WO2023095863A1 - Optical film, multilayer film and method for producing same, and polarizing plate - Google Patents

Optical film, multilayer film and method for producing same, and polarizing plate Download PDF

Info

Publication number
WO2023095863A1
WO2023095863A1 PCT/JP2022/043507 JP2022043507W WO2023095863A1 WO 2023095863 A1 WO2023095863 A1 WO 2023095863A1 JP 2022043507 W JP2022043507 W JP 2022043507W WO 2023095863 A1 WO2023095863 A1 WO 2023095863A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
retardation
stretching
less
Prior art date
Application number
PCT/JP2022/043507
Other languages
French (fr)
Japanese (ja)
Inventor
健作 藤井
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2023095863A1 publication Critical patent/WO2023095863A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an optical film, a multilayer film, a manufacturing method thereof, and a polarizing plate.
  • Polymers produced using polycyclic aromatic vinyl compounds such as vinyl naphthalene are sometimes used as materials for optical films.
  • the polymer can usually be a polymer containing a polycyclic aromatic vinyl compound unit, and can exhibit excellent optical properties.
  • Patent Literatures 1 and 2 describe techniques for using a polymer produced using vinylnaphthalene as a material for an optical film.
  • Polymers containing polycyclic aromatic vinyl compound units are sometimes used as materials for optical films with in-plane retardation.
  • an optical film is required to be excellent in retardation expression.
  • an optical film containing a polymer containing a polycyclic aromatic vinyl compound unit may be used by bonding it to another member.
  • such optical films have conventionally been susceptible to delamination. Delamination refers to delamination accompanied by internal failure (cohesive failure) of the membrane. Therefore, when delamination occurs in an optical film bonded to a member, the optical film is usually destroyed, and a portion of the optical film may remain on the member. If there is such a residue of the optical film, it may be a cause of poor reworkability of the optical film.
  • the present invention was invented in view of the above problems, and an optical film containing a polymer containing a polycyclic aromatic vinyl compound unit and having excellent retardation property and delamination resistance;
  • An object of the present invention is to provide a multilayer film, a method for producing the same, and a polarizing plate provided with the multilayer film.
  • an optical film containing a copolymer containing a polycyclic aromatic vinyl compound unit and a (meth)acrylic compound unit in a specific range has both retardation development property and delamination resistance.
  • the present invention was completed by discovering that it is excellent in That is, the present invention includes the following.
  • the optical film according to . (6) A multilayer film comprising a substrate film and the optical film according to any one of (1) to (5). (7) The multilayer film according to (6), wherein the base film contains an alicyclic structure-containing polymer.
  • a method for producing a multilayer film comprising a substrate film and an optical film, comprising: Coating a coating liquid containing a copolymer on the base film, The copolymer contains polycyclic aromatic vinyl compound units and (meth)acrylic compound units, A method for producing a multilayer film, wherein the amount of the (meth)acrylic compound unit in the copolymer is 5% by weight or more and 40% by weight or less.
  • a polarizing plate comprising the multilayer film according to (6) or (7) and a polarizing film.
  • an optical film containing a polymer containing a polycyclic aromatic vinyl compound unit and having excellent retardation property and delamination resistance; a multilayer film comprising the optical film and a method for producing the same; A polarizing plate comprising the multilayer film can be provided.
  • nx represents the refractive index in the direction (slow axis direction) that is perpendicular to the thickness direction (in-plane direction) and gives the maximum refractive index
  • ny is the in-plane direction in the nx direction.
  • nz represents the refractive index in the thickness direction
  • d represents the thickness.
  • the measurement wavelength is 550 nm unless otherwise stated.
  • Retardation such as in-plane retardation and retardation in the thickness direction can be measured using a phase difference meter (“AxoScan” manufactured by Axometrics).
  • the slow axis represents the slow axis in the in-plane direction unless otherwise specified.
  • the angle formed by the optical axes (absorption axis, transmission axis, slow axis, etc.) of each layer in a member including a plurality of layers is the angle when the layer is viewed from the thickness direction.
  • a "long" film refers to a film having a length of 5 times or more, preferably 10 times or more, with respect to the width, specifically a roll A film that is long enough to be rolled up into a shape and stored or transported.
  • the upper limit of the length of the long film is not particularly limited, and can be, for example, 100,000 times or less the width.
  • polarizing plate refers not only to rigid members but also to resin films, for example Also includes flexible members such as .
  • a polymer having a positive intrinsic birefringence value and "a resin having a positive intrinsic birefringence value” mean that "the refractive index in the stretching direction is higher than the refractive index in the direction perpendicular to the stretching direction. Polymers that become larger” and “resins that have a higher refractive index in the direction of stretching than in the direction orthogonal to the direction of stretching” respectively.
  • a polymer having a negative intrinsic birefringence value and “a resin having a negative intrinsic birefringence value” are defined as "a polymer whose refractive index in the stretching direction is smaller than that in the direction orthogonal to the stretching direction. and "resin in which the refractive index in the stretching direction is smaller than the refractive index in the direction orthogonal to the stretching direction” respectively. Intrinsic birefringence values can be calculated from the dielectric constant distribution.
  • adhesives include not only adhesives in a narrow sense, but also adhesives having a shear storage modulus of less than 1 MPa at 23°C unless otherwise specified.
  • the narrowly defined adhesive means an adhesive having a shear storage modulus of 1 MPa to 500 MPa at 23° C. after irradiation with energy rays or after heat treatment.
  • An optical film according to one embodiment of the present invention includes a copolymer containing polycyclic aromatic vinyl compound units and (meth)acrylic compound units.
  • a polycyclic aromatic vinyl compound unit represents a repeating unit having a structure formed by polymerizing a polycyclic aromatic vinyl compound.
  • the (meth)acrylic compound unit represents a repeating unit having a structure formed by polymerizing a (meth)acrylic compound.
  • the method for forming the polycyclic aromatic vinyl compound unit and the (meth)acrylic compound unit is not limited. Therefore, the polycyclic aromatic vinyl compound unit may be formed by a method other than polymerizing the polycyclic aromatic vinyl compound. Also, the (meth)acrylic compound unit may be formed by a method other than polymerizing the (meth)acrylic compound.
  • the amount of (meth)acrylic compound units is within a specific range.
  • a copolymer containing (meth)acrylic compound units in a specific range may be hereinafter referred to as a "specific copolymer”.
  • the optical film according to this embodiment is made of a resin containing a specific copolymer.
  • the resin containing the specific copolymer may be referred to as "specific resin”. Therefore, the optical film according to this embodiment usually contains the specific resin, and preferably contains only the specific resin. This specific resin is usually a thermoplastic resin.
  • the optical film according to this embodiment can be excellent in retardation expression and delamination resistance.
  • the specific copolymer contains polycyclic aromatic vinyl compound units and (meth)acrylic compound units. Since an optical film is usually formed of a specific resin containing this specific copolymer, the optical film contains the specific copolymer.
  • the polycyclic aromatic vinyl compound unit represents a repeating unit having a structure formed by polymerizing a polycyclic aromatic vinyl compound.
  • a polycyclic aromatic vinyl compound is a compound containing a polycyclic aromatic group containing a plurality of aromatic rings and a vinyl group bonded to at least one aromatic ring of the polycyclic aromatic group. show.
  • the aromatic ring usually follows Hückel's rule that the number of electrons contained in the ⁇ -electron system on the ring is 4n+2 (n represents an integer of 0 or more, preferably a natural number).
  • Polymerization of this polycyclic aromatic vinyl compound usually proceeds as addition polymerization with a vinyl group.
  • a polycyclic aromatic vinyl compound unit can contain a main chain formed by the polymerization reaction of vinyl groups and side chains containing polycyclic aromatic groups attached to the main chain.
  • the main chain can be aligned parallel to the stretching direction, while the side chains can be aligned in a direction crossing the stretching direction (for example, a direction perpendicular to the stretching direction). . Therefore, the structure of the polycyclic aromatic group that can be included in the side chain can be reflected in the refractive index in the direction crossing the alignment direction of the optical film. Therefore, it is preferable to select the structure of the polycyclic aromatic group according to the refractive index desired to be expressed in the direction intersecting the orientation direction of the optical film. It is preferable to select according to optical characteristics such as gradation.
  • the polycyclic aromatic group may be, for example, a condensed aromatic group or a ring-assembled aromatic group.
  • a condensed aromatic group represents a group containing an aromatic condensed ring.
  • the ring-assembled aromatic group represents a group containing a plurality of aromatic rings linked via a bond.
  • the aromatic ring may be an aromatic heterocyclic ring, but is preferably an aromatic hydrocarbon ring.
  • the polycyclic aromatic group may contain one or more substituents other than the vinyl group. Examples of substituents include alkyl groups such as methyl group and ethyl group; alkoxy groups such as methoxy group and ethoxy group; and the like. Among them, the polycyclic aromatic group preferably does not have the substituents described above.
  • Polycyclic aromatic vinyl compounds containing condensed aromatic groups include, for example, vinylnaphthalenes such as 1-vinylnaphthalene and 2-vinylnaphthalene; vinyl compounds such as 1-vinylanthracene, 2-vinylanthracene and 9-vinylanthracene anthracene; and the like.
  • Examples of polycyclic aromatic vinyl compounds containing ring-aggregated aromatic groups include vinylbiphenyl and vinylterphenyl. Among them, polycyclic aromatic vinyl compounds containing condensed aromatic groups are preferred, and vinylnaphthalene is particularly preferred. Therefore, the specific copolymer particularly preferably contains a repeating unit having a structure formed by polymerizing vinylnaphthalene (hereinafter sometimes referred to as "vinylnaphthalene unit").
  • the polycyclic aromatic vinyl compound may be used singly or in combination of two or more. Therefore, the specific copolymer may contain only one type of polycyclic aromatic vinyl compound unit, or may contain two or more types.
  • the ratio of the polycyclic aromatic vinyl compound unit in the specific copolymer is preferably 60% by weight or more, more preferably 65% by weight or more, and particularly preferably 70% by weight or more with respect to 100% by weight of the specific copolymer. preferably 95% by weight or less, more preferably 90% by weight or less, and particularly preferably 85% by weight or less.
  • the optical film can have particularly excellent retardation development and delamination resistance.
  • the proportion of polycyclic aromatic vinyl compound units is at least the above lower limit, the retardation expressibility of the optical film can be effectively enhanced.
  • the ratio of the polycyclic aromatic vinyl compound units in the specific copolymer can be adjusted, for example, by the charging ratio of the polycyclic aromatic vinyl compound.
  • the charging ratio of the polycyclic aromatic vinyl compound represents the ratio of the amount of the polycyclic aromatic vinyl compound to the total monomers of the specific copolymer.
  • the ratio of the polycyclic aromatic vinyl compound units in the specific copolymer can match the charging ratio of the polycyclic aromatic vinyl compound.
  • the (meth)acrylic compound unit represents a repeating unit having a structure formed by polymerizing a (meth)acrylic compound, as described above.
  • a (meth)acrylic compound represents a compound containing a (meth)acryloyl group.
  • a (meth)acryloyl group includes an acryloyl group, a methacryloyl group, and combinations thereof.
  • (Meth)acrylic compound, the carbon-carbon unsaturated bond contained in the (meth)acryloyl group is the carbon-carbon unsaturated bond of the vinyl group of the polycyclic aromatic vinyl compound or other (meth)acrylic compounds contain It can polymerize by reacting with carbon-carbon unsaturated bonds.
  • (Meth)acrylic compounds include acrylic acid, acrylic acid derivatives, methacrylic acid, methacrylic acid derivatives, and the like.
  • acrylic acid derivatives include acrylic acid esters and acrylic acid amides.
  • methacrylic acid derivatives include methacrylic acid esters and methacrylic acid amides.
  • acrylic esters examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, sec-butyl acrylate, t- Butyl, n-hexyl acrylate, cyclohexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, n-decyl acrylate, n-dodecyl acrylate and the like.
  • methacrylic acid esters examples include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, sec-butyl methacrylate, and methacrylic acid.
  • the (meth)acrylic acid esters such as the acrylic acid esters and methacrylic acid esters may have substituents such as hydroxyl groups and halogen atoms.
  • substituted (meth)acrylic acid esters include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, glycidyl methacrylate and the like.
  • the (meth)acrylic compound is preferably an acrylic acid ester or a methacrylic acid ester, and particularly preferably an acrylic acid ester.
  • the (meth)acrylic compound may be used singly or in combination of two or more. Therefore, the specific copolymer may contain only one type of (meth)acrylic compound unit, or may contain two or more types.
  • the ratio of (meth)acrylic compound units in the specific copolymer is usually 5% by weight or more, preferably 10% by weight or more, particularly preferably 15% by weight or more, relative to 100% by weight of the specific copolymer. 40% by weight or less, preferably 35% by weight or less, particularly preferably 30% by weight or less.
  • the optical film can have particularly excellent retardation expressibility and delamination resistance.
  • the ratio of the (meth)acrylic compound units is equal to or higher than the lower limit, the delamination resistance of the optical film can be effectively increased.
  • the ratio of (meth)acrylic compound units in the specific copolymer can be adjusted, for example, by the charging ratio of the (meth)acrylic compound.
  • the charge ratio of the (meth)acrylic compound represents the ratio of the amount of the (meth)acrylic compound to the total monomers of the specific copolymer.
  • the ratio of (meth)acrylic compound units in the specific copolymer can match the charge ratio of the (meth)acrylic compound.
  • the specific copolymer may contain any structural unit in combination with the polycyclic aromatic vinyl compound unit and the (meth)acrylic compound unit.
  • Any structural unit usually has a structure different from the polycyclic aromatic vinyl compound unit and the (meth)acrylic compound unit.
  • any structural unit can have a structure formed by polymerizing any compound other than a polycyclic aromatic vinyl compound containing a carbon-carbon unsaturated bond and a (meth)acrylic compound.
  • the specific copolymer preferably has a weight average molecular weight Mw within a specific range.
  • the weight average molecular weight Mw of the specific copolymer is preferably 50,000 or more, more preferably 100,000 or more, and preferably 500,000 or less, more preferably 300,000 or less.
  • the optical film can have particularly excellent retardation expressibility and delamination resistance.
  • the weight average molecular weight Mw of the polymer can be measured in terms of polyisoprene or polystyrene by gel permeation chromatography (GPC) using cyclohexane as a solvent. Toluene may be used as a solvent for GPC if the polymer is not soluble in cyclohexane.
  • the specific copolymer preferably has a glass transition temperature Tg within a specific range.
  • the glass transition temperature Tg of the specific copolymer is preferably 110° C. or higher, more preferably 115° C. or higher, particularly preferably 120° C. or higher, and preferably 180° C. or lower, more preferably 170° C. °C or less, particularly preferably 160°C or less.
  • the optical film can have particularly excellent retardation expressibility and delamination resistance.
  • the range of the glass transition temperature Tg of the specific copolymer may be the same as the range of the glass transition temperature of the specific resin containing the specific copolymer.
  • the glass transition temperature Tg can be measured using a differential scanning calorimeter ("DSC7000X” manufactured by Hitachi High-Tech Science Co., Ltd.) under the condition of a heating rate of 10°C/min. This glass transition temperature Tg can be measured based on JIS K 6911.
  • a specific copolymer usually has a negative intrinsic birefringence value. Therefore, a particular resin containing that particular copolymer can also have a negative intrinsic birefringence value.
  • the specific copolymer can be produced, for example, by a method including copolymerizing a polycyclic aromatic vinyl compound, a (meth)acrylic compound, and, if necessary, any compound.
  • a polymerization initiator may be used as necessary.
  • examples of polymerization initiators include organic compounds such as lauroyl peroxide, diisopropylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate, t-butylperoxypivalate, and 3,3,5-trimethylhexanoyl peroxide.
  • Peroxides azo compounds such as ⁇ , ⁇ '-azobisisobutyronitrile; ammonium persulfate; and potassium persulfate.
  • One polymerization initiator may be used alone, or two or more polymerization initiators may be used in combination at an arbitrary ratio.
  • the ratio of the specific copolymer contained in the specific resin forming the optical film is preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 95% by weight or more with respect to 100% by weight of the specific resin.
  • the specific resin may contain only the specific copolymer. Therefore, the optical film may contain only the specific copolymer.
  • the specific resin forming the optical film may further contain optional components in combination with the specific copolymer.
  • optional components include stabilizers such as antioxidants, heat stabilizers, light stabilizers, weather stabilizers, ultraviolet absorbers, and near-infrared absorbers; plasticizers; and the like.
  • stabilizers such as antioxidants, heat stabilizers, light stabilizers, weather stabilizers, ultraviolet absorbers, and near-infrared absorbers; plasticizers; and the like.
  • One type of optional component may be used alone, or two or more types may be used in combination.
  • the optical film can have high retardation expressibility.
  • the retardation development property of an optical film can be represented by the ratio Re/d between the in-plane retardation Re and the thickness d of the optical film.
  • the measurement wavelength of the in-plane retardation Re is 550 nm unless otherwise specified.
  • the ratio Re/d of the optical film is preferably 10.0 ⁇ 10 ⁇ 3 or more, more preferably 11.0 ⁇ 10 ⁇ 3 or more, still more preferably 12.0 ⁇ 10 ⁇ 3 or more, Particularly preferably, it is 13.0 ⁇ 10 ⁇ 3 or more.
  • the upper limit of the ratio Re/d of the optical film is not particularly limited, and may be, for example, 20.0 ⁇ 10 ⁇ 3 or less, 18.0 ⁇ 10 ⁇ 3 or less, or 16.0 ⁇ 10 ⁇ 3 or less.
  • the optical film can have high delamination resistance.
  • the delamination resistance of an optical film can be expressed by the amount of force required to peel off a member after the optical film has been adhered to the member. This force may be hereinafter referred to as "peel strength".
  • the peel strength range is preferably 1.0 N/15 mm or more, more preferably 2.0 N/15 mm or more, and particularly preferably 5.0 N/15 mm or more.
  • the upper limit of the peel strength of the optical film is not particularly limited, and may be, for example, 20.0 N/15 mm or less, 15.0 N/15 mm or less.
  • the peel strength of the optical film can be measured by the method described in ⁇ Method for measuring delamination resistance> in Examples described later.
  • the optical film preferably has an in-plane retardation suitable for its application.
  • the optical film may have low in-plane retardation.
  • the in-plane retardation Re of the optical film at a measurement wavelength of 550 nm may be, for example, 10 nm or less, 7 nm or less, 5 nm or less, or 0 nm.
  • the optical film should have a small in-plane retardation Re as described above. It may be an optically isotropic film having a
  • the optical film may be an optically anisotropic film having a small in-plane retardation Re as described above and a large retardation Rth in the thickness direction.
  • the in-plane retardation Re of the optical film may be, for example, within a range in which the optical film can function as a ⁇ /4 plate.
  • the in-plane retardation Re of the optical film at a measurement wavelength of 550 nm is preferably 80 nm or more, more preferably 100 nm, particularly preferably 110 nm or more, and preferably 170 nm or less. It is more preferably 150 nm or less, particularly preferably 140 nm or less.
  • the in-plane retardation Re of the optical film may be, for example, within a range in which the optical film can function as a ⁇ /2 plate.
  • the in-plane retardation Re of the optical film at a measurement wavelength of 550 nm is preferably 220 nm or more, more preferably 240 nm, particularly preferably 250 nm or more, and preferably 310 nm or less. It is more preferably 290 nm or less, particularly preferably 280 nm or less.
  • the optical film may have a slow axis.
  • the direction of the slow axis of the optical film may be parallel or perpendicular to the width direction of the optical film.
  • the slow axis of the elongated optical film may form an angle in the range close to 45° with respect to the width direction of the optical film.
  • the angle formed by the slow axis of the long optical film with respect to the width direction of the optical film is preferably 40° or more, more preferably 42° or more, still more preferably 43° or more, particularly It can be preferably 44° or more, preferably 50° or less, more preferably 48° or less, even more preferably 47° or less, and particularly preferably 46° or less.
  • the total light transmittance of the optical film is preferably 80% or higher, more preferably 85% or higher, and particularly preferably 90% or higher.
  • the total light transmittance can be measured in a wavelength range of 400 nm to 700 nm using an ultraviolet/visible spectrometer.
  • the haze of the optical film is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%. Haze can be measured using a haze meter in accordance with JIS K7361-1997.
  • the optical film may be a sheet film or a long film.
  • the thickness of the optical film is preferably thin from the viewpoint of obtaining a thin optical film by utilizing excellent retardation expression.
  • the specific thickness range of the optical film is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, particularly preferably 5 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and particularly preferably 70 ⁇ m or less. .
  • optical films can be used in a wide variety of applications in the optical field.
  • applications of optical films include retardation films, viewing angle compensation films, polarizing plate protective films, and the like.
  • the optical film is preferably used as a multilayer film in combination with the base film from the viewpoint of effectively utilizing the excellent delamination resistance.
  • a method for manufacturing the optical film is not particularly limited.
  • the optical film is formed by molding a specific resin by a resin molding method such as injection molding, extrusion molding, press molding, inflation molding, blow molding, calendar molding, cast molding, compression molding, and the like. It can be manufactured by a method including
  • the optical film is formed by a method including, for example, applying a coating liquid containing a specific resin and a solvent to an appropriate surface, and drying the applied coating liquid to remove the solvent. , may be manufactured.
  • the method for manufacturing the optical film may include stretching the optical film.
  • stretching By stretching, the desired retardation can be expressed in the optical film and the thickness of the optical film can be adjusted.
  • the stretching direction includes the longitudinal direction, the width direction, and the oblique direction.
  • the oblique direction means a direction perpendicular to the thickness direction and neither parallel nor perpendicular to the width direction.
  • the stretching direction may be one direction or two or more directions. Therefore, the stretching method includes, for example, a method of uniaxially stretching an optical film in the longitudinal direction (longitudinal uniaxial stretching method), a method of uniaxially stretching an optical film in the width direction (horizontal uniaxial stretching method), and the like.
  • Biaxial stretching methods such as a simultaneous biaxial stretching method in which the film is stretched in the longitudinal direction and the width direction at the same time, and a sequential biaxial stretching method in which the optical film is stretched in one of the longitudinal direction and the width direction and then stretched in the other direction.
  • a method of stretching an optical film in an oblique direction (diagonal stretching method); and the like.
  • the draw ratio is preferably 1.1 times or more, more preferably 1.2 times or more, preferably 5.0 times or less, more preferably 3.0 times or less, and particularly preferably 2.0 times or less.
  • the stretching temperature is preferably “Tg ⁇ 5° C.” or higher, more preferably “Tg+5° C.” or higher, and preferably “Tg+50° C.” or lower, more preferably “Tg+30° C.” or lower.
  • Tg represents the glass transition temperature of the specific copolymer.
  • a multilayer film according to one embodiment of the present invention includes a base film and the optical film described above.
  • a resin film can be used as the base film. Therefore, the base film usually contains a resin, preferably only a resin.
  • the resin forming the resin film is preferably a thermoplastic resin, more preferably a thermoplastic resin having a positive intrinsic birefringence value.
  • the resin that forms the base film usually contains a polymer. Since the resin forming the base film preferably has a positive intrinsic birefringence value, the polymer contained in the resin also preferably has a positive intrinsic birefringence value.
  • polymers having a positive intrinsic birefringence value include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyarylene sulfides such as polyphenylene sulfide; polyvinyl alcohol; polyether sulfone; polysulfone; polyallyl sulfone; polyvinyl chloride; alicyclic structure-containing polymer; These polymers may be used singly or in combination of two or more. Among them, alicyclic structure-containing polymers, cellulose esters, and polycarbonates are preferred, and alicyclic structure-containing polymers are particularly preferred.
  • a polymer containing an alicyclic structure is a polymer containing an alicyclic structure in a repeating unit, and is usually an amorphous polymer.
  • the alicyclic structure-containing polymer both a polymer containing an alicyclic structure in the main chain and a polymer containing an alicyclic structure in the side chain can be used.
  • the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferable from the viewpoint of thermal stability.
  • the number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, particularly preferably 6 or more, preferably 30 or less, more preferably 20 or less, Particularly preferably, it is 15 or less.
  • the proportion of repeating units containing an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the proportion of repeating units containing an alicyclic structure is within the above range, a multilayer film with excellent heat resistance can be obtained.
  • alicyclic structure-containing polymers examples include (1) norbornene polymers, (2) monocyclic cyclic olefin polymers, (3) cyclic conjugated diene polymers, and (4) vinyl alicyclic hydrocarbon polymers. coalescence, hydrogenated products thereof, and the like. Among these, cyclic olefin polymers and norbornene-based polymers are preferred, and norbornene-based polymers are particularly preferred.
  • Norbornene-based polymers include, for example, ring-opening polymers of monomers containing a norbornene structure, ring-opening copolymers of monomers containing a norbornene structure and other ring-opening copolymerizable monomers, and their hydrogen compounds: addition polymers of norbornene structure-containing monomers, addition copolymers of norbornene structure-containing monomers and other copolymerizable monomers, and the like.
  • a hydride of a ring-opening polymer of a monomer containing a norbornene structure is particularly preferable from the viewpoint of transparency.
  • the alicyclic structure-containing polymer can be selected from polymers disclosed in JP-A-2002-321302, for example.
  • the range of the weight average molecular weight Mw of the polymer contained in the resin forming the base film is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, preferably 100, 000 or less, more preferably 80,000 or less, and particularly preferably 50,000 or less.
  • the weight average molecular weight Mw is within the above range, the mechanical strength and moldability of the base film are highly balanced.
  • the molecular weight distribution (weight average molecular weight (Mw)/number average molecular weight (Mn)) of the polymer contained in the resin forming the base film is preferably 1.2 or more, more preferably 1.5 or more, and particularly preferably It is 1.8 or more, preferably 3.5 or less, more preferably 3.0 or less, and particularly preferably 2.7 or less.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the proportion of the polymer in the resin forming the base film is preferably 50% to 100% by weight, more preferably 70% to 100% by weight, and particularly preferably 90% to 100% by weight.
  • the base film may have high heat resistance and transparency.
  • the resin forming the base film may further contain optional components in combination with the polymer.
  • Optional components include, for example, the same examples as optional components that the optical film may contain.
  • One type of optional component may be used alone, or two or more types may be used in combination.
  • the glass transition temperature Tg of the resin forming the base film is preferably 110° C. or higher, more preferably 115° C. or higher, particularly preferably 120° C. or higher, preferably 180° C. or lower, more preferably 170° C. or lower, especially Preferably, it may be 160° C. or less.
  • the glass transition temperature of the resin can be measured by the same method as the glass transition temperature of the polymer.
  • the substrate film preferably has an in-plane retardation suitable for the use of the multilayer film.
  • the base film may have small in-plane retardation.
  • the in-plane retardation Re of the substrate film at a measurement wavelength of 550 nm may be, for example, 10 nm or less, 7 nm or less, 5 nm or less, or 0 nm.
  • a substrate film having such a small in-plane retardation can be an optically isotropic film in the in-plane direction.
  • the in-plane retardation Re of the substrate film at a measurement wavelength of 550 nm is preferably 80 nm or more, more preferably 100 nm, particularly preferably 110 nm or more, preferably 170 nm or less, more preferably 150 nm or less, and particularly preferably can be 140 nm or less.
  • a base film having an in-plane retardation in such a range can function as a ⁇ /4 plate.
  • the in-plane retardation Re of the substrate film at a measurement wavelength of 550 nm is preferably 220 nm or more, more preferably 240 nm, particularly preferably 250 nm or more, preferably 310 nm or less, more preferably 290 nm or less, and particularly preferably can be 280 nm or less.
  • a base film having an in-plane retardation in such a range can function as a ⁇ /2 plate.
  • the in-plane retardation of the base film and the in-plane retardation of the optical film may be the same or different.
  • the difference between them may be within a specific range.
  • the difference between the in-plane retardation of the base film and the optical film may be preferably 100 nm or more, more preferably 110 nm or more, and preferably 180 nm or less, more preferably 160 nm or less.
  • the in-plane retardation of the base film may be larger than the in-plane retardation of the optical film, or the in-plane retardation of the base film may be smaller than the in-plane retardation of the optical film.
  • the base film may have a slow axis.
  • the slow axis of the base film may be substantially perpendicular to the slow axis of the optical film.
  • the slow axis of the base film and the slow axis of the optical film being “substantially perpendicular” means that the angle formed by the slow axis of the base film and the slow axis of the optical film is close to 90°.
  • the angle formed by the slow axis of the base film and the slow axis of the optical film is preferably 85° or more, more preferably 87° or more, still more preferably 88° or more, and particularly preferably 89°. ° or more, preferably 95° or less, more preferably 93° or less, still more preferably 92° or less, particularly preferably 91° or less.
  • the specific thickness range of the base film is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, particularly preferably 5 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, and particularly preferably 50 ⁇ m or less. be.
  • the multilayer film may, if necessary, have any layers other than the base film and the optical film.
  • optional layers include any layer having optical isotropy. Any layer having this optical isotropy can generally have an in-plane retardation of 10 nm or less at a measurement wavelength of 550 nm.
  • the optional optically isotropic layer includes, for example, a protective film layer for protecting the substrate film and the optical film; an adhesive layer for bonding each layer such as the substrate film and the optical film; and the like.
  • Another example of the arbitrary layer is an arbitrary layer having optical anisotropy.
  • the optical properties of the optional layers having this optical anisotropy are preferably set so that the multilayer film as a whole has the desired retardation.
  • a combination of any layer having optical anisotropy and one or both of the base film and the optical film can function as a ⁇ /4 plate or a ⁇ /2 plate.
  • Optical properties of the layer may be set.
  • the multilayer film preferably has an in-plane retardation suitable for its application.
  • the range of in-plane retardation Re of the multilayer film at a measurement wavelength of 550 nm is preferably 100 nm or more, more preferably 115 nm or more, particularly preferably 125 nm or more, and preferably 180 nm or less, more preferably 160 nm or less. , particularly preferably 150 nm or less.
  • a multilayer film having an in-plane retardation Re within such a range can function as a ⁇ /4 plate.
  • a multilayer film having an in-plane retardation in such a range can be obtained, for example, by appropriately adjusting the in-plane retardation and slow axis direction of the base film and the in-plane retardation and slow axis direction of the optical film. can be obtained by
  • In-plane retardation Re (450), Re (550) and Re (650) of the multilayer film at measurement wavelengths of 450 nm, 550 nm and 650 nm preferably satisfy the relationship Re (450) ⁇ Re (550). More preferably, the relationship (450) ⁇ Re(550) ⁇ Re(650) is satisfied.
  • a multilayer film having in-plane retardations Re(450), Re(550) and Re(650) satisfying such a relationship can exhibit reverse wavelength dispersion.
  • the multilayer film can generally have a larger in-plane retardation as the measurement wavelength is longer. Therefore, this multilayer film can function as a broadband wavelength plate capable of uniformly converting the polarization state of light passing through the multilayer film in a wide wavelength range.
  • a multilayer film having in-plane retardations Re(450), Re(550) and Re(650) that satisfy such a relationship is, for example, the in-plane retardation and slow axis direction of the base film and the optical film. It can be obtained by appropriately adjusting the in-plane retardation and slow axis direction.
  • the total light transmittance of the multilayer film is preferably 80% or higher, more preferably 85% or higher, and particularly preferably 90% or higher.
  • the haze of the multilayer film is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
  • the multilayer film may be a sheet film or a long film.
  • the specific thickness of the multilayer film is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, particularly preferably 15 ⁇ m or more, and preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less, and particularly preferably 80 ⁇ m or less.
  • the method for producing the multilayer film is not particularly limited.
  • the multilayer film may be produced, for example, by a method including a step of preparing a base film, a step of preparing an optical film, and a step of laminating the base film and the optical film.
  • the multilayer film may be produced by a method including, for example, a step of co-extrusion of the resin forming the base film and the specific resin forming the optical film.
  • the multilayer film is preferably manufactured by a manufacturing method including applying a coating liquid containing a specific copolymer onto a substrate film. This preferred manufacturing method will be described below.
  • a method for manufacturing a multilayer film according to a preferred example includes applying a coating liquid containing a specific copolymer onto a base film.
  • the base film can be produced, for example, by a melt molding method or a solution casting method. Among them, the melt molding method is preferable. Among the melt molding methods, extrusion molding, inflation molding and press molding are preferred, and extrusion molding is particularly preferred.
  • the substrate film thus produced can be an optically isotropic film having an in-plane retardation of usually 10 nm or less at a measurement wavelength of 550 nm.
  • a coating liquid may be applied to an optically isotropic base film. Further, if necessary, the substrate film may be stretched before the application of the coating liquid to develop in-plane retardation in the substrate film.
  • a coating liquid containing the specific copolymer is applied onto the base film.
  • a coating liquid is a liquid composition containing a specific copolymer, and may contain a specific copolymer and a solvent. Moreover, the coating liquid may contain any component in combination with the specific copolymer and the solvent.
  • the solvent those capable of dissolving or dispersing the specific copolymer are preferred, and those capable of dissolving the specific copolymer are particularly preferred.
  • a solvent may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the concentration of the specific copolymer in the coating liquid is preferably adjusted so that the viscosity of the coating liquid is within a range suitable for coating, and may be, for example, 1 wt % to 50 wt %.
  • coating method of the coating liquid There are no restrictions on the coating method of the coating liquid. Examples of coating methods include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating, and die coating. method, gap coating method, and dipping method.
  • the drying method is not particularly limited, and drying methods such as heat drying and reduced pressure drying can be used.
  • the method for producing a multilayer film may include stretching the multilayer film, if necessary.
  • the multilayer film before being stretched may be referred to as "pre-stretching multilayer film”
  • the multilayer film after being stretched may be referred to as “multilayer stretched film”. Stretching may be performed only once, or may be performed twice or more.
  • the stretch ratio of the multilayer film before stretching can be set according to the optical properties that the multilayer stretched film is desired to exhibit.
  • the range of the specific stretch ratio of the multilayer film before stretching is preferably 1.05 times or more, more preferably 1.1 times or more, still more preferably 1.2 times or more, and particularly preferably 1.3 times or more. It is preferably 3.0 times or less, more preferably 2.5 times or less, and still more preferably 2.0 times or less.
  • stretching ratio of each stretching is within the above range.
  • stretching may be the same, and may differ.
  • the stretching temperature of the multilayer film before stretching can be set according to the optical properties that the multilayer stretched film is desired to exhibit.
  • the specific stretching temperature range of the multilayer film before stretching is preferably Tg(low)-5°C or higher, more preferably Tg(low)-3°C or higher, and particularly preferably Tg(low)-1°C or higher. It is preferably Tg(high)+20° C. or less, more preferably Tg(high)+15° C. or less, and particularly preferably Tg(high)+12° C. or less.
  • Tg (low) represents the lower one of the glass transition temperature of the resin forming the base film and the glass transition temperature of the specific resin forming the optical film
  • Tg (high) is the base film. and the glass transition temperature of the specific resin forming the optical film, whichever is higher.
  • the stretching temperature for each stretching may be the same or different.
  • the stretching direction of the multilayer film before stretching can be set according to the optical properties that the multilayer stretched film is desired to exhibit.
  • the stretching may be uniaxial stretching in which the film is stretched in only one direction, or may be biaxial stretching in which the film is stretched in two directions.
  • the stretching direction of each stretching may be the same or different.
  • uniaxially stretching may be carried out in a second stretching direction substantially perpendicular to the first stretching direction.
  • the range of the angle formed by the first stretching direction and the second stretching direction is preferably 85° or more, more preferably 87° or more, still more preferably 88° or more, and particularly preferably 89° or more. preferably 95° or less, more preferably 93° or less, still more preferably 92° or less, and particularly preferably 91° or less.
  • birefringence can be expressed in one or both of the base film and the optical film by stretching. Therefore, a multilayer stretched film having desired optical properties can be obtained.
  • the method for producing a multilayer film may further include optional steps in combination with the steps described above.
  • the method for manufacturing the multilayer film may include a trimming step of cutting the obtained multilayer film into a desired shape. According to the trimming process, a sheet-fed multilayer film having a desired shape can be obtained.
  • the method for producing a multilayer film may include, for example, a step of providing a protective layer on the multilayer film.
  • a polarizing plate according to one embodiment of the present invention includes the multilayer film and the polarizing film according to the above-described embodiments.
  • a film that can function as a linear polarizer can be used as the polarizing film.
  • polarizing films include a film obtained by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film and then uniaxially stretching it in a boric acid bath; films obtained by stretching and further modifying some of the polyvinyl alcohol units in the molecular chain to polyvinylene units; Among these, a film containing polyvinyl alcohol is preferable as the polarizing film.
  • the degree of polarization of this polarizing film is not particularly limited, it is preferably 98% or more, more preferably 99% or more. Further, the thickness of the polarizing film is preferably 5 ⁇ m to 80 ⁇ m.
  • the polarizing plate preferably functions as a circularly polarizing plate.
  • the multilayer film preferably has an in-plane retardation that can function as a ⁇ /4 plate.
  • the angle formed by the polarization transmission axis of the polarizing film and the slow axis of one or both of the substrate film and the optical film is within a specific range close to 45°.
  • the angle is preferably 40° or more, more preferably 42° or more, still more preferably 43° or more, particularly preferably 44° or more, preferably 50° or less, more preferably 48°. Below, more preferably 47° or less, particularly preferably 46° or less.
  • the polarizing plate may comprise a polarizing film, a base film and an optical film in this order. Also, the polarizing plate may comprise a polarizing film, an optical film and a substrate film in this order. A specific order can be set according to the in-plane retardation of the substrate film and the optical film.
  • the polarizing plate described above can further include any layer.
  • Optional layers include, for example, a polarizer protective film layer; an adhesive layer for laminating a polarizing film and a multilayer film; a hard coat layer such as an impact-resistant polymethacrylate resin layer; antireflection layer; antifouling layer; antistatic layer; As for these optional layers, only one layer may be provided, or two or more layers may be provided.
  • the optical film described above can be provided in an image display device.
  • a polarizing plate having an optical film may be prepared and provided in the image display device.
  • a preferred example is an organic EL image display device (organic electroluminescence display device) having a polarizing plate that can function as a circularly polarizing plate.
  • This organic EL image display device includes a circularly polarizing plate and an organic electroluminescence element (hereinafter sometimes referred to as an "organic EL element" as appropriate).
  • This organic EL image display device usually comprises a polarizing film, a multilayer film and an organic EL element in this order.
  • An organic EL element usually comprises a transparent electrode layer, a light-emitting layer and an electrode layer in this order, and the light-emitting layer can emit light when a voltage is applied from the transparent electrode layer and the electrode layer.
  • materials constituting the organic light-emitting layer include polyparaphenylenevinylene-based, polyfluorene-based, and polyvinylcarbazole-based materials.
  • the light-emitting layer may have a laminate of layers emitting light of different colors, or a mixed layer in which a certain dye layer is doped with a different dye.
  • the organic EL element may have functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface formation layer, and a charge generation layer.
  • the organic EL image display device can suppress reflection of external light on the display surface. Specifically, only a portion of linearly polarized light of the light incident from the outside of the device passes through the polarizing film, and then passes through the multilayer film to become circularly polarized light. Circularly polarized light is reflected by light-reflecting components (reflecting electrodes in organic EL elements, etc.) in the image display device, and passes through the multilayer film again, resulting in vibration perpendicular to the direction of vibration of the incident linearly polarized light. It becomes linearly polarized light with a direction and does not pass through the polarizing film.
  • the vibration direction of the linearly polarized light means the vibration direction of the electric field of the linearly polarized light. This achieves the antireflection function.
  • a sheet having a thickness of 100 ⁇ m was produced by pressing 1 g of the polymer produced in Examples and Comparative Examples described later under conditions of 250° C., 5 MPa, and 1 minute using a press.
  • the obtained sheet was cut into a rectangular pre-stretched film with a size of 50 mm x 100 mm.
  • the unstretched film was subjected to free width uniaxial stretching. Stretching was performed using a tensile tester with a constant temperature bath manufactured by INSTRON. The stretching conditions were a stretching temperature of Tg+10° C., a stretching ratio of 1.5 times, and a stretching rate of 33% per minute. As a result, a retardation film was obtained as an optical film.
  • the obtained retardation film was measured for in-plane retardation Re at a wavelength of 550 nm using a retardation meter ("AxoScan" manufactured by Axometrics).
  • the obtained in-plane retardation Re was divided by the film thickness d to obtain Re/d.
  • the thickness d of the film was measured with a film thickness measuring device (Mitutoyo "snap gauge").
  • a substrate film (a glass transition temperature of 160° C., a thickness of 100 ⁇ m, an unstretched film manufactured by Nippon Zeon Co., Ltd.) made of a resin containing a norbornene-based polymer was prepared. One side of this base film was subjected to corona treatment.
  • Corona treatment was applied to one side of the retardation film obtained in the above ⁇ Method for measuring retardation expression>.
  • An adhesive was applied to the corona-treated surface of the retardation film and the corona-treated surface of the base film, and the adhesive-attached surfaces were bonded together to cure the adhesive.
  • An ultraviolet curable adhesive was used as the adhesive.
  • a sample film having a layer structure of retardation film/adhesive layer/base film was obtained by the lamination.
  • a sample piece was obtained by cutting the sample film into a width of 15 mm.
  • the retardation film side of the sample piece was attached to the surface of a slide glass via an adhesive (double-sided adhesive tape "CS9621" manufactured by Nitto Denko Corporation).
  • a 90-degree peel test was performed by sandwiching the base film between the tip of the force gauge and pulling it in the direction normal to the surface of the slide glass. At this time, since the force measured when the base film was peeled off was the force required to separate the retardation film and the base film, the magnitude of this force was measured as the peel strength.
  • the higher the peel strength the better the delamination resistance.
  • the higher the peel strength the more the retardation film is prevented from being damaged when the film is reapplied, which means that the reworkability is excellent. Therefore, when the peel strength was 5.0 N or more, the delamination resistance was determined as "excellent”. Moreover, when the peel strength was 2.0 N or more and less than 5.0 N, the delamination resistance was determined to be "good”. Moreover, when the peel strength was 1.0 N or more and less than 2.0 N, the delamination resistance was determined to be "good”. Furthermore, when the peel strength was less than 1.0 N, the delamination resistance was determined as "improper".
  • Example 1 1.5 g of methyl acrylate, 28.5 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container and purged with nitrogen. After that, 20 mg of AIBN (azobisisobutyronitrile) was added, and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 110,000. Further, the glass transition temperature of the polymer measured by a differential scanning calorimeter was 138°C.
  • AIBN azobisisobutyronitrile
  • a retardation film was produced from the obtained polymer by the method described in ⁇ Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 14.89 ⁇ 10 ⁇ 3 . . Moreover, when the delamination resistance was evaluated by the method described in ⁇ Method for measuring delamination resistance> above, the result was "good".
  • Example 2 > 3.0 g of methyl acrylate, 27.0 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container, and nitrogen substitution was performed. After that, 20 mg of AIBN (azobisisobutyronitrile) was added, and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 109,000. The glass transition temperature of the polymer measured by a differential scanning calorimeter was 135°C.
  • AIBN azobisisobutyronitrile
  • a retardation film was produced from the obtained polymer by the method described in ⁇ Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 14.74 ⁇ 10 ⁇ 3 . . Moreover, when the delamination resistance was evaluated by the method described in ⁇ Method for measuring delamination resistance> above, the result was "good".
  • Example 3 6.0 g of methyl acrylate, 24.0 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container, and nitrogen substitution was performed. After that, 20 mg of AIBN (azobisisobutyronitrile) was added, and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 119,000. Moreover, the glass transition temperature of the polymer measured by a differential scanning calorimeter was 124°C.
  • AIBN azobisisobutyronitrile
  • a retardation film was produced from the obtained polymer by the method described in ⁇ Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 14.66 ⁇ 10 ⁇ 3 . . Moreover, when the delamination resistance was evaluated by the method described in ⁇ Delamination resistance measuring method> above, the result was "good".
  • Example 4 9.0 g of methyl acrylate, 21.0 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container, and nitrogen substitution was performed. After that, 10 mg of AIBN (azobisisobutyronitrile) was added, and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 250,000. Further, the glass transition temperature of the polymer measured by a differential scanning calorimeter was 117°C.
  • AIBN azobisisobutyronitrile
  • a retardation film was produced from the obtained polymer by the method described in ⁇ Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 13.75 ⁇ 10 ⁇ 3 . . Moreover, when the delamination resistance was evaluated by the method described in ⁇ Delamination resistance measuring method> above, the result was "good".
  • Example 5 9.0 g of methyl acrylate, 21.0 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container, and nitrogen substitution was performed. After that, 20 mg of AIBN (azobisisobutyronitrile) was added, and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 97,000. Further, the glass transition temperature of the polymer measured by a differential scanning calorimeter was 117°C.
  • AIBN azobisisobutyronitrile
  • a retardation film was produced from the obtained polymer by the method described in ⁇ Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 13.55 ⁇ 10 ⁇ 3 . . Moreover, when the delamination resistance was evaluated by the method described in ⁇ Delamination resistance measuring method> above, the result was "good".
  • Example 6 9.0 g of acrylic acid, 21.0 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container, and nitrogen substitution was performed. After that, 20 mg of AIBN (azobisisobutyronitrile) was added and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 126,000. Further, the glass transition temperature of the polymer measured by a differential scanning calorimeter was 179°C.
  • AIBN azobisisobutyronitrile
  • a retardation film was produced from the obtained polymer by the method described in ⁇ Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 13.63 ⁇ 10 ⁇ 3 . . Moreover, when the delamination resistance was evaluated by the method described in ⁇ Method for measuring delamination resistance> above, the result was "excellent".
  • Example 7 (First step: preparation of base film)
  • a resin having a positive intrinsic birefringence value a resin containing a pellet-shaped norbornene-based polymer (hereinafter referred to as norbornene-based resin, manufactured by Nippon Zeon Co., Ltd.; glass transition temperature 126 ° C.) is prepared and dried at 100 ° C. for 5 hours. bottom.
  • a dried norbornene-based resin was supplied to an extruder, passed through a polymer pipe and a polymer filter, and extruded into a sheet from a T-die onto a casting drum.
  • the sheet-shaped extruded norbornene-based resin was cooled to obtain a long unstretched film having a thickness of 60 ⁇ m as a base film. Thickness and optical properties were measured on the unstretched film. The obtained unstretched film was wound up on a roll and collected.
  • the polymer prepared in Example 1 was mixed with 1,3-dioxolane and dissolved to obtain a resin solution as a coating liquid.
  • the resin concentration of this resin solution was 15% by weight.
  • the resulting multi-layer film was cut to obtain a rectangular pre-stretched multi-layer film having a size of 50 mm ⁇ 100 mm. Free width uniaxial stretching was applied to the multilayer film before stretching. Stretching was performed using a tensile tester with a constant temperature bath manufactured by INSTRON. The stretching conditions were a stretching temperature of Tg+10° C., a stretching ratio of 1.5 times, and a stretching rate of 33% per minute. As a result, a multilayer stretched film including a stretched base film and a stretched retardation film as an optical film was obtained.
  • the retardation film was peeled off from the multilayer stretched film.
  • This retardation film was a monolayer film of the polymer prepared in Example 1.
  • This retardation film was measured for in-plane retardation at a wavelength of 550 nm using a retardation meter (“AxoScan” manufactured by Axometrics). Re/d was obtained by dividing the obtained in-plane retardation Re by the film thickness d. Re/d was 14.85 ⁇ 10 ⁇ 3 .
  • Example 8 (First step: preparation of base film)
  • a norbornene-based resin containing a pellet-shaped norbornene-based polymer manufactured by Zeon Corporation; glass transition temperature 126° C.
  • a dried norbornene-based resin was supplied to an extruder, passed through a polymer pipe and a polymer filter, and extruded into a sheet from a T-die onto a casting drum.
  • the sheet-shaped extruded norbornene-based resin was cooled to obtain a long unstretched film having a thickness of 60 ⁇ m as a base film. Thickness and optical properties were measured on the unstretched film.
  • the obtained unstretched film was wound up on a roll and collected.
  • the polymer prepared in Example 2 was mixed with 1,3-dioxolane and dissolved to obtain a resin solution as a coating liquid.
  • the resin concentration of this resin solution was 15% by weight.
  • the coated resin solution was rapidly dried at 120° C. to form a layer (thickness: 30 ⁇ m) of the polymer prepared in Example 2 as an optical film on the unstretched film as the base film.
  • a multilayer film including an unstretched film as a base film and a layer of the polymer prepared in Example 2 as an optical film was obtained.
  • the resulting multi-layer film was cut to obtain a rectangular pre-stretched multi-layer film having a size of 50 mm ⁇ 100 mm. Free width uniaxial stretching was applied to the multilayer film before stretching. Stretching was performed using a tensile tester with a constant temperature bath manufactured by INSTRON. The stretching conditions were a stretching temperature of Tg+10° C., a stretching ratio of 1.5 times, and a stretching rate of 33% per minute. As a result, a multilayer stretched film including a stretched base film and a stretched retardation film as an optical film was obtained.
  • the retardation film was peeled off from the multilayer stretched film.
  • This retardation film was a monolayer film of the polymer prepared in Example 2.
  • This retardation film was measured for in-plane retardation at a wavelength of 550 nm using a retardation meter (“AxoScan” manufactured by Axometrics). Re/d was obtained by dividing the obtained in-plane retardation Re by the film thickness d. Re/d was 14.85 ⁇ 10 ⁇ 3 .
  • the weight average molecular weight of poly(2-vinylnaphthalene) measured by GPC was 250,000.
  • the glass transition temperature of poly(2-vinylnaphthalene) measured by a differential scanning calorimeter was 142.degree.
  • a retardation film was produced from the obtained poly(2-vinylnaphthalene) by the method described in ⁇ Method for measuring retardation expression> above, and the retardation was measured. Re/d was 15.04 ⁇ 10. -3 . Moreover, when the delamination resistance was evaluated by the method described in ⁇ Method for measuring delamination resistance> above, the result was "impossible".
  • the weight average molecular weight of poly(2-vinylnaphthalene) measured by GPC was 100,000.
  • the glass transition temperature of poly(2-vinylnaphthalene) measured by a differential scanning calorimeter was 142.degree.
  • a retardation film was produced from the obtained poly(2-vinylnaphthalene) by the method described in ⁇ Method for measuring retardation expression> above, and the retardation was measured. Re/d was 15.04 ⁇ 10. -3 . Moreover, when the delamination resistance was evaluated by the method described in ⁇ Method for measuring delamination resistance> above, the result was "impossible".
  • AIBN azobisisobutyronitrile
  • a retardation film was produced from the obtained polymer by the method described in ⁇ Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 15.11 ⁇ 10 ⁇ 3 . . Moreover, when the delamination resistance was evaluated by the method described in ⁇ Method for measuring delamination resistance> above, the result was "impossible".
  • AIBN azobisisobutyronitrile
  • a retardation film was produced from the obtained polymer by the method described in ⁇ Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 9.02 ⁇ 10 ⁇ 3 . . Moreover, when the delamination resistance was evaluated by the method described in ⁇ Delamination resistance measuring method> above, the result was "good".
  • the poly(2-vinylnaphthalene) prepared in Comparative Example 2 was mixed with 1,3-dioxolane and dissolved to obtain a resin solution.
  • the resin concentration of this resin solution was 15% by weight.
  • the resulting multi-layer film was cut to obtain a rectangular pre-stretched multi-layer film having a size of 50 mm ⁇ 100 mm. Free width uniaxial stretching was applied to the multilayer film before stretching. Stretching was performed using a tensile tester with a constant temperature bath manufactured by INSTRON. The stretching conditions were a stretching temperature of Tg+10° C., a stretching ratio of 1.5 times, and a stretching rate of 33% per minute. As a result, a multilayer stretched film including a stretched base film and a stretched retardation film as an optical film was obtained.
  • the retardation film was peeled off from the multilayer stretched film.
  • This retardation film was a monolayer film of poly(2-vinylnaphthalene) prepared in Comparative Example 2.
  • This retardation film was measured for in-plane retardation at a wavelength of 550 nm using a retardation meter (“AxoScan” manufactured by Axometrics). Re/d was obtained by dividing the obtained in-plane retardation Re by the film thickness d. Re/d was 15.05 ⁇ 10 ⁇ 3 .
  • Examples 7 and 8 and Comparative Example 5 a pre-stretched multilayer film comprising a base film and an optical film was produced, and the pre-stretched multilayer film was stretched. By stretching the multilayer film before stretching, the base film and the optical film are co-stretched, so that a retardation film is obtained as a stretched optical film. From the results of Examples 7 and 8 and Comparative Example 5, even when a retardation film is produced by co-stretching the base film and the optical film, the same letter as the retardation film obtained by stretching the optical film alone It was found that a retardation film having resistance to delamination and delamination can be obtained as an optical film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides an optical film which contains a copolymer that comprises a polycyclic aromatic vinyl compound unit and a (meth)acrylic compound unit, wherein the proportion of the (meth)acrylic compound unit in the copolymer is 5% by weight to 40% by weight.

