WO2023095858A1 - Oxygen evolution reaction catalyst and method for producing same - Google Patents

Oxygen evolution reaction catalyst and method for producing same Download PDF

Info

Publication number
WO2023095858A1
WO2023095858A1 PCT/JP2022/043486 JP2022043486W WO2023095858A1 WO 2023095858 A1 WO2023095858 A1 WO 2023095858A1 JP 2022043486 W JP2022043486 W JP 2022043486W WO 2023095858 A1 WO2023095858 A1 WO 2023095858A1
Authority
WO
WIPO (PCT)
Prior art keywords
iridium
water
oxide
yttrium
catalyst
Prior art date
Application number
PCT/JP2022/043486
Other languages
French (fr)
Japanese (ja)
Inventor
泰之 池田
健二 寺田
宏明 鈴木
Original Assignee
株式会社フルヤ金属
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フルヤ金属 filed Critical 株式会社フルヤ金属
Publication of WO2023095858A1 publication Critical patent/WO2023095858A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an oxygen evolution reaction catalyst, and more specifically, the present invention relates to an oxygen evolution reaction catalyst used for electrolysis of water. Furthermore, the present invention relates to a method for producing an oxide contained in the oxygen evolution reaction catalyst.
  • Hydrogen has a high energy conversion efficiency and does not generate carbon dioxide when burned. Therefore, it is attracting attention as an energy source due to the global trend toward decarbonization. Hydrogen is produced by reforming hydrocarbons, producing from methanol produced from biomass, using by-products produced in processes such as iron manufacturing, and obtaining from renewable energy. It has been known. Among them, a method of electrolyzing water with electricity generated by renewable energy such as solar power generation and wind power generation is attracting attention as a preferable method for producing hydrogen because carbon dioxide is not generated. In addition, surplus electricity can be used effectively by electrolyzing water and storing energy as hydrogen. Surplus electricity can be converted to hydrogen and stored in gaseous or liquid form for immediate use as fuel. Additionally, hydrogen can be converted to other compounds such as chemicals such as ammonia or methanol for industrial use. Therefore, production of hydrogen by electrolysis of water is attracting attention also from the point of view of effective use of energy.
  • an alkaline water electrolysis system and a solid molecular membrane (hereinafter also referred to as "PEM”) water electrolysis system are being considered.
  • PEM solid molecular membrane
  • the PEM type water electrolysis cell has a catalyst coated membrane (catalyst coated membrane, hereinafter also abbreviated as CCM) in which a cation exchange polymer electrolyte membrane such as Nafion (registered trademark) is sandwiched between an anode catalyst layer and a cathode catalyst layer. Furthermore, a membrane electrode assembly (hereinafter also abbreviated as MEA) sandwiched between gas diffusion layers is used as one structural unit, and a plurality of such assemblies are connected in series via separators.
  • CCM catalyst coated membrane
  • MEA membrane electrode assembly
  • the oxygen generation reaction at the anode of the PEM type water electrolysis system has a slow reaction rate, and a high voltage needs to be applied to generate more oxygen.
  • anodes in PEM-type water electrolysis systems have utilized catalysts containing iridium or iridium oxides that are electrically conductive and have high durability in highly oxidizing or high voltage environments.
  • annual production of iridium is low and scarcity is high, so catalysts with lower iridium content have been required to exhibit high oxygen evolution reaction and high durability in highly oxidizing or high voltage environments.
  • Patent Document 1 discloses an electrode catalyst composition in which iridium and ruthenium oxides are supported on tin oxide.
  • Patent Document 2 a core and a shell covering the surface of the core are provided, the core contains ruthenium oxide or metallic ruthenium at least on the surface, and the shell is made of titania or a composite oxide of titanium and ruthenium.
  • a core-shell type oxygen evolution reaction catalyst has been proposed.
  • Patent Literature 3 proposes a catalyst film containing an electrocatalyst containing platinum or platinum alloyed with one or more other metals and an oxygen evolution reaction catalyst, wherein the oxygen evolution reaction catalyst has a high oxygen evolution reaction rate. It has been reported to have mass activity.
  • Non-Patent Document 1 reports an oxide of yttrium and iridium having a BET specific surface area of 21 m 2 /g or more, a particle size of about 200 nm, and a pyrochlore type crystal structure.
  • Non-Patent Document 2 reports an oxide of yttrium and iridium having a BET specific surface area of 7.3 m 2 /g or more, a particle size of about 200 nm, and a pyrochlore type crystal structure.
  • the present inventors have completed the present invention as a result of diligent studies aimed at solving the above problems. That is, the present invention has the following aspects.
  • An oxygen evolution reaction catalyst containing an oxide containing yttrium and iridium and having a BET specific surface area of 50 m 2 /g or more.
  • An electrolytic cell comprising the oxygen evolution reaction catalyst layer of [3] and an ion-exchange polymer electrolyte membrane.
  • this invention has the following aspects. [6] (1) Dispersing yttrium nanoparticles and iridium nanoparticles or yttrium hydroxide particles and iridium hydroxide particles in a dispersion medium to obtain a dispersion, or (2) dissolving an yttrium compound and an iridium compound in a solvent A step A of obtaining a solution by allowing A step B in which the temperature of water is 100 ° C. or higher and a pressure in excess of 0.1 MPa, and a step C of mixing the dispersion or the solution obtained in the step A and the high-temperature and high-pressure water obtained in the step B.
  • the method for producing the oxide according to [1] above comprising: [7] The method for producing an oxide according to [6] above, including the step of adding an oxidizing agent in the step B.
  • the step B includes (1) adding an oxidizing agent that releases oxygen atoms to water and then bringing the water to the above temperature and pressure, and (2) after bringing the water to the above temperature and pressure. , adding an oxidizing agent that releases oxygen atoms, or (3) adding an oxidizing agent that releases oxygen atoms to water, bringing the water to the above temperature and pressure, and further adding an oxidizing agent that releases oxygen atoms.
  • a catalyst for water decomposition particularly water electrolysis, which has a high oxygen generating capacity even when the amount of iridium used is small.
  • FIG. 1 is an example of an apparatus for producing yttrium and iridium oxides according to this embodiment.
  • 1 is an X-ray diffraction pattern in Example 1.
  • FIG. 4 is an X-ray diffraction pattern in Comparative Example 1.
  • FIG. 4 is an X-ray diffraction pattern of iridium oxide of Comparative Example 2.
  • FIG. 1 is a TEM image of Example 1.
  • the oxygen evolution reaction catalyst of the present invention (hereinafter also referred to as the present catalyst) is an oxide containing yttrium and iridium and having a BET specific surface area of 50 m 2 /g or more (hereinafter also referred to as the "present oxide"). include.
  • the present oxide may contain yttrium oxide or iridium oxide, may contain a mixture of yttrium oxide and iridium oxide , and may include a composite oxide of yttrium and iridium represented by the general formula YxIryOz . may contain.
  • the present oxide may also contain a mixture of these.
  • This oxide preferably contains a composite oxide of yttrium and iridium from the viewpoint of oxygen evolution reaction activity.
  • the subscripts x, y and z usually satisfy the following.
  • the present oxide contains a composite oxide of yttrium and iridium
  • the above x, y, and z more preferably contain a composite oxide that satisfies the following ranges. 0.2 ⁇ x ⁇ 2 0.2 ⁇ y ⁇ 2 2 ⁇ z ⁇ 8
  • the composite oxide is the main component.
  • the complex oxide as the main component means that the diffraction peak attributed to yttrium oxide and iridium oxide is below the detection limit when X-ray diffraction of the powder of the oxide is measured.
  • the present oxide may contain other metals besides yttrium and iridium.
  • Other metals include platinum, ruthenium, rhodium, palladium, nickel, aluminum, strontium, bismuth, titanium, tin, zinc, iron, copper, silver, gold, lanthanum, antimony.
  • These metals may be oxides of each metal, or may be halides or hydroxides other than oxides.
  • yttrium, iridium, or a composite oxide of both of them may be used.
  • the elemental ratio of yttrium and iridium in the present oxide is preferably 40 to 60 atm% for yttrium and 60 to 40 atm% for iridium, where the total elemental amount of yttrium and iridium is 100 atm%, from the viewpoint of oxygen generation reaction activity. is more preferably 50 atm % and 50 atm % iridium.
  • the BET specific surface area of the present oxide is more preferably 100 m 2 /g or more, still more preferably 150 m 2 /g or more, from the viewpoint of the oxygen evolution reaction.
  • the BET specific surface area is determined by the BET method by low-temperature physical adsorption of an inert gas, and is a specific surface area determined from the obtained adsorption isotherm.
  • the average particle size of the present oxide is preferably 100 nm or less. More preferably, the average particle size is 50 nm or less.
  • Average particle size can be measured by transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM). By decreasing the average particle size, it can be expected that the active sites of the catalyst will increase and the OER mass activity will improve.
  • the average particle size was measured according to the method described in JIS H 7804:2005. That is, 200 or more primary particles are selected from the metal particles shown in the image taken by the TEM, and the longest length of these particles is visually measured as the particle diameter.
  • the average particle size was obtained by dividing the total particle size of each particle by the number of particles whose particle sizes were measured.
  • the field of view to be photographed was a location containing 200 or more primary particles.
  • the number of primary particles to be measured is not particularly limited as long as it is 200 or more.
  • the shape of the present oxide may be spherical, ellipsoidal, columnar, or irregular, but a spherical or nearly spherical shape is preferable from the viewpoint of handling.
  • the average particle size of the present oxide is the value obtained by measuring the major axis when observed by TEM or STEM.
  • the present catalyst may be the present oxide itself or may contain other components.
  • the oxide may be supported on a carrier to form the catalyst.
  • a corrosion-resistant carbon powder such as graphitized carbon black or acetylene black or a conductive oxide powder carrier such as Ti 4 O 7 is preferably used.
  • the content of the present oxide in the present catalyst is preferably 20% by mass or more, preferably 30% by mass, with the total mass of the present oxide and the support being 100% by mass. % or more is more preferable.
  • the present catalyst may contain other components such as a stabilizer, if necessary, in addition to the carrier.
  • this catalyst Since this catalyst has a high ability to generate oxygen, it can be used as a catalyst layer such as an oxygen generation reaction catalyst layer in a water electrolysis system.
  • the reaction of the following formula (1) occurs in the anode catalyst layer, and water is converted into oxygen and hydrogen. converted to ions (protons).
  • the hydrogen ions travel through the proton transport agent and move to the cathode catalyst layer, which is the hydrogen generation reaction catalyst layer, and the reaction of the following formula (2) occurs in the cathode catalyst layer, producing oxygen (O 2 ) on the anode side and oxygen (O 2 ) on the cathode side.
  • Hydrogen ( H2 ) is generated.
  • H 2 O 1/2O 2 + 2H + + 2e ⁇ (1)
  • the protons generated by the decomposition of water in the MEA are transported from the anode catalyst layer to the cathode catalyst layer through the ion-exchange polymer electrolyte membrane. Move to the cathode catalyst layer.
  • the present catalyst can be used as an oxygen evolution reaction catalyst layer, that is, an anode catalyst layer of the water electrolysis system by using it together with a proton transport agent.
  • the proton transport agent has a role of conducting protons, and may have a function of transporting protons to the vicinity of the catalyst in the catalyst layer for the electrolysis reaction and a function as a binder that fixes the catalyst to the substrate.
  • proton transport agents examples include perfluorosulfonic acid proton transport agents, sulfonated polyethylene ether ketone proton transport agents, and sulfonated polybenzimidazole proton transport agents.
  • Nafion registered trademark, manufactured by DuPont
  • Flemion registered trademark, manufactured by AGC
  • Aciplex registered trademark, manufactured by Asahi Kasei
  • Fumion registered trademark, manufactured by Fumatech
  • Aquivio which are perfluorosulfonic acid-based proton transport agents.
  • Solvay registered trademark, manufactured by Solvay
  • the present catalyst can be used as an electrolytic cell of the above-mentioned water-splitting system by using it with an ion-exchange polymer electrolyte membrane.
  • a cation-exchange polymer electrolyte membrane is usually used.
  • the cation-exchange polymer electrolyte membrane preferably has physical strength, low gas permeability, and a membranous shape.
  • the cation-exchange polymer electrolyte is usually sandwiched between a cathode catalyst layer and an anode catalyst layer, and thus has a film-like shape.
  • a catalyst coated membrane (CCM) used in the water electrolysis system is formed by forming a multi-layered structure by providing a cation exchange polymer electrolyte membrane and the oxygen evolution reaction catalyst layer and the hydrogen evolution reaction catalyst layer on both sides thereof. can be done.
  • Materials constituting the cation exchange polymer electrolyte membrane include the same materials as those constituting the proton transport agent.
  • the oxygen evolution reaction catalyst layer and the electrolysis cell are obtained by coating the present catalyst on the proton transport agent or the cation exchange polymer electrolyte membrane, for example.
  • the ink used for coating may be prepared by stirring and mixing the proton transport agent and the present catalyst in a solvent.
  • the ratio of the catalyst to the proton transport agent is not particularly limited, but the composition is preferably 1:0.2 to 1:0.05, more preferably 1:0.15 to 1:0.07.
  • the solvent is not particularly limited, water or a mixture of water and a lower aliphatic alcohol such as ethanol, propanol or butanol is preferably used.
  • the amount of the present catalyst applied is preferably 0.001 mg/cm 2 to 4 mg/cm 2 per unit area of the cation exchange polymer electrolyte membrane, and 0.1 mg. /cm 2 to 2 mg/cm 2 is more preferred.
  • the electrolysis cell has a cathode layer, which is a hydrogen generation reaction catalyst layer, on the surface of the cation exchange polymer electrolyte membrane opposite to the main catalyst. Platinum is usually used as the hydrogen generation reaction catalyst in the cathode layer.
  • An MEA is formed by sandwiching the catalyst layer of the electrolysis cell with diffusion layers. When a plurality of these units are connected in series via separators and water is supplied to the anode catalyst layer, which is the oxygen evolution reaction catalyst layer, the reaction of the above formula (1) occurs in the anode catalyst layer. At , the reaction of the formula (2) occurs, and oxygen is generated on the anode side and hydrogen is generated on the cathode side.
  • the catalyst can also be used in fuel cell anodes.
  • hydrogen molecules supplied from the outside release two electrons at the anode and become hydrogen ions (protons). Electrons released from the hydrogen flow as current through an external circuit to the opposite cathode, where electrical power is generated.
  • oxygen molecules taken in from the air receive electrons returned from the external circuit and become oxygen ions.
  • Oxygen ions combine with hydrogen ions that have migrated through the proton transport agent to form water.
  • the chemical reaction on the anode side can be expressed by the following formula (3), the chemical reaction on the cathode side by the following formula (4), and the overall reaction by the following formula (5).
  • 2H 2 ⁇ 4H + + 4e ⁇ (3) 4H + + O 2 +4e ⁇ ⁇ 2H 2 O (4)
  • 2H 2 + O 2 ⁇ 2H 2 O (5) When the hydrogen supply to the anode side becomes insufficient when starting or stopping the fuel cell, a fuel starvation state occurs, and a reverse potential occurs in which current is forced to flow from other cells connected in series to the cell in the fuel starvation state. . As a result, the reaction of the following formula (6) occurs.
  • the reaction of formula (7) proceeds, preventing catalyst deterioration due to hydrogen deficiency in the anode of the fuel cell. can be done.
  • the present catalyst can be used as a co-catalyst for photocatalysts.
  • Materials such as gallium phosphide, gallium arsenide, cadmium sulfide, strontium titanate, titanium oxide, zinc oxide, iron oxide, tungsten oxide, and tin oxide are known as photocatalysts.
  • the photocatalyst-based water splitting reaction begins when the photocatalyst absorbs light with energy greater than the bandgap and generates excited electrons in the conduction band and holes in the valence band. Then, the excited electrons and holes reduce and oxidize water to produce hydrogen and oxygen, thereby proceeding a photocatalytic reaction.
  • metal oxide photocatalyst materials that can respond to visible light, and there is a problem that hydrogen cannot be produced efficiently. Improvements are being considered.
  • this catalyst as an oxygen evolution reaction catalyst, hydrogen can be produced efficiently.
  • metal fine particles such as platinum, rhodium, iridium, ruthenium, nickel and gold can be used as the hydrogen generation reaction catalyst.
  • This catalyst can be used as an electrode by using it with a metal plate.
  • the electrode obtained can be suitably used as a cathode in the soda industry.
  • the present catalyst can be applied to the metal plate to form the electrode.
  • the content of the present oxide in the present catalyst is preferably 1 mg/cm 2 to 3 mg/cm 2 , more preferably 2 mg/cm 2 to 3 mg/cm 2 per unit area of the metal plate.
  • the soda industry electrolyzes salt water to produce caustic soda, chlorine and hydrogen.
  • chlorine is used as a raw material for synthetic resins such as vinyl chloride resin, epoxy resin, silicon resin, and fluorine resin, chlorinated solvents, refrigerants, agricultural chemicals, pharmaceuticals, and other chemical products.
  • synthetic resins such as vinyl chloride resin, epoxy resin, silicon resin, and fluorine resin, chlorinated solvents, refrigerants, agricultural chemicals, pharmaceuticals, and other chemical products.
  • Caustic soda is also used as a raw material for making products such as paper and pulp bleaching, chemical fibers, detergents and soaps, raw materials for industrial chemicals, and seasonings, which are indispensable in daily life.
  • Industrially established electrolysis methods include the mercury method, diaphragm method, and ion-exchange membrane method, but the electrode containing the present catalyst and metal plate is preferably used for the ion-exchange membrane method, which is environmentally friendly and cost-effective.
  • the ion-exchange membrane method a cathode chamber and an anode chamber of an electrolytic cell are separated by a cation-exchange polymer electrolyte, and a metal electrode such as titanium is used for the cathode and a metal electrode such as nickel is used for the anode.
  • DSA Dimensionally Stable Anode coated with a mixed oxide layer containing a platinum group metal oxide based on titanium
  • DSA has many excellent properties such as high electrochemical catalytic activity for oxygen and chlorine evolution, high electrical conductivity, good processing properties, corrosion resistance, energy saving, and light weight, so it is widely used.
  • platinum group metal oxide coated on the surface of the DSA registered trademark
  • iridium is widely used from the viewpoint of durability and the like. The amount of iridium used can be suppressed and caustic soda, chlorine, and hydrogen can be efficiently produced by using the platinum group metal oxide obtained as the catalyst of the present invention.
  • the method for producing the present oxide includes (1) dispersing yttrium nanoparticles and iridium nanoparticles, or yttrium hydroxide particles and iridium hydroxide particles in a dispersion medium to obtain a dispersion liquid (hereinafter also referred to as "this dispersion"), or (2) a step A of dissolving an yttrium compound and an iridium compound in a solvent to obtain a solution (hereinafter also referred to as "this solution”); A step B in which the water temperature is 100 ° C. or higher and the pressure is higher than 0.1 MPa, and a step C in which the dispersion or the solution obtained in the step A and the high-temperature and high-pressure water obtained in the step B are mixed. and
  • the present oxide production apparatus 100 includes a first supply source 1 that supplies the present dispersion or the present solution, a second supply source 2 that supplies water, and heats the water supplied from the second supply source 2. It has a heating unit 3 for Water supplied from the second supply source 2 is heated to a temperature of 100° C. or higher by the heating unit 3 . Moreover, the pressure exceeds 0.1 MPa by the pressure adjustment mechanism 10, which will be described later. Further, the production apparatus 100 is a reaction unit in which the main dispersion or the main solution and water (hereinafter also referred to as "main high-temperature water") having a temperature of 100 ° C.
  • main high-temperature water main high-temperature water
  • the water supplied from the second supply source 2 may contain an oxidant, which will be described later, if necessary.
  • the first supply source 1 and the reaction section 4 are connected by a liquid feeding route 5 , and the main dispersion or the main dissolving liquid is fed from the first supply section 1 to the reaction section 4 through the liquid feeding route 5 .
  • the second supply source 2 and the reaction section 4 are connected by a liquid feeding route 6 , and a liquid containing water is fed from the second supply section 2 to the reaction section 4 by the liquid feeding route 6 .
  • the oxidizing agent may be added to the water at any point along the liquid feeding route 6 as required.
  • the reaction section 4 is connected to a recovery section 8 for recovering the produced reaction product by a liquid feeding route 7 , and a cooling section 9 is arranged around the liquid feeding route 7 between the reaction section 4 and the recovery section 8 .
  • the manufacturing apparatus 100 has a pressure adjusting mechanism 10 for the purpose of setting the reaction section to a high pressure condition.
  • the pressure adjusting mechanism 10 may be connected to the recovery section 8 as shown in FIG.
  • a plunger, a cylinder, and a regulator can be considered as the pressure adjusting mechanism, but from the viewpoint of clogging or wear, the cylinder is preferable.
  • the liquid feeding routes 5 to 7 are formed by, for example, piping. According to the manufacturing apparatus 100, oxides of yttrium and iridium can be stably produced.
  • the present dispersion or the present solution is mixed with the present high-temperature water to oxidize the yttrium and iridium in the present dispersion or the present solution to produce an oxide containing yttrium and iridium.
  • Yttrium and iridium may be oxidized using only the high-temperature water, but by adding an oxidizing agent to the high-temperature water, yttrium and iridium can be oxidized more efficiently. Water is obtained by the heating section 3 and the pressure regulation mechanism 10 .
  • the pressure adjustment mechanism 10 is located downstream of the manufacturing apparatus 100 and is connected to the reaction section 4, the liquid feeding route 5, the liquid feeding route 6, and the liquid feeding route 7, so that the pressure of the entire manufacturing apparatus 100 has a function to adjust
  • the pressure adjustment mechanism 10 adjusts the pressure of the reaction section and all of the above-described liquid feeding routes to obtain high-temperature water at the above-described temperature and pressure.
  • the oxidizing agent is preferably an oxidizing agent that releases oxygen, and is preferably an oxidizing agent that releases oxygen such as oxygen, hydrogen peroxide, and ozone. When oxygen gas is used as the oxidizing agent, it is preferable to heat the water to a saturated oxygen concentration at a high temperature and a high pressure.
  • a liquid feeding route 5 connecting the first supply source 1 and the reaction section 4 has liquid feeding means.
  • a liquid sending means that disposes the first supply source 1 at a position higher than the reaction section 4 and utilizes the height difference.
  • the present dispersion or the present solution can be transported from the first supply source 1 to the reaction section 4 by connecting with a pipe.
  • a flow rate adjusting means such as a needle valve or a stop valve may be arranged in the liquid feeding route 5 to adjust the flow rate.
  • a liquid feeding route 6 connecting the second supply source 2 and the reaction section 4 has liquid feeding means.
  • a means for disposing the second supply source 1 at a position higher than the reaction section 4 and using the height difference can be exemplified.
  • the water-containing liquid and the high-temperature water can be transported from the second supply source 2 to the reaction section 4 by connecting with a pipe.
  • the liquid feeding route 6 may be provided with means for adjusting the flow rate, such as a needle valve and a stop valve.
  • the oxide manufacturing apparatus may have flow rate adjusting mechanisms 11 and 12 for unidirectionally transferring the liquid flowing through either or both of the liquid feeding route 5 and the liquid feeding route 6 .
  • the flow rate adjustment mechanisms 11 and 12 are provided in the liquid feed route 5 and the liquid feed route 6, respectively.
  • the flow rate and flow rate of the present dispersion or the present solution in the liquid sending route 5 and the flow rate and flow rate of the liquid containing water in the liquid sending route 6 can be stably controlled. oxides can be produced exponentially.
  • Mechanisms 11, 12 can be, for example, plungers, cylinders or regulators.
  • the dispersion medium used in this dispersion is a medium for dispersing yttrium nanoparticles and iridium nanoparticles, or yttrium hydroxide particles and iridium hydroxide particles.
  • Examples include water and organic solvents.
  • the solvent used for this dispersion is a solvent that dissolves the yttrium compound and the iridium compound, and is liquid at room temperature. Examples include water and organic solvents. In the present embodiment, normal temperature is 15°C to 30°C, preferably 20°C to 25°C.
  • the average particle size of the yttrium nanoparticles or iridium nanoparticles is usually 100 nm or less, preferably 3 nm or less. It is more preferably 5 nm or less. If the average particle size of the yttrium nanoparticles and iridium nanoparticles is too large, the particle size of the oxide containing yttrium and iridium may become too large when reacting yttrium and iridium with oxygen.
  • yttrium nanoparticles and iridium nanoparticles may result in insufficient oxidation at yttrium nanoparticles and iridium nanoparticles.
  • yttrium nanoparticles and iridium nanoparticles adjusted to a desired average particle size by sizing or the like may be used.
  • the method for measuring the average particle size is the same as described above.
  • the average particle diameter of the yttrium hydroxide particles and the iridium hydroxide particles is usually 100 nm or less, It is preferably 3 nm or less, more preferably 2.5 nm or less.
  • the average particle size of yttrium hydroxide particles and iridium hydroxide particles is too large. It may become too large, and there is a possibility that the oxidation in the oxidation reaction described below will be insufficient.
  • yttrium hydroxide particles and iridium hydroxide particles for example, yttrium hydroxide particles and iridium hydroxide particles having a desired average particle size by sizing or the like may be used.
  • the method for measuring the average particle size is the same as described above.
  • the present dispersion can be obtained by adding the yttrium nanoparticles and iridium nanoparticles or the yttrium hydroxide particles and iridium hydroxide particles to the dispersion medium.
  • dispersion media include water and ethanol.
  • the yttrium compound includes yttrium-containing salts such as yttrium nitrate, yttrium acetate, yttrium sulfate, and yttrium chloride, and metal complexes such as yttrium acetylacetonate and yttrium carbonyl. .
  • yttrium nitrate compounds, yttrium sulfate compounds, and yttrium acetate compounds are preferred.
  • iridium compounds include iridium-containing salts such as iridium nitrate compounds, iridium sulfate compounds, iridium acetate compounds, and iridium chlorides, and metal complexes such as iridium acetylacetonate and iridium carbonyl.
  • iridium nitrate compounds, iridium sulfate compounds, and iridium acetate compounds are preferred.
  • the present solution can be obtained by adding the yttrium compound and the iridium compound to the solvent.
  • the solvent examples include water in the case of the yttrium-containing salt or the iridium-containing salt, and ethanol, ethyl acetate, or the like in the case of the yttrium-containing metal complex or the iridium-containing metal complex.
  • the solvent is water, ethanol, ethyl acetate and the like.
  • step A (2) it is preferable to dissolve the yttrium compound or iridium compound in the solvent at room temperature, for example, 15°C to 30°C.
  • the high-temperature water is obtained by setting the temperature of water to 100° C. or higher and the pressure to exceed 0.1 MPa.
  • the temperature of the high temperature water is preferably 150°C or higher, more preferably 374°C or higher, for example about 400°C.
  • the pressure of the high temperature water is preferably 0.5 MPa or higher, more preferably 22.1 MPa or higher, for example about 30 MPa. Pure water is preferable as the water for obtaining the high-temperature water.
  • An oxidizing agent such as oxygen, hydrogen peroxide, or ozone may be added in advance to the water.
  • the temperature of the present high-temperature water is preferably 100 ° C. or higher and the pressure is 0.5 MPa or higher, more preferably 374 ° C. or higher and the pressure is 22.1 MPa or higher. More preferably, it is in a critical state.
  • step B preferably further includes a step of adding an oxidizing agent, and more preferably includes a step of adding an oxidizing agent that releases oxygen atoms.
  • the step of adding an oxidizing agent that releases oxygen atoms includes (1) adding an oxidizing agent that releases oxygen atoms to the water, and then converting the water to high-temperature water that satisfies the temperature and pressure; A step of adding an oxidizing agent that releases oxygen atoms after making this hot water satisfying the temperature and pressure, or (3) adding an oxidizing agent that releases oxygen atoms to the water and then satisfying the temperature and pressure. It is further preferable to include any of the steps of obtaining the high-temperature water and adding an oxidizing agent that releases oxygen atoms.
  • step C the present dispersion or solution obtained in step A and the present high-temperature water obtained in step B are mixed.
  • the iridium and yttrium contained in the present dispersion or the present solution are oxidized to form oxides.
  • the present dispersion obtained in step A or the present solution obtained in step B is sent through the liquid sending route 5 and the present obtained in step B By merging the liquid feeding routes 6 through which the high-temperature water is fed, it is possible to obtain a dispersion liquid in which oxides containing yttrium and iridium are dispersed in the high-temperature water. In FIG. 1, they are mixed in the reaction section 4 .
  • the dispersion liquid obtained in step C is cooled in the cooling unit 9 shown in FIG.
  • the present oxide containing yttrium and iridium can be obtained by dehydration with .
  • the present dispersion or solution obtained in step A and the present high-temperature water obtained in step B are placed in the same container and mixed by stirring or the like to perform an oxidation reaction.
  • a dispersion liquid in which the present oxide containing yttrium and iridium is dispersed in the present high-temperature water can be obtained.
  • water may be brought to the above temperature and pressure in another container, and the resulting high-temperature water may be added to the container containing the dispersion or the solution, or the container containing the high-temperature water may be added to the high-temperature water.
  • the dispersion or the solution may be added, or the dispersion or the solution and the hot water may be placed in one container at the same time. Said addition may be continuous or intermittent.
  • the present high-temperature water is used, and the present dispersion or the present solution obtained in step A and the present high-temperature water are mixed in step C Therefore, it is preferable to mix in as short a time as possible and to cool in as short a time as possible after step C.
  • the high-temperature water is in a supercritical state, the yttrium ions and iridium ions in the dispersion or solution are directly oxidized, resulting in a smaller particle size of the resulting oxides and further cooling in a short period of time.
  • the BET specific surface area of the resulting oxide containing yttrium and iridium can be within the desired range.
  • a production method using a liquid feeding route as shown in FIG. 1 is preferable because the present oxide can be produced continuously and the average particle diameter of the resulting oxide can be reduced.
  • the average particle diameter of the present oxide to be obtained can be controlled within the preferred range.
  • the mixing time in step C varies depending on the size of the manufacturing apparatus used, the material of the apparatus, etc., but is, for example, 0.1 to 60 seconds.
  • the cooling time after the step C also varies depending on the size of the manufacturing apparatus used, the material of the apparatus, etc., but is, for example, 1 second to 60 seconds.
  • the present oxide contains a metal other than yttrium and iridium, metal particles or a metal compound containing the desired metal may be added separately in step A or step C. Further, when the present oxide is supported on the carrier, the present oxide may be isolated and then supported on the carrier by a conventional method. If necessary, the present oxide may be mixed with other components such as a stabilizer to form the present catalyst. Furthermore, the obtained present catalyst can be applied to the proton transport agent or the cation exchange polymer electrolyte membrane to form an oxygen reaction generating catalyst layer and an electrolytic cell. Application methods include metal mask printing, electrostatic coating, dip coating, spray coating, roll coating, doctor blade, gravure coating, and screen printing.
  • the present invention is not limited to the configurations of the above embodiments.
  • the present catalyst may be added with any other configuration, or may be replaced with any configuration that exhibits the same function.
  • the method for producing the oxide of the present invention may additionally include other arbitrary steps in the configuration of the above-described embodiments, or may be replaced with arbitrary steps that produce similar effects.
  • Example 1 Production of oxide (YI-1) containing yttrium and iridium Iridium nitrate solution (manufactured by Furuya Metals Co., Ltd.) was added to 2.8 L of water with an iridium weight of 1.92 g and yttrium nitrate hydrate (Fuji Film Co., Ltd.). (manufactured by Kojunyaku Co., Ltd.) was added, and a homogeneous metal compound mixed solution containing an iridium compound and an yttrium compound was obtained by stirring and ultrasonic treatment.
  • the mixed oxide dispersion containing iridium and yttrium was adjusted to 1 atm in the cooling section, cooled to 20° C., and collected in the collecting section. Then, after filtering with a membrane filter, the filtered cake was dried with an electric dryer at 80° C. for 4 hours to obtain an oxide containing yttrium and iridium.
  • the resulting slurry was allowed to cool to room temperature and then allowed to stand, and the supernatant liquid was decanted.
  • 300 mL of pure water was added to the Teflon beaker containing the remaining slurry, and the mixture was stirred for 1 hour while the temperature was raised to 80° C. again. Such decantation washing was carried out until the conductivity of the supernatant did not change. Filtration was then carried out to obtain a filter cake. This filter cake was dried in an electric dryer at 60° C. for 20 hours and then fired in the atmosphere at 1000° C. for 10 hours in an electric furnace to obtain an oxide containing yttrium and iridium.
  • the resulting slurry was allowed to cool to room temperature and then allowed to stand, and the supernatant liquid was decanted.
  • 1,300 mL of pure water was added to the Teflon beaker containing the remaining slurry, and the mixture was stirred for 1 hour while the temperature was again raised to 80° C., allowed to cool to room temperature, allowed to stand, and the supernatant liquid was again decanted.
  • Such decantation washing was continued until the conductivity of the supernatant did not change.
  • the filter cake was dried in an electric dryer at 60° C. for 20 hours and then calcined in the atmosphere at 400° C. for 10 hours in an electric furnace to obtain iridium oxide.
  • Powder X-ray diffraction was performed on the oxides containing yttrium and iridium obtained in Example 1 (YI-1), Comparative Example 1 (YI-2) and Comparative Example 2 (IO-1). Powder X-ray diffraction is measured using an X-ray diffraction (XRD) device (manufactured by Rigaku, Ultima IV). As specific measurement conditions, CuK ⁇ rays were used, and the diffraction angle was first adjusted so that the diffraction angle 2 ⁇ of Si (2,2,0) in the RSRP-Si standard powder sample was 48.28.
  • XRD X-ray diffraction
  • the catalyst of Example 1 (YI-1) has a broad peak in the vicinity of 30 ° to 35 ° in 2 ⁇ , and no other specific peaks are seen. It is considered to be an amorphous structure with no structure.
  • the catalyst of Comparative Example 1 (YI-2) has 29.5°, 34.3°, 49.2° and 58.4° at 2 ⁇ , which are characteristic peaks of the pyrochlore type Y 2 Ir 2 O 7 . was detected, the catalyst of Comparative Example 1 (YI-2) was considered to be pyrochlore-type Y 2 Ir 2 O 7 .
  • Example 1 The specific surface areas of the catalysts of Example 1 (YI-1), Comparative Example 1 (YI-2) and Comparative Example 2 (IO-1) were measured using a specific surface area/pore size distribution measuring device, BELSORP-miniII, and nitrogen It was carried out by the adsorption method. In addition, the obtained adsorption isotherm data was analyzed by the BET method of the analysis software BEL Master built into the specific surface area/pore size distribution measuring device to determine the specific surface area. Table 1 shows the results.
  • Example 1 From Table 1, it was confirmed that the BET specific surface area of Example 1 was 50 m 2 /g or more.
  • Example 1 (YI-1) was performed.
  • a model JEM-ARM200CF manufactured by JEOL Ltd. was used, and an STEM photograph image was shown in FIG. 5 at an acceleration voltage of 200 kV.
  • FIG. 5 it was confirmed that the particle size of the oxide containing yttrium and iridium obtained in Example 1 was 100 nm or less.
  • IPA 2-propanol
  • a rectangular wave durability test was performed on the electrode thus produced using an electrochemical measurement system (HZ-7000, manufactured by Hokuto Denko Co., Ltd.).
  • an electrochemical measurement system HZ-7000, manufactured by Hokuto Denko Co., Ltd.
  • As the electrolytic solution a 60 wt % perchloric acid solution (reagent for precision analysis, manufactured by Kanto Kagaku Co., Ltd.) was prepared to 0.1 M, degassed with Ar gas, and used as an electrolytic solution.
  • a three-electrode method was employed as the measurement method, and a hydrogen standard electrode in which hydrogen gas was passed over platinum black was used as a reference electrode, and the measurement was carried out in a constant temperature bath at 25°C.
  • Oxygen evolution reaction (hereinafter also referred to as OER: Oxyge Evolution Reaction) mass activity evaluation sweeps the voltage range of 1.0 V to 1.8 V at a rate of 10 mV / sec, current density at 1.5 V (mA /cm 2 ) by the amount of catalyst applied to the electrode (30 ⁇ g/cm 2 ). The results are shown in Table 2.
  • OER Oxygen evolution reaction
  • Example 1 (YI-1) and Comparative Example 1 (YI-2) both oxides containing yttrium and iridium, the OER mass activity at 1.5 V was determined by the total yttrium and iridium applied to the electrode. It was found that Example 1 (YI-1) was 1.8 times higher than that of Example 1 (YI-1).
  • Example 1 (YI-1) When the OER mass activity converted from the amount of iridium applied to the electrode was calculated, it was confirmed that Example 1 (YI-1) was about 3.9 times higher. In addition, when comparing Example 1 (YI-1) and Comparative Example 2 (IO-1), comparing the OER mass activity at 1.5 V with the total amount of metal applied to the electrode, Example 1 (YI- 1) was found to be about 2.5 times higher. Further, when the OER mass activity converted from the amount of iridium applied to the electrode was calculated, it was confirmed that Example 1 (YI-1) was about 3.9 times higher.
  • the catalysts containing the present oxides are iridium-only catalysts and pyrochlore-type composite oxides of yttrium and iridium in terms of OER mass activity, but have a BET specific surface area of less than 50 m 2 /g. showed higher performance compared to Therefore, by using the present oxide, the amount of iridium used can be reduced, and an electrolysis catalyst having a high oxygen evolution mass activity can be provided.
  • First supply source 2 Second supply source 3: Heating unit 4: Reaction unit 5: Liquid feeding route 6: Liquid feeding route 7: Liquid feeding route 8: Recovery unit 9: Cooling unit 10: Pressure adjustment mechanism 11; Flow rate adjusting means 12: Flow rate adjusting means 100: manufacturing apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

