose, mannitol, sorbitol, xylitol, arginine, cysteine, histidine and glycine. At least one tonicity agent and the like are included. A tonicity agent may be used alone or in combination of two or more.
 緩衝剤としては、特に限定されるものではないが、ヒスチジン、ヒスチジン塩酸塩、リン酸、クエン酸、マレイン酸、酢酸、氷酢酸、コハク酸、酒石酸、乳酸、リンゴ酸、ホウ酸、アスコルビン酸、グリシン、グルタミン酸、アルギニン、トリス-(ヒドロキシメチル)-アミノメタン(トリス)およびジエタノールアミンまたはこれらの塩からなる群から選択される少なくとも1つの緩衝剤などが挙げられる。緩衝剤は、単独で使用してもよく、2種以上を組み合わせて用いてもよい。 Examples of buffering agents include, but are not limited to, histidine, histidine hydrochloride, phosphoric acid, citric acid, maleic acid, acetic acid, glacial acetic acid, succinic acid, tartaric acid, lactic acid, malic acid, boric acid, ascorbic acid, at least one buffer selected from the group consisting of glycine, glutamic acid, arginine, tris-(hydroxymethyl)-aminomethane (tris) and diethanolamine or salts thereof; A buffering agent may be used individually and may be used in combination of 2 or more types.
 pH調整剤としては、特に限定されるものではないが、水酸化ナトリウム、アンモニア水、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、炭酸水素ナトリウム、炭酸ナトリウムなどの塩基、ならびに塩酸、クエン酸、コハク酸、酢酸、氷酢酸、酒石酸、二酸化炭素、乳酸、硫酸、リン酸などの酸などが挙げられる。pH調整剤は、単独で使用してもよく、2種以上を組み合わせて用いてもよい。 Examples of pH adjusters include, but are not limited to, bases such as sodium hydroxide, aqueous ammonia, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium hydrogen carbonate, and sodium carbonate, as well as hydrochloric acid, citric acid, Acids such as succinic acid, acetic acid, glacial acetic acid, tartaric acid, carbon dioxide, lactic acid, sulfuric acid and phosphoric acid. The pH adjusters may be used alone or in combination of two or more.
 その他の添加剤としては、特に限定されるものではないがマンニトール、ソルビトール、スクロース、精製白糖、トレハロース、キシリトール、グルコース、ラクトース、グリセロール、マルトース、イノシトール、牛血清アルブミン(BSA)、デキストラン、PVA、ヒドロキシプロピルメチルセルロース(HPMC)、ポリエチレンイミン、ゼラチン、ポリビニルピロリドン(PVP)、ヒドロキシエチルセルロース(HEC)、ポリエチレングリコール、エチレングリコール、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、プロリン、L-セリングルタミン酸ナトリウム、グルタミン酸カリウム、アラニン、グリシン、リシン塩酸塩、サルコシン、γ-アミノ酪酸、ジエチレントリアミン五酢酸、ポリソルベート20、ポリソルベート80、SDS、ポリオキシエチレンコポリマー、リン酸カリウム、酢酸ナトリウム、硫酸アンモニウム、硫酸マグネシウム、硫酸ナトリウム、トリメチルアミンN-オキシド、ベタイン、亜鉛イオン、銅イオン、カルシウムイオン、マンガンイオン、マグネシウムイオン、CHAPS、スクロースモノラウレートおよび2-O-β-マンノグリセレートからなる群から選択される少なくとも1つの添加剤などが挙げられる。 Other additives include, but are not limited to, mannitol, sorbitol, sucrose, refined sucrose, trehalose, xylitol, glucose, lactose, glycerol, maltose, inositol, bovine serum albumin (BSA), dextran, PVA, hydroxyl Propylmethylcellulose (HPMC), polyethyleneimine, gelatin, polyvinylpyrrolidone (PVP), hydroxyethylcellulose (HEC), polyethylene glycol, ethylene glycol, dimethylsulfoxide (DMSO), dimethylformamide (DMF), proline, sodium L-serine glutamate, glutamic acid. Potassium, Alanine, Glycine, Lysine Hydrochloride, Sarcosine, γ-Aminobutyric Acid, Diethylenetriaminepentaacetic Acid, Polysorbate 20, Polysorbate 80, SDS, Polyoxyethylene Copolymer, Potassium Phosphate, Sodium Acetate, Ammonium Sulfate, Magnesium Sulfate, Sodium Sulfate, Trimethylamine at least one additive selected from the group consisting of N-oxides, betaine, zinc ions, copper ions, calcium ions, manganese ions, magnesium ions, CHAPS, sucrose monolaurate and 2-O-β-mannoglycerate etc.
 本発明の悪性腫瘍治療薬の投与量および投与頻度は、特に限定されるものではなく、投与される免疫チェックポイント阻害薬の種類、投与される対象の年齢、体重、治療すべき疾患の種類、投与方法などにより異なるが、全身状態、治療による反応性、副作用の程度、社会的要因などにより決定されるものである。具体的には、本発明の悪性腫瘍治療薬の投与は、成人1回の投与当たり免疫チェックポイント阻害薬として0.01~10000mgが好ましく、0.1~5000mgがより好ましく、1~2000mgがさらに好ましい。本発明の免疫チェックポイント阻害薬は、いずれも、例えば、毎日、2日毎、3日毎、4日毎、5日毎、6日毎、毎週、2週間毎、3週毎、4週毎、5週毎、6週毎、7週毎、8週毎、9週毎または10週毎に複数回、例えば2回、3回、4回、5回、6回、7回、8回、9回、または10回以上投与される。 The dose and frequency of administration of the drug for treating malignant tumors of the present invention are not particularly limited. Although it varies depending on the administration method, etc., it is determined by the general condition, responsiveness to treatment, degree of side effects, social factors, and the like. Specifically, the therapeutic drug for malignant tumor of the present invention is preferably 0.01 to 10000 mg, more preferably 0.1 to 5000 mg, more preferably 1 to 2000 mg as an immune checkpoint inhibitor per administration for adults. preferable. Any immune checkpoint inhibitor of the present invention, for example, every day, every 2 days, every 3 days, every 4 days, every 5 days, every 6 days, every week, every 2 weeks, every 3 weeks, every 4 weeks, every 5 weeks, multiple times, such as 2, 3, 4, 5, 6, 7, 8, 9, or 10 times every 6, 7, 8, 9 or 10 weeks administered more than once.
 また、すでに悪性腫瘍に対して臨床使用されている免疫チェックポイント阻害薬については、それらの添付文書を参考に、その公知の承認されている用法・用量に基づいて投与することが好ましいが、BNCTとの併用を考慮して変更して用いることもできる。もちろん本発明の悪性腫瘍治療薬としては、免疫チェックポイント阻害薬の添付文書にBNCTと併用することが明記されていることが好ましい。 In addition, for immune checkpoint inhibitors that have already been clinically used against malignant tumors, it is preferable to administer them based on the known and approved dosage and administration with reference to their package inserts, but BNCT It can also be changed and used in consideration of the combined use with. Of course, as the malignant tumor therapeutic drug of the present invention, it is preferable that the package insert of the immune checkpoint inhibitor clearly states that it is used in combination with BNCT.
 具体的には、免疫チェックポイント阻害薬がニボルマブの場合、成人に、ニボルマブとして1回1~1000mg、好ましくは10~700mg、より好ましくは80~480mgを1~6週間間隔で複数回点滴静注することができ、具体的には、1回240mgを2~3週間間隔で複数回、または1回480mgを4週間間隔で複数回点滴静注することができる。 Specifically, when the immune checkpoint inhibitor is nivolumab, 1 to 1000 mg of nivolumab, preferably 10 to 700 mg, more preferably 80 to 480 mg of nivolumab is intravenously administered multiple times at intervals of 1 to 6 weeks to adults. Specifically, 240 mg can be administered as multiple doses at 2- to 3-week intervals, or 480 mg can be administered as multiple doses at 4-week intervals.
 他の態様によれば、免疫チェックポイント阻害薬がペムブロリズマブの場合、成人に、ペムブロリズマブとして1回1~1000mg、好ましくは10~500mg、より好ましくは200mgを3週間間隔で複数回点滴静注することができる。 According to another aspect, when the immune checkpoint inhibitor is pembrolizumab, 1 to 1000 mg of pembrolizumab, preferably 10 to 500 mg, more preferably 200 mg of pembrolizumab is intravenously infused multiple times at 3-week intervals to adults. can be done.
 他の態様によれば、免疫チェックポイント阻害薬がアベルマブの場合、成人に、アベルマブとして1回1~100mg/kg(体重)、好ましくは5~50mg/kg(体重)、より好ましくは10mg/kg(体重)を1~3週間間隔、好ましくは2週間間隔で複数回点滴静注することができる。 According to another aspect, when the immune checkpoint inhibitor is avelumab, the dose of avelumab to adults is 1 to 100 mg/kg (body weight), preferably 5 to 50 mg/kg (body weight), more preferably 10 mg/kg. (body weight) can be administered intravenously multiple times at intervals of 1 to 3 weeks, preferably at intervals of 2 weeks.
 他の態様によれば、免疫チェックポイント阻害薬がアテゾリズマブの場合、成人に、アテゾリズマブとして1回100~1500mg、好ましくは500~1500mg、好ましくは840~1200mgを2~4週間間隔、好ましくは2~3週間間隔で複数回点滴静注することができ、具体的には、1回1200mgを3週間間隔で複数回、または1回840mgを1~2週間間隔で複数回点滴静注することができる。 According to another aspect, when the immune checkpoint inhibitor is atezolizumab, an adult receives 100-1500 mg, preferably 500-1500 mg, preferably 840-1200 mg of atezolizumab once every 2-4 weeks, preferably 2-4 weeks. It can be intravenously infused multiple times at 3-week intervals. Specifically, 1200 mg can be intravenously infused multiple times at 3-week intervals, or 840 mg can be intravenously infused multiple times at 1- to 2-week intervals. .
 他の態様によれば、免疫チェックポイント阻害薬がデュルバルマブの場合、成人に、デュルバルマブとして1回0.1~5000mg/kg(体重)、好ましくは1~1500mg/kg(体重)、より好ましくは5~1300mg/kg(体重)を2~4週間間隔、好ましくは2~3週間間隔で複数回点滴静注することができ、具体的には、1回10mg/kg(体重)を2週間間隔で複数回、または1回1500mg/kg(体重)を4週間間隔で複数回点滴静注することができる。 According to another aspect, when the immune checkpoint inhibitor is durvalumab, 0.1 to 5000 mg/kg (body weight), preferably 1 to 1500 mg/kg (body weight), more preferably 5 mg/kg (body weight), more preferably 5 mg/kg (body weight) of durvalumab is administered to an adult once. Up to 1300 mg/kg (body weight) can be intravenously infused multiple times at intervals of 2 to 4 weeks, preferably at intervals of 2 to 3 weeks, specifically, 10 mg/kg (body weight) once at intervals of 2 weeks. Multiple doses or multiple doses of 1500 mg/kg (body weight) can be intravenously infused at 4-week intervals.