Description

光学膜、複層フィルム及びその製造方法、並びに、偏光板Optical film, multilayer film, manufacturing method thereof, and polarizing plate
 本発明は、光学膜、複層フィルム及びその製造方法、並びに、偏光板に関する。 The present invention relates to an optical film, a multilayer film, a manufacturing method thereof, and a polarizing plate.
 ビニルナフタレン等の多環芳香族ビニル化合物を用いて製造される重合体が、光学膜の材料として用いられることがある。前記の重合体は、通常、多環芳香族ビニル化合物単位を含有する重合体でありえ、優れた光学特性を発揮しうる。例えば、特許文献1及び2には、ビニルナフタレンを用いて製造される重合体を光学膜の材料に用いる技術が記載されている。  Polymers produced using polycyclic aromatic vinyl compounds such as vinyl naphthalene are sometimes used as materials for optical films. The polymer can usually be a polymer containing a polycyclic aromatic vinyl compound unit, and can exhibit excellent optical properties. For example, Patent Literatures 1 and 2 describe techniques for using a polymer produced using vinylnaphthalene as a material for an optical film.
特開2006-111650号公報Japanese Patent Application Laid-Open No. 2006-111650 国際公開第2020/066174号WO2020/066174
 多環芳香族ビニル化合物単位を含有する重合体は、面内レターデーションを有する光学膜の材料として用いられることがある。一般に、薄型化の観点から、光学膜はレターデーション発現性に優れることが求められる。  Polymers containing polycyclic aromatic vinyl compound units are sometimes used as materials for optical films with in-plane retardation. In general, from the viewpoint of thickness reduction, an optical film is required to be excellent in retardation expression.
 また、多環芳香族ビニル化合物単位を含有する重合体を含む光学膜は、他の部材に貼り合わせて使用されることがある。しかし、その光学膜は、従来、デラミネーションが生じやすかった。デラミネーションは、膜の内部での破壊(凝集破壊)を伴う剥離を表す。よって、ある部材と貼り合わせられた光学膜がデラミネーションを生じると、通常は、その光学膜が破壊されるので、部材に光学膜の一部が残留しうる。このような光学膜の残留があると、光学膜のリワーク性が劣る原因となりうる。 Also, an optical film containing a polymer containing a polycyclic aromatic vinyl compound unit may be used by bonding it to another member. However, such optical films have conventionally been susceptible to delamination. Delamination refers to delamination accompanied by internal failure (cohesive failure) of the membrane. Therefore, when delamination occurs in an optical film bonded to a member, the optical film is usually destroyed, and a portion of the optical film may remain on the member. If there is such a residue of the optical film, it may be a cause of poor reworkability of the optical film.
 具体的には、ある部材に光学膜を一度貼り合わせた後で、その光学膜を剥がし、再び前記部材に光学膜を貼り合わせることが求められる場合がある。部材から剥がされ、再び貼り合わせる操作を容易に行える性質を、「リワーク性」と呼ぶ。例えば、画像表示装置の表示パネル(例えば、液晶パネル)に光学膜を貼り合わせた後で、その光学膜を表示パネルから剥がして再び貼り直す場合に、このリワーク性に優れることが要求される。しかし、光学膜が部材から剥がされる時にデラミネーションを生じると、破壊された光学膜の一部が部材表面に残留しうる。光学膜の一部が部材表面に残留していると、光学膜を再び貼り直しても、一度目の貼り合わせと同品質の製品を得ることは難しい。 Specifically, there are cases where it is required to once attach an optical film to a member, peel off the optical film, and attach the optical film to the member again. The property of being easily peeled off from a member and reattached is called "reworkability". For example, when an optical film is attached to a display panel (for example, a liquid crystal panel) of an image display device, and then the optical film is peeled off from the display panel and reattached, excellent reworkability is required. However, if delamination occurs when the optical film is peeled off from the member, part of the destroyed optical film may remain on the surface of the member. If a part of the optical film remains on the surface of the member, even if the optical film is adhered again, it is difficult to obtain a product with the same quality as the first pasting.
 前記の事情から、多環芳香族ビニル化合物単位を含有する重合体を含む光学膜において、デラミネーションを効果的に抑制できる技術の開発が求められている。 Due to the above circumstances, there is a demand for the development of a technology that can effectively suppress delamination in optical films containing polymers containing polycyclic aromatic vinyl compound units.
 本発明は、前記の課題に鑑みて創案されたもので、多環芳香族ビニル化合物単位を含有する重合体を含み、レターデーション発現性及びデラミネーション耐性に優れる光学膜;その光学膜を備えた複層フィルム及びその製造方法;並びに、その複層フィルムを備えた偏光板;を提供することを目的とする。 The present invention was invented in view of the above problems, and an optical film containing a polymer containing a polycyclic aromatic vinyl compound unit and having excellent retardation property and delamination resistance; An object of the present invention is to provide a multilayer film, a method for producing the same, and a polarizing plate provided with the multilayer film.
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、多環芳香族ビニル化合物単位と特定範囲の割合の(メタ)アクリル化合物単位とを含有する共重合体を含む光学膜が、レターデーション発現性及びデラミネーション耐性の両方に優れることを見い出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
The inventors have made extensive studies to solve the above problems. As a result, the present inventors have found that an optical film containing a copolymer containing a polycyclic aromatic vinyl compound unit and a (meth)acrylic compound unit in a specific range has both retardation development property and delamination resistance. The present invention was completed by discovering that it is excellent in
That is, the present invention includes the following.
 (1) 多環芳香族ビニル化合物単位と(メタ)アクリル化合物単位とを含有する共重合体を含み、
 前記共重合体における前記(メタ)アクリル化合物単位の割合が、5重量%以上40重量%以下である、光学膜。
 (2) 前記共重合体の重量平均分子量Mwが、5万~50万である、(1)に記載の光学膜。
 (3) 前記共重合体が、ビニルナフタレンを重合して形成される構造を有する繰り返し単位を含有する、(1)又は(2)に記載の光学膜。
 (4) 前記共重合体のガラス転移温度が、110℃以上である、(1)~(3)のいずれか一項に記載の光学膜。
 (5) 前記光学膜の測定波長550nmにおける面内レターデーションReと厚みdとの比Re/dが、10.0×10-3以上である、(1)~(4)のいずれか一項に記載の光学膜。
 (6) 基材フィルムと、(1)~(5)のいずれか一項に記載の光学膜と、を備える複層フィルム。
 (7) 前記基材フィルムが、脂環式構造含有重合体を含む、(6)に記載の複層フィルム。
 (8) 基材フィルム及び光学膜を備える複層フィルムの製造方法であって、
 前記基材フィルム上に、共重合体を含む塗工液を塗工することを含み、
 前記共重合体が、多環芳香族ビニル化合物単位と(メタ)アクリル化合物単位とを含有し、
 前記共重合体における前記(メタ)アクリル化合物単位の量が、5重量%以上40重量%以下である、複層フィルムの製造方法。
 (9) (6)又は(7)に記載の複層フィルムと、偏光フィルムとを備える、偏光板。
(1) including a copolymer containing a polycyclic aromatic vinyl compound unit and a (meth)acrylic compound unit,
The optical film, wherein the proportion of the (meth)acrylic compound unit in the copolymer is 5% by weight or more and 40% by weight or less.
(2) The optical film according to (1), wherein the copolymer has a weight average molecular weight Mw of 50,000 to 500,000.
(3) The optical film according to (1) or (2), wherein the copolymer contains a repeating unit having a structure formed by polymerizing vinylnaphthalene.
(4) The optical film according to any one of (1) to (3), wherein the copolymer has a glass transition temperature of 110° C. or higher.
(5) Any one of (1) to (4), wherein the ratio Re/d between the in-plane retardation Re and the thickness d of the optical film at a measurement wavelength of 550 nm is 10.0×10 −3 or more. The optical film according to .
(6) A multilayer film comprising a substrate film and the optical film according to any one of (1) to (5).
(7) The multilayer film according to (6), wherein the base film contains an alicyclic structure-containing polymer.
(8) A method for producing a multilayer film comprising a substrate film and an optical film, comprising:
Coating a coating liquid containing a copolymer on the base film,
The copolymer contains polycyclic aromatic vinyl compound units and (meth)acrylic compound units,
A method for producing a multilayer film, wherein the amount of the (meth)acrylic compound unit in the copolymer is 5% by weight or more and 40% by weight or less.
(9) A polarizing plate comprising the multilayer film according to (6) or (7) and a polarizing film.
 本発明によれば、多環芳香族ビニル化合物単位を含有する重合体を含み、レターデーション発現性及びデラミネーション耐性に優れる光学膜;その光学膜を備えた複層フィルム及びその製造方法;並びに、その複層フィルムを備えた偏光板;を提供できる。 According to the present invention, an optical film containing a polymer containing a polycyclic aromatic vinyl compound unit and having excellent retardation property and delamination resistance; a multilayer film comprising the optical film and a method for producing the same; A polarizing plate comprising the multilayer film can be provided.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and can be arbitrarily modified without departing from the scope of the claims and their equivalents.
 以下の説明において、面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値を表す。厚み方向のレターデーションRthは、別に断らない限り、Rth={(nx+ny)/2-nz}×dで表される値を表す。nxは、厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向(遅相軸方向)の屈折率を表し、nyは、前記面内方向であってnxの方向に直交する方向の屈折率を表し、nzは、厚み方向の屈折率を表し、dは、厚みを表す。測定波長は、別に断らない限り、550nmである。面内レターデーション及び厚み方向のレターデーションといったレターデーションは、位相差計(Axometrics社製「AxoScan」)を用いて測定しうる。 In the following description, the in-plane retardation Re represents a value represented by Re=(nx−ny)×d unless otherwise specified. The retardation Rth in the thickness direction represents a value represented by Rth={(nx+ny)/2−nz}×d unless otherwise specified. nx represents the refractive index in the direction (slow axis direction) that is perpendicular to the thickness direction (in-plane direction) and gives the maximum refractive index, and ny is the in-plane direction in the nx direction. represents the refractive index in the orthogonal direction, nz represents the refractive index in the thickness direction, and d represents the thickness. The measurement wavelength is 550 nm unless otherwise stated. Retardation such as in-plane retardation and retardation in the thickness direction can be measured using a phase difference meter (“AxoScan” manufactured by Axometrics).
 以下の説明において、遅相軸とは、別に断らない限り、面内方向における遅相軸を表す。 In the following description, the slow axis represents the slow axis in the in-plane direction unless otherwise specified.
 以下の説明において、複数の層を備える部材における各層の光学軸(吸収軸、透過軸、遅相軸等)がなす角度は、別に断らない限り、前記の層を厚み方向から見たときの角度を表す。 In the following description, unless otherwise specified, the angle formed by the optical axes (absorption axis, transmission axis, slow axis, etc.) of each layer in a member including a plurality of layers is the angle when the layer is viewed from the thickness direction. represents
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。 In the following description, the terms "parallel", "perpendicular" and "perpendicular" for the directions of the elements include errors within a range that does not impair the effects of the present invention, for example, within a range of ±5°, unless otherwise specified. You can stay.
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。長尺のフィルムの長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。 In the following description, a "long" film refers to a film having a length of 5 times or more, preferably 10 times or more, with respect to the width, specifically a roll A film that is long enough to be rolled up into a shape and stored or transported. The upper limit of the length of the long film is not particularly limited, and can be, for example, 100,000 times or less the width.
 以下の説明において、「偏光板」、「円偏光板」、「λ/2板」、及び「λ/4板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。 In the following description, unless otherwise specified, "polarizing plate", "circularly polarizing plate", "λ/2 plate", and "λ/4 plate" refer not only to rigid members but also to resin films, for example Also includes flexible members such as .
 以下の説明において、「正の固有複屈折値を有する重合体」及び「正の固有複屈折値を有する樹脂」とは、「延伸方向の屈折率が延伸方向に直交する方向の屈折率よりも大きくなる重合体」及び「延伸方向の屈折率が延伸方向に直交する方向の屈折率よりも大きくなる樹脂」をそれぞれ意味する。また、「負の固有複屈折値を有する重合体」及び「負の固有複屈折値を有する樹脂」とは、「延伸方向の屈折率が延伸方向に直交する方向の屈折率よりも小さくなる重合体」及び「延伸方向の屈折率が延伸方向に直交する方向の屈折率よりも小さくなる樹脂」をそれぞれ意味する。固有複屈折値は、誘電率分布から計算しうる。 In the following description, "a polymer having a positive intrinsic birefringence value" and "a resin having a positive intrinsic birefringence value" mean that "the refractive index in the stretching direction is higher than the refractive index in the direction perpendicular to the stretching direction. Polymers that become larger" and "resins that have a higher refractive index in the direction of stretching than in the direction orthogonal to the direction of stretching" respectively. In addition, "a polymer having a negative intrinsic birefringence value" and "a resin having a negative intrinsic birefringence value" are defined as "a polymer whose refractive index in the stretching direction is smaller than that in the direction orthogonal to the stretching direction. and "resin in which the refractive index in the stretching direction is smaller than the refractive index in the direction orthogonal to the stretching direction" respectively. Intrinsic birefringence values can be calculated from the dielectric constant distribution.
 以下の説明において、接着剤とは、別に断らない限り、狭義の接着剤のみならず、23℃における剪断貯蔵弾性率が1MPa未満である粘着剤をも包含する。狭義の接着剤とは、エネルギー線照射後、あるいは加熱処理後、23℃における剪断貯蔵弾性率が1MPa~500MPaである接着剤を表す。 In the following description, adhesives include not only adhesives in a narrow sense, but also adhesives having a shear storage modulus of less than 1 MPa at 23°C unless otherwise specified. The narrowly defined adhesive means an adhesive having a shear storage modulus of 1 MPa to 500 MPa at 23° C. after irradiation with energy rays or after heat treatment.
<1.光学膜の概要>
 本発明の一実施形態に係る光学膜は、多環芳香族ビニル化合物単位と(メタ)アクリル化合物単位とを含有する共重合体を含む。多環芳香族ビニル化合物単位とは、多環芳香族ビニル化合物を重合して形成される構造を有する繰り返し単位を表す。また、(メタ)アクリル化合物単位とは、(メタ)アクリル化合物を重合して形成される構造を有する繰り返し単位を表す。ただし、多環芳香族ビニル化合物単位及び(メタ)アクリル化合物単位の形成方法に制限はない。よって、多環芳香族ビニル化合物単位は、多環芳香族ビニル化合物を重合する以外の方法で形成されてもよい。また、(メタ)アクリル化合物単位は、(メタ)アクリル化合物を重合する以外の方法で形成されてもよい。
<1. Outline of optical film>
An optical film according to one embodiment of the present invention includes a copolymer containing polycyclic aromatic vinyl compound units and (meth)acrylic compound units. A polycyclic aromatic vinyl compound unit represents a repeating unit having a structure formed by polymerizing a polycyclic aromatic vinyl compound. Moreover, the (meth)acrylic compound unit represents a repeating unit having a structure formed by polymerizing a (meth)acrylic compound. However, the method for forming the polycyclic aromatic vinyl compound unit and the (meth)acrylic compound unit is not limited. Therefore, the polycyclic aromatic vinyl compound unit may be formed by a method other than polymerizing the polycyclic aromatic vinyl compound. Also, the (meth)acrylic compound unit may be formed by a method other than polymerizing the (meth)acrylic compound.
 多環芳香族ビニル化合物単位と(メタ)アクリル化合物単位とを含有する前記の共重合体において、(メタ)アクリル化合物単位の量は、特定の範囲にある。このように特定の範囲の量の(メタ)アクリル化合物単位を含む前記の共重合体を、以下「特定共重合体」と呼ぶことがある。一般に、本実施形態に係る光学膜は、特定共重合体を含む樹脂によって形成される。以下の説明では、特定共重合体を含む前記の樹脂を、「特定樹脂」と呼ぶことがある。よって、本実施形態に係る光学膜は、通常は特定樹脂を含み、好ましくは特定樹脂のみを含む。この特定樹脂は、通常、熱可塑性樹脂である。 In the copolymer containing polycyclic aromatic vinyl compound units and (meth)acrylic compound units, the amount of (meth)acrylic compound units is within a specific range. Such a copolymer containing (meth)acrylic compound units in a specific range may be hereinafter referred to as a "specific copolymer". In general, the optical film according to this embodiment is made of a resin containing a specific copolymer. In the following description, the resin containing the specific copolymer may be referred to as "specific resin". Therefore, the optical film according to this embodiment usually contains the specific resin, and preferably contains only the specific resin. This specific resin is usually a thermoplastic resin.
 本実施形態に係る光学膜は、レターデーション発現性及びデラミネーション耐性に優れることができる。 The optical film according to this embodiment can be excellent in retardation expression and delamination resistance.
<2.特定共重合体>
 特定共重合体は、多環芳香族ビニル化合物単位及び(メタ)アクリル化合物単位を含有する。通常、この特定共重合体を含む特定樹脂によって光学膜が形成されているので、当該光学膜は、特定共重合体を含む。
<2. Specific copolymer>
The specific copolymer contains polycyclic aromatic vinyl compound units and (meth)acrylic compound units. Since an optical film is usually formed of a specific resin containing this specific copolymer, the optical film contains the specific copolymer.
 多環芳香族ビニル化合物単位は、前記の通り、多環芳香族ビニル化合物を重合して形成される構造を有する繰り返し単位を表す。多環芳香族ビニル化合物は、複数個の芳香環を含有する多環式芳香族基と、その多環式芳香族基の少なくとも1個の芳香環に結合したビニル基と、を含有する化合物を表す。芳香環は、通常、環上のπ電子系に含まれる電子数が4n+2個(nは0以上の整数を表し、好ましくは自然数を表す。)であるヒュッケル則に従う。この多環芳香族ビニル化合物の重合は、通常、ビニル基による付加重合として進行する。よって、多環芳香族ビニル化合物単位は、ビニル基の重合反応によって形成される主鎖と、この主鎖に結合した多環式芳香族基を含む側鎖と、を含有しうる。 As described above, the polycyclic aromatic vinyl compound unit represents a repeating unit having a structure formed by polymerizing a polycyclic aromatic vinyl compound. A polycyclic aromatic vinyl compound is a compound containing a polycyclic aromatic group containing a plurality of aromatic rings and a vinyl group bonded to at least one aromatic ring of the polycyclic aromatic group. show. The aromatic ring usually follows Hückel's rule that the number of electrons contained in the π-electron system on the ring is 4n+2 (n represents an integer of 0 or more, preferably a natural number). Polymerization of this polycyclic aromatic vinyl compound usually proceeds as addition polymerization with a vinyl group. Thus, a polycyclic aromatic vinyl compound unit can contain a main chain formed by the polymerization reaction of vinyl groups and side chains containing polycyclic aromatic groups attached to the main chain.
 一般に、延伸処理によって特定共重合体の分子が配向した場合、主鎖は延伸方向に平行に並びうる一方、側鎖は延伸方向に交差する方向(例えば、延伸方向に垂直な方向)に並びうる。よって、側鎖に含まれうる多環式芳香族基の構造は、光学膜の配向方向に交差する方向の屈折率に反映されうる。したがって、多環式芳香族基の構造は、光学膜の配向方向に交差する方向に発現させたい屈折率に応じて選択することが好ましく、ひいては、光学膜の面内レターデーション、厚み方向のレターデーション等の光学特性に応じて選択することが好ましい。 In general, when the molecules of the specific copolymer are oriented by stretching, the main chain can be aligned parallel to the stretching direction, while the side chains can be aligned in a direction crossing the stretching direction (for example, a direction perpendicular to the stretching direction). . Therefore, the structure of the polycyclic aromatic group that can be included in the side chain can be reflected in the refractive index in the direction crossing the alignment direction of the optical film. Therefore, it is preferable to select the structure of the polycyclic aromatic group according to the refractive index desired to be expressed in the direction intersecting the orientation direction of the optical film. It is preferable to select according to optical characteristics such as gradation.
 多環式芳香族基は、例えば、縮合芳香族基であってもよく、環集合芳香族基であってもよい。縮合芳香族基とは、芳香族縮合環を含む基を表す。また、環集合芳香族基とは、結合を介して連結された複数個の芳香環を含む基を表す。芳香環は、芳香族複素環であってもよいが、芳香族炭化水素環が好ましい。また、多環式芳香族基は、ビニル基以外の1又は2以上の置換基を含んでいてもよい。置換基としては、例えば、メチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;など挙げられる。中でも、多環式芳香族基は、前記の置換基を有さないことが好ましい。 The polycyclic aromatic group may be, for example, a condensed aromatic group or a ring-assembled aromatic group. A condensed aromatic group represents a group containing an aromatic condensed ring. Moreover, the ring-assembled aromatic group represents a group containing a plurality of aromatic rings linked via a bond. The aromatic ring may be an aromatic heterocyclic ring, but is preferably an aromatic hydrocarbon ring. Moreover, the polycyclic aromatic group may contain one or more substituents other than the vinyl group. Examples of substituents include alkyl groups such as methyl group and ethyl group; alkoxy groups such as methoxy group and ethoxy group; and the like. Among them, the polycyclic aromatic group preferably does not have the substituents described above.
 縮合芳香族基を含む多環芳香族ビニル化合物としては、例えば、1-ビニルナフタレン、2-ビニルナフタレン等の、ビニルナフタレン;1-ビニルアントラセン、2-ビニルアントラセン、9-ビニルアントラセン等の、ビニルアントラセン;などが挙げられる。また、環集合芳香族基を含む多環芳香族ビニル化合物としては、例えば、ビニルビフェニル、ビニルテルフェニル等が挙げられる。中でも、縮合芳香族基を含む多環芳香族ビニル化合物が好ましく、ビニルナフタレンが特に好ましい。よって、特定共重合体は、ビニルナフタレンを重合して形成される構造を有する繰り返し単位(以下、「ビニルナフタレン単位」ということがある。)を含有することが特に好ましい。 Polycyclic aromatic vinyl compounds containing condensed aromatic groups include, for example, vinylnaphthalenes such as 1-vinylnaphthalene and 2-vinylnaphthalene; vinyl compounds such as 1-vinylanthracene, 2-vinylanthracene and 9-vinylanthracene anthracene; and the like. Examples of polycyclic aromatic vinyl compounds containing ring-aggregated aromatic groups include vinylbiphenyl and vinylterphenyl. Among them, polycyclic aromatic vinyl compounds containing condensed aromatic groups are preferred, and vinylnaphthalene is particularly preferred. Therefore, the specific copolymer particularly preferably contains a repeating unit having a structure formed by polymerizing vinylnaphthalene (hereinafter sometimes referred to as "vinylnaphthalene unit").
 多環芳香族ビニル化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。よって、特定共重合体は、多環芳香族ビニル化合物単位を1種類のみ含んでいてもよく、2種類以上含んでいてもよい。 The polycyclic aromatic vinyl compound may be used singly or in combination of two or more. Therefore, the specific copolymer may contain only one type of polycyclic aromatic vinyl compound unit, or may contain two or more types.
 特定共重合体における多環芳香族ビニル化合物単位の割合は、特定共重合体100重量%に対して、好ましくは60重量%以上、より好ましくは65重量%以上、特に好ましくは70重量%以上であり、好ましくは95重量%以下、より好ましくは90重量%以下、特に好ましくは85重量%以下である。多環芳香族ビニル化合物単位の割合が前記範囲にある場合、光学膜のレターデーション発現性及びデラミネーション耐性を特に優れるものにできる。特に、多環芳香族ビニル化合物単位の割合が前記下限値以上である場合、光学膜のレターデーション発現性を効果的に高めることができる。 The ratio of the polycyclic aromatic vinyl compound unit in the specific copolymer is preferably 60% by weight or more, more preferably 65% by weight or more, and particularly preferably 70% by weight or more with respect to 100% by weight of the specific copolymer. preferably 95% by weight or less, more preferably 90% by weight or less, and particularly preferably 85% by weight or less. When the ratio of the polycyclic aromatic vinyl compound unit is within the above range, the optical film can have particularly excellent retardation development and delamination resistance. In particular, when the proportion of polycyclic aromatic vinyl compound units is at least the above lower limit, the retardation expressibility of the optical film can be effectively enhanced.
 特定共重合体における多環芳香族ビニル化合物単位の割合は、例えば、多環芳香族ビニル化合物の仕込み比によって調整できる。ここで、多環芳香族ビニル化合物の仕込み比とは、特定共重合体の単量体全体に占める多環芳香族ビニル化合物の量の比を表す。通常は、特定共重合体における多環芳香族ビニル化合物単位の割合は、多環芳香族ビニル化合物の仕込み比に一致しうる。 The ratio of the polycyclic aromatic vinyl compound units in the specific copolymer can be adjusted, for example, by the charging ratio of the polycyclic aromatic vinyl compound. Here, the charging ratio of the polycyclic aromatic vinyl compound represents the ratio of the amount of the polycyclic aromatic vinyl compound to the total monomers of the specific copolymer. Usually, the ratio of the polycyclic aromatic vinyl compound units in the specific copolymer can match the charging ratio of the polycyclic aromatic vinyl compound.
 (メタ)アクリル化合物単位は、前記の通り、(メタ)アクリル化合物を重合して形成される構造を有する繰り返し単位を表す。(メタ)アクリル化合物は、(メタ)アクリロイル基を含有する化合物を表す。また、(メタ)アクリロイル基とは、アクリロイル基、メタクリロイル基及びそれらの組み合わせを包含する。(メタ)アクリル化合物は、(メタ)アクリロイル基が含む炭素-炭素不飽和結合が、多環芳香族ビニル化合物のビニル基が有する炭素-炭素不飽和結合又は他の(メタ)アクリル化合物が含有する炭素-炭素不飽和結合と反応して重合しうる。 The (meth)acrylic compound unit represents a repeating unit having a structure formed by polymerizing a (meth)acrylic compound, as described above. A (meth)acrylic compound represents a compound containing a (meth)acryloyl group. Moreover, a (meth)acryloyl group includes an acryloyl group, a methacryloyl group, and combinations thereof. (Meth)acrylic compound, the carbon-carbon unsaturated bond contained in the (meth)acryloyl group is the carbon-carbon unsaturated bond of the vinyl group of the polycyclic aromatic vinyl compound or other (meth)acrylic compounds contain It can polymerize by reacting with carbon-carbon unsaturated bonds.