[Problem] To provide a catalyst for electrolysis, the catalyst being suppressed in the amount of iridium used therefor, while enabling a high oxygen evolution reaction. [Solution] An oxygen evolution reaction catalyst which contains an oxide that contains yttrium and iridium, while having a BET specific surface area of 50 m2/g or more.

Description

酸素発生反応触媒およびその製造方法Oxygen evolution reaction catalyst and method for producing the same
 本発明は酸素発生反応触媒に関し、さらに詳しくは、本発明は水の電気分解に用いられる酸素発生反応触媒に関する。さらに本発明は前記酸素発生反応触媒が含む酸化物の製造方法に関する。 The present invention relates to an oxygen evolution reaction catalyst, and more specifically, the present invention relates to an oxygen evolution reaction catalyst used for electrolysis of water. Furthermore, the present invention relates to a method for producing an oxide contained in the oxygen evolution reaction catalyst.
 水素はエネルギー変換効率が高く、さらに燃焼の際、二酸化炭素が発生しないことから、世界的な脱二酸化炭素の流れによりエネルギー源として注目されている。水素の製造方法は、炭化水素を改質して製造する方法、バイオマスで製造したメタノール等から製造する方法、製鉄などの工程において副生する副生成物を使用する方法、再生可能エネルギーから得る方法が知られている。その中でも、太陽光発電、風力発電などの再生可能エネルギーで発生させた電気で水を電気分解する方法は、二酸化炭素が発生しないことから水素の好ましい製造方法として着目されている。
 また水の電気分解を行い、水素としてエネルギーを保存することで余剰電力を有効活用できる。余剰電力を水素に変換して気体または液体で貯蔵すれば、燃料としてすぐに使用することができる。さらに、水素はアンモニアまたはメタノールなどの化成品などの別の化合物に変換して、産業に利用することができる。
 したがって水の電気分解により水素を製造することはエネルギーの有効活用という点からも注目を集めている。
Hydrogen has a high energy conversion efficiency and does not generate carbon dioxide when burned. Therefore, it is attracting attention as an energy source due to the global trend toward decarbonization. Hydrogen is produced by reforming hydrocarbons, producing from methanol produced from biomass, using by-products produced in processes such as iron manufacturing, and obtaining from renewable energy. It has been known. Among them, a method of electrolyzing water with electricity generated by renewable energy such as solar power generation and wind power generation is attracting attention as a preferable method for producing hydrogen because carbon dioxide is not generated.
In addition, surplus electricity can be used effectively by electrolyzing water and storing energy as hydrogen. Surplus electricity can be converted to hydrogen and stored in gaseous or liquid form for immediate use as fuel. Additionally, hydrogen can be converted to other compounds such as chemicals such as ammonia or methanol for industrial use.
Therefore, production of hydrogen by electrolysis of water is attracting attention also from the point of view of effective use of energy.
 水の電気分解(以下、水電解とも記す。)の方法として、アルカリ形水電解システムと固体分子膜(以下、「PEM」とも記す。)形水電解システムが検討されている。PEM形水電解システムは、同じ面積に流す電流がアルカリ形水電解システムに比べて高いため電解槽を小型化でき、再生可能エネルギーなどの変動電圧の激しいエネルギーに対し追従性が良く、電解して発生した水素が高純度であるといった利点がある。 As a method for water electrolysis (hereinafter also referred to as water electrolysis), an alkaline water electrolysis system and a solid molecular membrane (hereinafter also referred to as "PEM") water electrolysis system are being considered. Compared to alkaline water electrolysis systems, the PEM type water electrolysis system allows a smaller electrolyzer because the current flowing through the same area is higher than that of the alkaline water electrolysis system. There is an advantage that the generated hydrogen is of high purity.
 PEM形水電解セルは、ナフィオン(登録商標)等の陽イオン交換高分子電解質膜をアノード触媒層とカソード触媒層で挟んだ触媒被覆膜(Catalyst Coated Membrane、以下CCMとも略す。)の両側を更にガス拡散層で挟んでなる膜電極接合体(Membrane Electrode Assembly、以下MEAとも略す。)を一つの構成単位とし、セパレータを介して複数個直列に接合して構成される。アノード触媒層に水を供給するとアノード触媒層では下記式(1)の反応が、カソード触媒層では下記式(2)の反応が起こり、アノード側で酸素(O)、カソード側で水素(H)が発生する。
  HO→ 1/2O(g) + 2H + 2e  (1)
  2H +  2e →   H(g)     (2)
 全体の反応の律速段階はアノード側の水の酸化および酸素発生反応にあり、アノード触媒の酸素発生反応(以下、「OER」とも記す。)質量活性がシステムの効率を左右する重要なファクターとなる。
The PEM type water electrolysis cell has a catalyst coated membrane (catalyst coated membrane, hereinafter also abbreviated as CCM) in which a cation exchange polymer electrolyte membrane such as Nafion (registered trademark) is sandwiched between an anode catalyst layer and a cathode catalyst layer. Furthermore, a membrane electrode assembly (hereinafter also abbreviated as MEA) sandwiched between gas diffusion layers is used as one structural unit, and a plurality of such assemblies are connected in series via separators. When water is supplied to the anode catalyst layer, the reaction of the following formula (1) occurs in the anode catalyst layer, and the reaction of the following formula (2) occurs in the cathode catalyst layer, oxygen (O 2 ) on the anode side, hydrogen (H 2 ) occurs.
H 2 O→ 1/2O 2 (g) + 2H + + 2e (1)
2H + + 2e → H 2 (g) (2)
The rate-determining step of the overall reaction is the oxidation of water and the oxygen evolution reaction on the anode side, and the oxygen evolution reaction (hereinafter also referred to as "OER") mass activity of the anode catalyst is an important factor that determines the efficiency of the system. .
 PEM形水電解システムのアノードでの酸素発生反応は、反応速度が遅く、より多くの酸素を生成させるためには高い電圧を印加する必要がある。このため、PEM形水電解システムのアノードには、電気伝導性を有し、高酸化環境下または高電圧環境下における高い耐久性を有するイリジウムまたはイリジウム酸化物を含む触媒が利用されてきた。
 一方、イリジウムの年間産出量は少なく希少性が高いため、よりイリジウム含有量が少ない触媒で高い酸素発生反応を示し、かつ高酸化環境下または高電圧環境下における高い耐久性が求められてきた。
The oxygen generation reaction at the anode of the PEM type water electrolysis system has a slow reaction rate, and a high voltage needs to be applied to generate more oxygen. For this reason, anodes in PEM-type water electrolysis systems have utilized catalysts containing iridium or iridium oxides that are electrically conductive and have high durability in highly oxidizing or high voltage environments.
On the other hand, annual production of iridium is low and scarcity is high, so catalysts with lower iridium content have been required to exhibit high oxygen evolution reaction and high durability in highly oxidizing or high voltage environments.
 特許文献1には、イリジウムおよびルテニウム酸化物を酸化スズ上に担持した電極触媒組成物が開示されている。 Patent Document 1 discloses an electrode catalyst composition in which iridium and ruthenium oxides are supported on tin oxide.
 特許文献2には、コアと前記コアの表面を被覆するシェルとを備え、前記コアは、少なくとも表面に酸化ルテニウムまたは金属ルテニウムを含み、前記シェルは、チタニア、または、チタンとルテニウムとの複合酸化物を含み、コアシェル型の酸素発生反応触媒が提案されている。 In Patent Document 2, a core and a shell covering the surface of the core are provided, the core contains ruthenium oxide or metallic ruthenium at least on the surface, and the shell is made of titania or a composite oxide of titanium and ruthenium. A core-shell type oxygen evolution reaction catalyst has been proposed.
 特許文献3には、白金あるいは一または複数の他の金属と合金化された白金を含む電解触媒と酸素発生反応触媒を含む触媒膜が提案されており、前記酸素発生反応触媒は高い酸素発生反応質量活性を有していることが報告されている。 Patent Literature 3 proposes a catalyst film containing an electrocatalyst containing platinum or platinum alloyed with one or more other metals and an oxygen evolution reaction catalyst, wherein the oxygen evolution reaction catalyst has a high oxygen evolution reaction rate. It has been reported to have mass activity.
 非特許文献1は、BET比表面積が21m/g以上であり、かつ粒径が約200nmであり、パイロクロア型の結晶構造を有するイットリウムおよびイリジウムの酸化物が報告されている。 Non-Patent Document 1 reports an oxide of yttrium and iridium having a BET specific surface area of 21 m 2 /g or more, a particle size of about 200 nm, and a pyrochlore type crystal structure.
 非特許文献2は、BET比表面積が7.3m/g以上であり、かつ粒径が約200nmであり、パイロクロア型の結晶構造を有するイットリウムおよびイリジウムの酸化物が報告されている。 Non-Patent Document 2 reports an oxide of yttrium and iridium having a BET specific surface area of 7.3 m 2 /g or more, a particle size of about 200 nm, and a pyrochlore type crystal structure.
特表2020-500692号公報Japanese Patent Publication No. 2020-500692 特許第6763009号公報Japanese Patent No. 6763009 特許第5978224号公報Japanese Patent No. 5978224
 今後、水の電気分解による水素製造技術の実用化が加速していく場合、大量のイリジウムが使用されることが予想される。一方、イリジウムの年間産出量は約9tであり、希少性が高いことから、イリジウムの使用量を抑え、高い酸素発生反応を示す水の電気分解用の酸素発生反応触媒の開発が求められている。 In the future, it is expected that a large amount of iridium will be used if the practical application of hydrogen production technology by electrolysis of water is accelerated. On the other hand, the annual production of iridium is about 9 tons, and since it is highly scarce, there is a demand for the development of an oxygen evolution reaction catalyst for water electrolysis that exhibits a high oxygen evolution reaction while suppressing the amount of iridium used. .
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、本発明を完成するに至った。すなわち本発明は下記の態様を有する。 The present inventors have completed the present invention as a result of diligent studies aimed at solving the above problems. That is, the present invention has the following aspects.
 [1]
 イットリウムおよびイリジウムを含み、BET比表面積が50m/g以上である酸化物を含む酸素発生反応触媒。
 [2]前記酸化物の平均粒子径が100nm以下である前記[1]に記載の酸素発生反応触媒。
 [3]前記[1]または[2]に記載の酸素発生反応触媒とプロトン輸送剤を含む酸素発生反応触媒層。
 [4]前記[3]に記載の酸素発生反応触媒層とイオン交換高分子電解質膜を含む電解セル。
 [5]イオン交換高分子電解質膜が陽イオン交換高分子電解質である前記[4]に記載の電解セル。
[1]
An oxygen evolution reaction catalyst containing an oxide containing yttrium and iridium and having a BET specific surface area of 50 m 2 /g or more.
[2] The oxygen evolution reaction catalyst according to [1] above, wherein the oxide has an average particle size of 100 nm or less.
[3] An oxygen evolution catalyst layer containing the oxygen evolution catalyst according to [1] or [2] and a proton transport agent.
[4] An electrolytic cell comprising the oxygen evolution reaction catalyst layer of [3] and an ion-exchange polymer electrolyte membrane.
[5] The electrolytic cell according to [4] above, wherein the ion-exchange polymer electrolyte membrane is a cation-exchange polymer electrolyte.
また本発明は以下の態様を有する。
 [6](1)イットリウムナノ粒子およびイリジウムナノ粒子またはイットリウム水酸化物粒子およびイリジウム水酸化物粒子を分散媒に分散させて分散液を得る、または(2)イットリウム化合物およびイリジウム化合物を溶媒に溶解させて溶解液を得る工程Aと、
 水の温度を100℃以上、圧力を0.1MPa超とする工程Bと、前記工程Aで得た前記分散液または前記溶解液と前記工程Bで得た前記高温高圧水とを混合する工程Cとを有する前記[1]に記載の酸化物の製造方法。
 [7]前記工程Bに酸化剤を添加する工程を含む前記[6]に記載の酸化物の製造方法。
 [8]前記酸化剤が酸素原子を放出する酸化剤である前記[7]に記載の酸化物の製造方法。
 [9]前記工程Bは、(1)水に、酸素原子を放出する酸化剤を添加した後、水を前記の温度および圧力とする工程、(2)水を前記の温度および圧力とした後、酸素原子を放出する酸化剤を添加する工程、または、(3)水に酸素原子を放出する酸化剤を添加した後、水を前記の温度および圧力とし、さらに、酸素原子を放出する酸化剤を添加する工程、のいずれかの工程を含む前記[8]に記載の酸化物の製造方法
Moreover, this invention has the following aspects.
[6] (1) Dispersing yttrium nanoparticles and iridium nanoparticles or yttrium hydroxide particles and iridium hydroxide particles in a dispersion medium to obtain a dispersion, or (2) dissolving an yttrium compound and an iridium compound in a solvent A step A of obtaining a solution by allowing
A step B in which the temperature of water is 100 ° C. or higher and a pressure in excess of 0.1 MPa, and a step C of mixing the dispersion or the solution obtained in the step A and the high-temperature and high-pressure water obtained in the step B. The method for producing the oxide according to [1] above, comprising:
[7] The method for producing an oxide according to [6] above, including the step of adding an oxidizing agent in the step B.
[8] The method for producing an oxide according to [7] above, wherein the oxidizing agent is an oxidizing agent that releases oxygen atoms.
[9] The step B includes (1) adding an oxidizing agent that releases oxygen atoms to water and then bringing the water to the above temperature and pressure, and (2) after bringing the water to the above temperature and pressure. , adding an oxidizing agent that releases oxygen atoms, or (3) adding an oxidizing agent that releases oxygen atoms to water, bringing the water to the above temperature and pressure, and further adding an oxidizing agent that releases oxygen atoms. The method for producing the oxide according to [8] above, comprising any one of the steps of adding
 本発明によれば、イリジウムの少ない使用量でも、高い酸素発生能を有する水の分解、特に水の電気分解用の触媒が提供される。 According to the present invention, there is provided a catalyst for water decomposition, particularly water electrolysis, which has a high oxygen generating capacity even when the amount of iridium used is small.
本実施形態に係るイットリウムおよびイリジウム酸化物の製造装置の一例である。1 is an example of an apparatus for producing yttrium and iridium oxides according to this embodiment. 実施例1におけるX線回折パターンである。1 is an X-ray diffraction pattern in Example 1. FIG. 比較例1におけるX線回折パターンである。4 is an X-ray diffraction pattern in Comparative Example 1. FIG. 比較例2の酸化イリジウムのX線回折パターンである。4 is an X-ray diffraction pattern of iridium oxide of Comparative Example 2. FIG. 実施例1のTEM画像である。1 is a TEM image of Example 1. FIG.
 以下、本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Hereinafter, the present invention will be described in detail by showing embodiments, but the present invention is not construed as being limited to these descriptions. Various modifications may be made to the embodiments as long as the effects of the present invention are achieved.
 本発明の酸素発生反応触媒(以下、本触媒とも記す。)は、イットリウムおよびイリジウムを含み、BET比表面積が50m/g以上である酸化物(以下、「本酸化物」とも記す。)を含む。 The oxygen evolution reaction catalyst of the present invention (hereinafter also referred to as the present catalyst) is an oxide containing yttrium and iridium and having a BET specific surface area of 50 m 2 /g or more (hereinafter also referred to as the "present oxide"). include.
 本酸化物はイットリウム酸化物またはイリジウム酸化物を含んでもよく、イットリウム酸化物とイリジウム酸化物の混合物を含んでもよく、一般式YIrで表されるイットリウムとイリジウムの複合酸化物を含んでもよい。また本酸化物はこれらの混合物を含んでもよい。本酸化物は酸素発生反応活性の観点からイットリウムとイリジウムの複合酸化物を含むのが好ましい。なお、前記一般式において、添え字のx、yおよびzは通常、以下を満たす。
  0.1≦x≦3
  0.1≦y≦3
  1≦z≦10
 本酸化物がイットリウムとイリジウムの複合酸化物を含む場合、前記、x、y、zは以下の範囲を満たす複合酸化物を含むのがより好ましい。
  0.2≦x≦2
  0.2≦y≦2
  2≦z≦8
 本酸化物が前記複合酸化物を含む場合、前記複合酸化物が主成分であるのがより好ましい。なお複合酸化物が主成分とは、本酸化物の粉末のX線回折を測定したとき、イットリウム酸化物およびイリジウム酸化物に帰属される回折ピークが検出限界以下であることである。
The present oxide may contain yttrium oxide or iridium oxide, may contain a mixture of yttrium oxide and iridium oxide , and may include a composite oxide of yttrium and iridium represented by the general formula YxIryOz . may contain. The present oxide may also contain a mixture of these. This oxide preferably contains a composite oxide of yttrium and iridium from the viewpoint of oxygen evolution reaction activity. In the above general formula, the subscripts x, y and z usually satisfy the following.
0.1≤x≤3
0.1≤y≤3
1≤z≤10
When the present oxide contains a composite oxide of yttrium and iridium, the above x, y, and z more preferably contain a composite oxide that satisfies the following ranges.
0.2≤x≤2
0.2≤y≤2
2≤z≤8
When the present oxide contains the composite oxide, it is more preferable that the composite oxide is the main component. The complex oxide as the main component means that the diffraction peak attributed to yttrium oxide and iridium oxide is below the detection limit when X-ray diffraction of the powder of the oxide is measured.
