WO2023095725A1 - Vehicle travel control device and vehicle travel control method - Google Patents

Vehicle travel control device and vehicle travel control method Download PDF

Info

Publication number
WO2023095725A1
WO2023095725A1 PCT/JP2022/042860 JP2022042860W WO2023095725A1 WO 2023095725 A1 WO2023095725 A1 WO 2023095725A1 JP 2022042860 W JP2022042860 W JP 2022042860W WO 2023095725 A1 WO2023095725 A1 WO 2023095725A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
vehicle
control
predetermined section
value
Prior art date
Application number
PCT/JP2022/042860
Other languages
French (fr)
Japanese (ja)
Inventor
達也 大久保
Original Assignee
株式会社アドヴィックス
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス, 株式会社アイシン filed Critical 株式会社アドヴィックス
Publication of WO2023095725A1 publication Critical patent/WO2023095725A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors

Definitions

  • control device even when the electric vehicle is running in the predetermined section by inertia, when the running speed reaches the predetermined speed and the end condition is satisfied, the inertia running of the electric vehicle is terminated and the end condition is satisfied.
  • Speed control is started.
  • driving or braking by the motor generator, which causes energy loss is started.
  • the control device described above has room for improvement in terms of reducing energy loss when traveling on a predetermined section including an uphill road and a downhill road.
  • a first speed prediction value which is a prediction value of the running speed when the electric vehicle reaches the end point of the first slope, and the electric vehicle has reached the end point of the second slope.
  • a predicted speed value derivation unit configured to derive a second predicted speed value, which is a predicted value of the running speed at a time, based on the road surface gradient. The control unit determines whether or not the permission condition is satisfied based on the relationship between the first predicted speed value and the set speed and the relationship between the second predicted speed value and the set speed. configured as
  • a vehicle travel control device that is applied to an electric vehicle that includes a battery and a motor generator.
  • the vehicle travel control device is configured to control the motor generator to adjust the travel speed of the electric vehicle based on a set speed.
  • a series of sections passing through the second slope after passing through the first slope is the predetermined section, the first slope is one of the uphill and the downhill, and the second slope is the other slope.
  • the vehicle travel control device maintains the driving force of the motor generator at a predetermined driving force when the electric vehicle travels on the uphill road in the predetermined section, and maintains the driving force of the motor generator at a predetermined driving force when the electric vehicle travels on the downhill road in the predetermined section.
  • a control unit configured to control the motor generator so that the amount of power generated by the motor generator is maintained at a predetermined amount when the vehicle is running.
  • the control unit is configured to set the predetermined driving force and the predetermined power generation amount so that the travel speed at the end point of the predetermined section becomes equal to the set speed.
  • Controlling the motor generator determines whether the permission condition is satisfied based on the relationship between the first predicted speed value and the set speed and the relationship between the second predicted speed value and the set speed. including determining whether
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle equipped with a control device that is one embodiment of a vehicle travel control device.
  • FIG. 2 is a flowchart showing a processing procedure of a first selection process executed by the control device of FIG. 1;
  • FIG. 3 is a diagram showing an example of transition of each parameter of the vehicle of FIG. 1 when coasting control and constant speed control are performed in the first predetermined section.
  • FIG. 4 is a diagram for explaining fluctuation characteristics of electric energy loss of a motor generator provided in the vehicle of FIG.
  • FIG. 5 is a diagram showing an example of a road surface gradient and a required driving force output by a motor generator included in the vehicle of FIG. 1 according to the road gradient.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle equipped with a control device that is one embodiment of a vehicle travel control device.
  • FIG. 2 is a flowchart showing a processing procedure of a first selection process executed by the control device of FIG. 1
  • FIG. 3 is
  • FIG. 1 shows an electric vehicle 100 to which a control device 50, which is a vehicle travel control device, is applied.
  • a control device 50 which is a vehicle travel control device
  • electric vehicle 100 is simply referred to as "vehicle 100".
  • a vehicle 100 includes a motor generator 10 , an inverter 20 and a battery 30 .
  • the motor generator 10 is a drive source for the vehicle 100 .
  • Motor generator 10 is electrically connected to battery 30 via inverter 20 .
  • Inverter 20 performs DC/AC power conversion between motor generator 10 and battery 30 .
  • Battery 30 supplies electric power to motor generator 10 and stores electric power supplied from motor generator 10 . That is, by supplying power from the battery 30 to the motor generator 10 via the inverter 20, the motor generator 10 functions as an electric motor. In this case, since the motor generator 10 outputs the driving force for running the vehicle 100, the vehicle 100 accelerates.
  • motor generator 10 functions as a power generator, vehicle 100 decelerates because regenerative braking force corresponding to the amount of power generated by motor generator 10 is generated in vehicle 100 . At this time, the electric power generated by the motor generator 10 is supplied to the battery 30 via the inverter 20, so that the battery 30 is charged.
  • the information detection system has, for example, a vehicle speed sensor 91 , a GNSS (Global Navigation Satellite System) receiver 92 and a peripheral monitoring device 93 .
  • Vehicle speed sensor 91 detects vehicle speed V, which is the running speed of vehicle 100 .
  • the GNSS receiver 92 receives signals regarding the current position G of the vehicle 100 from GNSS satellites such as GPS satellites.
  • the perimeter monitoring device 93 includes an imaging device such as a camera, and a radar.
  • the surroundings monitoring device 93 acquires surroundings monitoring information J of the vehicle 100 , such as a captured image of the surroundings of the vehicle 100 and the presence or absence of obstacles around the vehicle 100 .
  • the sensors and devices that make up the information detection system output signals to the control device 50 according to the information that they have detected or acquired.
  • the navigation device 80 can communicate with the control device 50 .
  • the navigation device 80 stores map data.
  • the map data includes road network information and road surface gradient information for each road. That is, the map data has multiple nodes and multiple links. Each node indicates position coordinates represented by latitude and longitude. Each link is defined as a line segment connecting adjacent nodes. Each link represents a road. Map data includes road surface gradient information between adjacent nodes.
  • the navigation device 80 is an in-vehicle navigation device.
  • the controller 50 has a processing circuit 51 .
  • the processing circuitry 51 includes a CPU 52 and a memory 53 .
  • Various programs executed by the CPU 52 are stored in the memory 53 .
  • the memory 53 stores a program for the automatic driving function.
  • the “automatic driving function” referred to here is a function that allows the vehicle 100 to run autonomously without the occupant of the vehicle 100 performing any accelerator operation, brake operation, or steering operation.
  • the processing circuit 51 By executing the program for the automatic driving function by the CPU 52, the processing circuit 51 functions as a control section, an information acquisition section, a speed prediction value derivation section, a running resistance loss derivation section, and an electrical energy loss derivation section.
  • the control unit drives the motor generator 10 by controlling the inverter 20 . Specifically, the control unit causes the motor generator 10 to output driving force by controlling the motor generator 10 to be in the power running state. On the other hand, the control unit controls the motor generator 10 to be in a regenerative state, causing the motor generator 10 to generate electric power and apply regenerative braking force to the vehicle 100 . The controller adjusts the vehicle speed V through such control of the motor generator 10 .
  • the control unit performs automatic driving control targeting the motor generator 10 while the vehicle 100 is running with the automatic driving function.
  • This automatic driving control includes automatic speed control and coasting control.
  • Automatic speed control includes constant speed control and leveling control.
  • the automatic speed control controls the motor generator 10 to adjust the vehicle speed V based on the set speed VS.
  • the set speed VS can be set by an occupant of the vehicle 100 .
  • the coasting control and the leveling control are mainly performed when the vehicle 100 travels through a predetermined section, which is a series of sections passing through the second slope after passing through the first slope.
  • the first slope is either one of the uphill road and the downhill road
  • the second slope is the other slope of the uphill road and the downhill road.
  • the control unit controls the motor generator 10 so as to keep the vehicle speed V at the set speed VS. That is, the control unit causes the motor generator 10 to output the driving force when the vehicle speed V is lower than the set speed VS. On the other hand, the controller causes the motor generator 10 to generate power when the vehicle speed V is higher than the set speed VS.
  • the control unit keeps the driving force of the motor generator 10 at a constant predetermined driving force KF from the starting point to the ending point of the uphill road in the predetermined section. Further, the control unit keeps the power generation amount of the motor generator 10 from the start point to the end point of the downhill road in the predetermined section at a constant predetermined power generation amount RF.
  • the control unit sets the torque of the motor generator 10 to zero for the flat road.
  • the control unit sets the predetermined driving force KF and the predetermined amount of power generation RF through a setting process which will be described later. The definition of the start point and the end point of each of the uphill road and the downhill road will be described later together with the description of the setting process.
  • the information acquisition unit acquires the road surface gradient within the predetermined section. Specifically, the information acquisition unit acquires travel road information including the route on which the vehicle 100 will travel from now on from the navigation device 80 . Such travel road information includes gradient information of the travel route. If the route on which the vehicle 100 is to travel includes an uphill road, the information acquisition unit obtains the position coordinates of the start point and end point of the uphill road, the length of the uphill road, and the starting point and end point of the uphill road. Acquire driving road information, including changes in road surface gradients, etc.
  • the information acquisition unit obtains the position coordinates of the start point and the end point of the downhill road, the length of the downhill road, and the distance from the start point of the downhill road. Acquire driving road information including changes in road surface gradient up to the end point.
  • the predicted speed value deriving unit derives the first predicted speed value and the second predicted speed value based on the road surface gradient obtained by the information obtaining unit before the vehicle 100 travels in the predetermined section.
  • the first speed prediction value is a prediction value of the vehicle speed V when the vehicle 100 reaches the end point of the first slope, assuming that the vehicle 100 has traveled a predetermined section by performing coasting control.
  • the second predicted speed value is a predicted value of the traveling speed when the vehicle 100 reaches the end point of the second slope, assuming that the vehicle 100 has traveled a predetermined section by performing coasting control. A specific method of deriving the first speed prediction value and the second speed prediction value will be described later.
  • the running resistance loss derivation unit derives the running resistance loss difference ⁇ D.
  • the running resistance loss difference ⁇ D is the difference between the vehicle 100 when it is assumed that the vehicle 100 travels a predetermined section by performing constant speed control, and the vehicle 100 when it is assumed that the vehicle 100 travels a predetermined section by performing coasting control.
  • 100 is an estimate of the difference in energy loss due to running resistance of 100; A specific derivation method for the running resistance loss difference ⁇ D will be described later.
  • Vehicle 100 converts the electric energy of battery 30 into kinetic energy and utilizes it for running vehicle 100 . At that time, not all of the electric energy becomes kinetic energy, and various energy losses occur. A similar energy loss occurs when the regenerated energy of motor generator 10 is recovered as electrical energy.
  • the energy loss related to electrical energy is mainly caused by running resistance of the vehicle 100 and by heat release in the path between the battery 30 and the motor generator 10 .
  • the former is called running resistance loss D
  • the latter is called electric energy loss E.
  • the running resistance loss D is a loss that occurs when part of the electric power supplied by the battery 30 to the motor generator 10 or the electric power generated by the motor generator 10 is consumed as work against the running resistance of the vehicle 100.
  • the running resistance loss difference ⁇ D is the difference between the running resistance loss D when the constant speed control is performed and when the coasting control is performed.
  • the electrical energy loss E is due to heat release occurring in the path between the battery 30 and the motor generator 10, as described above. Therefore, whether the battery 30 is discharged or charged, the electrical energy loss E increases as the amount of current flowing between the battery 30 and the motor generator 10 increases. That is, the electrical energy loss E is an energy loss according to the increase or decrease in the state of charge SOC of the battery 30 .
  • the electric energy loss difference ⁇ E is the difference between the electric energy loss E when the constant speed control is performed and when the coasting control is performed.
  • the control unit sets the predetermined driving force KF and the predetermined amount of power generation RF so that the vehicle speed V becomes equal to the set speed VS when the vehicle 100 reaches the end point of the predetermined section.
  • the control section sets the predetermined driving force KF in the following manner together with the information acquisition section.
  • the information acquisition unit acquires travel road information for the entire predetermined section from the navigation device 80 . That is, the traveling road information includes the position coordinates of the start point and the end point, the length of each slope, the transition of the road surface gradient from the start point to the end point, etc. for both the downhill road and the uphill road included in the predetermined section. contains.
  • the starting point of the uphill road is the lowest point of the uphill road, and the end point of the uphill road is the highest point of the uphill road.
  • the start point of the downhill route is the highest point of the downhill route, and the end point of the downhill route is the lowest point of the downhill route.
  • the control unit refers to the traveling road information and specifies the lowest point that is the start point of the uphill road and the highest point that is the end point of the predetermined section. Then, the control unit sets a plurality of points at regular intervals, for example, on the route between the lowest point and the highest point. When a plurality of points are set between the lowest point and the highest point of the uphill road, the control unit sets the uphill road on the assumption that the vehicle 100 is caused to run on the uphill road by performing the constant speed control described above. A driving force to be output to the motor generator 10 is derived at each of the above points.
  • control unit integrates the driving force at each point considering the distance between the points, and divides the value obtained by the integration by the length of the uphill road. In this manner, the control unit derives the average value of the driving force when the vehicle 100 is caused to run on an uphill road by constant speed control.
  • the controller sets the value thus derived as the predetermined driving force KF.
  • the control unit adjusts the vehicle speed V by performing any one of constant speed control, coasting control, and leveling control while the vehicle 100 is running by the automatic driving function.
  • the control unit basically performs constant speed control among these three controls.
  • the information acquisition unit repeatedly acquires the traveling road information and the information of the current position G of the vehicle 100 during constant speed control.
  • the control unit based on these pieces of information, the control unit, on the route on which the vehicle 100 travels after this, i. It is repeatedly determined whether or not the predetermined section exists. If there is a predetermined section on the route ahead, the control unit executes selection processing prior to traveling in the predetermined section.
  • the selection process is a process for determining which of coasting control and leveling control is to be performed when the vehicle 100 travels in a predetermined section.
  • the control unit selects the coasting control as the control to be performed in the predetermined section when a predetermined permission condition is satisfied. In this case, when the vehicle 100 travels in the predetermined section, the control unit suspends constant speed control and performs coasting control from the start point to the end point of the predetermined section.
  • the control unit selects the leveling control as the control to be performed in the predetermined section when the permission condition is not satisfied. In this case, when the vehicle 100 travels in the predetermined section, the control unit suspends constant speed control and performs leveling control from the start point to the end point of the predetermined section.
  • Predetermined section and selection process> a section in which the first slope is a downhill road and the second slope is an uphill road is referred to as a "first predetermined section P".
  • first predetermined section P a section in which the first slope is an uphill road and the second slope is a downhill road is referred to as a "second predetermined section Q.”
  • the above selection process includes a first selection process and a second selection process.
  • the first selection process is a selection process with the first predetermined section P as the target.
  • the second selection process is a selection process for the second predetermined section Q.
  • the control unit determines the relationship between the first speed prediction value A1 and the set speed VS, the relationship between the second speed prediction value A2 and the set speed VS, and the relationship between the running resistance loss difference ⁇ D and the electrical energy loss difference ⁇ E. Based on this, it is determined whether or not the first permission condition is satisfied. More specifically, the first permission condition includes the following three items.
  • (X1) A value obtained by subtracting the set speed VS from the first speed prediction value A1 is less than the first difference determination value V1.
  • (X2) The second speed prediction value A2 is smaller than the set speed VS.
  • the running resistance loss difference ⁇ D is smaller than the electrical energy loss difference ⁇ E.
  • the first difference determination value V1 is, for example, the minimum value of the amount of deviation of the vehicle speed V from the set speed VS during traveling on a downhill using the automatic driving function, which may cause the occupant to feel uncomfortable.
  • the first difference determination value V1 is predetermined, for example, by experiment or simulation. The reason why the contents of (X1) to (X3) are set as items of permission conditions will be described later.
  • the processing circuit 51 executes this processing routine by the CPU 52 executing a program stored in the memory 53 of the processing circuit 51 .
  • the processing circuit 51 derives the first speed prediction value A1 by functioning as a speed prediction value derivation unit.
  • the first speed prediction value A1 is obtained when it is assumed that the vehicle 100 travels the first predetermined section P by coasting control, and the vehicle 100 reaches the lowest point P2, which is the end point of the downhill road (first slope road). It is a predicted value of the vehicle speed V when The processing circuit 51 also functions as an information acquisition unit when acquiring traveling road information including the road surface gradient in deriving the first speed prediction value A1.
  • the processing circuit 51 acquires traveling road information for the entire first predetermined section P from the navigation device 80 . That is, the traveling road information includes the positional coordinates of the start point and the end point, the length of each slope, and the transition of the road surface gradient from the start point to the end point for both the downhill road and the uphill road in the first predetermined section P. etc. After acquiring the traveling road information, the processing circuit 51 specifies the highest point P1, which is the starting point of the downhill road, and the lowest point P2, which is the ending point, of the first predetermined section P.
  • the processing circuit 51 sets a plurality of points at regular intervals, for example, on the route between the highest point P1 and the lowest point P2 of the downhill road. Subsequently, the processing circuit 51 sequentially derives the predicted value of the vehicle speed V at each point from the highest point P1 to the lowest point P2 of the downhill road. At that time, the processing circuit 51 derives the predicted value of the vehicle speed V at the next point based on the predicted value of the vehicle speed V at the previous point and the road gradient. The predicted value of the vehicle speed V at the highest point P1 on the downhill road is derived as the set speed VS. The predicted value of the vehicle speed V at the point next to the highest point P1 on the downhill road can be derived as follows.
  • the processing circuit 51 derives the vehicle speed V at the highest point P1 of the downhill road, that is, the running resistance corresponding to the set speed VS.
  • Running resistance includes air resistance and rolling resistance, and increases as vehicle speed V increases.
  • the processing circuit 51 grasps the road surface gradient between the highest point P1 of the downhill road and the next point from the road surface gradient information included in the traveling road information. Then, the processing circuit 51 predicts the driving force generated by the vehicle 100 between the highest point P1 and the next point on the premise that the torque of the motor generator 10 is zero based on the running resistance and the road gradient. Derive the value.
  • processing circuit 51 derives a predicted value of acceleration of vehicle 100 between highest point P1 and the next point based on the predicted value of generated driving force.
  • the processing circuit 51 also derives a predicted value of the vehicle speed V at the next point based on this predicted value of acceleration.
  • the processing circuit 51 sequentially calculates the predicted value of the vehicle speed V from the highest point P1 to the lowest point P2 of the downhill road.
  • the processing circuit 51 calculates the predicted value of the vehicle speed V at the lowest point P2 of the downhill road as the first speed predicted value A1.
  • step S120 the processing circuit 51 functions as a control unit to determine whether the first difference value A1X, which is the value obtained by subtracting the set speed VS from the first predicted speed value A1, is less than the first difference determination value V1. determine whether That is, the processing circuit 51 determines whether or not the item (X1) of the first permission condition is satisfied.
  • the processing circuit 51 determines that the item (X1) of the first permission condition is not satisfied, and proceeds to step S190. Transition.
  • step S190 the processing circuit 51 selects the leveling control as the control to be executed in the first predetermined section P by functioning as a control section. After that, the processing circuit 51 terminates this processing routine.
  • step S120 when the first difference value A1X is less than the first difference determination value V1 (YES), the processing circuit 51 determines that the item (X1) of the first permission condition is satisfied, and performs the process. to step S130.
  • step S130 the processing circuit 51 derives the second speed prediction value A2 by functioning as a speed prediction value deriving unit. Assuming that the vehicle 100 is caused to travel the first predetermined section P by coasting control, the second predicted speed value A2 is calculated as follows: It is a predicted value of the vehicle speed V when it reaches.
  • the processing circuit 51 can derive the second speed prediction value A2 in the same manner as in step S110. That is, the processing circuit 51 refers to the traveling road information acquired in step S110, and specifies the lowest point P3, which is the starting point of the uphill road, and the highest point P4, which is the ending point, of the first predetermined section P. . A plurality of points are set on these routes. Then, the processing circuit 51 sequentially derives the predicted value of the vehicle speed V at each point from the lowest point P3 toward the highest point P4. At that time, the predicted value of the vehicle speed V at the lowest point P3 of the uphill road is the first speed predicted value A1 derived in step S110.
  • the processing circuit 51 sequentially derives the predicted value of the vehicle speed V at each point based on the running resistance corresponding to the vehicle speed V and the road surface gradient, as in step S110 described above.
  • the processing circuit 51 finally derives the predicted value of the vehicle speed V at the highest point P4 of the uphill road as the second speed predicted value A2.
  • step S140 the processing circuit 51 determines whether or not the second speed prediction value A2 is smaller than the set speed VS by functioning as a control section. If the second speed prediction value A2 is equal to or greater than the set speed VS (S140: NO), the processing circuit 51 determines that the item (X2) of the first permission condition is not satisfied, and shifts the process to step S190. .
  • the content of step S190 has already been described.
  • step S140 if the second speed prediction value A2 is smaller than the set speed VS (YES), the processing circuit 51 determines that the item (X2) of the first permission condition is satisfied, and proceeds to step S140. Move to S150.
  • step S150 the processing circuit 51 derives the running resistance loss difference ⁇ D by functioning as a running resistance loss derivation unit.
  • the running resistance loss difference ⁇ D is calculated when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by performing the constant speed control, and when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by performing the coasting control. is a predicted value of the difference in running resistance loss D between
  • the processing circuit 51 In deriving the running resistance loss difference ⁇ D, the processing circuit 51 first assumes that the vehicle 100 is caused to travel the first predetermined section P by coasting control. A predicted value D1 that is an integrated value of the running resistance loss D up to is derived. Below, this predicted value D1 may be referred to as predicted value D1 of running resistance loss D associated with coasting control.
  • the processing circuit 51 can derive the above predicted value D1, for example, as follows. That is, the processing circuit 51 derives the running resistance loss D for each point based on the running resistance for each point on the downhill road derived in step S110. Then, the processing circuit 51 integrates the running resistance loss D for each point in consideration of the distance between adjacent points.
  • the processing circuit 51 derives the integrated value of the running resistance loss D from the highest point P1 to the lowest point P2 of the downhill road.
  • the processing circuit 51 derives an integrated value of running resistance loss D from the lowest point P3 to the highest point P4 on the uphill road based on the running resistance on the uphill road derived in step S130.
  • the processing circuit 51 adds them to derive a predicted value D1 of the running resistance loss D associated with the coasting control. If there is a flat road between the downhill road and the uphill road, it is assumed that the same running resistance as the lowest point P2 of the downhill road is acting on the flat road. That is, the processing circuit 51 assumes that the running resistance loss D corresponding to the running resistance at the lowest point P2 of the downhill road is generated for the distance of the flat road, and adds the running resistance loss D for the distance to the predicted value D1.
  • the processing circuit 51 assumes that the vehicle 100 is caused to travel the first predetermined section P by constant speed control.
  • a predicted value D2 which is an integrated value of the running resistance loss D up to P4, is derived.
  • this predicted value D2 may be referred to as a predicted value D2 of the running resistance loss D associated with constant speed control.
  • the processing circuit 51 can derive the predicted value D2, for example, as follows. That is, the processing circuit 51 derives the running resistance loss D corresponding to the set speed VS based on the running resistance corresponding to the set speed VS.
  • the processing circuit 51 derives the predicted value D2 assuming that the running resistance loss D continues from the start point P1 of the first predetermined section P to the end point P4. That is, the processing circuit 51 integrates the running resistance loss D according to the set speed VS according to the distance of the first predetermined section P. FIG. In this manner, the processing circuit 51 derives the predicted value D2 of the running resistance loss D associated with the constant speed control.
  • the processing circuit 51 When the processing circuit 51 derives the predicted value D1 of the running resistance loss D associated with coasting control and the predicted value D2 of the running resistance loss D associated with constant speed control, the processing circuit 51 subtracts the latter value D2 from the former value D1. to derive the running resistance loss difference ⁇ D.
  • step S160 the processing circuit 51 derives the electrical energy loss difference ⁇ E by functioning as an electrical energy loss deriving section.
  • the electric energy loss difference ⁇ E is calculated when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by executing the constant speed control, and when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by executing the coasting control. is a predicted value of the difference in electrical energy loss E between .
  • the processing circuit 51 In calculating the electrical energy loss difference ⁇ E, the processing circuit 51 first assumes that the vehicle 100 travels the first predetermined section P by coasting control. A predicted value E1, which is an integrated value of the electrical energy loss E up to , is derived. Below, this predicted value E1 may be referred to as predicted value E1 of electric energy loss E associated with coasting control. As described above, when coasting control is performed, the amount of power supplied from battery 30 to motor generator 10 is close to 0 (zero). Therefore, in the present embodiment, the processing circuit 51 sets the predicted value E1 of the electric energy loss E associated with the coasting control to 0 (zero).
  • the processing circuit 51 assumes that the vehicle 100 is caused to travel the first predetermined section P by constant speed control.
  • a predicted value E2 which is an integrated value of the electrical energy loss E up to P4, is derived.
  • this predicted value E2 may be referred to as predicted value E2 of electric energy loss E associated with constant speed control.
  • the battery 30 is charged as the motor generator 10 generates power on the downhill road.
  • electric power is supplied from the battery 30 to the motor generator 10 so that the motor generator 10 outputs driving force.
  • the processing circuit 51 derives the integrated values of the electrical energy loss E for each of the downhill road and the uphill road, they are added. Then, the processing circuit 51 derives the added value as the predicted value E2 of the electric energy loss E associated with the constant speed control. Even if there is a flat road between the downhill road and the uphill road, the electric energy loss E can be regarded as 0 (zero).
  • step S170 the processing circuit 51 determines whether the running resistance loss difference ⁇ D is smaller than the electrical energy loss difference ⁇ E by functioning as a control unit. If the running resistance loss difference ⁇ D is greater than or equal to the electrical energy loss difference ⁇ E (S170: NO), the processing circuit 51 determines that the permission condition item (X3) is not satisfied, and proceeds to step S190.
  • three items (X1) to (X3) are set as the first permission condition.
  • the vehicle 100 travels in the predetermined section, based on the relationship between the first predicted speed value A1 and the set speed and the relationship between the second predicted speed value A2 and the set speed VS, the 1 It is determined whether or not the permission condition is satisfied. Then, when the first permission condition is satisfied, the vehicle 100 coasts to the end point of the predetermined section. That is, according to the present embodiment, it is possible to prevent the inertia running from ending while the vehicle 100 is running in the predetermined section.
  • the motor generator 10 when performing coasting control, the motor generator 10 neither outputs driving force nor generates power from the start point P1 to the end point P4 of the first predetermined section P.
  • the vehicle speed V increases from the highest point P1 to the lowest point P2 on the downhill road. Then, the vehicle speed V at the lowest point P2 of the downhill road becomes higher than the set speed VS. After that, the vehicle speed V gradually decreases on an uphill road through a flat road where the vehicle speed V is maintained.
  • the vehicle speed V In relation to the permission condition item (X2), although the vehicle speed V eventually becomes lower than the set speed VS before the highest point P4 of the uphill road, the vehicle speed remains the same in most of the first predetermined section P. V exceeds the set speed VS. Accordingly, as indicated by the solid line in FIG. 3(c), the integrated value of the running resistance loss D occurring in the first predetermined section P becomes larger than in the steady state control in which the vehicle speed V is the set speed VS.
  • the vehicle speed V at the lowest point P2 of the downhill road becomes higher than the set speed VS. If the vehicle speed V at this time is excessively high relative to the set speed VS, the occupant may feel uncomfortable. Therefore, as one of the first permission conditions, the value obtained by subtracting the set speed VS from the first speed prediction value A1, which is the prediction value of the vehicle speed V at the lowest point P2 of the downhill road, is less than the first difference judgment value V1. There is an item (X1) defined. As a result, the coasting control can be performed only when the occupant does not feel uncomfortable.
  • the vehicle speed V at the top point P4 of the uphill road is higher than the set speed VS as described above, for example, when the coasting control is continued even on the downhill road following the top point P4 of the uphill road, the vehicle speed V may become excessively high. could be higher. In this case, the coasting control must be interrupted on the downhill road following the highest point P4 of the uphill road.
  • one of the items of the first permission condition is that the second speed prediction value A2, which is the prediction value of the vehicle speed V at the highest point P4 of the uphill road, is smaller than the set speed VS.
  • (X2) is defined. That is, by defining the item (X2), restrictions on the content of control after the first predetermined section P can be eliminated as much as possible.
  • item (X3) will be described.
  • the vehicle speed V becomes higher than the set speed VS in most of the first predetermined section P. Accordingly, when the coasting control is performed, the integrated value of the running resistance loss D becomes larger than when the constant speed control is performed. If the total energy loss, which is the sum of the integrated value of the running resistance loss D and the integrated value of the electrical energy loss E, is larger when coasting control is performed than when constant speed control is performed, the viewpoint of energy loss Therefore, it is better to suspend the implementation of the coasting control. From this point of view, item (X3) is defined. Item (X3) will be described in further detail below.
  • the sum of the predicted value D1 of the running resistance loss D associated with the coasting control derived in step S150 and the predicted value E1 of the electrical energy loss E associated with the coasting control derived in step S160 is the total energy associated with the coasting control. Call it loss T1. Further, the sum of the predicted value D2 of the running resistance loss D associated with the constant speed control derived in step S150 and the predicted value E2 of the electrical energy loss E associated with the constant speed control derived in step S160 is calculated as Call it total energy loss T2. As shown in the following equation (1), if the total energy loss T1 accompanying coasting control shown on the left side is smaller than the total energy loss T2 accompanying constant speed control shown on the right side, then coasting is more likely than performing constant speed control. Control is advantageous because energy loss can be suppressed. Conversely, when the magnitude relationship of the formula (1) is not satisfied, coasting control causes an increase in energy loss compared to constant speed control.
  • Equation (2) corresponds to the content of determination in step S170, that is, the content of item (X3) that the running resistance loss D is smaller than the electrical energy loss E. If the magnitude relationship of this formula (2) holds, the total energy loss T1 associated with coasting control will be smaller than the total energy loss T2 associated with steady control, as explained with equation (1). Then, by setting the magnitude relationship of this formula (2) as one of the first permission conditions, the coasting can be controlled.
  • the battery 30 when the vehicle 100 is caused to run in a predetermined section under constant speed control, the battery 30 is charged and discharged. Electrical energy loss occurs as power is transferred between the battery 30 and the motor generator 10 at this time.
  • a positive driving force means that motor generator 10 outputs driving force
  • a negative driving force means that motor generator 10 generates power
  • the electrical energy loss E increases as the driving force output by the motor generator 10 increases. This is for the following reasons. As the driving force output by motor generator 10 increases, the amount of power supplied from battery 30 to motor generator 10 increases. Then, the amount of heat released between the battery 30 and the motor generator 10 increases accordingly. As a result, electrical energy loss E increases. Similarly, the greater the amount of power generated by the motor generator 10, the greater the transfer of electric power between the motor generator 10 and the battery 30, the greater the amount of heat released, and the greater the electrical energy loss E.
  • the electrical energy loss E is proportional to the product of the resistance between the battery 30 and the motor generator 10 and the square of the current flowing between the battery 30 and the motor generator 10 .
  • the electrical energy loss E is proportional to the square of the driving force of the motor generator 10 .
  • the electrical energy loss E sharply increases as the driving force output by the motor generator 10 increases. Also, the electrical energy loss E sharply increases as the amount of power generated by the motor generator 10 increases.
  • the road surface gradient may increase or decrease between the lowest point P3 and the highest point P4.
  • the road gradient from the middle PA to the highest point P4 of the uphill road may be steeper than the road gradient from the lowest point P3 to the middle PA of the uphill road. could be.
  • the driving force output by the motor generator 10 from the lowest point P3 to the highest point P4 of the uphill road is a predetermined driving force regardless of the increase or decrease in the road surface gradient on the uphill road.
  • the force remains KF.
  • the predetermined driving force KF is a value between the minimum driving force KMIN and the maximum driving force KMAX in constant speed control.
  • the electric energy loss E corresponding to this predetermined driving force KF is called a predetermined loss value EF.
  • the electrical energy loss E is proportional to the square of the driving force of the motor generator 10, the electrical energy loss E is amplified as the driving force output from the motor generator 10 increases.
  • the maximum loss value EMAX in constant speed control becomes a considerably higher value than the predetermined loss value EF in leveling control.
  • the electric energy loss E in the steep slope section becomes considerably larger than in the case of leveling control. Due to the considerably large electrical energy loss E in this steep slope section, the integrated value of the electrical energy loss E from the lowest point P3 to the highest point P4 of the uphill road is higher in constant speed control than in leveling control. growing. Therefore, from the viewpoint of suppressing the electrical energy loss E, the leveling control is more advantageous than the constant speed control.
  • the priority of the control to be executed when traveling in the first predetermined section P is set as follows. That is, when the first permission condition including the above item (X3) is satisfied, coasting control is performed instead of constant speed control or leveling control. As a result, energy loss when traveling in the first predetermined section P can be suppressed as much as possible. On the other hand, when the first permission condition is not satisfied, leveling control is performed instead of constant speed control. By performing the leveling control, the energy loss when traveling in the first predetermined section P can be suppressed as compared with the case where the vehicle travels in the first predetermined section P under constant speed control. In this way, by selecting control that generates less energy loss in the driving environment according to the driving environment, power consumption during driving of the vehicle 100 can be suppressed as much as possible.
  • leveling control is performed.
  • the motor-generator 10 is caused to generate power correspondingly to apply regenerative braking force to the vehicle 100 on a downhill road. Therefore, the vehicle speed V at the lowest point P2 of the downhill road does not become excessively higher than the set speed VS. Further, in the leveling control, the motor generator 10 is caused to output a corresponding driving force on the uphill road, so that the vehicle speed V at the highest point P4 of the uphill road can be returned to the set speed VS.
  • the second predetermined section Q exists in addition to the first predetermined section P in the predetermined section.
  • the selection process includes a second selection process for the second predetermined section Q. FIG. These are described below.
  • the second predetermined section Q is a series of sections that pass through an uphill road and then a downhill road.
  • the second predetermined section Q is a section from the lowest point Q1 of the uphill road to the highest point Q2 of the uphill road and from the highest point Q3 of the downhill road to the lowest point Q4 of the downhill road. Therefore, the starting point Q1 of the second predetermined section Q is the starting point of the uphill road, that is, the lowest point Q1 of the uphill road.
  • the end point Q4 of the second predetermined section Q is the end point of the downhill road, that is, the lowest point Q4 of the downhill road.
  • a flat road may or may not exist between the uphill road and the downhill road. The transition of each parameter shown in FIG. 7 will be described later.
  • the conditions for permitting coasting control targeting the second predetermined section Q are referred to as second permit conditions.
  • the predicted speed value derivation unit derives various parameters necessary for determining whether or not the second permission condition is satisfied.
  • the various parameters are a first speed prediction value B1 and a second speed prediction value B2 for the second predetermined section Q.
  • the control unit determines whether or not the second permission condition is satisfied based on these parameters. That is, the control unit determines whether or not the second permission condition is satisfied based on the relationship between the first predicted speed value B1 and the set speed VS and the relationship between the second predicted speed value B2 and the set speed VS. More specifically, the second permission condition includes the following two items.
  • the processing circuit 51 executes this processing routine by the CPU 52 executing a program stored in the memory 53 of the processing circuit 51 .
  • the processing circuit 51 derives the first speed prediction value B1 by functioning as a speed prediction value derivation unit.
  • the first speed prediction value B1 is calculated when the vehicle 100 reaches the highest point Q2, which is the end point of the uphill road (first slope road), assuming that the vehicle 100 is caused to travel the second predetermined section Q by coasting control. is a predicted value of the vehicle speed V at .
  • the processing circuit 51 also functions as an information acquisition unit when acquiring the above travel road information including the road surface gradient in deriving the first speed prediction value B1.
  • the processing circuit 51 derives the first speed prediction value B1 in the same manner as in step S110 of the first selection process.
  • the processing circuit 51 acquires traveling road information for the entire second predetermined section Q from the navigation device 80 .
  • the processing circuit 51 identifies the lowest point Q1 and the highest point Q2 of the uphill road in the second predetermined section Q, and sets a plurality of points on the route between them.
  • the processing circuit 51 sequentially derives the predicted value of the vehicle speed V at each point from the lowest point Q1 toward the highest point Q2. At that time, the predicted value of the vehicle speed V at the lowest point Q1 of the uphill road is set to the set speed VS.
  • the processing circuit 51 sequentially derives the predicted value of the vehicle speed V at each point based on the running resistance corresponding to the vehicle speed V and the road surface gradient, as in step S110 described above. Then, the processing circuit 51 finally derives the predicted value of the vehicle speed V at the highest point Q2 of the uphill road as the first speed predicted value B1.
  • step S220 the processing circuit 51 functions as a control unit to determine whether the second difference value B1X, which is the value obtained by subtracting the first speed prediction value B1 from the set speed VS, is less than the second difference determination value V2. determine whether When the second difference value B1X is equal to or greater than the second difference determination value V2 (S220: NO), the processing circuit 51 determines that the item (Y1) of the second permission condition is not satisfied, and proceeds to step S260. Transition. In step S260, the processing circuit 51 selects the leveling control as the control to be executed in the second predetermined section Q by functioning as a control section. After that, the processing circuit 51 terminates this processing routine.
  • step S220 the processing circuit 51 functions as a control unit to determine whether the second difference value B1X, which is the value obtained by subtracting the first speed prediction value B1 from the set speed VS, is less than the second difference determination value V2. determine whether When the second difference value B1X is equal to or greater than the second difference determination value V2 (S220: NO
  • step S220 when the second difference value B1X is less than the second difference determination value V2 (S220: YES), the processing circuit 51 determines that the item (Y1) of the second permission condition is satisfied. , the process proceeds to step S230.
  • step S230 the processing circuit 51 derives the second speed prediction value B2 by functioning as a speed prediction value derivation unit.
  • the second speed prediction value B2 is the vehicle speed V when the vehicle 100 reaches the lowest point Q4, which is the end point of the downhill road, assuming that the vehicle 100 is caused to travel through the second predetermined section Q by coasting control. is the predicted value of
  • two items (Y1) and (Y2) are set as the second permission condition.
  • the 2 It is determined whether or not the permission condition is satisfied. Then, when the second permission condition is satisfied, the vehicle 100 coasts to the end point of the predetermined section. That is, according to the present embodiment, it is possible to prevent the inertia running from ending while the vehicle 100 is running in the predetermined section.
  • the method of deriving the predicted value D1 of the running resistance loss D associated with coasting control is not limited to the example of the above embodiment. Any derivation method can be used as long as an appropriate value can be derived as the predicted value D1. The same applies to the predicted value D2 of the running resistance loss D associated with steady control.
  • the method of deriving the predicted value E1 of the electrical energy loss E associated with coasting control is not limited to the example of the above embodiment. Any derivation method can be used as long as an appropriate value can be calculated as the predicted value E1. The same applies to the predicted value E2 of the electrical energy loss E associated with steady control.
  • the method of deriving the running resistance loss difference ⁇ D is not limited to the example of the above embodiment. That is, it is not necessary to derive the integrated value of the running resistance loss D in the first predetermined section P and then derive the running resistance loss difference ⁇ D as the difference between them, as in the above embodiment.
  • the difference in running resistance loss D between coasting control and steady state control may be derived for each point.
  • the difference in running resistance loss D between coasting control and steady control may be derived for only a specific region in the first predetermined section P, and used as the running resistance loss difference ⁇ D. In this case, the method of deriving the electrical energy loss difference ⁇ E should be changed accordingly.
  • the running resistance loss difference ⁇ D is calculated when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by performing the constant speed control, and when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by performing the coasting control. and the difference in the running resistance loss D.
  • the method of deriving the electrical energy loss difference ⁇ E is not limited to the example of the above embodiment.
  • the electric energy loss difference ⁇ E is calculated when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by executing the constant speed control, and when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by executing the coasting control. and the difference in electrical energy loss E between .
  • the method of deriving the predetermined driving force KF and the predetermined amount of power generation RF in the leveling control is not limited to the example of the above embodiment. It is sufficient that the predetermined driving force KF and the predetermined power generation amount RF are derived so that the vehicle speed V at the end point of the predetermined section becomes equal to the set speed VS. Furthermore, the predetermined driving force KF and the predetermined power generation amount RF may be such that the vehicle speed V at the end point of the predetermined section does not reach the set speed VS. As described above, the electrical energy loss E is proportional to the square of the driving force output by the motor generator 10 or the power generation amount. Therefore, if the predetermined driving force KF and the predetermined power generation amount RF are set to correspondingly low values, it is possible to suppress the occurrence of an excessively large electrical energy loss E.
  • leveling control it is not essential to implement leveling control when the conditions for permitting coasting control are not satisfied. That is, steady control may be performed instead of leveling control when conditions for permitting coasting control are not satisfied.
  • the vehicle speed V can be maintained at the set speed VS at least from the start point to the end point of the predetermined section. Therefore, the occupant does not feel uncomfortable in the middle of the predetermined section, and other controls are not affected by the deviation of the vehicle speed V from the set speed VS at the end point of the predetermined section.
  • the content of the conditions for permitting coasting control is not limited to the example of the above embodiment.
  • other items may be set instead of or in addition to the items (X1) to (X3).
  • the number of items may be two or less.
  • the first permission condition may define the relationship between the first predicted speed value A1 and the set speed VS, and the relationship between the second predicted speed value A2 and the set speed VS.
  • the first permission condition may be any condition as long as the coasting can be continued to the end point P4 of the first predetermined section P when the first permission condition is satisfied and the coasting is performed. The same applies to the second permission condition targeting the second predetermined section Q.
  • the predicted end point of the constant speed control is set to P4 and Q4. You can also set Similarly, when it is expected that the constant speed running will end due to a temporary stop or a curve on the way of the uphill road or the downhill road corresponding to the first slope in the above embodiment, the constant speed control is performed after the temporary stop or the curve.
  • P1 and Q1 may be set as points at which the speed is expected to resume and return to the set speed VS.
  • the processing circuit 51 of the control device 50 is not limited to having a CPU and a ROM and executing software processing. That is, the processing circuit 51 may have any one of the following configurations (a) to (c).
  • the processing circuit 51 includes one or more dedicated hardware circuits for executing various types of processing.
  • Dedicated hardware circuits may include, for example, application specific integrated circuits, ie ASICs or FPGAs.
  • ASIC is an abbreviation for "Application Specific Integrated Circuit”.
  • FPGA is an abbreviation for "Field Programmable Gate Array”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