 (メタ)アクリル化合物としては、アクリル酸、アクリル酸誘導体、メタクリル酸、メタクリル酸誘導体、などが挙げられる。アクリル酸誘導体としては、例えば、アクリル酸エステル、アクリル酸アミド等が挙げられる。また、メタクリル酸誘導体としては、例えば、メタクリル酸エステル、メタクリル酸アミド等が挙げられる。アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸sec-ブチル、アクリル酸t-ブチル、アクリル酸n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸n-オクチル、アクリル酸2-エチルヘキシル、アクリル酸n-デシル、アクリル酸n-ドデシル等が挙げられる。また、メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸sec-ブチル、メタクリル酸t-ブチル、メタクリル酸n-ヘキシル、メタクリル酸n-オクチル、メタクリル酸2-エチルヘキシル、メタクリル酸n-デシル、メタクリル酸n-ドデシルなどが挙げられる。また、前記のアクリル酸エステル及びメタクリル酸エステル等の(メタ)アクリル酸エステルは、水酸基、ハロゲン原子などの置換基を有していてもよい。置換基を有する(メタ)アクリル酸エステルとしては、例えば、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸4-ヒドロキシブチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸4-ヒドロキシブチル、メタクリル酸3-クロロ-2-ヒドロキシプロピル、メタクリル酸グリシジルなどが挙げられる。 (Meth)acrylic compounds include acrylic acid, acrylic acid derivatives, methacrylic acid, methacrylic acid derivatives, and the like. Examples of acrylic acid derivatives include acrylic acid esters and acrylic acid amides. Examples of methacrylic acid derivatives include methacrylic acid esters and methacrylic acid amides. Examples of acrylic esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, sec-butyl acrylate, t- Butyl, n-hexyl acrylate, cyclohexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, n-decyl acrylate, n-dodecyl acrylate and the like. Examples of methacrylic acid esters include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, sec-butyl methacrylate, and methacrylic acid. t-butyl, n-hexyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, n-decyl methacrylate, n-dodecyl methacrylate and the like. In addition, the (meth)acrylic acid esters such as the acrylic acid esters and methacrylic acid esters may have substituents such as hydroxyl groups and halogen atoms. Examples of substituted (meth)acrylic acid esters include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, glycidyl methacrylate and the like.
 光学膜と他の部材との密着性を高める観点では、(メタ)アクリル化合物としては、アクリル酸及びメタクリル酸が好ましく、アクリル酸が特に好ましい。また、光学膜の吸湿性を抑制して耐水性及び水蒸気バリア性を高める観点では、(メタ)アクリル化合物としては、アクリル酸エステル及びメタクリル酸エステルが好ましく、アクリル酸エステルが特に好ましい。 From the viewpoint of enhancing the adhesion between the optical film and other members, acrylic acid and methacrylic acid are preferable as the (meth)acrylic compound, and acrylic acid is particularly preferable. From the viewpoint of suppressing the hygroscopicity of the optical film and improving the water resistance and water vapor barrier properties, the (meth)acrylic compound is preferably an acrylic acid ester or a methacrylic acid ester, and particularly preferably an acrylic acid ester.
 (メタ)アクリル化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。よって、特定共重合体は、(メタ)アクリル化合物単位を1種類のみ含んでいてもよく、2種類以上含んでいてもよい。 The (meth)acrylic compound may be used singly or in combination of two or more. Therefore, the specific copolymer may contain only one type of (meth)acrylic compound unit, or may contain two or more types.
 特定共重合体における(メタ)アクリル化合物単位の割合は、特定共重合体100重量%に対して、通常5重量%以上、好ましくは10重量%以上、特に好ましくは15重量%以上であり、通常40重量%以下、好ましくは35重量%以下、特に好ましくは30重量%以下である。(メタ)アクリル化合物単位の割合が前記範囲にある場合、光学膜のレターデーション発現性及びデラミネーション耐性を特に優れるものにできる。特に、(メタ)アクリル化合物単位の割合が前記下限値以上である場合、光学膜のデラミネーション耐性を効果的に高めることができる。 The ratio of (meth)acrylic compound units in the specific copolymer is usually 5% by weight or more, preferably 10% by weight or more, particularly preferably 15% by weight or more, relative to 100% by weight of the specific copolymer. 40% by weight or less, preferably 35% by weight or less, particularly preferably 30% by weight or less. When the ratio of the (meth)acrylic compound unit is within the above range, the optical film can have particularly excellent retardation expressibility and delamination resistance. In particular, when the ratio of the (meth)acrylic compound units is equal to or higher than the lower limit, the delamination resistance of the optical film can be effectively increased.
 特定共重合体における(メタ)アクリル化合物単位の割合は、例えば、(メタ)アクリル化合物の仕込み比によって調整できる。ここで、(メタ)アクリル化合物の仕込み比とは、特定共重合体の単量体全体に占める(メタ)アクリル化合物の量の比を表す。通常は、特定共重合体における(メタ)アクリル化合物単位の割合は、(メタ)アクリル化合物の仕込み比に一致しうる。 The ratio of (meth)acrylic compound units in the specific copolymer can be adjusted, for example, by the charging ratio of the (meth)acrylic compound. Here, the charge ratio of the (meth)acrylic compound represents the ratio of the amount of the (meth)acrylic compound to the total monomers of the specific copolymer. Usually, the ratio of (meth)acrylic compound units in the specific copolymer can match the charge ratio of the (meth)acrylic compound.
 特定共重合体は、多環芳香族ビニル化合物単位及び(メタ)アクリル化合物単位に組み合わせて、任意の構造単位を含んでいてもよい。任意の構造単位は、通常、多環芳香族ビニル化合物単位及び(メタ)アクリル化合物単位とは異なる構造を有する。例えば、任意の構造単位は、炭素-炭素不飽和結合を含有する多環芳香族ビニル化合物及び(メタ)アクリル化合物以外の任意の化合物を重合して形成される構造を有しうる。 The specific copolymer may contain any structural unit in combination with the polycyclic aromatic vinyl compound unit and the (meth)acrylic compound unit. Any structural unit usually has a structure different from the polycyclic aromatic vinyl compound unit and the (meth)acrylic compound unit. For example, any structural unit can have a structure formed by polymerizing any compound other than a polycyclic aromatic vinyl compound containing a carbon-carbon unsaturated bond and a (meth)acrylic compound.
 特定共重合体は、特定の範囲の重量平均分子量Mwを有することが好ましい。具体的には、特定共重合体の重量平均分子量Mwの範囲は、好ましくは5万以上、より好ましくは10万以上であり、好ましくは50万以下、より好ましくは30万以下である。特定共重合体の重量平均分子量Mwが前記の範囲にある場合、光学膜のレターデーション発現性及びデラミネーション耐性を特に優れるものにできる。 The specific copolymer preferably has a weight average molecular weight Mw within a specific range. Specifically, the weight average molecular weight Mw of the specific copolymer is preferably 50,000 or more, more preferably 100,000 or more, and preferably 500,000 or less, more preferably 300,000 or less. When the weight-average molecular weight Mw of the specific copolymer is within the above range, the optical film can have particularly excellent retardation expressibility and delamination resistance.
 重合体の重量平均分子量Mwは、溶媒としてシクロヘキサンを用いたゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリイソプレン換算またはポリスチレン換算で測定できる。重合体がシクロヘキサンに溶解しない場合、GPCの溶媒としてトルエンを用いてもよい。 The weight average molecular weight Mw of the polymer can be measured in terms of polyisoprene or polystyrene by gel permeation chromatography (GPC) using cyclohexane as a solvent. Toluene may be used as a solvent for GPC if the polymer is not soluble in cyclohexane.
 特定共重合体は、特定の範囲のガラス転移温度Tgを有することが好ましい。具体的には、特定共重合体のガラス転移温度Tgの範囲は、好ましくは110℃以上、より好ましくは115℃以上、特に好ましくは120℃以上であり、好ましくは180℃以下、より好ましくは170℃以下、特に好ましくは160℃以下である。特定共重合体の重量平均分子量Mwが前記の範囲にある場合、光学膜のレターデーション発現性及びデラミネーション耐性を特に優れるものにできる。特定共重合体のガラス転移温度Tgの前記範囲は、その特定共重合体を含む特定樹脂のガラス転移温度の範囲と同じであってもよい。 The specific copolymer preferably has a glass transition temperature Tg within a specific range. Specifically, the glass transition temperature Tg of the specific copolymer is preferably 110° C. or higher, more preferably 115° C. or higher, particularly preferably 120° C. or higher, and preferably 180° C. or lower, more preferably 170° C. °C or less, particularly preferably 160°C or less. When the weight-average molecular weight Mw of the specific copolymer is within the above range, the optical film can have particularly excellent retardation expressibility and delamination resistance. The range of the glass transition temperature Tg of the specific copolymer may be the same as the range of the glass transition temperature of the specific resin containing the specific copolymer.
 ガラス転移温度Tgは、示差走査熱量計(日立ハイテクサイエンス社製「DSC7000X」)を用いて、昇温速度10℃/分の条件で測定しうる。このガラス転移温度Tgの測定は、JIS K 6911に基づいて行いうる。 The glass transition temperature Tg can be measured using a differential scanning calorimeter ("DSC7000X" manufactured by Hitachi High-Tech Science Co., Ltd.) under the condition of a heating rate of 10°C/min. This glass transition temperature Tg can be measured based on JIS K 6911.
 特定共重合体は、通常、負の固有複屈折値を有する。したがって、その特定共重合体を含む特定樹脂も、負の固有複屈折値を有しうる。 A specific copolymer usually has a negative intrinsic birefringence value. Therefore, a particular resin containing that particular copolymer can also have a negative intrinsic birefringence value.
 特定共重合体の製造方法は、特段の制限はない。特定共重合体は、例えば、多環芳香族ビニル化合物及び(メタ)アクリル化合物、並びに、必要に応じて任意の化合物を共重合させることを含む方法によって、製造できる。この共重合の際、必要に応じて、重合開始剤を用いてもよい。重合開始剤としては、例えば、過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイド等の有機過酸化物;α,α’-アゾビスイソブチロニトリル等のアゾ化合物;過硫酸アンモニウム;並びに過硫酸カリウムなどを用いうる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 There are no particular restrictions on the method of manufacturing the specific copolymer. The specific copolymer can be produced, for example, by a method including copolymerizing a polycyclic aromatic vinyl compound, a (meth)acrylic compound, and, if necessary, any compound. In this copolymerization, a polymerization initiator may be used as necessary. Examples of polymerization initiators include organic compounds such as lauroyl peroxide, diisopropylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate, t-butylperoxypivalate, and 3,3,5-trimethylhexanoyl peroxide. Peroxides; azo compounds such as α,α'-azobisisobutyronitrile; ammonium persulfate; and potassium persulfate. One polymerization initiator may be used alone, or two or more polymerization initiators may be used in combination at an arbitrary ratio.
 光学膜を形成する特定樹脂に含まれる特定共重合体の割合は、特定樹脂100重量%に対して、好ましくは80重量%以上、より好ましくは90重量%以上、更に好ましくは95重量%以上である。特定樹脂は、特定共重合体のみを含んでいてもよい。よって、光学膜は、特定共重合体のみを含んでいてもよい。 The ratio of the specific copolymer contained in the specific resin forming the optical film is preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 95% by weight or more with respect to 100% by weight of the specific resin. be. The specific resin may contain only the specific copolymer. Therefore, the optical film may contain only the specific copolymer.
<3.任意の成分>
 光学膜を形成する特定樹脂は、特定共重合体に組み合わせて、更に任意の成分を含んでいてもよい。任意の成分としては、例えば、酸化防止剤、熱安定剤、光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤等の安定剤;可塑剤;等が挙げられる。任意の成分は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
<3. Optional component>
The specific resin forming the optical film may further contain optional components in combination with the specific copolymer. Examples of optional components include stabilizers such as antioxidants, heat stabilizers, light stabilizers, weather stabilizers, ultraviolet absorbers, and near-infrared absorbers; plasticizers; and the like. One type of optional component may be used alone, or two or more types may be used in combination.
<4.光学膜の特性及び寸法>
 光学膜は、高いレターデーション発現性を有することができる。光学膜のレターデーション発現性は、光学膜の面内レターデーションReと厚みdとの比Re/dで表すことができる。面内レターデーションReの測定波長は、別に断らない限り、550nmである。光学膜の比Re/dは、具体的には、好ましくは、10.0×10-3以上、より好ましくは11.0×10-3以上、更に好ましくは12.0×10-3以上、特に好ましくは13.0×10-3以上である。光学膜の比Re/dの上限は、特段の制限はなく、例えば、20.0×10-3以下、18.0×10-3以下、16.0×10-3以下などでありうる。
<4. Characteristics and Dimensions of Optical Film>
The optical film can have high retardation expressibility. The retardation development property of an optical film can be represented by the ratio Re/d between the in-plane retardation Re and the thickness d of the optical film. The measurement wavelength of the in-plane retardation Re is 550 nm unless otherwise specified. Specifically, the ratio Re/d of the optical film is preferably 10.0×10 −3 or more, more preferably 11.0×10 −3 or more, still more preferably 12.0×10 −3 or more, Particularly preferably, it is 13.0×10 −3 or more. The upper limit of the ratio Re/d of the optical film is not particularly limited, and may be, for example, 20.0×10 −3 or less, 18.0×10 −3 or less, or 16.0×10 −3 or less.
 光学膜は、高いデラミネーション耐性を有することができる。光学膜のデラミネーション耐性は、ある部材に光学膜を接着した後に当該部材を剥離するために要する力の大きさで表すことができる。この力を、以下「ピール強度」ということがある。ピール強度の範囲は、具体的には、好ましくは1.0N/15mm以上、より好ましくは2.0N/15mm以上、特に好ましくは5.0N/15mm以上である。光学膜のピール強度の上限は、特段の制限はなく、例えば、20.0N/15mm以下、15.0N/15mm以下等でありうる。光学膜のピール強度は、後述する実施例の<デラミネーション耐性の測定方法>に記載の方法によって測定しうる。 The optical film can have high delamination resistance. The delamination resistance of an optical film can be expressed by the amount of force required to peel off a member after the optical film has been adhered to the member. This force may be hereinafter referred to as "peel strength". Specifically, the peel strength range is preferably 1.0 N/15 mm or more, more preferably 2.0 N/15 mm or more, and particularly preferably 5.0 N/15 mm or more. The upper limit of the peel strength of the optical film is not particularly limited, and may be, for example, 20.0 N/15 mm or less, 15.0 N/15 mm or less. The peel strength of the optical film can be measured by the method described in <Method for measuring delamination resistance> in Examples described later.
 光学膜は、その用途に応じた面内レターデーションを有することが好ましい。
 例えば、光学膜は、小さい面内レターデーションを有していてもよい。具体例を挙げると、光学膜の測定波長550nmにおける面内レターデーションReは、例えば、10nm以下、7nm以下、5nm以下などであってもよく、0nmであってもよい。光学膜はレターデーション発現性以外にも優れた利点を有するから、例えば、レターデーション発現性以外の利点を活用する用途に用いる場合に、光学膜は、前記のように小さい面内レターデーションReを有する光学等方性の膜であってもよい。また、光学膜は、面内レターデーションReが前記のように小さい一方で、大きな厚み方向のレターデーションRthを有する光学異方性の膜であってもよい。
The optical film preferably has an in-plane retardation suitable for its application.
For example, the optical film may have low in-plane retardation. As a specific example, the in-plane retardation Re of the optical film at a measurement wavelength of 550 nm may be, for example, 10 nm or less, 7 nm or less, 5 nm or less, or 0 nm. Since the optical film has excellent advantages other than the retardation expressibility, for example, when the optical film is used for an application that utilizes the advantages other than the retardation expressibility, the optical film should have a small in-plane retardation Re as described above. It may be an optically isotropic film having a The optical film may be an optically anisotropic film having a small in-plane retardation Re as described above and a large retardation Rth in the thickness direction.
 光学膜の面内レターデーションReは、例えば、当該光学膜がλ/4板として機能できる範囲にあってもよい。光学膜がλ/4板として機能できる場合、その光学膜の測定波長550nmにおける面内レターデーションReは、好ましくは80nm以上、より好ましくは100nm、特に好ましくは110nm以上であり、好ましくは170nm以下、より好ましくは150nm以下、特に好ましくは140nm以下である。 The in-plane retardation Re of the optical film may be, for example, within a range in which the optical film can function as a λ/4 plate. When the optical film can function as a λ/4 plate, the in-plane retardation Re of the optical film at a measurement wavelength of 550 nm is preferably 80 nm or more, more preferably 100 nm, particularly preferably 110 nm or more, and preferably 170 nm or less. It is more preferably 150 nm or less, particularly preferably 140 nm or less.
 光学膜の面内レターデーションReは、例えば、当該光学膜がλ/2板として機能できる範囲にあってもよい。光学膜がλ/2板として機能できる場合、その光学膜の測定波長550nmにおける面内レターデーションReは、好ましくは220nm以上、より好ましくは240nm、特に好ましくは250nm以上であり、好ましくは310nm以下、より好ましくは290nm以下、特に好ましくは280nm以下である。 The in-plane retardation Re of the optical film may be, for example, within a range in which the optical film can function as a λ/2 plate. When the optical film can function as a λ/2 plate, the in-plane retardation Re of the optical film at a measurement wavelength of 550 nm is preferably 220 nm or more, more preferably 240 nm, particularly preferably 250 nm or more, and preferably 310 nm or less. It is more preferably 290 nm or less, particularly preferably 280 nm or less.
 光学膜は、遅相軸を有していてもよい。光学膜の遅相軸の方向に特段の制限はない。例えば、長尺の光学膜の遅相軸は、その光学膜の幅方向に平行でもよく、垂直でもよい。また、長尺の光学膜の遅相軸は、その光学膜の幅方向に対して45°に近い範囲の角度をなしていてもよい。具体例を挙げると、長尺の光学膜の遅相軸がその光学膜の幅方向に対してなす角度は、好ましくは40°以上、より好ましくは42°以上、更に好ましくは43°以上、特に好ましくは44°以上でありえ、好ましくは50°以下、より好ましくは48°以下、更に好ましくは47°以下、特に好ましくは46°以下でありえる。 The optical film may have a slow axis. There is no particular limitation on the direction of the slow axis of the optical film. For example, the slow axis of the long optical film may be parallel or perpendicular to the width direction of the optical film. Further, the slow axis of the elongated optical film may form an angle in the range close to 45° with respect to the width direction of the optical film. As a specific example, the angle formed by the slow axis of the long optical film with respect to the width direction of the optical film is preferably 40° or more, more preferably 42° or more, still more preferably 43° or more, particularly It can be preferably 44° or more, preferably 50° or less, more preferably 48° or less, even more preferably 47° or less, and particularly preferably 46° or less.
 光学膜の全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上である。全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定できる。 The total light transmittance of the optical film is preferably 80% or higher, more preferably 85% or higher, and particularly preferably 90% or higher. The total light transmittance can be measured in a wavelength range of 400 nm to 700 nm using an ultraviolet/visible spectrometer.
 光学膜のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。ヘイズは、JIS K7361-1997に準拠して、ヘイズメーターを用いて測定できる。 The haze of the optical film is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%. Haze can be measured using a haze meter in accordance with JIS K7361-1997.
 光学膜は、枚葉の膜であってもよく、長尺の膜であってもよい。 The optical film may be a sheet film or a long film.
 光学膜の厚みに特に制限は無いが、優れたレターデーション発現性を活用して薄い光学膜を得る観点では、薄いことが好ましい。光学膜の具体的な厚みの範囲は、好ましくは0.5μm以上、より好ましくは1μm以上、特に好ましくは5μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、特に好ましくは70μm以下である。 Although there is no particular limitation on the thickness of the optical film, it is preferably thin from the viewpoint of obtaining a thin optical film by utilizing excellent retardation expression. The specific thickness range of the optical film is preferably 0.5 µm or more, more preferably 1 µm or more, particularly preferably 5 µm or more, and preferably 100 µm or less, more preferably 80 µm or less, and particularly preferably 70 µm or less. .
 上述した光学膜の用途に制限は無い。光学膜は、それ単独又は他の部材と組み合わせて、光学分野の広範な用途に使用しうる。光学膜の用途の例としては、位相差フィルム、視野角補償フィルム、偏光板保護フィルム、などが挙げられる。中でも、光学膜は、デラミネーション耐性に優れる点を有効に活用する観点から、基材フィルムと組み合わせて複層フィルムとして用いることが好ましい。 There are no restrictions on the uses of the optical film described above. Optical films, alone or in combination with other components, can be used in a wide variety of applications in the optical field. Examples of applications of optical films include retardation films, viewing angle compensation films, polarizing plate protective films, and the like. Among them, the optical film is preferably used as a multilayer film in combination with the base film from the viewpoint of effectively utilizing the excellent delamination resistance.
<5.光学膜の製造方法>
 光学膜の製造方法は、特に制限されない。光学膜は、例えば、射出成形法、押出成形法、プレス成形法、インフレーション成形法、ブロー成形法、カレンダー成形法、注型成形法、圧縮成形法等の樹脂成型法によって特定樹脂を成型することを含む方法によって、製造できる。また、光学膜は、例えば、適切な面に特定樹脂及び溶媒を含む塗工液を塗工すること、及び、塗工された塗工液を乾燥して溶媒を除去すること、を含む方法によって、製造してもよい。
<5. Method for producing an optical film>
A method for manufacturing the optical film is not particularly limited. The optical film is formed by molding a specific resin by a resin molding method such as injection molding, extrusion molding, press molding, inflation molding, blow molding, calendar molding, cast molding, compression molding, and the like. It can be manufactured by a method including In addition, the optical film is formed by a method including, for example, applying a coating liquid containing a specific resin and a solvent to an appropriate surface, and drying the applied coating liquid to remove the solvent. , may be manufactured.
 光学膜の製造方法は、光学膜を延伸することを含んでいてもよい。延伸によれば、光学膜に所望のレターデーションを発現させたり、光学膜の厚みを調整したりできる。延伸方向に制限はなく、例えば、長手方向、幅方向、斜め方向などが挙げられる。ここで、斜め方向とは、厚み方向に対して垂直な方向であって、幅方向に平行でもなく垂直でもない方向を表す。また、延伸方向は、一方向でもよく、二以上の方向でもよい。よって、延伸方法としては、例えば、光学膜を長手方向に一軸延伸する方法(縦一軸延伸法)、光学膜を幅方向に一軸延伸する方法(横一軸延伸法)等の、一軸延伸法;光学膜を長手方向に延伸すると同時に幅方向に延伸する同時二軸延伸法、光学膜を長手方向及び幅方向の一方に延伸した後で他方に延伸する逐次二軸延伸法等の、二軸延伸法;光学膜を斜め方向に延伸する方法(斜め延伸法);などが挙げられる。 The method for manufacturing the optical film may include stretching the optical film. By stretching, the desired retardation can be expressed in the optical film and the thickness of the optical film can be adjusted. There are no restrictions on the stretching direction, and examples thereof include the longitudinal direction, the width direction, and the oblique direction. Here, the oblique direction means a direction perpendicular to the thickness direction and neither parallel nor perpendicular to the width direction. Moreover, the stretching direction may be one direction or two or more directions. Therefore, the stretching method includes, for example, a method of uniaxially stretching an optical film in the longitudinal direction (longitudinal uniaxial stretching method), a method of uniaxially stretching an optical film in the width direction (horizontal uniaxial stretching method), and the like. Biaxial stretching methods such as a simultaneous biaxial stretching method in which the film is stretched in the longitudinal direction and the width direction at the same time, and a sequential biaxial stretching method in which the optical film is stretched in one of the longitudinal direction and the width direction and then stretched in the other direction. a method of stretching an optical film in an oblique direction (diagonal stretching method); and the like.
 延伸倍率は、好ましくは1.1倍以上、より好ましくは1.2倍以上であり、好ましくは5.0倍以下、より好ましくは3.0倍以下、特に好ましくは2.0倍以下である。
 延伸温度は、好ましくは「Tg-5℃」以上、より好ましくは「Tg+5℃」以上であり、好ましくは「Tg+50℃」以下、より好ましくは「Tg+30℃」以下である。ここで、「Tg」は特定共重合体のガラス転移温度を表す。
The draw ratio is preferably 1.1 times or more, more preferably 1.2 times or more, preferably 5.0 times or less, more preferably 3.0 times or less, and particularly preferably 2.0 times or less. .
The stretching temperature is preferably “Tg−5° C.” or higher, more preferably “Tg+5° C.” or higher, and preferably “Tg+50° C.” or lower, more preferably “Tg+30° C.” or lower. Here, "Tg" represents the glass transition temperature of the specific copolymer.
<6.複層フィルム>
 本発明の一実施形態に係る複層フィルムは、基材フィルムと、上述した光学膜と、を備える。
<6. Multilayer film>
A multilayer film according to one embodiment of the present invention includes a base film and the optical film described above.
 基材フィルムとしては、樹脂フィルムを用いうる。よって、基材フィルムは、通常は樹脂を含み、好ましくは樹脂のみを含む。樹脂フィルムを形成する樹脂は、熱可塑性樹脂が好ましく、正の固有複屈折値を有する熱可塑性樹脂がより好ましい。 A resin film can be used as the base film. Therefore, the base film usually contains a resin, preferably only a resin. The resin forming the resin film is preferably a thermoplastic resin, more preferably a thermoplastic resin having a positive intrinsic birefringence value.
 基材フィルムを形成する樹脂は、通常、重合体を含む。基材フィルムを形成する樹脂が正の固有複屈折値を有することが好ましいので、その樹脂に含まれる重合体も、正の固有複屈折値を有することが好ましい。正の固有複屈折値を有する重合体としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル;ポリフェニレンサルファイド等のポリアリーレンサルファイド;ポリビニルアルコール;ポリカーボネート;ポリアリレート;セルロースエステル;ポリエーテルスルホン;ポリスルホン;ポリアリルサルホン;ポリ塩化ビニル;脂環式構造含有重合体;棒状液晶ポリマー;などが挙げられる。これらの重合体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。中でも、脂環式構造含有重合体、セルロースエステル、及びポリカーボネートが好ましく、脂環式構造含有重合体が特に好ましい。 The resin that forms the base film usually contains a polymer. Since the resin forming the base film preferably has a positive intrinsic birefringence value, the polymer contained in the resin also preferably has a positive intrinsic birefringence value. Examples of polymers having a positive intrinsic birefringence value include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyarylene sulfides such as polyphenylene sulfide; polyvinyl alcohol; polyether sulfone; polysulfone; polyallyl sulfone; polyvinyl chloride; alicyclic structure-containing polymer; These polymers may be used singly or in combination of two or more. Among them, alicyclic structure-containing polymers, cellulose esters, and polycarbonates are preferred, and alicyclic structure-containing polymers are particularly preferred.