 他の態様によれば、免疫チェックポイント阻害薬がイビリムマブの場合、成人に、イビリマブとして1回0.05~100mg/kg(体重)、好ましくは0.1~50mg/kg(体重)、より好ましくは0.5~5mg/kg(体重)を1~8週間間隔、好ましくは2~7週間間隔で複数回点滴静注することができ、具体的には、1回3mg/kg(体重)を3週間間隔で複数回、例えば4回点滴静注することができる。 According to another aspect, when the immune checkpoint inhibitor is ibilimumab, 0.05 to 100 mg/kg (body weight), preferably 0.1 to 50 mg/kg (body weight), more preferably 0.1 to 50 mg/kg (body weight) of ibilimumab is administered to an adult once. 0.5 to 5 mg/kg (body weight) can be intravenously infused multiple times at intervals of 1 to 8 weeks, preferably at intervals of 2 to 7 weeks, specifically, 3 mg/kg (body weight) once. Multiple intravenous infusions, for example 4 times, can be performed at 3-week intervals.
 本発明において、BNCTは、免疫チェックポイント阻害薬の投与開始後に行われることが好ましい。具体的には、免疫チェックポイント阻害薬を1回、2回または3回以上投与した後、ホウ素化合物を投与し、その1~3時間後に中性子を照射し、その後、さらに免疫チェックポイント阻害薬を1回、2回または3回以上投与することが好ましく、さらに免疫チェックポイント阻害薬を継続投与することが好ましい。 In the present invention, BNCT is preferably performed after starting administration of an immune checkpoint inhibitor. Specifically, after administering an immune checkpoint inhibitor once, twice or three times or more, administering a boron compound, 1 to 3 hours after that, neutron irradiation, and then further immune checkpoint inhibitor It is preferable to administer once, twice, or three times or more, and further preferably to continuously administer an immune checkpoint inhibitor.
 本発明におけるBNCTに使用するホウ素化合物としては、特に限定されるものではなく、従来から粒子線治療に用いられている種々のものを使用することができ、具体的には、BPA、BSH、BSH誘導体、その他さらにホウ素を含む公知のBNCT用ホウ素化合物などが挙げられる。ホウ素原子を一分子に多く含むことからクラスター分子であるBSH、BSH誘導体などが好ましく、メラニン生合成に着目した悪性腫瘍を標的とした薬剤であることから、BPAがより好ましい。これらのホウ素化合物は、公知の方法により製造することができ、商業的に入手することもできる。なお、BPAを含む製剤は、「ステボロニン(登録商標)」として、ステラファーマ(株)から入手可能である。もちろん本発明にしたがい、ホウ素化合物の添付文書には免疫チェックポイント阻害薬と併用することが明記されていることが好ましい。 The boron compound used for BNCT in the present invention is not particularly limited, and various compounds conventionally used in particle beam therapy can be used. Specifically, BPA, BSH, BSH Derivatives, and other known boron compounds for BNCT that further contain boron. Cluster molecules such as BSH and BSH derivatives are preferred because they contain many boron atoms in one molecule, and BPA is more preferred because it is a drug targeting malignant tumors focused on melanin biosynthesis. These boron compounds can be produced by known methods and are commercially available. A preparation containing BPA is available from Stella Pharma Co., Ltd. as "Stebronine (registered trademark)". Of course, according to the present invention, the package insert of the boron compound preferably clearly states that it is used in combination with an immune checkpoint inhibitor.
 本発明に用いるホウ素化合物は、経静脈的、経動脈的に投与されることが一般的であり、その他、内服薬による投与、筋肉注射による投与、経皮的投与なども有効に使用することができる。 The boron compound used in the present invention is generally administered intravenously or intraarterially. In addition, administration by oral medicine, administration by intramuscular injection, transdermal administration, etc. can also be effectively used. .
 本発明に用いるホウ素化合物は、治療に有効な量で腫瘍細胞内に蓄積できる濃度および量で投与される。腫瘍組織部において最終的に25ppm以上のホウ素濃度となるように投与することが好ましい。また、正常組織と比較した腫瘍組織のホウ素濃度比が2倍以上であることがさらに好ましい。そのような投与量としては、例えば、BPAの場合、100~500mg/kgが好ましく、250~500mg/kgがより好ましい。そして、このような投与量を1時間あたり100~200mg/kgの速度で1~3時間かけて点滴静注することが好ましく、投与後または投与継続中に中性子照射が実行されることが好ましい。また、ホウ素化合物は、中性子の照射中にも追加で行うことができ、1時間当たり50~500mg/kg、好ましくは50~100mg/kgの速さで点滴静注することができる。 The boron compound used in the present invention is administered in a concentration and amount that allows it to accumulate in tumor cells in a therapeutically effective amount. It is preferable to administer so that the final boron concentration in the tumor tissue area is 25 ppm or more. Further, it is more preferable that the ratio of the boron concentration in the tumor tissue to that in the normal tissue is 2 times or more. For example, in the case of BPA, such dosage is preferably 100-500 mg/kg, more preferably 250-500 mg/kg. It is preferable to administer such a dose by intravenous drip infusion over 1 to 3 hours at a rate of 100 to 200 mg/kg per hour, and neutron irradiation is preferably performed after administration or during continuous administration. Further, the boron compound can be additionally administered during neutron irradiation, and can be intravenously infused at a rate of 50 to 500 mg/kg, preferably 50 to 100 mg/kg per hour.
 中性子の照射は、ホウ素化合物が治療すべき部位に到達するのに十分な時間が経過した後、ホウ素化合物が中性子照射腫瘍部位より減少する前に行うことが好ましく、ホウ素化合物の投与から0.5~4時間後に行うことがより好ましく、1~3時間後から行うことがさらに好ましい。中性子の照射については、原子炉または加速器型中性子発生装置を用い、中性子線量、照射時間、腫瘍部ホウ素濃度、血液中ホウ素濃度、ホウ素化合物-PET(BPA-PETなど)による薬物動態結果など、治療に必要な諸条件を決定する。 Neutron irradiation is preferably performed after sufficient time for the boron compound to reach the site to be treated and before the boron compound is reduced from the neutron-irradiated tumor site. It is more preferable to carry out after ~4 hours, more preferably after 1 to 3 hours. For neutron irradiation, using a nuclear reactor or an accelerator-type neutron generator, treatment such as neutron dose, irradiation time, tumor site boron concentration, blood boron concentration, pharmacokinetic results by boron compound-PET (BPA-PET, etc.) determine the conditions necessary for
 BNCTは、放射線治療であることから、限定された領域を対象とする。そして、BNCTの処置は、なるべく少ない回数に留めることが好ましく、原則的には本発明の悪性腫瘍治療薬を用いる場合、免疫チェックポイント阻害薬との複合療法中に1回とする。ただし、病状の進行、照射部位の範囲等を考慮して、2回以上の複数回行うことを検討してもよい。 Since BNCT is radiotherapy, it targets a limited area. BNCT treatment should preferably be performed as few times as possible. In principle, when the drug for treating malignant tumors of the present invention is used, it should be performed once during combination therapy with an immune checkpoint inhibitor. However, in consideration of the progress of the disease, the range of the irradiation site, etc., it may be considered to perform the treatment two or more times.
 本発明の悪性腫瘍治療薬によるBNCT免疫複合療法は、免疫療法、特に免疫チェックポイント阻害薬による治療に応答しない患者や、転移を引き起こした進行期の患者を有効に治療することができる。例えば、進行期の悪性黒色腫を患う患者については、上述のとおり特にその効果が期待できる。 The BNCT immune combination therapy with the therapeutic agent for malignant tumors of the present invention can effectively treat patients who do not respond to immunotherapy, especially treatment with immune checkpoint inhibitors, and patients at advanced stage who have metastasis. For example, patients suffering from advanced-stage malignant melanoma can be expected to be particularly effective as described above.
 本発明の別の実施態様においては、(i)抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗LAG-3抗体、抗TIM-3抗体、抗TIGIT抗体、抗KIR抗体、PD-L1/TGFβトラップ阻害融合タンパク質および抗PD-1/CTLA-4二重特異性抗体からなる群より選択される免疫チェックポイント阻害薬、および(ii)ホウ素中性子捕捉療法に用いるためのホウ素化合物を含む、前記免疫チェックポイント阻害薬に応答しない患者を対象とする悪性腫瘍治療用組み合わせ医薬が提供される。この組み合わせ医薬の形態は、特に限定されるものではなく、(i)抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗LAG-3抗体、抗TIM-3抗体、抗TIGIT抗体、抗KIR抗体、PD-L1/TGFβトラップ阻害融合タンパク質および抗PD-1/CTLA-4二重特異性抗体からなる群より選択される免疫チェックポイント阻害薬、および(ii)ホウ素中性子捕捉療法に用いるためのホウ素化合物を含むキットとすることができ、このキットには、免疫チェックポイント阻害薬の投与と、BNCTの実施との関係を説明する説明書を含めることができる。 In another embodiment of the invention, (i) anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody , an immune checkpoint inhibitor selected from the group consisting of a PD-L1/TGFβ trap inhibitory fusion protein and an anti-PD-1/CTLA-4 bispecific antibody, and (ii) boron for use in boron neutron capture therapy. A pharmaceutical combination for treating malignant tumors for patients who do not respond to the immune checkpoint inhibitor is provided, comprising the compound. The form of this combination medicine is not particularly limited, and (i) anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT an immune checkpoint inhibitor selected from the group consisting of antibodies, anti-KIR antibodies, PD-L1/TGFβ trap inhibitory fusion proteins and anti-PD-1/CTLA-4 bispecific antibodies, and (ii) boron neutron capture therapy. and the kit can include instructions describing the relationship between administration of the immune checkpoint inhibitor and administration of BNCT.
 上述の「悪性腫瘍治療薬」についてした説明は、特に矛盾のない限り、「悪性腫瘍治療用組み合わせ医薬」についても、同様に適用されるものとし、また「悪性腫瘍治療用組み合わせ医薬」についてした説明も、上述の「悪性腫瘍治療」にも同様に適用されるものとする。 Unless otherwise contradicted, the above explanations about "therapeutic drugs for malignant tumors" shall apply to "combined drugs for treating malignant tumors" in the same way. shall apply equally to “malignant tumor treatment” above.