A vehicle travel control device (50) comprising: a control unit configured to control, when a permission condition is satisfied in a case in which an electric vehicle (100) travels in a predetermined section, a motor generator (10) so as to cause the electric vehicle (100) to coast to an end point of the predetermined section; and a predicted speed value deriving unit configured to derive, on the basis of a road surface gradient in the predetermined section, when the electric vehicle (100) is caused to coast in the predetermined section, a first predicted speed value, which is a predicted value of the travel speed at the time when the electric vehicle (100) reaches an end point of a first slope road, and a second predicted speed value, which is a predicted value of the travel speed at the time when the electric vehicle (100) reaches an end point of a second slope road. The control unit is configured to determine whether or not the permission condition is satisfied on the basis of a relationship between the first predicted speed value and a set speed and a relationship between the second predicted speed value and the set speed.

Description

車両走行制御装置及び車両走行制御方法VEHICLE DRIVING CONTROL DEVICE AND VEHICLE DRIVING CONTROL METHOD
 本開示は、動力源としてモータジェネレータを備える電動車両に適用される車両走行制御装置及び車両走行制御方法に関する。 The present disclosure relates to a vehicle travel control device and a vehicle travel control method applied to an electric vehicle having a motor generator as a power source.
 特許文献1には、動力源としてモータジェネレータを備える電動車両に適用される制御装置の一例が記載されている。制御装置は、登坂路及び降坂路を含む所定区間において電動車両の走行速度を設定速度で維持する定速制御を実施している場合に所定の許可条件が成立すると、定速制御を終了して電動車両の惰性走行を開始させる。また、電動車両に惰性走行を行わせている場合に走行速度が所定の速度に到達することで所定の終了条件が成立すると、制御装置は惰性走行を終了させて定速制御を開始させ設定速度で走行する。 Patent Document 1 describes an example of a control device applied to an electric vehicle having a motor generator as a power source. The control device terminates the constant speed control when a predetermined permitting condition is satisfied while performing constant speed control for maintaining the running speed of the electric vehicle at a set speed in a predetermined section including an uphill road and a downhill road. Start the coasting of the electric vehicle. Further, when the electric vehicle is coasting and the running speed reaches a predetermined speed and a predetermined termination condition is satisfied, the control device terminates the coasting and starts constant speed control to set the speed to the set speed. run with
特開2012-131273号公報JP 2012-131273 A
 上記の制御装置では、惰性走行で電動車両が所定区間内を走行している場合であっても走行速度が所定の速度に到達して終了条件が成立すると電動車両の惰性走行が終了されて定速制御が開始される。その結果、エネルギ損失の発生するモータジェネレータによる駆動や制動が開始されてしまう。上記の制御装置は登坂路及び降坂路を含む所定区間を走行する際のエネルギ損失をより小さくする面から改良の余地がある。 In the above-described control device, even when the electric vehicle is running in the predetermined section by inertia, when the running speed reaches the predetermined speed and the end condition is satisfied, the inertia running of the electric vehicle is terminated and the end condition is satisfied. Speed control is started. As a result, driving or braking by the motor generator, which causes energy loss, is started. The control device described above has room for improvement in terms of reducing energy loss when traveling on a predetermined section including an uphill road and a downhill road.
 本開示の一態様では、バッテリ及びモータジェネレータを備える電動車両に適用される車両走行制御装置が提供される。前記車両走行制御装置は、前記電動車両の走行速度を設定速度に基づいて調整すべく前記モータジェネレータを制御する自動速度制御を行うように構成される。第1坂路を経た後に第2坂路を経る一連の区間が所定区間であり、前記第1坂路が登坂路及び降坂路のうちの一方の坂路であり、前記第2坂路が他方の坂路である。前記車両走行制御装置は、前記自動速度制御の実施中に前記所定区間を前記電動車両が走行する場合、予め定められた許可条件が成立すると、前記所定区間の終了地点まで前記電動車両に惰性走行を行わせるべく前記モータジェネレータを制御するように構成される制御部と、前記所定区間内における路面勾配を取得するように構成される情報取得部と、前記所定区間で前記電動車両に惰性走行させた場合に、当該電動車両が前記第1坂路の終了地点に到達したときにおける前記走行速度の予測値である第1速度予測値、及び、当該電動車両が前記第2坂路の終了地点に到達したときにおける前記走行速度の予測値である第2速度予測値を、前記路面勾配に基づいて導出するように構成される速度予測値導出部と、を備える。前記制御部は、前記第1速度予測値と前記設定速度との関係、及び、前記第2速度予測値と前記設定速度との関係を基に、前記許可条件が成立したか否かを判定するように構成される。 One aspect of the present disclosure provides a vehicle travel control device that is applied to an electric vehicle that includes a battery and a motor generator. The vehicle travel control device is configured to perform automatic speed control for controlling the motor generator to adjust the travel speed of the electric vehicle based on a set speed. A series of sections passing through the second slope after passing through the first slope is the predetermined section, the first slope is one of the uphill and the downhill, and the second slope is the other slope. When the electric vehicle travels in the predetermined section during the execution of the automatic speed control, the vehicle travel control device causes the electric vehicle to coast to the end point of the predetermined section when a predetermined permission condition is satisfied. an information acquisition unit configured to acquire a road surface gradient in the predetermined section; and causing the electric vehicle to coast in the predetermined section. a first speed prediction value, which is a prediction value of the running speed when the electric vehicle reaches the end point of the first slope, and the electric vehicle has reached the end point of the second slope. a predicted speed value derivation unit configured to derive a second predicted speed value, which is a predicted value of the running speed at a time, based on the road surface gradient. The control unit determines whether or not the permission condition is satisfied based on the relationship between the first predicted speed value and the set speed and the relationship between the second predicted speed value and the set speed. configured as
 本開示の別の態様では、バッテリ及びモータジェネレータを備える電動車両に適用される車両走行制御装置が提供される。前記車両走行制御装置は、前記電動車両の走行速度を設定速度に基づいて調整すべく前記モータジェネレータを制御するように構成される。第1坂路を経た後に第2坂路を経る一連の区間が所定区間であり、前記第1坂路が登坂路及び降坂路のうちの一方の坂路であり、前記第2坂路が他方の坂路である。前記車両走行制御装置は、前記所定区間のうちの登坂路を前記電動車両が走行する際における前記モータジェネレータの駆動力が所定駆動力で保持され、前記所定区間のうちの前記降坂路を前記電動車両が走行する際における前記モータジェネレータの発電量が所定発電量に保持されるように、前記モータジェネレータを制御するように構成される制御部を備える。前記制御部は、前記所定区間の終了地点での前記走行速度が前記設定速度と等しくなるように前記所定駆動力及び前記所定発電量を設定するように構成される。 Another aspect of the present disclosure provides a vehicle travel control device that is applied to an electric vehicle that includes a battery and a motor generator. The vehicle travel control device is configured to control the motor generator to adjust the travel speed of the electric vehicle based on a set speed. A series of sections passing through the second slope after passing through the first slope is the predetermined section, the first slope is one of the uphill and the downhill, and the second slope is the other slope. The vehicle travel control device maintains the driving force of the motor generator at a predetermined driving force when the electric vehicle travels on the uphill road in the predetermined section, and maintains the driving force of the motor generator at a predetermined driving force when the electric vehicle travels on the downhill road in the predetermined section. A control unit configured to control the motor generator so that the amount of power generated by the motor generator is maintained at a predetermined amount when the vehicle is running. The control unit is configured to set the predetermined driving force and the predetermined power generation amount so that the travel speed at the end point of the predetermined section becomes equal to the set speed.
 本開示のさらなる態様では、バッテリ及びモータジェネレータを備える電動車両に適用される車両走行制御方法が提供される。第1坂路を経た後に第2坂路を経る一連の区間が所定区間であり、前記第1坂路が登坂路及び降坂路のうちの一方の坂路であり、前記第2坂路が他方の坂路である。前記車両走行制御方法は、前記電動車両の走行速度を設定速度に基づいて調整すべく前記モータジェネレータを制御する自動速度制御を行うことと、前記自動速度制御の実施中に前記所定区間を前記電動車両が走行する場合、予め定められた許可条件が成立すると、前記所定区間の終了地点まで前記電動車両に惰性走行を行わせるべく前記モータジェネレータを制御することと、前記所定区間内における路面勾配を取得することと、前記所定区間で前記電動車両に惰性走行させた場合に、当該電動車両が前記第1坂路の終了地点に到達したときにおける前記走行速度の予測値である第1速度予測値、及び、当該電動車両が前記第2坂路の終了地点に到達したときにおける前記走行速度の予測値である第2速度予測値を、前記路面勾配に基づいて導出することと、を含む。前記モータジェネレータを制御することは、前記第1速度予測値と前記設定速度との関係、及び、前記第2速度予測値と前記設定速度との関係を基に、前記許可条件が成立したか否かを判定することを含む。 A further aspect of the present disclosure provides a vehicle travel control method applied to an electric vehicle including a battery and a motor generator. A series of sections passing through the second slope after passing through the first slope is the predetermined section, the first slope is one of the uphill and the downhill, and the second slope is the other slope. The vehicle travel control method includes: performing automatic speed control for controlling the motor generator to adjust the travel speed of the electric vehicle based on a set speed; When the vehicle travels, when a predetermined permission condition is satisfied, the motor generator is controlled to cause the electric vehicle to coast to the end point of the predetermined section, and the road gradient in the predetermined section is reduced. obtaining a first speed prediction value that is a prediction value of the running speed when the electric vehicle reaches the end point of the first slope when the electric vehicle coasts in the predetermined section; and deriving a second predicted speed value, which is a predicted value of the running speed when the electric vehicle reaches the end point of the second slope, based on the road surface gradient. Controlling the motor generator determines whether the permission condition is satisfied based on the relationship between the first predicted speed value and the set speed and the relationship between the second predicted speed value and the set speed. including determining whether
図1は、車両走行制御装置の一実施形態である制御装置を備える車両の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a vehicle equipped with a control device that is one embodiment of a vehicle travel control device. 図2は、図1の制御装置が実行する第1選択処理の処理手順を示すフローチャートである。FIG. 2 is a flowchart showing a processing procedure of a first selection process executed by the control device of FIG. 1; 図3は、第1所定区間で惰行制御及び定速制御を実施した場合における図1の車両の各パラメータの推移の一例を示す図である。FIG. 3 is a diagram showing an example of transition of each parameter of the vehicle of FIG. 1 when coasting control and constant speed control are performed in the first predetermined section. 図4は、図1の車両が備えるモータジェネレータの電気エネルギ損失の変動特性を説明する図である。FIG. 4 is a diagram for explaining fluctuation characteristics of electric energy loss of a motor generator provided in the vehicle of FIG. 図5は、路面勾配とそれに応じて図1の車両が備えるモータジェネレータが出力する必要駆動力の例を表した図である。FIG. 5 is a diagram showing an example of a road surface gradient and a required driving force output by a motor generator included in the vehicle of FIG. 1 according to the road gradient. 図6は、図1の制御装置が実行する第2選択処理の処理手順を示すフローチャートである。FIG. 6 is a flowchart showing a processing procedure of a second selection process executed by the control device of FIG. 1; 図7は、第2所定区間で惰行制御及び定速制御を実施した場合における図1の車両の各パラメータの推移の一例を示す図である。FIG. 7 is a diagram showing an example of transition of each parameter of the vehicle of FIG. 1 when coasting control and constant speed control are performed in the second predetermined section.
 以下、車両走行制御装置の一実施形態を、図1~図7を参照して説明する。
 図1には、車両走行制御装置である制御装置50が適用される電動車両100が図示されている。以降の記載において、電動車両100を、単に「車両100」という。
An embodiment of a vehicle travel control device will be described below with reference to FIGS. 1 to 7. FIG.
FIG. 1 shows an electric vehicle 100 to which a control device 50, which is a vehicle travel control device, is applied. In the following description, electric vehicle 100 is simply referred to as "vehicle 100".
 <車両の構成>
 車両100は、モータジェネレータ10、インバータ20及びバッテリ30を備えている。
<Vehicle configuration>
A vehicle 100 includes a motor generator 10 , an inverter 20 and a battery 30 .
 モータジェネレータ10は、車両100の駆動源である。モータジェネレータ10は、インバータ20を介してバッテリ30に電気的に接続している。インバータ20は、モータジェネレータ10とバッテリ30との間で直流交流の電力変換を行う。バッテリ30は、モータジェネレータ10に電力を供給したり、モータジェネレータ10から供給される電力を蓄えたりする。すなわち、バッテリ30からインバータ20を介してモータジェネレータ10に給電することにより、モータジェネレータ10が電動機として機能する。この場合、車両100を走行させる駆動力をモータジェネレータ10が出力するため、車両100が加速する。一方、モータジェネレータ10が発電機として機能する場合、モータジェネレータ10の発電量に応じた回生制動力が車両100で発生するため、車両100が減速する。このとき、モータジェネレータ10が発電した電力がインバータ20を介してバッテリ30に供給されるため、バッテリ30が充電される。 The motor generator 10 is a drive source for the vehicle 100 . Motor generator 10 is electrically connected to battery 30 via inverter 20 . Inverter 20 performs DC/AC power conversion between motor generator 10 and battery 30 . Battery 30 supplies electric power to motor generator 10 and stores electric power supplied from motor generator 10 . That is, by supplying power from the battery 30 to the motor generator 10 via the inverter 20, the motor generator 10 functions as an electric motor. In this case, since the motor generator 10 outputs the driving force for running the vehicle 100, the vehicle 100 accelerates. On the other hand, when motor generator 10 functions as a power generator, vehicle 100 decelerates because regenerative braking force corresponding to the amount of power generated by motor generator 10 is generated in vehicle 100 . At this time, the electric power generated by the motor generator 10 is supplied to the battery 30 via the inverter 20, so that the battery 30 is charged.
 <情報検出系及びナビゲーション装置>
 制御装置50には、情報検出系から検出結果に応じた信号が入力される。情報検出系は、例えば、車速センサ91、GNSS(Global Navigation Satellite System)受信機92及び周辺監視機器93を有している。車速センサ91は、車両100の走行速度である車速Vを検出する。GNSS受信機92は、車両100の現在位置Gに関する信号をGPS衛星等のGNSS衛星から受信する。周辺監視機器93は、カメラなどの撮像装置、及びレーダを含んでいる。周辺監視機器93は、例えば、車両100の周囲の撮像画像、車両100の周囲の障害物の有無といった、車両100の周辺監視情報Jを取得する。情報検出系を構成するセンサ及び機器は、自身が検出したり取得したりした情報に応じた信号を制御装置50に出力する。
<Information detection system and navigation device>
A signal corresponding to the detection result is input to the control device 50 from the information detection system. The information detection system has, for example, a vehicle speed sensor 91 , a GNSS (Global Navigation Satellite System) receiver 92 and a peripheral monitoring device 93 . Vehicle speed sensor 91 detects vehicle speed V, which is the running speed of vehicle 100 . The GNSS receiver 92 receives signals regarding the current position G of the vehicle 100 from GNSS satellites such as GPS satellites. The perimeter monitoring device 93 includes an imaging device such as a camera, and a radar. The surroundings monitoring device 93 acquires surroundings monitoring information J of the vehicle 100 , such as a captured image of the surroundings of the vehicle 100 and the presence or absence of obstacles around the vehicle 100 . The sensors and devices that make up the information detection system output signals to the control device 50 according to the information that they have detected or acquired.
 制御装置50には、ナビゲーション装置80から情報が入力される。すなわち、ナビゲーション装置80は、制御装置50と通信可能である。ナビゲーション装置80は、地図データを記憶している。地図データは、道路網の情報と、道路毎の路面勾配の情報とを含んでいる。すなわち、地図データは、複数のノード及び複数のリンクを有する。各ノードは、緯度及び経度で表された位置座標を示している。各リンクは、隣り合うノード間を結ぶ線分として定められている。各リンクは、道路を示している。地図データは、隣り合うノード間についての路面勾配の情報を含んでいる。本実施形態では、ナビゲーション装置80は車載のナビゲーション装置である。 Information is input to the control device 50 from the navigation device 80 . That is, the navigation device 80 can communicate with the control device 50 . The navigation device 80 stores map data. The map data includes road network information and road surface gradient information for each road. That is, the map data has multiple nodes and multiple links. Each node indicates position coordinates represented by latitude and longitude. Each link is defined as a line segment connecting adjacent nodes. Each link represents a road. Map data includes road surface gradient information between adjacent nodes. In this embodiment, the navigation device 80 is an in-vehicle navigation device.
 <制御装置の概略構成>
 制御装置50は処理回路51を有している。処理回路51はCPU52及びメモリ53を含んでいる。メモリ53には、CPU52が実行する各種のプログラムが記憶されている。本実施形態では、自動運転機能用のプログラムがメモリ53に記憶されている。ここでいう「自動運転機能」とは、車両100の乗員がアクセル操作、ブレーキ操作及びステアリング操作の何れをも行わなくても車両100を自律的に走行させる機能である。
<Schematic configuration of control device>
The controller 50 has a processing circuit 51 . The processing circuitry 51 includes a CPU 52 and a memory 53 . Various programs executed by the CPU 52 are stored in the memory 53 . In this embodiment, the memory 53 stores a program for the automatic driving function. The “automatic driving function” referred to here is a function that allows the vehicle 100 to run autonomously without the occupant of the vehicle 100 performing any accelerator operation, brake operation, or steering operation.
 自動運転機能用のプログラムをCPU52が実行することにより、処理回路51は、制御部、情報取得部、速度予測値導出部、走行抵抗損失導出部、及び電気エネルギ損失導出部として機能する。 By executing the program for the automatic driving function by the CPU 52, the processing circuit 51 functions as a control section, an information acquisition section, a speed prediction value derivation section, a running resistance loss derivation section, and an electrical energy loss derivation section.
 制御部は、インバータ20を制御することによってモータジェネレータ10を駆動させる。具体的には、制御部は、モータジェネレータ10を力行状態に制御することによってモータジェネレータ10に駆動力を出力させる。一方、制御部は、モータジェネレータ10を回生状態に制御することで、モータジェネレータ10に発電させて車両100に回生制動力を付与する。制御部は、こうしたモータジェネレータ10の制御を通じて車速Vを調整する。 The control unit drives the motor generator 10 by controlling the inverter 20 . Specifically, the control unit causes the motor generator 10 to output driving force by controlling the motor generator 10 to be in the power running state. On the other hand, the control unit controls the motor generator 10 to be in a regenerative state, causing the motor generator 10 to generate electric power and apply regenerative braking force to the vehicle 100 . The controller adjusts the vehicle speed V through such control of the motor generator 10 .
 制御部は、自動運転機能による車両100の走行中、モータジェネレータ10を対象とした自動運転制御を実施する。この自動運転制御は、自動速度制御と、惰行制御とを含む。自動速度制御は、定速制御と、平準化制御とを含む。自動速度制御は、設定速度VSに基づいて車速Vを調整すべくモータジェネレータ10を制御するものである。設定速度VSは、車両100の乗員が設定できる。また、惰行制御及び平準化制御は、主として、第1坂路を経た後に第2坂路を経る一連の区間である所定区間を車両100が走行する際に実施される制御である。第1坂路は登坂路及び降坂路のうちのいずれか一方の坂路であり、第2坂路は登坂路及び降坂路のうちの他方の坂路である。 The control unit performs automatic driving control targeting the motor generator 10 while the vehicle 100 is running with the automatic driving function. This automatic driving control includes automatic speed control and coasting control. Automatic speed control includes constant speed control and leveling control. The automatic speed control controls the motor generator 10 to adjust the vehicle speed V based on the set speed VS. The set speed VS can be set by an occupant of the vehicle 100 . The coasting control and the leveling control are mainly performed when the vehicle 100 travels through a predetermined section, which is a series of sections passing through the second slope after passing through the first slope. The first slope is either one of the uphill road and the downhill road, and the second slope is the other slope of the uphill road and the downhill road.
 制御部は、定速制御では、車速Vを設定速度VSに保つようにモータジェネレータ10を制御する。すなわち、制御部は、車速Vが設定速度VSよりも小さい場合にはモータジェネレータ10から駆動力を出力させる。一方、制御部は、車速Vが設定速度VSよりも大きい場合にはモータジェネレータ10に発電させる。 In constant speed control, the control unit controls the motor generator 10 so as to keep the vehicle speed V at the set speed VS. That is, the control unit causes the motor generator 10 to output the driving force when the vehicle speed V is lower than the set speed VS. On the other hand, the controller causes the motor generator 10 to generate power when the vehicle speed V is higher than the set speed VS.
 制御部は、平準化制御では、所定区間における登坂路の開始地点から終了地点までのモータジェネレータ10の駆動力を一定の所定駆動力KFに保持する。また、制御部は、所定区間における降坂路の開始地点から終了地点までのモータジェネレータ10の発電量を一定の所定発電量RFに保持する。制御部は、登坂路及び降坂路の間に平坦路が存在する場合、平坦路についてはモータジェネレータ10のトルクをゼロにする。制御部は、後述の設定処理を通じて上記の所定駆動力KF及び所定発電量RFを設定する。登坂路及び降坂路のそれぞれの開始地点及び終了地点の定義については、設定処理の説明に合わせて後述する。 In the leveling control, the control unit keeps the driving force of the motor generator 10 at a constant predetermined driving force KF from the starting point to the ending point of the uphill road in the predetermined section. Further, the control unit keeps the power generation amount of the motor generator 10 from the start point to the end point of the downhill road in the predetermined section at a constant predetermined power generation amount RF. When a flat road exists between an uphill road and a downhill road, the control unit sets the torque of the motor generator 10 to zero for the flat road. The control unit sets the predetermined driving force KF and the predetermined amount of power generation RF through a setting process which will be described later. The definition of the start point and the end point of each of the uphill road and the downhill road will be described later together with the description of the setting process.
 制御部は、惰行制御では、車両100に惰性走行させるべくモータジェネレータ10を制御する。すなわち、制御部は、モータジェネレータ10のトルクをゼロにする。したがって、惰行制御の実施中、モータジェネレータ10は駆動力を出力しないし発電もしない。なお、この惰行制御の実施中は、モータジェネレータ10のトルクをゼロに調整すべくインバータ20への給電がある。しかし、このときの給電量は、ゼロに近い。 In the coasting control, the control unit controls the motor generator 10 to cause the vehicle 100 to coast. That is, the control unit makes the torque of the motor generator 10 zero. Therefore, the motor generator 10 neither outputs driving force nor generates power during coasting control. During the coasting control, power is supplied to the inverter 20 in order to adjust the torque of the motor generator 10 to zero. However, the amount of power supplied at this time is close to zero.
 情報取得部は、所定区間内における路面勾配を取得する。具体的には、情報取得部は、車両100がこれから走行する経路を含む走行道路情報をナビゲーション装置80から取得する。こうした走行道路情報には、走行経路の勾配情報が含まれている。車両100がこれから走行する経路に登坂路が含まれている場合、情報取得部は、登坂路の開始地点と終了地点の位置座標、登坂路の長さ、及び、登坂路の開始地点から終了地点までの路面勾配の推移等を含む走行道路情報を取得する。また、車両100がこれから走行する経路に降坂路が含まれている場合、情報取得部は、降坂路の開始地点と終了地点の位置座標、降坂路の長さ、及び、降坂路の開始地点から終了地点までの路面勾配の推移等を含む走行道路情報を取得する。 The information acquisition unit acquires the road surface gradient within the predetermined section. Specifically, the information acquisition unit acquires travel road information including the route on which the vehicle 100 will travel from now on from the navigation device 80 . Such travel road information includes gradient information of the travel route. If the route on which the vehicle 100 is to travel includes an uphill road, the information acquisition unit obtains the position coordinates of the start point and end point of the uphill road, the length of the uphill road, and the starting point and end point of the uphill road. Acquire driving road information, including changes in road surface gradients, etc. Further, when the route on which the vehicle 100 is to travel includes a downhill road, the information acquisition unit obtains the position coordinates of the start point and the end point of the downhill road, the length of the downhill road, and the distance from the start point of the downhill road. Acquire driving road information including changes in road surface gradient up to the end point.
 速度予測値導出部は、車両100が所定区間を走行するに先立って、第1速度予測値及び第2速度予測値を、情報取得部によって取得された路面勾配に基づいて導出する。第1速度予測値は、惰行制御の実施によって車両100に所定区間を走行させたと仮定した場合に車両100が第1坂路の終了地点に到達したときにおける車速Vの予測値である。第2速度予測値は、惰行制御の実施によって車両100に所定区間を走行させたと仮定した場合に車両100が第2坂路の終了地点に到達したときにおける走行速度の予測値である。第1速度予測値及び第2速度予測値の具体的な導出手法については後述する。 The predicted speed value deriving unit derives the first predicted speed value and the second predicted speed value based on the road surface gradient obtained by the information obtaining unit before the vehicle 100 travels in the predetermined section. The first speed prediction value is a prediction value of the vehicle speed V when the vehicle 100 reaches the end point of the first slope, assuming that the vehicle 100 has traveled a predetermined section by performing coasting control. The second predicted speed value is a predicted value of the traveling speed when the vehicle 100 reaches the end point of the second slope, assuming that the vehicle 100 has traveled a predetermined section by performing coasting control. A specific method of deriving the first speed prediction value and the second speed prediction value will be described later.
 走行抵抗損失導出部は、走行抵抗損失差ΔDを導出する。走行抵抗損失差ΔDとは、定速制御の実施によって車両100に所定区間を走行させたと仮定した場合と、惰行制御の実施によって車両100に所定区間を走行させたと仮定した場合とでの、車両100の走行抵抗に起因するエネルギ損失の差の予測値である。走行抵抗損失差ΔDの具体的な導出手法については後述する。 The running resistance loss derivation unit derives the running resistance loss difference ΔD. The running resistance loss difference ΔD is the difference between the vehicle 100 when it is assumed that the vehicle 100 travels a predetermined section by performing constant speed control, and the vehicle 100 when it is assumed that the vehicle 100 travels a predetermined section by performing coasting control. 100 is an estimate of the difference in energy loss due to running resistance of 100; A specific derivation method for the running resistance loss difference ΔD will be described later.
 電気エネルギ損失導出部は、電気エネルギ損失差ΔEを導出する。電気エネルギ損失差ΔEとは、定速制御の実施によって車両100に所定区間を走行させたと仮定した場合と、惰行制御の実施によって車両100に所定区間を走行させたと仮定した場合とでの、バッテリ30の蓄電量SOCの増減に応じたエネルギ損失の差の予測値である。 The electrical energy loss derivation unit derives the electrical energy loss difference ΔE. The electric energy loss difference ΔE is the difference between the battery power when it is assumed that the vehicle 100 runs a predetermined section by executing the constant-speed control and the vehicle 100 that runs the predetermined section by executing the coasting control. 30 is a predicted value of a difference in energy loss according to an increase or decrease in the amount of stored electricity SOC.
 <エネルギ損失>
 車両100は、バッテリ30の電気エネルギを運動エネルギに変換して車両100の走行に利用する。その際、電気エネルギの全てが運動エネルギになるわけではなく、種々のエネルギ損失が発生する。モータジェネレータ10の回生エネルギを電気エネルギとして回収する際にも、同様のエネルギ損失が発生する。
<Energy loss>
Vehicle 100 converts the electric energy of battery 30 into kinetic energy and utilizes it for running vehicle 100 . At that time, not all of the electric energy becomes kinetic energy, and various energy losses occur. A similar energy loss occurs when the regenerated energy of motor generator 10 is recovered as electrical energy.
 電気エネルギに係るエネルギ損失には、主として、車両100の走行抵抗に起因するものと、バッテリ30及びモータジェネレータ10間の経路での熱放出に起因するものとがある。これらのうち、前者を走行抵抗損失Dと呼称し、後者を電気エネルギ損失Eと呼称する。走行抵抗損失Dは、具体的には、バッテリ30がモータジェネレータ10に供給した電力、又はモータジェネレータ10が発電した電力の一部が、車両100の走行抵抗に対する仕事として消費されることで生じる損失である。上記の走行抵抗損失差ΔDは、この走行抵抗損失Dに関する、定速制御を実施した場合と惰行制御を実施した場合とでの、差である。 The energy loss related to electrical energy is mainly caused by running resistance of the vehicle 100 and by heat release in the path between the battery 30 and the motor generator 10 . Among these, the former is called running resistance loss D, and the latter is called electric energy loss E. Specifically, the running resistance loss D is a loss that occurs when part of the electric power supplied by the battery 30 to the motor generator 10 or the electric power generated by the motor generator 10 is consumed as work against the running resistance of the vehicle 100. is. The running resistance loss difference ΔD is the difference between the running resistance loss D when the constant speed control is performed and when the coasting control is performed.
 電気エネルギ損失Eは、上記のとおり、バッテリ30及びモータジェネレータ10間の経路で生じる熱放出に起因する。このことから、電気エネルギ損失Eは、バッテリ30の放電時であれ充電時であれ、これらバッテリ30及びモータジェネレータ10間に流れる電流量が多いほど大きくなる。すなわち、電気エネルギ損失Eは、バッテリ30の蓄電量SOCの増減に応じたエネルギ損失である。上記の電気エネルギ損失差ΔEは、この電気エネルギ損失Eに関する、定速制御を実施した場合と惰行制御を実施した場合とでの、差である。 The electrical energy loss E is due to heat release occurring in the path between the battery 30 and the motor generator 10, as described above. Therefore, whether the battery 30 is discharged or charged, the electrical energy loss E increases as the amount of current flowing between the battery 30 and the motor generator 10 increases. That is, the electrical energy loss E is an energy loss according to the increase or decrease in the state of charge SOC of the battery 30 . The electric energy loss difference ΔE is the difference between the electric energy loss E when the constant speed control is performed and when the coasting control is performed.