 本酸化物はイットリウムおよびイリジウム以外に他の金属を含んでもよい。他の金属としては、白金、ルテニウム、ロジウム、パラジウム、ニッケル、アルミニウム、ストロンチウム、ビスマス、チタン、スズ、亜鉛、鉄、銅、銀、金、ランタン、アンチモンが挙げられる。これら金属は各金属の酸化物でもよく、酸化物以外の例えば、ハロゲン化物、水酸化物でもよい。またイットリウム、イリジウム、または両者との複合酸化物でもよい。 The present oxide may contain other metals besides yttrium and iridium. Other metals include platinum, ruthenium, rhodium, palladium, nickel, aluminum, strontium, bismuth, titanium, tin, zinc, iron, copper, silver, gold, lanthanum, antimony. These metals may be oxides of each metal, or may be halides or hydroxides other than oxides. Also, yttrium, iridium, or a composite oxide of both of them may be used.
 本酸化物中のイットリウムおよびイリジウムの元素比は、酸素発生反応活性の観点から、イットリウムおよびイリジウムの合計元素量を100atm%として、イットリウムは40から60atm%、イリジウムは60から40atm%が好ましく、イットリウムが50atm%およびイリジウムが50atm%がより好ましい。 The elemental ratio of yttrium and iridium in the present oxide is preferably 40 to 60 atm% for yttrium and 60 to 40 atm% for iridium, where the total elemental amount of yttrium and iridium is 100 atm%, from the viewpoint of oxygen generation reaction activity. is more preferably 50 atm % and 50 atm % iridium.
 本酸化物のBET比表面積は、酸素発生反応の観点から、100m/g以上がより好ましく、150m/g以上がさらに好ましい。
 前記BET比表面積は、不活性気体の低温物理吸着によりBET法により求められ、得られた吸着等温線から求められる比表面積である。
The BET specific surface area of the present oxide is more preferably 100 m 2 /g or more, still more preferably 150 m 2 /g or more, from the viewpoint of the oxygen evolution reaction.
The BET specific surface area is determined by the BET method by low-temperature physical adsorption of an inert gas, and is a specific surface area determined from the obtained adsorption isotherm.
 本酸化物の平均粒子径は100nm以下であることが好ましい。平均粒子径は50nm以下がより好ましい。平均粒子径は、透過型電子顕微鏡(TEM)または走査型透過型電子顕微鏡(STEM)で測定することができる。平均粒子径が小さくなることで、触媒の活性点が増え、OER質量活性が向上することが期待できる。
 平均粒子径はJIS H 7804:2005に記載の方法に準拠して測定した。すなわち、TEMにより撮影した画像に写っている金属粒子の内、一次粒子を200個以上選定し、それらの粒子の最長の長さを粒子径として目視により測定する。各粒子の粒子径の合計を、粒子径を測定した粒子の個数で除した値を平均粒子径とした。撮影する視野は一次粒子が200個以上含まれる個所を撮影した。
 測定する一次粒子の個数は200個以上であれば特に制限はないが、通常は300個以下であり、200個から300個程度である。
The average particle size of the present oxide is preferably 100 nm or less. More preferably, the average particle size is 50 nm or less. Average particle size can be measured by transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM). By decreasing the average particle size, it can be expected that the active sites of the catalyst will increase and the OER mass activity will improve.
The average particle size was measured according to the method described in JIS H 7804:2005. That is, 200 or more primary particles are selected from the metal particles shown in the image taken by the TEM, and the longest length of these particles is visually measured as the particle diameter. The average particle size was obtained by dividing the total particle size of each particle by the number of particles whose particle sizes were measured. The field of view to be photographed was a location containing 200 or more primary particles.
The number of primary particles to be measured is not particularly limited as long as it is 200 or more.
 本酸化物の形状は球形、楕円球形状、柱状または不定形状でいずれでもよいが、球状または球状に近い形状が取り扱いの観点から好ましい。
 なお前記本酸化物の平均粒径はTEMまたはSTEM観察した時の長径を測定した値である。
The shape of the present oxide may be spherical, ellipsoidal, columnar, or irregular, but a spherical or nearly spherical shape is preferable from the viewpoint of handling.
The average particle size of the present oxide is the value obtained by measuring the major axis when observed by TEM or STEM.
 本触媒は前記本酸化物そのものでもよく、他の成分を含んでもよい。例えば本酸化物を担体に担持して本触媒としてもよい。
 担体としてはグラファィト化カーボンブラックやアセチレンブラック等の耐食性カーボン粉末またはTi等の導電性酸化物粉末担体が好適に用いられる。
The present catalyst may be the present oxide itself or may contain other components. For example, the oxide may be supported on a carrier to form the catalyst.
As the carrier, a corrosion-resistant carbon powder such as graphitized carbon black or acetylene black or a conductive oxide powder carrier such as Ti 4 O 7 is preferably used.
 本酸化物を前記担体に担持して本触媒とする場合、本触媒中の本酸化物の含有量は本酸化物と担体の合計質量を100質量%として、20質量%以上が好ましく、30質量%以上がより好ましい。
 本触媒は前記担体以外に、必要に応じて安定剤等の他の成分を含有してもよい。
When the present oxide is supported on the carrier to form the present catalyst, the content of the present oxide in the present catalyst is preferably 20% by mass or more, preferably 30% by mass, with the total mass of the present oxide and the support being 100% by mass. % or more is more preferable.
The present catalyst may contain other components such as a stabilizer, if necessary, in addition to the carrier.
 本触媒は高い酸素発生能を有することから、水電解システムの酸素発生反応触媒層のような触媒層として使用することができる。前記のとおり、水電解システムにおいて、外部から供給された水が酸素発生反応触媒層であるアノード触媒層に供給されるとアノード触媒層では下記式(1)の反応が起こり、水が酸素と水素イオン(プロトン)に変換される。水素イオンは、プロトン輸送剤を伝わり水素発生反応触媒層であるカソード触媒層に移動して、カソード触媒層で下記式(2)の反応が起こり、アノード側で酸素(O)、カソード側で水素(H)が発生する。
  HO → 1/2O + 2H + 2e  (1)
  2H + 2e → H          (2)
 PEM形水電解システムでは前記反応により、MEAにおいて水の分解により発生したプロトンをアノード触媒層からカソード触媒層にイオン交換高分子電解質膜を通じて輸送し、同時にアノード触媒層で発生した電子は外部回路を通じてカソード触媒層に移動する。
Since this catalyst has a high ability to generate oxygen, it can be used as a catalyst layer such as an oxygen generation reaction catalyst layer in a water electrolysis system. As described above, in the water electrolysis system, when water supplied from the outside is supplied to the anode catalyst layer, which is the oxygen evolution reaction catalyst layer, the reaction of the following formula (1) occurs in the anode catalyst layer, and water is converted into oxygen and hydrogen. converted to ions (protons). The hydrogen ions travel through the proton transport agent and move to the cathode catalyst layer, which is the hydrogen generation reaction catalyst layer, and the reaction of the following formula (2) occurs in the cathode catalyst layer, producing oxygen (O 2 ) on the anode side and oxygen (O 2 ) on the cathode side. Hydrogen ( H2 ) is generated.
H 2 O → 1/2O 2 + 2H + + 2e (1)
2H + + 2e → H 2 (2)
In the PEM type water electrolysis system, due to the above reaction, the protons generated by the decomposition of water in the MEA are transported from the anode catalyst layer to the cathode catalyst layer through the ion-exchange polymer electrolyte membrane. Move to the cathode catalyst layer.
 したがって本触媒はプロトン輸送剤と共に用いることで前記水電解システムの酸素発生反応触媒層、すなわちアノード触媒層とすることができる。
 プロトン輸送剤は、プロトンを伝導する役割があり、前記電気分解反応の触媒層中で触媒近傍へプロトンを輸送する機能と触媒を基材に固定するバインダとしての機能を有していてもよい。プロトン輸送剤を用いて触媒粒子同士を付着させることにより、プロトン輸送経路を変化させるとともに、触媒の充填構造を変化させることができるので、触媒性能を向上する上で、プロトン輸送剤は重要な因子となる。
 プロトン輸送剤としては、パーフルオロスルフォン酸系のプロトン輸送剤、スルフォン化ポリエチレンエーテルケトン系のプロトン輸送剤、スルフォン化ポリベンズイミダゾール系のプロトン輸送剤が挙げられる。中でも、パーフルオロスルフォン酸系のプロトン輸送剤であるNafion(登録商標、DuPont製),Flemion(登録商標、AGC製)、Aciplex(登録商標、旭化成製)、Fumion(登録商標、Fumatech製)やAquivio(登録商標、Solvay製)等が好ましい。
Therefore, the present catalyst can be used as an oxygen evolution reaction catalyst layer, that is, an anode catalyst layer of the water electrolysis system by using it together with a proton transport agent.
The proton transport agent has a role of conducting protons, and may have a function of transporting protons to the vicinity of the catalyst in the catalyst layer for the electrolysis reaction and a function as a binder that fixes the catalyst to the substrate. By using a proton transport agent to attach catalyst particles to each other, it is possible to change the proton transport path and the packing structure of the catalyst, so the proton transport agent is an important factor in improving the catalyst performance. becomes.
Examples of proton transport agents include perfluorosulfonic acid proton transport agents, sulfonated polyethylene ether ketone proton transport agents, and sulfonated polybenzimidazole proton transport agents. Among them, Nafion (registered trademark, manufactured by DuPont), Flemion (registered trademark, manufactured by AGC), Aciplex (registered trademark, manufactured by Asahi Kasei), Fumion (registered trademark, manufactured by Fumatech) and Aquivio, which are perfluorosulfonic acid-based proton transport agents. (registered trademark, manufactured by Solvay) and the like are preferable.
 本触媒は、さらにイオン交換高分子電解質膜と用いることで前記水分解システムの電解セルとすることができる。イオン交換高分子膜は、通常、陽イオン交換高分子電解質膜が用いられる。
 陽イオン交換高分子電解質膜は、物理的強度を有し、ガスの透過性が低く、かつ膜状が好ましい。陽イオン交換高分子電解質は、通常、カソード触媒層とアノード触媒層に挟まれて用いられることから膜状の形状である。
 陽イオン交換高分子電解質膜とその両面に前記酸素発生反応触媒層と水素発生反応触媒層を設け多層構造を形成することで、前記水電解システムに用いられる触媒被覆膜(CCM)とすることができる。
 陽イオン交換高分子電解質膜を構成する材料は前記プロトン輸送剤を構成する材料と同じものが挙げられる。
The present catalyst can be used as an electrolytic cell of the above-mentioned water-splitting system by using it with an ion-exchange polymer electrolyte membrane. As the ion-exchange polymer membrane, a cation-exchange polymer electrolyte membrane is usually used.
The cation-exchange polymer electrolyte membrane preferably has physical strength, low gas permeability, and a membranous shape. The cation-exchange polymer electrolyte is usually sandwiched between a cathode catalyst layer and an anode catalyst layer, and thus has a film-like shape.
A catalyst coated membrane (CCM) used in the water electrolysis system is formed by forming a multi-layered structure by providing a cation exchange polymer electrolyte membrane and the oxygen evolution reaction catalyst layer and the hydrogen evolution reaction catalyst layer on both sides thereof. can be done.
Materials constituting the cation exchange polymer electrolyte membrane include the same materials as those constituting the proton transport agent.
 前記酸素発生反応触媒層および電解セルは、前記プロトン輸送剤または陽イオン交換高分子電解質膜に本触媒を例えば塗布することで得られる。塗布に用いるインクは、前記プロトン輸送剤と本触媒を溶媒中で攪拌混合して調製してもよい。触媒とプロトン輸送剤の割合は特に限定されないが1:0.2から1:0.05の組成が好ましく、1:0.15から1:0.07の組成がより好ましい。溶媒としては特に限定されないが、水、或いは水と、エタノール、プロパノールまたはブタノール等の低級脂肪族アルコールとの混合物が好適に用いられる。
 本触媒を前記陽イオン交換高分子膜に塗布する場合、本触媒の塗布量は陽イオン交換高分子電解質膜の単位面積当たり、0.001mg/cmから4mg/cmが好ましく、0.1mg/cmから2mg/cmがより好ましい。
The oxygen evolution reaction catalyst layer and the electrolysis cell are obtained by coating the present catalyst on the proton transport agent or the cation exchange polymer electrolyte membrane, for example. The ink used for coating may be prepared by stirring and mixing the proton transport agent and the present catalyst in a solvent. The ratio of the catalyst to the proton transport agent is not particularly limited, but the composition is preferably 1:0.2 to 1:0.05, more preferably 1:0.15 to 1:0.07. Although the solvent is not particularly limited, water or a mixture of water and a lower aliphatic alcohol such as ethanol, propanol or butanol is preferably used.
When the present catalyst is applied to the cation exchange polymer membrane, the amount of the present catalyst applied is preferably 0.001 mg/cm 2 to 4 mg/cm 2 per unit area of the cation exchange polymer electrolyte membrane, and 0.1 mg. /cm 2 to 2 mg/cm 2 is more preferred.
 前記電解セルは前記陽イオン交換高分子電解質膜の本触媒と反対側の面に、水素発生反応触媒層であるカソード層を有する。カソード層の水素発生反応触媒には、通常、白金が用いられる。
 前記電解セルの前記触媒層の両外側を拡散層で挟むことでMEAが形成される。これを一つの構成単位とし、セパレータを介して複数個直列に接合し、酸素発生反応触媒層であるアノード触媒層に水を供給するとアノード触媒層では前記式(1)の反応が、カソード触媒層では前記式(2)の反応が起こり、アノード側で酸素、カソード側で水素が発生する。
The electrolysis cell has a cathode layer, which is a hydrogen generation reaction catalyst layer, on the surface of the cation exchange polymer electrolyte membrane opposite to the main catalyst. Platinum is usually used as the hydrogen generation reaction catalyst in the cathode layer.
An MEA is formed by sandwiching the catalyst layer of the electrolysis cell with diffusion layers. When a plurality of these units are connected in series via separators and water is supplied to the anode catalyst layer, which is the oxygen evolution reaction catalyst layer, the reaction of the above formula (1) occurs in the anode catalyst layer. At , the reaction of the formula (2) occurs, and oxygen is generated on the anode side and hydrogen is generated on the cathode side.
 また本触媒は、燃料電池のアノードに使用することができる。
 燃料電池は外部から供給された水素分子が、アノードで2個の電子を離して水素イオン(プロトン)になる。水素から離れた電子は、外部回路を通って反対側のカソードに電流として流れ、ここで電力が発生する。
The catalyst can also be used in fuel cell anodes.
In the fuel cell, hydrogen molecules supplied from the outside release two electrons at the anode and become hydrogen ions (protons). Electrons released from the hydrogen flow as current through an external circuit to the opposite cathode, where electrical power is generated.
 カソードでは、空気中から取り入れられた酸素分子が、外部回路から戻ってきた電子を受け取り、酸素イオンになる。酸素イオンは、プロトン輸送剤を伝って移動してきた水素イオンと結合して、水となる。 At the cathode, oxygen molecules taken in from the air receive electrons returned from the external circuit and become oxygen ions. Oxygen ions combine with hydrogen ions that have migrated through the proton transport agent to form water.
 アノード側の化学反応は下記式(3)、カソード側の化学反応は下記式(4)、全体の反応は下記式(5)で表すことができる。
  2H → 4H + 4e       (3)
  4H + O +4e → 2HO  (4)
  2H + O → 2HO       (5)
 燃料電池の起動または停止時等に、アノード側への水素供給が不足すると燃料欠乏状態となり、この燃料欠乏状態のセルに直列接続された他のセルから強制的に電流が流し込まれる逆電位が起こる。その結果、下記式(6)の反応が起こる。燃料電池のアノード触媒層には通常、白金担持カーボン系電極触媒が用いられているため、下記式(6)によりアノード触媒のカーボンが酸化腐食し、燃料電池としての劣化が激しくなる。
  C + 2HO → CO + 4H + 4e  (6)
  2HO → O + 4H + 4e       (7)
 このような逆電位条件下で、式(7)の反応によって燃料電池のアノード側で水を電気分解させる電解触媒を用いることで、水によるカーボン担体の酸化腐食を抑制することができる。
 そこで酸素発生反応能が高い本触媒と白金担持カーボンを含むアノード触媒を燃料電池のアノードとして用いると、式(7)の反応が進行し、燃料電池のアノードの水素欠乏による触媒劣化を防止することができる。
The chemical reaction on the anode side can be expressed by the following formula (3), the chemical reaction on the cathode side by the following formula (4), and the overall reaction by the following formula (5).
2H 2 → 4H + + 4e (3)
4H + + O 2 +4e → 2H 2 O (4)
2H 2 + O 2 → 2H 2 O (5)
When the hydrogen supply to the anode side becomes insufficient when starting or stopping the fuel cell, a fuel starvation state occurs, and a reverse potential occurs in which current is forced to flow from other cells connected in series to the cell in the fuel starvation state. . As a result, the reaction of the following formula (6) occurs. Since a platinum-supported carbon-based electrode catalyst is usually used for the anode catalyst layer of a fuel cell, the carbon of the anode catalyst is oxidized and corroded according to the following formula (6), resulting in severe deterioration of the fuel cell.
C + 2H 2 O → CO 2 + 4H + + 4e (6)
2H 2 O → O 2 + 4H + + 4e (7)
By using an electrocatalyst that electrolyzes water on the anode side of the fuel cell by the reaction of formula (7) under such reverse potential conditions, oxidative corrosion of the carbon support by water can be suppressed.
Therefore, when the present catalyst with high oxygen evolution reaction ability and an anode catalyst containing platinum-supported carbon are used as the anode of a fuel cell, the reaction of formula (7) proceeds, preventing catalyst deterioration due to hydrogen deficiency in the anode of the fuel cell. can be done.
 さらに本触媒は、光触媒の助触媒として使用することができる。
 光触媒は、ガリウムリン、ガリウム砒素、硫化カドミウム、チタン酸ストロンチウム、酸化チタン、酸化亜鉛、酸化鉄、酸化タングステン、酸化スズなどの材質が知られている。