 以下、実施例によって、本発明をさらに詳細に説明するが、本発明はその趣旨と適用範囲から逸脱しない限りこれらに限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these as long as it does not deviate from the gist and scope of application.
[進行期メラノーマモデルマウスの作製]
 本動物実験に関しては、国立大学法人岡山大学および国立大学法人京都大学の動物実験委員会の承認に基づき適正に行った。マウスメラノーマ細胞B16F10は国立大学法人東北大学加齢医学研究所医用細胞資源センター・細胞バンクより購入した。また培養に関しては、RPMI-1640+10%FBS(牛胎児血清)+1%P/S(ペニシリン/ストレプトマイシン)を用い、5%CO2細胞培養インキュベーターを用いて行った。70~90%コンフルエント条件にて0.25%トリプシンを用いて細胞を回収し、1.0×104細胞数/μLの細胞懸濁液を作製した。5週齢のC57BL/6JJcl雌性マウス(日本クレア(株)より購入)を使用し、各マウスに対して、右大腿部筋肉内に30μL(3.0×105細胞数)、および左側腹部皮下部内に50μL(5.0×105細胞数)のBL6F10を移植した。作製した進行期メラノーマモデルマウスは、後述するように、免疫チェックポイント阻害薬(抗PD-1抗体)による治療には応答しないことが確認された。
[Preparation of advanced melanoma model mice]
This animal experiment was properly conducted based on the approval of the Animal Care and Use Committee of National University Corporation Okayama University and National University Corporation Kyoto University. Mouse melanoma cells B16F10 were purchased from National University Corporation Tohoku University Institute of Aging and Cancer Medical Cell Resource Center/Cell Bank. Culture was performed using RPMI-1640+10% FBS (fetal bovine serum)+1% P/S (penicillin/streptomycin) using a 5% CO 2 cell culture incubator. Cells were harvested using 0.25% trypsin under 70-90% confluent conditions to prepare a cell suspension of 1.0×10 4 cells/μL. 5-week-old C57BL/6JJcl female mice (purchased from CLEA Japan, Inc.) were used, and 30 μL (3.0×10 5 cells) were injected into the muscle of the right thigh and left flank of each mouse. 50 μL (5.0×10 5 cells) of BL6F10 was implanted subcutaneously. It was confirmed that the produced advanced melanoma model mouse does not respond to treatment with an immune checkpoint inhibitor (anti-PD-1 antibody), as described later.
[ホウ素濃度の測定]
 ホウ素薬剤ボロファラン(10B)(商品名:ステボロニン、ステラケミファ(株)製)を進行期メラノーマモデルマウス(n=4)に500mg/体重kgで皮下投与した。投与後、1、2および3時間で各組織におけるホウ素濃度を測定した。結果を表1に示す。
[Measurement of boron concentration]
A boron drug, borofarane ( 10 B) (trade name: steboronine, manufactured by Stella Chemifa Co., Ltd.) was subcutaneously administered to advanced melanoma model mice (n=4) at 500 mg/kg body weight. Boron concentration in each tissue was measured at 1, 2 and 3 hours after administration. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、照射予定部位である右下肢筋肉内の腫瘍部位のホウ素濃度が29.9ppmであったのに対して、同部位の正常筋肉におけるホウ素濃度は10ppmであった。また左側腹部にある皮下腫瘍部位(遮蔽予定部位)のホウ素濃度と照射予定部位である右大腿部の正常皮膚におけるホウ素濃度とは、それぞれ13.2ppmと13.1ppmとでほぼ同じであった。左側腹部皮下腫瘍と右大腿部筋肉内腫瘍に使用したメラノーマ細胞は同じ細胞株であるが(B16-F10)、皮下腫瘍部のホウ素濃度が照射部位である右大腿部筋肉内腫瘍の29.9ppmに対して13.2ppmと低値を示しているのは、筋肉内の方が腫瘍血管が構成されやすく、腫瘍形成に貢献しやすいことに起因するものである。後述する中性子照射は、右大腿部のホウ素濃度が2時間から3時間にかけて、29.9ppmから31.8ppmと安定していることより、ホウ素薬剤投与後2時間の時点で行うこととした。 From Table 1, the boron concentration in the tumor site in the muscle of the right lower limb, which is the site to be irradiated, was 29.9 ppm, while the boron concentration in the normal muscle of the same site was 10 ppm. In addition, the boron concentration in the subcutaneous tumor site (planned shielding site) on the left side of the abdomen and the boron concentration in the normal skin of the right thigh, which is the planned irradiation site, were almost the same at 13.2 ppm and 13.1 ppm, respectively. . The melanoma cells used for the left flank subcutaneous tumor and the right thigh intramuscular tumor are the same cell line (B16-F10), but the boron concentration in the subcutaneous tumor area is 29 The low value of 13.2 ppm compared to 0.9 ppm is due to the fact that intramuscular tumor blood vessels are more likely to be formed and more likely to contribute to tumorigenesis. Neutron irradiation, which will be described later, was performed 2 hours after administration of the boron drug because the boron concentration in the right thigh was stable from 29.9 ppm to 31.8 ppm from 2 hours to 3 hours.
実施例1
 試験に用いる進行期メラノーマモデルマウスは、対照(中性子照射のみ)群(n=9)、抗PD-1抗体投与群(n=9)、BNCT処置群(n=9)、および抗PD-1抗体投与+BNCT処置群(n=9)に分け、対応する薬剤投与および中性子照射を後述のとおり行った。
Example 1
Advanced melanoma model mice used in the test, control (neutron irradiation only) group (n = 9), anti-PD-1 antibody administration group (n = 9), BNCT treatment group (n = 9), and anti-PD-1 They were divided into antibody administration + BNCT treatment groups (n=9), and corresponding drug administration and neutron irradiation were performed as described below.
[免疫チェックポイント阻害薬の投与]
 上記進行期メラノーマモデルマウスの作製において得られたモデルマウスに、作製後4日目、7日目、10日目および13日目に、マウス抗PD-1抗体(Bio X cell社製、InVivoMab anti-mouse PD-1 (CD279)、clone#RMP1-14)をマウス1匹当たり250mgで腹腔内投与した。
[Administration of immune checkpoint inhibitor]
On the 4th, 7th, 10th and 13th days after production, the mouse anti-PD-1 antibody (manufactured by Bio X cell, InVivoMab anti -mouse PD-1 (CD279), clone#RMP1-14) was administered intraperitoneally at 250 mg per mouse.
[ホウ素薬剤BPA投与]
 ホウ素薬剤ボロファラン(10B)(商品名:ステボロニン、ステラケミファ(株)製)を進行期メラノーマモデルマウスに500mg/体重kgで皮下投与した。投与より2時間後に中性子照射を行った。
[Boron drug BPA administration]
Boron drug borofarane ( 10 B) (trade name: steboronine, manufactured by Stella Chemifa Co., Ltd.) was subcutaneously administered to advanced melanoma model mice at 500 mg/kg body weight. Two hours after administration, neutron irradiation was performed.
[中性子照射]
 モデルマウス作製後8日目、京都大学複合原子力科学研究所内の台車動物照射施設にて5MW原子炉稼働時に、中性子照射を行った。照射方法の概略を図1に示す。中性子源よりメラノーマモデルマウスの右大腿筋肉内腫瘍を含む下肢全体(照射部)に12分間の中性子照射を行い、左側腹部皮下腫瘍を遮蔽部内腫瘍とした。中性子遮蔽には、高濃度フッ化リチウムを用いた。つまり、図1に示すように、リング状の高濃度フッ化リチウムによる遮蔽材上にモデルマウスを乗せ、遮蔽材側から中性子源より中性子照射を行った。これにより、遮蔽剤の無い部分に位置する左大腿筋肉内腫瘍には中性子が照射され、遮蔽材に阻まれた左側腹部内腫瘍には中性子線が遮断されて到達しなかった。モデルマウスは、マウスの動きによる影響を最小限にするため、全身麻酔下にて実験を行った。右下肢照射部位の平均熱中性子フルエンスは2.67E+12(cm-2)であり、左側腹部の遮蔽内の平均熱中性子フルエンスは6.427E+11(cm-2)と照射部の1/4程度であり十分に中性子遮蔽が確認された。
[Neutron irradiation]
On the 8th day after the model mouse was produced, neutron irradiation was performed at the trolley animal irradiation facility in Kyoto University's Institute for Integrated Radiation and Nuclear Science during operation of the 5 MW nuclear reactor. An outline of the irradiation method is shown in FIG. Neutron irradiation was performed for 12 minutes on the entire lower extremity (irradiated part) including the tumor in the right thigh muscle of the melanoma model mouse from a neutron source, and the left flank subcutaneous tumor was used as the tumor in the shielded part. High-concentration lithium fluoride was used for neutron shielding. That is, as shown in FIG. 1, a model mouse was placed on a ring-shaped shielding material made of high-concentration lithium fluoride, and neutron irradiation was performed from the shielding material side from a neutron source. As a result, neutrons were irradiated to the left thigh intramuscular tumor located where there was no shielding material, and neutrons did not reach the left abdominal tumor blocked by the shielding material. Experiments were performed on model mice under general anesthesia in order to minimize the effects of mouse movement. The average thermal neutron fluence in the irradiated area of the right lower extremity is 2.67E+12 (cm -2 ), and the average thermal neutron fluence within the shield of the left abdomen is 6.427E+11 (cm -2 ), which is about 1/4 of the irradiated area. Sufficient neutron shielding was confirmed.
[腫瘍体積の測定]
 中性子照射後、移植より15、20、23および27日目に右大腿部筋肉内腫瘍体積(mm3)および左側腹部皮下腫瘍体積(mm3)を測定した。さらに、各組織(照射右大腿部筋肉内腫瘍部、遮蔽左側腹部皮下腫瘍、照射右大腿部正常筋肉、照射右大腿部正常皮膚)における線量を、照射線量および表1に記載した各組織におけるホウ素濃度により決定した。
[Measurement of tumor volume]
Right thigh intramuscular tumor volume (mm 3 ) and left flank subcutaneous tumor volume (mm 3 ) were measured on days 15, 20, 23 and 27 after neutron irradiation. Furthermore, the dose in each tissue (irradiated right thigh intramuscular tumor, shielded left flank subcutaneous tumor, irradiated right thigh normal muscle, irradiated right thigh normal skin) Determined by boron concentration in tissue.