 <所定駆動力KF及び所定発電量RFの設定処理>
 制御部は、設定処理では、車両100が所定区間の終了地点に到達したときの車速Vが設定速度VSと等しくなるように、所定駆動力KF及び所定発電量RFを設定する。具体的には、制御部は、情報取得部とともに次のようにして所定駆動力KFを設定する。先ず、情報取得部は、ナビゲーション装置80から、所定区間全体についての走行道路情報を取得する。すなわち、この走行道路情報は、所定区間に含まれる降坂路及び登坂路の双方に関して、開始地点と終了地点の位置座標、それぞれの坂路の長さ、開始地点から終了地点までの路面勾配の推移等を含んでいる。
<Processing for Setting Predetermined Driving Force KF and Predetermined Power Generation RF>
In the setting process, the control unit sets the predetermined driving force KF and the predetermined amount of power generation RF so that the vehicle speed V becomes equal to the set speed VS when the vehicle 100 reaches the end point of the predetermined section. Specifically, the control section sets the predetermined driving force KF in the following manner together with the information acquisition section. First, the information acquisition unit acquires travel road information for the entire predetermined section from the navigation device 80 . That is, the traveling road information includes the position coordinates of the start point and the end point, the length of each slope, the transition of the road surface gradient from the start point to the end point, etc. for both the downhill road and the uphill road included in the predetermined section. contains.
 なお、登坂路の開始地点は登坂路の最下地点であり、登坂路の終了地点は登坂路の最上地点である。降坂路の開始地点は降坂路の最上地点であり、降坂路の終了地点は降坂路の最下地点である。 The starting point of the uphill road is the lowest point of the uphill road, and the end point of the uphill road is the highest point of the uphill road. The start point of the downhill route is the highest point of the downhill route, and the end point of the downhill route is the lowest point of the downhill route.
 取得部が走行道路情報を取得すると、制御部は、走行道路情報を参照し、所定区間のうち登坂路の開始地点となる最下地点と、終了地点となる最上地点とを特定する。そして、制御部は、最下地点と最上地点との間の経路上に、例えば等間隔で複数の地点を設定する。制御部は、登坂路の最下地点と最上地点との間に複数の地点を設定すると、上記の定速制御の実施によって車両100に登坂路を走行させると仮定して、登坂路に設定した上記のそれぞれの地点でモータジェネレータ10に出力させる駆動力を導出する。そして、制御部は、それぞれの地点の駆動力を、地点間の距離を考慮して積分し、積分によって得た値を登坂路の長さで除す。このようにして制御部は、定速制御によって車両100に登坂路を走行させた場合における駆動力の平均値を導出する。制御部は、このようにして導出した値を所定駆動力KFに設定する。 When the acquisition unit acquires the traveling road information, the control unit refers to the traveling road information and specifies the lowest point that is the start point of the uphill road and the highest point that is the end point of the predetermined section. Then, the control unit sets a plurality of points at regular intervals, for example, on the route between the lowest point and the highest point. When a plurality of points are set between the lowest point and the highest point of the uphill road, the control unit sets the uphill road on the assumption that the vehicle 100 is caused to run on the uphill road by performing the constant speed control described above. A driving force to be output to the motor generator 10 is derived at each of the above points. Then, the control unit integrates the driving force at each point considering the distance between the points, and divides the value obtained by the integration by the length of the uphill road. In this manner, the control unit derives the average value of the driving force when the vehicle 100 is caused to run on an uphill road by constant speed control. The controller sets the value thus derived as the predetermined driving force KF.
 同様の要領で、制御部は所定発電量RFを設定する。すなわち、制御部は、定速制御の実施によって車両100に降坂路を走行させると仮定して、降坂路の開始地点である最上地点から終了地点である最下地点までの各地点でモータジェネレータ10に要求する発電量を導出する。そして、制御部は、所定駆動力KFと同様、定速制御によって車両100に降坂路を走行させた場合における発電量の平均値を所定発電量RFに設定する。 In a similar manner, the control unit sets the predetermined amount of power generation RF. That is, assuming that the vehicle 100 is caused to run on a downhill road by performing constant speed control, the control unit controls the motor generator 10 at each point from the highest point that is the start point of the downhill road to the lowest point that is the end point of the downhill road. to derive the amount of power generation required for Then, similarly to the predetermined driving force KF, the control unit sets the predetermined power generation amount RF to the average value of the power generation amount when the vehicle 100 is caused to run on a downhill road by the constant speed control.
 <3つの制御の選択の仕方>
 制御部は、自動運転機能による車両100の走行中、定速制御、惰行制御、及び平準化制御の何れかを実施して車速Vを調整する。制御部は、基本的には、これら3つの制御のうち、定速制御を実施する。ここで、情報取得部は、定速制御の実施中、走行道路情報、及び車両100の現在位置Gの情報を繰り返し取得する。制御部は、定速制御の実施中、これらの情報に基づいて、車両100がこの後走行する経路上、すなわち車両100の現在位置Gから視た前方道路に関して例えば数百メートルの範囲内に、所定区間が存在するか否かを繰り返し判定する。制御部は、この先の経路上に所定区間が存在する場合、当該所定区間を走行するのに先立って、選択処理を実行する。選択処理は、車両100が所定区間を走行するのに際し、惰行制御と平準化制御とのいずれを実施するかを決めるための処理である。制御部は、選択処理では、予め定められた許可条件が成立する場合、所定区間で実施する制御として惰行制御を選択する。この場合、制御部は、車両100が所定区間を走行するのに際し、定速制御の実施を中断し、所定区間の開始地点から終了地点まで惰行制御を実施する。一方、制御部は、選択処理では、上記の許可条件が成立しない場合、所定区間で実施する制御として平準化制御を選択する。この場合、制御部は、車両100が所定区間を走行するのに際し、定速制御の実施を中断し、所定区間の開始地点から終了地点まで平準化制御を実施する。
<How to select three controls>
The control unit adjusts the vehicle speed V by performing any one of constant speed control, coasting control, and leveling control while the vehicle 100 is running by the automatic driving function. The control unit basically performs constant speed control among these three controls. Here, the information acquisition unit repeatedly acquires the traveling road information and the information of the current position G of the vehicle 100 during constant speed control. During constant speed control, based on these pieces of information, the control unit, on the route on which the vehicle 100 travels after this, i. It is repeatedly determined whether or not the predetermined section exists. If there is a predetermined section on the route ahead, the control unit executes selection processing prior to traveling in the predetermined section. The selection process is a process for determining which of coasting control and leveling control is to be performed when the vehicle 100 travels in a predetermined section. In the selection process, the control unit selects the coasting control as the control to be performed in the predetermined section when a predetermined permission condition is satisfied. In this case, when the vehicle 100 travels in the predetermined section, the control unit suspends constant speed control and performs coasting control from the start point to the end point of the predetermined section. On the other hand, in the selection process, the control unit selects the leveling control as the control to be performed in the predetermined section when the permission condition is not satisfied. In this case, when the vehicle 100 travels in the predetermined section, the control unit suspends constant speed control and performs leveling control from the start point to the end point of the predetermined section.
 <所定区間及び選択処理>
 所定区間のうち、第1坂路が降坂路であり、第2坂路が登坂路となる区間を「第1所定区間P」という。一方、所定区間のうち、第1坂路が登坂路であり、第2坂路が降坂路となる区間を「第2所定区間Q」という。
<Predetermined section and selection process>
Among the predetermined sections, a section in which the first slope is a downhill road and the second slope is an uphill road is referred to as a "first predetermined section P". On the other hand, among the predetermined sections, a section in which the first slope is an uphill road and the second slope is a downhill road is referred to as a "second predetermined section Q."
 上記の選択処理には、第1選択処理と第2選択処理とが存在する。第1選択処理は第1所定区間Pを対象とした選択処理である。第2選択処理は第2所定区間Qを対象とした選択処理である。 The above selection process includes a first selection process and a second selection process. The first selection process is a selection process with the first predetermined section P as the target. The second selection process is a selection process for the second predetermined section Q. FIG.
 <第1所定区間の詳細、及び第1選択処理の概要>
 図3に示すように、第1所定区間Pは、降坂路を経た後に登坂路を経る一連の区間である。詳細には、第1所定区間Pは、降坂路の最上地点P1から降坂路の最下地点P2を経て、登坂路の最下地点P3から登坂路の最上地点P4へと至る区間である。したがって、第1所定区間Pの開始地点P1は、降坂路の開始地点、すなわち降坂路の最上地点P1である。また、第1所定区間Pの終了地点P4は、登坂路の終了地点、すなわち登坂路の最上地点P4である。降坂路と登坂路との間には平坦路が存在していることもあれば、平坦路が存在しないこともある。なお、図3に示す各パラメータの推移については後述する。
<Details of First Predetermined Section and Overview of First Selection Processing>
As shown in FIG. 3, the first predetermined section P is a series of sections that pass through a downhill road and then an uphill road. Specifically, the first predetermined section P is a section from the highest point P1 of the downhill road to the lowest point P2 of the downhill road and from the lowest point P3 of the uphill road to the highest point P4 of the uphill road. Therefore, the starting point P1 of the first predetermined section P is the starting point of the downhill road, that is, the highest point P1 of the downhill road. Also, the end point P4 of the first predetermined section P is the end point of the uphill road, that is, the highest point P4 of the uphill road. A flat road may or may not exist between the downhill road and the uphill road. The transition of each parameter shown in FIG. 3 will be described later.
 上記の第1所定区間Pを対象とした惰行制御の許可条件を第1許可条件という。第1選択処理では、速度予測値導出部、走行抵抗損失導出部、及び電気エネルギ損失導出部が、第1許可条件の成立可否の判定に必要となる各種パラメータを導出する。各種パラメータとは、第1所定区間Pを対象とした、第1速度予測値A1、第2速度予測値A2、走行抵抗損失差ΔD、及び電気エネルギ損失差ΔEである。そして、第1選択処理では、制御部がこれらのパラメータを基に、第1許可条件の成立可否を判定する。すなわち、制御部は、第1速度予測値A1と設定速度VSとの関係、第2速度予測値A2と設定速度VSとの関係、及び走行抵抗損失差ΔDと電気エネルギ損失差ΔEとの関係を基に、第1許可条件の成立可否を判定する。より具体的は、第1許可条件は、次の3つの項目を含んでいる。 The conditions for permitting the coasting control targeting the first predetermined section P are referred to as the first permit conditions. In the first selection process, the predicted speed value derivation unit, the running resistance loss derivation unit, and the electrical energy loss derivation unit derive various parameters necessary for determining whether or not the first permission condition is satisfied. The various parameters are a first speed prediction value A1, a second speed prediction value A2, a running resistance loss difference ΔD, and an electrical energy loss difference ΔE for the first predetermined section P. Then, in the first selection process, the control unit determines whether or not the first permission condition is satisfied based on these parameters. That is, the control unit determines the relationship between the first speed prediction value A1 and the set speed VS, the relationship between the second speed prediction value A2 and the set speed VS, and the relationship between the running resistance loss difference ΔD and the electrical energy loss difference ΔE. Based on this, it is determined whether or not the first permission condition is satisfied. More specifically, the first permission condition includes the following three items.
 (X1)第1速度予測値A1から設定速度VSを減じた値が第1差分判定値V1未満であること。
 (X2)第2速度予測値A2が設定速度VSよりも小さいこと。
(X1) A value obtained by subtracting the set speed VS from the first speed prediction value A1 is less than the first difference determination value V1.
(X2) The second speed prediction value A2 is smaller than the set speed VS.
 (X3)走行抵抗損失差ΔDが電気エネルギ損失差ΔEよりも小さいこと。
 第1差分判定値V1は、例えば、自動運転機能を利用した降坂路の走行中における設定速度VSからの車速Vのずれ量として、乗員が違和感を覚える可能性のある値の最小値である。第1差分判定値V1は、例えば実験又はシミュレーションで予め定めてある。許可条件の項目として(X1)~(X3)の内容を設定している理由については後述する。
(X3) The running resistance loss difference ΔD is smaller than the electrical energy loss difference ΔE.
The first difference determination value V1 is, for example, the minimum value of the amount of deviation of the vehicle speed V from the set speed VS during traveling on a downhill using the automatic driving function, which may cause the occupant to feel uncomfortable. The first difference determination value V1 is predetermined, for example, by experiment or simulation. The reason why the contents of (X1) to (X3) are set as items of permission conditions will be described later.
 <第1選択処理の具体的な処理手順>
 図2を参照し、処理回路51が実行する第1選択処理の具体的な処理内容を説明する。処理回路51のメモリ53に記憶されているプログラムをCPU52が実行することにより、処理回路51が本処理ルーチンを実行する。
<Specific Processing Procedure of First Selection Processing>
The specific processing contents of the first selection processing executed by the processing circuit 51 will be described with reference to FIG. The processing circuit 51 executes this processing routine by the CPU 52 executing a program stored in the memory 53 of the processing circuit 51 .
 本処理ルーチンにおいてステップS110では、処理回路51は、速度予測値導出部として機能することにより、第1速度予測値A1を導出する。第1速度予測値A1は、惰行制御によって車両100に第1所定区間Pを走行させたと仮定した場合に、当該車両100が降坂路(第1坂路)の終了地点である最下地点P2に到達したときにおける車速Vの予測値である。また、処理回路51は、第1速度予測値A1の導出にあたって、路面勾配を含む走行道路情報を取得する際には情報取得部としても機能する。 At step S110 in this processing routine, the processing circuit 51 derives the first speed prediction value A1 by functioning as a speed prediction value derivation unit. The first speed prediction value A1 is obtained when it is assumed that the vehicle 100 travels the first predetermined section P by coasting control, and the vehicle 100 reaches the lowest point P2, which is the end point of the downhill road (first slope road). It is a predicted value of the vehicle speed V when The processing circuit 51 also functions as an information acquisition unit when acquiring traveling road information including the road surface gradient in deriving the first speed prediction value A1.
 第1速度予測値A1の導出処理の一例について説明する。すなわち、処理回路51は、ナビゲーション装置80から第1所定区間P全体についての走行道路情報を取得する。すなわち、この走行道路情報は、第1所定区間Pにおける降坂路及び登坂路の双方に関して、開始地点と終了地点の位置座標、それぞれの坂路の長さ、開始地点から終了地点までの路面勾配の推移等を含んでいる。処理回路51は、走行道路情報を取得すると、第1所定区間Pのうちの降坂路の開始地点である最上地点P1と終了地点である最下地点P2とを特定する。そして、処理回路51は、降坂路の最上地点P1と最下地点P2との間の経路上に例えば等間隔で複数の地点を設定する。続いて、処理回路51は、降坂路の最上地点P1から最下地点P2に向けて順に各地点の車速Vの予測値を導出していく。その際、処理回路51は、1つ前の地点の車速Vの予測値と路面勾配とに基づいて、次の地点の車速Vの予測値を導出する。降坂路の最上地点P1の車速Vの予測値は設定速度VSとして導出する。降坂路の最上地点P1の次の地点の車速Vの予測値は、つぎのようにして導出できる。先ず、処理回路51は、降坂路の最上地点P1での車速V、すなわち設定速度VSに対応する走行抵抗を導出する。走行抵抗は、空気抵抗及び転がり抵抗を含み、車速Vが高いほど大きくなる。次に、処理回路51は、走行道路情報に含まれる路面勾配の情報から、降坂路の最上地点P1と次の地点との間の路面勾配を把握する。そして、処理回路51は、走行抵抗及び路面勾配に基づいて、モータジェネレータ10のトルクがゼロであることを前提に、最上地点P1と次の地点との間での車両100の発生駆動力の予測値を導出する。続いて、処理回路51は、この発生駆動力の予測値に基づいて、最上地点P1と次の地点との間での車両100の加速度の予測値を導出する。また、処理回路51は、この加速度の予測値に基づいて次の地点での車速Vの予測値を導出する。こういった要領で、処理回路51は、降坂路の最上地点P1から最下地点P2に向けて順に車速Vの予測値を算出していく。そして、処理回路51は、降坂路の最下地点P2での車速Vの予測値を第1速度予測値A1として算出する。 An example of derivation processing of the first speed prediction value A1 will be described. That is, the processing circuit 51 acquires traveling road information for the entire first predetermined section P from the navigation device 80 . That is, the traveling road information includes the positional coordinates of the start point and the end point, the length of each slope, and the transition of the road surface gradient from the start point to the end point for both the downhill road and the uphill road in the first predetermined section P. etc. After acquiring the traveling road information, the processing circuit 51 specifies the highest point P1, which is the starting point of the downhill road, and the lowest point P2, which is the ending point, of the first predetermined section P. Then, the processing circuit 51 sets a plurality of points at regular intervals, for example, on the route between the highest point P1 and the lowest point P2 of the downhill road. Subsequently, the processing circuit 51 sequentially derives the predicted value of the vehicle speed V at each point from the highest point P1 to the lowest point P2 of the downhill road. At that time, the processing circuit 51 derives the predicted value of the vehicle speed V at the next point based on the predicted value of the vehicle speed V at the previous point and the road gradient. The predicted value of the vehicle speed V at the highest point P1 on the downhill road is derived as the set speed VS. The predicted value of the vehicle speed V at the point next to the highest point P1 on the downhill road can be derived as follows. First, the processing circuit 51 derives the vehicle speed V at the highest point P1 of the downhill road, that is, the running resistance corresponding to the set speed VS. Running resistance includes air resistance and rolling resistance, and increases as vehicle speed V increases. Next, the processing circuit 51 grasps the road surface gradient between the highest point P1 of the downhill road and the next point from the road surface gradient information included in the traveling road information. Then, the processing circuit 51 predicts the driving force generated by the vehicle 100 between the highest point P1 and the next point on the premise that the torque of the motor generator 10 is zero based on the running resistance and the road gradient. Derive the value. Subsequently, processing circuit 51 derives a predicted value of acceleration of vehicle 100 between highest point P1 and the next point based on the predicted value of generated driving force. The processing circuit 51 also derives a predicted value of the vehicle speed V at the next point based on this predicted value of acceleration. In this manner, the processing circuit 51 sequentially calculates the predicted value of the vehicle speed V from the highest point P1 to the lowest point P2 of the downhill road. Then, the processing circuit 51 calculates the predicted value of the vehicle speed V at the lowest point P2 of the downhill road as the first speed predicted value A1.
 第1速度予測値A1を導出すると、処理回路51は、処理をステップS120に移行する。ステップS120において、処理回路51は、制御部として機能することにより、第1速度予測値A1から設定速度VSを減算した値である第1差分値A1Xが第1差分判定値V1未満であるか否かを判定する。すなわち、処理回路51は、第1許可条件の項目(X1)が成立したか否かを判定する。第1差分値A1Xが第1差分判定値V1以上である場合(S120:NO)、処理回路51は、第1許可条件の項目(X1)は成立していないと判定し、処理をステップS190に移行する。ステップS190において、処理回路51は、制御部として機能することにより、第1所定区間Pで実行する制御として平準化制御を選択する。この後、処理回路51は、本処理ルーチンを終了する。 After deriving the first speed prediction value A1, the processing circuit 51 shifts the processing to step S120. In step S120, the processing circuit 51 functions as a control unit to determine whether the first difference value A1X, which is the value obtained by subtracting the set speed VS from the first predicted speed value A1, is less than the first difference determination value V1. determine whether That is, the processing circuit 51 determines whether or not the item (X1) of the first permission condition is satisfied. When the first difference value A1X is equal to or greater than the first difference determination value V1 (S120: NO), the processing circuit 51 determines that the item (X1) of the first permission condition is not satisfied, and proceeds to step S190. Transition. In step S190, the processing circuit 51 selects the leveling control as the control to be executed in the first predetermined section P by functioning as a control section. After that, the processing circuit 51 terminates this processing routine.
 一方、ステップS120において、第1差分値A1Xが第1差分判定値V1未満である場合(YES)、処理回路51は、第1許可条件の項目(X1)が成立していると判定し、処理をステップS130に移行する。 On the other hand, in step S120, when the first difference value A1X is less than the first difference determination value V1 (YES), the processing circuit 51 determines that the item (X1) of the first permission condition is satisfied, and performs the process. to step S130.
 ステップS130において、処理回路51は、速度予測値導出部として機能することにより、第2速度予測値A2を導出する。第2速度予測値A2は、惰行制御によって車両100に第1所定区間Pを走行させたと仮定した場合に、車両100が登坂路(第2坂路)の終了地点、すなわち登坂路の最上地点P4に到達したときにおける車速Vの予測値である。 In step S130, the processing circuit 51 derives the second speed prediction value A2 by functioning as a speed prediction value deriving unit. Assuming that the vehicle 100 is caused to travel the first predetermined section P by coasting control, the second predicted speed value A2 is calculated as follows: It is a predicted value of the vehicle speed V when it reaches.
 処理回路51は、ステップS110と同様の手法で第2速度予測値A2を導出できる。すなわち、処理回路51は、ステップS110で取得した走行道路情報を参照し、第1所定区間Pのうちの登坂路の開始地点である最下地点P3と終了地点である最上地点P4とを特定する。そして、これらの経路上に複数の地点に設定する。そして、処理回路51は、各地点の車速Vの予測値を最下地点P3から最上地点P4に向けて順に導出していく。その際、登坂路の最下地点P3における車速Vの予測値は、ステップS110で導出した第1速度予測値A1とする。そして、処理回路51は、上記のステップS110と同様、車速Vに応じた走行抵抗と、路面勾配とに基づいて、各地点の車速Vの予測値を順次導出する。処理回路51は、最終的に登坂路の最上地点P4での車速Vの予測値を第2速度予測値A2として導出する。 The processing circuit 51 can derive the second speed prediction value A2 in the same manner as in step S110. That is, the processing circuit 51 refers to the traveling road information acquired in step S110, and specifies the lowest point P3, which is the starting point of the uphill road, and the highest point P4, which is the ending point, of the first predetermined section P. . A plurality of points are set on these routes. Then, the processing circuit 51 sequentially derives the predicted value of the vehicle speed V at each point from the lowest point P3 toward the highest point P4. At that time, the predicted value of the vehicle speed V at the lowest point P3 of the uphill road is the first speed predicted value A1 derived in step S110. Then, the processing circuit 51 sequentially derives the predicted value of the vehicle speed V at each point based on the running resistance corresponding to the vehicle speed V and the road surface gradient, as in step S110 described above. The processing circuit 51 finally derives the predicted value of the vehicle speed V at the highest point P4 of the uphill road as the second speed predicted value A2.
 第2速度予測値A2を導出すると、処理回路51は、処理をステップS140に移行する。ステップS140において、処理回路51は、制御部として機能することにより、第2速度予測値A2が設定速度VSよりも小さいか否かを判定する。第2速度予測値A2が設定速度VS以上である場合(S140:NO)、処理回路51は、第1許可条件の項目(X2)は成立していないと判定し、処理をステップS190に移行する。ステップS190の内容は、既に説明したとおりである。 After deriving the second speed prediction value A2, the processing circuit 51 shifts the process to step S140. In step S140, the processing circuit 51 determines whether or not the second speed prediction value A2 is smaller than the set speed VS by functioning as a control section. If the second speed prediction value A2 is equal to or greater than the set speed VS (S140: NO), the processing circuit 51 determines that the item (X2) of the first permission condition is not satisfied, and shifts the process to step S190. . The content of step S190 has already been described.
 一方、ステップS140において、第2速度予測値A2が設定速度VSよりも小さい場合(YES)、処理回路51は、第1許可条件の項目(X2)が成立していると判定し、処理をステップS150に移行する。 On the other hand, in step S140, if the second speed prediction value A2 is smaller than the set speed VS (YES), the processing circuit 51 determines that the item (X2) of the first permission condition is satisfied, and proceeds to step S140. Move to S150.
 ステップS150において、処理回路51は、走行抵抗損失導出部として機能することにより、走行抵抗損失差ΔDを導出する。走行抵抗損失差ΔDは、定速制御の実施によって車両100に第1所定区間Pを走行させたと仮定した場合と、惰行制御の実施によって車両100に第1所定区間Pを走行させたと仮定した場合とでの、走行抵抗損失Dの差の予測値である。 In step S150, the processing circuit 51 derives the running resistance loss difference ΔD by functioning as a running resistance loss derivation unit. The running resistance loss difference ΔD is calculated when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by performing the constant speed control, and when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by performing the coasting control. is a predicted value of the difference in running resistance loss D between
 処理回路51は、走行抵抗損失差ΔDを導出するにあたり、先ず、惰行制御によって車両100に第1所定区間Pを走行させたと仮定した場合の、第1所定区間Pの開始地点P1から終了地点P4までの走行抵抗損失Dの積算値である予測値D1を導出する。以下では、この予測値D1を、惰行制御に伴う走行抵抗損失Dの予測値D1と呼称することがある。処理回路51は、例えば次のようにして上記の予測値D1を導出できる。すなわち、処理回路51は、ステップS110で導出した降坂路における地点毎の走行抵抗に基づいて、地点毎の走行抵抗損失Dを導出する。そして、処理回路51は、地点毎の走行抵抗損失Dを、隣り合う地点間の距離を考慮して積分する。このことにより、処理回路51は、降坂路の最上地点P1から最下地点P2までの走行抵抗損失Dの積算値を導出する。処理回路51は、同様の要領で、ステップS130で導出した登坂路での走行抵抗に基づいて、登坂路における最下地点P3から最上地点P4までの走行抵抗損失Dの積算値を導出する。処理回路51は、降坂路と登坂路との双方で走行抵抗損失Dの積算値を導出すると、それらを加算することによって惰行制御に伴う走行抵抗損失Dの予測値D1を導出する。なお、降坂路と登坂路との間に平坦路が存在する場合、当該平坦路では降坂路の最下地点P2と同一の走行抵抗が作用しているものとして取り扱う。つまり、処理回路51は、降坂路の最下地点P2の走行抵抗に応じた走行抵抗損失Dが平坦路の距離分生じるものとして、当該距離分の走行抵抗損失Dを予測値D1に加味する。 In deriving the running resistance loss difference ΔD, the processing circuit 51 first assumes that the vehicle 100 is caused to travel the first predetermined section P by coasting control. A predicted value D1 that is an integrated value of the running resistance loss D up to is derived. Below, this predicted value D1 may be referred to as predicted value D1 of running resistance loss D associated with coasting control. The processing circuit 51 can derive the above predicted value D1, for example, as follows. That is, the processing circuit 51 derives the running resistance loss D for each point based on the running resistance for each point on the downhill road derived in step S110. Then, the processing circuit 51 integrates the running resistance loss D for each point in consideration of the distance between adjacent points. Thereby, the processing circuit 51 derives the integrated value of the running resistance loss D from the highest point P1 to the lowest point P2 of the downhill road. In a similar manner, the processing circuit 51 derives an integrated value of running resistance loss D from the lowest point P3 to the highest point P4 on the uphill road based on the running resistance on the uphill road derived in step S130. When the processing circuit 51 derives the integrated values of the running resistance loss D on both the downhill road and the uphill road, the processing circuit 51 adds them to derive a predicted value D1 of the running resistance loss D associated with the coasting control. If there is a flat road between the downhill road and the uphill road, it is assumed that the same running resistance as the lowest point P2 of the downhill road is acting on the flat road. That is, the processing circuit 51 assumes that the running resistance loss D corresponding to the running resistance at the lowest point P2 of the downhill road is generated for the distance of the flat road, and adds the running resistance loss D for the distance to the predicted value D1.
 また、処理回路51は、走行抵抗損失差ΔDを算出するにあたり、定速制御によって車両100に第1所定区間Pを走行させたと仮定した場合の、第1所定区間Pの開始地点P1から終了地点P4までの走行抵抗損失Dの積算値である予測値D2を導出する。以下では、この予測値D2を、定速制御に伴う走行抵抗損失Dの予測値D2と呼称することがある。処理回路51は、例えばつぎのようにして上記の予測値D2を導出できる。すなわち、処理回路51は、設定速度VSに応じた走行抵抗に基づいて、設定速度VSに応じた走行抵抗損失Dを導出する。そして、処理回路51は、この走行抵抗損失Dが第1所定区間Pの開始地点P1から終了地点P4まで継続して生じるものとして上記の予測値D2を導出する。すなわち、処理回路51は、設定速度VSに応じた走行抵抗損失Dを第1所定区間Pの距離に応じて積分する。このようにして処理回路51は定速制御に伴う走行抵抗損失Dの予測値D2を導出する。 Further, in calculating the running resistance loss difference ΔD, the processing circuit 51 assumes that the vehicle 100 is caused to travel the first predetermined section P by constant speed control. A predicted value D2, which is an integrated value of the running resistance loss D up to P4, is derived. Hereinafter, this predicted value D2 may be referred to as a predicted value D2 of the running resistance loss D associated with constant speed control. The processing circuit 51 can derive the predicted value D2, for example, as follows. That is, the processing circuit 51 derives the running resistance loss D corresponding to the set speed VS based on the running resistance corresponding to the set speed VS. Then, the processing circuit 51 derives the predicted value D2 assuming that the running resistance loss D continues from the start point P1 of the first predetermined section P to the end point P4. That is, the processing circuit 51 integrates the running resistance loss D according to the set speed VS according to the distance of the first predetermined section P. FIG. In this manner, the processing circuit 51 derives the predicted value D2 of the running resistance loss D associated with the constant speed control.