 光触媒による水分解反応は、光触媒がバンドギャップ以上のエネルギーを持った光を吸収し、励起電子を伝導帯に、正孔を価電子帯に生成することから始まる。そして、励起電子と正孔によって水を還元および酸化し、水素と酸素を生成することで光触媒反応が進行する。
 一方、光触媒となる金属酸化物では可視光応答できる材料が非常に少なく、効率的に水素を製造できないという問題があり、助触媒として水素発生反応触媒および酸素発生反応触媒を使用することで性能の向上が検討されている。酸素発生反応触媒として本触媒を使用することで効率的に水素を製造することができるようになる。この場合、水素発生反応触媒としては白金、ロジウム、イリジウム、ルテニウム、ニッケル、金等の金属微粒子が挙げられる。
Furthermore, the present catalyst can be used as a co-catalyst for photocatalysts.
Materials such as gallium phosphide, gallium arsenide, cadmium sulfide, strontium titanate, titanium oxide, zinc oxide, iron oxide, tungsten oxide, and tin oxide are known as photocatalysts.
The photocatalyst-based water splitting reaction begins when the photocatalyst absorbs light with energy greater than the bandgap and generates excited electrons in the conduction band and holes in the valence band. Then, the excited electrons and holes reduce and oxidize water to produce hydrogen and oxygen, thereby proceeding a photocatalytic reaction.
On the other hand, there are very few metal oxide photocatalyst materials that can respond to visible light, and there is a problem that hydrogen cannot be produced efficiently. Improvements are being considered. By using this catalyst as an oxygen evolution reaction catalyst, hydrogen can be produced efficiently. In this case, metal fine particles such as platinum, rhodium, iridium, ruthenium, nickel and gold can be used as the hydrogen generation reaction catalyst.
 本触媒は金属板と用いることで電極とすることができる。得られる電極は、ソーダ工業における陰極に好適に使用することができる。
 本触媒を金属板と用いて電極とする場合、本触媒を金属板に塗布して電極とすることができる。塗布量は本触媒中の本酸化物の含有量が金属板の単位面積当たり、1mg/cmから3mg/cmが好ましく、2mg/cmから3mg/cmがより好ましい。
This catalyst can be used as an electrode by using it with a metal plate. The electrode obtained can be suitably used as a cathode in the soda industry.
When the present catalyst is used with a metal plate to form an electrode, the present catalyst can be applied to the metal plate to form the electrode. The content of the present oxide in the present catalyst is preferably 1 mg/cm 2 to 3 mg/cm 2 , more preferably 2 mg/cm 2 to 3 mg/cm 2 per unit area of the metal plate.
 ソーダ工業は、塩水を電気分解して、か性ソーダ、塩素、水素を製造する。塩素は、消毒・殺菌用や紙・パルプの漂白のほか、塩化ビニル樹脂、エポキシ樹脂、ケイ素樹脂、フッ素樹脂などの合成樹脂、塩素系溶剤、冷媒、農薬・医薬、その他各種化学製品の原料として用いられる。
 また前記か性ソーダは、紙・パルプの漂白、化学繊維、洗剤や石鹸、工業薬品の原料、調味料など日常生活に欠くことができない製品を作るための原材料として用いられる。
The soda industry electrolyzes salt water to produce caustic soda, chlorine and hydrogen. In addition to disinfection and sterilization and bleaching of paper and pulp, chlorine is used as a raw material for synthetic resins such as vinyl chloride resin, epoxy resin, silicon resin, and fluorine resin, chlorinated solvents, refrigerants, agricultural chemicals, pharmaceuticals, and other chemical products. Used.
Caustic soda is also used as a raw material for making products such as paper and pulp bleaching, chemical fibers, detergents and soaps, raw materials for industrial chemicals, and seasonings, which are indispensable in daily life.
 工業的に確立している電解法としては水銀法、隔膜法およびイオン交換膜法が挙げられるが、本触媒と金属板を含む電極は環境負荷並びにコストに優れるイオン交換膜法に好適に用いられる。
 イオン交換膜法は電解槽のカソード室とアノード室は陽イオン交換高分子電解質で仕切られ,カソードにはチタン等の金属電極、アノードはニッケルなどの金属電極が用いられる。
Industrially established electrolysis methods include the mercury method, diaphragm method, and ion-exchange membrane method, but the electrode containing the present catalyst and metal plate is preferably used for the ion-exchange membrane method, which is environmentally friendly and cost-effective. .
In the ion-exchange membrane method, a cathode chamber and an anode chamber of an electrolytic cell are separated by a cation-exchange polymer electrolyte, and a metal electrode such as titanium is used for the cathode and a metal electrode such as nickel is used for the anode.
 特にカソードにはチタンをベースとして,白金族金属酸化物を含む混合酸化物層で被覆したDSA(登録商標:Dimensionally Stable Anode)が用いられる。DSA(登録商標)には、酸素や塩素発生に対する高い電気化学的触媒活性、高い電気伝導性、良好な加工特性、耐食性、省エネルギー性、軽量性など、多くの優れた特性があるため、広く利用されている。前記DSA(登録商標)の表面に被覆される白金族金属の酸化物については、耐久性等の点から、イリジウムが広く使用されるようになっているが、DSA(登録商標)の表面に被覆される白金族金属の酸化物を本発明の触媒とすることでイリジウムの使用量を抑制し、効率的に、か性ソーダ、塩素、水素を製造することができる。 In particular, for the cathode, DSA (registered trademark: Dimensionally Stable Anode) coated with a mixed oxide layer containing a platinum group metal oxide based on titanium is used. DSA (registered trademark) has many excellent properties such as high electrochemical catalytic activity for oxygen and chlorine evolution, high electrical conductivity, good processing properties, corrosion resistance, energy saving, and light weight, so it is widely used. It is Regarding the platinum group metal oxide coated on the surface of the DSA (registered trademark), iridium is widely used from the viewpoint of durability and the like. The amount of iridium used can be suppressed and caustic soda, chlorine, and hydrogen can be efficiently produced by using the platinum group metal oxide obtained as the catalyst of the present invention.
 以下、前記本酸化物の製造方法について述べる。
 本酸化物の製造方法(以下、本製造方法とも記す。)は、(1)イットリウムナノ粒子およびイリジウムナノ粒子、またはイットリウム水酸化物粒子およびイリジウム水酸化物粒子を分散媒に分散させて分散液(以下、「本分散液」とも記す。)を得る、または(2)イットリウム化合物およびイリジウム化合物を溶媒に溶解させて溶解液(以下、「本溶解液」とも記す。)を得る工程Aと、水の温度を100℃以上、圧力を0.1MPa超とする工程Bと、前記工程Aで得た前記分散液または前記溶解液と前記工程Bで得た前記高温高圧水とを混合する工程Cとを有する。
The method for producing the present oxide will be described below.
The method for producing the present oxide (hereinafter also referred to as the present production method) includes (1) dispersing yttrium nanoparticles and iridium nanoparticles, or yttrium hydroxide particles and iridium hydroxide particles in a dispersion medium to obtain a dispersion liquid (hereinafter also referred to as "this dispersion"), or (2) a step A of dissolving an yttrium compound and an iridium compound in a solvent to obtain a solution (hereinafter also referred to as "this solution"); A step B in which the water temperature is 100 ° C. or higher and the pressure is higher than 0.1 MPa, and a step C in which the dispersion or the solution obtained in the step A and the high-temperature and high-pressure water obtained in the step B are mixed. and
 ここで、図1を参照して酸化物の製造装置の一例について説明する。本酸化物の製造装置100は、本分散液または本溶解液を供給する第1供給源1と、水を供給する第2供給源2と、第2供給源2から供給される水を加熱するための加熱部3とを有する。第2供給源2から供給された水は加熱部3により温度が100℃以上に加熱される。また後述する圧力調整機構10により圧力は0.1MPa超となる。さらに製造装置100は前記本分散液または本溶解液と前記工程Bで温度を100℃以上および圧力を0.1MPa超とした水(以下、「本高温水」とも記す。)を合流させる反応部4を有する。第2供給源2から供給される水は必要に応じて後述する酸化剤を含んでいてもよい。
 前記第1供給源1と前記反応部4は送液ルート5で連結され、第1供給部1から本分散液または本溶解液が送液ルート5により反応部4へ送液される。前記第2供給源2と前記反応部4は送液ルート6により連結され、第2供給部2から水を含む液体が反応部4へ送液ルート6により送液される。酸化剤は必要に応じて前記送液ルート6のいずれかの個所で水に添加されるようにしてもよい。
Here, an example of an oxide manufacturing apparatus will be described with reference to FIG. The present oxide production apparatus 100 includes a first supply source 1 that supplies the present dispersion or the present solution, a second supply source 2 that supplies water, and heats the water supplied from the second supply source 2. It has a heating unit 3 for Water supplied from the second supply source 2 is heated to a temperature of 100° C. or higher by the heating unit 3 . Moreover, the pressure exceeds 0.1 MPa by the pressure adjustment mechanism 10, which will be described later. Further, the production apparatus 100 is a reaction unit in which the main dispersion or the main solution and water (hereinafter also referred to as "main high-temperature water") having a temperature of 100 ° C. or higher and a pressure of over 0.1 MPa in the step B are combined. 4. The water supplied from the second supply source 2 may contain an oxidant, which will be described later, if necessary.
The first supply source 1 and the reaction section 4 are connected by a liquid feeding route 5 , and the main dispersion or the main dissolving liquid is fed from the first supply section 1 to the reaction section 4 through the liquid feeding route 5 . The second supply source 2 and the reaction section 4 are connected by a liquid feeding route 6 , and a liquid containing water is fed from the second supply section 2 to the reaction section 4 by the liquid feeding route 6 . The oxidizing agent may be added to the water at any point along the liquid feeding route 6 as required.
 さらに反応部4は生成した反応物を回収する回収部8と送液ルート7により連結され、反応部4と回収部8の間の送液ルート7の周辺に冷却部9が配置されている。これにより前記反応部4で生成した反応物は送液ルート7を通過するときに前記冷却部9により冷却され、前記回収部8へ送液される。
 さらに製造装置100は反応部を高圧条件にする目的で、圧力調整機構10を有する。圧力調整機構10は図1に示した様に前記回収部8に接続されていてもよいし、冷却部9と回収部8との間に送液ルート7を介して接続されていてもよい。
 圧力調整機構としては、ブランジャー、シリンダー、レギュレーターが考えられるが、目詰まりまたは減耗の観点から、シリンダーが好ましい。
Furthermore, the reaction section 4 is connected to a recovery section 8 for recovering the produced reaction product by a liquid feeding route 7 , and a cooling section 9 is arranged around the liquid feeding route 7 between the reaction section 4 and the recovery section 8 . As a result, the reactant produced in the reaction section 4 is cooled by the cooling section 9 and sent to the collection section 8 when passing through the liquid sending route 7 .
Furthermore, the manufacturing apparatus 100 has a pressure adjusting mechanism 10 for the purpose of setting the reaction section to a high pressure condition. The pressure adjusting mechanism 10 may be connected to the recovery section 8 as shown in FIG.
A plunger, a cylinder, and a regulator can be considered as the pressure adjusting mechanism, but from the viewpoint of clogging or wear, the cylinder is preferable.
 前記送液ルート5から7は例えば配管等により形成される。
 前記製造装置100によれば、安定的にイットリウムおよびイリジウムの酸化物を作製することができる。
The liquid feeding routes 5 to 7 are formed by, for example, piping.
According to the manufacturing apparatus 100, oxides of yttrium and iridium can be stably produced.
 前記反応部4において、本分散液または本溶解液を本高温水と混合することによって、本分散液中または本溶解液中のイットリウムおよびイリジウムを酸化させてイットリウムおよびイリジウムを含む酸化物を作製する。イットリウムおよびイリジウムの酸化は前記本高温水のみを用いて行ってもよいが、前記本高温水に酸化剤を添加することで、より効率的にイットリウムおよびイリジウムを酸化することができる
 なお前記本高温水は、加熱部3並びに圧力調整機構10によって得られる。圧力調整機構10は、製造装置100の下流に位置しており、反応部4、送液ルート5、送液ルート6、送液ルート7と接続されていることから、製造装置100の全体の圧力を調整する機能を有する。圧力調整機構10により、反応部および前記全ての送液ルートの圧力が調整され、前記温度および圧力の本高温水が得られる。
 前記酸化剤は酸素を放出する酸化剤が好ましく、酸素、過酸化水素、オゾン等の酸素を放出する酸化剤が好ましい。酸化剤として酸素ガスを使用する場合、飽和酸素濃度とした水を高温高圧の状態とすることが好ましい。
In the reaction section 4, the present dispersion or the present solution is mixed with the present high-temperature water to oxidize the yttrium and iridium in the present dispersion or the present solution to produce an oxide containing yttrium and iridium. . Yttrium and iridium may be oxidized using only the high-temperature water, but by adding an oxidizing agent to the high-temperature water, yttrium and iridium can be oxidized more efficiently. Water is obtained by the heating section 3 and the pressure regulation mechanism 10 . The pressure adjustment mechanism 10 is located downstream of the manufacturing apparatus 100 and is connected to the reaction section 4, the liquid feeding route 5, the liquid feeding route 6, and the liquid feeding route 7, so that the pressure of the entire manufacturing apparatus 100 has a function to adjust The pressure adjustment mechanism 10 adjusts the pressure of the reaction section and all of the above-described liquid feeding routes to obtain high-temperature water at the above-described temperature and pressure.
The oxidizing agent is preferably an oxidizing agent that releases oxygen, and is preferably an oxidizing agent that releases oxygen such as oxygen, hydrogen peroxide, and ozone. When oxygen gas is used as the oxidizing agent, it is preferable to heat the water to a saturated oxygen concentration at a high temperature and a high pressure.
 第1供給源1と反応部4とを結ぶ送液ルート5は送液手段を有する。本分散液または本溶解液の送液手段としては、第1供給源1を反応部4よりも高い位置に配置して、高低差を利用する送液手段が例示できる。この場合、配管で連結することで本分散液または本溶解液を第1供給源1から反応部4まで運ぶことができる。このとき、送液ルート5にニードルバルブ、ストップバルブなどの流量を調整する流量調整手段を配置してもよい。 A liquid feeding route 5 connecting the first supply source 1 and the reaction section 4 has liquid feeding means. As the means for sending the main dispersion liquid or the main dissolving liquid, there can be exemplified a liquid sending means that disposes the first supply source 1 at a position higher than the reaction section 4 and utilizes the height difference. In this case, the present dispersion or the present solution can be transported from the first supply source 1 to the reaction section 4 by connecting with a pipe. At this time, a flow rate adjusting means such as a needle valve or a stop valve may be arranged in the liquid feeding route 5 to adjust the flow rate.
 第2供給源2と反応部4とを結ぶ送液ルート6は送液手段を有する。本高温水の送液手段としては、第2供給源1を反応部4よりも高い位置に配置して、高低差を利用する送液手段が例示できる。この場合、配管で連結することで水を含む液体および本高温水を第2供給源2から反応部4まで運ぶことができる。このとき送液ルート5と同様に、送液ルート6にニードルバルブ、ストップバルブなどの流量を調整する手段を配置してもよい。 A liquid feeding route 6 connecting the second supply source 2 and the reaction section 4 has liquid feeding means. As the means for sending the high-temperature water, a means for disposing the second supply source 1 at a position higher than the reaction section 4 and using the height difference can be exemplified. In this case, the water-containing liquid and the high-temperature water can be transported from the second supply source 2 to the reaction section 4 by connecting with a pipe. At this time, similarly to the liquid feeding route 5, the liquid feeding route 6 may be provided with means for adjusting the flow rate, such as a needle valve and a stop valve.
 前記実施形態に係る酸化物の製造装置では、送液ルート5または送液ルート6のいずれか一方、または両方に流れる液体を一方向へ移送する流量調整機構11、12を有してもよい。図1に示したイットリウムおよびイリジウムの酸化物の製造装置100には、第1供給源1、第2供給源2、加熱部3、反応部4、送液ルート5、送液ルート6、送液ルート7、回収部8、冷却部9、圧力調整機構10に加えて、送液ルート5および送液ルート6のそれぞれに、前記流量調整機構11、12を有する態様を示した。この態様では、送液ルート5において本分散液または本溶解液の流量および流速を、および送液ルート6において水を含む液体の流量および流速を、それぞれ安定的に制御することができるので、安定的に酸化物を製造することができる。
 機構11、12は、例えば、プランジャー、シリンダーまたはレギュレーターが例示できる。
The oxide manufacturing apparatus according to the above embodiment may have flow rate adjusting mechanisms 11 and 12 for unidirectionally transferring the liquid flowing through either or both of the liquid feeding route 5 and the liquid feeding route 6 . The yttrium and iridium oxide manufacturing apparatus 100 shown in FIG. In addition to the route 7, the recovery section 8, the cooling section 9, and the pressure adjustment mechanism 10, the flow rate adjustment mechanisms 11 and 12 are provided in the liquid feed route 5 and the liquid feed route 6, respectively. In this aspect, the flow rate and flow rate of the present dispersion or the present solution in the liquid sending route 5 and the flow rate and flow rate of the liquid containing water in the liquid sending route 6 can be stably controlled. oxides can be produced exponentially.
Mechanisms 11, 12 can be, for example, plungers, cylinders or regulators.
 本分散液に用いる分散媒は、イットリウムナノ粒子およびイリジウムナノ粒子、またはイットリウム水酸化物粒子およびイリジウム水酸化物粒子を分散する媒質である。例えば、水や有機溶媒などが挙げられる。
