WO2023095737A1 - Graphene oxide manufacturing system and graphene oxide manufacturing method - Google Patents

Graphene oxide manufacturing system and graphene oxide manufacturing method Download PDF

Info

Publication number
WO2023095737A1
WO2023095737A1 PCT/JP2022/042964 JP2022042964W WO2023095737A1 WO 2023095737 A1 WO2023095737 A1 WO 2023095737A1 JP 2022042964 W JP2022042964 W JP 2022042964W WO 2023095737 A1 WO2023095737 A1 WO 2023095737A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
graphene oxide
graphite oxide
oxide
filtration
Prior art date
Application number
PCT/JP2022/042964
Other languages
French (fr)
Japanese (ja)
Inventor
篤嗣 林
隆雄 宮澤
つかさ 清永
Original Assignee
株式会社Nsc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nsc filed Critical 株式会社Nsc
Publication of WO2023095737A1 publication Critical patent/WO2023095737A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation

Definitions

  • the present invention relates to a graphene oxide production system and a graphene oxide production method configured to produce graphene oxide using graphite oxidized with an acid and a salt.
  • Graphene oxide which is obtained by oxidizing graphite and exfoliating each layer, has been used in various industrial applications in recent years.
  • Several production methods have been established for producing graphene oxide, and among them, the Hammers method using sulfuric acid and potassium permanganate has been widely used.
  • An object of the present invention is to provide a graphene oxide production system and a graphene oxide production method capable of producing high-quality graphene oxide while suppressing equipment costs.
  • the graphene oxide production system is configured to produce graphene oxide using graphite oxidized with an acid and a salt.
  • This graphene oxide production system includes at least centrifugal separation means and filtration means.
  • the centrifugal separation means is configured to subject a dispersion of graphite oxide obtained by oxidizing graphite to centrifugal separation, thereby performing a deacidification treatment for removing acid from the graphite oxide.
  • centrifugal separation means As an example of the centrifugal separation means, a graphite oxide dispersion is placed in a basket having no permeation holes in its peripheral wall portion and rotated to discharge unnecessary components of the dispersion in the basket through a skimming pipe or the like. and a centrifugal sedimentation type centrifugal separator.
  • centrifugal separation means is not limited to this, and it is also possible to use a centrifugal filtration type centrifugal separation device using a basket having permeation holes in the peripheral wall portion.
  • the filtration means filters the deoxidized graphite oxide dispersion.
  • This filtering means is configured to allow a liquid containing impurities to pass through the filtering filter and discharge it as a filtrate while trapping graphite oxide with the filtering filter.
  • the filtering means has layer thickness adjusting means configured to apply a force to the cake layer for adjusting the deposition thickness of the cake layer containing the graphite oxide supplemented by the filtering filter.
  • filtering means is a microfilter device that can apply a flow (bubbling, etc.) that suppresses the layer thickness of the cake layer to the filter.
  • a rotary filtration device capable of suppressing the layer thickness of the cake layer with a blade or the like while rotating a drum-shaped filtration filter.
  • each layer is peeled off while filtering the graphite oxide dispersion, it is possible to obtain graphene oxide with extremely few impurities.
  • the graphite oxide dispersion is sent from the centrifugal separation means to the filtration means.
  • a predetermined value for example, pH 2 or pH 3
  • a pH measuring device and a liquid sending mechanism having a control unit for sending a dispersion of graphite oxide from the centrifugal means to the filtering means based on the measurement result of the pH measuring device etc. should be used.
  • the strongly acidic region approaches the neutral region, so it is possible to weaken the force of attraction between each layer of graphite oxide, and the force required for peeling can be reduced.
  • the method for producing graphene oxide according to the present invention produces graphene oxide using graphite oxidized with an acid and a salt.
  • This graphene oxide production method includes at least a centrifugation step and a filtration step.
  • the graphite oxide dispersion liquid obtained by oxidizing the graphite is subjected to a centrifugal separation process, thereby performing a deacidification process to remove acid from the graphite oxide.
  • the deoxidized graphite oxide dispersion is filtered.
  • the liquid containing impurities passes through the filtration filter and is discharged as a filtrate while capturing the graphite oxide by the filtration filter.
  • force is applied to the cake layer to adjust the deposition thickness of the cake layer containing graphite oxide supplemented by the filtration filter.
  • FIG. 1 is a diagram showing a schematic configuration of a graphene oxide production system according to one embodiment of the present invention
  • FIG. FIG. 4 is a diagram for explaining an outline of processing in a refining section
  • FIG. 1 shows a schematic configuration of a graphene oxide production system 10 according to one embodiment of the present invention.
  • the graphene oxide production system 10 includes an oxidation reactor 12 , a reaction termination device 14 , and a purification unit 15 .
  • the oxidation reaction device 12 is configured to perform an oxidation reaction for converting graphite into graphite oxide by using an acid or a salt.
  • an oxidation treatment is performed using a so-called Hammers method using sulfuric acid (acid) and potassium permanganate (salt).