 脂環式構造含有重合体は、繰り返し単位中に脂環式構造を含有する重合体であり、通常は非晶質の重合体である。脂環式構造含有重合体としては、主鎖中に脂環式構造を含有する重合体、及び、側鎖に脂環式構造を含有する重合体、のいずれも用いうる。脂環式構造としては、例えば、シクロアルカン構造、シクロアルケン構造が挙げられるが、熱安定性の観点から、シクロアルカン構造が好ましい。1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上、特に好ましくは6個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。 A polymer containing an alicyclic structure is a polymer containing an alicyclic structure in a repeating unit, and is usually an amorphous polymer. As the alicyclic structure-containing polymer, both a polymer containing an alicyclic structure in the main chain and a polymer containing an alicyclic structure in the side chain can be used. Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferable from the viewpoint of thermal stability. The number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, particularly preferably 6 or more, preferably 30 or less, more preferably 20 or less, Particularly preferably, it is 15 or less.
 脂環式構造含有重合体において、脂環式構造を含有する繰り返し単位の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造を含有する繰り返し単位の割合が前記範囲にある場合、耐熱性に優れる複層フィルムを得ることができる。 In the alicyclic structure-containing polymer, the proportion of repeating units containing an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more. When the proportion of repeating units containing an alicyclic structure is within the above range, a multilayer film with excellent heat resistance can be obtained.
 脂環式構造含有重合体としては、例えば、(1)ノルボルネン系重合体、(2)単環の環状オレフィン重合体、(3)環状共役ジエン重合体、(4)ビニル脂環式炭化水素重合体、及びこれらの水素添加物などが挙げられる。これらの中でも、環状オレフィン重合体及びノルボルネン系重合体が好ましく、ノルボルネン系重合体が特に好ましい。ノルボルネン系重合体としては、例えば、ノルボルネン構造を含有するモノマーの開環重合体、ノルボルネン構造を含有するモノマーと開環共重合可能なその他のモノマーとの開環共重合体、及び、それらの水素化物;ノルボルネン構造を含有するモノマーの付加重合体、ノルボルネン構造を含有するモノマーと共重合可能なその他のモノマーとの付加共重合体などが挙げられる。これらの中でも、透明性の観点から、ノルボルネン構造を含有するモノマーの開環重合体の水素化物が特に好ましい。前記の脂環式構造含有重合体は、例えば特開2002-321302号公報に開示されている重合体から選択されうる。 Examples of alicyclic structure-containing polymers include (1) norbornene polymers, (2) monocyclic cyclic olefin polymers, (3) cyclic conjugated diene polymers, and (4) vinyl alicyclic hydrocarbon polymers. coalescence, hydrogenated products thereof, and the like. Among these, cyclic olefin polymers and norbornene-based polymers are preferred, and norbornene-based polymers are particularly preferred. Norbornene-based polymers include, for example, ring-opening polymers of monomers containing a norbornene structure, ring-opening copolymers of monomers containing a norbornene structure and other ring-opening copolymerizable monomers, and their hydrogen compounds: addition polymers of norbornene structure-containing monomers, addition copolymers of norbornene structure-containing monomers and other copolymerizable monomers, and the like. Among these, a hydride of a ring-opening polymer of a monomer containing a norbornene structure is particularly preferable from the viewpoint of transparency. The alicyclic structure-containing polymer can be selected from polymers disclosed in JP-A-2002-321302, for example.
 基材フィルムを形成する樹脂に含まれる重合体の重量平均分子量Mwの範囲は、好ましくは10,000以上、より好ましくは15,000以上、特に好ましくは20,000以上であり、好ましくは100,000以下、より好ましくは80,000以下、特に好ましくは50,000以下である。重量平均分子量Mwが前記の範囲にある場合、基材フィルムの機械的強度及び成型加工性が高度にバランスされる。 The range of the weight average molecular weight Mw of the polymer contained in the resin forming the base film is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, preferably 100, 000 or less, more preferably 80,000 or less, and particularly preferably 50,000 or less. When the weight average molecular weight Mw is within the above range, the mechanical strength and moldability of the base film are highly balanced.
 基材フィルムを形成する樹脂に含まれる重合体の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、好ましくは1.2以上、より好ましくは1.5以上、特に好ましくは1.8以上であり、好ましくは3.5以下、より好ましくは3.0以下、特に好ましくは2.7以下である。分子量分布が前記範囲の下限値以上である場合、重合体の生産性を高め、製造コストを抑制できる。また、分子量分布が上限値以下である場合、低分子成分の量が小さくなるので、高温曝露時の緩和を抑制して、基材フィルムの安定性を高めることができる。 The molecular weight distribution (weight average molecular weight (Mw)/number average molecular weight (Mn)) of the polymer contained in the resin forming the base film is preferably 1.2 or more, more preferably 1.5 or more, and particularly preferably It is 1.8 or more, preferably 3.5 or less, more preferably 3.0 or less, and particularly preferably 2.7 or less. When the molecular weight distribution is at least the lower limit of the above range, the productivity of the polymer can be enhanced and the production cost can be suppressed. Further, when the molecular weight distribution is equal to or less than the upper limit, the amount of low-molecular-weight components is small, so relaxation during high-temperature exposure can be suppressed, and the stability of the base film can be enhanced.
 基材フィルムを形成する樹脂における重合体の割合は、好ましくは50重量%~100重量%、より好ましくは70重量%~100重量%、特に好ましくは90重量%~100重量%である。重合体の割合が前記範囲にある場合、基材フィルムが高い耐熱性及び透明性を有することができる。 The proportion of the polymer in the resin forming the base film is preferably 50% to 100% by weight, more preferably 70% to 100% by weight, and particularly preferably 90% to 100% by weight. When the proportion of the polymer is within the above range, the base film may have high heat resistance and transparency.
 基材フィルムを形成する樹脂は、重合体に組み合わせて、更に任意の成分を含んでいてもよい。任意の成分としては、例えば、光学膜が含みうる任意の成分と同じ例が挙げられる。任意の成分は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 The resin forming the base film may further contain optional components in combination with the polymer. Optional components include, for example, the same examples as optional components that the optical film may contain. One type of optional component may be used alone, or two or more types may be used in combination.
 基材フィルムを形成する樹脂のガラス転移温度Tgは、好ましくは110℃以上、より好ましくは115℃以上、特に好ましくは120℃以上であり、好ましくは180℃以下、より好ましくは170℃以下、特に好ましくは160℃以下でありうる。樹脂のガラス転移温度は、重合体のガラス転移温度と同じ方法によって測定できる。 The glass transition temperature Tg of the resin forming the base film is preferably 110° C. or higher, more preferably 115° C. or higher, particularly preferably 120° C. or higher, preferably 180° C. or lower, more preferably 170° C. or lower, especially Preferably, it may be 160° C. or less. The glass transition temperature of the resin can be measured by the same method as the glass transition temperature of the polymer.
 基材フィルムは、複層フィルムの用途に応じた面内レターデーションを有することが好ましい。
 例えば、基材フィルムは、小さい面内レターデーションを有していてもよい。具体例を挙げると、基材フィルムの測定波長550nmにおける面内レターデーションReは、例えば、10nm以下、7nm以下、5nm以下などであってもよく、0nmであってもよい。このように小さい面内レターデーションを有する基材フィルムは、面内方向において光学等方性のフィルムでありうる。
The substrate film preferably has an in-plane retardation suitable for the use of the multilayer film.
For example, the base film may have small in-plane retardation. As a specific example, the in-plane retardation Re of the substrate film at a measurement wavelength of 550 nm may be, for example, 10 nm or less, 7 nm or less, 5 nm or less, or 0 nm. A substrate film having such a small in-plane retardation can be an optically isotropic film in the in-plane direction.
 また、例えば、基材フィルムの測定波長550nmにおける面内レターデーションReは、好ましくは80nm以上、より好ましくは100nm、特に好ましくは110nm以上でありえ、好ましくは170nm以下、より好ましくは150nm以下、特に好ましくは140nm以下でありうる。このような範囲の面内レターデーションを有する基材フィルムは、λ/4板として機能できる。 Further, for example, the in-plane retardation Re of the substrate film at a measurement wavelength of 550 nm is preferably 80 nm or more, more preferably 100 nm, particularly preferably 110 nm or more, preferably 170 nm or less, more preferably 150 nm or less, and particularly preferably can be 140 nm or less. A base film having an in-plane retardation in such a range can function as a λ/4 plate.
 さらに、例えば、基材フィルムの測定波長550nmにおける面内レターデーションReは、好ましくは220nm以上、より好ましくは240nm、特に好ましくは250nm以上でありえ、好ましくは310nm以下、より好ましくは290nm以下、特に好ましくは280nm以下でありうる。このような範囲の面内レターデーションを有する基材フィルムは、λ/2板として機能できる。 Furthermore, for example, the in-plane retardation Re of the substrate film at a measurement wavelength of 550 nm is preferably 220 nm or more, more preferably 240 nm, particularly preferably 250 nm or more, preferably 310 nm or less, more preferably 290 nm or less, and particularly preferably can be 280 nm or less. A base film having an in-plane retardation in such a range can function as a λ/2 plate.
 基材フィルムの面内レターデーションと光学膜の面内レターデーションとは、同じでもよく、異なっていてもよい。基材フィルムの面内レターデーションと光学膜の面内レターデーションとが異なる場合、それらの差は、特定の範囲にあってもよい。例えば、基材フィルムの面内レターデーションと光学膜の面内レターデーションとの差は、好ましくは100nm以上、より好ましくは110nm以上であり、好ましくは180nm以下、より好ましくは160nm以下でありうる。このとき、基材フィルムの面内レターデーションが光学膜の面内レターデーションより大きくてもよく、基材フィルムの面内レターデーションが光学膜の面内レターデーションより小さくてもよい。 The in-plane retardation of the base film and the in-plane retardation of the optical film may be the same or different. When the in-plane retardation of the base film and the in-plane retardation of the optical film are different, the difference between them may be within a specific range. For example, the difference between the in-plane retardation of the base film and the optical film may be preferably 100 nm or more, more preferably 110 nm or more, and preferably 180 nm or less, more preferably 160 nm or less. At this time, the in-plane retardation of the base film may be larger than the in-plane retardation of the optical film, or the in-plane retardation of the base film may be smaller than the in-plane retardation of the optical film.
 基材フィルムは、遅相軸を有していてもよい。基材フィルムの遅相軸の方向に特段の制限はない。例えば、基材フィルムの遅相軸は、光学膜の遅相軸に対して略垂直であってもよい。基材フィルムの遅相軸と光学膜の遅相軸とが「略垂直」とは、基材フィルムの遅相軸と光学膜の遅相軸とがなす角度が90°に近い範囲にあることを表す。具体例を挙げると、基材フィルムの遅相軸と光学膜の遅相軸とがなす角度は、好ましくは85°以上、より好ましくは87°以上、更に好ましくは88°以上、特に好ましくは89°以上でありえ、また、好ましくは95°以下、より好ましくは93°以下、更に好ましくは92°以下、特に好ましくは91°以下でありえる。 The base film may have a slow axis. There is no particular limitation on the direction of the slow axis of the substrate film. For example, the slow axis of the base film may be substantially perpendicular to the slow axis of the optical film. The slow axis of the base film and the slow axis of the optical film being “substantially perpendicular” means that the angle formed by the slow axis of the base film and the slow axis of the optical film is close to 90°. represents Specifically, the angle formed by the slow axis of the base film and the slow axis of the optical film is preferably 85° or more, more preferably 87° or more, still more preferably 88° or more, and particularly preferably 89°. ° or more, preferably 95° or less, more preferably 93° or less, still more preferably 92° or less, particularly preferably 91° or less.
 基材フィルムの厚みに特に制限は無い。基材フィルムの具体的な厚みの範囲は、好ましくは0.5μm以上、より好ましくは1μm以上、特に好ましくは5μm以上であり、好ましくは100μm以下、より好ましくは70μm以下、特に好ましくは50μm以下である。 There are no particular restrictions on the thickness of the base film. The specific thickness range of the base film is preferably 0.5 µm or more, more preferably 1 µm or more, particularly preferably 5 µm or more, and preferably 100 µm or less, more preferably 70 µm or less, and particularly preferably 50 µm or less. be.
 複層フィルムは、必要に応じて、基材フィルム及び光学膜以外の任意の層を備えていてもよい。任意の層の例としては、光学等方性を有する任意の層が挙げられる。この光学等方性を有する任意の層は、測定波長550nmにおける面内レターデーションが通常10nm以下でありうる。光学等方性を有する任意の層としては、例えば、基材フィルム及び光学膜を保護するための保護フィルム層;基材フィルム及び光学膜等の各層を接着する接着層;などが挙げられる。また、任意の層の別の例としては、光学異方性を有する任意の層が挙げられる。この光学異方性を有する任意の層の光学特性は、複層フィルムが全体として所望のレターデーションを有するように設定することが好ましい。具体例を挙げると、光学異方性を有する任意の層と、基材フィルム及び光学膜の一方又は両方との組み合わせが、λ/4板又はλ/2板として機能できるように、その任意の層の光学特性が設定されていてもよい。 The multilayer film may, if necessary, have any layers other than the base film and the optical film. Examples of optional layers include any layer having optical isotropy. Any layer having this optical isotropy can generally have an in-plane retardation of 10 nm or less at a measurement wavelength of 550 nm. The optional optically isotropic layer includes, for example, a protective film layer for protecting the substrate film and the optical film; an adhesive layer for bonding each layer such as the substrate film and the optical film; and the like. Another example of the arbitrary layer is an arbitrary layer having optical anisotropy. The optical properties of the optional layers having this optical anisotropy are preferably set so that the multilayer film as a whole has the desired retardation. As a specific example, a combination of any layer having optical anisotropy and one or both of the base film and the optical film can function as a λ/4 plate or a λ/2 plate. Optical properties of the layer may be set.
 複層フィルムは、その用途に応じた面内レターデーションを有することが好ましい。
 例えば、測定波長550nmにおける複層フィルムの面内レターデーションReの範囲は、好ましくは100nm以上、より好ましくは115nm以上、特に好ましくは125nm以上であり、また、好ましくは180nm以下、より好ましくは160nm以下、特に好ましくは150nm以下である。このような範囲の面内レターデーションReを有する複層フィルムは、λ/4板として機能できる。このような範囲の面内レターデーションを有する複層フィルムは、例えば、基材フィルムの面内レターデーション及び遅相軸方向並びに光学膜の面内レターデーション及び遅相軸方向を適切に調整することにより、得ることができる。
The multilayer film preferably has an in-plane retardation suitable for its application.
For example, the range of in-plane retardation Re of the multilayer film at a measurement wavelength of 550 nm is preferably 100 nm or more, more preferably 115 nm or more, particularly preferably 125 nm or more, and preferably 180 nm or less, more preferably 160 nm or less. , particularly preferably 150 nm or less. A multilayer film having an in-plane retardation Re within such a range can function as a λ/4 plate. A multilayer film having an in-plane retardation in such a range can be obtained, for example, by appropriately adjusting the in-plane retardation and slow axis direction of the base film and the in-plane retardation and slow axis direction of the optical film. can be obtained by
 測定波長450nm、550nm及び650nmにおける複層フィルムの面内レターデーションRe(450)、Re(550)及びRe(650)は、Re(450)<Re(550)の関係を満たすことが好ましく、Re(450)<Re(550)<Re(650)の関係を満たすことがより好ましい。このような関係を満たす面内レターデーションRe(450)、Re(550)及びRe(650)を有する複層フィルムは、逆波長分散性を示すことができる。具体的には、当該複層フィルムは、通常、測定波長が長いほど、大きい面内レターデーションを有することができる。よって、この複層フィルムは、広い波長範囲において、当該複層フィルムを透過する光の偏光状態を均一に変換できる広帯域波長板として機能できる。このような関係を満たす面内レターデーションRe(450)、Re(550)及びRe(650)を有する複層フィルムは、例えば、基材フィルムの面内レターデーション及び遅相軸方向並びに光学膜の面内レターデーション及び遅相軸方向を適切に調整することにより、得ることができる。 In-plane retardation Re (450), Re (550) and Re (650) of the multilayer film at measurement wavelengths of 450 nm, 550 nm and 650 nm preferably satisfy the relationship Re (450) < Re (550). More preferably, the relationship (450)<Re(550)<Re(650) is satisfied. A multilayer film having in-plane retardations Re(450), Re(550) and Re(650) satisfying such a relationship can exhibit reverse wavelength dispersion. Specifically, the multilayer film can generally have a larger in-plane retardation as the measurement wavelength is longer. Therefore, this multilayer film can function as a broadband wavelength plate capable of uniformly converting the polarization state of light passing through the multilayer film in a wide wavelength range. A multilayer film having in-plane retardations Re(450), Re(550) and Re(650) that satisfy such a relationship is, for example, the in-plane retardation and slow axis direction of the base film and the optical film. It can be obtained by appropriately adjusting the in-plane retardation and slow axis direction.
 複層フィルムの全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上である。
 複層フィルムのヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。
 複層フィルムは、枚葉のフィルムであってもよく、長尺のフィルムであってもよい。
The total light transmittance of the multilayer film is preferably 80% or higher, more preferably 85% or higher, and particularly preferably 90% or higher.
The haze of the multilayer film is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
The multilayer film may be a sheet film or a long film.
 複層フィルムの厚みに、特に制限は無い。複層フィルムの具体的な厚みは、好ましくは5μm以上、より好ましくは10μm以上、特に好ましくは15μm以上であり、好ましくは150μm以下、より好ましくは120μm以下、特に好ましくは80μm以下である。 There are no particular restrictions on the thickness of the multilayer film. The specific thickness of the multilayer film is preferably 5 µm or more, more preferably 10 µm or more, particularly preferably 15 µm or more, and preferably 150 µm or less, more preferably 120 µm or less, and particularly preferably 80 µm or less.
<7.複層フィルムの製造方法>
 複層フィルムの製造方法は、特に制限されない。複層フィルムは、例えば、基材フィルムを用意する工程と、光学膜を用意する工程と、それら基材フィルム及び光学膜を貼り合わせる工程と、を含む方法によって製造してもよい。また、複層フィルムは、例えば、基材フィルムを形成する樹脂と光学膜を形成する特定樹脂とを共押し出しする工程を含む方法によって製造してもよい。複層フィルムを高い生産性で製造する観点では、複層フィルムは、基材フィルム上に、特定共重合体を含む塗工液を塗工することを含む製造方法によって製造することが好ましい。以下、この好ましい製造方法について説明する。
<7. Method for producing multilayer film>
The method for producing the multilayer film is not particularly limited. The multilayer film may be produced, for example, by a method including a step of preparing a base film, a step of preparing an optical film, and a step of laminating the base film and the optical film. Also, the multilayer film may be produced by a method including, for example, a step of co-extrusion of the resin forming the base film and the specific resin forming the optical film. From the viewpoint of manufacturing a multilayer film with high productivity, the multilayer film is preferably manufactured by a manufacturing method including applying a coating liquid containing a specific copolymer onto a substrate film. This preferred manufacturing method will be described below.
 好ましい例に係る複層フィルムの製造方法は、基材フィルム上に、特定共重合体を含む塗工液を塗工することを含む。基材フィルムは、例えば、溶融成形法、溶液流延法によって製造できる。中でも、溶融成形法が好ましい。溶融成形法の中でも、押出成形法、インフレーション成形法又はプレス成形法が好ましく、押出成形法が特に好ましい。こうして製造される基材フィルムは、測定波長550nmにおける面内レターデーションが通常10nm以下の光学等方性のフィルムでありうる。光学等方性の基材フィルムに塗工液を塗工してもよい。また、必要に応じて塗工液の塗工前に基材フィルムを延伸して、基材フィルムに面内レターデーションを発現させてもよい。 A method for manufacturing a multilayer film according to a preferred example includes applying a coating liquid containing a specific copolymer onto a base film. The base film can be produced, for example, by a melt molding method or a solution casting method. Among them, the melt molding method is preferable. Among the melt molding methods, extrusion molding, inflation molding and press molding are preferred, and extrusion molding is particularly preferred. The substrate film thus produced can be an optically isotropic film having an in-plane retardation of usually 10 nm or less at a measurement wavelength of 550 nm. A coating liquid may be applied to an optically isotropic base film. Further, if necessary, the substrate film may be stretched before the application of the coating liquid to develop in-plane retardation in the substrate film.
 基材フィルムを用意した後で、その基材フィルム上に、特定共重合体を含む塗工液を塗工する。塗工液は、特定共重合体を含む液状組成物であり、特定共重合体と溶媒とを含みうる。また、塗工液は、特定共重合体及び溶媒に組み合わせて任意の成分を含んでいてもよい。溶媒としては、特定共重合体を溶解又は分散させうるものが好ましく、特定共重合体を溶解させうるものが特に好ましい。また、溶媒は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。塗工液における特定共重合体の濃度は、塗工液の粘度を塗工に適した範囲に収められるように調整することが好ましく、例えば1重量%~50重量%でありうる。 After preparing the base film, a coating liquid containing the specific copolymer is applied onto the base film. A coating liquid is a liquid composition containing a specific copolymer, and may contain a specific copolymer and a solvent. Moreover, the coating liquid may contain any component in combination with the specific copolymer and the solvent. As the solvent, those capable of dissolving or dispersing the specific copolymer are preferred, and those capable of dissolving the specific copolymer are particularly preferred. Moreover, a solvent may be used individually by 1 type, and may be used in combination of 2 or more types. The concentration of the specific copolymer in the coating liquid is preferably adjusted so that the viscosity of the coating liquid is within a range suitable for coating, and may be, for example, 1 wt % to 50 wt %.
 塗工液の塗工方法に制限は無い。塗工方法としては、例えば、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、ギャップコーティング法、及びディッピング法などが挙げられる。 There are no restrictions on the coating method of the coating liquid. Examples of coating methods include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating, and die coating. method, gap coating method, and dipping method.
 塗工液の塗工により、その塗工液の層が基材フィルム上に形成される。よって、必要に応じて塗工液を乾燥させて溶媒を除去することにより、基材フィルム上に特定共重合体を含む光学膜が形成されて、複層フィルムを得ることができる。乾燥方法に制限はなく、例えば、加熱乾燥、減圧乾燥などの乾燥方法を用いうる。 By applying the coating liquid, a layer of the coating liquid is formed on the base film. Therefore, by drying the coating liquid to remove the solvent as necessary, an optical film containing the specific copolymer is formed on the substrate film, and a multilayer film can be obtained. The drying method is not particularly limited, and drying methods such as heat drying and reduced pressure drying can be used.
 複層フィルムの製造方法は、必要に応じて、複層フィルムを延伸することを含んでいてもよい。以下の説明では、延伸される前の複層フィルムを「延伸前複層フィルム」と呼び、延伸された後の複層フィルムを「複層延伸フィルム」と呼ぶことがある。延伸は、1回のみ行ってもよく、2回以上行ってもよい。 The method for producing a multilayer film may include stretching the multilayer film, if necessary. In the following description, the multilayer film before being stretched may be referred to as "pre-stretching multilayer film", and the multilayer film after being stretched may be referred to as "multilayer stretched film". Stretching may be performed only once, or may be performed twice or more.
 延伸前複層フィルムの延伸倍率は、複層延伸フィルムに発現させたい光学特性に応じて設定しうる。延伸前複層フィルムの具体的な延伸倍率の範囲は、好ましくは1.05倍以上、より好ましくは1.1倍以上、更に好ましくは1.2倍以上、特に好ましくは1.3倍以上であり、好ましくは3.0倍以下、より好ましくは2.5倍以下、更に好ましくは2.0倍以下である。延伸を2回以上行う場合、各回の延伸の延伸倍率がそれぞれ前記の範囲にあることが好ましい。また、延伸を2回以上行う場合、各回の延伸の延伸倍率は、同じでもよく、異なっていてもよい。 The stretch ratio of the multilayer film before stretching can be set according to the optical properties that the multilayer stretched film is desired to exhibit. The range of the specific stretch ratio of the multilayer film before stretching is preferably 1.05 times or more, more preferably 1.1 times or more, still more preferably 1.2 times or more, and particularly preferably 1.3 times or more. It is preferably 3.0 times or less, more preferably 2.5 times or less, and still more preferably 2.0 times or less. When stretching is performed twice or more, it is preferable that the stretching ratio of each stretching is within the above range. Moreover, when extending|stretching twice or more, the draw ratio of each time of extending|stretching may be the same, and may differ.
 延伸前複層フィルムの延伸温度は、複層延伸フィルムに発現させたい光学特性に応じて設定しうる。延伸前複層フィルムの具体的な延伸温度の範囲は、好ましくはTg(low)-5℃以上、より好ましくはTg(low)-3℃以上、特に好ましくはTg(low)-1℃以上であり、好ましくはTg(high)+20℃以下、より好ましくはTg(high)+15℃以下、特に好ましくはTg(high)+12℃以下である。ここで、Tg(low)は、基材フィルムを形成する樹脂のガラス転移温度及び光学膜を形成する特定樹脂のガラス転移温度のうち低い方の温度を表し、Tg(high)は、基材フィルムを形成する樹脂のガラス転移温度及び光学膜を形成する特定樹脂のガラス転移温度のうち高い方の温度を表す。延伸を2回以上行う場合、各回の延伸の延伸温度は、同じでもよく、異なっていてもよい。 The stretching temperature of the multilayer film before stretching can be set according to the optical properties that the multilayer stretched film is desired to exhibit. The specific stretching temperature range of the multilayer film before stretching is preferably Tg(low)-5°C or higher, more preferably Tg(low)-3°C or higher, and particularly preferably Tg(low)-1°C or higher. It is preferably Tg(high)+20° C. or less, more preferably Tg(high)+15° C. or less, and particularly preferably Tg(high)+12° C. or less. Here, Tg (low) represents the lower one of the glass transition temperature of the resin forming the base film and the glass transition temperature of the specific resin forming the optical film, and Tg (high) is the base film. and the glass transition temperature of the specific resin forming the optical film, whichever is higher. When stretching is performed twice or more, the stretching temperature for each stretching may be the same or different.
