WO2023095494A1 - Coating rubber composition for reinforcement material for tires, and tire - Google Patents

Coating rubber composition for reinforcement material for tires, and tire Download PDF

Info

Publication number
WO2023095494A1
WO2023095494A1 PCT/JP2022/038826 JP2022038826W WO2023095494A1 WO 2023095494 A1 WO2023095494 A1 WO 2023095494A1 JP 2022038826 W JP2022038826 W JP 2022038826W WO 2023095494 A1 WO2023095494 A1 WO 2023095494A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rubber composition
parts
tire
rubber
Prior art date
Application number
PCT/JP2022/038826
Other languages
French (fr)
Japanese (ja)
Inventor
ひとみ 日高
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2023563557A priority Critical patent/JPWO2023095494A1/ja
Publication of WO2023095494A1 publication Critical patent/WO2023095494A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a coating rubber composition for a tire reinforcing material and a tire.
  • Patent Document 1 discloses a compound containing a rubber component, a sulfenamide-based vulcanization accelerator having a specific structure, a di- or tri-substituted benzene ring having at least one hydroxyl group as a substituent, and a methylene group donor. and a cobalt compound. It is disclosed that it has excellent adhesion to metal reinforcing materials.
  • tires are subjected to various heat histories during manufacturing and use, and are subject to thermal deterioration before the end of their product life.
  • the present inventors have investigated and found that the rubber composition used for the conventional coating rubber for the reinforcing material of tires has insufficient heat deterioration resistance, and in particular, has poor crack resistance after heat deterioration. It turns out that there is room for improvement.
  • an object of the present invention is to solve the above-described problems of the prior art and to provide a coating rubber composition for a tire reinforcing material which is excellent in heat deterioration resistance and crack resistance after heat deterioration.
  • Another object of the present invention is to provide a tire having excellent durability using such a coating rubber composition for tire reinforcement.
  • the main structure of the coating rubber composition for tire reinforcement and the tire of the present invention which solves the above problems, is as follows.
  • the rubber component contains 60 to 100% by mass of isoprene skeleton rubber
  • the content of the cobalt compound in terms of cobalt is 0.01 parts by mass or more with respect to 100 parts by mass of the rubber component
  • the amine antioxidant has the following general formula (1): [Wherein, R 1 and R 2 are each independently a monovalent saturated hydrocarbon group], A coating rubber composition for a tire reinforcing material, wherein the content of the amine anti-aging agent is 0.1 parts by mass or more and 0.9 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • R 1 and R 2 in the general formula (1) are each independently a linear or cyclic monovalent saturated hydrocarbon group having 1 to 20 carbon atoms; 2.
  • a tire comprising a reinforcing material coated with the coating rubber composition for a tire reinforcing material according to any one of [1] to [10].
  • the coating rubber composition for the reinforcing material of a tire which is excellent in heat deterioration resistance and crack resistance after heat deterioration can be provided. Further, according to the present invention, it is possible to provide a tire having excellent durability using such a coating rubber composition for tire reinforcement.
  • FIG. 1 is a cross-sectional view of one embodiment of the tire of the present invention.
  • the coating rubber composition for tire reinforcement and the tire of the present invention will be illustrated and described in detail below based on the embodiments thereof.
  • the coating rubber composition for tire reinforcing material of the present invention (hereinafter sometimes abbreviated as “coating rubber composition” or “rubber composition”) comprises a rubber component, carbon black, a cobalt compound, an amine and a system anti-aging agent.
  • the rubber component contains 60 to 100% by mass of isoprene skeleton rubber, and the cobalt-equivalent content of the cobalt compound is 0 per 100 parts by mass of the rubber component.
  • the amine antioxidant has the following general formula (1): [In the formula, R 1 and R 2 are each independently a monovalent saturated hydrocarbon group], and the content of the amine antioxidant is 0 per 100 parts by mass of the rubber component. .1 parts by mass or more and 0.9 parts by mass or less.
  • the coating rubber composition of the present invention contains a cobalt compound, and the content of the cobalt compound in terms of cobalt is 0.01 parts by mass or more with respect to 100 parts by mass of the rubber component. can be ensured.
  • cobalt compounds tend to reduce the heat deterioration resistance of the rubber composition, particularly the crack resistance after heat deterioration.
  • the coating rubber composition of the present invention contains 0.1 parts by mass or more of the amine antioxidant represented by the general formula (1) with respect to 100 parts by mass of the rubber component. The heat deterioration resistance of is improved, and as a result, the crack resistance after heat deterioration can be improved. Therefore, the coating rubber composition of the present invention is excellent in heat deterioration resistance (in particular, crack resistance after heat deterioration).
  • the coating rubber composition of the present invention comprises a rubber component that provides rubber elasticity to the composition. Further, the rubber component contains an isoprene skeleton rubber, and the content of the isoprene skeleton rubber in the rubber component is 60 to 100% by mass, preferably 80 to 100% by mass. When the content of the isoprene skeleton rubber in the rubber component is 60% by mass or more, the durability of the coating rubber composition is improved.
  • the isoprene-skeletal rubber is a rubber having isoprene units as a main skeleton, and specific examples thereof include natural rubber (NR), synthetic isoprene rubber (IR), and the like.
  • the rubber component preferably contains 1 to 20% by mass, more preferably 10 to 20% by mass, of synthetic isoprene rubber (IR) as the isoprene skeleton rubber.
  • IR synthetic isoprene rubber
  • the content of the isoprene rubber in the rubber component is 1% by mass or more, the workability in kneading the coating rubber composition is improved, and when it is 20% by mass or less, the synthetic isoprene rubber in the rubber component is reduced.
  • the content of the isoprene skeleton rubber other than the above is increased, and the durability of the coating rubber composition is further improved.
  • the rubber component may contain rubbers other than isoprene skeleton rubber, and such other rubbers are preferably diene rubbers such as styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR). etc.
  • SBR styrene-butadiene rubber
  • BR butadiene rubber
  • CR chloroprene rubber
  • the total content of the isoprene skeleton rubber and the diene rubber other than the isoprene skeleton rubber in the rubber component is preferably 80% by mass or more, more preferably 90% by mass or more, and may be 100% by mass.
  • the rubber component may be used alone or in a blend of two or more.
  • Carbon black The coating rubber composition of the present invention contains carbon black.
  • the carbon black can reinforce the rubber composition and improve the reinforcing properties of the rubber composition.
  • Examples of carbon black include, but are not limited to, GPF, FEF, HAF, ISAF, and SAF grade carbon blacks. These carbon blacks may be used singly or in combination of two or more.
  • the carbon black preferably has a dibutyl phthalate (DBP) absorption of 50 to 100 cm 3 /100 g.
  • DBP dibutyl phthalate
  • the carbon black with a relatively low structure having a DBP absorption of 50 to 100 cm 3 /100 g it is possible to achieve both reinforcing properties and appropriate flexibility of the rubber composition, and to obtain better crack resistance. be able to.
  • the DBP absorption is 50 cm 3 /100 g or more, the reinforcing properties of the rubber composition are improved. Flexibility is ensured without excessively high toughness, and better crack resistance can be obtained.
  • the DBP absorption amount of the carbon black is preferably 90 cm 3 /100 g or less, more preferably 80 cm 3 /100 g or less.
  • the carbon black having a dibutyl phthalate (DBP) absorption of 50 to 100 cm 3 /100 g any hard carbon produced by the oil furnace method can be used.
  • DBP dibutyl phthalate
  • HAF grade carbon black is preferable from the viewpoint of realizing more excellent low-loss property and crack resistance.
  • the structure of carbon black refers to the size of a structure (aggregate of carbon black particles) formed as a result of fusing and connecting spherical carbon black particles.
  • the DBP absorption amount of carbon black refers to the amount (cm 3 ) of DBP (dibutyl phthalate) absorbed by 100 g of carbon black, and can be measured according to JIS K 6217-4 (2008). .
  • the content of the carbon black is preferably 30 parts by mass or more and preferably 65 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the content of carbon black is 30 parts by mass or more with respect to 100 parts by mass of the rubber component, the reinforcing properties and crack resistance of the rubber composition are improved, and the content of carbon black is reduced to 100 parts by mass of the rubber component.
  • the amount is 65 parts by mass or less, the low-loss property of the rubber composition is improved.
  • the content of the carbon black is more preferably 35 parts by mass or more, and even more preferably 45 parts by mass or more with respect to 100 parts by mass of the rubber component, from the viewpoint of reinforcing properties and crack resistance of the rubber composition.
  • 60 parts by mass or less is more preferable.
  • the coating rubber composition of the present invention contains a cobalt compound.
  • the cobalt compound can improve the adhesion of the rubber composition to the reinforcing material.
  • the cobalt compound is preferably an organic acid cobalt salt or a composite salt in which a part of the organic acid of the organic acid cobalt salt is replaced with boric acid or the like.
  • the organic acid cobalt salt may be saturated, unsaturated, linear, or branched.
  • the content of the cobalt compound in terms of cobalt is 0.01 parts by mass or more and preferably 0.5 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the cobalt-equivalent content of the cobalt compound is 0.01 parts by mass or more with respect to 100 parts by mass of the rubber component, the adhesiveness of the rubber composition to the reinforcing material can be sufficiently ensured.
  • the cobalt-equivalent content of the cobalt compound is 0.5 parts by mass or less with respect to 100 parts by mass of the rubber component, deterioration in heat deterioration resistance (durability to deterioration) of the rubber composition can be suppressed.
  • the content of the cobalt compound in terms of cobalt is preferably 0.05 parts by mass or more with respect to 100 parts by mass of the rubber component from the viewpoint of adhesion to the reinforcing material of the rubber composition. From the viewpoint of heat deterioration resistance (durability to deterioration) of the product, it is more preferably 0.4 parts by mass or less, and even more preferably 0.3 parts by mass or less.
  • the coating rubber composition of the present invention contains an amine anti-aging agent, and the amine anti-aging agent is represented by the general formula (1).
  • the amine anti-aging agent represented by the general formula (1) is a general-purpose anti-aging agent N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (anti-aging agent 6PPD). Although it also contains a phenylenediamine moiety, it differs from the antioxidant 6PPD in that it has no double bond other than the phenylenediamine moiety.
  • the amine anti-aging agent represented by the general formula (1) improves the heat deterioration resistance of the rubber composition, suppresses the decrease in elongation at break (EB) and tensile strength (TB) after heat deterioration, Moreover, it has the effect
  • R 1 and R 2 are each independently a monovalent saturated hydrocarbon group.
  • R 1 and R 2 may be the same or different, but are preferably the same from the viewpoint of synthesis.
  • the monovalent saturated hydrocarbon group preferably has 1 to 20 carbon atoms, more preferably 3 to 10 carbon atoms, and particularly preferably 6 and 7 carbon atoms.
  • R 1 and R 2 in the above general formula (1) are each independently a chain having 1 to 20 carbon atoms or A cyclic monovalent saturated hydrocarbon group is preferred.
  • Examples of the monovalent saturated hydrocarbon group include an alkyl group and a cycloalkyl group.
  • the alkyl group may be linear or branched, and the cycloalkyl group may further include an alkyl group as a substituent. etc. may be combined.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, 1,2-dimethylbutyl group, 1,3- dimethylbutyl group, 2,3-dimethylbutyl group, n-pentyl group, isopentyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,2 -dimethylpentyl group, 1,3-dimethylpentyl group, 1,4-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,4-dimethylpentyl group, n-hexyl group, Examples include 1-methylhexyl group, 2-methylhexyl group, various
  • 1,4-dimethylpentyl group is preferred.
  • the cycloalkyl group include a cyclopentyl group, a methylcyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group, a cyclooctyl group, etc.
  • a cyclohexyl group is preferred.