  • the oxidation reactor 12 includes a graphite receiving section configured to receive graphite to be treated, a conveying mechanism for sequentially supplying the received graphite to the reaction vessel, and a chiller for suppressing an increase in reaction temperature. etc. are provided.
  • the liquid temperature is adjusted to 40° C. or lower by controlling the chiller.
  • the reaction termination device 14 is configured to terminate the oxidation reaction of graphite by using water or hydrogen peroxide.
  • the above-described oxidation reactor 12 and reaction termination device 14 are preferably placed in a dedicated booth to prevent graphite from scattering, and it is more preferable to install a dust collector in this booth.
  • the refining unit 15 includes at least a centrifugal separator 16 and a rotary filtration device 18. By appropriately combining centrifugal separation and filtration, the refining unit 15 efficiently reduces the concentration of the S residue to the order of ppm or reduces the concentration of other metal components while performing deoxidation treatment. impurities can be removed.
  • the centrifugal separation device 16 uses the centrifugal sedimentation action on the graphite oxide dispersion obtained by passing through the oxidation reaction device 12 and the reaction termination device 14, thereby separating the dispersion liquid as shown in FIG. ), the dispersion is separated into a liquid component (acid) 162 and a solid component (graphite oxide) 164 .
  • acid adhering to graphite oxide is removed by discharging the sulfuric acid component out of the basket of the centrifugal separator 16 through a skimming pipe inserted in the basket.
  • the centrifugal separator 16 is configured to perform centrifugal separation at a centrifugal acceleration of about 1000 to 5000G, but is not limited to this.
  • each component of the centrifugal separator 16 is lined with a chemical-resistant material such as heat-resistant polyvinyl chloride so that it can come into contact with the acidic solution.
  • acids other than sulfuric acid such as nitric acid and hydrochloric acid are removed in the centrifugal separator 16 .
  • the graphite oxide that has been deoxidized to some extent in the centrifugal separation device 16 is introduced into the rotary filtration device 18 .
  • the threshold pH value is not limited to this, and an optimum threshold value may be appropriately set within a range of about 1.5 to 4.5.
  • graphite oxide recovered as solid content in the centrifugal separator 16 is sent to the rotary filtration device 18 in a state of being dispersed in pure water.
  • graphite oxide includes single-layer graphene oxide, multi-layer graphene oxide in which multiple single-layer graphene oxides are stacked, and the like.
  • the concentration of single-layer graphene oxide is increased by efficiently applying a peeling force to graphite oxide and multilayer graphene oxide, and sulfate ions, potassium ions, and A treatment is performed to remove impurities such as manganese ions.
  • the rotary filtering device 18 includes at least a filtering filter 182 having a drum shape (hollow cylindrical shape) and rotatably supported, and a layer thickness adjusting blade 184 for adjusting the thickness of the cake layer deposited on the peripheral surface of the filtering filter 182. .
  • the filtration filter 182 is configured so that the joint opening has a size that does not allow the graphene oxide to be recovered to pass through.
  • the grain size of graphene oxide generally obtained in this embodiment is as small as about several tens of nm, and as large as about several tens of ⁇ m.
  • the opening of the filter 182 is set to a size of about several tens of nanometers.
  • the configuration of the filtration filter 182 is not limited to this.
  • the filtration filter 182 draws the dispersion liquid into the interior of the filtration filter 182 to supplement the cake layer 186 containing graphite oxide and graphene oxide on the peripheral surface of the filtration filter 182. configured to
  • the thickness of the cake layer 186 becomes too large, there is an inconvenience that the filtration speed will decrease.
  • the layer thickness adjusting blade 184 By applying a force to the graphite oxide by the layer thickness adjusting blade 184, the peeling of the layers is promoted, and the concentration of the peeled graphene oxide increases to about 1 to 10 layers.
  • the number of graphene oxide layers can be evaluated by, for example, an atomic force microscope, a transmission electron microscope, a Raman spectrum, or the like.
  • the rotary filtration device 18 while removing impurities as a filtrate, the color of the filtrate is analyzed, and the concentration of potassium, sulfur, manganese, etc. contained in the filtrate is measured, thereby obtaining graphene oxide. It is possible to roughly grasp the concentration and the concentration of impurities contained in the dispersion.
  • a hydrophilic solvent such as alcohols such as methanol and ethanol, glycols such as ethylene glycol, tetrahydrofuran, etc. within a range where graphene oxide does not aggregate with water as the main component.
  • the size of the obtained graphene oxide depends on the size of the raw material graphite crystal, it is possible to adjust the size to some extent by appropriately applying an external force.
  • the rotary filtration device 18 employs a configuration in which the filter 182 is rotationally driven and the layer thickness adjusting blade 184 is stationary. It is also possible to employ a moving configuration.
  • the skimmed sulfuric acid and the filtrate (containing impurities) that has passed through the filtration filter 182 are properly treated by an industrial waste disposal company or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