 延伸前複層フィルムの延伸方向は、複層延伸フィルムに発現させたい光学特性に応じて設定しうる。また、延伸は、1方向のみに延伸を行う一軸延伸であってもよく、2方向に延伸を行う二軸延伸であってもよい。さらに、延伸を2回以上行う場合、各回の延伸の延伸方向は、同じでもよく、異なっていてもよい。例えば、ある第一の延伸方向に一軸延伸を行った後で、第一の延伸方向に対して略垂直な第二の延伸方向に一軸延伸を行ってもよい。具体的には、第一の延伸方向と第二の延伸方向とがなす角度の範囲は、好ましくは85°以上、より好ましくは87°以上、更に好ましくは88°以上、特に好ましくは89°以上でありえ、好ましくは95°以下、より好ましくは93°以下、更に好ましくは92°以下、特に好ましくは91°以下でありうる。 The stretching direction of the multilayer film before stretching can be set according to the optical properties that the multilayer stretched film is desired to exhibit. The stretching may be uniaxial stretching in which the film is stretched in only one direction, or may be biaxial stretching in which the film is stretched in two directions. Furthermore, when stretching is performed twice or more, the stretching direction of each stretching may be the same or different. For example, after uniaxially stretching in a certain first stretching direction, uniaxially stretching may be carried out in a second stretching direction substantially perpendicular to the first stretching direction. Specifically, the range of the angle formed by the first stretching direction and the second stretching direction is preferably 85° or more, more preferably 87° or more, still more preferably 88° or more, and particularly preferably 89° or more. preferably 95° or less, more preferably 93° or less, still more preferably 92° or less, and particularly preferably 91° or less.
 延伸前複層フィルムを延伸することを含む製造方法によれば、延伸によって基材フィルム及び光学膜の一方又は両方に複屈折を発現させうる。よって、所望の光学特性を有する複層延伸フィルムを得ることができる。 According to the manufacturing method including stretching the multilayer film before stretching, birefringence can be expressed in one or both of the base film and the optical film by stretching. Therefore, a multilayer stretched film having desired optical properties can be obtained.
 複層フィルムの製造方法は、上述した工程に組み合わせて、更に任意の工程を含んでいてもよい。例えば、長尺の複層フィルムを得た場合、複層フィルムの製造方法は、得られた複層フィルムを所望の形状に切り出すトリミング工程を含んでいてもよい。トリミング工程によれば、所望の形状を有する枚葉の複層フィルムが得られる。また、複層フィルムの製造方法は、例えば、複層フィルムに保護層を設ける工程を含んでいてもよい。 The method for producing a multilayer film may further include optional steps in combination with the steps described above. For example, when a long multilayer film is obtained, the method for manufacturing the multilayer film may include a trimming step of cutting the obtained multilayer film into a desired shape. According to the trimming process, a sheet-fed multilayer film having a desired shape can be obtained. Moreover, the method for producing a multilayer film may include, for example, a step of providing a protective layer on the multilayer film.
<8.偏光板>
 本発明の一実施形態に係る偏光板は、上述した実施形態に係る複層フィルムと偏光フィルムとを備える。
<8. Polarizing plate>
A polarizing plate according to one embodiment of the present invention includes the multilayer film and the polarizing film according to the above-described embodiments.
 偏光フィルムとしては、直線偏光子として機能しうるフィルムを用いうる。偏光フィルムの例としては、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるフィルム;ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるフィルム;が挙げられる。これらのうち、偏光フィルムとしては、ポリビニルアルコールを含有するフィルムが好ましい。 A film that can function as a linear polarizer can be used as the polarizing film. Examples of polarizing films include a film obtained by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film and then uniaxially stretching it in a boric acid bath; films obtained by stretching and further modifying some of the polyvinyl alcohol units in the molecular chain to polyvinylene units; Among these, a film containing polyvinyl alcohol is preferable as the polarizing film.
 偏光フィルムに自然光を入射させると、通常、一方の偏光だけが透過する。この偏光フィルムの偏光度は、特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。また、偏光フィルムの厚みは、好ましくは5μm~80μmである。 When natural light is incident on a polarizing film, normally only one polarized light is transmitted. Although the degree of polarization of this polarizing film is not particularly limited, it is preferably 98% or more, more preferably 99% or more. Further, the thickness of the polarizing film is preferably 5 μm to 80 μm.
 偏光板は、円偏光板として機能することが好ましい。この場合、複層フィルムは、λ/4板として機能できる面内レターデーションを有することが好ましい。また、偏光フィルムの偏光透過軸と、基材フィルム及び光学膜の一方又は両方の遅相軸とがなす角度が、45°に近い特定の範囲にあることが好ましい。具体的には、前記の角度は、好ましくは40°以上、より好ましくは42°以上、更に好ましくは43°以上、特に好ましくは44°以上であり、好ましくは50°以下、より好ましくは48°以下、更に好ましくは47°以下、特に好ましくは46°以下である。円偏光板として機能できる偏光板を画像表示装置の表示面に設けた場合、外光の反射を抑制できる。 The polarizing plate preferably functions as a circularly polarizing plate. In this case, the multilayer film preferably has an in-plane retardation that can function as a λ/4 plate. Moreover, it is preferable that the angle formed by the polarization transmission axis of the polarizing film and the slow axis of one or both of the substrate film and the optical film is within a specific range close to 45°. Specifically, the angle is preferably 40° or more, more preferably 42° or more, still more preferably 43° or more, particularly preferably 44° or more, preferably 50° or less, more preferably 48°. Below, more preferably 47° or less, particularly preferably 46° or less. When a polarizing plate that can function as a circularly polarizing plate is provided on the display surface of the image display device, reflection of external light can be suppressed.
 偏光板は、偏光フィルム、基材フィルム及び光学膜をこの順に備えていてもよい。また、偏光板は、偏光フィルム、光学膜及び基材フィルムをこの順に備えていてもよい。具体的な順は、基材フィルム及び光学膜の面内レターデーションに応じて設定しうる。 The polarizing plate may comprise a polarizing film, a base film and an optical film in this order. Also, the polarizing plate may comprise a polarizing film, an optical film and a substrate film in this order. A specific order can be set according to the in-plane retardation of the substrate film and the optical film.
 上述した偏光板は、更に、任意の層を含みうる。任意の層としては、例えば、偏光子保護フィルム層;偏光フィルム及び複層フィルムを貼り合わせるための接着層;耐衝撃性ポリメタクリレート樹脂層などのハードコート層;フィルムの滑り性を良くするマット層;反射抑制層;防汚層;帯電抑制層;等が挙げられる。これらの任意の層は、1層だけを設けてもよく、2層以上を設けてもよい。 The polarizing plate described above can further include any layer. Optional layers include, for example, a polarizer protective film layer; an adhesive layer for laminating a polarizing film and a multilayer film; a hard coat layer such as an impact-resistant polymethacrylate resin layer; antireflection layer; antifouling layer; antistatic layer; As for these optional layers, only one layer may be provided, or two or more layers may be provided.
<9.画像表示装置>
 上述した光学膜は、画像表示装置に設けうる。例えば、光学膜を備える偏光板を用意し、その偏光板を画像表示装置に設けてもよい。好ましい例としては、円偏光板として機能できる偏光板を備える有機EL画像表示装置(有機エレクトロルミネッセンス表示装置)が挙げられる。この有機EL画像表示装置は、円偏光板と、有機エレクトロルミネッセンス素子(以下、適宜「有機EL素子」ということがある。)と、を備える。この有機EL画像表示装置は、通常、偏光フィルム、複層フィルム及び有機EL素子を、この順に備える。
<9. Image display device>
The optical film described above can be provided in an image display device. For example, a polarizing plate having an optical film may be prepared and provided in the image display device. A preferred example is an organic EL image display device (organic electroluminescence display device) having a polarizing plate that can function as a circularly polarizing plate. This organic EL image display device includes a circularly polarizing plate and an organic electroluminescence element (hereinafter sometimes referred to as an "organic EL element" as appropriate). This organic EL image display device usually comprises a polarizing film, a multilayer film and an organic EL element in this order.
 有機EL素子は、通常、透明電極層、発光層及び電極層をこの順に備え、透明電極層及び電極層から電圧を印加されることにより発光層が光を生じうる。有機発光層を構成する材料の例としては、ポリパラフェニレンビニレン系、ポリフルオレン系、及びポリビニルカルバゾール系の材料を挙げることができる。また、発光層は、複数の発光色が異なる層の積層体、あるいはある色素の層に異なる色素がドーピングされた混合層を有していてもよい。さらに、有機EL素子は、正孔注入層、正孔輸送層、電子注入層、電子輸送層、等電位面形成層、電荷発生層等の機能層を備えていてもよい。 An organic EL element usually comprises a transparent electrode layer, a light-emitting layer and an electrode layer in this order, and the light-emitting layer can emit light when a voltage is applied from the transparent electrode layer and the electrode layer. Examples of materials constituting the organic light-emitting layer include polyparaphenylenevinylene-based, polyfluorene-based, and polyvinylcarbazole-based materials. Further, the light-emitting layer may have a laminate of layers emitting light of different colors, or a mixed layer in which a certain dye layer is doped with a different dye. Furthermore, the organic EL element may have functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface formation layer, and a charge generation layer.
 前記の有機EL画像表示装置は、表示面における外光の反射を抑制できる。具体的には、装置外部から入射した光は、その一部の直線偏光のみが偏光フィルムを通過し、次にそれが複層フィルムを通過することにより、円偏光となる。円偏光は、画像表示装置内の光を反射する構成要素(有機EL素子中の反射電極等)により反射され、再び複層フィルムを通過することにより、入射した直線偏光の振動方向と直交する振動方向を有する直線偏光となり、偏光フィルムを通過しなくなる。ここで、直線偏光の振動方向とは、直線偏光の電場の振動方向を意味する。これにより、反射抑制の機能が達成される。 The organic EL image display device can suppress reflection of external light on the display surface. Specifically, only a portion of linearly polarized light of the light incident from the outside of the device passes through the polarizing film, and then passes through the multilayer film to become circularly polarized light. Circularly polarized light is reflected by light-reflecting components (reflecting electrodes in organic EL elements, etc.) in the image display device, and passes through the multilayer film again, resulting in vibration perpendicular to the direction of vibration of the incident linearly polarized light. It becomes linearly polarized light with a direction and does not pass through the polarizing film. Here, the vibration direction of the linearly polarized light means the vibration direction of the electric field of the linearly polarized light. This achieves the antireflection function.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温(23℃)、常圧(1気圧)、大気中の条件において行った。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the examples shown below, and can be arbitrarily modified without departing from the scope of the claims and their equivalents.
In the following description, "%" and "parts" representing amounts are by weight unless otherwise specified. Further, the operations described below were carried out under normal temperature (23° C.), normal pressure (1 atm) conditions in the atmosphere, unless otherwise specified.
<重合体の分子量の測定方法>
 後述する実施例及び比較例で製造された重合体の重量平均分子量は、東ソー社製高速GPC装置「HLC-8420GPC」を用いてポリスチレン換算で測定した。
<Method for measuring molecular weight of polymer>
The weight average molecular weights of the polymers produced in Examples and Comparative Examples described later were measured in terms of polystyrene using a high-speed GPC apparatus "HLC-8420GPC" manufactured by Tosoh Corporation.
<重合体のガラス転移温度の測定方法>
 後述する実施例及び比較例で製造された重合体のガラス転移温度Tgは、示差走査熱量計(日立ハイテクサイエンス社製「DSC7000X」)を用いて10℃/minの昇温速度で測定した。
<Method for measuring glass transition temperature of polymer>
The glass transition temperatures Tg of the polymers produced in Examples and Comparative Examples described later were measured at a heating rate of 10°C/min using a differential scanning calorimeter (“DSC7000X” manufactured by Hitachi High-Tech Science).
<レターデーション発現性の測定方法>
 後述する実施例及び比較例で製造された重合体1gを、プレス機を用いて250℃、5MPa、1分の条件で加圧して、厚み100μmのシートを製造した。
<Method for measuring retardation expression>
A sheet having a thickness of 100 μm was produced by pressing 1 g of the polymer produced in Examples and Comparative Examples described later under conditions of 250° C., 5 MPa, and 1 minute using a press.
 得られたシートを切断し、50mm×100mmの大きさの矩形の延伸前フィルムとした。この延伸前フィルムに、自由幅一軸延伸を施した。延伸は、INSTRON社製の恒温槽付引張試験装置を用いて行った。延伸の条件は、延伸温度Tg+10℃、延伸倍率1.5倍、延伸速度33%毎分とした。この結果、光学膜としての位相差フィルムを得た。 The obtained sheet was cut into a rectangular pre-stretched film with a size of 50 mm x 100 mm. The unstretched film was subjected to free width uniaxial stretching. Stretching was performed using a tensile tester with a constant temperature bath manufactured by INSTRON. The stretching conditions were a stretching temperature of Tg+10° C., a stretching ratio of 1.5 times, and a stretching rate of 33% per minute. As a result, a retardation film was obtained as an optical film.
 得られた位相差フィルムは、位相差計(Axometrics社製「AxoScan」)を用いて、波長550nmにおける面内レターデーションReを測定した。得られた面内レターデーションReをフィルム厚みdで割り算して、Re/dを得た。 The obtained retardation film was measured for in-plane retardation Re at a wavelength of 550 nm using a retardation meter ("AxoScan" manufactured by Axometrics). The obtained in-plane retardation Re was divided by the film thickness d to obtain Re/d.
<フィルムの厚みの測定方法>
 フィルムの厚みdは、膜厚測定器(ミツトヨ社「スナップゲージ」)により測定した。
<Method for measuring film thickness>
The thickness d of the film was measured with a film thickness measuring device (Mitutoyo "snap gauge").
<デラミネーション耐性の測定方法>
 ノルボルネン系重合体を含む樹脂で形成された基材フィルム(ガラス転移温度160℃、厚み100μm、日本ゼオン社製の未延伸フィルム)を用意した。この基材フィルムの片面に、コロナ処理を施した。
<Method for measuring delamination resistance>
A substrate film (a glass transition temperature of 160° C., a thickness of 100 μm, an unstretched film manufactured by Nippon Zeon Co., Ltd.) made of a resin containing a norbornene-based polymer was prepared. One side of this base film was subjected to corona treatment.
 前記<レターデーション発現性の測定方法>で得た位相差フィルムの片面に、コロナ処理を施した。位相差フィルムのコロナ処理を施した面と、基材フィルムのコロナ処理を施した面とに、接着剤を付着させ、接着剤を付着させた面同士を貼り合わせ、接着剤を硬化させた。接着剤としては、紫外線硬化型接着剤を用いた。前記の貼り合わせにより、位相差フィルム/接着剤層/基材フィルムの層構成を有するサンプルフィルムを得た。 Corona treatment was applied to one side of the retardation film obtained in the above <Method for measuring retardation expression>. An adhesive was applied to the corona-treated surface of the retardation film and the corona-treated surface of the base film, and the adhesive-attached surfaces were bonded together to cure the adhesive. An ultraviolet curable adhesive was used as the adhesive. A sample film having a layer structure of retardation film/adhesive layer/base film was obtained by the lamination.
 サンプルフィルムを15mmの幅に裁断して、サンプル片を得た。サンプル片の位相差フィルム側を、スライドガラスの表面に、粘着剤(日東電工社製の両面接着テープ「CS9621」)を介して貼り合わせた。 A sample piece was obtained by cutting the sample film into a width of 15 mm. The retardation film side of the sample piece was attached to the surface of a slide glass via an adhesive (double-sided adhesive tape "CS9621" manufactured by Nitto Denko Corporation).
 フォースゲージの先端に基材フィルムを挟み、スライドガラスの表面の法線方向に引っ張ることにより、90度剥離試験を実施した。この際、基材フィルムが剥れる際に測定された力は、位相差フィルムと基材フィルムとを剥離させるために要する力であるので、この力の大きさをピール強度として測定した。 A 90-degree peel test was performed by sandwiching the base film between the tip of the force gauge and pulling it in the direction normal to the surface of the slide glass. At this time, since the force measured when the base film was peeled off was the force required to separate the retardation film and the base film, the magnitude of this force was measured as the peel strength.
 一般に、前記のピール強度が大きいほど、デラミネーション耐性に優れることを表す。そして、このピール強度が大きいほど、フィルム貼り直しの際に位相差フィルムの破損が抑制されるので、リワーク性に優れることを表す。そこで、ピール強度が5.0N以上の場合、デラミネーション耐性を「優」と判定した。また、ピール強度が2.0N以上5.0N未満の場合、デラミネーション耐性を「良」と判定した。また、ピール強度が1.0N以上2.0N未満の場合、デラミネーション耐性を「可」と判定した。さらに、ピール強度が1.0N未満の場合、デラミネーション耐性を「不可」と判定した。 Generally, the higher the peel strength, the better the delamination resistance. The higher the peel strength, the more the retardation film is prevented from being damaged when the film is reapplied, which means that the reworkability is excellent. Therefore, when the peel strength was 5.0 N or more, the delamination resistance was determined as "excellent". Moreover, when the peel strength was 2.0 N or more and less than 5.0 N, the delamination resistance was determined to be "good". Moreover, when the peel strength was 1.0 N or more and less than 2.0 N, the delamination resistance was determined to be "good". Furthermore, when the peel strength was less than 1.0 N, the delamination resistance was determined as "improper".
 また、各実施例及び比較例において、剥離後の位相差フィルムの表面を観察したところ、位相差フィルムの表層部分が凝集破壊を生じて当該表面が粗くなっていることが確認された。よって、いずれの実施例及び比較例においても、基材フィルムと接着剤との界面又は接着剤と位相差フィルムとの界面での剥離ではなく、位相差フィルムのデラミネーションが生じていることが確認された。 Further, in each of the examples and comparative examples, when the surface of the retardation film after peeling was observed, it was confirmed that the surface layer of the retardation film had undergone cohesive failure and the surface had become rough. Therefore, in all Examples and Comparative Examples, it was confirmed that delamination of the retardation film occurred instead of peeling at the interface between the base film and the adhesive or the interface between the adhesive and the retardation film. was done.
<実施例1>
 耐圧容器に、アクリル酸メチル1.5g、ビニルナフタレン28.5g、及びテトラヒドロフラン6.0gを取り、窒素置換を行った。その後、AIBN(アゾビスイソブチロニトリル)を20mg添加し、60℃で24時間重合反応を行った。この反応物を大量の2-プロパノールに注いで、重合体を沈殿させ、分取した。得られた重合体を真空乾燥機を用いて180℃で24時間乾燥させた。GPCにより測定した重合体の重量平均分子量は110000であった。また、示差走査熱量分析計により測定した重合体のガラス転移温度は138℃であった。
<Example 1>
1.5 g of methyl acrylate, 28.5 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container and purged with nitrogen. After that, 20 mg of AIBN (azobisisobutyronitrile) was added, and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 110,000. Further, the glass transition temperature of the polymer measured by a differential scanning calorimeter was 138°C.
 得られた重合体から上述した<レターデーション発現性の測定方法>に記載の方法によって位相差フィルムを製造し、レターデーションを測定したところ、Re/dは14.89×10-3であった。また、上述した<デラミネーション耐性の測定方法>に記載の方法でデラミネーション耐性を評価したところ、結果は「可」であった。 A retardation film was produced from the obtained polymer by the method described in <Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 14.89×10 −3 . . Moreover, when the delamination resistance was evaluated by the method described in <Method for measuring delamination resistance> above, the result was "good".
<実施例2>
 耐圧容器にアクリル酸メチル3.0g、ビニルナフタレン27.0g、及びテトラヒドロフラン6.0gを取り、窒素置換を行った。その後、AIBN(アゾビスイソブチロニトリル)を20mg添加し、60℃で24時間重合反応を行った。この反応物を大量の2-プロパノールに注いで、重合体を沈殿させ、分取した。得られた重合体を真空乾燥機を用いて180℃で24時間乾燥させた。GPCにより測定した重合体の重量平均分子量は109000であった。また、示差走査熱量分析計により測定した重合体のガラス転移温度は135℃であった。
<Example 2>
3.0 g of methyl acrylate, 27.0 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container, and nitrogen substitution was performed. After that, 20 mg of AIBN (azobisisobutyronitrile) was added, and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 109,000. The glass transition temperature of the polymer measured by a differential scanning calorimeter was 135°C.
 得られた重合体から上述した<レターデーション発現性の測定方法>に記載の方法によって位相差フィルムを製造し、レターデーションを測定したところ、Re/dは14.74×10-3であった。また、上述した<デラミネーション耐性の測定方法>に記載の方法でデラミネーション耐性を評価したところ、結果は「可」であった。 A retardation film was produced from the obtained polymer by the method described in <Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 14.74×10 −3 . . Moreover, when the delamination resistance was evaluated by the method described in <Method for measuring delamination resistance> above, the result was "good".
<実施例3>
 耐圧容器にアクリル酸メチル6.0g、ビニルナフタレン24.0g、及びテトラヒドロフラン6.0gを取り、窒素置換を行った。その後、AIBN(アゾビスイソブチロニトリル)を20mg添加し、60℃で24時間重合反応を行った。この反応物を大量の2-プロパノールに注いで、重合体を沈殿させ、分取した。得られた重合体を真空乾燥機を用いて180℃で24時間乾燥させた。GPCにより測定した重合体の重量平均分子量は119000であった。また、示差走査熱量分析計により測定した重合体のガラス転移温度は124℃であった。
<Example 3>
6.0 g of methyl acrylate, 24.0 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container, and nitrogen substitution was performed. After that, 20 mg of AIBN (azobisisobutyronitrile) was added, and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 119,000. Moreover, the glass transition temperature of the polymer measured by a differential scanning calorimeter was 124°C.
 得られた重合体から上述した<レターデーション発現性の測定方法>に記載の方法によって位相差フィルムを製造し、レターデーションを測定したところ、Re/dは14.66×10-3であった。また、上述した<デラミネーション耐性の測定方法>に記載の方法でデラミネーション耐性を評価したところ、結果は「良」であった。 A retardation film was produced from the obtained polymer by the method described in <Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 14.66×10 −3 . . Moreover, when the delamination resistance was evaluated by the method described in <Delamination resistance measuring method> above, the result was "good".
<実施例4>
 耐圧容器にアクリル酸メチル9.0g、ビニルナフタレン21.0g、及びテトラヒドロフラン6.0gを取り、窒素置換を行った。その後、AIBN(アゾビスイソブチロニトリル)を10mg添加し、60℃で24時間重合反応を行った。この反応物を大量の2-プロパノールに注いで、重合体を沈殿させ、分取した。得られた重合体を真空乾燥機を用いて180℃で24時間乾燥させた。GPCにより測定した重合体の重量平均分子量は250000であった。また、示差走査熱量分析計により測定した重合体のガラス転移温度は117℃であった。
<Example 4>
9.0 g of methyl acrylate, 21.0 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container, and nitrogen substitution was performed. After that, 10 mg of AIBN (azobisisobutyronitrile) was added, and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 250,000. Further, the glass transition temperature of the polymer measured by a differential scanning calorimeter was 117°C.
 得られた重合体から上述した<レターデーション発現性の測定方法>に記載の方法によって位相差フィルムを製造し、レターデーションを測定したところ、Re/dは13.75×10-3であった。また、上述した<デラミネーション耐性の測定方法>に記載の方法でデラミネーション耐性を評価したところ、結果は「良」であった。 A retardation film was produced from the obtained polymer by the method described in <Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 13.75×10 −3 . . Moreover, when the delamination resistance was evaluated by the method described in <Delamination resistance measuring method> above, the result was "good".
<実施例5>
 耐圧容器にアクリル酸メチル9.0g、ビニルナフタレン21.0g、及びテトラヒドロフラン6.0gを取り、窒素置換を行った。その後、AIBN(アゾビスイソブチロニトリル)を20mg添加し、60℃で24時間重合反応を行った。この反応物を大量の2-プロパノールに注いで、重合体を沈殿させ、分取した。得られた重合体を真空乾燥機を用いて180℃で24時間乾燥させた。GPCにより測定した重合体の重量平均分子量は97000であった。また、示差走査熱量分析計により測定した重合体のガラス転移温度は117℃であった。
<Example 5>
9.0 g of methyl acrylate, 21.0 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container, and nitrogen substitution was performed. After that, 20 mg of AIBN (azobisisobutyronitrile) was added, and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 97,000. Further, the glass transition temperature of the polymer measured by a differential scanning calorimeter was 117°C.
 得られた重合体から上述した<レターデーション発現性の測定方法>に記載の方法によって位相差フィルムを製造し、レターデーションを測定したところ、Re/dは13.55×10-3であった。また、上述した<デラミネーション耐性の測定方法>に記載の方法でデラミネーション耐性を評価したところ、結果は「良」であった。 A retardation film was produced from the obtained polymer by the method described in <Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 13.55×10 −3 . . Moreover, when the delamination resistance was evaluated by the method described in <Delamination resistance measuring method> above, the result was "good".
<実施例6>
 耐圧容器にアクリル酸9.0g、ビニルナフタレン21.0g、及びテトラヒドロフラン6.0gを取り、窒素置換を行った。その後、AIBN(アゾビスイソブチロニトリル)を20mg添加し60℃で24時間重合反応を行った。この反応物を大量の2-プロパノールに注いで、重合体を沈殿させ、分取した。得られた重合体を真空乾燥機を用いて180℃で24時間乾燥させた。GPCにより測定した重合体の重量平均分子量は126000であった。また、示差走査熱量分析計により測定した重合体のガラス転移温度は179℃であった。
<Example 6>
9.0 g of acrylic acid, 21.0 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container, and nitrogen substitution was performed. After that, 20 mg of AIBN (azobisisobutyronitrile) was added and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 126,000. Further, the glass transition temperature of the polymer measured by a differential scanning calorimeter was 179°C.