 本分散液に用いる溶媒は、イットリウム化合物およびイリジウム化合物を溶解する溶媒であり、常温で液体である。例えば、水や有機溶媒などがある。本実施形態において、常温とは15℃から30℃であり、好ましくは20℃から25℃である。
The dispersion medium used in this dispersion is a medium for dispersing yttrium nanoparticles and iridium nanoparticles, or yttrium hydroxide particles and iridium hydroxide particles. Examples include water and organic solvents.
The solvent used for this dispersion is a solvent that dissolves the yttrium compound and the iridium compound, and is liquid at room temperature. Examples include water and organic solvents. In the present embodiment, normal temperature is 15°C to 30°C, preferably 20°C to 25°C.
 前記工程Aが(1)のイットリウムナノ粒子およびイリジウムナノ粒子の分散液の場合、イットリウムナノ粒子またはイリジウムナノ粒子の平均粒径は通常、100nm以下であり、3nm以下であることが好ましく、2.5nm以下であることがより好ましい。イットリウムナノ粒子およびイリジウムナノ粒子の平均粒径が大きすぎると、イットリウムおよびイリジウムと酸素を反応させたときにイットリウムおよびイリジウムを含む酸化物の粒子径が大きくなりすぎる場合があり、また後述する酸化反応での酸化が不十分となる可能性がある。
 前記イットリウムナノ粒子およびイリジウムナノ粒子は例えば、分粒等により所望の平均粒径としたイットリウムナノ粒子およびイリジウムナノ粒子を用いればよい。
 なお平均粒子径の測定方法は前記と同じである。
When the step A is the dispersion of yttrium nanoparticles and iridium nanoparticles of (1), the average particle size of the yttrium nanoparticles or iridium nanoparticles is usually 100 nm or less, preferably 3 nm or less. It is more preferably 5 nm or less. If the average particle size of the yttrium nanoparticles and iridium nanoparticles is too large, the particle size of the oxide containing yttrium and iridium may become too large when reacting yttrium and iridium with oxygen. may result in insufficient oxidation at
For the yttrium nanoparticles and iridium nanoparticles, for example, yttrium nanoparticles and iridium nanoparticles adjusted to a desired average particle size by sizing or the like may be used.
The method for measuring the average particle size is the same as described above.
 また、前記工程Aが(1)のイットリウム水酸化物粒子およびイリジウム水酸化物粒子の分散液の場合、イットリウム水酸化物粒子およびイリジウム水酸化物粒子の平均粒径は通常、100nm以下であり、3nm以下であることが好ましく、2.5nm以下であることがより好ましい。イットリウム水酸化物粒子およびイリジウム水酸化物粒子の平均粒子径が大きすぎる、イットリウム水酸化物粒子およびイリジウム水酸化物粒子と酸素を反応させたときにイットリウムおよびイリジウムを含む酸化物粒子の粒子径が大きくなりすぎる場合があり、また後述する酸化反応での酸化が不十分となる可能性がある。
 前記イットリウム水酸化物粒子およびイリジウム水酸化粒子は例えば、分粒等により所望の平均粒径としたイットリウム水酸化粒子およびイリジウム水酸化粒子を用いればよい。
 なお平均粒子径の測定方法は前記と同じである。
Further, when the step A is the dispersion liquid of the yttrium hydroxide particles and the iridium hydroxide particles of (1), the average particle diameter of the yttrium hydroxide particles and the iridium hydroxide particles is usually 100 nm or less, It is preferably 3 nm or less, more preferably 2.5 nm or less. The average particle size of yttrium hydroxide particles and iridium hydroxide particles is too large. It may become too large, and there is a possibility that the oxidation in the oxidation reaction described below will be insufficient.
For the yttrium hydroxide particles and iridium hydroxide particles, for example, yttrium hydroxide particles and iridium hydroxide particles having a desired average particle size by sizing or the like may be used.
The method for measuring the average particle size is the same as described above.
 前記のイットリウムナノ粒子およびイリジウムナノ粒子またはイットリウム水酸化物粒およびイリジウム水酸化物粒子を分散媒に添加することにより、本分散液を得ることができる。分散媒としては、例えば、水、エタノールが挙げられる。 The present dispersion can be obtained by adding the yttrium nanoparticles and iridium nanoparticles or the yttrium hydroxide particles and iridium hydroxide particles to the dispersion medium. Examples of dispersion media include water and ethanol.
 前記工程Aの(2)において、イットリウム化合物として、イットリウム硝酸化合物、イットリウム酢酸化合物、イットリウム硫酸化合物、イットリウム塩化物等のイットリウム含有塩や、イットリウムアセチルアセトナート、イットリウムカルボニル等の金属錯体などが挙げられる。これらの化合物の中でも、イットリウム硝酸化合物、イットリウム硫酸化合物、イットリウム酢酸化合物が好ましい。 In step A (2), the yttrium compound includes yttrium-containing salts such as yttrium nitrate, yttrium acetate, yttrium sulfate, and yttrium chloride, and metal complexes such as yttrium acetylacetonate and yttrium carbonyl. . Among these compounds, yttrium nitrate compounds, yttrium sulfate compounds, and yttrium acetate compounds are preferred.
 イリジウム化合物としては、イリジウム硝酸化合物、イリジウム硫酸化合物、イリジウム酢酸化合物、イリジウム塩化物等のイリジウム含有塩や、イリジウムアセチルアセトナート、イリジウムカルボニル等の金属錯体などが挙げられる。これらの化合物のなかでも、イリジウム硝酸化合物、イリジウム硫酸化合物、イリジウム酢酸化合物が好ましい。前記のイットリウム化合物およびイリジウム化合物を溶媒に添加することにより、本溶解液を得ることができる。溶媒としては、例えば、イットリウム含有塩またはイリジウム含有塩の場合は水であり、イットリウム含有金属錯体またはイリジウム含有金属錯体の場合はエタノールや酢酸エチル等である。前記塩と前記錯体を混合する場合、溶媒は水、エタノール、酢酸エチル等である。工程Aの(2)において、室温、例えば15℃から30℃で溶媒にイットリウム化合物またはイリジウム化合物を溶解させることが好ましい。 Examples of iridium compounds include iridium-containing salts such as iridium nitrate compounds, iridium sulfate compounds, iridium acetate compounds, and iridium chlorides, and metal complexes such as iridium acetylacetonate and iridium carbonyl. Among these compounds, iridium nitrate compounds, iridium sulfate compounds, and iridium acetate compounds are preferred. The present solution can be obtained by adding the yttrium compound and the iridium compound to the solvent. Examples of the solvent include water in the case of the yttrium-containing salt or the iridium-containing salt, and ethanol, ethyl acetate, or the like in the case of the yttrium-containing metal complex or the iridium-containing metal complex. When the salt and the complex are mixed, the solvent is water, ethanol, ethyl acetate and the like. In step A (2), it is preferable to dissolve the yttrium compound or iridium compound in the solvent at room temperature, for example, 15°C to 30°C.
 工程Bでは、水の温度を100℃以上、圧力を0.1MPa超として本高温水を得る。
 本高温水の温度は、150℃以上が好ましく、374℃以上がより好ましく、例えば約400℃である。本高温水の圧力は、0.5MPa以上が好ましく、22.1MPa以上がより好ましく、例えば約30MPaである。本高温水を得るための水としては、純水が好ましい。水に酸素、過酸化水素、オゾン等の酸化剤を予め添加してもよい。
 BET比表面積を本酸化物の範囲とする観点から、本高温水の温度は100℃以上、圧力は0.5MPa以上が好ましく、温度は374℃以上、圧力は22.1MPa以上がより好ましく、超臨界状態であるのがさらに好ましい。
In step B, the high-temperature water is obtained by setting the temperature of water to 100° C. or higher and the pressure to exceed 0.1 MPa.
The temperature of the high temperature water is preferably 150°C or higher, more preferably 374°C or higher, for example about 400°C. The pressure of the high temperature water is preferably 0.5 MPa or higher, more preferably 22.1 MPa or higher, for example about 30 MPa. Pure water is preferable as the water for obtaining the high-temperature water. An oxidizing agent such as oxygen, hydrogen peroxide, or ozone may be added in advance to the water.
From the viewpoint of keeping the BET specific surface area within the range of the present oxide, the temperature of the present high-temperature water is preferably 100 ° C. or higher and the pressure is 0.5 MPa or higher, more preferably 374 ° C. or higher and the pressure is 22.1 MPa or higher. More preferably, it is in a critical state.
 後述する工程Cでの酸化反応を効率よく行うために、工程Bはさらに酸化剤を添加する工程を含むのが好ましく、酸素原子を放出する酸化剤を添加する工程を含むのがより好ましい。酸素原子を放出する酸化剤を添加する工程は(1)前記水に酸素原子を放出する酸化剤を添加した後、前記温度および圧力を満たす本高温水とする工程、(2)前記水を前記温度および圧力を満たす本高温水とした後、酸素原子を放出する酸化剤を添加する工程、または、(3)前記水に酸素原子を放出する酸化剤を添加した後、前記温度および圧力を満たす本高温水とし、さらに酸素原子を放出する酸化剤を添加する工程、のいずれかの工程を含むことがさらに好ましい。 In order to efficiently carry out the oxidation reaction in step C, which will be described later, step B preferably further includes a step of adding an oxidizing agent, and more preferably includes a step of adding an oxidizing agent that releases oxygen atoms. The step of adding an oxidizing agent that releases oxygen atoms includes (1) adding an oxidizing agent that releases oxygen atoms to the water, and then converting the water to high-temperature water that satisfies the temperature and pressure; A step of adding an oxidizing agent that releases oxygen atoms after making this hot water satisfying the temperature and pressure, or (3) adding an oxidizing agent that releases oxygen atoms to the water and then satisfying the temperature and pressure. It is further preferable to include any of the steps of obtaining the high-temperature water and adding an oxidizing agent that releases oxygen atoms.
 工程Cで、工程Aで得られた本分散液または本溶解液と工程Bで得られた本高温水とを混合する。工程Cにおいて本分散液または本溶解液に含まれるイリジウムおよびイットリウムが酸化され酸化物となる。
 混合するときの条件としては、本酸化物の製造装置100を用いる場合は、工程Aで得られた本分散液または本溶解液が送液される送液ルート5と工程Bで得られた本高温水が送液される送液ルート6を合流させることによって混合され、イットリウムおよびイリジウムを含む酸化物が本高温水に分散された分散液を得ることができる。図1では、反応部4において混合される。
In step C, the present dispersion or solution obtained in step A and the present high-temperature water obtained in step B are mixed. In step C, the iridium and yttrium contained in the present dispersion or the present solution are oxidized to form oxides.
As for the conditions for mixing, when using the present oxide manufacturing apparatus 100, the present dispersion obtained in step A or the present solution obtained in step B is sent through the liquid sending route 5 and the present obtained in step B By merging the liquid feeding routes 6 through which the high-temperature water is fed, it is possible to obtain a dispersion liquid in which oxides containing yttrium and iridium are dispersed in the high-temperature water. In FIG. 1, they are mixed in the reaction section 4 .
 工程Cで得られた分散液は、図1に示した冷却部9において冷却を行った後、回収部8で回収し、その後、濾過や遠心分離等で試料の分離や洗浄を行い、乾燥機で脱水することでイットリウムおよびイリジウムを含む本酸化物を得ることができる。 The dispersion liquid obtained in step C is cooled in the cooling unit 9 shown in FIG. The present oxide containing yttrium and iridium can be obtained by dehydration with .
 前記方法以外に、例えば、工程Aで得られた本分散液または本溶解液と工程Bで得られた本高温水を同じ容器に入れて、攪拌などを行うことによって混合し、酸化反応を行なうことでイットリウムおよびイリジウムを含む本酸化物が本高温水に分散された分散液を得ることができる。
 この場合、別の容器で水を前記温度および圧力とし、得られた本高温水を本分散液または本溶解液が入った容器に添加してもよいし、本高温水が入った容器に本分散液または本溶解液を添加してもよいし、一つの容器に本分散液または本溶解液と本高温水を同時に入れてもよい。
 前記添加は連続的でも間欠的でもよい。
In addition to the above method, for example, the present dispersion or solution obtained in step A and the present high-temperature water obtained in step B are placed in the same container and mixed by stirring or the like to perform an oxidation reaction. Thus, a dispersion liquid in which the present oxide containing yttrium and iridium is dispersed in the present high-temperature water can be obtained.
In this case, water may be brought to the above temperature and pressure in another container, and the resulting high-temperature water may be added to the container containing the dispersion or the solution, or the container containing the high-temperature water may be added to the high-temperature water. The dispersion or the solution may be added, or the dispersion or the solution and the hot water may be placed in one container at the same time.
Said addition may be continuous or intermittent.
 前記方法で本酸化物が有するBET比表面積を50m/gとするためには、例えば前記本高温水を用い、工程Aで得られた本分散液または本溶解液と本高温水を工程Cで、できるだけ短時間で混合すると共に、工程C後はできるだけ短時間で冷却することが好ましい。
 特に本高温水が超臨界状態であれば、本分散液または本溶解液中のイットリウムイオンおよびイリジウムイオンが直接酸化され、その結果生成する酸化物の粒子径が小さくなり、さらに短時間で冷却することで、得られるイットリウムとイリジウムを含む酸化物のBET比表面積を所望の範囲とすることができると考えられる。
In order to make the BET specific surface area of the present oxide 50 m 2 /g by the above method, for example, the present high-temperature water is used, and the present dispersion or the present solution obtained in step A and the present high-temperature water are mixed in step C Therefore, it is preferable to mix in as short a time as possible and to cool in as short a time as possible after step C.
In particular, if the high-temperature water is in a supercritical state, the yttrium ions and iridium ions in the dispersion or solution are directly oxidized, resulting in a smaller particle size of the resulting oxides and further cooling in a short period of time. Thus, it is considered that the BET specific surface area of the resulting oxide containing yttrium and iridium can be within the desired range.
 図1に記載のような送液ルートを用いた製造方法は連続的に本酸化物を製造でき、また得られる酸化物の平均粒径を小さくできるので好ましい。
 図1に記載のような送液ルートを用いた製造方法の場合、第1供給源の前記本分散液または前記本溶解液の含有金属濃度、送液速度、反応部の温度、冷却速度等を制御することにより、得られる本酸化物の平均粒径を前記好ましい範囲に制御することができる。
 例えば、工程Cの混合時間は使用する製造装置の大きさ、装置の材質等によって異なるが、例えば0.1秒から60秒である。また工程C後の冷却時間も使用する製造装置の大きさ、装置の材質等によって異なるが、例えば1秒から60秒である。
A production method using a liquid feeding route as shown in FIG. 1 is preferable because the present oxide can be produced continuously and the average particle diameter of the resulting oxide can be reduced.
In the case of the production method using the liquid feeding route as shown in FIG. By controlling, the average particle diameter of the present oxide to be obtained can be controlled within the preferred range.
For example, the mixing time in step C varies depending on the size of the manufacturing apparatus used, the material of the apparatus, etc., but is, for example, 0.1 to 60 seconds. The cooling time after the step C also varies depending on the size of the manufacturing apparatus used, the material of the apparatus, etc., but is, for example, 1 second to 60 seconds.
 本酸化物がイットリウムおよびイリジウム以外の金属を含む場合は、目的の金属を含む金属粒子または金属化合物を工程Aまたは工程Cで別途、添加すればよい。
 また本酸化物を前記担体に担持する場合は、本酸化物を単離後、担体に通常の方法で担持すればよい。また必要に応じて安定剤等の他の成分と本酸化物とを混合し、本触媒としてもよい。
 さらに得られた本触媒を前記プロトン輸送剤または陽イオン交換高分子電解質膜に塗布し、酸素反応発生触媒層および電解セルとすることができる。
 塗布の方法はメタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法などが挙げられる。
When the present oxide contains a metal other than yttrium and iridium, metal particles or a metal compound containing the desired metal may be added separately in step A or step C.
Further, when the present oxide is supported on the carrier, the present oxide may be isolated and then supported on the carrier by a conventional method. If necessary, the present oxide may be mixed with other components such as a stabilizer to form the present catalyst.
Furthermore, the obtained present catalyst can be applied to the proton transport agent or the cation exchange polymer electrolyte membrane to form an oxygen reaction generating catalyst layer and an electrolytic cell.
Application methods include metal mask printing, electrostatic coating, dip coating, spray coating, roll coating, doctor blade, gravure coating, and screen printing.
 以上、本触媒および本酸化物の製造方法について説明した。しかしながら本発明は、前記実施形態の構成に限定されない。
 例えば、本触媒は前記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてもよい。また本酸化物の製造方法は、前記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてもよい。
The method for producing the present catalyst and the present oxide has been described above. However, the present invention is not limited to the configurations of the above embodiments.
For example, in the configuration of the above embodiment, the present catalyst may be added with any other configuration, or may be replaced with any configuration that exhibits the same function. In addition, the method for producing the oxide of the present invention may additionally include other arbitrary steps in the configuration of the above-described embodiments, or may be replaced with arbitrary steps that produce similar effects.