 処理回路51は、惰行制御に伴う走行抵抗損失Dの予測値D1と、定速制御に伴う走行抵抗損失Dの予測値D2とを導出すると、前者の値D1から後者の値D2を減算することで、走行抵抗損失差ΔDを導出する。 When the processing circuit 51 derives the predicted value D1 of the running resistance loss D associated with coasting control and the predicted value D2 of the running resistance loss D associated with constant speed control, the processing circuit 51 subtracts the latter value D2 from the former value D1. to derive the running resistance loss difference ΔD.
 走行抵抗損失差ΔDを導出すると、処理回路51は処理をステップS160に移行する。ステップS160において、処理回路51は、電気エネルギ損失導出部として機能することにより、電気エネルギ損失差ΔEを導出する。電気エネルギ損失差ΔEは、定速制御の実施によって車両100に第1所定区間Pを走行させたと仮定した場合と、惰行制御の実施によって車両100に第1所定区間Pを走行させたと仮定した場合とでの、電気エネルギ損失Eの差の予測値である。 After deriving the running resistance loss difference ΔD, the processing circuit 51 shifts the processing to step S160. In step S160, the processing circuit 51 derives the electrical energy loss difference ΔE by functioning as an electrical energy loss deriving section. The electric energy loss difference ΔE is calculated when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by executing the constant speed control, and when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by executing the coasting control. is a predicted value of the difference in electrical energy loss E between .
 処理回路51は、電気エネルギ損失差ΔEを算出するにあたり、先ず、惰行制御によって車両100に第1所定区間Pを走行させたと仮定した場合の、第1所定区間Pの開始地点P1から終了地点P4までの電気エネルギ損失Eの積算値である予測値E1を導出する。以下では、この予測値E1を、惰行制御に伴う電気エネルギ損失Eの予測値E1と呼称することがある。上記のとおり、惰行制御を実施する際、バッテリ30からモータジェネレータ10への給電量は0(零)に近い。そこで、本実施形態において、処理回路51は、惰行制御に伴う電気エネルギ損失Eの予測値E1を0(零)とする。 In calculating the electrical energy loss difference ΔE, the processing circuit 51 first assumes that the vehicle 100 travels the first predetermined section P by coasting control. A predicted value E1, which is an integrated value of the electrical energy loss E up to , is derived. Below, this predicted value E1 may be referred to as predicted value E1 of electric energy loss E associated with coasting control. As described above, when coasting control is performed, the amount of power supplied from battery 30 to motor generator 10 is close to 0 (zero). Therefore, in the present embodiment, the processing circuit 51 sets the predicted value E1 of the electric energy loss E associated with the coasting control to 0 (zero).
 また、処理回路51は、電気エネルギ損失差ΔEを算出するにあたり、定速制御によって車両100に第1所定区間Pを走行させたと仮定した場合の、第1所定区間Pの開始地点P1から終了地点P4までの電気エネルギ損失Eの積算値である予測値E2を導出する。以下では、この予測値E2を、定速制御に伴う電気エネルギ損失Eの予測値E2と呼称することがある。ここで、第1所定区間Pで定速制御を実施すると、降坂路では、モータジェネレータ10の発電に伴ってバッテリ30が充電される。一方、登坂路では、モータジェネレータ10から駆動力を出力すべくバッテリ30からモータジェネレータ10に電力が供給される。そこで、処理回路51は、上記予測値E2を導出するにあたり、降坂路の最上地点P1から最下地点P2までの間の、モータジェネレータ10の発電量さらにはバッテリ30の蓄電量SOCの増加量の予測値を導出する。処理回路51は、例えば、定速制御中の車速Vである設定速度VS、及びステップS110で取得した走行道路情報に含まれる降坂路の路面勾配の推移等に基づいて、バッテリ30の蓄電量SOCの増加量の予測値を導出できる。処理回路51は、この予測値を導出すると、当該予測値に基づいて、降坂路の最上地点P1から最下地点P2までの間の電気エネルギ損失Eの積算値を導出する。 Further, in calculating the electrical energy loss difference ΔE, the processing circuit 51 assumes that the vehicle 100 is caused to travel the first predetermined section P by constant speed control. A predicted value E2, which is an integrated value of the electrical energy loss E up to P4, is derived. Hereinafter, this predicted value E2 may be referred to as predicted value E2 of electric energy loss E associated with constant speed control. Here, when the constant speed control is performed in the first predetermined section P, the battery 30 is charged as the motor generator 10 generates power on the downhill road. On the uphill road, on the other hand, electric power is supplied from the battery 30 to the motor generator 10 so that the motor generator 10 outputs driving force. Therefore, in deriving the predicted value E2, the processing circuit 51 calculates the amount of power generated by the motor generator 10 and the amount of increase in the amount of charge SOC of the battery 30 between the highest point P1 and the lowest point P2 of the downhill road. Derive the predicted value. The processing circuit 51 calculates the charge amount SOC of the battery 30 based on, for example, the set speed VS, which is the vehicle speed V during constant speed control, and the change in the slope of the downhill road included in the traveling road information acquired in step S110. can derive the predicted value of the increase in After deriving this predicted value, the processing circuit 51 derives an integrated value of the electric energy loss E from the highest point P1 to the lowest point P2 of the downhill road based on the predicted value.
 次に、処理回路51は、登坂路の最下地点P3から最上地点P4までの間の、バッテリ30の積算消費電力、さらにはバッテリ30の蓄電量SOCの減少量の予測値を導出する。処理回路51は、例えば、設定速度VS、及びステップS110で取得した走行道路情報に含まれる登坂路の路面勾配の推移等に基づいて、バッテリ30の蓄電量SOCの減少量の予測値を導出できる。処理回路51は、この予測値を導出すると、当該予測値に基づいて、登坂路における最下地点P3から最上地点P4までの間の電気エネルギ損失Eの積算値を導出する。ちなみに、バッテリ30の蓄電量SOCが増加する際も減少する際もバッテリ30及びモータジェネレータ10間の電力の授受に伴い熱放出があることから、降坂路及び登坂路の双方において電気エネルギ損失Eは増加することになる。処理回路51は、降坂路と登坂路とのそれぞれに関して電気エネルギ損失Eの積算値を導出すると、それらを加算する。そして、処理回路51は、加算した値を、定速制御に伴う電気エネルギ損失Eの予測値E2として導出する。なお、降坂路と登坂路との間に平坦路が存在したとしても、平坦路ではモータジェネレータ10及びバッテリ30間での電力の授受が極僅かであることから、平坦路での電気エネルギ損失Eは0(零)と見なすことができる。 Next, the processing circuit 51 derives a predicted value of the integrated power consumption of the battery 30 and the amount of decrease in the state of charge SOC of the battery 30 between the lowest point P3 and the highest point P4 of the uphill road. The processing circuit 51 can derive a predicted value of the amount of decrease in the state of charge SOC of the battery 30 based on, for example, the set speed VS and the transition of the road surface gradient of the uphill road included in the traveling road information acquired in step S110. . After deriving this predicted value, the processing circuit 51 derives an integrated value of the electrical energy loss E from the lowest point P3 to the highest point P4 on the uphill road based on the predicted value. Incidentally, both when the storage amount SOC of the battery 30 increases and when it decreases, heat is emitted as power is transferred between the battery 30 and the motor generator 10. Therefore, the electrical energy loss E on both the downhill road and the uphill road is will increase. When the processing circuit 51 derives the integrated values of the electrical energy loss E for each of the downhill road and the uphill road, they are added. Then, the processing circuit 51 derives the added value as the predicted value E2 of the electric energy loss E associated with the constant speed control. Even if there is a flat road between the downhill road and the uphill road, the electric energy loss E can be regarded as 0 (zero).
 処理回路51は、惰行制御に伴う電気エネルギ損失Eの予測値E1と、定速制御に伴う電気エネルギ損失Eの予測値E2とを導出すると、後者の値E2から前者のE1を減算することで、電気エネルギ損失差ΔEを導出する。上記のとおり、惰行制御に伴う電気エネルギ損失Eの予測値E1は0(零)であることから、処理回路51は、実質的には、定速制御に伴う電気エネルギ損失Eの予測値E2をそのまま電気エネルギ損失差ΔEとして導出することになる。処理回路51は、電気エネルギ損失差ΔEを導出すると、処理をステップS170に移行する。 When the processing circuit 51 derives the predicted value E1 of the electrical energy loss E associated with the coasting control and the predicted value E2 of the electrical energy loss E associated with the constant speed control, the processing circuit 51 subtracts the former E1 from the latter value E2. , to derive the electrical energy loss difference ΔE. As described above, the predicted value E1 of the electrical energy loss E associated with coasting control is 0 (zero). This is directly derived as the electrical energy loss difference ΔE. After deriving the electrical energy loss difference ΔE, the processing circuit 51 shifts the processing to step S170.
 ステップS170において、処理回路51は、制御部として機能することにより、走行抵抗損失差ΔDが電気エネルギ損失差ΔEよりも小さいか否かを判定する。走行抵抗損失差ΔDが電気エネルギ損失差ΔE以上である場合(S170:NO)、処理回路51は、許可条件の項目(X3)は成立していないと判定し、処理をステップS190に移行する。 At step S170, the processing circuit 51 determines whether the running resistance loss difference ΔD is smaller than the electrical energy loss difference ΔE by functioning as a control unit. If the running resistance loss difference ΔD is greater than or equal to the electrical energy loss difference ΔE (S170: NO), the processing circuit 51 determines that the permission condition item (X3) is not satisfied, and proceeds to step S190.
 一方、ステップS170において、走行抵抗損失差ΔDが電気エネルギ損失差ΔEよりも小さい場合(YES)、処理回路51は、第1許可条件の項目(X3)は成立していると判定し、処理をステップS180に移行する。ステップS180において、処理回路51は、第1所定区間Pで実行する制御として惰行制御を選択する。この後、処理回路51は、第1選択処理の一連の処理を終了する。 On the other hand, in step S170, when the running resistance loss difference ΔD is smaller than the electrical energy loss difference ΔE (YES), the processing circuit 51 determines that the item (X3) of the first permission condition is satisfied, and executes the process. The process proceeds to step S180. In step S180, the processing circuit 51 selects the coasting control as the control to be executed in the first predetermined section P. After that, the processing circuit 51 ends the series of processes of the first selection process.
 <実施形態の作用及び効果:その1>
 (1-1)第1許可条件の内容に関して
 上記のとおり、第1許可条件として、3つの項目(X1)~(X3)を設定している。本実施形態によれば、車両100が所定区間を走行する場合、第1速度予測値A1と設定速度との関係、及び、第2速度予測値A2と設定速度VSとの関係を基に、第1許可条件が成立したか否かが判定される。そして、第1許可条件が成立した場合、所定区間の終了地点まで車両100が惰性走行を行う。すなわち、本実施形態によれば、所定区間を車両100が走行している途中で惰性走行が終了されることを抑制できるようになる。
<Actions and effects of the embodiment: Part 1>
(1-1) Contents of First Permission Condition As described above, three items (X1) to (X3) are set as the first permission condition. According to the present embodiment, when the vehicle 100 travels in the predetermined section, based on the relationship between the first predicted speed value A1 and the set speed and the relationship between the second predicted speed value A2 and the set speed VS, the 1 It is determined whether or not the permission condition is satisfied. Then, when the first permission condition is satisfied, the vehicle 100 coasts to the end point of the predetermined section. That is, according to the present embodiment, it is possible to prevent the inertia running from ending while the vehicle 100 is running in the predetermined section.
 以下、第1許可条件にこれら3つの項目を設定している理由を説明する。その前提として、先ず、定速制御によって車両100に第1所定区間Pを走行させた場合と、惰行制御によって車両100に第1所定区間Pを走行させた場合とでの、各パラメータの推移の仕方の違いを、図3を参照して説明する。なお、図3は、各パラメータの推移の特徴をあくまでも模式的に表したものであり、実際の推移の仕方とは必ずしも一致しない。 The reason for setting these three items in the first permission condition is explained below. As a premise, first, the transition of each parameter in the case where the vehicle 100 is caused to travel the first predetermined section P by constant speed control and the case where the vehicle 100 is caused to travel the first predetermined section P by coasting control. The difference in method will be described with reference to FIG. It should be noted that FIG. 3 only schematically shows the characteristics of the transition of each parameter, and does not necessarily match the actual transition.
 先ず、定速制御を実施する場合の各パラメータの推移を説明する。図3の(b)の二点鎖線で示すように、定速制御を実施する場合、第1所定区間Pの開始地点P1から終了地点P4まで、車速Vを設定速度VSに維持することになる。この場合、図3の(a)の二点鎖線で示すように、降坂路ではモータジェネレータ10に発電させ、登坂路ではモータジェネレータ10に駆動力を出力させる。なお、図3の(a)において、駆動力が正であることは、モータジェネレータ10が駆動力を出力することを意味し、駆動力が負であることは、モータジェネレータ10が発電することを意味する。図3の(d)の二点鎖線で示すように、降坂路では、モータジェネレータ10の発電に応じてバッテリ30が充電されて当該バッテリ30の蓄電量SOCが増えていく。このときのモータジェネレータ10及びバッテリ30間の電力の授受に伴う熱放出により、降坂路では電気エネルギ損失Eが発生する。そして、図3の(e)の二点鎖線で示すように、降坂路では、第1所定区間Pで発生する電気エネルギ損失Eの積算値が増えていく。その後、電力の授受が0(零)と見なせる平坦路を経て、登坂路では、図3の(d)の二点鎖線で示すように、モータジェネレータ10から駆動力を出力させるべくバッテリ30からモータジェネレータ10に電力が供給される。つまり、バッテリ30の蓄電量SOCは減っていく。このときのモータジェネレータ10及びバッテリ30間の電力の授受に伴う熱放出により、図3の(e)の二点鎖線で示すように、登坂路では、第1所定区間Pで発生する電気エネルギ損失Eの積算値は増加していく。なお、第1所定区間Pの開始地点P1から終了地点P4まで、車両100が設定速度VSで走行することに応じた走行抵抗損失Dが発生する。それに伴い、図3の(c)の二点鎖線で示すように、第1所定区間Pで発生する走行抵抗損失Dの積算値は増加していく。 First, the transition of each parameter when performing constant speed control will be explained. As indicated by the two-dot chain line in FIG. 3(b), when performing constant speed control, the vehicle speed V is maintained at the set speed VS from the start point P1 to the end point P4 of the first predetermined section P. . In this case, as indicated by the two-dot chain line in (a) of FIG. 3, the motor generator 10 is caused to generate power on the downhill road, and the motor generator 10 is caused to output the driving force on the uphill road. In FIG. 3A, a positive driving force means that the motor generator 10 outputs the driving force, and a negative driving force means that the motor generator 10 generates power. means. As indicated by the two-dot chain line in FIG. 3(d), on a downhill road, the battery 30 is charged according to the power generation of the motor generator 10, and the state of charge SOC of the battery 30 increases. Electric energy loss E occurs on the downhill road due to heat release associated with transfer of electric power between the motor generator 10 and the battery 30 at this time. Then, as indicated by the chain double-dashed line in FIG. 3(e), on the downhill road, the integrated value of the electrical energy loss E occurring in the first predetermined section P increases. After that, after passing through a flat road where the transfer of electric power can be assumed to be 0 (zero), on an uphill road, as indicated by a two-dot chain line in FIG. Power is supplied to the generator 10 . That is, the state of charge SOC of the battery 30 decreases. Due to the heat release associated with the transfer of electric power between the motor generator 10 and the battery 30 at this time, as indicated by the two-dot chain line in (e) of FIG. The integrated value of E increases. Note that a running resistance loss D occurs in accordance with the vehicle 100 running at the set speed VS from the start point P1 to the end point P4 of the first predetermined section P. Along with this, as indicated by the two-dot chain line in FIG. 3(c), the integrated value of the running resistance loss D that occurs in the first predetermined section P increases.
 次に、惰行制御によって第1所定区間Pを走行させた場合の各パラメータの推移を説明する。なお、第1所定区間Pの開始地点P1の前まで定速制御を行っていることに伴い、図3の(b)の実線で示すように、第1所定区間Pの開始地点P1での車速Vは設定速度VSである。 Next, the transition of each parameter when the first predetermined section P is traveled by coasting control will be described. Since the constant speed control is performed until before the start point P1 of the first predetermined section P, the vehicle speed at the start point P1 of the first predetermined section P is V is the set speed VS.
 さて、図3の(a)の実線で示すように、惰行制御を行う場合、モータジェネレータ10は、第1所定区間Pの開始地点P1から終了地点P4まで駆動力を出力しないし発電もしない。この場合、図3の(b)の実線で示すように、降坂路では、最上地点P1から最下地点P2に向けて車速Vが増加していく。そして、降坂路の最下地点P2での車速Vは、設定速度VSよりも高くなる。この後、車速Vが保持される平坦路を経て、登坂路では徐々に車速Vが低下していく。許可条件の項目(X2)との関連で、最終的には登坂路の最上地点P4よりも手前で車速Vは設定速度VSよりも低くなるものの、第1所定区間Pのうちの大部分において車速Vは設定速度VSを上回る。それに伴い、図3の(c)の実線で示すように、第1所定区間Pで発生する走行抵抗損失Dの積算値は、車速Vが設定速度VSである定常制御の場合よりも大きくなる。 Now, as shown by the solid line in FIG. 3(a), when performing coasting control, the motor generator 10 neither outputs driving force nor generates power from the start point P1 to the end point P4 of the first predetermined section P. In this case, as indicated by the solid line in FIG. 3(b), the vehicle speed V increases from the highest point P1 to the lowest point P2 on the downhill road. Then, the vehicle speed V at the lowest point P2 of the downhill road becomes higher than the set speed VS. After that, the vehicle speed V gradually decreases on an uphill road through a flat road where the vehicle speed V is maintained. In relation to the permission condition item (X2), although the vehicle speed V eventually becomes lower than the set speed VS before the highest point P4 of the uphill road, the vehicle speed remains the same in most of the first predetermined section P. V exceeds the set speed VS. Accordingly, as indicated by the solid line in FIG. 3(c), the integrated value of the running resistance loss D occurring in the first predetermined section P becomes larger than in the steady state control in which the vehicle speed V is the set speed VS.
 また、惰行制御を行う場合、図3の(d)の実線で示すように、バッテリ30及びモータジェネレータ10間では電力の授受は無いに等しく、バッテリ30の蓄電量SOCは略同じ値のままである。そのため、第1所定区間Pの開始地点P1から終了地点P4まで電気エネルギ損失Eは略発生しない。つまり、図3の(e)の実線で示すように、第1所定区間Pで発生する電気エネルギ損失Eの積算値は略0(零)のままである。ただし、厳密には、惰行制御の実施中はモータジェネレータ10のトルクを0(零)にすべくインバータ20を動作させる必要があることから、僅かながらバッテリ30から電力が供給される。図3では、その電力供給に伴うバッテリ30の蓄電量SOC、及び電気エネルギ損失Eの積算値の変化については図示していない。 Further, when performing coasting control, as shown by the solid line in FIG. be. Therefore, substantially no electric energy loss E occurs from the start point P1 to the end point P4 of the first predetermined section P. That is, as indicated by the solid line in FIG. 3(e), the integrated value of the electrical energy loss E that occurs in the first predetermined section P remains approximately 0 (zero). Strictly speaking, however, since it is necessary to operate the inverter 20 to make the torque of the motor generator 10 zero (0) during coasting control, a small amount of electric power is supplied from the battery 30 . FIG. 3 does not show changes in the accumulated value SOC of the battery 30 and the integrated value of the electrical energy loss E accompanying the power supply.
 定速制御と惰行制御との上記のような特徴を踏まえ、第1許可条件として、項目(X1)~(X3)を設定している理由を説明する。
 先ず、項目(X1)について説明する。
Based on the above characteristics of constant speed control and coasting control, the reason why items (X1) to (X3) are set as the first permission condition will be explained.
First, item (X1) will be described.
 上記のとおり、第1所定区間Pで惰行制御を実施した場合、降坂路の最下地点P2での車速Vは、設定速度VSよりも高くなる。このときの車速Vが、設定速度VSに対して過度に高い場合、乗員が違和感を覚えるおそれがある。そこで、第1許可条件の一つとして、降坂路の最下地点P2での車速Vの予測値である第1速度予測値A1から設定速度VSを減じた値が第1差分判定値V1未満である、という項目(X1)を定めている。このことにより、乗員が違和感を覚えるおそれのない場合にのみ、惰行制御を行うことができる。 As described above, when coasting control is performed in the first predetermined section P, the vehicle speed V at the lowest point P2 of the downhill road becomes higher than the set speed VS. If the vehicle speed V at this time is excessively high relative to the set speed VS, the occupant may feel uncomfortable. Therefore, as one of the first permission conditions, the value obtained by subtracting the set speed VS from the first speed prediction value A1, which is the prediction value of the vehicle speed V at the lowest point P2 of the downhill road, is less than the first difference judgment value V1. There is an item (X1) defined. As a result, the coasting control can be performed only when the occupant does not feel uncomfortable.
 次に、項目(X2)について説明する。
 上記のとおり、第1所定区間Pで惰行制御を実施した場合、登坂路の最下地点P3での車速Vは、設定速度VSよりも高くなる。この後、車両100が登坂路を進んでいくと車速Vは徐々に低下する。このとき、仮に登坂路の勾配が小さかったり登坂路の距離が短かったりすると、次のようなことが生じ得る。すなわち、登坂路の走行中には降坂路での車速Vの増加分を吸収できず、登坂路の最上地点P4に到達した時点での車速Vが設定速度VSよりも高すぎることがあり得る。ここで、登坂路の最上地点P4の後には降坂路が続くことがあり得る。仮に上記のように登坂路の最上地点P4での車速Vが設定速度VSよりも高い場合、例えば登坂路の最上地点P4の後に続く降坂路でも惰行制御を継続したときに、車速Vが過度に高くなるおそれがある。この場合、登坂路の最上地点P4に続く降坂路では、惰行制御を中断せざるを得なくなる。このような事態を避けるべく、第1許可条件の項目の一つとして、登坂路の最上地点P4での車速Vの予測値である第2速度予測値A2が設定速度VSよりも小さい、という項目(X2)を定めている。つまり、項目(X2)を定めることで、第1所定区間Pの後における制御内容の制約を極力排除できる。
Next, item (X2) will be described.
As described above, when coasting control is performed in the first predetermined section P, the vehicle speed V at the lowest point P3 of the uphill road becomes higher than the set speed VS. Thereafter, as the vehicle 100 proceeds on the uphill road, the vehicle speed V gradually decreases. At this time, if the gradient of the uphill road is small or the distance of the uphill road is short, the following may occur. That is, during traveling on an uphill road, the increase in the vehicle speed V on the downhill road cannot be absorbed, and the vehicle speed V at the time of reaching the highest point P4 of the uphill road may be too higher than the set speed VS. Here, a downhill road may continue after the highest point P4 of the uphill road. If the vehicle speed V at the top point P4 of the uphill road is higher than the set speed VS as described above, for example, when the coasting control is continued even on the downhill road following the top point P4 of the uphill road, the vehicle speed V may become excessively high. could be higher. In this case, the coasting control must be interrupted on the downhill road following the highest point P4 of the uphill road. In order to avoid such a situation, one of the items of the first permission condition is that the second speed prediction value A2, which is the prediction value of the vehicle speed V at the highest point P4 of the uphill road, is smaller than the set speed VS. (X2) is defined. That is, by defining the item (X2), restrictions on the content of control after the first predetermined section P can be eliminated as much as possible.
 次に、項目(X3)について説明する。
 上記のとおり、第1所定区間Pで惰行制御を実施した場合、当該第1所定区間Pのうちの大部分では車速Vが設定速度VSよりも高くなる。そして、それに伴い、惰行制御を実施した場合、定速制御を実施した場合に比べ、走行抵抗損失Dの積算値が大きくなる。仮に走行抵抗損失Dの積算値と電気エネルギ損失Eの積算値との和である総エネルギ損失が、定速制御を実施した場合よりも惰行制御を実施した場合のほうが大きい場合、エネルギ損失の観点からいって、惰行制御の実施を見合わせたほうがよいことになる。こうした観点から、項目(X3)を定めている。以下、項目(X3)についてさらに詳述する。
Next, item (X3) will be described.
As described above, when the coasting control is performed in the first predetermined section P, the vehicle speed V becomes higher than the set speed VS in most of the first predetermined section P. Accordingly, when the coasting control is performed, the integrated value of the running resistance loss D becomes larger than when the constant speed control is performed. If the total energy loss, which is the sum of the integrated value of the running resistance loss D and the integrated value of the electrical energy loss E, is larger when coasting control is performed than when constant speed control is performed, the viewpoint of energy loss Therefore, it is better to suspend the implementation of the coasting control. From this point of view, item (X3) is defined. Item (X3) will be described in further detail below.
 ここで、ステップS150で導出した惰行制御に伴う走行抵抗損失Dの予測値D1と、ステップS160で導出した惰行制御に伴う電気エネルギ損失Eの予測値E1との和を、惰行制御に伴う総エネルギ損失T1と呼称する。また、ステップS150で導出した定速制御に伴う走行抵抗損失Dの予測値D2と、ステップS160で導出した定速制御に伴う電気エネルギ損失Eの予測値E2との和を、定速制御に伴う総エネルギ損失T2と呼称する。次の式(1)で示すように、左辺に示す惰行制御に伴う総エネルギ損失T1が、右辺に示す定速制御に伴う総エネルギ損失T2よりも小ければ、定速制御を行うよりも惰行制御を行ったほうが、エネルギ損失を抑えることができて有利ということになる。逆に、式(1)の大小関係が満たされない場合、惰行制御を行うと、定速制御を行うよりもエネルギ損失の増大を招くことになる。 Here, the sum of the predicted value D1 of the running resistance loss D associated with the coasting control derived in step S150 and the predicted value E1 of the electrical energy loss E associated with the coasting control derived in step S160 is the total energy associated with the coasting control. Call it loss T1. Further, the sum of the predicted value D2 of the running resistance loss D associated with the constant speed control derived in step S150 and the predicted value E2 of the electrical energy loss E associated with the constant speed control derived in step S160 is calculated as Call it total energy loss T2. As shown in the following equation (1), if the total energy loss T1 accompanying coasting control shown on the left side is smaller than the total energy loss T2 accompanying constant speed control shown on the right side, then coasting is more likely than performing constant speed control. Control is advantageous because energy loss can be suppressed. Conversely, when the magnitude relationship of the formula (1) is not satisfied, coasting control causes an increase in energy loss compared to constant speed control.
 D1+E1<D2+E2 ・・・(1)
 さて、上記の式(1)に関して、走行抵抗損失Dの項を左辺にまとめ、電気エネルギ損失Eの項を右辺にまとめると、式(2)のような関係が成立する。
D1+E1<D2+E2 (1)
Now, with respect to the above formula (1), if the term of the running resistance loss D is put together on the left side and the term of the electrical energy loss E is put together on the right side, the relationship shown in the formula (2) is established.
 D1-D2<E2-E1 ・・・(2)
 式(2)における左辺の項は、ステップS150で導出した走行抵抗損失差ΔDであり、図3の(c)における斜線領域に対応している。また、式(2)における右辺の項は、ステップS160で導出した電気エネルギ損失差ΔEであり、図3の(e)における斜線領域に対応している。そして、式(2)は、ステップS170の判定内容、すなわち走行抵抗損失Dが電気エネルギ損失Eよりも小さいという項目(X3)の内容に対応している。この式(2)の大小関係が成立していれば、式(1)で説明したとおり、惰行制御に伴う総エネルギ損失T1が定常制御に伴う総エネルギ損失T2よりも小さいことになる。そして、この式(2)の大小関係を第1許可条件の一つとして設定することで、惰行制御に伴う総エネルギ損失T1が定常制御に伴う総エネルギ損失T2よりも小さい場合に限って、惰行制御を行うことができる。
D1-D2<E2-E1 (2)
The term on the left side of equation (2) is the running resistance loss difference ΔD derived in step S150, and corresponds to the hatched area in FIG. 3(c). The term on the right side of equation (2) is the electrical energy loss difference ΔE derived in step S160, and corresponds to the hatched area in FIG. 3(e). Equation (2) corresponds to the content of determination in step S170, that is, the content of item (X3) that the running resistance loss D is smaller than the electrical energy loss E. If the magnitude relationship of this formula (2) holds, the total energy loss T1 associated with coasting control will be smaller than the total energy loss T2 associated with steady control, as explained with equation (1). Then, by setting the magnitude relationship of this formula (2) as one of the first permission conditions, the coasting can be controlled.
 (1-2)平準化制御について
 本実施形態では、惰行制御の許可条件が成立しない場合、定速制御ではなく平準化制御を実施する。そして、設定処理では、車両100が所定区間の終了地点に到達したときの車速Vが設定速度VSと等しくなるように、所定駆動力KF及び所定発電量RFを設定する。
(1-2) Leveling Control In this embodiment, when the conditions for permitting coasting control are not satisfied, leveling control is performed instead of constant speed control. In the setting process, the predetermined driving force KF and the predetermined power generation RF are set so that the vehicle speed V becomes equal to the set speed VS when the vehicle 100 reaches the end point of the predetermined section.
 ここで、所定区間を定速制御で車両100に走行させた場合、バッテリ30の充放電がある。このときのバッテリ30及びモータジェネレータ10間での電力の授受に伴い、電気的なエネルギ損失が生じる。この点、本実施形態によれば、登坂路においてモータジェネレータ10から駆動力を出力させるに際にバッテリ30からモータジェネレータ10への給電量が大きくなることを抑制できる。また、降坂路においてモータジェネレータ10に発電させる際にモータジェネレータ10からバッテリ30への給電量が大きくなることを抑制できる。したがって、定速制御で所定区間を走行する場合と比較して電気的なエネルギ損失が大きくなることを抑制できる。 Here, when the vehicle 100 is caused to run in a predetermined section under constant speed control, the battery 30 is charged and discharged. Electrical energy loss occurs as power is transferred between the battery 30 and the motor generator 10 at this time. In this respect, according to the present embodiment, it is possible to suppress an increase in the amount of power supplied from the battery 30 to the motor generator 10 when the motor generator 10 outputs driving force on an uphill road. In addition, it is possible to suppress an increase in the amount of power supplied from motor generator 10 to battery 30 when motor generator 10 is caused to generate power on a downhill road. Therefore, it is possible to suppress the electrical energy loss from increasing as compared with the case where the vehicle travels in the predetermined section under constant speed control.
 以下、惰行制御の許可条件が成立しない場合、定速制御ではなく平準化制御を実施する理由を詳細に説明する。
 前提として、図4を参照し、電気エネルギ損失Eの変動特性を、モータジェネレータ10が出力する駆動力又は発電量との関連で説明する。なお、図4において、駆動力が正であることは、モータジェネレータ10が駆動力を出力することを意味し、駆動力が負であることは、モータジェネレータ10が発電することを意味する。