 右大腿部筋肉内腫瘍部腫瘍体積を測定した結果を図2に示す。図2より、移植より27日目で、抗PD-1抗体投与+BNCT処置群において最も腫瘍体積が小さかった(平均926(mm3))。一方、BNCT処置群では1850(mm3)とBNCTの効果を示した。また、抗PD-1抗体投与群は3242(mm3)であった。対照群は、移植後23日で、すでに2200(mm3)を超えており、他の治療群より最も腫瘍体積が大きかった。 FIG. 2 shows the results of measuring the tumor volume of the tumor in the right thigh muscle. From FIG. 2, 27 days after transplantation, the anti-PD-1 antibody administration + BNCT treatment group had the smallest tumor volume (mean 926 (mm 3 )). On the other hand, the BNCT-treated group showed the effect of BNCT at 1850 (mm 3 ). In the anti-PD-1 antibody-administered group, it was 3242 (mm 3 ). Twenty-three days after transplantation, the control group already exceeded 2200 (mm 3 ) and had the largest tumor volume compared to the other treatment groups.
 左側腹部皮下腫瘍体積を測定した結果を図3に示す。図3より、移植より27日で、抗PD-1抗体投与+BNCT処置群において最も腫瘍体積が小さかった(平均1291(mm3))。一方、BNCT処置群では2015(mm3)とBNCTの効果を示した。また、抗PD-1抗体投与群は4127(mm3)であった。対照群は、移植後23日で、すでに5700(mm3)を超えており、他の治療群より最も腫瘍体積が大きかった。 FIG. 3 shows the results of measuring the left flank subcutaneous tumor volume. From FIG. 3, 27 days after transplantation, the tumor volume was the smallest in the anti-PD-1 antibody administration+BNCT treatment group (average 1291 (mm 3 )). On the other hand, the BNCT-treated group showed the effect of BNCT at 2015 (mm 3 ). The anti-PD-1 antibody-administered group was 4127 (mm 3 ). The control group already exceeded 5700 (mm 3 ) 23 days after transplantation, and had the largest tumor volume compared to the other treatment groups.
 各組織の線量を、放射線換算したものを表2に示す。 Table 2 shows the dose of each tissue converted to radiation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 これらの結果より、このB16F10移植メラノーマモデルは抗PD-1抗体に対して抵抗性である、すなわち抗PD-1抗体療法に応答しない(奏功しない)免疫療法抵抗性のメラノーマモデルであることがわかる。 These results show that this B16F10 transplanted melanoma model is resistant to anti-PD-1 antibodies, that is, it is an immunotherapy-resistant melanoma model that does not respond (does not respond) to anti-PD-1 antibody therapy. .
 そして、右大腿部筋肉内腫瘍部では、BNCT単独のBNCT処置群でもある程度の局所腫瘍抑制効果があるが、あまり大きなものではなく、免疫療法を併用することにより(抗PD-1抗体投与+BNCT処置群)、移植より27日目の時点でBNCT処置群よりも半分以下に、腫瘍体積が著しく減少したことがわかる。 In the intramuscular tumor of the right thigh, the BNCT treatment group with BNCT alone has a certain degree of local tumor suppressive effect, but the effect is not so great, and the combined use of immunotherapy (administration of anti-PD-1 antibody + BNCT treatment group), the tumor volume was significantly reduced to less than half that of the BNCT treatment group at 27 days after transplantation.
 また、照射部の右大腿部筋肉内腫瘍部の線量は24.8Gy-eqと非常に大きく、周囲の正常組織の線量は、筋肉部で5.9Gy-eq、皮膚部で2.0Gy-eqと非常に小さいものであり、周囲の正常組織へのダメージが抑制されていることがわかる。 In addition, the radiation dose to the intramuscular tumor site of the right thigh was extremely high at 24.8 Gy-eq, while the dose to the surrounding normal tissue was 5.9 Gy-eq for the muscle and 2.0 Gy-eq for the skin. eq is very small, and it can be seen that damage to surrounding normal tissues is suppressed.
 さらに、遮蔽部における結果より、抗PD-1抗体投与+BNCT処置群では、遠隔部位の腫瘍増殖をも有意に抑制できたことがわかる。つまり、直接照射部位にて十分な腫瘍線量となる照射を行ったところ、免疫療法と直接照射部位への治療効果により遠隔部位での治療効果を誘導することに成功した。 Furthermore, from the results in the shielded area, it can be seen that the anti-PD-1 antibody administration + BNCT treatment group was able to significantly suppress tumor growth at distant sites. In other words, when irradiation was performed at a sufficient tumor dose at the site of direct irradiation, we succeeded in inducing a therapeutic effect at a distant site through immunotherapy and therapeutic effects at the site of direct irradiation.
 これらの結果を、遮蔽部位における抗PD-1抗体投与群(単独)とBNCT処置群(単独)に対して、抗PD-1抗体投与+BNCT処置群(併用)について検討すると、各測定時点において単独双方を超える効果を示した。したがって、抗PD-1抗体投与とBNCT処置とは、直接照射部および遮蔽部の両方において、併用することにより、最終的には相乗効果を示すことがわかった。 When examining these results for the anti-PD-1 antibody administration group (single) and BNCT treatment group (single) at the shielded site, and the anti-PD-1 antibody administration + BNCT treatment group (combination), It showed an effect exceeding both. Therefore, it was found that anti-PD-1 antibody administration and BNCT treatment ultimately exhibited a synergistic effect when combined in both direct irradiation and shielded areas.
実施例2
 上記で作製した進行期メラノーマモデルマウスを用いてホウ素中性子療法と免疫療法の組合せによるホウ素中性子捕捉療法複合免疫療法(B-NIT)を行った。モデルマウスを対照(中性子照射のみ)群(n=9)、抗PD-1抗体投与群(n=9)、BNCT処置群(n=9)、および抗PD-1抗体投与+BNCT処置群(n=9)に分け、免疫チェックポイント阻害薬およびホウ素薬剤の投与ならびに中性子照射は実施例1と同様にして行った。
Example 2
Boron neutron capture therapy combined immunotherapy (B-NIT), which is a combination of boron neutron therapy and immunotherapy, was performed using the advanced stage melanoma model mouse prepared above. Model mice control (neutron irradiation only) group (n = 9), anti-PD-1 antibody administration group (n = 9), BNCT treatment group (n = 9), and anti-PD-1 antibody administration + BNCT treatment group (n =9), and administration of immune checkpoint inhibitors and boron agents and neutron irradiation were performed in the same manner as in Example 1.
[中性子照射部内の腫瘍浸潤リンパ球(TIL)]
 中性子照射15日後における各群(各n=3)の中性子照射腫瘍部におけるCD8+/CD45+の腫瘍浸潤リンパ球(TIL)の割合をフローサイトメトリーおよび免疫組織染色により確認した。具体的には、マウスの右大腿筋肉内腫瘍部からメラノーマ腫瘍組織片を全身麻酔下により採取し、通常の手法にて単細胞懸濁液を調製し、フローサイトメトリーに用いた。フローサイトメトリーでは、まず、Zombie Aqua(商標) Fixable Viability Kit(バイオレジェンド(BioLegend)社製、サンディエゴ、CA、米国)で染色して死細胞を標識し、Fc Block(精製抗-マウス CD16/32 クローン93;バイオレジェンド社製)で前処理を施した。その後、細胞を抗体で染色し、LSRFortessa(商標) フローサイトメーター(BDバイオサイエンス社製)で解析した。染色抗体として、バイオレジェンド社より購入した、FITC抗-マウス CD45(クローン30-F11)およびBV786 ラット抗-マウス CD8a(クローン53-6.7)を用い、製造元の指示に従い希釈した。データはFlowJo Software(BDバイオサイエンス社製)を用いて解析した。結果を図4に示す。CD8+/CD45+の腫瘍浸潤リンパ球は、図4に示すように、対照群および抗PD-1抗体投与群においてそれぞれ24.5%および25.34%であり、変化はなかった。一方、BNCT処置群では49.2%と増加しており、抗PD-1抗体投与+BNCT処置群では64.6%とさらに増加していた(図4)。腫瘍組織より採取したサンプルを4%パラフォルムアルデヒドにて固定後、凍結病理切片の試料を作成し、抗CD8抗体を用いて腫瘍部の免疫組織染色を行った。腫瘍中心部分、腫瘍辺縁部分など、複数個所の組織片を蛍光顕微鏡により観察した。腫瘍周囲付近の正常部分との境界領域の蛍光顕微鏡写真データ(×10)を図5に示す。図5中、1は核(ヘキスト染色:青)、2は腫瘍浸潤リンパ球(抗CD8抗体:赤)を示す。図5より、対照群および抗PD-1抗体投与群では腫瘍浸潤リンパ球(TIL)2はほとんど確認できないが、BNCT処置群では顕著にTIL2の割合が増え、抗PD-1抗体投与+BNCT処置群においてはさらにTIL2の割合が増加しており、上記フローサイトメトリーの結果を裏付けていることがわかる。一般的に、腫瘍中心部には血流が届きにくいため、リンパ球も同様に届きにくく、腫瘍周縁部、たとえば腫瘍部分と正常部分との境界領域はリンパ球の浸潤が一番多くみられるところである。しかし、図5に示すように、そのような領域であっても、対照群や抗PD-1抗体投与群においてはリンパ球の浸潤は少なく、このモデルマウスが抗PD-1抗体抵抗性であることを示している。そして、そのようなマウスであっても、BNCT処置群および抗PD-1抗体投与+BNCT処置群では腫瘍に対して攻撃するリンパ球の浸潤が顕著に観察される。以上より、照射部位の腫瘍内部ではBNCT処置群および抗PD-1抗体投与+BNCT処置群にて、免疫療法において重要な腫瘍組織浸潤リンパ球(TIL)が、腫瘍・正常境界部において顕著に観察されるため、腫瘍の周りに浸潤、集簇している病態を示していると考えられた。これにより、BNCT処置や免疫チェックポイント阻害薬とBNCT処置との併用により、高度にTILが誘導されていることがわかり、複合療法の非常に優れた効果が示唆される。なお、免疫組織染色の一次抗体にはCD8aモノクローナル抗体(4SM15)、eBioscience(サーモフィッシャーサイエンティフィック社製)を、二次抗体にはAlexa Flour 594抗マウス(サーモフィッシャーサイエンティフィック社製)を用いた。
[Tumor infiltrating lymphocytes (TIL) in the neutron irradiation area]
The ratio of CD8+/CD45+ tumor-infiltrating lymphocytes (TIL) in the neutron-irradiated tumor area of each group (n=3 each) 15 days after neutron irradiation was confirmed by flow cytometry and immunohistochemical staining. Specifically, a piece of melanoma tumor tissue was collected from the tumor site in the right femoral muscle of a mouse under general anesthesia, and a single cell suspension was prepared by a conventional method and used for flow cytometry. For flow cytometry, first stain with Zombie Aqua™ Fixable Viability Kit (BioLegend, San Diego, Calif., USA) to label dead cells and Fc Block (purified anti-mouse CD16/32 Pretreatment was performed with Clone 93; manufactured by Biolegend). Cells were then stained with antibodies and analyzed with an LSRFortessa™ flow cytometer (manufactured by BD Biosciences). As staining antibodies, FITC anti-mouse CD45 (clone 30-F11) and BV786 rat anti-mouse CD8a (clone 53-6.7) purchased from Biolegend were used and diluted according to the manufacturer's instructions. Data were analyzed using FlowJo Software (manufactured by BD Biosciences). The results are shown in FIG. As shown in FIG. 4, the CD8+/CD45+ tumor-infiltrating lymphocytes were 24.5% and 25.34% in the control group and the anti-PD-1 antibody-administered group, respectively, and there was no change. On the other hand, it increased to 49.2% in the BNCT treatment group, and further increased to 64.6% in the anti-PD-1 antibody administration + BNCT treatment group (Fig. 4). After fixing a sample collected from the tumor tissue with 4% paraformaldehyde, a frozen pathological section sample was prepared, and immunohistochemical staining of the tumor area was performed using an anti-CD8 antibody. Tissue pieces at multiple locations such as the tumor center and tumor margins were observed with a fluorescence microscope. FIG. 5 shows fluorescence photomicrograph data (×10) of the boundary region with the normal region around the tumor. In FIG. 5, 1 indicates nuclei (Hoechst staining: blue) and 2 indicates tumor-infiltrating lymphocytes (anti-CD8 antibody: red). From FIG. 5, tumor infiltrating lymphocytes (TIL) 2 could hardly be confirmed in the control group and the anti-PD-1 antibody administration group, but in the BNCT treatment group, the proportion of TIL2 increased significantly, and the anti-PD-1 antibody administration + BNCT treatment group , the proportion of TIL2 is further increased, supporting the results of the above flow cytometry. In general, since the blood flow is difficult to reach the center of the tumor, it is difficult for lymphocytes to reach it as well. be. However, as shown in FIG. 5, even in such a region, lymphocyte infiltration is low in the control group and the anti-PD-1 antibody-administered group, indicating that this model mouse is anti-PD-1 antibody-resistant. It is shown that. Even in such mice, the infiltration of lymphocytes attacking the tumor is significantly observed in the BNCT-treated group and the anti-PD-1 antibody-administered + BNCT-treated group. Based on the above, tumor tissue infiltrating lymphocytes (TIL), which are important in immunotherapy, were significantly observed in the tumor-normal boundary in the BNCT treatment group and the anti-PD-1 antibody administration + BNCT treatment group inside the tumor at the irradiation site. Therefore, it was considered to indicate a pathological condition of infiltration and aggregation around the tumor. This indicates that BNCT treatment or combination therapy with an immune checkpoint inhibitor and BNCT treatment induces a high degree of TIL, suggesting a very good effect of combined therapy. In addition, CD8a monoclonal antibody (4SM15) and eBioscience (manufactured by Thermo Fisher Scientific) were used as the primary antibody for immunohistochemical staining, and Alexa Flour 594 anti-mouse (manufactured by Thermo Fisher Scientific) was used as the secondary antibody. board.