  • amine antioxidant represented by the general formula (1) examples include N,N'-bis(1,4-dimethylpentyl)-p-phenylenediamine (antiaging agent 77PD), N, N'-bis(1-ethyl-3-methylpentyl)-p-phenylenediamine, N,N'-dicyclohexyl-p-phenylenediamine (antiaging agent CCPD) and the like, among these, N,N' -Bis(1,4-dimethylpentyl)-p-phenylenediamine (antiaging agent 77PD), N,N'-dicyclohexyl-p-phenylenediamine (CCPD) are preferred, and N,N'-bis(1,4- Dimethylpentyl)-p-phenylenediamine (antiaging agent 77PD) is particularly preferred.
  • the amine anti-aging agents may be used singly or in combination of two or more.
  • the content of the amine anti-aging agent is 0.1 parts by mass or more and 0.9 parts by mass or less with respect to 100 parts by mass of the rubber component. If the content of the amine antioxidant is less than 0.1 parts by mass with respect to 100 parts by mass of the rubber component, the heat deterioration resistance of the rubber composition cannot be sufficiently ensured, and after heat deterioration A decrease in crack resistance cannot be sufficiently suppressed. Further, when the content of the amine anti-aging agent is 0.9 parts by mass or less with respect to 100 parts by mass of the rubber component, adverse effects on rubber physical properties (heat buildup, etc.) other than heat deterioration resistance can be suppressed. and is more suitable for tire applications.
  • the content of the amine anti-aging agent is preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component from the viewpoint of heat deterioration resistance and crack resistance after thermal deterioration.
  • the coating rubber composition of the present invention may contain a quinoline antioxidant.
  • the quinoline anti-aging agent is an anti-aging agent having a quinoline moiety or a derivative thereof (such as a dihydroquinoline moiety).
  • the quinoline anti-aging agent has the effect of improving the heat deterioration resistance of the rubber composition and suppressing the decrease in elongation at break (EB) and tensile strength (TB) after heat deterioration.
  • the quinoline antioxidant preferably has a dihydroquinoline moiety, more preferably a 1,2-dihydroquinoline moiety.
  • Specific examples of the quinoline antioxidant include a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline (antioxidant TMDQ), 6-ethoxy-2,2,4-trimethyl-1 ,2-dihydroquinoline, 6-anilino-2,2,4-trimethyl-1,2-dihydroquinoline and the like.
  • the quinoline antioxidant preferably contains a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline (antiaging agent TMDQ).
  • a quinoline anti-aging agent containing a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline is said to be highly effective in improving the heat deterioration resistance of a rubber composition, and is less likely to discolor the rubber composition. It also has advantages.
  • the polymer of 2,2,4-trimethyl-1,2-dihydroquinoline includes dimers, trimers and tetramers of 2,2,4-trimethyl-1,2-dihydroquinoline. mentioned.
  • the content of the quinoline antioxidant is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of the quinoline antioxidant is 0.1 parts by mass or more with respect to 100 parts by mass of the rubber component, the heat deterioration resistance of the rubber composition is improved, and the rubber composition is cut after heat deterioration. A decrease in elongation (EB) and tensile strength (TB) can be further suppressed.
  • the content of the quinoline antioxidant is 5 parts by mass or less with respect to 100 parts by mass of the rubber component, it is possible to suppress adverse effects on rubber physical properties (heat buildup, etc.) other than heat deterioration resistance. , more suitable for tire applications.
  • the content of the quinoline antioxidant is more preferably 0.3 parts by mass or more, still more preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the rubber component. From the viewpoint of affecting other rubber physical properties, it is more preferably 4 parts by mass or less, and even more preferably 3 parts by mass or less, relative to 100 parts by mass of the rubber component.
  • the coating rubber composition of the present invention preferably does not contain silica or has a silica content of 1 part by mass or less per 100 parts by mass of the rubber component. Since silica deteriorates the workability in kneading the rubber composition, if it does not contain silica, or if the content of silica is 1 part by mass or less with respect to 100 parts by mass of the rubber component, the rubber composition Workability in kneading can be improved.
  • thermoplastic resin The coating rubber composition of the present invention preferably does not contain a thermoplastic resin.
  • the thermoplastic resin makes the rubber composition prone to creep and reduces the durability against repeated input, so if the rubber composition does not contain a thermoplastic resin, the durability of the rubber composition can be improved.
  • thermoplastic resins include C5 - based resins, C5 - C9 -based resins, C9 - based resins, dicyclopentadiene resins, terpenephenol resins, terpene resins, rosin resins, and alkylphenol resins.
  • the coating rubber composition of the present invention preferably contains a thermosetting resin.
  • the thermosetting resin can reduce the hysteresis loss of the rubber composition (improve the low-loss property), improve the crack resistance, and improve the durability. Therefore, when the coating rubber composition contains a thermosetting resin, the loss reduction property of the rubber composition can be improved, and the crack resistance (durability) can be further improved.
  • a phenol resin is preferable as the thermosetting resin.
  • a phenolic resin preferably together with a methylene donor described below
  • the phenol resin is not particularly limited and can be appropriately selected according to the required performance. Examples include those produced by condensation reaction of phenols such as phenol, cresol, resorcinol, tert-butylphenol, or mixtures thereof with formaldehyde in the presence of an acid catalyst such as hydrochloric acid or oxalic acid.
  • modified phenolic resins can be used, for example, modified with oils such as rosin oil, tall oil, cashew oil, linoleic acid, oleic acid, and linolenic acid.
  • oils such as rosin oil, tall oil, cashew oil, linoleic acid, oleic acid, and linolenic acid.
  • about a phenol resin, 1 type can also be included independently and can also be included in mixture of multiple types.
  • the content of the thermosetting resin is preferably 2 to 10 parts by mass, more preferably 3 to 7 parts by mass, based on 100 parts by mass of the rubber component.
  • the coating rubber composition of the present invention contains a phenolic resin as a thermosetting resin, it preferably further contains a methylene donor.
  • a melamine donor as a curing agent for the phenolic resin, it is possible to improve the reinforcing property of the rubber composition while maintaining the low loss property of the rubber composition.
  • the methylene donor is not particularly limited and can be appropriately selected according to the required performance.
  • hexamethylenetetramine hexamethoxymethylolmelamine, pentamethoxymethylolmelamine, hexamethoxymethylmelamine, pentamethoxymethylmelamine, hexaethoxymethylmelamine, hexakis-(methoxymethyl)melamine, N,N′,N′′-trimethyl-N ,N′,N′′-trimethylolmelamine, N,N′,N′′-trimethylolmelamine, N-methylolmelamine, N,N′-(methoxymethyl)melamine, N,N′,N′′-tributyl-N ,N′,N′′-trimethylolmelamine, paraformaldehyde, etc.
  • methylene donors hexamethylenetetramine, hexamethoxymethylmelamine, hexamethoxymethylolmelamine and paraformaldehyde are preferred. These methylene donors are preferred. may be used alone or in combination.
  • the ratio of the content of the phenol resin to the content of the methylene donor is 0 from the viewpoint of achieving both low loss property and crack resistance at a higher level. .6 to 7, more preferably 1 to 5.
  • the ratio of the content of the phenolic resin to the content of the methylene donor is 0.6 or more, the crack resistance is further improved, and when the ratio is 7 or less, the low-loss property is further improved.
  • the coating rubber composition of the present invention preferably does not contain 2,2′-methylenebis(4-methyl-6-tert-butylphenol) (anti-aging agent o-MBp14). Without the antioxidant o-MBp14, the rubber composition is more environmentally friendly.
  • the coating rubber composition of the present invention preferably does not contain N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (antiaging agent 6PPD). Without the antioxidant 6PPD, the rubber composition becomes more environmentally friendly.
  • the coating rubber composition of the present invention may contain wax.
  • the ozone resistance of the rubber composition is improved.
  • the wax include paraffin wax and microcrystalline wax.
  • the content of the wax is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • the wax content is 0.1 parts by mass or more with respect to 100 parts by mass of the rubber component, the ozone resistance of the rubber composition is further improved.
  • the wax content is 5 parts by mass or less with respect to 100 parts by mass of the rubber component, the effect on rubber physical properties other than ozone resistance is small.
  • the content of the wax is more preferably 0.5 parts by mass or more, and even more preferably 1 part by mass or more, with respect to 100 parts by mass of the rubber component. From the viewpoint of influence, it is more preferably 4 parts by mass or less, and even more preferably 3 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the coating rubber composition of the present invention preferably contains sulfur.
  • sulfur When the rubber composition contains sulfur, it becomes vulcanizable, and the durability (in particular, elongation at break (EB) and tensile strength (TB)) of the rubber composition is improved.
  • sulfur various types of sulfur can be used, but ordinary sulfur (soluble sulfur (powder sulfur), etc.) is preferable to insoluble sulfur, and oil treated sulfur, etc. are also preferable.
  • insoluble sulfur is sulfur insoluble in carbon disulfide (amorphous polymeric sulfur), and soluble sulfur (powder sulfur) is sulfur soluble in carbon disulfide.
  • the sulfur content is preferably in the range of 0.1 to 10 parts by mass, more preferably in the range of 1 to 5 parts by mass, per 100 parts by mass of the rubber component. If the sulfur content is 0.1 parts by mass or more per 100 parts by mass of the rubber component, the durability of the vulcanized rubber can be ensured, and if it is 10 parts by mass or less per 100 parts by mass of the rubber component , sufficient rubber elasticity can be ensured.
  • the coating rubber composition of the present invention contains, if necessary, in addition to the rubber component, carbon black, cobalt compound, amine-based antioxidant, quinoline-based antioxidant, thermosetting resin, wax, sulfur, etc. described above.
  • Various components commonly used in the rubber industry such as fillers other than carbon black and silica (calcium carbonate, etc.), silane coupling agents, softeners, processing aids, surfactants, organic acids (stearic acid etc.), zinc oxide (zinc white), a vulcanization accelerator, a vulcanizing agent other than sulfur, and the like may be appropriately selected and contained within a range that does not impair the object of the present invention. Commercially available products can be suitably used as these compounding agents.
  • the amine anti-aging agent represented by the general formula (1) may be supported on any carrier.
  • the amine anti-aging agent represented by the general formula (1) may be carried on an inorganic filler such as calcium carbonate.
  • the amine anti-aging agent represented by the general formula (1) may form a masterbatch together with the rubber component.
  • the rubber component used in forming the masterbatch is not particularly limited, and may be diene rubber such as natural rubber (NR), ethylene-propylene-diene rubber (EPDM), or the like.
  • the amine anti-aging agent represented by the general formula (1) may be a salt with an organic acid.
  • the organic acid used for forming the salt is not particularly limited, but stearic acid and the like can be mentioned.
  • the method for producing the coating rubber composition is not particularly limited. can be produced by blending, kneading, heating, extrusion, or the like. Further, vulcanized rubber can be obtained by vulcanizing the obtained rubber composition.
  • the kneading conditions are not particularly limited, and various conditions such as the input volume of the kneading device, the rotation speed of the rotor, the ram pressure, the kneading temperature, the kneading time, the type of the kneading device, etc. It can be selected as appropriate.
  • the kneading device include Banbury mixers, intermixes, kneaders, rolls, etc., which are usually used for kneading rubber compositions.
  • heating conditions there are no particular restrictions on the heating conditions, and various conditions such as the heating temperature, heating time, and heating device can be appropriately selected according to the purpose.
  • the heating device include a heating roll machine or the like which is usually used for heating the rubber composition.
  • the extrusion conditions are also not particularly limited, and various conditions such as extrusion time, extrusion speed, extrusion equipment, and extrusion temperature can be appropriately selected according to the purpose.
  • the extrusion device include an extruder or the like that is usually used for extrusion of a rubber composition.
  • the extrusion temperature can be determined appropriately.
  • a molding vulcanizer with a mold used for vulcanization of a rubber composition can be used.
  • the temperature is, for example, about 100 to 190.degree.