[Problem] To provide a graphene oxide manufacturing system and a graphene oxide manufacturing method that can manufacture high-quality graphene oxide while suppressing equipment costs. [Solution] A graphene oxide manufacturing system 10 comprises a centrifugal separation device 16 and a rotating filtration device 18. The centrifugal separation device 16, by performing centrifugal separation processing on a graphite oxide dispersion obtained by oxidizing graphite, performs deoxidation processing to remove acid from the graphite oxide. The rotating filtration device 18 performs filtration processing on the graphite oxide dispersion which has been subjected to the deoxidation processing. The rotating filtration device 18 comprises a layer thickness adjustment blade 184 that is configured to apply force for adjusting the accumulation thickness of a cake layer 186, the cake layer 186 being a layer added to a filtration filter 182 and containing graphite oxide,

Description

酸化グラフェン製造システムおよび酸化グラフェン製造方法Graphene oxide production system and graphene oxide production method
 本発明は、酸および塩によって酸化されたグラファイトを用いて酸化グラフェンを製造するように構成された酸化グラフェン製造システムおよび酸化グラフェン製造方法に関する。 The present invention relates to a graphene oxide production system and a graphene oxide production method configured to produce graphene oxide using graphite oxidized with an acid and a salt.
 グラファイトを酸化し、積層された各層を剥離することによって得られる酸化グラフェンは、近年、さまざまな産業的用途に利用されるようになっている。酸化グラフェンを製造するためにいくつかの製造方法が確立されているが、とりわけ、硫酸と過マンガン酸カリウムを利用したハマーズ法が広く用いられてきている。 Graphene oxide, which is obtained by oxidizing graphite and exfoliating each layer, has been used in various industrial applications in recent years. Several production methods have been established for producing graphene oxide, and among them, the Hammers method using sulfuric acid and potassium permanganate has been widely used.
 ところが、ハマーズ法は、様々な改良が施されているものの、単層の酸化グラフェンを得ることが困難で、通常は、ある程度厚みが残った状態で積層された酸化グラファイトのフレークが得られることが多く、酸化グラフェンの収率が低くなってしまうことが多かった。 However, although various improvements have been made with the Hummers method, it is difficult to obtain a single layer of graphene oxide, and usually, it is not possible to obtain laminated graphite oxide flakes with a certain thickness remaining. In many cases, the yield of graphene oxide was often low.
 そこで、従来技術の中には、グラファイトを酸化して酸化グラファイトを得る工程と、これを剥離する工程とを、高せん断混合機内で同時に行うことによって、酸化グラフェンを取得する技術が存在する。この技術によれば、従来法における酸化グラフェンの低収率の問題が克服される、とされていた。 Therefore, among conventional technologies, there is a technique for obtaining graphene oxide by simultaneously performing a process of oxidizing graphite to obtain graphite oxide and a process of exfoliating it in a high shear mixer. This technology was said to overcome the problem of low yields of graphene oxide in conventional methods.
特許第6893394号公報Japanese Patent No. 6893394
 しかしながら、上述の従来技術では、高せん断混合機等の特別な機能を有する設備を設ける必要があり、設備コストが高額になってしまう。 However, in the above-mentioned conventional technology, it is necessary to install equipment with special functions such as a high-shear mixer, resulting in high equipment costs.
 一般に、耐酸性を備えさせつつ、超高速回転等の特別な機能を設備に付加しようとすると、既存設備に比較して設備コストが大きく膨れ上がってしまう傾向があると言える。 In general, if you try to add special functions such as ultra-high-speed rotation to equipment while providing acid resistance, it can be said that the equipment cost tends to increase significantly compared to existing equipment.
 この発明の目的は、設備コストを抑えつつ高品質な酸化グラフェンを製造することが可能な酸化グラフェン製造システムおよび酸化グラフェン製造方法を提供することである。 An object of the present invention is to provide a graphene oxide production system and a graphene oxide production method capable of producing high-quality graphene oxide while suppressing equipment costs.
 本発明に係る酸化グラフェン製造システムは、酸および塩によって酸化されたグラファイトを用いて酸化グラフェンを製造するように構成される。この酸化グラフェン製造システムは、少なくとも、遠心分離手段およびろ過手段を備える。 The graphene oxide production system according to the present invention is configured to produce graphene oxide using graphite oxidized with an acid and a salt. This graphene oxide production system includes at least centrifugal separation means and filtration means.
 遠心分離手段は、グラファイトを酸化することによって得られた酸化グラファイトの分散液に対して遠心分離処理を行うことによって、酸化グラファイトから酸を除去する脱酸処理を施すように構成される。 The centrifugal separation means is configured to subject a dispersion of graphite oxide obtained by oxidizing graphite to centrifugal separation, thereby performing a deacidification treatment for removing acid from the graphite oxide.
 遠心分離手段の例として、周壁部に透過孔を有しないバスケットに酸化グラファイトの分散液を入れて回転させることによって、バスケット内の分散液の不要成分を、スキミングパイプ等を通して排出するように構成された遠心沈降方式の遠心分離装置が挙げられる。 As an example of the centrifugal separation means, a graphite oxide dispersion is placed in a basket having no permeation holes in its peripheral wall portion and rotated to discharge unnecessary components of the dispersion in the basket through a skimming pipe or the like. and a centrifugal sedimentation type centrifugal separator.
 ただし、遠心分離手段の例はこれに限定されるものではなく、周壁部に透過孔を有するバスケットを用いた遠心ろ過方式の遠心分離装置を用いることも可能である。 However, the example of the centrifugal separation means is not limited to this, and it is also possible to use a centrifugal filtration type centrifugal separation device using a basket having permeation holes in the peripheral wall portion.
 ろ過手段は、脱酸処理が施された酸化グラファイトの分散液に対してろ過処理を行う。このろ過手段は、ろ過フィルタによって酸化グラファイトを捕捉しつつ、不純物を含む液を、ろ過フィルタを通過させて、ろ液として排出するように構成される。 The filtration means filters the deoxidized graphite oxide dispersion. This filtering means is configured to allow a liquid containing impurities to pass through the filtering filter and discharge it as a filtrate while trapping graphite oxide with the filtering filter.