 以下、本発明の実施例を説明するが、本発明はこれに限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these.
(実施例1)イットリウムおよびイリジウムを含む酸化物(YI-1)の製造
 2.8Lの水に硝酸イリジウム溶液(フルヤ金属製)をイリジウム重量で1.92gと硝酸イットリウム水和物(富士フィルム和光純薬製)3.84gを加え、攪拌および超音波処理により均質なイリジウム化合物およびイットリウム化合物を含有する金属化合物混合溶液を得た。次に、室温(25℃)で10Lの水に30%過酸化水素水溶液を10mL添加し、その後、水温を430℃に調整し、水圧を29MPaに調整して高温高圧水を得た。次に、前記で得られた金属化合物混合溶液を送液ルートにより30ml/minの速度で反応部へ流すとともに、前記で得られた高温高圧水を送液ルートにより200ml/minの速度で反応部へ流すことにより、混合を行い、イリジウムとイットリウムを含む酸化物の分散液を得た。その後、冷却部において混合後のイリジウムとイットリウムを含む酸化物の分散液を1気圧に調整して20℃まで冷却し、回収部にて回収した。その後、メンブレンフィルターで濾過後、濾過ケークを電気乾燥機で80℃、4時間の条件で乾燥を行うことによりイットリウムおよびイリジウムを含む酸化物を得た。
(Example 1) Production of oxide (YI-1) containing yttrium and iridium Iridium nitrate solution (manufactured by Furuya Metals Co., Ltd.) was added to 2.8 L of water with an iridium weight of 1.92 g and yttrium nitrate hydrate (Fuji Film Co., Ltd.). (manufactured by Kojunyaku Co., Ltd.) was added, and a homogeneous metal compound mixed solution containing an iridium compound and an yttrium compound was obtained by stirring and ultrasonic treatment. Next, 10 mL of 30% aqueous hydrogen peroxide solution was added to 10 L of water at room temperature (25° C.), then the water temperature was adjusted to 430° C. and the water pressure was adjusted to 29 MPa to obtain high-temperature, high-pressure water. Next, the metal compound mixed solution obtained above is flowed to the reaction section through the liquid feeding route at a rate of 30 ml / min, and the high temperature and high pressure water obtained above is flowed through the liquid feeding route at a rate of 200 ml / min to the reaction section. Mixing was carried out by pouring the mixture into a solution to obtain an oxide dispersion containing iridium and yttrium. After that, the mixed oxide dispersion containing iridium and yttrium was adjusted to 1 atm in the cooling section, cooled to 20° C., and collected in the collecting section. Then, after filtering with a membrane filter, the filtered cake was dried with an electric dryer at 80° C. for 4 hours to obtain an oxide containing yttrium and iridium.
(比較例1)イットリウムおよびイリジウを含む酸化物(YI-2)の調製
 1Lのテフロン(登録商標、以下同じ。)製ビーカーに、塩化イリジウム(IV)酸(フルヤ金属製HIrCl・nHO)をイリジウム重量で1.46gと塩化イットリウム六水和物(富士フィルム和光純薬製)を入れ、純水170mLを加え、液温を80℃に昇温しながら200rpmで1時間撹拌して塩化イリジウム‐塩化イットリウム混合溶液を作製した。次に、水酸化ナトリウムを25g量り取り、純水250mLに溶解した10%水酸化ナトリウム溶液を作製し、前記塩化イリジウム‐塩化イットリウム混合溶液に3mL/minの速度でpHが11になるまで滴下した。滴下終了後、液温80℃を保持しながら更に5時間撹拌した。
(Comparative Example 1) Preparation of oxide (YI-2) containing yttrium and iridium In a 1 L beaker made of Teflon (registered trademark, hereinafter the same), iridium (IV) chloride acid (H 2 IrCl 6 · nH 2 O) in terms of iridium weight and yttrium chloride hexahydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added, 170 mL of pure water was added, and the mixture was stirred at 200 rpm for 1 hour while raising the liquid temperature to 80°C. A mixed solution of iridium chloride and yttrium chloride was prepared. Next, 25 g of sodium hydroxide was weighed out, dissolved in 250 mL of pure water to prepare a 10% sodium hydroxide solution, and added dropwise to the iridium chloride-yttrium chloride mixed solution at a rate of 3 mL/min until the pH reached 11. . After the dropwise addition was completed, the mixture was further stirred for 5 hours while maintaining the liquid temperature at 80°C.
 生成したスラリーを室温まで放冷後静置し、上澄み液をデカンテーションした。残ったスラリーが入ったテフロン製ビーカーに純水300mLを加え、再度80℃に昇温しながら1時間攪拌し、室温迄放冷後、静置して再度上澄み液をデカンテーションした。このようなデカンテーション洗浄を上澄み液の導電率が変化しなくなるまで行った。その後濾過を実施し、濾過ケークを得た。この濾過ケークを電気乾燥機で60℃、20時間の条件で乾燥後、電気炉を用いて大気中1000℃で10時間焼成し、イットリウムおよびイリジウムを含む酸化物を得た。 The resulting slurry was allowed to cool to room temperature and then allowed to stand, and the supernatant liquid was decanted. 300 mL of pure water was added to the Teflon beaker containing the remaining slurry, and the mixture was stirred for 1 hour while the temperature was raised to 80° C. again. Such decantation washing was carried out until the conductivity of the supernatant did not change. Filtration was then carried out to obtain a filter cake. This filter cake was dried in an electric dryer at 60° C. for 20 hours and then fired in the atmosphere at 1000° C. for 10 hours in an electric furnace to obtain an oxide containing yttrium and iridium.
(比較例2)酸化イリジウム(IO-1)の調製
 5Lのテフロンビーカーに、塩化イリジウム四価調整品(フルヤ金属製HIrCl・nHO)をイリジウム重量で50g入れ、純水1.6Lを加え、液温を80℃に昇温しながら200rpmで1時間撹拌して塩化イリジウム溶液を作製した。
 次に、水酸化ナトリウムを70g量り取り、純水700mLに溶解した10%水酸化ナトリウム溶液を作製し、前記塩化イリジウム溶液へ前記10%水酸化ナトリウム溶液を12mL/minの速度で滴下した。滴下終了後、液温を80℃に保持しながら更に10時間撹拌した。
(Comparative Example 2) Preparation of Iridium Oxide (IO-1) Into a 5 L Teflon beaker, 50 g of iridium chloride tetravalent preparation (H 2 IrCl 6 ·nH 2 O manufactured by Furuya Metals Co., Ltd.) was added. 6 L was added, and the mixture was stirred at 200 rpm for 1 hour while raising the liquid temperature to 80° C. to prepare an iridium chloride solution.
Next, 70 g of sodium hydroxide was weighed and dissolved in 700 mL of pure water to prepare a 10% sodium hydroxide solution, and the 10% sodium hydroxide solution was added dropwise to the iridium chloride solution at a rate of 12 mL/min. After the dropwise addition was completed, the mixture was further stirred for 10 hours while maintaining the liquid temperature at 80°C.
 生成したスラリーを室温まで放冷後静置し、上澄み液をデカンテーションした。残ったスラリーが入ったテフロンビーカーに純水1300mLを加え、再度80℃に昇温しながら1時間攪拌し、室温迄放冷後静置して再度上澄み液をデカンテーションした。このようなデカンテーション洗浄を上澄み液の導電率が変化しなくなるまで洗浄した。その後濾過し、濾過ケークを電気乾燥機で60℃、20時間の条件で乾燥後、電気炉を用いて大気中で400℃、10時間の条件で焼成し、酸化イリジウムを得た。45ccのジルコニア容器にφ0.65mmのジルコニアボール70gと純水16g、前記酸化イリジウム7gを量り入れ、フリッチェ製遊星ボールミルP-6に設置し、500rpmで7.5分間粉砕を行った。粉砕後の酸化イリジウムスラリーをφ0.65mmジルコニアボールと分別し、酸化イリジウムスラリーの濾過を実施した。濾過ケークを電気乾燥機で60℃、20時間の条件で乾燥した酸化イリジウムをメノウ乳鉢で粉砕し酸化イリジウムを得た。 The resulting slurry was allowed to cool to room temperature and then allowed to stand, and the supernatant liquid was decanted. 1,300 mL of pure water was added to the Teflon beaker containing the remaining slurry, and the mixture was stirred for 1 hour while the temperature was again raised to 80° C., allowed to cool to room temperature, allowed to stand, and the supernatant liquid was again decanted. Such decantation washing was continued until the conductivity of the supernatant did not change. After filtration, the filter cake was dried in an electric dryer at 60° C. for 20 hours and then calcined in the atmosphere at 400° C. for 10 hours in an electric furnace to obtain iridium oxide. 70 g of φ0.65 mm zirconia balls, 16 g of pure water, and 7 g of the iridium oxide were weighed into a 45 cc zirconia container, placed in a planetary ball mill P-6 manufactured by Fritsche, and pulverized at 500 rpm for 7.5 minutes. The pulverized iridium oxide slurry was separated from the φ0.65 mm zirconia balls, and the iridium oxide slurry was filtered. The filter cake was dried in an electric dryer at 60° C. for 20 hours, and the iridium oxide was pulverized in an agate mortar to obtain iridium oxide.
 実施例1(YI-1)、比較例1(YI-2)および比較例2(IO-1)で得られたイットリウムおよびイリジウムを含む酸化物の粉末X線回折を行った。
 粉末X線回折の測定方法は、X線回折(以下、XRD)装置(リガク製、Ultima
 IV)で行った。具体的な測定条件として、CuKα線を用い、先ずRSRP-Si標準粉末試料でSi(2,2,0)の回折角2θが48.28となるよう回折角調整を行った。得られた当該酸化物をガラス基板に充填し、先ず、2θ=10~90°をサンプリング間隔0.02°2θ、スキャン速度10°2θ/minで掃引し、XRD測定を行った。結果を図2、図3および図4に示す。
Powder X-ray diffraction was performed on the oxides containing yttrium and iridium obtained in Example 1 (YI-1), Comparative Example 1 (YI-2) and Comparative Example 2 (IO-1).
Powder X-ray diffraction is measured using an X-ray diffraction (XRD) device (manufactured by Rigaku, Ultima
IV). As specific measurement conditions, CuKα rays were used, and the diffraction angle was first adjusted so that the diffraction angle 2θ of Si (2,2,0) in the RSRP-Si standard powder sample was 48.28. A glass substrate was filled with the obtained oxide, and 2θ=10 to 90° was first swept at a sampling interval of 0.02° 2θ and a scanning speed of 10° 2θ/min to perform XRD measurement. Results are shown in FIGS. 2, 3 and 4. FIG.
 粉末X線回折の結果、実施例1(YI-1)の触媒は、2θで30°から35°付近でブロードなピークが見られ、他の特有なピークが見られないことから、特定の結晶構造をもたない非晶質な構造であると考えられる。一方、比較例1(YI-2)の触媒は、パイロクロア型YIrの特徴的なピークである2θで29.5°、34.3°、49.2°および58.4°が検出されたため、比較例1(YI-2)の触媒は、パイロクロア型YIrであると考えられる。 As a result of powder X-ray diffraction, the catalyst of Example 1 (YI-1) has a broad peak in the vicinity of 30 ° to 35 ° in 2θ, and no other specific peaks are seen. It is considered to be an amorphous structure with no structure. On the other hand, the catalyst of Comparative Example 1 (YI-2) has 29.5°, 34.3°, 49.2° and 58.4° at 2θ, which are characteristic peaks of the pyrochlore type Y 2 Ir 2 O 7 . was detected, the catalyst of Comparative Example 1 (YI-2) was considered to be pyrochlore-type Y 2 Ir 2 O 7 .
 実施例1(YI-1)、比較例1(YI-2)および比較例2(IO-1)の触媒の比表面積を比表面積/細孔分布測定装置、BELSORP-miniII、を用いて、窒素吸着法により行った。また、得られた吸着等温線のデータを前記比表面積/細孔分布測定装置に内蔵されている解析ソフトBEL MasterのBET法で解析し、比表面積を求めた。結果を表1に示す。 The specific surface areas of the catalysts of Example 1 (YI-1), Comparative Example 1 (YI-2) and Comparative Example 2 (IO-1) were measured using a specific surface area/pore size distribution measuring device, BELSORP-miniII, and nitrogen It was carried out by the adsorption method. In addition, the obtained adsorption isotherm data was analyzed by the BET method of the analysis software BEL Master built into the specific surface area/pore size distribution measuring device to determine the specific surface area. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1のBET比表面積が50m/g以上であることを確認できた。
Figure JPOXMLDOC01-appb-T000001
From Table 1, it was confirmed that the BET specific surface area of Example 1 was 50 m 2 /g or more.
 実施例1(YI-1)のSTEM観察を実施した。測定では、日本電子株式会社 機種JEM-ARM200CFを用い、加速電圧200kVでSTEM写真の画像を図5に示した。図5から明らかなように実施例1で得られたイットリウムおよびイリジウムを含む酸化物の粒径は100nm以下であることを確認した。 The STEM observation of Example 1 (YI-1) was performed. In the measurement, a model JEM-ARM200CF manufactured by JEOL Ltd. was used, and an STEM photograph image was shown in FIG. 5 at an acceleration voltage of 200 kV. As is clear from FIG. 5, it was confirmed that the particle size of the oxide containing yttrium and iridium obtained in Example 1 was 100 nm or less.
 酸素発生反応(OER)質量活性評価
 実施例1(YI-1)、比較例1および2(YI―2およびIO-1)で得られたイットリウムおよびイリジウムを含む酸化物を酸素発生反応触媒として、それぞれ、超純水15mLおよび2-プロパノール(以下、IPA)10mL、5wt%Nafion分散溶液0.1mLの混合溶液中にそれぞれ14.7mg秤量して、超音波で分散した。得られた分散液を、マイクロピペットを用いて回転ディスクの金電極上に添加し、30μg/cmの触媒塗布電極を作製した。このように作製した電極を、電気化学測定システム装置(HZ-7000、北斗電工社製)を用いて矩形波耐久性試験を行った。電解液は、60wt%過塩素酸溶液(精密分析用試薬、関東化学社製)を0.1Mに調製し、Arガスで脱気し、電解液として使用した。測定方式として3電極法を採用し、参照電極には白金ブラック上に水素ガスを通気した水素基準電極を用い、測定は25℃の恒温槽中で実施した。
Oxygen Evolution Reaction (OER) Mass Activity Evaluation Using the oxides containing yttrium and iridium obtained in Example 1 (YI-1) and Comparative Examples 1 and 2 (YI-2 and IO-1) as oxygen evolution reaction catalysts, 14.7 mg of each was weighed in a mixed solution of 15 mL of ultrapure water, 10 mL of 2-propanol (hereinafter referred to as IPA), and 0.1 mL of 5 wt % Nafion dispersing solution, and dispersed by ultrasonic waves. The resulting dispersion was added onto a rotating disk gold electrode using a micropipette to prepare a 30 μg/cm 2 catalyst-coated electrode. A rectangular wave durability test was performed on the electrode thus produced using an electrochemical measurement system (HZ-7000, manufactured by Hokuto Denko Co., Ltd.). As the electrolytic solution, a 60 wt % perchloric acid solution (reagent for precision analysis, manufactured by Kanto Kagaku Co., Ltd.) was prepared to 0.1 M, degassed with Ar gas, and used as an electrolytic solution. A three-electrode method was employed as the measurement method, and a hydrogen standard electrode in which hydrogen gas was passed over platinum black was used as a reference electrode, and the measurement was carried out in a constant temperature bath at 25°C.
 酸素発生反応(以下、OER:Oxyge Evolution Reaction、ともいう。)質量活性の評価は、1.0V-1.8Vの電圧範囲を10mV/secの速度で掃引し、1.5Vにおける電流密度(mA/cm)を電極への触媒塗布量(30μg/cm)で除して算出した。この結果を表2に示した。実施例1(YI-1)と比較例1(YI-2)は、双方ともにイットリウムおよびイリジウムを含む酸化物であるが、1.5VにおけるOER質量活性を電極に塗布されたイットリウムとイリジウムの合計の金属量で比較すると、実施例1(YI-1)の方が、1.8倍高いことが分かった。電極に塗布されたイリジウムの量で換算したOER質量活性を求めたところ、実施例1(YI-1)の方が約3.9倍高いことを確認した。
 また、実施例1(YI-1)と比較例2(IO-1)を比較すると、1.5VにおけるOER質量活性を電極に塗布された合計の金属量で比較すると、実施例1(YI-1)の方が約2.5倍高いことが分かった。また、電極に塗布されたイリジウムの量で換算したOER質量活性を求めたところ、実施例1(YI-1)の方が約3.9倍高いことを確認した。
Oxygen evolution reaction (hereinafter also referred to as OER: Oxyge Evolution Reaction) mass activity evaluation sweeps the voltage range of 1.0 V to 1.8 V at a rate of 10 mV / sec, current density at 1.5 V (mA /cm 2 ) by the amount of catalyst applied to the electrode (30 μg/cm 2 ). The results are shown in Table 2. In Example 1 (YI-1) and Comparative Example 1 (YI-2), both oxides containing yttrium and iridium, the OER mass activity at 1.5 V was determined by the total yttrium and iridium applied to the electrode. It was found that Example 1 (YI-1) was 1.8 times higher than that of Example 1 (YI-1). When the OER mass activity converted from the amount of iridium applied to the electrode was calculated, it was confirmed that Example 1 (YI-1) was about 3.9 times higher.
In addition, when comparing Example 1 (YI-1) and Comparative Example 2 (IO-1), comparing the OER mass activity at 1.5 V with the total amount of metal applied to the electrode, Example 1 (YI- 1) was found to be about 2.5 times higher. Further, when the OER mass activity converted from the amount of iridium applied to the electrode was calculated, it was confirmed that Example 1 (YI-1) was about 3.9 times higher.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記結果から明らかなように、本酸化物を含む触媒は、OER質量活性においてイリジウム単独の触媒およびパイロクロア型のイットリウムおよびイリジウムの複合酸化物であるがBET比表面積が50m/gよりも小さい触媒と比較して高い性能を示した。
 したがって本酸化物を用いることで、イリジウムの使用量を抑え、高い酸素発生質量活性を有する電気分解用の触媒が提供される。
As is clear from the above results, the catalysts containing the present oxides are iridium-only catalysts and pyrochlore-type composite oxides of yttrium and iridium in terms of OER mass activity, but have a BET specific surface area of less than 50 m 2 /g. showed higher performance compared to
Therefore, by using the present oxide, the amount of iridium used can be reduced, and an electrolysis catalyst having a high oxygen evolution mass activity can be provided.
1:第1供給源
2:第2供給源
3:加熱部
4:反応部
5:送液ルート
6:送液ルート
7:送液ルート
8:回収部
9:冷却部
10:圧力調整機構
11;流量調整手段
12:流量調整手段
100:製造装置
1: First supply source 2: Second supply source 3: Heating unit 4: Reaction unit 5: Liquid feeding route 6: Liquid feeding route 7: Liquid feeding route 8: Recovery unit 9: Cooling unit 10: Pressure adjustment mechanism 11; Flow rate adjusting means 12: Flow rate adjusting means 100: manufacturing apparatus