  • the reinforcing material to which the coating rubber composition of the present invention is applied is preferably made of metal, that is, the reinforcing material is preferably a metal reinforcing material.
  • a metal reinforcing material-rubber composite By coating a metal reinforcing material with a coating rubber composition (coating rubber), a metal reinforcing material-rubber composite can be formed.
  • the metal reinforcing material for example, steel, iron, stainless steel, lead, aluminum, copper, brass, bronze, Monel metal alloy, nickel, zinc, or other metals in the form of wire, plate, or chain. mentioned.
  • a steel cord is particularly preferable as the metal reinforcing material. The diameter of the steel cord is appropriately selected depending on the application.
  • the metal reinforcing material may have a plated layer on its surface.
  • the plated layer include a brass plated layer, a zinc plated layer, and a copper plated layer.
  • a brass-plated layer is preferable from the viewpoint of adhesiveness to an object (coating rubber).
  • the ratio of copper and zinc in the brass plating layer is preferably in the range of 60:40 to 70:30 on a mass basis.
  • the tire of the present invention is characterized by comprising a reinforcing material coated with the coating rubber composition for a tire reinforcing material described above. Since the tire of the present invention includes a reinforcing material coated with the above coating rubber composition for a reinforcing material for a tire, it has high heat deterioration resistance, particularly high crack resistance after heat deterioration, and excellent durability.
  • the tire of the present invention is preferably for heavy loads, that is, it is preferably a tire for heavy loads. Since the thickness of each part of a heavy-duty tire is thick, it is easy for parts to become hot during vulcanization molding. Since the total running distance tends to be long, high heat deterioration resistance, particularly crack resistance after heat deterioration, is required. On the other hand, by applying the above-mentioned coating rubber composition that is excellent in heat deterioration resistance (especially crack resistance after heat deterioration), durability after heat deterioration (especially crack resistance) is maintained at a high level. can do.
  • the tire of the present invention is particularly preferable as a heavy-duty tire, for example, for trucks, buses, off-the-road (for example, construction vehicles, mining, etc.), small trucks (light trucks), industrial vehicles, and aircraft. It can be suitably used as a tire for heavy loads such as
  • FIG. 1 is a cross-sectional view of one embodiment of the tire of the present invention.
  • the tire shown in FIG. 1 includes a pair of bead portions 1, a pair of sidewall portions 2, a tread portion 3, and a carcass (preferably a radial A carcass 5 and a belt 6 made up of two belt layers disposed in the tread portion 3 (more specifically, disposed outside the crown portion of the carcass 5 in the tire radial direction).
  • a carcass preferably a radial A carcass 5 and a belt 6 made up of two belt layers disposed in the tread portion 3 (more specifically, disposed outside the crown portion of the carcass 5 in the tire radial direction).
  • the carcass 5 is composed of one carcass ply, and includes a main body portion extending in a toroidal shape between a pair of bead cores 4 embedded in the bead portion 1, and each bead core. 4, which is wound radially outward from the inside to the outside in the tire width direction, but in the tire of the present invention, the number of plies and the structure of the carcass 5 are not limited to this.
  • the carcass ply that constitutes the carcass 5 is formed by covering a plurality of reinforcing cords (reinforcing materials such as steel cords and organic fiber cords) with a covering rubber.
  • the belt 6 of the tire shown in FIG. 1 is composed of two belt layers, and each belt layer is usually a rubberized layer of reinforcing cords (reinforcing materials) extending obliquely with respect to the tire equatorial plane.
  • the belt is composed of a rubber-coated layer of steel cords (reinforcing material), and further, two belt layers are laminated so that the reinforcing cords constituting the belt layers intersect with each other across the tire equatorial plane. 6.
  • the belt 6 in FIG. 1 is composed of two belt layers, but in the tire of the present invention, the number of belt layers constituting the belt 6 may be one or more, and is not limited to this. do not have.
  • the belt 6, the carcass 5, the bead core 4 and the like are suitable examples of the tire member to which the reinforcing material (reinforcing material-rubber composite) coated with the coating rubber composition is applied.
  • the tire of the present invention may be obtained by vulcanizing after molding using an unvulcanized rubber composition, or using a semi-vulcanized rubber that has undergone a pre-vulcanization step or the like. After molding, it may be obtained by further vulcanization.
  • the tire of the present invention may be either a pneumatic tire or a solid tire.
  • the gas to be filled in the pneumatic tire may be normal air or air with adjusted oxygen partial pressure, or an inert gas such as nitrogen, argon, or helium. can be done.
  • Examples 1 to 7 and Comparative Example 1> (Preparation of rubber composition) A rubber composition is produced according to the formulation shown in Table 1. The resulting rubber composition is evaluated for elongation at break (EB) and tensile strength (TB) after heat deterioration and crack resistance after heat deterioration by the following methods.
  • EB elongation at break
  • TB tensile strength
  • Elongation at break (EB) and tensile strength (TB) after thermal aging A rubber composition is vulcanized to prepare a vulcanized rubber test piece. Next, the vulcanized rubber test piece is left at 100 ° C. for 24 hours to be thermally deteriorated, and a tensile test is performed on the test piece after thermal deterioration in accordance with JIS K 6251 to determine the elongation at break after thermal deterioration.
  • EB and tensile strength (TB) are measured, and indexed with the elongation at break (EB) and tensile strength (TB) after heat deterioration of Comparative Example 1 as 100, respectively.
  • the larger the index value the higher the elongation at break (EB) and tensile strength (TB) after heat deterioration, indicating that the resistance to heat deterioration (durability after heat deterioration) is high.
  • a vulcanized rubber is obtained by vulcanizing the rubber composition of each sample.
  • the vulcanized rubber is left at 120° C. for 7 days for thermal deterioration, punched out to obtain a test piece of 2 mm ⁇ 50 mm ⁇ 6 mm, and a small hole is made in the center of the test piece to form an initial crack.
  • stress is repeatedly applied to the test piece in the long side direction under conditions of a stress of 2.0 MPa, a frequency of 6 Hz, and an ambient temperature of 80°C. For each sample, the number of repetitions from the application of repeated stress until the test piece breaks is measured, and the common logarithm of the number of repetitions is calculated.
  • the measurement test until breakage is performed four times for each sample, the common logarithms are calculated, and the average thereof is taken as the average common logarithm.
  • the evaluation is shown as an index when the average common logarithm of Comparative Example 1 is 100, and the larger the average common logarithm of the sample, the better the crack growth resistance.
  • Example 8 and Comparative Example 2> (Preparation of rubber composition) A rubber composition was produced according to the formulation shown in Table 2. The obtained rubber composition was evaluated for retention of elongation at break (EB) after heat deterioration and crack resistance after heat deterioration by the following methods.
  • EB elongation at break
  • the retention rate of the elongation at break (EB) after heat deterioration was calculated according to the following formula.
  • Retention rate of elongation at break after heat deterioration (EB) elongation at break after heat deterioration (EB) / initial elongation at break (EB) ⁇ 100 (%)
  • the retention rate of the elongation at break (EB) after heat deterioration in Comparative Example 2 was set to 100, and indicated as an index. The larger the index value, the higher the retention of elongation at break (EB) after heat deterioration, indicating that the resistance to heat deterioration (durability after heat deterioration) is high.
  • the measurement test until breakage was performed four times for each sample, and the common logarithm was calculated, and the average thereof was taken as the average common logarithm.
  • the evaluation is shown as an index when the average common logarithm of Comparative Example 1 is 100, and the larger the average common logarithm of the sample, the better the crack growth resistance.
  • the content of cobalt compounds and the content in terms of cobalt are shown in parentheses *13 Sulfur: Eastman MFG Japan Co., Ltd., trade name “CRYTEX HS OT20”
  • Example 8 From Table 2, it can be seen that the rubber composition of Example 8 according to the present invention has a higher retention of elongation at break (EB) after heat deterioration than the rubber composition of Comparative Example 2. Moreover, it can be seen that the rubber composition of Example 8 has improved crack resistance after heat deterioration as compared with the rubber composition of Comparative Example 2.
  • EB elongation at break

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention addresses the problem of providing a coating rubber composition for reinforcement materials for tires, the coating rubber composition having excellent thermal deterioration resistance and excellent cracking resistance after thermal deterioration. A means for solving the problem according to the present invention is a coating rubber composition for reinforcement materials for tires, the coating rubber composition being characterized by containing a rubber component, carbon black, a cobalt compound and an amine-based anti-aging agent, while being also characterized in that: the rubber component contains 60% by mass to 100% by mass of an isoprene skeleton rubber; the content of the cobalt compound in terms of cobalt is 0.01 part by mass or more relative to 100 parts by mass of the rubber component; the amine-based anti-aging agent is represented by general formula (1) (wherein each of R1 and R2 independently represents a monovalent saturated hydrocarbon group); and the content of the amine-based anti-aging agent is 0.1 part by mass to 0.9 part by mass relative to 100 parts by mass of the rubber component.

Description

タイヤの補強材用コーティングゴム組成物、及びタイヤCOATING RUBBER COMPOSITION FOR TIRE REINFORCEMENT, AND TIRE
 本発明は、タイヤの補強材用コーティングゴム組成物、及びタイヤに関するものである。 The present invention relates to a coating rubber composition for a tire reinforcing material and a tire.
 従来、タイヤや工業用ベルト等のゴム製品には、スチールコード等の金属補強材が用いられている。また、該金属補強材との接着耐久性やゴム劣化耐久性に優れるゴム組成物について、様々な検討がされてきている。例えば、下記特許文献1には、ゴム成分と、特定構造のスルフェンアミド系加硫促進剤と、少なくとも1つの水酸基を置換基にもつ2又は3置換ベンゼン環を含む化合物と、メチレン基供与体と、コバルト化合物と、を含有してなるゴム組成物が開示されており、該ゴム組成物は、ゴムやけの発生が格段に少なく、劣化耐久性に優れ、高弾性率であり、スチールコード等の金属補強材との接着性に優れることが開示されている。 Conventionally, metal reinforcing materials such as steel cords are used for rubber products such as tires and industrial belts. In addition, various investigations have been made on rubber compositions that are excellent in adhesion durability to the metal reinforcing material and rubber deterioration durability. For example, Patent Document 1 below discloses a compound containing a rubber component, a sulfenamide-based vulcanization accelerator having a specific structure, a di- or tri-substituted benzene ring having at least one hydroxyl group as a substituent, and a methylene group donor. and a cobalt compound. It is disclosed that it has excellent adhesion to metal reinforcing materials.
特開2010-37546号公報JP 2010-37546 A
 一方、タイヤは、製造時や使用中に、様々な熱履歴を受け、製品寿命を全うするまでに熱劣化を受けるため、タイヤの各部材には、耐熱劣化性が要求される。この点に関して、本発明者が検討したところ、従来のタイヤの補強材用のコーティングゴムに用いられるゴム組成物は、耐熱劣化性が不十分であり、特には、熱劣化後の耐亀裂性に改善の余地があることが分かった。 On the other hand, tires are subjected to various heat histories during manufacturing and use, and are subject to thermal deterioration before the end of their product life. With respect to this point, the present inventors have investigated and found that the rubber composition used for the conventional coating rubber for the reinforcing material of tires has insufficient heat deterioration resistance, and in particular, has poor crack resistance after heat deterioration. It turns out that there is room for improvement.
 そこで、本発明は、上記従来技術の問題を解決し、耐熱劣化性及び熱劣化後の耐亀裂性に優れるタイヤの補強材用コーティングゴム組成物を提供することを課題とする。
 また、本発明は、かかるタイヤの補強材用コーティングゴム組成物を用いた、耐久性に優れるタイヤを提供することを更なる課題とする。
Accordingly, an object of the present invention is to solve the above-described problems of the prior art and to provide a coating rubber composition for a tire reinforcing material which is excellent in heat deterioration resistance and crack resistance after heat deterioration.