 さらに、ろ過手段は、ろ過フィルタに補足された酸化グラファイトを含むケーキ層の堆積厚みを調整するための力をケーキ層に加えるように構成された層厚調整手段を有している。 Furthermore, the filtering means has layer thickness adjusting means configured to apply a force to the cake layer for adjusting the deposition thickness of the cake layer containing the graphite oxide supplemented by the filtering filter.
 ろ過手段の例としては、ろ過フィルタにケーキ層の層厚抑制の流れ(バブリング等)を当てることが可能なマイクロフィルタ装置が挙げられる。また、これ以外には、ドラム状を呈するろ過フィルタを回転させつつブレード等によってケーキ層の層厚抑制が可能な回転ろ過装置等が挙げられる。 An example of filtering means is a microfilter device that can apply a flow (bubbling, etc.) that suppresses the layer thickness of the cake layer to the filter. In addition to this, there is a rotary filtration device capable of suppressing the layer thickness of the cake layer with a blade or the like while rotating a drum-shaped filtration filter.
 このような酸化グラフェン製造システムの構成においては、ろ過処理の際に、ろ過フィルタに補足されて集められた酸化グラファイトに対して物理的な力を作用させることが可能になる。このため、酸化グラファイトの各層を剥離するための力を効率的に、酸化グラファイトに対して加えることが可能になる。 In such a configuration of the graphene oxide production system, it is possible to apply a physical force to the graphite oxide captured and collected by the filtration filter during the filtration process. Therefore, it becomes possible to efficiently apply a force to the graphite oxide for peeling off each layer of the graphite oxide.
 しかも、既存の遠心分離装置やろ過装置を適宜用いることによって酸化グラフェン製造システムを構築することが可能になるため、設備コストを低く抑えることが可能となる。 Moreover, it is possible to construct a graphene oxide production system by appropriately using existing centrifugal separation devices and filtration devices, so it is possible to keep equipment costs low.
 さらには、酸化グラファイトの分散液をろ過しつつ各層の剥離を行っているため、不純物が極めて少ない酸化グラフェンを得ることが可能となる。 Furthermore, since each layer is peeled off while filtering the graphite oxide dispersion, it is possible to obtain graphene oxide with extremely few impurities.
 上述の酸化グラフェン製造システムにおいて、酸化グラファイトの分散液のpH値が所定値(例えば、pH2またはpH3等)よりも高くなった後に、遠心分離手段からろ過手段へと酸化グラファイトの分散液を送りだすように構成されることが好ましい。 In the graphene oxide production system described above, after the pH value of the graphite oxide dispersion becomes higher than a predetermined value (for example, pH 2 or pH 3), the graphite oxide dispersion is sent from the centrifugal separation means to the filtration means. is preferably configured to
 このような構成を実現するためには、例えば、pH測定装置、このpH測定装置の測定結果に基づいて遠心分離手段からろ過手段へと酸化グラファイトの分散液を送る制御部を備えた送液機構等を用いると良い。 In order to realize such a configuration, for example, a pH measuring device and a liquid sending mechanism having a control unit for sending a dispersion of graphite oxide from the centrifugal means to the filtering means based on the measurement result of the pH measuring device etc. should be used.
 このような構成を採用することによって、強酸性領域から中性領域に近づくため、酸化グラファイトの各層が引き付け合う力を弱めることが可能になり、剥離に必要な力が少なくて済む。 By adopting such a configuration, the strongly acidic region approaches the neutral region, so it is possible to weaken the force of attraction between each layer of graphite oxide, and the force required for peeling can be reduced.
 剥離が容易になった状態の酸化グラファイトをろ過フィルタによって集めた上で、酸化グラファイトに効率的に剥離力を加えることが可能となるため、単層の酸化グラフェンの収率が向上する。 After collecting the graphite oxide in a state where it is easy to exfoliate with a filtration filter, it is possible to efficiently apply exfoliation force to the graphite oxide, which improves the yield of single-layer graphene oxide.
 一方で、本発明に係る酸化グラフェン製造方法は、酸および塩によって酸化されたグラファイトを用いて酸化グラフェンを製造するものである。 On the other hand, the method for producing graphene oxide according to the present invention produces graphene oxide using graphite oxidized with an acid and a salt.
 この酸化グラフェン製造方法は、少なくとも、遠心分離ステップ、およびろ過ステップを含む。 This graphene oxide production method includes at least a centrifugation step and a filtration step.
 遠心分離ステップでは、グラファイトを酸化することによって得られた酸化グラファイトの分散液に対して遠心分離処理を行うことによって、酸化グラファイトから酸を除去する脱酸処理が施される。 In the centrifugal separation step, the graphite oxide dispersion liquid obtained by oxidizing the graphite is subjected to a centrifugal separation process, thereby performing a deacidification process to remove acid from the graphite oxide.
 ろ過ステップにおいては、脱酸処理が施された酸化グラファイトの分散液に対してろ過処理を行う。このろ過ステップにおいて、ろ過フィルタによって酸化グラファイトを捕捉しつつ、不純物を含む液が、ろ過フィルタを通過し、ろ液として排出される。 In the filtration step, the deoxidized graphite oxide dispersion is filtered. In this filtration step, the liquid containing impurities passes through the filtration filter and is discharged as a filtrate while capturing the graphite oxide by the filtration filter.
 ろ過ステップにおいて、ろ過フィルタに補足された酸化グラファイトを含むケーキ層の堆積厚みを調整するための力がケーキ層に加えられる。 In the filtration step, force is applied to the cake layer to adjust the deposition thickness of the cake layer containing graphite oxide supplemented by the filtration filter.
 上述の酸化グラフェン製造方法において、酸化グラファイトの分散液のpH値が所定値よりも高くなった後に、遠心分離手段からろ過手段へと酸化グラファイトの分散液を送りだすようにすることが好ましい。 In the graphene oxide production method described above, it is preferable to send the graphite oxide dispersion from the centrifugal means to the filtering means after the pH value of the graphite oxide dispersion has become higher than a predetermined value.
 上述したように、遠心分離技術とろ過技術とを適宜組み合わせて利用することによって、各種の不純物を取り除き易くなり、高品質な酸化グラフェンを得やすくなると言える。 As described above, it can be said that by appropriately combining the centrifugal separation technology and the filtration technology, it becomes easier to remove various impurities and to obtain high-quality graphene oxide.
 本発明によれば、設備コストを抑えつつ高品質な酸化グラフェンを製造することが可能になる。 According to the present invention, it is possible to produce high-quality graphene oxide while keeping equipment costs down.