Claims (9)

  1.  イットリウムおよびイリジウムを含み、BET比表面積が50m/g以上である酸化物を含む酸素発生反応触媒。 An oxygen evolution reaction catalyst containing an oxide containing yttrium and iridium and having a BET specific surface area of 50 m 2 /g or more.
  2. 前記酸化物の平均粒子径が100nm以下である請求項1に記載の酸素発生反応触媒。 2. The oxygen evolution reaction catalyst according to claim 1, wherein the oxide has an average particle size of 100 nm or less.
  3.  請求項1または2に記載の酸素発生反応触媒とプロトン輸送剤を含む酸素発生反応触媒層。 An oxygen evolution reaction catalyst layer containing the oxygen evolution reaction catalyst according to claim 1 or 2 and a proton transport agent.
  4.  請求項3に記載の酸素発生反応触媒層とイオン交換高分子電解質膜を含む電解セル。 An electrolytic cell comprising the oxygen evolution reaction catalyst layer according to claim 3 and an ion-exchange polymer electrolyte membrane.
  5.  イオン交換高分子電解質膜が陽イオン交換高分子電解質膜である請求項4に記載の電解セル。 The electrolytic cell according to claim 4, wherein the ion-exchange polymer electrolyte membrane is a cation-exchange polymer electrolyte membrane.
  6.  (1)イットリウムナノ粒子およびイリジウムナノ粒子またはイットリウム水酸化物粒子およびイリジウム水酸化物粒子を分散媒に分散させて分散液を得る、または(2)イットリウム化合物およびイリジウム化合物を溶媒に溶解させて溶解液を得る工程Aと、
     水の温度を100℃以上、圧力を0.1MPa超とする工程Bと、前記工程Aで得た前記分散液または前記溶解液と前記工程Bで得た前記高温高圧水とを混合する工程Cとを有する請求項1に記載の酸化物の製造方法。
    (1) Yttrium nanoparticles and iridium nanoparticles or yttrium hydroxide particles and iridium hydroxide particles are dispersed in a dispersion medium to obtain a dispersion, or (2) an yttrium compound and an iridium compound are dissolved in a solvent and dissolved. A step of obtaining a liquid;
    A step B in which the water temperature is 100 ° C. or higher and the pressure is higher than 0.1 MPa, and a step C in which the dispersion or the solution obtained in the step A and the high-temperature and high-pressure water obtained in the step B are mixed. The method for producing an oxide according to claim 1, comprising:
  7.  前記工程Bに酸化剤を添加する工程を含む請求項6に記載の酸化物の製造方法。 The method for producing an oxide according to claim 6, wherein the step B includes a step of adding an oxidizing agent.
  8.  前記酸化剤が酸素原子を放出する酸化剤である請求項7に記載の酸化物の製造方法。 The method for producing an oxide according to claim 7, wherein the oxidizing agent is an oxidizing agent that releases oxygen atoms.
  9.  前記工程Bは、(1)水に、酸素原子を放出する酸化剤を添加した後、水を前記の温度および圧力とする工程、(2)水を前記の温度および圧力とした後、酸素原子を放出する酸化剤を添加する工程、または(3)水に酸素原子を放出する酸化剤を添加した後、水を前記の温度および圧力とし、さらに、酸素原子を放出する酸化剤を添加する工程、のいずれかの工程を含む請求項8に記載の酸化物の製造方法。 The step B includes (1) adding an oxidizing agent that releases oxygen atoms to water, and then bringing the water to the above temperature and pressure; (2) bringing the water to the above temperature and pressure, and then or (3) adding an oxidizing agent that releases oxygen atoms to water, bringing the water to the above temperature and pressure, and further adding an oxidizing agent that releases oxygen atoms. 9. The method for producing an oxide according to claim 8, comprising the step of any one of .
PCT/JP2022/043486 2021-11-25 2022-11-25 Oxygen evolution reaction catalyst and method for producing same WO2023095858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-190920 2021-11-25
JP2021190920 2021-11-25