Another object of the present invention is to provide a tire having excellent durability using such a coating rubber composition for tire reinforcement.
 上記課題を解決する本発明のタイヤの補強材用コーティングゴム組成物、及びタイヤの要旨構成は、以下の通りである。 The main structure of the coating rubber composition for tire reinforcement and the tire of the present invention, which solves the above problems, is as follows.
[1] ゴム成分と、カーボンブラックと、コバルト化合物と、アミン系老化防止剤と、を含み、
 前記ゴム成分が、イソプレン骨格ゴムを60~100質量%含み、
 前記コバルト化合物のコバルト換算での含有量が、前記ゴム成分100質量部に対して0.01質量部以上であり、
 前記アミン系老化防止剤が、下記一般式(1):
Figure JPOXMLDOC01-appb-C000002
[式中、R及びRは、それぞれ独立して一価の飽和炭化水素基である]で表され、
 前記アミン系老化防止剤の含有量が、前記ゴム成分100質量部に対して0.1質量部以上0.9質量部以下であることを特徴とする、タイヤの補強材用コーティングゴム組成物。
[1] containing a rubber component, carbon black, a cobalt compound, and an amine anti-aging agent,
The rubber component contains 60 to 100% by mass of isoprene skeleton rubber,
The content of the cobalt compound in terms of cobalt is 0.01 parts by mass or more with respect to 100 parts by mass of the rubber component,
The amine antioxidant has the following general formula (1):
Figure JPOXMLDOC01-appb-C000002
[Wherein, R 1 and R 2 are each independently a monovalent saturated hydrocarbon group],
A coating rubber composition for a tire reinforcing material, wherein the content of the amine anti-aging agent is 0.1 parts by mass or more and 0.9 parts by mass or less with respect to 100 parts by mass of the rubber component.
[2] 前記カーボンブラックは、ジブチルフタレート(DBP)吸収量が50~100cm/100gである、[1]に記載のタイヤの補強材用コーティングゴム組成物。 [2] The coating rubber composition for a tire reinforcing material according to [1], wherein the carbon black has a dibutyl phthalate (DBP) absorption of 50 to 100 cm 3 /100 g.
[3] 上記一般式(1)中のR及びRが、それぞれ独立して炭素数1~20の鎖状又は環状の一価の飽和炭化水素基である、[1]又は[2]に記載のタイヤの補強材用コーティングゴム組成物。 [3] [1] or [2], wherein R 1 and R 2 in the general formula (1) are each independently a linear or cyclic monovalent saturated hydrocarbon group having 1 to 20 carbon atoms; 2. The coating rubber composition for a tire reinforcing material according to 1.
[4] 前記ゴム成分は、前記イソプレン骨格ゴムとして、合成イソプレンゴムを1~20質量%含む、[1]~[3]のいずれか一つに記載のタイヤの補強材用コーティングゴム組成物。 [4] The coating rubber composition for a tire reinforcing material according to any one of [1] to [3], wherein the rubber component contains 1 to 20% by mass of synthetic isoprene rubber as the isoprene skeleton rubber.
[5] シリカを含まない、又は、シリカの含有量が、前記ゴム成分100質量部に対して1質量部以下である、[1]~[4]のいずれか一つに記載のタイヤの補強材用コーティングゴム組成物。 [5] The tire reinforcement according to any one of [1] to [4], which does not contain silica or has a silica content of 1 part by mass or less with respect to 100 parts by mass of the rubber component Coating rubber composition for lumber.
[6] 熱可塑性樹脂を含まない、[1]~[5]のいずれか一つに記載のタイヤの補強材用コーティングゴム組成物。 [6] The coating rubber composition for a tire reinforcing material according to any one of [1] to [5], which does not contain a thermoplastic resin.
[7] 熱硬化性樹脂を含む、[1]~[6]のいずれか一つに記載のタイヤの補強材用コーティングゴム組成物。 [7] The coating rubber composition for a tire reinforcing material according to any one of [1] to [6], which contains a thermosetting resin.
[8] 前記カーボンブラックの含有量が、前記ゴム成分100質量部に対して65質量部以下である、[1]~[7]のいずれか一つに記載のタイヤの補強材用コーティングゴム組成物。 [8] The coating rubber composition for a tire reinforcing material according to any one of [1] to [7], wherein the carbon black content is 65 parts by mass or less with respect to 100 parts by mass of the rubber component. thing.
[9] 2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)を含まない、[1]~[8]のいずれか一つに記載のタイヤの補強材用コーティングゴム組成物。 [9] The coating rubber composition for a tire reinforcing material according to any one of [1] to [8], which does not contain 2,2'-methylenebis(4-methyl-6-tert-butylphenol).
[10] N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミンを含まない、[1]~[9]のいずれか一つに記載のタイヤの補強材用コーティングゴム組成物。 [10] The coating rubber composition for a tire reinforcing material according to any one of [1] to [9], which does not contain N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine. thing.
[11] [1]~[10]のいずれか一つに記載のタイヤの補強材用コーティングゴム組成物で被覆した補強材を具えることを特徴とする、タイヤ。 [11] A tire comprising a reinforcing material coated with the coating rubber composition for a tire reinforcing material according to any one of [1] to [10].
[12] 重荷重用である、[11]に記載のタイヤ。 [12] The tire according to [11], which is for heavy loads.
 本発明によれば、耐熱劣化性及び熱劣化後の耐亀裂性に優れるタイヤの補強材用コーティングゴム組成物を提供することができる。
 また、本発明によれば、かかるタイヤの補強材用コーティングゴム組成物を用いた、耐久性に優れるタイヤを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the coating rubber composition for the reinforcing material of a tire which is excellent in heat deterioration resistance and crack resistance after heat deterioration can be provided.
Further, according to the present invention, it is possible to provide a tire having excellent durability using such a coating rubber composition for tire reinforcement.
本発明のタイヤの一実施態様の断面図である。1 is a cross-sectional view of one embodiment of the tire of the present invention; FIG.
 以下に、本発明のタイヤの補強材用コーティングゴム組成物、及びタイヤを、その実施形態に基づき、詳細に例示説明する。 The coating rubber composition for tire reinforcement and the tire of the present invention will be illustrated and described in detail below based on the embodiments thereof.
<タイヤの補強材用コーティングゴム組成物>
 本発明のタイヤの補強材用コーティングゴム組成物(以下、「コーティングゴム組成物」や「ゴム組成物」と略記することがある。)は、ゴム成分と、カーボンブラックと、コバルト化合物と、アミン系老化防止剤と、を含む。そして、本発明のコーティングゴム組成物においては、前記ゴム成分が、イソプレン骨格ゴムを60~100質量%含み、前記コバルト化合物のコバルト換算での含有量が、前記ゴム成分100質量部に対して0.01質量部以上であり、前記アミン系老化防止剤が、下記一般式(1):
Figure JPOXMLDOC01-appb-C000003
[式中、R及びRは、それぞれ独立して一価の飽和炭化水素基である]で表され、前記アミン系老化防止剤の含有量が、前記ゴム成分100質量部に対して0.1質量部以上0.9質量部以下であることを特徴とする。
<Coating rubber composition for tire reinforcing material>
The coating rubber composition for tire reinforcing material of the present invention (hereinafter sometimes abbreviated as "coating rubber composition" or "rubber composition") comprises a rubber component, carbon black, a cobalt compound, an amine and a system anti-aging agent. In the coating rubber composition of the present invention, the rubber component contains 60 to 100% by mass of isoprene skeleton rubber, and the cobalt-equivalent content of the cobalt compound is 0 per 100 parts by mass of the rubber component. .01 parts by mass or more, and the amine antioxidant has the following general formula (1):
Figure JPOXMLDOC01-appb-C000003
[In the formula, R 1 and R 2 are each independently a monovalent saturated hydrocarbon group], and the content of the amine antioxidant is 0 per 100 parts by mass of the rubber component. .1 parts by mass or more and 0.9 parts by mass or less.
 本発明のコーティングゴム組成物は、コバルト化合物を含み、該コバルト化合物のコバルト換算での含有量がゴム成分100質量部に対して0.01質量部以上であることで、補強材との接着性を確保することができる。一方、コバルト化合物は、ゴム組成物の耐熱劣化性、特には、熱劣化後の耐亀裂性を低下させる傾向がある。これに対し、本発明のコーティングゴム組成物は、上記一般式(1)で表されるアミン系老化防止剤をゴム成分100質量部に対して0.1質量部以上含むことで、ゴム組成物の耐熱劣化性が向上し、その結果として、熱劣化後の耐亀裂性を向上させることができる。
 従って、本発明のコーティングゴム組成物は、耐熱劣化性(特には、熱劣化後の耐亀裂性)に優れる。
The coating rubber composition of the present invention contains a cobalt compound, and the content of the cobalt compound in terms of cobalt is 0.01 parts by mass or more with respect to 100 parts by mass of the rubber component. can be ensured. On the other hand, cobalt compounds tend to reduce the heat deterioration resistance of the rubber composition, particularly the crack resistance after heat deterioration. On the other hand, the coating rubber composition of the present invention contains 0.1 parts by mass or more of the amine antioxidant represented by the general formula (1) with respect to 100 parts by mass of the rubber component. The heat deterioration resistance of is improved, and as a result, the crack resistance after heat deterioration can be improved.
Therefore, the coating rubber composition of the present invention is excellent in heat deterioration resistance (in particular, crack resistance after heat deterioration).
(ゴム成分)
 本発明のコーティングゴム組成物は、ゴム成分を含み、該ゴム成分が、組成物にゴム弾性をもたらす。また、前記ゴム成分は、イソプレン骨格ゴムを含み、ゴム成分中の該イソプレン骨格ゴムの含有率は、60~100質量%であり、80~100質量%であることが好ましい。ゴム成分中のイソプレン骨格ゴムの含有率が60質量%以上であると、コーティングゴム組成物の耐久性が向上する。ここで、イソプレン骨格ゴムは、イソプレン単位を主たる骨格とするゴムであり、具体的には、天然ゴム(NR)、合成イソプレンゴム(IR)等が挙られる。
(rubber component)
The coating rubber composition of the present invention comprises a rubber component that provides rubber elasticity to the composition. Further, the rubber component contains an isoprene skeleton rubber, and the content of the isoprene skeleton rubber in the rubber component is 60 to 100% by mass, preferably 80 to 100% by mass. When the content of the isoprene skeleton rubber in the rubber component is 60% by mass or more, the durability of the coating rubber composition is improved. Here, the isoprene-skeletal rubber is a rubber having isoprene units as a main skeleton, and specific examples thereof include natural rubber (NR), synthetic isoprene rubber (IR), and the like.
 前記ゴム成分は、前記イソプレン骨格ゴムとして、合成イソプレンゴム(IR)を1~20質量%含むことが好ましく、10~20質量%含むことが更に好ましい。ゴム成分中の合成イソプレンゴムの含有率が1質量%以上であると、コーティングゴム組成物の混錬における作業性が向上し、また、20質量%以下であると、ゴム成分中の合成イソプレンゴム以外のイソプレン骨格ゴムの含有率が高くなり、コーティングゴム組成物の耐久性が更に向上する。 The rubber component preferably contains 1 to 20% by mass, more preferably 10 to 20% by mass, of synthetic isoprene rubber (IR) as the isoprene skeleton rubber. When the content of the synthetic isoprene rubber in the rubber component is 1% by mass or more, the workability in kneading the coating rubber composition is improved, and when it is 20% by mass or less, the synthetic isoprene rubber in the rubber component is reduced. The content of the isoprene skeleton rubber other than the above is increased, and the durability of the coating rubber composition is further improved.