本発明の一実施形態に係る酸化グラフェン製造システムの概略構成を示す図である。1 is a diagram showing a schematic configuration of a graphene oxide production system according to one embodiment of the present invention; FIG. 精製部における処理の概略を説明する図である。FIG. 4 is a diagram for explaining an outline of processing in a refining section;
 図1は、本発明の一実施形態に係る酸化グラフェン製造システム10の概略構成を示している。同図に示すように、酸化グラフェン製造システム10は、酸化反応装置12、反応停止装置14、および精製部15を備えている。 FIG. 1 shows a schematic configuration of a graphene oxide production system 10 according to one embodiment of the present invention. As shown in the figure, the graphene oxide production system 10 includes an oxidation reactor 12 , a reaction termination device 14 , and a purification unit 15 .
 酸化反応装置12は、酸や塩を用いることによってグラファイトを酸化グラファイトにするための酸化反応を行うように構成される。この実施形態では、硫酸(酸)と過マンガン酸カリウム(塩)を利用した、いわゆるハマーズ法を用いた酸化処理が行われる。 The oxidation reaction device 12 is configured to perform an oxidation reaction for converting graphite into graphite oxide by using an acid or a salt. In this embodiment, an oxidation treatment is performed using a so-called Hammers method using sulfuric acid (acid) and potassium permanganate (salt).
 酸化反応装置12には、処理すべきグラファイトを受け入れるように構成されたグラファイト受入部や、受け入れたグラファイトを順次的に反応槽に供給するための搬送機構や、反応温度の上昇を抑えるためのチラー等が設けられる。この実施形態においては、安全のため液温がチラーの制御によって40℃以下になるように調整されている。 The oxidation reactor 12 includes a graphite receiving section configured to receive graphite to be treated, a conveying mechanism for sequentially supplying the received graphite to the reaction vessel, and a chiller for suppressing an increase in reaction temperature. etc. are provided. In this embodiment, for safety reasons, the liquid temperature is adjusted to 40° C. or lower by controlling the chiller.
 反応停止装置14は、水や過酸化水素を用いることによって、グラファイトの酸化反応を停止させるように構成される。 The reaction termination device 14 is configured to terminate the oxidation reaction of graphite by using water or hydrogen peroxide.
 上述した、酸化反応装置12および反応停止装置14は、グラファイトの飛散を防止するために専用のブース内に配置されることが好ましく、このブースに集塵機を設置することがさらに好ましい。 The above-described oxidation reactor 12 and reaction termination device 14 are preferably placed in a dedicated booth to prevent graphite from scattering, and it is more preferable to install a dust collector in this booth.
 精製部15は、遠心分離装置16および回転ろ過装置18を少なくとも備える。精製部15は、遠心分離およびろ過を適宜組み合わせることによって、例えば、脱酸処理を施しつつ、S残渣の濃度をppmオーダにまで低減したり、その他金属成分濃度を低減したりする等、効率的に不純物の除去が可能となっている。 The refining unit 15 includes at least a centrifugal separator 16 and a rotary filtration device 18. By appropriately combining centrifugal separation and filtration, the refining unit 15 efficiently reduces the concentration of the S residue to the order of ppm or reduces the concentration of other metal components while performing deoxidation treatment. impurities can be removed.
 精製部15において、遠心分離装置16は、酸化反応装置12および反応停止装置14を経由することによって得られた酸化グラファイトの分散液に対して、遠心沈降作用を利用することによって、図2(A)に示すように、分散液を液分(酸)162と固形分(酸化グラファイト)164とに分離する。 In the refining unit 15, the centrifugal separation device 16 uses the centrifugal sedimentation action on the graphite oxide dispersion obtained by passing through the oxidation reaction device 12 and the reaction termination device 14, thereby separating the dispersion liquid as shown in FIG. ), the dispersion is separated into a liquid component (acid) 162 and a solid component (graphite oxide) 164 .
 この実施形態では、遠心分離装置16のバスケット内に挿入したスキミングパイプを通して硫酸成分をバスケット外に排出することによって酸化グラファイトに付着した酸を除去している。遠心分離装置16は、1000~5000G程度の遠心加速度で遠心分離処理を行うように構成されているが、これに限定されるものではない。 In this embodiment, acid adhering to graphite oxide is removed by discharging the sulfuric acid component out of the basket of the centrifugal separator 16 through a skimming pipe inserted in the basket. The centrifugal separator 16 is configured to perform centrifugal separation at a centrifugal acceleration of about 1000 to 5000G, but is not limited to this.
 遠心分離装置16を構成する各部品は、耐熱ポリ塩化ビニル等の耐薬品性を有する素材によってライニングする等して、酸性溶液と接触可能にしておくことが重要である。 It is important that each component of the centrifugal separator 16 is lined with a chemical-resistant material such as heat-resistant polyvinyl chloride so that it can come into contact with the acidic solution.
 なお、ハマーズ法以外の酸化処理が採用される場合には、遠心分離装置16において、硝酸や塩酸等の硫酸以外の酸が除去されることになる。 When an oxidation treatment other than the Hammers method is employed, acids other than sulfuric acid such as nitric acid and hydrochloric acid are removed in the centrifugal separator 16 .
 遠心分離装置16において、ある程度の脱酸処理が施された酸化グラファイトは、回転ろ過装置18に導入される。 The graphite oxide that has been deoxidized to some extent in the centrifugal separation device 16 is introduced into the rotary filtration device 18 .
 この実施形態では、酸化グラファイト近傍の洗浄水が安定してpH2以上の状態を保っているときに、脱酸が概ね完了し、後段の工程に移行すべき状態になったものと判断している。ただし、しきい値となるpH値はこれに限定されるものではなく、1.5~4.5程度の範囲で適宜最適なしきい値を設定すると良い。 In this embodiment, when the wash water in the vicinity of the graphite oxide stably maintains a pH of 2 or more, it is determined that deoxidation is almost completed and the state should be shifted to the subsequent steps. . However, the threshold pH value is not limited to this, and an optimum threshold value may be appropriately set within a range of about 1.5 to 4.5.
 遠心分離装置16において固形分として回収された酸化グラファイトは、純水に分散された状態で回転ろ過装置18に送り出される。実際には、この酸化グラファイトの中には、単層の酸化グラフェン、単層の酸化グラフェンが複数積層した複層酸化グラフェン等が含まれている。 Graphite oxide recovered as solid content in the centrifugal separator 16 is sent to the rotary filtration device 18 in a state of being dispersed in pure water. Actually, graphite oxide includes single-layer graphene oxide, multi-layer graphene oxide in which multiple single-layer graphene oxides are stacked, and the like.