 得られた重合体から上述した<レターデーション発現性の測定方法>に記載の方法によって位相差フィルムを製造し、レターデーションを測定したところ、Re/dは13.63×10-3であった。また、上述した<デラミネーション耐性の測定方法>に記載の方法でデラミネーション耐性を評価したところ、結果は「優」であった。 A retardation film was produced from the obtained polymer by the method described in <Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 13.63×10 −3 . . Moreover, when the delamination resistance was evaluated by the method described in <Method for measuring delamination resistance> above, the result was "excellent".
[実施例7]
(第一工程:基材フィルムの用意)
 正の固有複屈折値を有する樹脂として、ペレット状のノルボルネン系重合体を含む樹脂(以下、ノルボルネン系樹脂という。日本ゼオン社製;ガラス転移温度126℃)を用意し、100℃で5時間乾燥した。乾燥したノルボルネン系樹脂を、押出し機に供給し、ポリマーパイプ及びポリマーフィルターを経て、Tダイからキャスティングドラム上にシート状に押し出した。シート状に押し出されたノルボルネン系樹脂を冷却し、基材フィルムとしての、厚み60μmの長尺の未延伸フィルムを得た。未延伸フィルムについて厚み及び光学特性を測定した。得られた未延伸フィルムをロールに巻き取って回収した。
[Example 7]
(First step: preparation of base film)
As a resin having a positive intrinsic birefringence value, a resin containing a pellet-shaped norbornene-based polymer (hereinafter referred to as norbornene-based resin, manufactured by Nippon Zeon Co., Ltd.; glass transition temperature 126 ° C.) is prepared and dried at 100 ° C. for 5 hours. bottom. A dried norbornene-based resin was supplied to an extruder, passed through a polymer pipe and a polymer filter, and extruded into a sheet from a T-die onto a casting drum. The sheet-shaped extruded norbornene-based resin was cooled to obtain a long unstretched film having a thickness of 60 μm as a base film. Thickness and optical properties were measured on the unstretched film. The obtained unstretched film was wound up on a roll and collected.
 実施例1で調製した重合体を1,3-ジオキソランとを混合して溶解させ、塗工液としての樹脂溶液を得た。この樹脂溶液の樹脂濃度は、15重量%であった。 The polymer prepared in Example 1 was mixed with 1,3-dioxolane and dissolved to obtain a resin solution as a coating liquid. The resin concentration of this resin solution was 15% by weight.
(塗工工程)
 基材フィルムとしての未延伸フィルムをロールから引き出して、引き出された未延伸フィルム上に前記の樹脂溶液を塗工した。
(Coating process)
An unstretched film as a base film was pulled out from the roll, and the resin solution was applied onto the unstretched film.
(乾燥工程)
 その後、塗工された樹脂溶液を120℃で急速乾燥させて、基材フィルムとしての未延伸フィルム上に、光学膜として、実施例1で調製した重合体の層(厚み30μm)を形成した。これにより、基材フィルムとしての未延伸フィルムと、光学膜としての実施例1で調製した重合体の層とを備える複層フィルムを得た。
(Drying process)
Thereafter, the coated resin solution was rapidly dried at 120° C. to form a layer (thickness: 30 μm) of the polymer prepared in Example 1 as an optical film on the unstretched film as the base film. As a result, a multilayer film including an unstretched film as a base film and a layer of the polymer prepared in Example 1 as an optical film was obtained.
(第三工程:複層フィルムの延伸)
 得られた複層フィルムを切断し、50mm×100mmの大きさの矩形の延伸前複層フィルムを得た。この延伸前複層フィルムに、自由幅一軸延伸を施した。延伸は、INSTRON社製の恒温槽付引張試験装置を用いて行った。延伸の条件は、延伸温度Tg+10℃、延伸倍率1.5倍、延伸速度33%毎分とした。この結果、延伸された基材フィルムと延伸された光学膜としての位相差フィルムとを備える複層延伸フィルムを得た。
(Third step: stretching of multilayer film)
The resulting multi-layer film was cut to obtain a rectangular pre-stretched multi-layer film having a size of 50 mm×100 mm. Free width uniaxial stretching was applied to the multilayer film before stretching. Stretching was performed using a tensile tester with a constant temperature bath manufactured by INSTRON. The stretching conditions were a stretching temperature of Tg+10° C., a stretching ratio of 1.5 times, and a stretching rate of 33% per minute. As a result, a multilayer stretched film including a stretched base film and a stretched retardation film as an optical film was obtained.
 複層延伸フィルムから位相差フィルムをはぎ取った。この位相差フィルムは、実施例1で調製した重合体の単層のフィルムであった。この位相差フィルムは、位相差計(Axometrics社製「AxoScan」)を用いて、波長550nmにおける面内レターデーションを測定した。得られた面内レターデーションReをフィルム厚みdで割り算してRe/dを得た。Re/dは14.85×10-3であった。 The retardation film was peeled off from the multilayer stretched film. This retardation film was a monolayer film of the polymer prepared in Example 1. This retardation film was measured for in-plane retardation at a wavelength of 550 nm using a retardation meter (“AxoScan” manufactured by Axometrics). Re/d was obtained by dividing the obtained in-plane retardation Re by the film thickness d. Re/d was 14.85×10 −3 .
 また、前記<レターデーション発現性の測定方法>で得た位相差フィルムの代わりに、実施例7で製造した前記の位相差フィルムを用いたこと以外は、<デラミネーション耐性の測定方法>と同じ方法でデラミネーション耐性を評価したところ、結果は「可」であった。 Further, the same as <Method for measuring delamination resistance> except that the retardation film produced in Example 7 was used instead of the retardation film obtained in <Method for measuring retardation expression>. When the delamination resistance was evaluated by the method, the result was "good".
[実施例8]
(第一工程:基材フィルムの用意)
 正の固有複屈折値を有する樹脂として、ペレット状のノルボルネン系重合体を含むノルボルネン系樹脂(日本ゼオン社製;ガラス転移温度126℃)を用意し、100℃で5時間乾燥した。乾燥したノルボルネン系樹脂を、押出し機に供給し、ポリマーパイプ及びポリマーフィルターを経て、Tダイからキャスティングドラム上にシート状に押し出した。シート状に押し出されたノルボルネン系樹脂を冷却し、基材フィルムとしての、厚み60μmの長尺の未延伸フィルムを得た。未延伸フィルムについて厚み及び光学特性を測定した。得られた未延伸フィルムをロールに巻き取って回収した。
[Example 8]
(First step: preparation of base film)
As a resin having a positive intrinsic birefringence value, a norbornene-based resin containing a pellet-shaped norbornene-based polymer (manufactured by Zeon Corporation; glass transition temperature 126° C.) was prepared and dried at 100° C. for 5 hours. A dried norbornene-based resin was supplied to an extruder, passed through a polymer pipe and a polymer filter, and extruded into a sheet from a T-die onto a casting drum. The sheet-shaped extruded norbornene-based resin was cooled to obtain a long unstretched film having a thickness of 60 μm as a base film. Thickness and optical properties were measured on the unstretched film. The obtained unstretched film was wound up on a roll and collected.
 実施例2で調製した重合体を1,3-ジオキソランとを混合して溶解させ、塗工液としての樹脂溶液を得た。この樹脂溶液の樹脂濃度は、15重量%であった。 The polymer prepared in Example 2 was mixed with 1,3-dioxolane and dissolved to obtain a resin solution as a coating liquid. The resin concentration of this resin solution was 15% by weight.
(塗工工程)
 基材フィルムとしての未延伸フィルムをロールから引き出して、引き出された未延伸フィルム上に前記の樹脂溶液を塗工した。
(Coating process)
An unstretched film as a base film was pulled out from the roll, and the resin solution was applied onto the unstretched film.
(乾燥工程)
 その後、塗工された樹脂溶液を120℃で急速乾燥させて、基材フィルムとしての未延伸フィルム上に、光学膜として、実施例2で調製した重合体の層(厚み30μm)を形成した。これにより、基材フィルムとしての未延伸フィルムと、光学膜としての実施例2で調製した重合体の層とを備える複層フィルムを得た。
(Drying process)
Thereafter, the coated resin solution was rapidly dried at 120° C. to form a layer (thickness: 30 μm) of the polymer prepared in Example 2 as an optical film on the unstretched film as the base film. As a result, a multilayer film including an unstretched film as a base film and a layer of the polymer prepared in Example 2 as an optical film was obtained.
(第三工程:複層フィルムの延伸)
 得られた複層フィルムを切断し、50mm×100mmの大きさの矩形の延伸前複層フィルムを得た。この延伸前複層フィルムに、自由幅一軸延伸を施した。延伸は、INSTRON社製の恒温槽付引張試験装置を用いて行った。延伸の条件は、延伸温度Tg+10℃、延伸倍率1.5倍、延伸速度33%毎分とした。この結果、延伸された基材フィルムと延伸された光学膜としての位相差フィルムとを備える複層延伸フィルムを得た。
(Third step: stretching of multilayer film)
The resulting multi-layer film was cut to obtain a rectangular pre-stretched multi-layer film having a size of 50 mm×100 mm. Free width uniaxial stretching was applied to the multilayer film before stretching. Stretching was performed using a tensile tester with a constant temperature bath manufactured by INSTRON. The stretching conditions were a stretching temperature of Tg+10° C., a stretching ratio of 1.5 times, and a stretching rate of 33% per minute. As a result, a multilayer stretched film including a stretched base film and a stretched retardation film as an optical film was obtained.
 複層延伸フィルムから位相差フィルムをはぎ取った。この位相差フィルムは、実施例2で調製した重合体の単層のフィルムであった。この位相差フィルムは、位相差計(Axometrics社製「AxoScan」)を用いて、波長550nmにおける面内レターデーションを測定した。得られた面内レターデーションReをフィルム厚みdで割り算してRe/dを得た。Re/dは14.85×10-3であった。 The retardation film was peeled off from the multilayer stretched film. This retardation film was a monolayer film of the polymer prepared in Example 2. This retardation film was measured for in-plane retardation at a wavelength of 550 nm using a retardation meter (“AxoScan” manufactured by Axometrics). Re/d was obtained by dividing the obtained in-plane retardation Re by the film thickness d. Re/d was 14.85×10 −3 .
 また、前記<レターデーション発現性の測定方法>で得た位相差フィルムの代わりに、実施例8で製造した前記の位相差フィルムを用いたこと以外は、<デラミネーション耐性の測定方法>と同じ方法でデラミネーション耐性を評価したところ、結果は「可」であった。 Further, the same as <Method for measuring delamination resistance> except that the retardation film produced in Example 8 was used instead of the retardation film obtained in <Method for measuring retardation expression>. When the delamination resistance was evaluated by the method, the result was "good".
<比較例1>
 乾燥し、窒素で置換された耐圧反応器に、溶媒としてトルエン500ml、重合触媒としてn-ブチルリチウム0.29mmolを入れた後、2-ビニルナフタレン35gを加えて25℃で1時間反応させた。その結果、2-ビニルナフタレンのホモ重合体としてのポリ(2-ビニルナフタレン)を含む反応物を得た。この反応物を大量の2-プロパノールに注いで、ポリ(2-ビニルナフタレン)を沈殿させ、分取した。得られたポリ(2-ビニルナフタレン)を真空乾燥機を用いて200℃で24時間乾燥させた。GPCにより測定したポリ(2-ビニルナフタレン)の重量平均分子量は250000であった。また、示差走査熱量分析計により測定したポリ(2-ビニルナフタレン)のガラス転移温度は142℃であった。
<Comparative Example 1>
After 500 ml of toluene as a solvent and 0.29 mmol of n-butyllithium as a polymerization catalyst were put into a pressure-resistant reactor that was dried and purged with nitrogen, 35 g of 2-vinylnaphthalene was added and reacted at 25° C. for 1 hour. As a result, a reactant containing poly(2-vinylnaphthalene) as a homopolymer of 2-vinylnaphthalene was obtained. The reaction was poured into a large amount of 2-propanol to precipitate poly(2-vinylnaphthalene) and separated. The obtained poly(2-vinylnaphthalene) was dried at 200° C. for 24 hours using a vacuum dryer. The weight average molecular weight of poly(2-vinylnaphthalene) measured by GPC was 250,000. The glass transition temperature of poly(2-vinylnaphthalene) measured by a differential scanning calorimeter was 142.degree.
 得られたポリ(2-ビニルナフタレン)から上述した<レターデーション発現性の測定方法>に記載の方法によって位相差フィルムを製造し、レターデーションを測定したところ、Re/dは15.04×10-3であった。また、上述した<デラミネーション耐性の測定方法>に記載の方法でデラミネーション耐性を評価したところ、結果は「不可」であった。 A retardation film was produced from the obtained poly(2-vinylnaphthalene) by the method described in <Method for measuring retardation expression> above, and the retardation was measured. Re/d was 15.04×10. -3 . Moreover, when the delamination resistance was evaluated by the method described in <Method for measuring delamination resistance> above, the result was "impossible".
<比較例2>
 乾燥し、窒素で置換された耐圧反応器に、溶媒としてトルエン500ml、重合触媒としてn-ブチルリチウム0.60mmolを入れた後、2-ビニルナフタレン35gを加えて25℃で1時間反応させた。その結果、2-ビニルナフタレンのホモ重合体としてのポリ(2-ビニルナフタレン)を含む反応物を得た。この反応物を大量の2-プロパノールに注いで、ポリ(2-ビニルナフタレン)を沈殿させ、分取した。得られたポリ(2-ビニルナフタレン)を真空乾燥機を用いて200℃で24時間乾燥させた。GPCにより測定したポリ(2-ビニルナフタレン)の重量平均分子量は100000であった。また、示差走査熱量分析計により測定したポリ(2-ビニルナフタレン)のガラス転移温度は142℃であった。
<Comparative Example 2>
After 500 ml of toluene as a solvent and 0.60 mmol of n-butyllithium as a polymerization catalyst were placed in a pressure-resistant reactor that was dried and purged with nitrogen, 35 g of 2-vinylnaphthalene was added and reacted at 25° C. for 1 hour. As a result, a reactant containing poly(2-vinylnaphthalene) as a homopolymer of 2-vinylnaphthalene was obtained. The reaction was poured into a large amount of 2-propanol to precipitate poly(2-vinylnaphthalene) and separated. The obtained poly(2-vinylnaphthalene) was dried at 200° C. for 24 hours using a vacuum dryer. The weight average molecular weight of poly(2-vinylnaphthalene) measured by GPC was 100,000. The glass transition temperature of poly(2-vinylnaphthalene) measured by a differential scanning calorimeter was 142.degree.
 得られたポリ(2-ビニルナフタレン)から上述した<レターデーション発現性の測定方法>に記載の方法によって位相差フィルムを製造し、レターデーションを測定したところ、Re/dは15.04×10-3であった。また、上述した<デラミネーション耐性の測定方法>に記載の方法でデラミネーション耐性を評価したところ、結果は「不可」であった。 A retardation film was produced from the obtained poly(2-vinylnaphthalene) by the method described in <Method for measuring retardation expression> above, and the retardation was measured. Re/d was 15.04×10. -3 . Moreover, when the delamination resistance was evaluated by the method described in <Method for measuring delamination resistance> above, the result was "impossible".
<比較例3>
 耐圧容器にアクリル酸メチル0.6g、ビニルナフタレン29.4g、及びテトラヒドロフラン6.0gを取り、窒素置換を行った。その後、AIBN(アゾビスイソブチロニトリル)を20mg添加し、60℃で24時間重合反応を行った。この反応物を大量の2-プロパノールに注いで、重合体を沈殿させ、分取した。得られた重合体を真空乾燥機を用いて180℃で24時間乾燥させた。GPCにより測定した重合体の重量平均分子量は112000であった。また、示差走査熱量分析計により測定した重合体のガラス転移温度は140℃であった。
<Comparative Example 3>
0.6 g of methyl acrylate, 29.4 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container, and nitrogen substitution was performed. After that, 20 mg of AIBN (azobisisobutyronitrile) was added, and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 112,000. Moreover, the glass transition temperature of the polymer measured by a differential scanning calorimeter was 140°C.
 得られた重合体から上述した<レターデーション発現性の測定方法>に記載の方法によって位相差フィルムを製造し、レターデーションを測定したところ、Re/dは15.11×10-3であった。また、上述した<デラミネーション耐性の測定方法>に記載の方法でデラミネーション耐性を評価したところ、結果は「不可」であった。 A retardation film was produced from the obtained polymer by the method described in <Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 15.11×10 −3 . . Moreover, when the delamination resistance was evaluated by the method described in <Method for measuring delamination resistance> above, the result was "impossible".
<比較例4>
 耐圧容器にアクリル酸メチル15g、ビニルナフタレン15g、及びテトラヒドロフラン6.0gを取り、窒素置換を行った。その後、AIBN(アゾビスイソブチロニトリル)を20mg添加し、60℃で24時間重合反応を行った。この反応物を大量の2-プロパノールに注いで、重合体を沈殿させ、分取した。得られた重合体を真空乾燥機を用いて180℃で24時間乾燥させた。GPCにより測定した重合体の重量平均分子量は115000であった。また、示差走査熱量分析計により測定した重合体のガラス転移温度は100℃であった。
<Comparative Example 4>
15 g of methyl acrylate, 15 g of vinylnaphthalene, and 6.0 g of tetrahydrofuran were placed in a pressure-resistant container, and nitrogen substitution was performed. After that, 20 mg of AIBN (azobisisobutyronitrile) was added, and a polymerization reaction was carried out at 60° C. for 24 hours. The reaction was poured into a large amount of 2-propanol to precipitate the polymer and collected. The obtained polymer was dried at 180° C. for 24 hours using a vacuum dryer. The weight average molecular weight of the polymer measured by GPC was 115,000. The glass transition temperature of the polymer measured by a differential scanning calorimeter was 100°C.
 得られた重合体から上述した<レターデーション発現性の測定方法>に記載の方法によって位相差フィルムを製造し、レターデーションを測定したところ、Re/dは9.02×10-3であった。また、上述した<デラミネーション耐性の測定方法>に記載の方法でデラミネーション耐性を評価したところ、結果は「良」であった。 A retardation film was produced from the obtained polymer by the method described in <Method for measuring retardation expression> above, and the retardation was measured to find that Re/d was 9.02×10 −3 . . Moreover, when the delamination resistance was evaluated by the method described in <Delamination resistance measuring method> above, the result was "good".
[比較例5]
(第一工程:基材フィルムの用意)
 正の固有複屈折値を有する樹脂として、ペレット状のノルボルネン系重合体を含むノルボルネン系樹脂(日本ゼオン社製;ガラス転移温度126℃)を用意し、100℃で5時間乾燥した。乾燥したノルボルネン系樹脂を、押出し機に供給し、ポリマーパイプ及びポリマーフィルターを経て、Tダイからキャスティングドラム上にシート状に押し出した。シート状に押し出されたノルボルネン系樹脂を冷却し、基材フィルムとしての、厚み60μmの長尺の未延伸フィルムを得た。未延伸フィルムについて厚み及び光学特性を測定した。得られた未延伸フィルムをロールに巻き取って回収した。
[Comparative Example 5]
(First step: preparation of base film)
As a resin having a positive intrinsic birefringence value, a norbornene-based resin containing a pellet-shaped norbornene-based polymer (manufactured by Zeon Corporation; glass transition temperature 126° C.) was prepared and dried at 100° C. for 5 hours. A dried norbornene-based resin was supplied to an extruder, passed through a polymer pipe and a polymer filter, and extruded into a sheet from a T-die onto a casting drum. The sheet-shaped extruded norbornene-based resin was cooled to obtain a long unstretched film having a thickness of 60 μm as a base film. Thickness and optical properties were measured on the unstretched film. The obtained unstretched film was wound up on a roll and collected.
 比較例2で調製したポリ(2-ビニルナフタレン)を1,3-ジオキソランとを混合して溶解させ、樹脂溶液を得た。この樹脂溶液の樹脂濃度は、15重量%であった。 The poly(2-vinylnaphthalene) prepared in Comparative Example 2 was mixed with 1,3-dioxolane and dissolved to obtain a resin solution. The resin concentration of this resin solution was 15% by weight.
(塗工工程)
 基材フィルムとしての未延伸フィルムをロールから引き出して、引き出された未延伸フィルム上に前記の樹脂溶液を塗工した。
(Coating process)
An unstretched film as a base film was pulled out from the roll, and the resin solution was applied onto the unstretched film.
(乾燥工程)
 その後、塗工された樹脂溶液を120℃で急速乾燥させて、基材フィルムとしての未延伸フィルム上に、光学膜として、比較例2で調製したポリ(2-ビニルナフタレン)の層(厚み30μm)を形成した。これにより、基材フィルムとしての未延伸フィルムと、光学膜としての比較例2で合成したポリ(2-ビニルナフタレン)の層とを備える複層フィルムを得た。
(Drying process)
Thereafter, the coated resin solution was rapidly dried at 120° C., and a layer of poly(2-vinylnaphthalene) prepared in Comparative Example 2 (thickness: 30 μm) was formed as an optical film on the unstretched film as the base film. ) was formed. As a result, a multilayer film including an unstretched film as a base film and a layer of poly(2-vinylnaphthalene) synthesized in Comparative Example 2 as an optical film was obtained.
(第三工程:複層フィルムの延伸)
 得られた複層フィルムを切断し、50mm×100mmの大きさの矩形の延伸前複層フィルムを得た。この延伸前複層フィルムに、自由幅一軸延伸を施した。延伸は、INSTRON社製の恒温槽付引張試験装置を用いて行った。延伸の条件は、延伸温度Tg+10℃、延伸倍率1.5倍、延伸速度33%毎分とした。この結果、延伸された基材フィルムと延伸された光学膜としての位相差フィルムとを備える複層延伸フィルムを得た。
(Third step: stretching of multilayer film)
The resulting multi-layer film was cut to obtain a rectangular pre-stretched multi-layer film having a size of 50 mm×100 mm. Free width uniaxial stretching was applied to the multilayer film before stretching. Stretching was performed using a tensile tester with a constant temperature bath manufactured by INSTRON. The stretching conditions were a stretching temperature of Tg+10° C., a stretching ratio of 1.5 times, and a stretching rate of 33% per minute. As a result, a multilayer stretched film including a stretched base film and a stretched retardation film as an optical film was obtained.
 複層延伸フィルムから位相差フィルムをはぎ取った。この位相差フィルムは、比較例2で調製したポリ(2-ビニルナフタレン)の単層のフィルムであった。この位相差フィルムは、位相差計(Axometrics社製「AxoScan」)を用いて、波長550nmにおける面内レターデーションを測定した。得られた面内レターデーションReをフィルム厚みdで割り算してRe/dを得た。Re/dは15.05×10-3であった。 The retardation film was peeled off from the multilayer stretched film. This retardation film was a monolayer film of poly(2-vinylnaphthalene) prepared in Comparative Example 2. This retardation film was measured for in-plane retardation at a wavelength of 550 nm using a retardation meter (“AxoScan” manufactured by Axometrics). Re/d was obtained by dividing the obtained in-plane retardation Re by the film thickness d. Re/d was 15.05×10 −3 .
 また、前記<レターデーション発現性の測定方法>で得た位相差フィルムの代わりに、比較例2で製造した前記の位相差フィルムを用いたこと以外は、<デラミネーション耐性の測定方法>と同じ方法でデラミネーション耐性を評価したところ、結果は「不可」であった。 In addition, the same as <Method for measuring delamination resistance> except that the retardation film produced in Comparative Example 2 was used instead of the retardation film obtained in <Method for measuring retardation expression>. Method to evaluate the delamination resistance, the result was "fail".
<結果>
 上述した実施例及び比較例の結果を、下記の表に示す。下記の表において、Re発現性の欄の数値は、比較例1におけるRe/dの値を100%とした場合の、各実施例又は比較例のRe/dの値の大きさを表す。また、下記の表において、略称の意味は、以下の通りである。
 AA:アクリル酸。
 MA:アクリル酸メチル。
 VN:ビニルナフタレン。
 Mw:重量平均分子量。
 Tg:ガラス転移温度。
 Re/d:測定波長550nmにおける面内レターデーションReと厚みdとの比。
<Results>
The results of the examples and comparative examples described above are shown in the table below. In the table below, the numerical values in the Re expression column represent the magnitude of the Re/d value of each example or comparative example when the Re/d value of Comparative Example 1 is taken as 100%. In the table below, abbreviations have the following meanings.
AA: acrylic acid.
MA: methyl acrylate.
VN: vinyl naphthalene.
Mw: Weight average molecular weight.
Tg: glass transition temperature.
Re/d: Ratio of in-plane retardation Re and thickness d at a measurement wavelength of 550 nm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<検討>
 比較例1及び2の結果から、ポリビニルナフタレン等の多環芳香族ビニル化合物の単独重合体で形成された光学膜はデラミネーション耐性に劣ることが確認された。
 また、比較例3の結果から、(メタ)アクリル化合物単位を2重量%含む共重合体は、デラミネーション耐性の向上は見られないことが確認された。
 さらに、比較例4の結果から、(メタ)アクリル化合物単位を50重量%含む共重合体は、レターデーション発現性が劣ることが確認された。
 これに対し、実施例1~6では、適切な量の(メタ)アクリル化合物単位を多環芳香族ビニル化合物単位と組み合わせているので、レターデーション発現性及びデラミネーション耐性の両方に優れる。特に、実施例6は、デラミネーション耐性が特に優れる。実施例6の特に優れたデラミネーション耐性は、(メタ)アクリル化合物単位が、アクリル酸に由来してカルボキシル基を有することから得られたものと考えられる。
<Consideration>
From the results of Comparative Examples 1 and 2, it was confirmed that an optical film formed of a homopolymer of a polycyclic aromatic vinyl compound such as polyvinyl naphthalene is inferior in delamination resistance.
Further, from the results of Comparative Example 3, it was confirmed that the copolymer containing 2% by weight of the (meth)acrylic compound unit did not show any improvement in delamination resistance.
Furthermore, from the results of Comparative Example 4, it was confirmed that the copolymer containing 50% by weight of (meth)acrylic compound units was inferior in retardation development.
On the other hand, in Examples 1 to 6, since an appropriate amount of (meth)acrylic compound units are combined with polycyclic aromatic vinyl compound units, both retardation development and delamination resistance are excellent. In particular, Example 6 is particularly excellent in delamination resistance. It is considered that the particularly excellent delamination resistance of Example 6 was obtained because the (meth)acrylic compound unit had a carboxyl group derived from acrylic acid.
 また、実施例7および8、並びに比較例5では、基材フィルムと光学膜とを備える延伸前複層フィルムを製造し、その延伸前複層フィルムを延伸している。延伸前複層フィルムを延伸することにより、基材フィルムと光学膜とが共延伸されるので、延伸された光学膜としての位相差フィルムが得られる。実施例7及び8並びに比較例5の結果から、基材フィルム及び光学膜を共延伸して位相差フィルムを製造した場合でも、光学膜を単独で延伸して得られる位相差フィルムと同様のレターデーション及びデラミネーション耐性を有する位相差フィルムを光学膜として得られることが明らかとなった。 Also, in Examples 7 and 8 and Comparative Example 5, a pre-stretched multilayer film comprising a base film and an optical film was produced, and the pre-stretched multilayer film was stretched. By stretching the multilayer film before stretching, the base film and the optical film are co-stretched, so that a retardation film is obtained as a stretched optical film. From the results of Examples 7 and 8 and Comparative Example 5, even when a retardation film is produced by co-stretching the base film and the optical film, the same letter as the retardation film obtained by stretching the optical film alone It was found that a retardation film having resistance to delamination and delamination can be obtained as an optical film.
 前記の実施例及び比較例では、製造された重合体に含まれる多環芳香族ビニル化合物単位及び(メタ)アクリル化合物単位の割合を、H-NMRで測定した。前記の測定により、単量体としての多環芳香族ビニル化合物の仕込み比と、重合体に含まれる多環芳香族ビニル化合物単位の割合とが一致することを確認した。また、前記の測定により、単量体としての(メタ)アクリル化合物の仕込み比と、重合体に含まれる(メタ)アクリル化合物単位の割合とが一致することを確認した。 In the above Examples and Comparative Examples, the proportions of polycyclic aromatic vinyl compound units and (meth)acrylic compound units contained in the produced polymers were measured by 1 H-NMR. From the above measurements, it was confirmed that the charging ratio of the polycyclic aromatic vinyl compound as a monomer and the ratio of the polycyclic aromatic vinyl compound unit contained in the polymer matched. It was also confirmed by the above measurement that the charging ratio of the (meth)acrylic compound as a monomer and the proportion of (meth)acrylic compound units contained in the polymer were consistent.