Publications (1)

Publication Number Publication Date
WO2023095858A1 true WO2023095858A1 (en) 2023-06-01

Family

ID=86539583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043486 WO2023095858A1 (en) 2021-11-25 2022-11-25 Oxygen evolution reaction catalyst and method for producing same

Country Status (1)

Country Link
WO (1) WO2023095858A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504433A (en) * 2010-12-16 2014-02-20 ジョンソン、マッセイ、フュエル、セルズ、リミテッド Catalyst layer
WO2016156599A1 (en) * 2015-04-02 2016-10-06 Universiteit Leiden Electrocatalysts for efficient water electrolysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504433A (en) * 2010-12-16 2014-02-20 ジョンソン、マッセイ、フュエル、セルズ、リミテッド Catalyst layer
WO2016156599A1 (en) * 2015-04-02 2016-10-06 Universiteit Leiden Electrocatalysts for efficient water electrolysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEBEDEV DMITRY, POVIA MAURO, WALTAR KAY, ABDALA PAULA M., CASTELLI IVANO E., FABBRI EMILIANA, BLANCO MARIA V., FEDOROV ALEXEY, COP: "Highly Active and Stable Iridium Pyrochlores for Oxygen Evolution Reaction", CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, US, vol. 29, no. 12, 27 June 2017 (2017-06-27), US , pages 5182 - 5191, XP093068351, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.7b00766 *
SHIH PEI-CHIEH, KIM JAEMIN, SUN CHENG-JUN, YANG HONG: "Single-Phase Pyrochlore Y 2 Ir 2 O 7 Electrocatalyst on the Activity of Oxygen Evolution Reaction", ACS APPLIED ENERGY MATERIALS, vol. 1, no. 8, 27 August 2018 (2018-08-27), pages 3992 - 3998, XP093068349, ISSN: 2574-0962, DOI: 10.1021/acsaem.8b00691 *

Similar Documents

Publication Publication Date Title
US20220259746A1 (en) A method for efficient electrocatalytic synthesis of pure liquid product solutions including h2o2, oxygenates, ammonia, and so on
Zhao et al. Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N 2 (air) and water at low temperature and ambient pressure
Abdullah et al. Novel anodic catalyst support for direct methanol fuel cell: characterizations and single-cell performances
Park et al. High-performance anion exchange membrane water electrolyzer enabled by highly active oxygen evolution reaction electrocatalysts: Synergistic effect of doping and heterostructure
Liu et al. Design and engineering of urchin-like nanostructured SnO2 catalysts via controlled facial hydrothermal synthesis for efficient electro-reduction of CO2
Wu et al. Advances and status of anode catalysts for proton exchange membrane water electrolysis technology
US20170271697A1 (en) Membrane electrode assembly, and electrochemical cell and electrochemical stack using same
US20180274112A1 (en) Membrane electrode assembly for electrochemical cell
WO2018037774A1 (en) Cathode, electrolysis cell for producing organic hydride, and organic hydride production method
WO2022138309A1 (en) Iridium-containing oxide, method for producing same and catalyst containing iridium-containing oxide
Koo et al. Ultrasonic spray pyrolysis synthesis of nano-cluster ruthenium on molybdenum dioxide for hydrogen evolution reaction
Kim et al. Synthesis and electrochemical properties of nano-composite IrO2/TiO2 anode catalyst for SPE electrolysis cell
JP2006526880A (en) Components using fuel cells and their high metal-to-support ratio catalysts
KR20220117784A (en) Method for Preparing Reduction Product of Carbon Dioxide Using Solid Electrolyte and Device Therefor
KR20190083546A (en) Electrochemical hydrogenation reactor and method of hydrogenation using the same
WO2023095858A1 (en) Oxygen evolution reaction catalyst and method for producing same
WO2022102580A1 (en) Iridium-containing oxide, method for producing same and catalyst containing iridium-containing oxide
JP2007087827A (en) Electrode catalyst and its manufacturing method
Mudi et al. Development of carbon nanofibers/Pt nanocomposites for fuel cell application
JP6963648B2 (en) Manufacturing method of catalyst layer for electrochemical cell and catalyst layer
WO2023048101A1 (en) Catalyst and method for producing same
WO2023048100A1 (en) Catalyst and method for manufacturing same
Zhang et al. Highly Ethylene-Selective Electroreduction CO2 over cu phosphate nanostructures with tunable morphology
Sun et al. Structural reconstruction of BiPbO 2 Br nanosheets for electrochemical CO 2 reduction to formate
JP2009070733A (en) Manufacturing method of single-chamber fuel cell and modified manganese oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898640

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023563741

Country of ref document: JP