Hereinafter, the reason why leveling control is performed instead of constant speed control when the conditions for permitting coasting control are not satisfied will be described in detail.
As a premise, with reference to FIG. 4, the variation characteristics of the electrical energy loss E will be described in relation to the driving force output by the motor generator 10 or the power generation amount. In FIG. 4, a positive driving force means that motor generator 10 outputs driving force, and a negative driving force means that motor generator 10 generates power.
 電気エネルギ損失Eは、モータジェネレータ10が出力する駆動力が大きいほど多くなる。これは、次の理由に因る。モータジェネレータ10が出力する駆動力が大きい程、バッテリ30からモータジェネレータ10への給電量が多くなる。すると、その分だけバッテリ30及びモータジェネレータ10間での熱放出も多くなる。この結果として、電気エネルギ損失Eが大きくなる。同様に、モータジェネレータ10の発電量が多い程、モータジェネレータ10及びバッテリ30間の電力の授受が多くなって熱放出が多くなることから、電気エネルギ損失Eは大きくなる。ここで、電気エネルギ損失Eは、詳細には、バッテリ30及びモータジェネレータ10間の抵抗と、バッテリ30及びモータジェネレータ10間に流れる電流値の2乗との積に比例する。図4は、この関係を駆動力と電気エネルギ損失Eとの関係に置き換えて表したものである。すなわち、電気エネルギ損失Eは、モータジェネレータ10の駆動力の2乗に比例する。そして、電気エネルギ損失Eは、モータジェネレータ10が出力する駆動力の増加に伴い急増する。また、電気エネルギ損失Eは、モータジェネレータ10の発電量の増加に応じて急増する。 The electrical energy loss E increases as the driving force output by the motor generator 10 increases. This is for the following reasons. As the driving force output by motor generator 10 increases, the amount of power supplied from battery 30 to motor generator 10 increases. Then, the amount of heat released between the battery 30 and the motor generator 10 increases accordingly. As a result, electrical energy loss E increases. Similarly, the greater the amount of power generated by the motor generator 10, the greater the transfer of electric power between the motor generator 10 and the battery 30, the greater the amount of heat released, and the greater the electrical energy loss E. Here, in detail, the electrical energy loss E is proportional to the product of the resistance between the battery 30 and the motor generator 10 and the square of the current flowing between the battery 30 and the motor generator 10 . FIG. 4 shows this relationship by replacing it with the relationship between the driving force and the electrical energy loss E. In FIG. That is, the electrical energy loss E is proportional to the square of the driving force of the motor generator 10 . The electrical energy loss E sharply increases as the driving force output by the motor generator 10 increases. Also, the electrical energy loss E sharply increases as the amount of power generated by the motor generator 10 increases.
 さて、図5の(a)に示すように、第1所定区間Pのうちの登坂路においては、その最下地点P3と最上地点P4との間に路面勾配の増減が存在し得る。例えば、図5の(a)に示すように、登坂路の最下地点P3から途中PAまでの路面勾配に比べ、当該登坂路の途中PAから最上地点P4までの路面勾配のほうが急なこともあり得る。 Now, as shown in FIG. 5(a), on the uphill road in the first predetermined section P, the road surface gradient may increase or decrease between the lowest point P3 and the highest point P4. For example, as shown in FIG. 5(a), the road gradient from the middle PA to the highest point P4 of the uphill road may be steeper than the road gradient from the lowest point P3 to the middle PA of the uphill road. could be.
 ここで、上記のような登坂路で定速制御を実施する場合を考える。この場合、図5の(b)の二点鎖線で示すように、路面勾配の増減に応じて、地点毎にモータジェネレータ10から出力する駆動力を変化させる必要がある。上記した電気エネルギ損失Eとモータジェネレータ10が出力する駆動力との関係上、路面勾配の増減に応じてモータジェネレータ10が出力する駆動力が変化すると、電気エネルギ損失Eは急減又は急増する。したがって、登坂路の最下地点P3と最上地点P4との間の各地点で発生する電気エネルギ損失Eの大きさは、これら最下地点P3と最上地点P4との間で大きく変化する。例えば、図5の(b)に示すように、登坂路の最下地点P3から最上地点P4の間においてモータジェネレータ10から出力する駆動力の最小値を最小駆動力KMINと呼称する。また、モータジェネレータ10から出力する駆動力の最大値を最大駆動力KMAXと呼称する。そして、図4に示すように、最小駆動力KMINに対応する電気エネルギ損失Eを最小損失値EMINと呼称する。また、最大駆動力KMAXに対応する電気エネルギ損失Eを最大損失値EMAXと呼称する。定速制御によって車両100に登坂路を走行させる場合、電気エネルギ損失Eは、最小損失値EMINと最大損失値EMAXとの間で変化する。そして、電気エネルギ損失Eとモータジェネレータ10の駆動力との関係上、最大損失値EMAXは最小損失値EMINに比べて相当に大きな値になる。 Here, consider the case of performing constant speed control on an uphill road as described above. In this case, as indicated by the two-dot chain line in FIG. 5B, it is necessary to change the driving force output from the motor generator 10 for each point according to the increase or decrease of the road surface gradient. Due to the relationship between the electrical energy loss E and the driving force output by the motor-generator 10, the electrical energy loss E rapidly decreases or increases when the driving force output by the motor-generator 10 changes according to the increase or decrease of the road surface gradient. Therefore, the magnitude of the electrical energy loss E that occurs at each point between the lowest point P3 and the highest point P4 on the uphill road varies greatly between the lowest point P3 and the highest point P4. For example, as shown in FIG. 5B, the minimum value of the driving force output from the motor generator 10 between the lowest point P3 and the highest point P4 of the uphill road is referred to as the minimum driving force KMIN. Also, the maximum value of the driving force output from the motor generator 10 is referred to as maximum driving force KMAX. Then, as shown in FIG. 4, the electrical energy loss E corresponding to the minimum driving force KMIN is called the minimum loss value EMIN. Also, the electrical energy loss E corresponding to the maximum driving force KMAX is called a maximum loss value EMAX. When the vehicle 100 is driven on an uphill road by constant speed control, the electrical energy loss E changes between the minimum loss value EMIN and the maximum loss value EMAX. Due to the relationship between the electrical energy loss E and the driving force of the motor generator 10, the maximum loss value EMAX is considerably larger than the minimum loss value EMIN.
 次に、上と同じ登坂路で平準化制御を実施する場合を考える。この場合、図5の(b)の実線で示すように、登坂路における路面勾配の増減に拘わらず、登坂路の最下地点P3から最上地点P4までモータジェネレータ10が出力する駆動力は所定駆動力KFのままである。所定駆動力KFは、定速制御における最小駆動力KMINと最大駆動力KMAXとの間の値である。図4に示すように、この所定駆動力KFに対応する電気エネルギ損失Eを所定損失値EFと呼称する。平準化制御によって車両100に登坂路を走行させる場合、当該登坂路の最下地点P3から最上地点P4まで、所定損失値EFに相当する大きさの電気エネルギ損失Eが発生し続ける。 Next, consider the case of performing leveling control on the same uphill road as above. In this case, as indicated by the solid line in FIG. 5B, the driving force output by the motor generator 10 from the lowest point P3 to the highest point P4 of the uphill road is a predetermined driving force regardless of the increase or decrease in the road surface gradient on the uphill road. The force remains KF. The predetermined driving force KF is a value between the minimum driving force KMIN and the maximum driving force KMAX in constant speed control. As shown in FIG. 4, the electric energy loss E corresponding to this predetermined driving force KF is called a predetermined loss value EF. When the vehicle 100 is driven on an uphill road by leveling control, an electrical energy loss E corresponding to a predetermined loss value EF continues to occur from the lowest point P3 to the highest point P4 of the uphill road.
 さて、電気エネルギ損失Eがモータジェネレータ10の駆動力の2乗に比例する関係上、モータジェネレータ10から出力する駆動力が大きい程、電気エネルギ損失Eは増幅されることになる。これに伴い、定速制御における最大損失値EMAXは、平準化制御における所定損失値EFに比べても相当に高い値になる。つまり、定速制御の場合、平準化制御の場合に比べて、急勾配の区間での電気エネルギ損失Eが相当に大きくなる。この急勾配の区間における相当に大きな電気エネルギ損失Eに起因して、登坂路の最下地点P3から最上地点P4までの電気エネルギ損失Eの積算値は、平準化制御よりも定速制御のほうが大きくなる。したがって、電気エネルギ損失Eを抑制する観点からいって、定速制御よりも平準化制御は有利である。 Since the electrical energy loss E is proportional to the square of the driving force of the motor generator 10, the electrical energy loss E is amplified as the driving force output from the motor generator 10 increases. As a result, the maximum loss value EMAX in constant speed control becomes a considerably higher value than the predetermined loss value EF in leveling control. In other words, in the case of constant speed control, the electric energy loss E in the steep slope section becomes considerably larger than in the case of leveling control. Due to the considerably large electrical energy loss E in this steep slope section, the integrated value of the electrical energy loss E from the lowest point P3 to the highest point P4 of the uphill road is higher in constant speed control than in leveling control. growing. Therefore, from the viewpoint of suppressing the electrical energy loss E, the leveling control is more advantageous than the constant speed control.
 以上では、登坂路を例として説明したが、同様のことは、降坂路についてもいえる。つまり、降坂路でも、平準化制御は、定速制御に比べ、エネルギ損失を抑制する観点で有利である。 Uphill roads have been explained above as an example, but the same can be said for downhill roads. That is, even on a downhill road, the leveling control is more advantageous than the constant speed control from the viewpoint of suppressing energy loss.
 (1-3)第1選択処理全体の利点について
 前提として、惰行制御では電気エネルギ損失Eが略発生しないこととの関連で、次のことが実験的にわかっている。すなわち、上記のとおり、平準化制御と定速制御とでは、詳細にみると総エネルギ損失に上記のような違いがある。しかし、これら2つの制御での総エネルギ損失の違いは、惰行制御と定速制御とでの総エネルギ損失の違いよりも相当に小さい。これは、電気エネルギ損失Eが略生じない惰行制御に比べると、平準化制御でも定速制御でも相当に電気エネルギ損失Eが発生することに因る。そして、平準化制御と定速制御とでの総エネルギ損失の違いが、惰行制御と定速制御とでの総エネルギ損失の違いよりも相当に小さいことから、つぎのことがいえる。すなわち、上記の条件(X3)が成立する場合、定速制御よりも惰行制御を実施するほうが有利であるとともに、平準化制御よりも惰行制御を実施したほうが有利である。
(1-3) Overall Advantages of the First Selection Process As a premise, the following has been found experimentally in relation to the fact that the electric energy loss E does not substantially occur in coasting control. That is, as described above, there is a difference in the total energy loss between the leveling control and the constant speed control as described above. However, the difference in total energy loss for these two controls is considerably smaller than the difference in total energy loss between coasting control and constant speed control. This is because a considerable amount of electrical energy loss E occurs in both the leveling control and the constant speed control as compared with coasting control in which almost no electrical energy loss E occurs. Since the difference in total energy loss between leveling control and constant speed control is much smaller than the difference in total energy loss between coasting control and constant speed control, the following can be said. That is, when the above condition (X3) is satisfied, it is more advantageous to perform coasting control than constant speed control, and it is more advantageous to perform coasting control than leveling control.
 そこで、第1選択処理では、第1所定区間Pの走行に際して実施する制御の優先順位を次のように設定している。つまり、上記の項目(X3)を含む第1許可条件が成立する場合、定速制御でも平準化制御でもなく惰行制御を行う。このことにより、第1所定区間Pを走行する際のエネルギ損失を極力抑えることができる。一方、第1許可条件が成立しない場合には、定速制御ではなく平準化制御を行う。平準化制御を行うことにより、仮に定速制御で第1所定区間Pを走行する場合に比べて、第1所定区間Pを走行する際のエネルギ損失を抑えることができる。このようにして、走行環境に合わせて、その走行環境においてよりエネルギ損失の発生量が少ない制御を選択することで、車両100の走行時の電力消費を極力抑えることができる。 Therefore, in the first selection process, the priority of the control to be executed when traveling in the first predetermined section P is set as follows. That is, when the first permission condition including the above item (X3) is satisfied, coasting control is performed instead of constant speed control or leveling control. As a result, energy loss when traveling in the first predetermined section P can be suppressed as much as possible. On the other hand, when the first permission condition is not satisfied, leveling control is performed instead of constant speed control. By performing the leveling control, the energy loss when traveling in the first predetermined section P can be suppressed as compared with the case where the vehicle travels in the first predetermined section P under constant speed control. In this way, by selecting control that generates less energy loss in the driving environment according to the driving environment, power consumption during driving of the vehicle 100 can be suppressed as much as possible.
 また、本実施形態では、第1許可条件のうちの項目(X1)又は(X2)が成立しない場合、平準化制御を実施する。平準化制御を実施すると、降坂路では、モータジェネレータ10に相応に発電させて車両100に回生制動力を付与する。したがって、降坂路の最下地点P2での車速Vが設定速度VSよりも過度に高くなることはない。また、平準化制御では、登坂路において、モータジェネレータ10から相応に駆動力を出力させることから、登坂路の最上地点P4での車速Vを設定速度VSに戻せる。 In addition, in this embodiment, if item (X1) or (X2) in the first permission condition is not satisfied, leveling control is performed. When the leveling control is performed, the motor-generator 10 is caused to generate power correspondingly to apply regenerative braking force to the vehicle 100 on a downhill road. Therefore, the vehicle speed V at the lowest point P2 of the downhill road does not become excessively higher than the set speed VS. Further, in the leveling control, the motor generator 10 is caused to output a corresponding driving force on the uphill road, so that the vehicle speed V at the highest point P4 of the uphill road can be returned to the set speed VS.
 <第2所定区間の詳細、及び第2選択処理の概要>
 上記のとおり、所定区間には、第1所定区間Pの他に、第2所定区間Qが存在する。そして、選択処理には、この第2所定区間Qを対象とした第2選択処理がある。以下では、これらについて説明する。
<Details of Second Predetermined Section and Overview of Second Selection Processing>
As described above, the second predetermined section Q exists in addition to the first predetermined section P in the predetermined section. The selection process includes a second selection process for the second predetermined section Q. FIG. These are described below.
 図7に示すように、第2所定区間Qは、登坂路を経た後に降坂路を経る一連の区間である。詳細には、第2所定区間Qは、登坂路の最下地点Q1から登坂路の最上地点Q2を経て、降坂路の最上地点Q3から降坂路の最下地点Q4へと至る区間である。したがって、第2所定区間Qの開始地点Q1は、登坂路の開始地点、すなわち登坂路の最下地点Q1である。また、第2所定区間Qの終了地点Q4は、降坂路の終了地点、すなわち降坂路の最下地点Q4である。登坂路と降坂路との間には平坦路が存在していることもあれば、平坦路が存在しないこともある。なお、図7に示す各パラメータの推移については後述する。 As shown in FIG. 7, the second predetermined section Q is a series of sections that pass through an uphill road and then a downhill road. Specifically, the second predetermined section Q is a section from the lowest point Q1 of the uphill road to the highest point Q2 of the uphill road and from the highest point Q3 of the downhill road to the lowest point Q4 of the downhill road. Therefore, the starting point Q1 of the second predetermined section Q is the starting point of the uphill road, that is, the lowest point Q1 of the uphill road. Also, the end point Q4 of the second predetermined section Q is the end point of the downhill road, that is, the lowest point Q4 of the downhill road. A flat road may or may not exist between the uphill road and the downhill road. The transition of each parameter shown in FIG. 7 will be described later.
 上記の第2所定区間Qを対象とした惰行制御の許可条件を第2許可条件という。第2選択処理では、速度予測値導出部が、第2許可条件の成立可否の判定に必要となる各種パラメータを導出する。各種パラメータとは、第2所定区間Qを対象とした、第1速度予測値B1、及び第2速度予測値B2である。そして、第2制御処理では、制御部がこれらのパラメータを基に、第2許可条件の成立可否を判定する。すなわち、制御部は、第1速度予測値B1と設定速度VSとの関係、及び第2速度予測値B2と設定速度VSとの関係を基に、第2許可条件の成立可否を判定する。より具体的は、第2許可条件は、次の2つの項目を含んでいる。 The conditions for permitting coasting control targeting the second predetermined section Q are referred to as second permit conditions. In the second selection process, the predicted speed value derivation unit derives various parameters necessary for determining whether or not the second permission condition is satisfied. The various parameters are a first speed prediction value B1 and a second speed prediction value B2 for the second predetermined section Q. FIG. Then, in the second control process, the control unit determines whether or not the second permission condition is satisfied based on these parameters. That is, the control unit determines whether or not the second permission condition is satisfied based on the relationship between the first predicted speed value B1 and the set speed VS and the relationship between the second predicted speed value B2 and the set speed VS. More specifically, the second permission condition includes the following two items.
 (Y1)設定速度VSから第1速度予測値B1を減じた値が第2差分判定値V2未満であること。
 (Y2)第2速度予測値B2が設定速度VSよりも大きいこと。
(Y1) The value obtained by subtracting the first speed prediction value B1 from the set speed VS is less than the second difference judgment value V2.
(Y2) The second speed prediction value B2 is greater than the set speed VS.
 第2差分判定値V2は、例えば、自動運転機能を利用した登坂路の走行中における設定速度VSからの車速Vのずれ量として、乗員が違和感を覚える可能性のある値の最小値である。第2差分判定値V2は、例えば実験又はシミュレーションで予め定めてある。なお、許可条件の項目として(Y1)(Y2)の内容を設定している理由については後述する。 The second difference determination value V2 is, for example, the minimum value at which the occupant may feel uncomfortable as the amount of deviation of the vehicle speed V from the set speed VS while traveling on an uphill road using the automatic driving function. The second difference determination value V2 is predetermined, for example, by experiment or simulation. The reason why the contents of (Y1) and (Y2) are set as items of permission conditions will be described later.
 <第2選択処理の具体的な処理手順>
 図6を参照し、処理回路51が実行する第2選択処理の具体的な内容を説明する。処理回路51のメモリ53に記憶されているプログラムをCPU52が実行することにより、処理回路51が本処理ルーチンを実行する。
<Specific Processing Procedure of Second Selection Processing>
Specific contents of the second selection process executed by the processing circuit 51 will be described with reference to FIG. The processing circuit 51 executes this processing routine by the CPU 52 executing a program stored in the memory 53 of the processing circuit 51 .
 本処理ルーチンにおいてステップS210では、処理回路51は、速度予測値導出部として機能することにより、第1速度予測値B1を導出する。第1速度予測値B1は、惰行制御によって車両100に第2所定区間Qを走行させたと仮定した場合に、車両100が登坂路(第1坂路)の終了地点である最上地点Q2に到達したときにおける車速Vの予測値である。また、処理回路51は、第1速度予測値B1の導出にあたって、路面勾配を含む上記の走行道路情報を取得する際には情報取得部としても機能する。 At step S210 in this processing routine, the processing circuit 51 derives the first speed prediction value B1 by functioning as a speed prediction value derivation unit. The first speed prediction value B1 is calculated when the vehicle 100 reaches the highest point Q2, which is the end point of the uphill road (first slope road), assuming that the vehicle 100 is caused to travel the second predetermined section Q by coasting control. is a predicted value of the vehicle speed V at . The processing circuit 51 also functions as an information acquisition unit when acquiring the above travel road information including the road surface gradient in deriving the first speed prediction value B1.
 例えば、処理回路51は、第1選択処理のステップS110と同様の要領で第1速度予測値B1を導出する。この場合、処理回路51は、ナビゲーション装置80から第2所定区間Q全体についての走行道路情報を取得する。続いて、処理回路51は、第2所定区間Qにおける登坂路の最下地点Q1と最上地点Q2を特定し、これらの間の経路上に複数の地点を設定する。そして、処理回路51は、各地点の車速Vの予測値を最下地点Q1から最上地点Q2に向けて順に導出していく。その際、登坂路の最下地点Q1における車速Vの予測値は、設定速度VSとする。処理回路51は、上記のステップS110と同様、車速Vに応じた走行抵抗と、路面勾配とに基づいて、各地点の車速Vの予測値を順次導出する。そして、処理回路51は、最終的に登坂路の最上地点Q2での車速Vの予測値を第1速度予測値B1として導出する。 For example, the processing circuit 51 derives the first speed prediction value B1 in the same manner as in step S110 of the first selection process. In this case, the processing circuit 51 acquires traveling road information for the entire second predetermined section Q from the navigation device 80 . Subsequently, the processing circuit 51 identifies the lowest point Q1 and the highest point Q2 of the uphill road in the second predetermined section Q, and sets a plurality of points on the route between them. Then, the processing circuit 51 sequentially derives the predicted value of the vehicle speed V at each point from the lowest point Q1 toward the highest point Q2. At that time, the predicted value of the vehicle speed V at the lowest point Q1 of the uphill road is set to the set speed VS. The processing circuit 51 sequentially derives the predicted value of the vehicle speed V at each point based on the running resistance corresponding to the vehicle speed V and the road surface gradient, as in step S110 described above. Then, the processing circuit 51 finally derives the predicted value of the vehicle speed V at the highest point Q2 of the uphill road as the first speed predicted value B1.
 第1速度予測値B1を導出すると、処理回路51は、処理をステップS220に移行する。ステップS220において、処理回路51は、制御部として機能することにより、設定速度VSから第1速度予測値B1を減算した値である第2差分値B1Xが第2差分判定値V2未満であるか否かを判定する。第2差分値B1Xが第2差分判定値V2以上である場合(S220:NO)、処理回路51は、第2許可条件の項目(Y1)は成立していないと判定し、処理をステップS260に移行する。ステップS260において、処理回路51は、制御部として機能することにより、第2所定区間Qで実行する制御として平準化制御を選択する。この後、処理回路51は、本処理ルーチンを終了する。 After deriving the first speed prediction value B1, the processing circuit 51 shifts the process to step S220. In step S220, the processing circuit 51 functions as a control unit to determine whether the second difference value B1X, which is the value obtained by subtracting the first speed prediction value B1 from the set speed VS, is less than the second difference determination value V2. determine whether When the second difference value B1X is equal to or greater than the second difference determination value V2 (S220: NO), the processing circuit 51 determines that the item (Y1) of the second permission condition is not satisfied, and proceeds to step S260. Transition. In step S260, the processing circuit 51 selects the leveling control as the control to be executed in the second predetermined section Q by functioning as a control section. After that, the processing circuit 51 terminates this processing routine.
 一方、ステップS220において、第2差分値B1Xが第2差分判定値V2未満である場合(S220:YES)、処理回路51は、第2許可条件の項目(Y1)が成立していると判定し、処理をステップS230に移行する。 On the other hand, in step S220, when the second difference value B1X is less than the second difference determination value V2 (S220: YES), the processing circuit 51 determines that the item (Y1) of the second permission condition is satisfied. , the process proceeds to step S230.
 ステップS230において、処理回路51は、速度予測値導出部として機能することにより、第2速度予測値B2を導出する。第2速度予測値B2は、惰行制御によって車両100に第2所定区間Qを走行させたと仮定した場合に、当該車両100が降坂路の終了地点である最下地点Q4に到達したときにおける車速Vの予測値である。 In step S230, the processing circuit 51 derives the second speed prediction value B2 by functioning as a speed prediction value derivation unit. The second speed prediction value B2 is the vehicle speed V when the vehicle 100 reaches the lowest point Q4, which is the end point of the downhill road, assuming that the vehicle 100 is caused to travel through the second predetermined section Q by coasting control. is the predicted value of
 処理回路51は、ステップS110と同様の手法で第2速度予測値B2を導出する。すなわち、処理回路51は、ステップS210で取得した走行道路情報を参照し、降坂路の最上地点Q3と最下地点Q4とを特定し、これらの間の経路上に複数の地点に設定する。そして、処理回路51は、各地点の車速Vの予測値を最上地点Q3から最下地点Q4に向けて順に導出していく。その際、降坂路の最上地点Q3における車速Vの予測値は、ステップS210で導出した第1速度予測値B1とする。処理回路51は、各地点での車速Vを順次導出し、最終的に降坂路の最下地点Q4での車速Vの予測値を第2速度予測値B2として導出する。 The processing circuit 51 derives the second speed prediction value B2 by the same method as in step S110. That is, the processing circuit 51 refers to the traveling road information acquired in step S210, identifies the highest point Q3 and the lowest point Q4 of the downhill road, and sets a plurality of points on the route between them. Then, the processing circuit 51 sequentially derives the predicted value of the vehicle speed V at each point from the highest point Q3 to the lowest point Q4. At that time, the predicted value of the vehicle speed V at the highest point Q3 of the downhill road is set to the first speed predicted value B1 derived in step S210. The processing circuit 51 sequentially derives the vehicle speed V at each point, and finally derives the predicted value of the vehicle speed V at the lowest point Q4 on the downhill road as the second speed predicted value B2.
 第2速度予測値B2を導出すると、処理回路51は、処理をステップS240に移行する。ステップS240において、処理回路51は、制御部として機能することにより、第2速度予測値B2が設定速度VSよりも大きいか否かを判定する。第2速度予測値B2が設定速度VS以下である場合(S240:NO)、処理回路51は、第2許可条件の項目(Y2)は成立していないと判定し、処理をステップS260に移行する。ステップS260の内容は、既に説明したとおりである。 After deriving the second speed prediction value B2, the processing circuit 51 shifts the process to step S240. In step S240, the processing circuit 51 determines whether or not the second speed prediction value B2 is greater than the set speed VS by functioning as a control section. If the second speed prediction value B2 is equal to or less than the set speed VS (S240: NO), the processing circuit 51 determines that the item (Y2) of the second permission condition is not satisfied, and shifts the process to step S260. . The content of step S260 has already been described.
 一方、ステップS240において、第2速度予測値B2が設定速度VSよりも大きい場合(YES)、処理回路51は、第2許可条件の項目(Y2)が成立していると判定し、処理をステップS250に移行する。ステップS250において、処理回路51は、第2所定区間Qで実行する制御として惰行制御を選択する。この後、処理回路51は、本処理ルーチンを終了する。 On the other hand, in step S240, if the second speed prediction value B2 is greater than the set speed VS (YES), the processing circuit 51 determines that the second permission condition item (Y2) is satisfied, and proceeds to step S240. Move to S250. In step S<b>250 , the processing circuit 51 selects coasting control as the control to be executed in the second predetermined section Q. After that, the processing circuit 51 terminates this processing routine.
 <実施形態の作用及び効果:その2>
 上記のとおり、第2許可条件として、2つの項目(Y1)(Y2)を設定している。本実施形態によれば、車両100が所定区間を走行する場合、第1速度予測値B1と設定速度VSとの関係、及び、第2速度予測値B2と設定速度との関係を基に、第2許可条件が成立したか否かが判定される。そして、第2許可条件が成立した場合、所定区間の終了地点まで車両100が惰性走行を行う。すなわち、本実施形態によれば、所定区間を車両100が走行している途中で惰性走行が終了されることを抑制できるようになる。
<Actions and effects of the embodiment: Part 2>
As described above, two items (Y1) and (Y2) are set as the second permission condition. According to the present embodiment, when the vehicle 100 travels in a predetermined section, based on the relationship between the first predicted speed value B1 and the set speed VS and the relationship between the second predicted speed value B2 and the set speed, the 2 It is determined whether or not the permission condition is satisfied. Then, when the second permission condition is satisfied, the vehicle 100 coasts to the end point of the predetermined section. That is, according to the present embodiment, it is possible to prevent the inertia running from ending while the vehicle 100 is running in the predetermined section.
 以下、第2許可条件にこれら2つの項目を設定している理由を説明する。また、第1所定区間Pを対象とした第1許可条件で設定していた項目(X3)に対応する項目を第2許可条件では設定していない理由を説明する。それらの説明の前提として、図7を参照し、定速制御によって車両100に第2所定区間Qを走行させた場合と、惰行制御によって車両100に第2所定区間Qを走行させた場合とのそれぞれについて、各パラメータの推移の例を説明する。なお、図7は、図3と同様、各パラメータの推移の特徴をあくまで模式的に表したものであり、実際の推移とは必ずしも一致しない。 The reason for setting these two items in the second permission condition is explained below. Also, the reason why the item corresponding to the item (X3) set in the first permission condition targeting the first predetermined section P is not set in the second permission condition will be explained. As a premise for these descriptions, referring to FIG. 7, there are cases where the vehicle 100 is caused to travel the second predetermined section Q by constant speed control and where the vehicle 100 is caused to travel the second predetermined section Q by coasting control. An example of transition of each parameter will be described for each. As in FIG. 3, FIG. 7 only schematically shows the characteristics of the transition of each parameter, and does not necessarily match the actual transition.
 先ず、定速制御の場合の各パラメータの推移を説明する。図7の(b)の二点鎖線で示すように、定速制御を実施する場合、第2所定区間Qの開始地点Q1から終了地点Q4まで、車速Vを設定速度VSに維持することになる。そして、図7の(a)の二点鎖線で示すように、登坂路ではモータジェネレータ10に駆動力を出力させ、降坂路ではモータジェネレータ10に発電させる。それに伴い、図7の(d)の二点鎖線で示すように、登坂路ではバッテリ30からモータジェネレータ10に電力が供給されてバッテリ30の蓄電量SOCが減少する。一方で、その後の降坂路ではモータジェネレータ10からバッテリ30に電力が供給されてバッテリ30の蓄電量SOCが増加する。そうした電力の授受に伴い、図7の(e)の二点鎖線で示すように、登坂路及び降坂路の双方において、第2所定区間Qで発生する電気エネルギ損失Eの積算値は増加していく。また、図7の(c)の二点鎖線で示すように、第2所定区間Qの開始地点Q1から終了地点Q4まで、車両100が設定速度VSで走行するのに伴う走行抵抗に応じた走行抵抗損失Dが累積していく。 First, the transition of each parameter in the case of constant speed control will be explained. As indicated by the two-dot chain line in FIG. 7B, when performing constant speed control, the vehicle speed V is maintained at the set speed VS from the start point Q1 to the end point Q4 of the second predetermined section Q. . Then, as indicated by the two-dot chain line in FIG. 7A, the motor generator 10 is caused to output driving force on an uphill road, and the motor generator 10 is caused to generate power on a downhill road. Along with this, as indicated by a two-dot chain line in (d) of FIG. 7, electric power is supplied from the battery 30 to the motor generator 10 on the uphill road, and the state of charge SOC of the battery 30 decreases. On the other hand, on the subsequent downhill road, electric power is supplied from the motor generator 10 to the battery 30 and the state of charge SOC of the battery 30 increases. Along with the transfer of electric power, as indicated by the two-dot chain line in FIG. go. Further, as indicated by the two-dot chain line in (c) of FIG. 7, from the start point Q1 of the second predetermined section Q to the end point Q4, the vehicle 100 runs at the set speed VS, and the running resistance corresponding to the running resistance is increased. Resistance loss D accumulates.