Claims (9)

  1.  多環芳香族ビニル化合物単位と(メタ)アクリル化合物単位とを含有する共重合体を含み、
     前記共重合体における前記(メタ)アクリル化合物単位の割合が、5重量%以上40重量%以下である、光学膜。
    Including a copolymer containing polycyclic aromatic vinyl compound units and (meth) acrylic compound units,
    The optical film, wherein the proportion of the (meth)acrylic compound unit in the copolymer is 5% by weight or more and 40% by weight or less.
  2.  前記共重合体の重量平均分子量Mwが、5万~50万である、請求項1に記載の光学膜。 The optical film according to claim 1, wherein the copolymer has a weight average molecular weight Mw of 50,000 to 500,000.
  3.  前記共重合体が、ビニルナフタレンを重合して形成される構造を有する繰り返し単位を含有する、請求項1に記載の光学膜。 The optical film according to claim 1, wherein the copolymer contains a repeating unit having a structure formed by polymerizing vinyl naphthalene.
  4.  前記共重合体のガラス転移温度が、110℃以上である、請求項1に記載の光学膜。 The optical film according to claim 1, wherein the copolymer has a glass transition temperature of 110°C or higher.
  5.  前記光学膜の測定波長550nmにおける面内レターデーションReと厚みdとの比Re/dが、10.0×10-3以上である、請求項1に記載の光学膜。 2. The optical film according to claim 1, wherein a ratio Re/d between an in-plane retardation Re and a thickness d of the optical film at a measurement wavelength of 550 nm is 10.0×10 −3 or more.
  6.  基材フィルムと、請求項1に記載の光学膜と、を備える複層フィルム。 A multilayer film comprising a substrate film and the optical film according to claim 1.
  7.  前記基材フィルムが、脂環式構造含有重合体を含む、請求項6に記載の複層フィルム。 The multilayer film according to claim 6, wherein the base film contains an alicyclic structure-containing polymer.
  8.  基材フィルム及び光学膜を備える複層フィルムの製造方法であって、
     前記基材フィルム上に、共重合体を含む塗工液を塗工することを含み、
     前記共重合体が、多環芳香族ビニル化合物単位と(メタ)アクリル化合物単位とを含有し、
     前記共重合体における前記(メタ)アクリル化合物単位の量が、5重量%以上40重量%以下である、複層フィルムの製造方法。
    A method for producing a multilayer film comprising a substrate film and an optical film, comprising:
    Coating a coating liquid containing a copolymer on the base film,
    The copolymer contains polycyclic aromatic vinyl compound units and (meth)acrylic compound units,
    A method for producing a multilayer film, wherein the amount of the (meth)acrylic compound unit in the copolymer is 5% by weight or more and 40% by weight or less.
  9.  請求項6又は7に記載の複層フィルムと、偏光フィルムとを備える、偏光板。 A polarizing plate comprising the multilayer film according to claim 6 or 7 and a polarizing film.
PCT/JP2022/043507 2021-11-29 2022-11-25 Optical film, multilayer film and method for producing same, and polarizing plate WO2023095863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021193567 2021-11-29
JP2021-193567 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023095863A1 true WO2023095863A1 (en) 2023-06-01