[遮蔽部内の腫瘍浸潤リンパ球(TIL)]
 上記中性子照射部内のTILの測定と同様にして、各群(各n=3)の遮蔽内腫瘍部におけるCD8+/CD45+の腫瘍浸潤リンパ球(TIL)の割合を上記[中性子照射部内の腫瘍浸潤リンパ球(TIL)]と同様にしてフローサイトメトリーおよび免疫組織染色により確認した。フローサイトメトリーの結果を図6に、免疫組織染色の結果を図7に示す。図6に示すように、対照群では14.4%、抗PD-1抗体投与群では14.1%、BNCT処置群では12.1%であり、これらの群間での変化は認められなかった。一方、抗PD-1抗体投与+BNCT処置群ではTILの割合は45.6%と大きく増加していた。免疫染色については、腫瘍中心部分、腫瘍辺縁部分など、複数個所の組織片を蛍光顕微鏡により観察した。図7は、腫瘍周囲付近の正常部分との境界領域の蛍光顕微鏡写真データ(×10)であり、図7中、1は核(ヘキスト染色:青)、2は腫瘍浸潤リンパ球(抗CD8抗体:赤)を示す。図7より、対照群、抗PD-1抗体投与群およびBNCT処置群ではTILをほとんど確認できないが、抗PD-1抗体投与+BNCT処置群では多くのTILが確認され、上記フローサイトメトリーの結果を裏付けていることが分かる。以上より、遮蔽部位の腫瘍内部では抗PD-1抗体投与+BCNT処置群にて、免疫療法において重要な腫瘍組織浸潤リンパ球(TIL)が、腫瘍・正常境界部において顕著に観察されるため、腫瘍の周りに浸潤、集簇している病態を示していると考えられた。これにより、免疫チェックポイント阻害薬とBNCT処置との併用により、遮蔽部においても免疫チェックポイント阻害薬単独やBNCT処置単独では得ることのできない特異な効果を奏することがわかる。
[Tumor-infiltrating lymphocytes (TIL) in the shielded part]
In the same manner as the measurement of TIL in the neutron-irradiated area, the ratio of CD8 + / CD45 + tumor-infiltrating lymphocytes (TIL) in the shielded tumor area of each group (n = 3 each) was measured as described above [Tumor-infiltrating lymphocytes in the neutron-irradiated part Spheres (TIL)] were confirmed by flow cytometry and immunohistochemical staining. The results of flow cytometry are shown in FIG. 6, and the results of immunohistochemical staining are shown in FIG. As shown in FIG. 6, 14.4% in the control group, 14.1% in the anti-PD-1 antibody administration group, and 12.1% in the BNCT treatment group, and no change was observed between these groups. rice field. On the other hand, in the anti-PD-1 antibody administration + BNCT treatment group, the proportion of TIL increased greatly to 45.6%. For immunostaining, tissue sections at multiple sites such as the tumor center and tumor margins were observed with a fluorescence microscope. Figure 7 shows fluorescence micrograph data (x 10) of the boundary region between the tumor and the normal area around the tumor. : red). From FIG. 7, almost no TILs were confirmed in the control group, the anti-PD-1 antibody administration group and the BNCT treatment group, but many TILs were confirmed in the anti-PD-1 antibody administration + BNCT treatment group. I know it backs it up. From the above, in the anti-PD-1 antibody administration + BCNT treatment group, tumor tissue infiltrating lymphocytes (TIL), which are important in immunotherapy, are significantly observed at the tumor-normal border within the tumor at the shielded site. It was considered to indicate a pathological condition of infiltration and aggregation around the This indicates that the combined use of the immune checkpoint inhibitor and BNCT treatment produces a unique effect even in the shielded area that cannot be obtained with the immune checkpoint inhibitor alone or the BNCT treatment alone.
[血清中のHMGB1(high mobility group box 1)]
 細胞がダメージを受け、死ぬ間際に細胞内部より放出される分子の内、特に免疫反応へ働き掛ける分子集団をダメージ関連分子パターン(Damage-associated molecular patterns(DAMPs))と呼んでいる。放射線治療などの殺細胞性治療により、誘導されるDAMPsとして最も重要な分子の1つが、HMGB1(high mobility group box 1)である。HMGB1は樹状細胞上のTLR(Toll-like receptor)と結合することで、樹状細胞を活性化させ、腫瘍抗原提示能の上昇を導き、腫瘍障害性T細胞の活性に繋がると報告されている。上記[中性子照射部内の腫瘍浸潤リンパ球(TIL)]および[遮蔽部内の腫瘍浸潤リンパ球(TIL)]の測定と合わせて、別途同じマウスから採血し、マウス血清中のHMGB1の測定を、HMGB1 ELISAキット(アリゴ バイオラボラトリーズ社(Arigo Biolaboratories Corp.)製のARG81310)を用いて行った(各群n=3)。対照群では4.4(ng/mL)、抗PD-1抗体投与群では6.5(ng/mL)と、これらの群間に大きな差は認めなかったが、BNCT処置群では9.5(ng/mL)と上昇しており、抗PD-1抗体投与+BNCT処置群では14.1(ng/mL)と更なる上昇を示した(図8)。この血清中のHMGB1の上昇は、BNCT処置や抗PD-1抗体投与+BNCT処置により、HMGB1を介した免疫誘導が起こっていることを示している。
[HMGB1 (high mobility group box 1) in serum]
Among the molecules released from the inside of cells when cells are damaged and on the verge of death, groups of molecules that particularly affect immune reactions are called damage-associated molecular patterns (DAMPs). HMGB1 (high mobility group box 1) is one of the most important DAMPs induced by cell-killing treatments such as radiotherapy. It has been reported that HMGB1 binds to TLRs (Toll-like receptors) on dendritic cells, activates dendritic cells, leads to an increase in the ability to present tumor antigens, and leads to the activation of tumor-toxic T cells. there is In conjunction with the measurement of [tumor-infiltrating lymphocytes (TIL) in the neutron-irradiated part] and [tumor-infiltrating lymphocytes (TIL) in the shielded part], blood was collected separately from the same mouse, and HMGB1 in the mouse serum was measured. An ELISA kit (ARG81310, Arigo Biolaboratories Corp.) was used (n=3 for each group). 4.4 (ng/mL) in the control group and 6.5 (ng/mL) in the anti-PD-1 antibody administration group, showing no significant difference between these groups, but 9.5 in the BNCT treatment group. (ng/mL), and further increased to 14.1 (ng/mL) in the anti-PD-1 antibody administration + BNCT treatment group (Fig. 8). This increase in serum HMGB1 indicates that BNCT treatment or anti-PD-1 antibody administration+BNCT treatment induces immune induction via HMGB1.
 したがって、この血中(血清)HMGB1値は、BNCT免疫複合療法(B-NIT)における新たなバイオマーカーになると考えられる。 Therefore, this blood (serum) HMGB1 level is considered to be a new biomarker in BNCT immune combination therapy (B-NIT).