 前記ゴム成分は、イソプレン骨格ゴム以外のゴムを含んでもよく、かかる他のゴムとしては、ジエン系ゴムが好ましく、例えば、スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)等が挙げられる。ゴム成分中の、イソプレン骨格ゴムと、イソプレン骨格ゴム以外のジエン系ゴムとの総含有率は、80質量%以上が好ましく、90質量%以上が更に好ましく、100質量%でもよい。前記ゴム成分は、1種単独でもよいし、2種以上のブレンドでもよい。 The rubber component may contain rubbers other than isoprene skeleton rubber, and such other rubbers are preferably diene rubbers such as styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR). etc. The total content of the isoprene skeleton rubber and the diene rubber other than the isoprene skeleton rubber in the rubber component is preferably 80% by mass or more, more preferably 90% by mass or more, and may be 100% by mass. The rubber component may be used alone or in a blend of two or more.
(カーボンブラック)
 本発明のコーティングゴム組成物は、カーボンブラックを含む。該カーボンブラックは、ゴム組成物を補強して、ゴム組成物の補強性を向上させることができる。
 カーボンブラックとしては、特に限定されるものではなく、例えば、GPF、FEF、HAF、ISAF、及びSAFグレードのカーボンブラックが挙げられる。これらカーボンブラックは、一種単独で使用してもよいし、二種以上を併用してもよい。
(Carbon black)
The coating rubber composition of the present invention contains carbon black. The carbon black can reinforce the rubber composition and improve the reinforcing properties of the rubber composition.
Examples of carbon black include, but are not limited to, GPF, FEF, HAF, ISAF, and SAF grade carbon blacks. These carbon blacks may be used singly or in combination of two or more.
 前記カーボンブラックは、耐亀裂性の観点からは、ジブチルフタレート(DBP)吸収量が50~100cm/100gであることが好ましい。DBP吸収量が50~100cm/100gであるストラクチャの比較的低いカーボンブラックを用いることで、ゴム組成物の補強性と適度な柔軟性を両立することができ、より優れた耐亀裂性を得ることができる。DBP吸収量が50cm/100g以上であると、ゴム組成物の補強性が向上し、また、DBP吸収量が100cm/100g以下であると、ストラクチャが高過ぎないため、ゴム組成物の補強性が高くなり過ぎず、柔軟性を確保して、より優れた耐亀裂性を得ることができる。また、前記カーボンブラックのDBP吸収量は、90cm/100g以下であることが好ましく、80cm/100g以下であることがより好ましい。
 ジブチルフタレート(DBP)吸収量が50~100cm/100gであるカーボンブラックとしては、オイルファーネス法により製造された任意のハードカーボンを用いることができる。これらの中でも、より優れた低ロス性及び耐亀裂性を実現する観点からは、HAFグレードのカーボンブラックが好ましい。
 ここで、カーボンブラックのストラクチャとは、球状のカーボンブラック粒子がそれぞれ融着し、繋がった結果、形成される構造体(カーボンブラック粒子の凝集体)の大きさのことである。また、前記カーボンブラックのDBP吸収量とは、カーボンブラック100gが吸収するDBP(ジブチルフタレート)の量(cm)を指し、JIS K 6217-4(2008年)に準拠して測定することができる。
From the viewpoint of crack resistance, the carbon black preferably has a dibutyl phthalate (DBP) absorption of 50 to 100 cm 3 /100 g. By using carbon black with a relatively low structure having a DBP absorption of 50 to 100 cm 3 /100 g, it is possible to achieve both reinforcing properties and appropriate flexibility of the rubber composition, and to obtain better crack resistance. be able to. When the DBP absorption is 50 cm 3 /100 g or more, the reinforcing properties of the rubber composition are improved. Flexibility is ensured without excessively high toughness, and better crack resistance can be obtained. Further, the DBP absorption amount of the carbon black is preferably 90 cm 3 /100 g or less, more preferably 80 cm 3 /100 g or less.
As the carbon black having a dibutyl phthalate (DBP) absorption of 50 to 100 cm 3 /100 g, any hard carbon produced by the oil furnace method can be used. Among these, HAF grade carbon black is preferable from the viewpoint of realizing more excellent low-loss property and crack resistance.
Here, the structure of carbon black refers to the size of a structure (aggregate of carbon black particles) formed as a result of fusing and connecting spherical carbon black particles. The DBP absorption amount of carbon black refers to the amount (cm 3 ) of DBP (dibutyl phthalate) absorbed by 100 g of carbon black, and can be measured according to JIS K 6217-4 (2008). .
 前記カーボンブラックの含有量は、前記ゴム成分100質量部に対して、30質量部以上が好ましく、また、65質量部以下が好ましい。カーボンブラックの含有量が、ゴム成分100質量部に対して30質量部以上の場合、ゴム組成物の補強性及び耐亀裂性が向上し、また、カーボンブラックの含有量がゴム成分100質量部に対して65質量部以下の場合、ゴム組成物の低ロス性が向上する。
 また、前記カーボンブラックの含有量は、ゴム組成物の補強性及び耐亀裂性の観点から、前記ゴム成分100質量部に対して、35質量部以上が更に好ましく、45質量部以上がより一層好ましく、また、ゴム組成物の低ロス性の観点から、60質量部以下が更に好ましい。
The content of the carbon black is preferably 30 parts by mass or more and preferably 65 parts by mass or less with respect to 100 parts by mass of the rubber component. When the content of carbon black is 30 parts by mass or more with respect to 100 parts by mass of the rubber component, the reinforcing properties and crack resistance of the rubber composition are improved, and the content of carbon black is reduced to 100 parts by mass of the rubber component. On the other hand, when the amount is 65 parts by mass or less, the low-loss property of the rubber composition is improved.
In addition, the content of the carbon black is more preferably 35 parts by mass or more, and even more preferably 45 parts by mass or more with respect to 100 parts by mass of the rubber component, from the viewpoint of reinforcing properties and crack resistance of the rubber composition. Also, from the viewpoint of low loss property of the rubber composition, 60 parts by mass or less is more preferable.
(コバルト化合物)
 本発明のコーティングゴム組成物は、コバルト化合物を含む。該コバルト化合物は、ゴム組成物の補強材との接着性を向上させることができる。
(cobalt compound)
The coating rubber composition of the present invention contains a cobalt compound. The cobalt compound can improve the adhesion of the rubber composition to the reinforcing material.
 前記コバルト化合物としては、補強材との接着性の観点から、有機酸コバルト塩や、該有機酸コバルト塩の有機酸の一部をホウ酸等で置き換えた複合塩等が好ましい。
 前記有機酸コバルト塩としては、飽和、不飽和、又は直鎖状、分岐状のいずれであってもよく、例えば、ステアリン酸コバルト、バーサチック酸コバルト、オレイン酸コバルト、リノール酸コバルト、リノレン酸コバルト、アビエチン酸コバルト、カプリル酸コバルト、2-エチルヘキサン酸コバルト、オクチル酸コバルト、ピバリン酸コバルト、n-ヘプタン酸コバルト、2,2-ジメチルペンタン酸コバルト、2-エチルペンタン酸コバルト、4,4-ジメチルペンタン酸コバルト、n-オクタン酸コバルト、2,2-ジメチルヘキサン酸コバルト、2-エチルヘキサン酸コバルト、4,4-ジメチルヘキサン酸コバルト、2,4,4-トリメチルペンタン酸コバルト、n-ノナン酸コバルト、2,2-ジメチルヘプタン酸コバルト、6,6-ジメチルヘプタン酸コバルト、3,5,5-トリメチルヘキサン酸コバルト、n-デカン酸コバルト、2,2-ジメチルオクタン酸コバルト、7,7-ジメチルオクタン酸コバルト、n-ウンデカン酸コバルト等が挙げられる。また、前記複合塩として、具体的には、マノボンド(商標:OMG製)等が挙げられる。
From the viewpoint of adhesion to the reinforcing material, the cobalt compound is preferably an organic acid cobalt salt or a composite salt in which a part of the organic acid of the organic acid cobalt salt is replaced with boric acid or the like.
The organic acid cobalt salt may be saturated, unsaturated, linear, or branched. Cobalt abietate, cobalt caprylate, cobalt 2-ethylhexanoate, cobalt octylate, cobalt pivalate, cobalt n-heptanoate, cobalt 2,2-dimethylpentanoate, cobalt 2-ethylpentanoate, 4,4-dimethyl Cobalt pentanoate, cobalt n-octanoate, cobalt 2,2-dimethylhexanoate, cobalt 2-ethylhexanoate, cobalt 4,4-dimethylhexanoate, cobalt 2,4,4-trimethylpentanoate, n-nonanoic acid cobalt, cobalt 2,2-dimethylheptanoate, cobalt 6,6-dimethylheptanoate, cobalt 3,5,5-trimethylhexanoate, cobalt n-decanoate, cobalt 2,2-dimethyloctanoate, 7,7- cobalt dimethyloctanoate, cobalt n-undecanoate, and the like. Further, specific examples of the complex salt include Manobond (trademark: manufactured by OMG) and the like.
 前記コバルト化合物のコバルト換算での含有量は、前記ゴム成分100質量部に対して0.01質量部以上であり、また、0.5質量部以下であることが好ましい。コバルト化合物のコバルト換算での含有量が、ゴム成分100質量部に対して0.01質量部以上であると、ゴム組成物の補強材との接着性を十分に確保できる。また、前記コバルト化合物のコバルト換算での含有量が、ゴム成分100質量部に対して0.5質量部以下であると、ゴム組成物の耐熱劣化性(劣化耐久性)の低下を抑制できる。また、前記コバルト化合物のコバルト換算での含有量は、ゴム組成物の補強材との接着性の観点から、前記ゴム成分100質量部に対して0.05質量部以上が好ましく、また、ゴム組成物の耐熱劣化性(劣化耐久性)の観点から、0.4質量部以下が更に好ましく、0.3質量部以下がより一層好ましい。 The content of the cobalt compound in terms of cobalt is 0.01 parts by mass or more and preferably 0.5 parts by mass or less with respect to 100 parts by mass of the rubber component. When the cobalt-equivalent content of the cobalt compound is 0.01 parts by mass or more with respect to 100 parts by mass of the rubber component, the adhesiveness of the rubber composition to the reinforcing material can be sufficiently ensured. Further, when the cobalt-equivalent content of the cobalt compound is 0.5 parts by mass or less with respect to 100 parts by mass of the rubber component, deterioration in heat deterioration resistance (durability to deterioration) of the rubber composition can be suppressed. In addition, the content of the cobalt compound in terms of cobalt is preferably 0.05 parts by mass or more with respect to 100 parts by mass of the rubber component from the viewpoint of adhesion to the reinforcing material of the rubber composition. From the viewpoint of heat deterioration resistance (durability to deterioration) of the product, it is more preferably 0.4 parts by mass or less, and even more preferably 0.3 parts by mass or less.
(アミン系老化防止剤)
 本発明のコーティングゴム組成物は、アミン系老化防止剤を含み、該アミン系老化防止剤は、上記一般式(1)で表される。一般式(1)で表されるアミン系老化防止剤は、汎用の老化防止剤であるN-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(老化防止剤6PPD)と同様にフェニレンジアミン部分を含むものの、該フェニレンジアミン部分以外には二重結合を有しない点で、老化防止剤6PPDと異なる。一般式(1)で表されるアミン系老化防止剤は、ゴム組成物の耐熱劣化性を向上させ、熱劣化後の切断時伸び(EB)及び引張強さ(TB)の低下を抑制し、また、熱劣化後の耐亀裂性を向上させる作用を有する。
(Amine anti-aging agent)
The coating rubber composition of the present invention contains an amine anti-aging agent, and the amine anti-aging agent is represented by the general formula (1). The amine anti-aging agent represented by the general formula (1) is a general-purpose anti-aging agent N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (anti-aging agent 6PPD). Although it also contains a phenylenediamine moiety, it differs from the antioxidant 6PPD in that it has no double bond other than the phenylenediamine moiety. The amine anti-aging agent represented by the general formula (1) improves the heat deterioration resistance of the rubber composition, suppresses the decrease in elongation at break (EB) and tensile strength (TB) after heat deterioration, Moreover, it has the effect|action which improves the crack resistance after thermal deterioration.