Family

ID=86539659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043507 WO2023095863A1 (en) 2021-11-29 2022-11-25 Optical film, multilayer film and method for producing same, and polarizing plate

Country Status (2)

Country Link
TW (1) TW202328230A (en)
WO (1) WO2023095863A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006293331A (en) * 2005-03-11 2006-10-26 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate and liquid crystal display device
WO2015064581A1 (en) * 2013-10-28 2015-05-07 日本ゼオン株式会社 Multilayer film, optically anisotropic laminate, circular polarizer, organic electroluminescent display, and manufacturing methods
JP2020105260A (en) * 2018-12-26 2020-07-09 東ソー株式会社 Polymer and optical film including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006293331A (en) * 2005-03-11 2006-10-26 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate and liquid crystal display device
WO2015064581A1 (en) * 2013-10-28 2015-05-07 日本ゼオン株式会社 Multilayer film, optically anisotropic laminate, circular polarizer, organic electroluminescent display, and manufacturing methods
JP2020105260A (en) * 2018-12-26 2020-07-09 東ソー株式会社 Polymer and optical film including the same

Also Published As

Publication number Publication date
TW202328230A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
WO2018135360A1 (en) Film laminate for touch panel
WO2018135359A1 (en) Film laminate for touch panel
WO2017195506A1 (en) Optical film for organic el display devices, polarizing film for organic el display devices, polarizing film with adhesive layer for organic el display devices, and organic el display device
WO2020137409A1 (en) Optically anisotropic laminate, method for manufacturing same, circularly polarizing plate, and image display device
US20150183977A1 (en) Optical film and method for manufacturing same, polarization plate, and liquid crystal display apparatus
KR102505692B1 (en) Laminates and image display devices
JP2008112141A (en) Optical film
WO2003102639A1 (en) Optical laminate
TWI639030B (en) Laminated body, manufacturing method thereof, retardation film, polarizing film, and manufacturing method of IPS liquid crystal panel
KR20170011306A (en) Optical film, manufacturing method thereof and display device
JP2004020701A (en) Optical laminate
CN106003940B (en) Optical film with adhesive layer
JP2018119075A (en) Transparent conductive film with tacky adhesive layer, laminate, and organic el display device
JP4449533B2 (en) A long wound body of a broadband quarter-wave plate and a long wound body of a broadband circularly polarizing element
JP2018077522A (en) Polarizing plate, image display unit, and liquid crystal display
JP4419606B2 (en) Optical laminated body, optical element, and liquid crystal display device
JP5083286B2 (en) A long wound body of a broadband quarter-wave plate and a long wound body of a broadband circularly polarizing element
JP2004219825A (en) Optical laminate body, optical element, and optical product
WO2023095863A1 (en) Optical film, multilayer film and method for producing same, and polarizing plate
JP2009093194A (en) Optical laminate
WO2023162545A1 (en) Optically anisotropic laminate, method for manufacturing same, circularly polarizing plate, and image display device
JP4325317B2 (en) Optical laminate, optical element, liquid crystal display device, and method for producing optical laminate
KR102440161B1 (en) Optical film, polarizing plate, and organic el display device
WO2022163416A1 (en) Optical film, production method therefor, and polarizing film
US11592703B2 (en) Optical film comprising a stretched resin film and a liquid crystal layer including a polyfunctional compound having two or more polymerizable groups in one molecule, circularly polarizing plate, and image display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898645

Country of ref document: EP

Kind code of ref document: A1