 次に、惰行制御によって第2所定区間Qを走行させた場合の各パラメータの推移を説明する。なお、第1所定区間Pの場合と同様、第2所定区間Qの開始地点Q1での車速Vは設定速度VSである。図7の(a)の実線で示すように、惰行制御を行う場合、モータジェネレータ10は、第2所定区間Qの開始地点Q1から終了地点Q4まで駆動力を出力しないし発電もしない。そのため、図7の(b)の実線で示すように、登坂路では、最下地点Q1から最上地点Q2に向けて徐々に車速Vが減少していく。そして、登坂路の最上地点Q2では、車速Vが設定速度VSより低くなる。この後の平坦路を経て、降坂路では徐々に車速Vが増加していく。第2許可条件の項目(Y2)との関連で、最終的には降坂路の最下地点Q4よりも手前で車速Vは設定速度VSよりも高くなるもものの、第2所定区間Qのうちの大部分において車速Vは設定速度VSを下回る。それに伴い、図7の(c)の実線で示すように、第2所定区間Qで発生する走行抵抗損失Dの積算値は、車速Vが設定速度VSである定常制御の場合よりも小さくなる。第1所定区間Pの場合と同様、惰行制御を行う場合、バッテリ30及びモータジェネレータ10間では電力の授受が無いに等しい。そのため、図7の(d)の実線で示すように、バッテリ30の蓄電量SOCは、第2所定区間Qの開始地点Q1から終了地点Q4まで略同じ値のままである。そして、図7の(e)の実線で示すように、第2所定区間Qで発生する電気エネルギ損失Eの積算値は略0(零)のままである。 Next, the transition of each parameter when the second predetermined section Q is traveled by coasting control will be described. As in the case of the first predetermined section P, the vehicle speed V at the starting point Q1 of the second predetermined section Q is the set speed VS. As indicated by the solid line in FIG. 7(a), when coasting control is performed, the motor generator 10 neither outputs driving force nor generates power from the start point Q1 to the end point Q4 of the second predetermined section Q. Therefore, as indicated by the solid line in FIG. 7(b), on the uphill road, the vehicle speed V gradually decreases from the lowest point Q1 toward the highest point Q2. At the highest point Q2 of the uphill road, the vehicle speed V becomes lower than the set speed VS. After that, the vehicle speed V gradually increases on a downhill road after passing through a flat road. In connection with the item (Y2) of the second permission condition, although the vehicle speed V eventually becomes higher than the set speed VS before the lowest point Q4 of the downhill road, Most of the time the vehicle speed V is below the set speed VS. As a result, as indicated by the solid line in FIG. 7(c), the integrated value of the running resistance loss D occurring in the second predetermined section Q becomes smaller than in the steady state control in which the vehicle speed V is the set speed VS. As in the case of the first predetermined section P, when coasting control is performed, there is virtually no exchange of electric power between the battery 30 and the motor generator 10 . Therefore, as indicated by the solid line in (d) of FIG. 7, the state of charge SOC of the battery 30 remains substantially the same from the start point Q1 to the end point Q4 of the second predetermined section Q. Then, as indicated by the solid line in FIG. 7(e), the integrated value of the electrical energy loss E that occurs in the second predetermined section Q remains approximately 0 (zero).
 定速制御と惰行制御との上記のような特徴を踏まえ、第2所定区間Qを対象とした第2許可条件として、項目(Y1)(Y2)を設定している理由を説明する。また、第1所定区間Pを対象とした第1許可条件の項目(X3)に対応する項目を第2許可条件では設定していない理由を説明する。 Based on the above characteristics of constant speed control and coasting control, the reason why items (Y1) and (Y2) are set as the second permission condition for the second predetermined section Q will be explained. Also, the reason why the item corresponding to the item (X3) of the first permission condition targeting the first predetermined section P is not set in the second permission condition will be explained.
 先ず、項目(Y1)について説明する。
 上記のとおり、第2所定区間Qで惰行制御を実施した場合、登坂路の最上地点Q2での車速Vは、設定速度VSよりも低くなる。このときの車速Vが設定速度VSに対して過度に低い場合、乗員が違和感を覚えるおそれがある。そこで、第2許可条件の一つとして、設定速度VSから、登坂路の最上地点Q2での車速Vの予測値である第1速度予測値B1を減じた値が第2差分判定値V2未満である、という項目(Y1)を定めている。このことにより、乗員が違和感を覚えるおそれのない場合にのみ、惰行制御を行うことができる。
First, item (Y1) will be described.
As described above, when the coasting control is performed in the second predetermined section Q, the vehicle speed V at the highest point Q2 of the uphill road becomes lower than the set speed VS. If the vehicle speed V at this time is excessively low relative to the set speed VS, the occupant may feel uncomfortable. Therefore, as one of the second permission conditions, the value obtained by subtracting the first speed prediction value B1, which is the prediction value of the vehicle speed V at the top point Q2 of the uphill road, from the set speed VS is less than the second difference judgment value V2. There is an item (Y1) defined. As a result, the coasting control can be performed only when the occupant does not feel uncomfortable.
 次に、項目(Y2)について説明する。
 上記のとおり、第2所定区間Qで惰行制御を行った場合、降坂路の最上地点Q3での車速Vは、設定速度VSよりも低くなる。この後、車両100が降坂路を進んでいくと、車速Vは徐々に増加する。このとき、仮に降坂路の勾配が小さかったり降坂路の距離が短かったりすると、降坂路の最下地点Q4に到達した時点での車速Vが設定速度VSよりも低いままのことがあり得る。この場合、例えば降坂路の最下地点Q4に到達した後も惰行制御を継続したときに、仮に降坂路の最下地点Q4の後に登坂路が続いていると、車速Vが過度に低くなるおそれがある。この場合、降坂路の最下地点Q4に続く登坂路では、惰行制御を中断せざるを得なくなる。このような事態を避けるべく、第2許可条件の項目の一つとして、降坂路の最下地点Q4での車速Vの予測値である第2速度予測値B2が設定速度VSよりも大きい、という項目(Y2)を定めている。項目(Y2)を定めることで、第2所定区間Qの後における制御内容の制約を極力排除できる。
Next, item (Y2) will be described.
As described above, when coasting control is performed in the second predetermined section Q, the vehicle speed V at the highest point Q3 of the downhill road becomes lower than the set speed VS. Thereafter, as the vehicle 100 proceeds downhill, the vehicle speed V gradually increases. At this time, if the slope of the downhill road is small or the distance of the downhill road is short, the vehicle speed V may remain lower than the set speed VS when the vehicle reaches the lowest point Q4 of the downhill road. In this case, for example, when the coasting control is continued even after reaching the lowest point Q4 of the downhill road, if the uphill road continues after the lowest point Q4 of the downhill road, the vehicle speed V may become excessively low. There is In this case, the coasting control must be interrupted on the uphill road following the lowest point Q4 of the downhill road. In order to avoid such a situation, one of the items of the second permission condition is that the second speed prediction value B2, which is the predicted value of the vehicle speed V at the lowest point Q4 on the downhill road, is greater than the set speed VS. Item (Y2) is defined. By defining the item (Y2), restrictions on the control content after the second predetermined section Q can be eliminated as much as possible.
 次に、第1許可条件の項目(X3)に対応する項目を第2許可条件では設定していない理由を説明する。
 上記のとおり、項目(X3)は、惰行制御のほうが定常制御よりもエネルギ損失が少ないという条件を規定するものである。この後説明するとおり、第2所定区間Qの場合、この条件は必然的に満たされる。そのため、第2許可条件では、この項目(X3)に対応する項目を設定していない。以下、第2所定区間Qで項目(X3)が必ず満たされる理由を説明する。
Next, the reason why the item corresponding to the item (X3) of the first permission condition is not set in the second permission condition will be explained.
As described above, item (X3) defines the condition that coasting control has less energy loss than steady control. As will be explained later, for the second predetermined interval Q, this condition is necessarily satisfied. Therefore, no item corresponding to this item (X3) is set in the second permission condition. The reason why the second predetermined section Q always satisfies the item (X3) will be described below.
 項目(X3)は、第1選択処理のステップS170の判定内容と対応しており、走行抵抗損失差ΔDと電気エネルギ損失差ΔEとの大小関係で表されている。このステップS170の判定を第2所定区間Qに適用してみる。その前提として、先ず、第2所定区間Qを対象として、第1選択処理のステップS150と同様の走行抵抗損失差ΔDを導出する。ここで、図7で説明したとおり、第2所定区間Qで惰行制御を実行した場合、当該第2所定区間Qのうちの大部分において車速Vが設定速度VSを下回る。そして、それに伴い、惰行制御に伴う走行抵抗損失Dの積算値は、定常制御に伴う走行抵抗損失Dの積算値よりも小さくなる。したがって、走行抵抗損失差ΔDを導出すると、すなわち、惰行制御に伴う走行抵抗損失Dの積算値から定常制御に伴う走行抵抗損失Dの積算値を減算すると、その値は負になる。 Item (X3) corresponds to the determination content of step S170 of the first selection process, and is represented by the magnitude relationship between the running resistance loss difference ΔD and the electrical energy loss difference ΔE. The determination in step S170 is applied to the second predetermined section Q. As a premise, first, for the second predetermined section Q, the running resistance loss difference ΔD is derived in the same manner as in step S150 of the first selection process. Here, as described with reference to FIG. 7, when coasting control is performed in the second predetermined section Q, the vehicle speed V falls below the set speed VS in most of the second predetermined section Q. Along with this, the integrated value of the running resistance loss D associated with the coasting control becomes smaller than the integrated value of the running resistance loss D associated with the steady control. Therefore, when the running resistance loss difference ΔD is derived, that is, when the integrated value of the running resistance loss D due to the steady control is subtracted from the integrated value of the running resistance loss D due to the coasting control, the value becomes negative.
 次に、第2所定区間Qを対象として、第1選択処理のステップS160と同様の電気エネルギ損失差ΔEを導出する。図7で説明したとおり、定常制御時には電気エネルギ損失Eが相当に発生するが、惰行制御時には電気エネルギ損失Eが発生しないに等しい。したがって、電気エネルギ損失差ΔEを導出すると、すなわち、定速制御に伴う電気エネルギ損失Eの積算値から惰行制御に伴う電気エネルギ損失Eの積算値を減算すると、その値は正になる。 Next, for the second predetermined section Q, the electrical energy loss difference ΔE is derived in the same manner as in step S160 of the first selection process. As described with reference to FIG. 7, a considerable electrical energy loss E occurs during steady-state control, but almost no electrical energy loss E occurs during coasting control. Therefore, when the electrical energy loss difference ΔE is derived, that is, when the integrated value of electrical energy loss E due to coasting control is subtracted from the integrated value of electrical energy loss E due to constant speed control, the value becomes positive.
 上記のとおり、走行抵抗損失差ΔDが負であり、電気エネルギ損失差ΔEが正であることから、ステップS170の判定はNOにならない。つまり、第2所定区間Qを対象とした場合、第1選択処理のステップS170で判定していた項目(X3)の内容は必ず成立する。換言すると、第2所定区間Qでは、車速Vが設定速度VSを下回ることに伴い走行抵抗損失Dが小さくなることで、惰行制御のほうが定常制御よりもエネルギ損失が必然的に少なくなる。そのため、第2所定区間Qについては、惰行制御の許可条件の項目に、項目(X3)に対応する項目を設定していない。この場合、第2選択処理では、エネルギ損失に係る各パラメータを算出したり、それらを比較したりする処理、すなわち第1選択処理のステップS150~S170の処理が不要になる。したがって、その分だけ処理回路51の処理の負担を抑えることができる。 As described above, the running resistance loss difference ΔD is negative and the electrical energy loss difference ΔE is positive, so the determination in step S170 is not NO. That is, when the second predetermined section Q is targeted, the content of the item (X3) determined in step S170 of the first selection process is always established. In other words, in the second predetermined section Q, the running resistance loss D becomes smaller as the vehicle speed V falls below the set speed VS, so the coasting control inevitably results in less energy loss than the steady control. Therefore, for the second predetermined section Q, the item corresponding to the item (X3) is not set in the item of the conditions for permitting the coasting control. In this case, in the second selection process, the processes of calculating parameters related to energy loss and comparing them, that is, the processes of steps S150 to S170 of the first selection process are not required. Therefore, the processing load of the processing circuit 51 can be reduced accordingly.
 以上のような理由に因り、第2許可条件として、項目(Y1)(Y2)の2つのみを設定している。そして、これら項目(Y1)(Y2)が成立するのであれば、エネルギ損失の少ない惰行制御を実施することになる。エネルギ損失の少ない惰行制御を実施することで、車両100の走行時の電力消費を極力抑えることができる。また、項目(Y1)(Y2)が成立しない場合、平準化制御を行う。平準化制御では、登坂路においてモータジェネレータ10から相応に駆動力を出力させることから、登坂路の最上地点Q2での車速Vが設定速度VSよりも過度低くなることはない。また、平準化制御では、降坂路においてモータジェネレータ10で相応に発電して車両100に回生制動力を発生させる。したがって、降坂路の最下地点Q4での車速Vを設定速度VSに戻せる。 For the above reasons, only two items (Y1) and (Y2) are set as the second permission conditions. Then, if these items (Y1) and (Y2) are satisfied, coasting control with less energy loss will be performed. Power consumption during running of the vehicle 100 can be suppressed as much as possible by performing coasting control with little energy loss. If the items (Y1) and (Y2) are not established, leveling control is performed. In the leveling control, the motor generator 10 outputs a corresponding driving force on the uphill road, so the vehicle speed V at the highest point Q2 of the uphill road does not become excessively lower than the set speed VS. Further, in the leveling control, the motor generator 10 generates power correspondingly on a downhill road to generate regenerative braking force in the vehicle 100 . Therefore, the vehicle speed V at the lowest point Q4 on the downhill road can be returned to the set speed VS.
 <変更例>
 上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
<Change example>
The above embodiment can be implemented with the following modifications. The above embodiments and the following modifications can be combined with each other within a technically consistent range.
 ・第1差分判定値V1の定め方は、上記実施形態の例に限定されない。乗員の乗り心地のみならず、他の制御との関連も含めて、必要な観点から適切な値を定めればよい。第2差分判定値V2についても同様である。すなわち、第1差分判定値V1は、第2差分判定値V2と同じ値であってもよいし、第2差分判定値V2とは異なる値であってもよい。 · The method of determining the first difference determination value V1 is not limited to the example of the above embodiment. An appropriate value may be determined from a necessary viewpoint including not only the comfort of the passenger but also the relationship with other controls. The same applies to the second difference determination value V2. That is, the first difference determination value V1 may be the same value as the second difference determination value V2, or may be a value different from the second difference determination value V2.
 ・第1速度予測値の導出手法は、上記実施形態の例に限定されない。第1坂路の終了地点での車速Vの予測値として適切な値を導出できるのであれば、導出手法は問わない。第2速度予測値についても同様である。 · The method of deriving the first speed prediction value is not limited to the example of the above embodiment. Any derivation method can be used as long as an appropriate value can be derived as the predicted value of the vehicle speed V at the end point of the first slope. The same is true for the second speed prediction value.
 ・惰行制御に伴う走行抵抗損失Dの予測値D1の導出手法は、上記実施形態の例に限定に限定されない。当該予測値D1として適切な値を導出できるのであれば、導出手法は問わない。定常制御に伴う走行抵抗損失Dの予測値D2についても同様である。 · The method of deriving the predicted value D1 of the running resistance loss D associated with coasting control is not limited to the example of the above embodiment. Any derivation method can be used as long as an appropriate value can be derived as the predicted value D1. The same applies to the predicted value D2 of the running resistance loss D associated with steady control.
 ・惰行制御に伴う電気エネルギ損失Eの予測値E1の導出手法は、上記実施形態の例に限定に限定されない。当該予測値E1として適切な値を算出できるのであれば、導出手法は問わない。定常制御に伴う電気エネルギ損失Eの予測値E2についても同様である。 · The method of deriving the predicted value E1 of the electrical energy loss E associated with coasting control is not limited to the example of the above embodiment. Any derivation method can be used as long as an appropriate value can be calculated as the predicted value E1. The same applies to the predicted value E2 of the electrical energy loss E associated with steady control.
 ・走行抵抗損失差ΔDの導出手法は、上記実施形態の例に限らない。つまり、上記実施形態のように、第1所定区間Pでの走行抵抗損失Dの積算値を導出した上で、それらの差分として走行抵抗損失差ΔDを導出しなくてもよい。例えば、地点毎に惰行制御と定常制御とでの走行抵抗損失Dの差異を導出していってもよい。さらに、例えば、第1所定区間Pのうち、ある特定の領域のみを対象に、惰行制御と定常制御とでの走行抵抗損失Dの差異を導出し、それを走行抵抗損失差ΔDとしてもよい。この場合、それに合わせて、電気エネルギ損失差ΔEの導出の仕方を変えればよい。惰行制御と定常制御とでのエネルギ損失の大小を適切に判断できるのであれば、このような態様も採用可能である。走行抵抗損失差ΔDは、定速制御の実施によって車両100に第1所定区間Pを走行させたと仮定した場合と、惰行制御の実施によって車両100に第1所定区間Pを走行させたと仮定した場合とでの、走行抵抗損失Dの差であればよい。 · The method of deriving the running resistance loss difference ΔD is not limited to the example of the above embodiment. That is, it is not necessary to derive the integrated value of the running resistance loss D in the first predetermined section P and then derive the running resistance loss difference ΔD as the difference between them, as in the above embodiment. For example, the difference in running resistance loss D between coasting control and steady state control may be derived for each point. Further, for example, the difference in running resistance loss D between coasting control and steady control may be derived for only a specific region in the first predetermined section P, and used as the running resistance loss difference ΔD. In this case, the method of deriving the electrical energy loss difference ΔE should be changed accordingly. Such a mode can also be adopted as long as it is possible to appropriately determine the magnitude of energy loss between coasting control and steady-state control. The running resistance loss difference ΔD is calculated when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by performing the constant speed control, and when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by performing the coasting control. and the difference in the running resistance loss D.
 ・上記変更例に記載したとおり、電気エネルギ損失差ΔEの導出の仕方についても、上記実施形態の例に限定されない。電気エネルギ損失差ΔEは、定速制御の実施によって車両100に第1所定区間Pを走行させたと仮定した場合と、惰行制御の実施によって車両100に第1所定区間Pを走行させたと仮定した場合とでの、電気エネルギ損失Eの差であればよい。 · As described in the modified example above, the method of deriving the electrical energy loss difference ΔE is not limited to the example of the above embodiment. The electric energy loss difference ΔE is calculated when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by executing the constant speed control, and when it is assumed that the vehicle 100 is caused to travel the first predetermined section P by executing the coasting control. and the difference in electrical energy loss E between .
 ・平準化制御における所定駆動力KF及び所定発電量RFの導出手法は、上記実施形態の例に限定されない。所定区間の終了地点での車速Vが設定速度VSと等しくなるように、所定駆動力KF及び所定発電量RFが導出されていればよい。さらにいえば、所定駆動力KF及び所定発電量RFは、所定区間の終了地点での車速Vが設定速度VSにならないものでもよい。上記のとおり、電気エネルギ損失Eは、モータジェネレータ10が出力する駆動力又は発電量の2乗に比例する。そのため、所定駆動力KF及び所定発電量RFとして相応に低い値が設定してあれば、過度に大きな電気エネルギ損失Eが生じることを抑制できる。 · The method of deriving the predetermined driving force KF and the predetermined amount of power generation RF in the leveling control is not limited to the example of the above embodiment. It is sufficient that the predetermined driving force KF and the predetermined power generation amount RF are derived so that the vehicle speed V at the end point of the predetermined section becomes equal to the set speed VS. Furthermore, the predetermined driving force KF and the predetermined power generation amount RF may be such that the vehicle speed V at the end point of the predetermined section does not reach the set speed VS. As described above, the electrical energy loss E is proportional to the square of the driving force output by the motor generator 10 or the power generation amount. Therefore, if the predetermined driving force KF and the predetermined power generation amount RF are set to correspondingly low values, it is possible to suppress the occurrence of an excessively large electrical energy loss E.
 ・惰行制御の許可条件が成立しないときに、平準化制御を実施することは必須ではない。すなわち、惰行制御の許可条件が成立しないときに、平準化制御ではなく、定常制御を行ってもよい。定常制御を行った場合、少なくとも、所定区間の開始地点から終了地点まで車速Vを設定速度VSに保つことができる。したがって、所定区間の途中で乗員が違和感を覚えることもないし、所定区間の終了地点で車速Vが設定速度VSからずれることに伴う、他の制御への影響も生じない。 · It is not essential to implement leveling control when the conditions for permitting coasting control are not satisfied. That is, steady control may be performed instead of leveling control when conditions for permitting coasting control are not satisfied. When the steady control is performed, the vehicle speed V can be maintained at the set speed VS at least from the start point to the end point of the predetermined section. Therefore, the occupant does not feel uncomfortable in the middle of the predetermined section, and other controls are not affected by the deviation of the vehicle speed V from the set speed VS at the end point of the predetermined section.
 ・惰行制御の許可条件の内容は、上記実施形態の例に限定されない。例えば、第1所定区間Pを対象とした第1許可条件に関して、項目(X1)~(X3)に代えて、又は加えて他の項目を設定してもよい。項目の数を2つ以下にしてもよい。第1許可条件は、第1速度予測値A1と設定速度VSとの関係、及び、第2速度予測値A2と設定速度VSとの関係を規定したものであればよい。そして、第1許可条件は、当該第1許可条件が成立して惰行走行を実施した際に、第1所定区間Pの終了地点P4まで当該惰行走行を継続できるものであればよい。第2所定区間Qを対象とした第2許可条件についても同様である。例えば、上記実施形態では第1所定区間での第1許可条件として「第2速度予測値A2が設定速度VSよりも小さいこと。」を判定しているが、代わりに「第2速度予測値A2が設定速度VSよりも小さく、所定の下限速度よりも大きいこと。」を判定するようにしても良い。同様に、第2所定区間での第2許可条件として「第2速度予測値B2が設定速度VSよりも大きいこと。」を判定しているが、代わりに「第2速度予測値B2が設定速度VSよりも大きく、所定の上限速度よりも小さいこと。」を判定するようにしても良い。 · The content of the conditions for permitting coasting control is not limited to the example of the above embodiment. For example, regarding the first permission condition targeting the first predetermined section P, other items may be set instead of or in addition to the items (X1) to (X3). The number of items may be two or less. The first permission condition may define the relationship between the first predicted speed value A1 and the set speed VS, and the relationship between the second predicted speed value A2 and the set speed VS. The first permission condition may be any condition as long as the coasting can be continued to the end point P4 of the first predetermined section P when the first permission condition is satisfied and the coasting is performed. The same applies to the second permission condition targeting the second predetermined section Q. For example, in the above embodiment, "the second speed prediction value A2 is smaller than the set speed VS" is determined as the first permission condition in the first predetermined section, but instead "the second speed prediction value A2 is smaller than the set speed VS and larger than a predetermined lower limit speed.". Similarly, as the second permission condition in the second predetermined section, "the second speed prediction value B2 is greater than the set speed VS" is determined. greater than VS and less than a predetermined upper limit speed." may be determined.
 ・所定区間の走行途中で、制御を平準化制御から惰行制御に切り替えてもよい。例えば、所定区間に至る前の段階では惰行制御の許可条件が成立していない場合、所定区間の開始地点から平準化制御が実施される。こうした平準化制御による走行途中でも惰行制御の許可条件が成立したか否かの判定を行うようにしてもよい。そして、許可条件が成立したと判定した場合には、平準化制御を終了させて惰行制御を開始させることになる。 · The control may be switched from the leveling control to the coasting control while the vehicle is traveling in a predetermined section. For example, if conditions for permitting coasting control are not satisfied before reaching a predetermined section, leveling control is performed from the start point of the predetermined section. It may be determined whether or not the conditions for permitting coasting control are satisfied even during traveling under such leveling control. Then, when it is determined that the permission condition is satisfied, the leveling control is ended and the coasting control is started.
 ・上記変更例に記載したとおり、惰行制御を所定区間の開始地点から実施することは必須ではない。惰行制御の実施を何処で開始するかに拘わらず、所定区間の終了地点まで惰行制御を実施すればよい。 · As described in the modification example above, it is not essential to implement the coasting control from the starting point of the predetermined section. Regardless of where the coasting control is started, the coasting control may be executed until the end point of the predetermined section.
 ・上記変更例のように、平準化制御は、必ずしも所定区間の開始地点から終了地点まで実施し続けなくてもよい。平準化制御を所定区間の開始地点から終了地点まで実施し続けない場合でも、当該平準化制御の実行中に、登坂路では一定の所定駆動力KFを保持し、降坂路では一定の所定発電量RFを保持すればよい。 · As in the modification above, the leveling control does not necessarily have to continue from the start point to the end point of the predetermined section. Even if the leveling control is not continuously performed from the start point to the end point of the predetermined section, during the execution of the leveling control, a constant predetermined driving force KF is maintained on the uphill road, and a constant predetermined power generation amount on the downhill road. RF should be maintained.
 ・上記実施形態の第2坂路にあたる登坂路や降坂路の途中で一時停止やカーブ等により定速走行が終了されることが予想される場合、予想される定速制御の終了地点をP4及びQ4と設定しても良い。同様に、上記実施形態の第1坂路にあたる登坂路や降坂路の途中で一時停止やカーブ等により定速走行が終了されることが予想される場合、一時停止やカーブを通過後に定速制御を再開し、設定速度VSに復帰すると予想される地点をP1及びQ1と設定しても良い。 When it is expected that the constant speed running will end due to a temporary stop or a curve on the way of the uphill road or the downhill road corresponding to the second slope in the above embodiment, the predicted end point of the constant speed control is set to P4 and Q4. You can also set Similarly, when it is expected that the constant speed running will end due to a temporary stop or a curve on the way of the uphill road or the downhill road corresponding to the first slope in the above embodiment, the constant speed control is performed after the temporary stop or the curve. P1 and Q1 may be set as points at which the speed is expected to resume and return to the set speed VS.
 ・車両100は、モータジェネレータ10とバッテリ30とを備えた電動車両であれば、車両100の駆動源として内燃機関とモータジェネレータ10とを備えたハイブリッド車両でもよい。 - The vehicle 100 may be an electric vehicle that includes the motor generator 10 and the battery 30, and may be a hybrid vehicle that includes the internal combustion engine and the motor generator 10 as the drive source of the vehicle 100.
 ・惰行制御の許可条件が成立しない場合には平準化制御を実施するのであれば、許可条件は上記実施形態で説明した条件とは異なっていてもよい。
 ・制御装置50の処理回路51は、CPUとROMとを備えて、ソフトウェア処理を実行するものに限らない。すなわち、処理回路51は、以下(a)~(c)の何れかの構成であればよい。
If the leveling control is executed when the conditions for permitting coasting control are not satisfied, the conditions for permitting the coasting control may be different from the conditions described in the above embodiment.
- The processing circuit 51 of the control device 50 is not limited to having a CPU and a ROM and executing software processing. That is, the processing circuit 51 may have any one of the following configurations (a) to (c).
 (a)処理回路51は、コンピュータプログラムに従って各種処理を実行する一つ以上のプロセッサを備えている。プロセッサは、CPU並びに、RAM及びROMなどのメモリを含んでいる。メモリは、処理をCPUに実行させるように構成されたプログラムコード又は指令を格納している。メモリ、すなわちコンピュータ可読媒体は、汎用又は専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含んでいる。 (a) The processing circuit 51 includes one or more processors that execute various processes according to computer programs. The processor includes a CPU and memory such as RAM and ROM. The memory stores program code or instructions configured to cause the CPU to perform processes. Memory, or computer-readable media, includes any available media that can be accessed by a general purpose or special purpose computer.
 (b)処理回路51は、各種処理を実行する一つ以上の専用のハードウェア回路を備えている。専用のハードウェア回路としては、例えば、特定用途向け集積回路、すなわちASIC又はFPGAを挙げることができる。なお、ASICは、「Application Specific Integrated Circuit」の略記である。FPGAは、「Field Programmable Gate Array」の略記である。 (b) The processing circuit 51 includes one or more dedicated hardware circuits for executing various types of processing. Dedicated hardware circuits may include, for example, application specific integrated circuits, ie ASICs or FPGAs. ASIC is an abbreviation for "Application Specific Integrated Circuit". FPGA is an abbreviation for "Field Programmable Gate Array".
 (c)処理回路51は、各種処理の一部をコンピュータプログラムに従って実行するプロセッサと、各種処理のうちの残りの処理を実行する専用のハードウェア回路とを備えている。 (c) The processing circuit 51 includes a processor that executes part of various processes according to a computer program, and a dedicated hardware circuit that executes the rest of the various processes.