 上記一般式(1)中、R及びRは、それぞれ独立して一価の飽和炭化水素基である。RとRは、同一でも異なってもよいが、合成上の観点から、同一であることが好ましい。 In general formula (1) above, R 1 and R 2 are each independently a monovalent saturated hydrocarbon group. R 1 and R 2 may be the same or different, but are preferably the same from the viewpoint of synthesis.
 前記一価の飽和炭化水素基の炭素数は、1~20が好ましく、3~10が更に好ましく、6及び7が特に好ましい。飽和炭化水素基の炭素数が20以下であると、単位質量当たりのモル数が大きくなるため、老化防止効果が大きくなり、ゴム組成物の耐熱劣化性及び熱劣化後の耐亀裂性が更に向上する。
 上記一般式(1)中のR及びRは、ゴム組成物の耐熱劣化性及び熱劣化後の耐亀裂性を更に向上させる観点から、それぞれ独立して炭素数1~20の鎖状又は環状の一価の飽和炭化水素基であることが好ましい。
The monovalent saturated hydrocarbon group preferably has 1 to 20 carbon atoms, more preferably 3 to 10 carbon atoms, and particularly preferably 6 and 7 carbon atoms. When the number of carbon atoms in the saturated hydrocarbon group is 20 or less, the number of moles per unit mass is increased, so the anti-aging effect is increased, and the heat deterioration resistance and crack resistance after heat deterioration of the rubber composition are further improved. do.
R 1 and R 2 in the above general formula (1) are each independently a chain having 1 to 20 carbon atoms or A cyclic monovalent saturated hydrocarbon group is preferred.
 前記一価の飽和炭化水素基としては、アルキル基、シクロアルキル基が挙げられ、アルキル基は、直鎖状でも、分岐鎖状でもよく、また、シクロアルキル基には、置換基として更にアルキル基等が結合していてもよい。
 前記アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,3-ジメチルブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,2-ジメチルペンチル基、1,3-ジメチルペンチル基、1,4-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,4-ジメチルペンチル基、n-ヘキシル基、1-メチルヘキシル基、2-メチルヘキシル基、各種オクチル基、各種デシル基、各種ドデシル基等が挙げられ、これらの中でも、1,4-ジメチルペンチル基が好ましい。
 前記シクロアルキル基としては、シクロペンチル基、メチルシクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられ、これらの中でも、シクロヘキシル基が好ましい。
Examples of the monovalent saturated hydrocarbon group include an alkyl group and a cycloalkyl group. The alkyl group may be linear or branched, and the cycloalkyl group may further include an alkyl group as a substituent. etc. may be combined.
Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, 1,2-dimethylbutyl group, 1,3- dimethylbutyl group, 2,3-dimethylbutyl group, n-pentyl group, isopentyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,2 -dimethylpentyl group, 1,3-dimethylpentyl group, 1,4-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,4-dimethylpentyl group, n-hexyl group, Examples include 1-methylhexyl group, 2-methylhexyl group, various octyl groups, various decyl groups, various dodecyl groups, etc. Among these, 1,4-dimethylpentyl group is preferred.
Examples of the cycloalkyl group include a cyclopentyl group, a methylcyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group, a cyclooctyl group, etc. Among these, a cyclohexyl group is preferred.
 上記一般式(1)で表されるアミン系老化防止剤として、具体的には、N,N’-ビス(1,4-ジメチルペンチル)-p-フェニレンジアミン(老化防止剤77PD)、N,N’-ビス(1-エチル-3-メチルペンチル)-p-フェニレンジアミン、N,N’-ジシクロヘキシル-p-フェニレンジアミン(老化防止剤CCPD)等が挙げられ、これらの中でも、N,N’-ビス(1,4-ジメチルペンチル)-p-フェニレンジアミン(老化防止剤77PD)、N,N’-ジシクロヘキシル-p-フェニレンジアミン(CCPD)が好ましく、N,N’-ビス(1,4-ジメチルペンチル)-p-フェニレンジアミン(老化防止剤77PD)が特に好ましい。前記アミン系老化防止剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Specific examples of the amine antioxidant represented by the general formula (1) include N,N'-bis(1,4-dimethylpentyl)-p-phenylenediamine (antiaging agent 77PD), N, N'-bis(1-ethyl-3-methylpentyl)-p-phenylenediamine, N,N'-dicyclohexyl-p-phenylenediamine (antiaging agent CCPD) and the like, among these, N,N' -Bis(1,4-dimethylpentyl)-p-phenylenediamine (antiaging agent 77PD), N,N'-dicyclohexyl-p-phenylenediamine (CCPD) are preferred, and N,N'-bis(1,4- Dimethylpentyl)-p-phenylenediamine (antiaging agent 77PD) is particularly preferred. The amine anti-aging agents may be used singly or in combination of two or more.
 前記アミン系老化防止剤の含有量は、前記ゴム成分100質量部に対して0.1質量部以上0.9質量部以下である。アミン系老化防止剤の含有量が、前記ゴム成分100質量部に対して0.1質量部未満であると、ゴム組成物の耐熱劣化性を十分に確保することができず、熱劣化後の耐亀裂性の低下を十分に抑制することができない。また、アミン系老化防止剤の含有量が、前記ゴム成分100質量部に対して0.9質量部以下であると、耐熱劣化性以外のゴム物性(発熱性等)への悪影響を抑制することができ、タイヤ用途により好適となる。前記アミン系老化防止剤の含有量は、耐熱劣化性や、熱劣化後の耐亀裂性の観点から、前記ゴム成分100質量部に対して0.5質量部以上が好ましい。 The content of the amine anti-aging agent is 0.1 parts by mass or more and 0.9 parts by mass or less with respect to 100 parts by mass of the rubber component. If the content of the amine antioxidant is less than 0.1 parts by mass with respect to 100 parts by mass of the rubber component, the heat deterioration resistance of the rubber composition cannot be sufficiently ensured, and after heat deterioration A decrease in crack resistance cannot be sufficiently suppressed. Further, when the content of the amine anti-aging agent is 0.9 parts by mass or less with respect to 100 parts by mass of the rubber component, adverse effects on rubber physical properties (heat buildup, etc.) other than heat deterioration resistance can be suppressed. and is more suitable for tire applications. The content of the amine anti-aging agent is preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component from the viewpoint of heat deterioration resistance and crack resistance after thermal deterioration.
(キノリン系老化防止剤)
 本発明のコーティングゴム組成物は、キノリン系老化防止剤を含んでもよい。該キノリン系老化防止剤は、キノリン部分又はその誘導体部分(ジヒドロキノリン部分等)を有する老化防止剤である。該キノリン系老化防止剤は、ゴム組成物の耐熱劣化性を向上させ、熱劣化後の切断時伸び(EB)及び引張強さ(TB)の低下を抑制する作用を有する。
(Quinoline anti-aging agent)
The coating rubber composition of the present invention may contain a quinoline antioxidant. The quinoline anti-aging agent is an anti-aging agent having a quinoline moiety or a derivative thereof (such as a dihydroquinoline moiety). The quinoline anti-aging agent has the effect of improving the heat deterioration resistance of the rubber composition and suppressing the decrease in elongation at break (EB) and tensile strength (TB) after heat deterioration.
 前記キノリン系老化防止剤は、ジヒドロキノリン部分を有することが好ましく、1,2-ジヒドロキノリン部分を有することが更に好ましい。
 前記キノリン系老化防止剤として、具体的には、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合体(老化防止剤TMDQ)、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン、6-アニリノ-2,2,4-トリメチル-1,2-ジヒドロキノリン等が挙げられる。
 前記キノリン系老化防止剤は、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合体(老化防止剤TMDQ)を含むことが好ましい。2,2,4-トリメチル-1,2-ジヒドロキノリンの重合体を含むキノリン系老化防止剤は、ゴム組成物の耐熱劣化性を向上させる効果が高く、また、ゴム組成物を変色させ難いという利点も有する。
 なお、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合体としては、2,2,4-トリメチル-1,2-ジヒドロキノリンの二量体、三量体、四量体等が挙げられる。
The quinoline antioxidant preferably has a dihydroquinoline moiety, more preferably a 1,2-dihydroquinoline moiety.
Specific examples of the quinoline antioxidant include a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline (antioxidant TMDQ), 6-ethoxy-2,2,4-trimethyl-1 ,2-dihydroquinoline, 6-anilino-2,2,4-trimethyl-1,2-dihydroquinoline and the like.
The quinoline antioxidant preferably contains a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline (antiaging agent TMDQ). A quinoline anti-aging agent containing a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline is said to be highly effective in improving the heat deterioration resistance of a rubber composition, and is less likely to discolor the rubber composition. It also has advantages.
The polymer of 2,2,4-trimethyl-1,2-dihydroquinoline includes dimers, trimers and tetramers of 2,2,4-trimethyl-1,2-dihydroquinoline. mentioned.
 前記キノリン系老化防止剤の含有量は、前記ゴム成分100質量部に対して0.1~5質量部であることが好ましい。キノリン系老化防止剤の含有量が、前記ゴム成分100質量部に対して0.1質量部以上であると、ゴム組成物の耐熱劣化性が向上し、ゴム組成物の熱劣化後の切断時伸び(EB)及び引張強さ(TB)の低下を更に抑制できる。一方、キノリン系老化防止剤の含有量が、前記ゴム成分100質量部に対して5質量部以下であると、耐熱劣化性以外のゴム物性(発熱性等)への悪影響を抑制することができ、タイヤ用途により好適となる。前記キノリン系老化防止剤の含有量は、耐熱劣化性の観点から、前記ゴム成分100質量部に対して0.3質量部以上が更に好ましく、0.5質量部以上がより一層好ましく、また、他のゴム物性へ影響の観点から、前記ゴム成分100質量部に対して4質量部以下が更に好ましく、3質量部以下がより一層好ましい。 The content of the quinoline antioxidant is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component. When the content of the quinoline antioxidant is 0.1 parts by mass or more with respect to 100 parts by mass of the rubber component, the heat deterioration resistance of the rubber composition is improved, and the rubber composition is cut after heat deterioration. A decrease in elongation (EB) and tensile strength (TB) can be further suppressed. On the other hand, when the content of the quinoline antioxidant is 5 parts by mass or less with respect to 100 parts by mass of the rubber component, it is possible to suppress adverse effects on rubber physical properties (heat buildup, etc.) other than heat deterioration resistance. , more suitable for tire applications. From the viewpoint of resistance to heat deterioration, the content of the quinoline antioxidant is more preferably 0.3 parts by mass or more, still more preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the rubber component. From the viewpoint of affecting other rubber physical properties, it is more preferably 4 parts by mass or less, and even more preferably 3 parts by mass or less, relative to 100 parts by mass of the rubber component.
(シリカ)
 本発明のコーティングゴム組成物は、好ましくは、シリカを含まない、又は、シリカの含有量が、前記ゴム成分100質量部に対して1質量部以下である。シリカは、ゴム組成物の混錬における作業性を悪化させるため、シリカを含まない、又は、シリカの含有量が、前記ゴム成分100質量部に対して1質量部以下である場合、ゴム組成物の混錬における作業性を向上させることができる。
(silica)
The coating rubber composition of the present invention preferably does not contain silica or has a silica content of 1 part by mass or less per 100 parts by mass of the rubber component. Since silica deteriorates the workability in kneading the rubber composition, if it does not contain silica, or if the content of silica is 1 part by mass or less with respect to 100 parts by mass of the rubber component, the rubber composition Workability in kneading can be improved.