 回転ろ過装置18では、酸化グラファイトや複層酸化グラフェンに対して、効率的に剥離力を加えることによって単層の酸化グラフェンの濃度を高めつつ、かつ、分散液に含まれる硫酸イオン、カリウムイオン、マンガンイオン等の不純物を除去するための処理が施される。 In the rotary filtration device 18, the concentration of single-layer graphene oxide is increased by efficiently applying a peeling force to graphite oxide and multilayer graphene oxide, and sulfate ions, potassium ions, and A treatment is performed to remove impurities such as manganese ions.
 回転ろ過装置18は、ドラム状(中空円筒状)を呈するとともに回転可能に支持されたろ過フィルタ182、ろ過フィルタ182の周面に堆積するケーキ層の厚みを調整する層厚調整ブレード184を少なくとも備える。 The rotary filtering device 18 includes at least a filtering filter 182 having a drum shape (hollow cylindrical shape) and rotatably supported, and a layer thickness adjusting blade 184 for adjusting the thickness of the cake layer deposited on the peripheral surface of the filtering filter 182. .
 ろ過フィルタ182は、その目地の開口が回収すべき酸化グラフェンが通過しない大きさになるように構成される。この実施形態において一般的に得られる酸化グラフェンの粒径は、小さいもので数十nm程度、大きいものだと数十μm程度になる。 The filtration filter 182 is configured so that the joint opening has a size that does not allow the graphene oxide to be recovered to pass through. The grain size of graphene oxide generally obtained in this embodiment is as small as about several tens of nm, and as large as about several tens of μm.
 このため、この実施形態においては、ろ過フィルタ182の開口は、数十nm程度の大きさにされている。ただし、ろ過フィルタ182の構成は、これに限定されるものではない。 Therefore, in this embodiment, the opening of the filter 182 is set to a size of about several tens of nanometers. However, the configuration of the filtration filter 182 is not limited to this.
 ろ過フィルタ182は、図2(B)および図2(C)に示すように、その内部に分散液を引き込むことにより、ろ過フィルタ182周面にて酸化グラファイトや酸化グラフェンを含むケーキ層186を補足するように構成される。 As shown in FIGS. 2B and 2C, the filtration filter 182 draws the dispersion liquid into the interior of the filtration filter 182 to supplement the cake layer 186 containing graphite oxide and graphene oxide on the peripheral surface of the filtration filter 182. configured to
 ただし、ケーキ層186の厚みが大きくなりすぎると、ろ過速度が低下するといった不都合があるため、層厚調整ブレード184によってケーキ層186の厚みを調整している。そして、この層厚調整ブレード184によって酸化グラファイトに対して力が加えられることによって、層の剥離が促進され、1~10層程度に剥離処理された酸化グラフェンの濃度が増大する。 However, if the thickness of the cake layer 186 becomes too large, there is an inconvenience that the filtration speed will decrease. By applying a force to the graphite oxide by the layer thickness adjusting blade 184, the peeling of the layers is promoted, and the concentration of the peeled graphene oxide increases to about 1 to 10 layers.
 ここで、酸化グラフェンの層数は、例えば、原子間力顕微鏡、透過型電子顕微鏡、ラマンスペクトルなどで評価することができる。 Here, the number of graphene oxide layers can be evaluated by, for example, an atomic force microscope, a transmission electron microscope, a Raman spectrum, or the like.
 回転ろ過装置18において、ろ液として不純物を排出しつつ、ろ液の色を分析したり、ろ液の中に含まれるカリウム、硫黄、マンガン等の濃度を測定したりすることによって、酸化グラフェンの濃度や、分散液に含まれる不純物の濃度を概ね把握することができる。 In the rotary filtration device 18, while removing impurities as a filtrate, the color of the filtrate is analyzed, and the concentration of potassium, sulfur, manganese, etc. contained in the filtrate is measured, thereby obtaining graphene oxide. It is possible to roughly grasp the concentration and the concentration of impurities contained in the dispersion.
 この実施形態においては、回転ろ過装置18において回収した酸化グラフェンを純水に分散させることによって、酸化グラフェン(1~10層に剥離処理)の0.01~5重量%程度の水性分散液を得ることが可能となっている。 In this embodiment, by dispersing the graphene oxide collected in the rotary filtration device 18 in pure water, an aqueous dispersion of about 0.01 to 5% by weight of graphene oxide (exfoliation treatment for 1 to 10 layers) is obtained. It is possible.
 水以外の媒体としては、水を主体として酸化グラフェンが凝集しない範囲で、親水性溶媒、例えば、メタノール、エタノール等のアルコール類、エチレングリコールなどのグリコール類、テトラヒドロフランなどを加えることも可能である。 As a medium other than water, it is also possible to add a hydrophilic solvent such as alcohols such as methanol and ethanol, glycols such as ethylene glycol, tetrahydrofuran, etc. within a range where graphene oxide does not aggregate with water as the main component.
 なお、得られる酸化グラフェンの大きさは原料となるグラファイト結晶の大きさに依存するが、適宜、外力を加えることによって、ある程度のサイズの調整は可能である。 Although the size of the obtained graphene oxide depends on the size of the raw material graphite crystal, it is possible to adjust the size to some extent by appropriately applying an external force.
 回転ろ過装置18では、ろ過フィルタ182が回転駆動され、層厚調整ブレード184が静止する構成を採用しているが、ろ過フィルタ182を静止させて層厚調整ブレード184を移動させる構成や、両方を移動させる構成を採用することも可能である。 The rotary filtration device 18 employs a configuration in which the filter 182 is rotationally driven and the layer thickness adjusting blade 184 is stationary. It is also possible to employ a moving configuration.
 回転ろ過装置18に代えて、マイクロフィルタ装置やその他のろ過装置を採用することも可能である。 Instead of the rotary filtration device 18, it is also possible to employ a microfilter device or other filtration devices.
 上述の実施形態においては、スキミングされた硫酸や、ろ過フィルタ182を通過したろ液(不純物含有)は、産業廃棄物処分業者等によって適切に処理されることになる。 In the above-described embodiment, the skimmed sulfuric acid and the filtrate (containing impurities) that has passed through the filtration filter 182 are properly treated by an industrial waste disposal company or the like.
 上述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The description of the above embodiments should be considered as illustrative in all respects and not restrictive. The scope of the invention is indicated by the claims rather than the above-described embodiments. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and range of equivalents of the claims.
 10-酸化グラフェン製造システム
 12-酸化反応装置
 14-酸化反応停止装置
 15-精製部
 16-遠心分離装置
 18-回転ろ過装置
 182-ろ過フィルタ
 184-層厚調整ブレード
 186-ケーキ層
10-Graphene oxide production system 12-Oxidation reaction device 14-Oxidation reaction termination device 15-Purification unit 16-Centrifugation device 18-Rotating filtration device 182-Filtration filter 184-Layer thickness adjustment blade 186-Cake layer