[腫瘍浸潤リンパ球(TIL)におけるエフェクターメモリーT細胞(Tem)の割合]
 腫瘍組織浸潤リンパ球(TIL)の中で、どのようなタイプのT細胞が増加しているかを評価した。抗腫瘍免疫応答に重要な役割を担う細胞傷害性T細胞(CTL)は、活性化することによりがん細胞を攻撃、殺傷する。このように活性化されたT細胞(エフェクターT細胞)は、細胞外環境において様々な機能を持つT細胞に分化する。エフェクターT細胞は、同じ抗原の暴露が持続しない限り、1~2週間後にはほとんどが死滅する。一部残存したエフェクターT細胞は、二次リンパ組織ではなく腫瘍内にて、長期間にわたり速やかな免疫応答に可能なエフェクターメモリーT細胞(Effector Memory T-cell:Tem)として存在する。腫瘍微小環境内に存在するTemは、主に二次リンパ組織と腫瘍組織を循環し、同一抗原に再暴露した際に速やかに免疫応答する。
[Percentage of effector memory T cells (Tem) in tumor infiltrating lymphocytes (TIL)]
We evaluated what types of T cells were increased among tumor tissue infiltrating lymphocytes (TILs). Cytotoxic T cells (CTLs), which play an important role in anti-tumor immune responses, attack and kill cancer cells by being activated. Such activated T cells (effector T cells) differentiate into T cells with various functions in the extracellular environment. Effector T cells are mostly dead after 1-2 weeks unless exposure to the same antigen is sustained. Some remaining effector T-cells exist as effector memory T-cells (Tem) capable of rapid immune response over a long period of time in the tumor rather than in secondary lymphoid tissues. Tem present within the tumor microenvironment circulates primarily in secondary lymphoid and tumor tissues and responds rapidly upon re-exposure to the same antigen.
 中性子照射22~27日後にかけて各群すべてのマウス(各n=6)を犠牲死させ、上記[中性子照射部内の腫瘍浸潤リンパ球(TIL)]および[遮蔽部内の腫瘍浸潤リンパ球(TIL)]と同様にしてTILをフローサイトメトリーによりソートした。得られたTIL集団について、TemのマーカーであるCD44+/CD62L-/CD8+の細胞をフローサイトメトリーにて計測した。具体的には、2%牛胎児血清(FCS)を含むリン酸緩衝生理食塩水(PBS)による細胞洗浄後、CD8、CD44、CD62L、に特異的なモノクローナル抗体と固定可能な生存率色素にて染色した(PEコンジュゲート抗CD8α(53-6.7)モノクローナル抗体、Brilliant Violet 510(BV510)-コンジュゲート抗CD44(53-6.7)モノクローナル抗体、PE-コンジュゲート抗CD62L(MEL-14)モノクローナル抗体は、BDバイオサイエンス社から購入した。eFluor 780-コンジュゲート固定可能な色素は、サーモフィッシャーサイエンティフィック社から購入)。染色した細胞は、洗浄後、LSRFortessa(商標)フローサイトメーター(BDバイオサイエンス社製)とFlowJo Software(BDバイオサイエンス社製)を用いて解析した。染色抗体は、製造元の指示に従い希釈した。結果を図9Aおよび図9Bに示す。 All mice in each group (n = 6 each) were sacrificed 22 to 27 days after neutron irradiation, and the above [tumor-infiltrating lymphocytes (TIL) in the neutron-irradiated part] and [tumor-infiltrating lymphocytes (TIL) in the shielded part] TILs were sorted by flow cytometry as in . In the resulting TIL population, the Tem marker CD44+/CD62L-/CD8+ cells were counted by flow cytometry. Specifically, after cell washing with phosphate-buffered saline (PBS) containing 2% fetal calf serum (FCS), monoclonal antibodies specific for CD8, CD44, CD62L, and fixable viability dyes were used. Stained (PE-conjugated anti-CD8α (53-6.7) monoclonal antibody, Brilliant Violet 510 (BV510)-conjugated anti-CD44 (53-6.7) monoclonal antibody, PE-conjugated anti-CD62L (MEL-14) Monoclonal antibodies were purchased from BD Biosciences, Inc. eFluor 780-conjugate immobilizable dye was purchased from Thermo Fisher Scientific). After washing, the stained cells were analyzed using an LSRFortessa™ flow cytometer (manufactured by BD Biosciences) and FlowJo Software (manufactured by BD Biosciences). Staining antibodies were diluted according to the manufacturer's instructions. The results are shown in Figures 9A and 9B.
 中性子照射部の腫瘍内のTem(エフェクターメモリーT細胞)は、対照群では24.5%に対して、抗PD-1抗体投与+BNCT処置群では66.1%と高いTemの存在を示した(図9A)。また、遮蔽部の腫瘍内のTemは、対照群43.0%に対して、抗PD-1抗体投与+BNCT処置群82.7%と、こちらも複合療法において高いTemの存在を示した(図9B)。 Tem (effector memory T cells) in the neutron-irradiated tumor showed a high Tem presence of 24.5% in the control group and 66.1% in the anti-PD-1 antibody administration + BNCT treatment group ( Figure 9A). In addition, Tem in the tumor of the shielded part was 82.7% in the anti-PD-1 antibody administration + BNCT treatment group compared to 43.0% in the control group, which also showed the presence of high Tem in the combined therapy (Fig. 9B).
 中性子照射部ならびに遮蔽部のどちらの腫瘍においても、抗PD-1抗体投与+BNCT処置群にてTemが対照群と比較して有意に増加していることから、腫瘍内に腫瘍を標的とする長期間にわたって免疫応答可能な(腫瘍免疫記憶)T細胞(Tem)が治療により誘導されていることがわかる。 In both the neutron-irradiated and shielded tumors, Tem was significantly increased in the anti-PD-1 antibody administration + BNCT treatment group compared to the control group, suggesting the long-term targeting of the tumor within the tumor. It can be seen that T cells (Tem) capable of immune response (tumor immune memory) are induced by treatment over a period of time.
実施例3
 作製した進行期メラノーマモデルマウスを用いてホウ素中性子療法と免疫療法の組合せによるホウ素中性子捕捉療法複合免疫療法(B-NIT)を行った。モデルマウスを中性子照射群と中性子非照射群とに分けた。そして、中性子照射群では、モデルマウスをさらに対照(中性子照射のみ)群(n=9)、抗PD-1抗体投与群(n=9)、BNCT処置群(n=9)、および抗PD-1抗体投与+BNCT処置群(n=9)に分け、免疫チェックポイント阻害薬およびホウ素薬剤の投与ならびに中性子照射は実施例1と同様にして行った。中性子非照射群では、モデルマウスをさらに対照(中性子照射なし)群(n=9)、抗PD-1抗体投与群(n=9)、BPA投与群(n=9)、抗PD-1抗体投与+BPA投与群(n=9)に分け、免疫チェックポイント阻害薬およびホウ素薬剤の投与は実施例1と同様にして行った。
Example 3
Boron neutron capture therapy combined immunotherapy (B-NIT), which is a combination of boron neutron therapy and immunotherapy, was performed using the developed advanced-stage melanoma model mice. The model mice were divided into a neutron-irradiated group and a neutron-non-irradiated group. Then, in the neutron irradiation group, the model mice were further controlled (neutron irradiation only) group (n = 9), anti-PD-1 antibody administration group (n = 9), BNCT treatment group (n = 9), and anti-PD- 1 antibody administration + BNCT treatment group (n=9), administration of immune checkpoint inhibitors and boron agents, and neutron irradiation were carried out in the same manner as in Example 1. In the neutron non-irradiation group, the model mice were further controlled (no neutron irradiation) group (n = 9), anti-PD-1 antibody administration group (n = 9), BPA administration group (n = 9), anti-PD-1 antibody The mice were divided into administration + BPA administration groups (n=9), and administration of immune checkpoint inhibitors and boron agents was carried out in the same manner as in Example 1.
[脾臓組織内のT細胞]
 免疫細胞は、骨髄に存在する造血幹細胞より分化した細胞である。免疫細胞が作られ、増殖する骨髄のような組織を一次リンパ組織と呼び、作られた免疫細胞が活性化したり免疫反応が起こるリンパ節や脾臓等の組織を二次リンパ組織と呼ぶ。この二次リンパ組織の脾臓において免疫細胞は抗原レセプターで抗原を認知し、より強力なT細胞となる。そのため、脾臓組織内でのT細胞の数を見ることにより、全身での細胞性免疫応答が起こっているかを評価することが可能となる。
[T cells in spleen tissue]
Immune cells are cells differentiated from hematopoietic stem cells present in the bone marrow. Tissues such as bone marrow where immune cells are produced and proliferate are called primary lymphoid tissues, and tissues such as lymph nodes and spleen where the produced immune cells are activated and immune reactions occur are called secondary lymphoid tissues. In this secondary lymphoid tissue, the spleen, immune cells recognize antigens at antigen receptors and become more potent T cells. Therefore, by looking at the number of T cells in the splenic tissue, it is possible to evaluate whether a systemic cell-mediated immune response is taking place.
 そこで、中性子照射群に中性子を照射した15日後の時点で各群(各n=3)の脾臓内のCD8+/CD45+T細胞について、実施例2のTILと同様に脾臓より組織を採取し、単細胞懸濁液を作製・調整し、フローサイトメトリーでの計測を行った。中性子照射群(HOT群)では、対照群では5.4%、抗PD-1抗体投与群では7.1%と、この群間で変化はなかった(図10A)。一方、BNCT処置群では10.2%と増加しており、抗PD-1抗体投与+BNCT処置群では14.4%と、さらに増加していた(図10A)。一方、中性子非照射群(COLD群)では、中性子非照射対照群で4.8%、抗PD-1抗体投与群で6.1%、BPA投与群で6.9%、抗PD-1抗体投与+BPA投与群で5.1%といずれも脾臓内のCD8+/CD45+T細胞は増加していなかった(図10B)。以上より、脾臓内でのCD8+/CD45+T細胞(活性化されたT細胞)は、中性子照射を行ったBNCT処置群で上昇しており、抗PD-1抗体投与+BNCT処置群でさらに上昇していることから、抗PD-1抗体投与+BNCT処置群では全身での細胞免疫応答が起こっていると考えられる。 Therefore, 15 days after the neutron irradiation group was irradiated with neutrons, CD8 + /CD45 + T cells in the spleen of each group (n = 3 each) were collected from the spleen in the same manner as TIL in Example 2, and single cell suspensions were performed. A turbid solution was prepared and adjusted and measured by flow cytometry. In the neutron irradiation group (HOT group), the control group had 5.4% and the anti-PD-1 antibody administration group had 7.1%, showing no change between these groups (Fig. 10A). On the other hand, it increased to 10.2% in the BNCT treatment group, and further increased to 14.4% in the anti-PD-1 antibody administration + BNCT treatment group (Fig. 10A). On the other hand, in the neutron non-irradiation group (COLD group), 4.8% in the neutron non-irradiation control group, 6.1% in the anti-PD-1 antibody administration group, 6.9% in the BPA administration group, and 6.9% in the anti-PD-1 antibody administration group The CD8+/CD45+ T cells in the spleen did not increase to 5.1% in the administration + BPA administration group (Fig. 10B). From the above, CD8 + / CD45 + T cells (activated T cells) in the spleen are increased in the BNCT treatment group subjected to neutron irradiation, and are further increased in the anti-PD-1 antibody administration + BNCT treatment group. Therefore, it is considered that a systemic cellular immune response occurs in the anti-PD-1 antibody administration+BNCT treatment group.