(熱可塑性樹脂)
 本発明のコーティングゴム組成物は、好ましくは、熱可塑性樹脂を含まない。熱可塑性樹脂は、ゴム組成物をクリープし易くして、繰り返しの入力に対する耐久性を低下させるため、ゴム組成物が熱可塑性樹脂を含まない場合、ゴム組成物の耐久性を向上させることができる。ここで、熱可塑性樹脂としては、C系樹脂、C-C系樹脂、C系樹脂、ジシクロペンタジエン樹脂、テルペンフェノール樹脂、テルペン樹脂、ロジン樹脂、アルキルフェノール樹脂等が挙げられる。
(Thermoplastic resin)
The coating rubber composition of the present invention preferably does not contain a thermoplastic resin. The thermoplastic resin makes the rubber composition prone to creep and reduces the durability against repeated input, so if the rubber composition does not contain a thermoplastic resin, the durability of the rubber composition can be improved. . Examples of thermoplastic resins include C5 - based resins, C5 - C9 -based resins, C9 - based resins, dicyclopentadiene resins, terpenephenol resins, terpene resins, rosin resins, and alkylphenol resins.
(熱硬化性樹脂)
 本発明のコーティングゴム組成物は、好ましくは、熱硬化性樹脂を含む。熱硬化性樹脂は、ゴム組成物のヒステリシスロスを減少させ(低ロス性を向上させ)、また、耐亀裂性を向上させて、耐久性を向上させることができる。そのため、コーティングゴム組成物が熱硬化性樹脂を含む場合、ゴム組成物の低ロス性を向上させ、また、耐亀裂性(耐久性)を更に向上させることができる。
(Thermosetting resin)
The coating rubber composition of the present invention preferably contains a thermosetting resin. The thermosetting resin can reduce the hysteresis loss of the rubber composition (improve the low-loss property), improve the crack resistance, and improve the durability. Therefore, when the coating rubber composition contains a thermosetting resin, the loss reduction property of the rubber composition can be improved, and the crack resistance (durability) can be further improved.
 前記熱硬化性樹脂としては、フェノール樹脂が好ましい。フェノール樹脂を(好ましくは、後述するメチレン供与体と共に)含むことによって、ゴム組成物の低ロス性を維持しつつ、補強性を向上させ、耐亀裂性を向上させることができる。
 前記フェノール樹脂については、特に限定はされず、要求される性能に応じて適宜選択することができる。例えば、フェノール、クレゾール、レゾルシン、tert-ブチルフェノール等のフェノール類又はこれらの混合物と、ホルムアルデヒドとを、塩酸、蓚酸等の酸触媒の存在下において縮合反応させることによって製造したものが挙げられる。また、前記フェノール樹脂については、変性したものを用いることができ、例えば、ロジン油、トール油、カシュー油、リノール酸、オレイン酸、リノレン酸等の油によって変性することができる。なお、フェノール樹脂については、一種を単独して含むこともできるし、複数種を混合して含むこともできる。
A phenol resin is preferable as the thermosetting resin. By including a phenolic resin (preferably together with a methylene donor described below), it is possible to improve the reinforcing properties and crack resistance while maintaining the low loss property of the rubber composition.
The phenol resin is not particularly limited and can be appropriately selected according to the required performance. Examples include those produced by condensation reaction of phenols such as phenol, cresol, resorcinol, tert-butylphenol, or mixtures thereof with formaldehyde in the presence of an acid catalyst such as hydrochloric acid or oxalic acid. In addition, modified phenolic resins can be used, for example, modified with oils such as rosin oil, tall oil, cashew oil, linoleic acid, oleic acid, and linolenic acid. In addition, about a phenol resin, 1 type can also be included independently and can also be included in mixture of multiple types.
 前記熱硬化性樹脂の含有量は、前記ゴム成分100質量部に対して、2~10質量部であることが好ましく、3~7質量部であることがより好ましい。熱硬化性樹脂の含有量を、ゴム成分100質量部に対して、2質量部以上とすることで、耐亀裂性を更に改善でき、また、10質量部以下とすることで、低ロス性の悪化を抑制できる。 The content of the thermosetting resin is preferably 2 to 10 parts by mass, more preferably 3 to 7 parts by mass, based on 100 parts by mass of the rubber component. By setting the content of the thermosetting resin to 2 parts by mass or more with respect to 100 parts by mass of the rubber component, the crack resistance can be further improved, and by setting it to 10 parts by mass or less, low-loss properties can be achieved. You can control the deterioration.
(メチレン供与体)
 本発明のコーティングゴム組成物が、熱硬化性樹脂として、フェノール樹脂を含む場合、更にメチレン供与体を含むことが好ましい。メラミン供与体を、前記フェノール樹脂の硬化剤として含むことによって、ゴム組成物の低ロス性を維持しつつ、ゴム組成物の補強性を向上させることができる。
(methylene donor)
When the coating rubber composition of the present invention contains a phenolic resin as a thermosetting resin, it preferably further contains a methylene donor. By including a melamine donor as a curing agent for the phenolic resin, it is possible to improve the reinforcing property of the rubber composition while maintaining the low loss property of the rubber composition.
 前記メチレン供与体については、特に限定はされず、要求される性能に応じて適宜選択することができる。例えば、ヘキサメチレンテトラミン、ヘキサメトキシメチロールメラミン、ペンタメトキシメチロールメラミン、ヘキサメトキシメチルメラミン、ペンタメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサキス-(メトキシメチル)メラミン、N,N’,N”-トリメチル-N,N’,N”-トリメチロールメラミン、N,N’,N”-トリメチロールメラミン、N-メチロールメラミン、N,N’-(メトキシメチル)メラミン、N,N’,N”-トリブチル-N,N’,N”-トリメチロールメラミン、パラホルムアルデヒド等が挙げられる。これらのメチレン供与体の中でも、ヘキサメチレンテトラミン、ヘキサメトキシメチルメラミン、ヘキサメトキシメチロールメラミン及びパラホルムアルデヒドが好ましい。これらのメチレン供与体は、単独で用いても良いし、組み合わせて使用することもできる。 The methylene donor is not particularly limited and can be appropriately selected according to the required performance. For example, hexamethylenetetramine, hexamethoxymethylolmelamine, pentamethoxymethylolmelamine, hexamethoxymethylmelamine, pentamethoxymethylmelamine, hexaethoxymethylmelamine, hexakis-(methoxymethyl)melamine, N,N′,N″-trimethyl-N ,N′,N″-trimethylolmelamine, N,N′,N″-trimethylolmelamine, N-methylolmelamine, N,N′-(methoxymethyl)melamine, N,N′,N″-tributyl-N ,N′,N″-trimethylolmelamine, paraformaldehyde, etc. Among these methylene donors, hexamethylenetetramine, hexamethoxymethylmelamine, hexamethoxymethylolmelamine and paraformaldehyde are preferred. These methylene donors are preferred. may be used alone or in combination.
 前記メチレン供与体の含有量に対する前記フェノール樹脂の含有量の割合(フェノール樹脂の含有量/メチレン供与体の含有量)は、低ロス性及び耐亀裂性をより高いレベルで両立する観点から、0.6~7であることが好ましく、1~5であることがより好ましい。メチレン供与体の含有量に対するフェノール樹脂の含有量の割合が0.6以上の場合、耐亀裂性が更に向上し、また、該割合が7以下の場合、低ロス性が更に向上する。 The ratio of the content of the phenol resin to the content of the methylene donor (content of phenol resin/content of methylene donor) is 0 from the viewpoint of achieving both low loss property and crack resistance at a higher level. .6 to 7, more preferably 1 to 5. When the ratio of the content of the phenolic resin to the content of the methylene donor is 0.6 or more, the crack resistance is further improved, and when the ratio is 7 or less, the low-loss property is further improved.
(老化防止剤o-MBp14)
 本発明のコーティングゴム組成物は、好ましくは、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)(老化防止剤o-MBp14)を含まない。老化防止剤o-MBp14を含まない場合、ゴム組成物がより環境に優しくなる。
(Antiaging agent o-MBp14)
The coating rubber composition of the present invention preferably does not contain 2,2′-methylenebis(4-methyl-6-tert-butylphenol) (anti-aging agent o-MBp14). Without the antioxidant o-MBp14, the rubber composition is more environmentally friendly.
(老化防止剤6PPD)
 本発明のコーティングゴム組成物は、好ましくは、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(老化防止剤6PPD)を含まない。老化防止剤6PPDを含まない場合、ゴム組成物がより環境に優しくなる。
(Anti-aging agent 6PPD)
The coating rubber composition of the present invention preferably does not contain N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (antiaging agent 6PPD). Without the antioxidant 6PPD, the rubber composition becomes more environmentally friendly.
(ワックス)
 本発明のコーティングゴム組成物は、ワックスを含んでもよい。ゴム組成物がワックスを含む場合、ゴム組成物の耐オゾン性が向上する。
 前記ワックスとしては、例えば、パラフィンワックス、マイクロクリスタリンワックス等が挙げられる。
 前記ワックスの含有量は、前記ゴム成分100質量部に対して0.1~5質量部であることが好ましい。ワックスの含有量が、前記ゴム成分100質量部に対して0.1質量部以上であると、ゴム組成物の耐オゾン性が更に向上する。また、ワックスの含有量が、前記ゴム成分100質量部に対して5質量部以下であると、耐オゾン性以外のゴム物性への影響が小さい。前記ワックスの含有量は、耐オゾン性の観点から、前記ゴム成分100質量部に対して0.5質量部以上が更に好ましく、1質量部以上がより一層好ましく、また、他のゴム物性への影響の観点から、前記ゴム成分100質量部に対して4質量部以下が更に好ましく、3質量部以下がより一層好ましい。
(wax)
The coating rubber composition of the present invention may contain wax. When the rubber composition contains wax, the ozone resistance of the rubber composition is improved.
Examples of the wax include paraffin wax and microcrystalline wax.
The content of the wax is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component. When the wax content is 0.1 parts by mass or more with respect to 100 parts by mass of the rubber component, the ozone resistance of the rubber composition is further improved. Further, when the wax content is 5 parts by mass or less with respect to 100 parts by mass of the rubber component, the effect on rubber physical properties other than ozone resistance is small. From the viewpoint of ozone resistance, the content of the wax is more preferably 0.5 parts by mass or more, and even more preferably 1 part by mass or more, with respect to 100 parts by mass of the rubber component. From the viewpoint of influence, it is more preferably 4 parts by mass or less, and even more preferably 3 parts by mass or less with respect to 100 parts by mass of the rubber component.
(硫黄)
 本発明のコーティングゴム組成物は、硫黄を含むことが好ましい。ゴム組成物が硫黄を含むことで、加硫可能となり、ゴム組成物の耐久性(特には、切断時伸び(EB)、引張強さ(TB))が向上する。
 前記硫黄としては、種々の硫黄を使用できるが、不溶性硫黄よりも普通の硫黄(可溶性硫黄(粉末硫黄)等)が好ましく、また、オイルトリート硫黄等も好ましい。ここで、不溶性硫黄は、二硫化炭素に対して不溶な硫黄(無定形の高分子硫黄)であり、可溶性硫黄(粉末硫黄)は、二硫化炭素に対して可溶な硫黄である。
 前記硫黄の含有量は、ゴム成分100質量部に対して0.1~10質量部の範囲が好ましく、1~5質量部の範囲が更に好ましい。硫黄の含有量がゴム成分100質量部に対して0.1質量部以上であれば、加硫ゴムの耐久性を確保でき、また、ゴム成分100質量部に対して10質量部以下であれば、ゴム弾性を十分に確保できる。
(sulfur)
The coating rubber composition of the present invention preferably contains sulfur. When the rubber composition contains sulfur, it becomes vulcanizable, and the durability (in particular, elongation at break (EB) and tensile strength (TB)) of the rubber composition is improved.