Claims (8)

  1.  バッテリ及びモータジェネレータを備える電動車両に適用される車両走行制御装置であって、
     前記車両走行制御装置は、前記電動車両の走行速度を設定速度に基づいて調整すべく前記モータジェネレータを制御する自動速度制御を行うように構成され、
     第1坂路を経た後に第2坂路を経る一連の区間が所定区間であり、前記第1坂路が登坂路及び降坂路のうちの一方の坂路であり、前記第2坂路が他方の坂路であって、
     前記車両走行制御装置は、
     前記自動速度制御の実施中に前記所定区間を前記電動車両が走行する場合、予め定められた許可条件が成立すると、前記所定区間の終了地点まで前記電動車両に惰性走行を行わせるべく前記モータジェネレータを制御するように構成される制御部と、
     前記所定区間内における路面勾配を取得するように構成される情報取得部と、
     前記所定区間で前記電動車両に惰性走行させた場合に、当該電動車両が前記第1坂路の終了地点に到達したときにおける前記走行速度の予測値である第1速度予測値、及び、当該電動車両が前記第2坂路の終了地点に到達したときにおける前記走行速度の予測値である第2速度予測値を、前記路面勾配に基づいて導出するように構成される速度予測値導出部と、を備え、
     前記制御部は、前記第1速度予測値と前記設定速度との関係、及び、前記第2速度予測値と前記設定速度との関係を基に、前記許可条件が成立したか否かを判定するように構成される
     車両走行制御装置。
    A vehicle travel control device applied to an electric vehicle including a battery and a motor generator,
    The vehicle travel control device is configured to perform automatic speed control for controlling the motor generator to adjust the travel speed of the electric vehicle based on a set speed,
    A series of sections passing through the second slope after passing through the first slope is the predetermined section, the first slope is one of the uphill and the downhill, and the second slope is the other slope. ,
    The vehicle travel control device includes:
    When the electric vehicle travels in the predetermined section during the execution of the automatic speed control, the motor generator causes the electric vehicle to coast to the end point of the predetermined section when a predetermined permission condition is satisfied. a controller configured to control
    an information acquisition unit configured to acquire a road surface gradient within the predetermined section;
    A first speed prediction value that is a prediction value of the running speed when the electric vehicle reaches the end point of the first slope when the electric vehicle is caused to coast in the predetermined section, and the electric vehicle. a predicted speed value deriving unit configured to derive a second predicted speed value, which is a predicted value of the traveling speed when the vehicle reaches the end point of the second slope, based on the road surface gradient. ,
    The control unit determines whether or not the permission condition is satisfied based on the relationship between the first predicted speed value and the set speed and the relationship between the second predicted speed value and the set speed. A vehicle travel control device configured to:
  2.  前記第1坂路が登坂路であり、前記第2坂路が降坂路であるとき、前記許可条件は、前記第1速度予測値と前記設定速度との差分が差分判定値未満であること、及び、前記第2速度予測値が前記設定速度よりも大きいことを含む
     請求項1に記載の車両走行制御装置。
    When the first slope is an uphill road and the second slope is a downhill road, the permission condition is that a difference between the first speed prediction value and the set speed is less than a difference judgment value, and The vehicle travel control device according to claim 1, wherein said second predicted speed value is greater than said set speed.
  3.  前記第1坂路が降坂路であり、前記第2坂路が登坂路であるとき、前記許可条件は、前記第1速度予測値と前記設定速度との差分が差分判定値未満であること、及び、前記第2速度予測値が前記設定速度よりも小さいことを含む
     請求項1に記載の車両走行制御装置。
    When the first slope is a descending slope and the second slope is an ascending slope, the permission condition is that a difference between the first speed prediction value and the set speed is less than a difference judgment value; The vehicle travel control device according to claim 1, wherein said second speed prediction value is smaller than said set speed.
  4.  前記自動速度制御は、前記走行速度が前記設定速度よりも小さい場合には、前記バッテリからの給電によって前記モータジェネレータから駆動力を出力させる一方、前記走行速度が前記設定速度よりも大きい場合には、前記モータジェネレータに発電させることによって前記電動車両に回生制動力を付与しつつ当該モータジェネレータで発生した電力によって前記バッテリを充電させる定速制御を含み、
     前記車両走行制御装置は、
     前記定速制御の実施によって前記電動車両に前記所定区間を走行させた場合と、惰性走行によって前記電動車両に前記所定区間を走行させた場合とでの、前記電動車両の走行抵抗に起因するエネルギ損失の差の予測値である走行抵抗損失差を導出するように構成される走行抵抗損失導出部と、
     前記定速制御の実施によって前記電動車両に前記所定区間を走行させたと場合と、惰性走行によって前記電動車両に前記所定区間を走行させた場合とでの、前記バッテリの蓄電量の増減に応じたエネルギ損失の差の予測値である電気エネルギ損失差を導出するように構成される電気エネルギ損失導出部と、をさらに備え、
     前記許可条件は、前記走行抵抗損失差が前記電気エネルギ損失差よりも小さいことを含む
     請求項3に記載の車両走行制御装置。
    In the automatic speed control, when the running speed is lower than the set speed, the driving force is output from the motor generator by power supply from the battery, and when the running speed is higher than the set speed, and constant speed control for applying regenerative braking force to the electric vehicle by causing the motor generator to generate power while charging the battery with electric power generated by the motor generator,
    The vehicle travel control device includes:
    Energy resulting from running resistance of the electric vehicle when the electric vehicle is caused to travel the predetermined section by performing the constant speed control and when the electric vehicle is caused to travel the predetermined section by inertia running a running resistance loss derivation unit configured to derive a running resistance loss difference that is a predicted value of the difference in loss;
    according to the increase or decrease in the amount of electricity stored in the battery when the electric vehicle is caused to travel the predetermined section by performing the constant speed control and when the electric vehicle is caused to travel the predetermined section by inertia running; an electrical energy loss derivation unit configured to derive an electrical energy loss difference that is a predicted value of the energy loss difference;
    The vehicle running control device according to claim 3, wherein the permission condition includes that the running resistance loss difference is smaller than the electrical energy loss difference.
  5.  前記自動速度制御は、登坂路を前記電動車両が走行する際における前記モータジェネレータの駆動力を所定駆動力に保持し、降坂路を前記電動車両が走行する際における前記モータジェネレータの発電量を所定発電量に保持する平準化制御を含み、
     前記制御部は、前記許可条件が成立しない状況下で前記電動車両に前記所定区間を走行させる際、前記平準化制御を実施するように構成される
     請求項1~請求項4のうち何れか一項に記載の車両走行制御装置。
    The automatic speed control maintains the driving force of the motor generator at a predetermined driving force when the electric vehicle travels on an uphill road, and maintains the power generation amount of the motor generator at a predetermined driving force when the electric vehicle travels on a downhill road. Including leveling control to hold the power generation amount,
    The control unit is configured to perform the leveling control when the electric vehicle is caused to travel in the predetermined section under a situation in which the permission condition is not satisfied. 10. A vehicle travel control device according to claim 1.
  6.  前記制御部は、前記平準化制御において、前記所定区間の終了地点での前記走行速度が前記設定速度と等しくなるように、前記所定駆動力及び前記所定発電量を設定するように構成される
     請求項5に記載の車両走行制御装置。
    In the leveling control, the control unit is configured to set the predetermined driving force and the predetermined power generation amount so that the travel speed at the end point of the predetermined section becomes equal to the set speed. Item 6. A vehicle running control device according to Item 5.
  7.  バッテリ及びモータジェネレータを備える電動車両に適用される車両走行制御装置であって、
     前記車両走行制御装置は、前記電動車両の走行速度を設定速度に基づいて調整すべく前記モータジェネレータを制御するように構成され、
     第1坂路を経た後に第2坂路を経る一連の区間が所定区間であり、前記第1坂路が登坂路及び降坂路のうちの一方の坂路であり、前記第2坂路が他方の坂路であって、
     前記車両走行制御装置は、
     前記所定区間のうちの登坂路を前記電動車両が走行する際における前記モータジェネレータの駆動力が所定駆動力で保持され、前記所定区間のうちの前記降坂路を前記電動車両が走行する際における前記モータジェネレータの発電量が所定発電量に保持されるように、前記モータジェネレータを制御するように構成される制御部を備え、
     前記制御部は、前記所定区間の終了地点での前記走行速度が前記設定速度と等しくなるように前記所定駆動力及び前記所定発電量を設定するように構成される
     車両走行制御装置。
    A vehicle travel control device applied to an electric vehicle including a battery and a motor generator,
    The vehicle travel control device is configured to control the motor generator to adjust the travel speed of the electric vehicle based on a set speed,
    A series of sections passing through the second slope after passing through the first slope is the predetermined section, the first slope is one of the uphill and the downhill, and the second slope is the other slope. ,
    The vehicle travel control device includes:
    The driving force of the motor generator when the electric vehicle travels on the uphill road in the predetermined section is held at a predetermined driving force, and the driving force of the motor generator when the electric vehicle travels on the downhill road in the predetermined section is maintained. a control unit configured to control the motor generator so that the power generation amount of the motor generator is maintained at a predetermined power generation amount;
    The control unit is configured to set the predetermined driving force and the predetermined power generation amount such that the travel speed at the end point of the predetermined section is equal to the set speed.
  8.  バッテリ及びモータジェネレータを備える電動車両に適用される車両走行制御方法であって、
     第1坂路を経た後に第2坂路を経る一連の区間が所定区間であり、前記第1坂路が登坂路及び降坂路のうちの一方の坂路であり、前記第2坂路が他方の坂路であって、
     前記車両走行制御方法は、
     前記電動車両の走行速度を設定速度に基づいて調整すべく前記モータジェネレータを制御する自動速度制御を行うことと、
     前記自動速度制御の実施中に前記所定区間を前記電動車両が走行する場合、予め定められた許可条件が成立すると、前記所定区間の終了地点まで前記電動車両に惰性走行を行わせるべく前記モータジェネレータを制御することと、
     前記所定区間内における路面勾配を取得することと、
     前記所定区間で前記電動車両に惰性走行させた場合に、当該電動車両が前記第1坂路の終了地点に到達したときにおける前記走行速度の予測値である第1速度予測値、及び、当該電動車両が前記第2坂路の終了地点に到達したときにおける前記走行速度の予測値である第2速度予測値を、前記路面勾配に基づいて導出することと、を含み、
     前記モータジェネレータを制御することは、前記第1速度予測値と前記設定速度との関係、及び、前記第2速度予測値と前記設定速度との関係を基に、前記許可条件が成立したか否かを判定することを含む
     車両走行制御方法。
    A vehicle travel control method applied to an electric vehicle including a battery and a motor generator,
    A series of sections passing through the second slope after passing through the first slope is the predetermined section, the first slope is one of the uphill and the downhill, and the second slope is the other slope. ,
    The vehicle travel control method includes:
    performing automatic speed control for controlling the motor generator to adjust the running speed of the electric vehicle based on a set speed;
    When the electric vehicle travels in the predetermined section during the execution of the automatic speed control, the motor generator causes the electric vehicle to coast to the end point of the predetermined section when a predetermined permission condition is satisfied. and
    obtaining a road surface gradient within the predetermined section;
    A first speed prediction value that is a prediction value of the running speed when the electric vehicle reaches the end point of the first slope when the electric vehicle is caused to coast in the predetermined section, and the electric vehicle. deriving a second predicted speed value, which is a predicted value of the running speed when reaches the end point of the second slope, based on the road surface gradient;
    Controlling the motor generator determines whether the permission condition is satisfied based on the relationship between the first predicted speed value and the set speed and the relationship between the second predicted speed value and the set speed. A vehicle cruise control method including determining whether
PCT/JP2022/042860 2021-11-25 2022-11-18 Vehicle travel control device and vehicle travel control method WO2023095725A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-190791 2021-11-25
JP2021190791A JP2023077505A (en) 2021-11-25 2021-11-25 Travelling control device of vehicle