その他の実施形態
 本発明については上記詳細に説明した通りであるが、次のようなその他の実施形態に言い換えることもできる。したがって、上述の「悪性腫瘍治療薬」または「悪性腫瘍治療用組み合わせ医薬」についてした説明は、特に矛盾のない限り、以下の各実施形態についても、同様に適用されるものとする。
Other Embodiments Although the present invention has been described in detail above, it can be rephrased in other embodiments as follows. Therefore, unless there is a particular contradiction, the above explanations about the "therapeutic drug for malignant tumor" or "combination drug for treating malignant tumor" are also applied to each of the following embodiments.
実施形態1.免疫チェックポイント阻害薬を患者に投与することを含む悪性腫瘍の治療方法であって、ホウ素中性子捕捉療法と組み合わせて行うことを特徴とする治療方法。 Embodiment 1. A method of treating a malignant tumor comprising administering an immune checkpoint inhibitor to a patient, the method of treatment being combined with boron neutron capture therapy.
実施形態2.免疫チェックポイント阻害薬と、ホウ素中性子療法に用いるためのホウ素化合物とを患者に投与することを含む悪性腫瘍の治療方法であって、前記免疫チェックポイント阻害薬による治療に応答しない患者を対象とし、免疫チャックポイント阻害薬が、抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗LAG-3抗体、抗TIM-3抗体、抗TIGIT抗体、抗KIR抗体、PD-L1/TGFβトラップ阻害融合タンパク質および抗PD-1/CTLA-4二重特異性抗体からなる群より選択される治療方法。 Embodiment 2. A method of treating a malignant tumor comprising administering to a patient an immune checkpoint inhibitor and a boron compound for use in boron neutron therapy, wherein the patient is unresponsive to treatment with the immune checkpoint inhibitor, Immune checkpoint inhibitor is anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody, PD-L1/TGFβ A therapeutic method selected from the group consisting of a trap-inhibiting fusion protein and an anti-PD-1/CTLA-4 bispecific antibody.
 上記実施形態1または2において、免疫チェックポイント阻害薬を少なくとも1回投与した後、ホウ素化合物を投与し、その後中性子を照射することが組み合わせの効果を発揮しやすいという点から好ましい。 In Embodiment 1 or 2 above, it is preferable to administer the immune checkpoint inhibitor at least once, then administer the boron compound, and then irradiate with neutrons, since the effect of the combination is likely to be exhibited.
 上記実施形態1または2において、免疫チェックポイント阻害薬を少なくとも1回投与した後、ホウ素化合物を投与し、その後中性子を照射し、さらにその後免疫チェックポイント阻害薬を少なくとも1回投与することが組み合わせの効果を発揮しやすいという点から好ましい。 In the above embodiment 1 or 2, after administering an immune checkpoint inhibitor at least once, administering a boron compound, then irradiating with neutrons, and then administering an immune checkpoint inhibitor at least once is a combination It is preferable from the point that it is easy to exhibit an effect.
実施形態3.ホウ素中性子捕捉療法と組み合わせて悪性腫瘍の治療に使用するための免疫チェックポイント阻害薬を含む医薬。 Embodiment 3. A medicament comprising an immune checkpoint inhibitor for use in treating malignant tumors in combination with boron neutron capture therapy.
実施形態4.免疫チェックポイント阻害薬による治療に応答しない患者を対象とする悪性腫瘍の治療に使用するための、(i)抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗LAG-3抗体、抗TIM-3抗体、抗TIGIT抗体、抗KIR抗体、PD-L1/TGFβトラップ阻害融合タンパク質および抗PD-1/CTLA-4二重特異性抗体からなる群より選択される免疫チェックポイント阻害薬、および(ii)ホウ素中性子捕捉療法に用いるためのホウ素化合物を含む組み合わせ医薬。 Embodiment 4. (i) anti-PD-1 antibodies, anti-PD-L1 antibodies, anti-CTLA-4 antibodies, anti-LAG-3 antibodies for use in the treatment of malignancies in patients who do not respond to treatment with immune checkpoint inhibitors an immune checkpoint inhibitor selected from the group consisting of an antibody, an anti-TIM-3 antibody, an anti-TIGIT antibody, an anti-KIR antibody, a PD-L1/TGF beta trap inhibitory fusion protein and an anti-PD-1/CTLA-4 bispecific antibody and (ii) a pharmaceutical combination comprising a boron compound for use in boron neutron capture therapy.
実施形態5.悪性腫瘍の治療用医薬の製造のための免疫チャックポイント阻害薬の使用であって、悪性腫瘍の治療用医薬が、ホウ素中性子捕捉療法と組み合わせて使用される、使用。 Embodiment 5. Use of an immune checkpoint inhibitor for the manufacture of a medicament for treating malignant tumors, wherein the medicament for treating malignant tumors is used in combination with boron neutron capture therapy.
実施形態6.前記免疫チェックポイント阻害薬による治療に応答しない患者を対象とする悪性腫瘍の治療用組み合わせ医薬の製造のための、
(i)抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗LAG-3抗体、抗TIM-3抗体、抗TIGIT抗体、抗KIR抗体、PD-L1/TGFβトラップ阻害融合タンパク質および抗PD-1/CTLA-4二重特異性抗体からなる群より選択される免疫チェックポイント阻害薬、および
(ii)ホウ素中性子捕捉療法に用いるためのホウ素化合物
の使用。
Embodiment 6. for the manufacture of a combination medicament for the treatment of malignant tumors in patients who do not respond to treatment with said immune checkpoint inhibitor,
(i) anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody, PD-L1/TGFβ trap blocking fusion protein and an immune checkpoint inhibitor selected from the group consisting of anti-PD-1/CTLA-4 bispecific antibodies, and (ii) the use of boron compounds for use in boron neutron capture therapy.
 上記実施形態1、3および5のいずれかにおいて、免疫チェックポイント阻害薬は、抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗LAG-3抗体、抗TIM-3抗体、抗TIGIT抗体、抗KIR抗体、PD-L1/TGFβトラップ阻害融合タンパク質および抗PD-1/CTLA-4二重特異性抗体からなる群より選択されることが好ましく、免疫チェックポイント阻害薬は、ヒト化モノクローナル抗体であることが好ましく、抗PD-1抗体は、ニボルマブ、ペムブロリズマブ、スパルタリズマブ、またはセミプリマブであることが好ましく、抗PD-L1抗体は、アベルマブ、アテゾリズマブ、またはデュルバルマブであることが好ましく、抗CTLA-4抗体は、イビリムマブ、またはトレメリムマブであることが好ましく、ホウ素中性子捕捉療法において使用するホウ素化合物は、ボロファラン(10B)であることが好ましく、免疫チェックポイント阻害薬に応答しない患者を対象とし、かつ免疫チェックポイント阻害薬が、該患者が応答しなかった免疫チェックポイント阻害薬であることが好ましく、悪性腫瘍は、癌腫、扁平上皮癌、腺癌、肉腫、白血病、神経膠腫、悪性黒色腫、およびリンパ腫からなる群より選択されることが好ましく、悪性腫瘍は、悪性黒色腫であることがより好ましく、悪性黒色腫は、進行期悪性黒色腫であることがさらに好ましい。これらの好ましい態様は、実施形態1、3および5のいずれかにおいて個別にまたは組み合わせて適用される。 In any of the above embodiments 1, 3 and 5, the immune checkpoint inhibitor is an anti-PD-1 antibody, an anti-PD-L1 antibody, an anti-CTLA-4 antibody, an anti-LAG-3 antibody, an anti-TIM-3 antibody, preferably selected from the group consisting of anti-TIGIT antibodies, anti-KIR antibodies, PD-L1/TGFβ-trap inhibitory fusion proteins and anti-PD-1/CTLA-4 bispecific antibodies, wherein the immune checkpoint inhibitor is a human Preferably, the anti-PD-1 antibody is nivolumab, pembrolizumab, spartalizumab, or semiplimab, and the anti-PD-L1 antibody is preferably avelumab, atezolizumab, or durvalumab. , the anti-CTLA-4 antibody is preferably ibilimumab or tremelimumab, the boron compound used in boron neutron capture therapy is preferably borofarane ( 10 B), and patients who do not respond to immune checkpoint inhibitors Preferably, the subject and the immune checkpoint inhibitor is an immune checkpoint inhibitor to which the patient did not respond, and the malignant tumor is carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, leukemia, glioma, It is preferably selected from the group consisting of malignant melanoma and lymphoma, the malignant tumor is more preferably malignant melanoma, and the malignant melanoma is more preferably advanced stage malignant melanoma. These preferred aspects apply in any of the first, third and fifth embodiments individually or in combination.
 上記実施形態2、4および6において、悪性腫瘍は、癌腫、扁平上皮癌、腺癌、肉腫、白血病、神経膠腫、悪性黒色腫、およびリンパ腫からなる群より選択されることが好ましく、悪性腫瘍は、悪性黒色腫であることがより好ましく、悪性黒色腫は、進行期悪性黒色腫であることがさらに好ましい。 In Embodiments 2, 4 and 6 above, the malignant tumor is preferably selected from the group consisting of carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, leukemia, glioma, malignant melanoma, and lymphoma. is more preferably malignant melanoma, and more preferably the malignant melanoma is advanced stage malignant melanoma.
 1 核
 2 腫瘍浸潤リンパ球(TIL)
1 nucleus 2 tumor infiltrating lymphocytes (TIL)

Claims (15)

  1. 免疫チェックポイント阻害薬を含み、ホウ素中性子捕捉療法と組み合わせて使用することを特徴とする悪性腫瘍治療薬。 A therapeutic drug for malignant tumors, which contains an immune checkpoint inhibitor and is used in combination with boron neutron capture therapy.
  2. 免疫チェックポイント阻害薬が、抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗LAG-3抗体、抗TIM-3抗体、抗TIGIT抗体、抗KIR抗体、PD-L1/TGFβトラップ阻害融合タンパク質および抗PD-1/CTLA-4二重特異性抗体からなる群より選択される請求項1記載の悪性腫瘍治療薬。 immune checkpoint inhibitor, anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody, PD-L1/TGFβ The therapeutic agent for malignant tumor according to claim 1, which is selected from the group consisting of a trap-inhibition fusion protein and an anti-PD-1/CTLA-4 bispecific antibody.