Claims (4)

  1.  酸および塩によって酸化されたグラファイトを用いて酸化グラフェンを製造するように構成された酸化グラフェン製造システムであって、
     グラファイトを酸化することによって得られた酸化グラファイトの分散液に対して遠心分離処理を行うことによって、酸化グラファイトから酸を除去する脱酸処理を施すように構成された遠心分離手段と、
     前記脱酸処理が施された酸化グラファイトの分散液に対してろ過処理を行うためのろ過手段であって、ろ過フィルタによって酸化グラファイトを捕捉しつつ、不純物を含む液をろ過フィルタを通過させてろ液として排出するように構成されたろ過手段と、
    を少なくとも備え、
     前記ろ過手段は、前記ろ過フィルタに補足された酸化グラファイトを含むケーキ層の堆積厚みを調整するための力を前記ケーキ層に加えるように構成された層厚調整手段を有することを特徴とする酸化グラフェン製造システム。
    A graphene oxide production system configured to produce graphene oxide using graphite oxidized by an acid and a salt, comprising:
    centrifugal separation means configured to perform a deacidification treatment for removing acid from the graphite oxide by centrifuging a dispersion of graphite oxide obtained by oxidizing graphite;
    Filtration means for performing a filtration treatment on the deoxidized graphite oxide dispersion, wherein the filtration filter captures the graphite oxide and allows a liquid containing impurities to pass through the filtration filter to obtain a filtrate. a filtering means configured to discharge as
    with at least
    The filtering means has a layer thickness adjusting means configured to apply a force to the cake layer for adjusting the deposited thickness of the cake layer containing the graphite oxide trapped in the filtering filter. Graphene manufacturing system.
  2.  酸化グラファイトの分散液のpH値が所定値よりも高くなった後に、前記遠心分離手段から前記ろ過手段へと酸化グラファイトの分散液を送りだすように構成されたことを特徴とする請求項1に記載の酸化グラフェン製造システム。 2. The apparatus according to claim 1, wherein the graphite oxide dispersion is sent from the centrifugal means to the filtering means after the pH value of the graphite oxide dispersion becomes higher than a predetermined value. graphene oxide production system.
  3.  酸および塩によって酸化されたグラファイトを用いて酸化グラフェンを製造するための酸化グラフェン製造方法であって、
     グラファイトを酸化することによって得られた酸化グラファイトの分散液に対して遠心分離処理を行うことによって、酸化グラファイトから酸を除去する脱酸処理を施す遠心分離ステップと、
     前記脱酸処理が施された酸化グラファイトの分散液に対してろ過処理を行うためのろ過ステップであって、ろ過フィルタによって酸化グラファイトを捕捉しつつ、不純物を含む液をろ過フィルタを通過させてろ液として排出するろ過ステップと、
    を少なくとも含み、
     前記ろ過ステップにおいて、前記ろ過フィルタに補足された酸化グラファイトを含むケーキ層の堆積厚みを調整するための力を前記ケーキ層に加えることを特徴とする酸化グラフェン製造方法。
    A graphene oxide production method for producing graphene oxide using graphite oxidized by an acid and a salt, comprising:
    a centrifugal separation step of subjecting a dispersion of graphite oxide obtained by oxidizing graphite to a centrifugal separation treatment to remove acid from the graphite oxide;
    A filtration step for filtering the deoxidized graphite oxide dispersion liquid, in which a liquid containing impurities is allowed to pass through the filtration filter while the graphite oxide is captured by the filtration filter to obtain a filtrate. a filtering step discharging as
    including at least
    The method for producing graphene oxide, wherein in the filtering step, a force is applied to the cake layer for adjusting the deposited thickness of the cake layer containing graphite oxide trapped in the filtering filter.
  4.  酸化グラファイトの分散液のpH値が所定値よりも高くなった後に、前記遠心分離手段から前記ろ過手段へと酸化グラファイトの分散液を送りだすことを特徴とする請求項3に記載の酸化グラフェン製造方法。 4. The method for producing graphene oxide according to claim 3, wherein after the pH value of the graphite oxide dispersion becomes higher than a predetermined value, the graphite oxide dispersion is sent from the centrifugal means to the filtering means. .
PCT/JP2022/042964 2021-11-26 2022-11-21 Graphene oxide manufacturing system and graphene oxide manufacturing method WO2023095737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021192178A JP7287700B1 (en) 2021-11-26 2021-11-26 Graphene oxide production system and graphene oxide production method
JP2021-192178 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023095737A1 true WO2023095737A1 (en) 2023-06-01