Publications (1)

Publication Number Publication Date
WO2023095725A1 true WO2023095725A1 (en) 2023-06-01

Family

ID=86539696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042860 WO2023095725A1 (en) 2021-11-25 2022-11-18 Vehicle travel control device and vehicle travel control method

Country Status (2)

Country Link
JP (1) JP2023077505A (en)
WO (1) WO2023095725A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131273A (en) * 2010-12-20 2012-07-12 Daimler Ag Control device of hybrid electric vehicle
JP2020006920A (en) * 2018-07-12 2020-01-16 いすゞ自動車株式会社 Vehicular control device, and vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131273A (en) * 2010-12-20 2012-07-12 Daimler Ag Control device of hybrid electric vehicle
JP2020006920A (en) * 2018-07-12 2020-01-16 いすゞ自動車株式会社 Vehicular control device, and vehicle

Also Published As

Publication number Publication date
JP2023077505A (en) 2023-06-06

Similar Documents

Publication Publication Date Title
KR101986472B1 (en) A driving force control method and a driving force control apparatus
KR101964026B1 (en) A driving force control method and a driving force control apparatus
KR101713734B1 (en) Method and apparatus of controlling hybrid electric vehicle
JP6193020B2 (en) Hybrid vehicle constant speed running control system and method
US11021153B2 (en) Control apparatus of electric vehicle
KR101588789B1 (en) Method and apparatus of controlling creep torque for vehicle including driving motor
US9067583B2 (en) Vehicle travel control system
US9199590B2 (en) Vehicle control device, vehicle, and vehicle control method
KR102032214B1 (en) Method for energy management in a hybrid vehicle
JP2005253126A (en) Brake controller of hybrid vehicle and vehicle mounting that controller
JP2015059639A (en) Control device for vehicle
JP6646260B2 (en) Vehicle drive system
JP6640453B2 (en) Vehicle control device
KR20170011162A (en) Method and apparatus of controlling output voltage of dc converter for vehicle including driving motor
US10232852B2 (en) Travel control apparatus
JP7149093B2 (en) vehicle power system
CN112937308B (en) Travel control device, travel control method, non-transitory storage medium, and vehicle
JP7180536B2 (en) vehicle
JP6435789B2 (en) Output control device for hybrid drive vehicle
KR20200029788A (en) Method for controlling deceleration of environmentally friendly vehicle using front driving environment information
JP2013233051A (en) Regeneration control device for fuel cell vehicle
JP5803594B2 (en) Output characteristic control method
KR101876091B1 (en) System and Method for determining Regen Mode
EP3647139B1 (en) Travel assistance apparatus for hybrid vehicle
KR102539294B1 (en) Apparatus and method for controlling regenerative braking in coasting of hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898508

Country of ref document: EP

Kind code of ref document: A1