  3. 免疫チェックポイント阻害薬が、ヒト化モノクローナル抗体である請求項2記載の悪性腫瘍治療薬。 3. The therapeutic drug for malignant tumor according to claim 2, wherein the immune checkpoint inhibitor is a humanized monoclonal antibody.
  4. 抗PD-1抗体が、ニボルマブ、ペムブロリズマブ、スパルタリズマブ、またはセミプリマブである請求項2または3記載の悪性腫瘍治療薬。 4. The therapeutic drug for malignant tumor according to claim 2 or 3, wherein the anti-PD-1 antibody is nivolumab, pembrolizumab, spartalizumab, or semiplimab.
  5. 抗PD-L1抗体が、アベルマブ、アテゾリズマブ、またはデュルバルマブである請求項2または3記載の悪性腫瘍治療薬。 4. The therapeutic drug for malignant tumor according to claim 2 or 3, wherein the anti-PD-L1 antibody is avelumab, atezolizumab, or durvalumab.
  6. 抗CTLA-4抗体が、イビリムマブ、またはトレメリムマブである請求項2または3記載の悪性腫瘍治療薬。 4. The therapeutic drug for malignant tumor according to claim 2 or 3, wherein the anti-CTLA-4 antibody is ibilimumab or tremelimumab.
  7. ホウ素中性子捕捉療法において使用するホウ素化合物がボロファラン(10B)である請求項1~6のいずれか1項に記載の悪性腫瘍治療薬。 The therapeutic drug for malignant tumors according to any one of claims 1 to 6, wherein the boron compound used in boron neutron capture therapy is borofaran ( 10 B).
  8. 免疫チェックポイント阻害薬に応答しない患者を対象とし、免疫チェックポイント阻害薬が、該患者が応答しなかった免疫チェックポイント阻害薬である請求項1~7のいずれか1項に記載の悪性腫瘍治療薬。 The malignant tumor treatment according to any one of claims 1 to 7, wherein the subject is a patient who does not respond to an immune checkpoint inhibitor, and the immune checkpoint inhibitor is an immune checkpoint inhibitor to which the patient has not responded. medicine.
  9. 悪性腫瘍が癌腫、扁平上皮癌、腺癌、肉腫、白血病、神経膠腫、悪性黒色腫、およびリンパ腫からなる群より選択される請求項1~8のいずれか1項に記載の悪性腫瘍治療薬。 The therapeutic drug for malignant tumor according to any one of claims 1 to 8, wherein the malignant tumor is selected from the group consisting of carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, leukemia, glioma, malignant melanoma, and lymphoma. .
  10. 悪性腫瘍が、悪性黒色腫である請求項9記載の悪性腫瘍治療薬。 10. The therapeutic drug for malignant tumor according to claim 9, wherein the malignant tumor is malignant melanoma.
  11. 悪性黒色腫が、進行期悪性黒色腫である請求項10記載の悪性腫瘍治療薬。 11. The therapeutic drug for malignant tumor according to claim 10, wherein the malignant melanoma is advanced stage malignant melanoma.
  12. (i)抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗LAG-3抗体、抗TIM-3抗体、抗TIGIT抗体、抗KIR抗体、PD-L1/TGFβトラップ阻害融合タンパク質および抗PD-1/CTLA-4二重特異性抗体からなる群より選択される免疫チェックポイント阻害薬、および
    (ii)ホウ素中性子捕捉療法に用いるためのホウ素化合物
    を含む前記免疫チェックポイント阻害薬による治療に応答しない患者を対象とする悪性腫瘍治療用組み合わせ医薬。
    (i) anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG-3 antibody, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody, PD-L1/TGFβ trap blocking fusion protein and an immune checkpoint inhibitor selected from the group consisting of an anti-PD-1/CTLA-4 bispecific antibody, and (ii) said immune checkpoint inhibitor comprising a boron compound for use in boron neutron capture therapy. A combination drug for the treatment of malignancies in patients who do not respond to therapy.
  13. 悪性腫瘍が、癌腫、扁平上皮癌、腺癌、肉腫、白血病、神経膠腫、悪性黒色腫、およびリンパ腫からなる群より選択される請求項12記載の悪性腫瘍治療用組み合わせ医薬。 13. The combination pharmaceutical for treating malignant tumor according to claim 12, wherein the malignant tumor is selected from the group consisting of carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, leukemia, glioma, malignant melanoma and lymphoma.
  14. 悪性腫瘍が、悪性黒色腫である請求項13記載の悪性腫瘍治療用組み合わせ医薬。 The combination pharmaceutical for treating malignant tumor according to claim 13, wherein the malignant tumor is malignant melanoma.
  15. 悪性黒色腫が、進行期悪性黒色腫である請求項14記載の悪性腫瘍治療用組み合わせ医薬。 The combination pharmaceutical for treating malignant tumor according to claim 14, wherein the malignant melanoma is advanced stage malignant melanoma.
PCT/JP2022/044053 2021-11-29 2022-11-29 Agent for treatment of malignant tumors WO2023095929A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021193305 2021-11-29
JP2021-193305 2021-11-29
JP2022059950 2022-03-31
JP2022-059950 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023095929A1 true WO2023095929A1 (en) 2023-06-01

Family

ID=86539781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044053 WO2023095929A1 (en) 2021-11-29 2022-11-29 Agent for treatment of malignant tumors

Country Status (1)

Country Link
WO (1) WO2023095929A1 (en)

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BOMMAREDDY PRAVEEN K, ZLOZA ANDREW, RABKIN SAMUEL D., KAUFMAN HOWARD L.: "Oncolytic virus immunotherapy induces immunogenic cell death and overcomes STING deficiency in melanoma", ONCOIMMUNOLOGY, vol. 8, no. 7, 3 July 2019 (2019-07-03), pages 1 - 14, XP093069411, DOI: 10.1080/2162402X.2019.1591875 *
FUKUDA HIROSHI: "Boron Neutron Capture Therapy (BNCT) for Cutaneous Malignant Melanoma Using 10B-p-Boronophenylalanine (BPA) with Special Reference to the Radiobiological Basis and Clinical Results", CELLS, vol. 10, no. 11, 1 January 2021 (2021-01-01), pages 1 - 13, XP093069416, DOI: 10.3390/cells10112881 *
ROGER ANISSA, FINET ADELINE, BORU BLANDINE, BEAUCHET ALAIN, MAZERON JEAN-JACQUES, OTZMEGUINE YVES, BLOM ASTRID, LONGVERT CHRISTINE: "Efficacy of combined hypo-fractionated radiotherapy and anti-PD-1 monotherapy in difficult-to-treat advanced melanoma patients", ONCOIMMUNOLOGY, vol. 7, no. 7, 3 July 2018 (2018-07-03), pages 1 - 8, XP093069405, DOI: 10.1080/2162402X.2018.1442166 *
SATO HIRO; OKONOGI NORIYUKI; NAKANO TAKASHI: "Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment", INTERNATIONAL JOURNAL OF CLINICAL ONCOLOGY, vol. 25, no. 5, 3 April 2020 (2020-04-03), Singapore, pages 801 - 809, XP037106667, ISSN: 1341-9625, DOI: 10.1007/s10147-020-01666-1 *
SATO MARIKO: "Evaluation of tumor cell immunity profile changes after BNCT", NCT LETTER, 1 August 2020 (2020-08-01), pages 1 - 45, XP093069400, Retrieved from the Internet <URL:http://www.jsnct.jp/nctLetter/index.html > [retrieved on 20230801] *
SHAN CHUAN-KUN; DU YI-BO; ZHAI XIAO-TIAN; WANG YUE-XUAN; LI YI; GONG JIAN-HUA; GE ZHI-JUAN; LIU XIU-JUN; ZHEN YONG-SU: "Pingyangmycin enhances the antitumor efficacy of anti-PD-1 therapy associated with tumor-infiltrating CD8+ T cell augmentation", CANCER CHEMOTHERAPY AND PHARMACOLOGY, vol. 87, no. 3, 1 March 2021 (2021-03-01), DE , pages 425 - 436, XP037372363, ISSN: 0344-5704, DOI: 10.1007/s00280-020-04209-7 *
TALA ACHKAR, AHMAD A. TARHINI: "The use of immunotherapy in the treatment of melanoma", JOURNAL OF HEMATOLOGY & ONCOLOGY, vol. 10, no. 1, 24 December 2017 (2017-12-24), pages 1 - 9, XP055492889, DOI: 10.1186/s13045-017-0458-3 *

Similar Documents

Publication Publication Date Title
US20230330194A1 (en) Methods of cytotoxic gene therapy to treat tumors
TWI786044B (en) Methods of treating skin cancer by administering a pd-1 inhibitor
TWI822822B (en) Use of antibody-drug conjugate
JP2021522298A (en) Simultaneous inhibition of PD-1 / PD-L1, TGFβ and DNA-PK for cancer treatment
CN110582303A (en) Combination therapy with anti-CD 25 antibody-drug conjugates
WO2019072220A1 (en) Use of pd-1 antibody combined with epigenetic regulator in preparation of drug for treating tumors
JP2019526613A (en) Combination therapy for cancer
CN113939309A (en) Treatment of cancer with sEphB4-HSA fusion protein
US20230056846A1 (en) Methods and compositions for cancer immunotherapy
CN112367999A (en) Combination therapy
US20230028062A1 (en) Methods for enhancing immunity and tumor treatment
JP7246309B2 (en) Oxabicycloheptane for modulating immune responses
CN109793892B (en) Application of anti-PD-1 antibody in preparation of medicine for treating esophageal cancer
TWI817958B (en) Compositions and methods for treating liver cancer
WO2023095929A1 (en) Agent for treatment of malignant tumors
Yu et al. Combination of apatinib with apo-IDO1 inhibitor for the treatment of colorectal cancer
US20220296712A1 (en) Methods for treatment using phthalocyanine dye-targeting molecule conjugates
AU2021464886A1 (en) Antibody drug conjugate formulation and use thereof
BR112020013912A2 (en) COMBINATION METHODS AND THERAPY FOR CANCER TREATMENT
Zhang et al. Exploring novel systemic therapies for pancreatic cancer: a review of emerging anti-PD-1/PD-L1 combination therapy.
WO2021182574A1 (en) Medicament for treatment and/or prevention of cancer
WO2021182572A1 (en) Medicament for treatment and/or prevention of cancer
JP2022525476A (en) Tumor-selective combination therapy
RU2802962C2 (en) Compositions and methods of treatment of liver cancer
JP2024095789A (en) Treatment of metastatic brain tumors by administration of antibody-drug conjugates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023563787

Country of ref document: JP

Kind code of ref document: A