Family

ID=86539389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042964 WO2023095737A1 (en) 2021-11-26 2022-11-21 Graphene oxide manufacturing system and graphene oxide manufacturing method

Country Status (2)

Country Link
JP (1) JP7287700B1 (en)
WO (1) WO2023095737A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033913A (en) * 1996-07-22 1998-02-10 Ebara Corp Rotary filter
JPH11128618A (en) * 1997-10-31 1999-05-18 Sumitomo Metal Mining Co Ltd Oliver filter and its use
JP2004160318A (en) * 2002-11-12 2004-06-10 Isao Matsushita Filtering method and filter apparatus
JP2015020920A (en) * 2013-07-17 2015-02-02 独立行政法人物質・材料研究機構 Co(OH)2 PERPENDICULARLY ORIENTED GRAPHENE/CNT COMPOSITE, METHOD FOR MANUFACTURING THE SAME, Co(OH)2 PERPENDICULARLY ORIENTED GRAPHENE/CNT COMPOSITE ELECTRODE, AND Co(OH)2 PERPENDICULARLY ORIENTED GRAPHENE/CNT COMPOSITE CAPACITOR
CN106853965A (en) * 2016-12-30 2017-06-16 绍兴文理学院 A kind of preparation method of negative material Graphene and electrochemical property test method
CN107778514A (en) * 2017-10-16 2018-03-09 西南科技大学 A kind of graphene double-layer electric actuation membrane and preparation method thereof
US20210293755A1 (en) * 2020-03-20 2021-09-23 I-Shou University Gas sensor and manufacturing method thereof, and gas sensing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033913A (en) * 1996-07-22 1998-02-10 Ebara Corp Rotary filter
JPH11128618A (en) * 1997-10-31 1999-05-18 Sumitomo Metal Mining Co Ltd Oliver filter and its use
JP2004160318A (en) * 2002-11-12 2004-06-10 Isao Matsushita Filtering method and filter apparatus
JP2015020920A (en) * 2013-07-17 2015-02-02 独立行政法人物質・材料研究機構 Co(OH)2 PERPENDICULARLY ORIENTED GRAPHENE/CNT COMPOSITE, METHOD FOR MANUFACTURING THE SAME, Co(OH)2 PERPENDICULARLY ORIENTED GRAPHENE/CNT COMPOSITE ELECTRODE, AND Co(OH)2 PERPENDICULARLY ORIENTED GRAPHENE/CNT COMPOSITE CAPACITOR
CN106853965A (en) * 2016-12-30 2017-06-16 绍兴文理学院 A kind of preparation method of negative material Graphene and electrochemical property test method
CN107778514A (en) * 2017-10-16 2018-03-09 西南科技大学 A kind of graphene double-layer electric actuation membrane and preparation method thereof
US20210293755A1 (en) * 2020-03-20 2021-09-23 I-Shou University Gas sensor and manufacturing method thereof, and gas sensing system

Also Published As

Publication number Publication date
JP2023082232A (en) 2023-06-14
JP7287700B1 (en) 2023-06-06

Similar Documents

Publication Publication Date Title
RU2736371C1 (en) Method of producing graphene oxide from kish graphite
RU2591903C2 (en) Method of extracting zinc oxide
US20170240428A1 (en) Two-dimensional materials
WO2023095737A1 (en) Graphene oxide manufacturing system and graphene oxide manufacturing method
WO2012084740A1 (en) Method for converting uo3 and/or u3o8 into hydrated uo4
Hecini et al. Recovery of cutting fluids used in polycrystalline silicon ingot slicing
WO2009084068A1 (en) Process for separating and recovering the suspending fluids contained in exhausted slurries from the machining of silicon
TW200841991A (en) Process and apparatus for treating exhausted abrasive slurries from the lapping process for the recovery of their reusable abrasive component
JP2011218503A (en) Method for disposing silicon-containing waste liquid
WO2021172399A1 (en) Graphite refining equipment
TW201318772A (en) Waste coolant recycling method
US20120211404A1 (en) Method and device for recovering exhausted machining slurries
JP2020200227A (en) Method for producing vanadium compound, method for producing electrolyte for redox flow battery, apparatus for producing vanadium compound, and apparatus for producing electrolyte for redox flow battery
JPWO2002102533A1 (en) Method for producing metal powder, metal powder, conductive paste and multilayer ceramic capacitor using the same
KR20140035835A (en) Regenaration method of spent abrasives containing ceria
JP6798918B2 (en) Lithium-ion battery scrap disposal method
KR100890124B1 (en) Recycled ceramic slurry, recycled ceramic powder, ceramic electronic part, and fabricating methods therefor
EP2504139B1 (en) Method and device for treating abrasive slurries containing si/sic
KR101106791B1 (en) Purification method of waste slurry from semiconductor and solar cell wafer manufacturing process and regenerating cutting fluid for semiconductor and solar cell wafer using them
JP2014522721A (en) Improved product recovery process in filtration of polyether polyols
TWI490173B (en) Method for recovering waste silicon waste from cutting oil
JP2001009723A (en) Abrasive recovering device
JP2001077066A (en) Manufacture of semiconductor device and semiconductor manufacturing device
CN115152078A (en) Method for selectively removing aluminum from waste electrode and method for recovering metal component from waste electrode using the same
JP2000288935A (en) Method and device for recovering non-colloidal abrasive material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898520

Country of ref document: EP

Kind code of ref document: A1