As the sulfur, various types of sulfur can be used, but ordinary sulfur (soluble sulfur (powder sulfur), etc.) is preferable to insoluble sulfur, and oil treated sulfur, etc. are also preferable. Here, insoluble sulfur is sulfur insoluble in carbon disulfide (amorphous polymeric sulfur), and soluble sulfur (powder sulfur) is sulfur soluble in carbon disulfide.
The sulfur content is preferably in the range of 0.1 to 10 parts by mass, more preferably in the range of 1 to 5 parts by mass, per 100 parts by mass of the rubber component. If the sulfur content is 0.1 parts by mass or more per 100 parts by mass of the rubber component, the durability of the vulcanized rubber can be ensured, and if it is 10 parts by mass or less per 100 parts by mass of the rubber component , sufficient rubber elasticity can be ensured.
(その他)
 本発明のコーティングゴム組成物は、既述のゴム成分、カーボンブラック、コバルト化合物、アミン系老化防止剤、キノリン系老化防止剤、熱硬化性樹脂、ワックス、硫黄等の他にも、必要に応じて、ゴム工業界で通常使用される各種成分、例えば、カーボンブラックやシリカ以外の充填剤(炭酸カルシウム等)、シランカップリング剤、軟化剤、加工助剤、界面活性剤、有機酸(ステアリン酸等)、酸化亜鉛(亜鉛華)、加硫促進剤、硫黄以外の加硫剤等を、本発明の目的を害しない範囲内で適宜選択して含有していてもよい。これら配合剤としては、市販品を好適に使用することができる。
 なお、上記一般式(1)で表されるアミン系老化防止剤は、任意の担体に担持されていてもよい。例えば、上記一般式(1)で表されるアミン系老化防止剤は、炭酸カルシウム等の無機充填剤に担持されていてもよい。
 また、上記一般式(1)で表されるアミン系老化防止剤は、ゴム成分と共にマスターバッチを構成してもよい。ここで、マスターバッチとする際に用いるゴム成分は、特に限定されるものではなく、天然ゴム(NR)等のジエン系ゴムでもよいし、エチレン-プロピレン-ジエンゴム(EPDM)等であってもよい。
 また、上記一般式(1)で表されるアミン系老化防止剤は、有機酸との塩としてもよい。ここで、塩とする際に用いる有機酸としては、特に限定されるものではないが、ステアリン酸等が挙げられる。
(others)
The coating rubber composition of the present invention contains, if necessary, in addition to the rubber component, carbon black, cobalt compound, amine-based antioxidant, quinoline-based antioxidant, thermosetting resin, wax, sulfur, etc. described above. Various components commonly used in the rubber industry, such as fillers other than carbon black and silica (calcium carbonate, etc.), silane coupling agents, softeners, processing aids, surfactants, organic acids (stearic acid etc.), zinc oxide (zinc white), a vulcanization accelerator, a vulcanizing agent other than sulfur, and the like may be appropriately selected and contained within a range that does not impair the object of the present invention. Commercially available products can be suitably used as these compounding agents.
In addition, the amine anti-aging agent represented by the general formula (1) may be supported on any carrier. For example, the amine anti-aging agent represented by the general formula (1) may be carried on an inorganic filler such as calcium carbonate.
Moreover, the amine anti-aging agent represented by the general formula (1) may form a masterbatch together with the rubber component. Here, the rubber component used in forming the masterbatch is not particularly limited, and may be diene rubber such as natural rubber (NR), ethylene-propylene-diene rubber (EPDM), or the like. .
Moreover, the amine anti-aging agent represented by the general formula (1) may be a salt with an organic acid. Here, the organic acid used for forming the salt is not particularly limited, but stearic acid and the like can be mentioned.
(コーティングゴム組成物の製造方法)
 前記コーティングゴム組成物の製造方法は、特に限定されるものではないが、例えば、既述のゴム成分、カーボンブラック、コバルト化合物、及びアミン系老化防止剤に、必要に応じて適宜選択した各種成分を配合して、混練り、熱入れ、押出等することにより製造することができる。また、得られたゴム組成物を加硫することで、加硫ゴムとすることができる。
(Method for producing coating rubber composition)
The method for producing the coating rubber composition is not particularly limited. can be produced by blending, kneading, heating, extrusion, or the like. Further, vulcanized rubber can be obtained by vulcanizing the obtained rubber composition.
 前記混練りの条件としては、特に制限はなく、混練り装置の投入体積やローターの回転速度、ラム圧等、及び混練り温度や混練り時間、混練り装置の種類等の諸条件について目的に応じて適宜に選択することができる。混練り装置としては、通常、ゴム組成物の混練りに用いるバンバリーミキサーやインターミックス、ニーダー、ロール等が挙げられる。 The kneading conditions are not particularly limited, and various conditions such as the input volume of the kneading device, the rotation speed of the rotor, the ram pressure, the kneading temperature, the kneading time, the type of the kneading device, etc. It can be selected as appropriate. Examples of the kneading device include Banbury mixers, intermixes, kneaders, rolls, etc., which are usually used for kneading rubber compositions.
 前記熱入れの条件についても、特に制限はなく、熱入れ温度や熱入れ時間、熱入れ装置等の諸条件について目的に応じて適宜に選択することができる。該熱入れ装置としては、通常、ゴム組成物の熱入れに用いる熱入れロール機等が挙げられる。 There are no particular restrictions on the heating conditions, and various conditions such as the heating temperature, heating time, and heating device can be appropriately selected according to the purpose. Examples of the heating device include a heating roll machine or the like which is usually used for heating the rubber composition.
 前記押出の条件についても、特に制限はなく、押出時間や押出速度、押出装置、押出温度等の諸条件について目的に応じて適宜に選択することができる。押出装置としては、通常、ゴム組成物の押出に用いる押出機等が挙げられる。押出温度は、適宜に決定することができる。 The extrusion conditions are also not particularly limited, and various conditions such as extrusion time, extrusion speed, extrusion equipment, and extrusion temperature can be appropriately selected according to the purpose. Examples of the extrusion device include an extruder or the like that is usually used for extrusion of a rubber composition. The extrusion temperature can be determined appropriately.
 前記加硫を行う装置や方式、条件等については、特に制限はなく、目的に応じて適宜に選択することができる。加硫を行う装置としては、通常、ゴム組成物の加硫に用いる金型による成形加硫機等が挙げられる。加硫の条件として、その温度は、例えば100~190℃程度である。 There are no particular restrictions on the vulcanization apparatus, method, conditions, etc., and they can be appropriately selected according to the purpose. As a vulcanization apparatus, a molding vulcanizer with a mold used for vulcanization of a rubber composition can be used. As a vulcanization condition, the temperature is, for example, about 100 to 190.degree.
(補強材)
 本発明のコーティングゴム組成物の被着対象の補強材は、金属からなることが好ましく、即ち、該補強材は、金属補強材であることが好ましい。コーティングゴム組成物(コーティングゴム)で、金属補強材を被覆することで、金属補強材-ゴム複合体を形成することができる。
 ここで、金属補強材としては、例えば、スチール、鉄、ステンレス、鉛、アルミニウム、銅、黄銅、青銅、モネル金属合金、ニッケル、亜鉛等の金属からなる線状、板上、チェーン状のものが挙げられる。前記金属補強材としては、スチールコードが特に好ましい。該スチールコードの直径は、用途に応じて適宜選択される。
 また、該金属補強材は、表面にメッキ層を有していてもよく、メッキ層としては、例えば、ブラスメッキ層、亜鉛メッキ層、銅メッキ層等が挙げられ、これらの中でも、コーティングゴム組成物(コーティングゴム)との接着性の観点から、ブラスメッキ層が好ましい。なお、ブラスメッキ層における、銅と亜鉛の割合は、質量基準で60:40~70:30の範囲が好ましい。
(reinforcing material)
The reinforcing material to which the coating rubber composition of the present invention is applied is preferably made of metal, that is, the reinforcing material is preferably a metal reinforcing material. By coating a metal reinforcing material with a coating rubber composition (coating rubber), a metal reinforcing material-rubber composite can be formed.
Here, as the metal reinforcing material, for example, steel, iron, stainless steel, lead, aluminum, copper, brass, bronze, Monel metal alloy, nickel, zinc, or other metals in the form of wire, plate, or chain. mentioned. A steel cord is particularly preferable as the metal reinforcing material. The diameter of the steel cord is appropriately selected depending on the application.
In addition, the metal reinforcing material may have a plated layer on its surface. Examples of the plated layer include a brass plated layer, a zinc plated layer, and a copper plated layer. A brass-plated layer is preferable from the viewpoint of adhesiveness to an object (coating rubber). The ratio of copper and zinc in the brass plating layer is preferably in the range of 60:40 to 70:30 on a mass basis.
<タイヤ>
 本発明のタイヤは、上述のタイヤの補強材用コーティングゴム組成物で被覆した補強材を具えることを特徴とする。本発明のタイヤは、上述のタイヤの補強材用コーティングゴム組成物で被覆した補強材を具えるため、耐熱劣化性、特には、熱劣化後の耐亀裂性が高く、耐久性に優れる。
<Tire>
The tire of the present invention is characterized by comprising a reinforcing material coated with the coating rubber composition for a tire reinforcing material described above. Since the tire of the present invention includes a reinforcing material coated with the above coating rubber composition for a reinforcing material for a tire, it has high heat deterioration resistance, particularly high crack resistance after heat deterioration, and excellent durability.
 本発明のタイヤは、好ましくは重荷重用であり、即ち、重荷重用タイヤであることが好ましい。重荷重用タイヤは、各部の厚さが厚いため、加硫成形時に高温となる箇所が発生し易く、また、走行中にも高温となる箇所が発生し易く、更には、リトレッドして使用され、総走行距離が長くなる傾向があるため、高い耐熱劣化性、特には、熱劣化後の耐亀裂性が要求される。これに対し、耐熱劣化性(特には、熱劣化後の耐亀裂性)に優れる上述のコーティングゴム組成物を適用することで、熱劣化後の耐久性(特には、耐亀裂性)を高く維持することができる。そのため、本発明のタイヤは、重荷重用タイヤとして特に好ましく、例えば、トラック用、バス用、オフザロード用(例えば、建設車両用、鉱山用等)、小型トラック(ライトトラック)用、産業車両用、航空機用等の重荷重用タイヤとして好適に用いることができる。 The tire of the present invention is preferably for heavy loads, that is, it is preferably a tire for heavy loads. Since the thickness of each part of a heavy-duty tire is thick, it is easy for parts to become hot during vulcanization molding. Since the total running distance tends to be long, high heat deterioration resistance, particularly crack resistance after heat deterioration, is required. On the other hand, by applying the above-mentioned coating rubber composition that is excellent in heat deterioration resistance (especially crack resistance after heat deterioration), durability after heat deterioration (especially crack resistance) is maintained at a high level. can do. Therefore, the tire of the present invention is particularly preferable as a heavy-duty tire, for example, for trucks, buses, off-the-road (for example, construction vehicles, mining, etc.), small trucks (light trucks), industrial vehicles, and aircraft. It can be suitably used as a tire for heavy loads such as
 図1は、本発明のタイヤの一実施態様の断面図である。図1に示すタイヤは、一対のビード部1と、一対のサイドウォール部2と、トレッド部3と、ビード部1に埋設されたビードコア4間にトロイド状に延在させたカーカス(好ましくはラジアルカーカス)5と、トレッド部3に配置した(より詳しくは、カーカス5のクラウン部のタイヤ半径方向外側に配置した)2枚のベルト層からなるベルト6と、を具える。 FIG. 1 is a cross-sectional view of one embodiment of the tire of the present invention. The tire shown in FIG. 1 includes a pair of bead portions 1, a pair of sidewall portions 2, a tread portion 3, and a carcass (preferably a radial A carcass 5 and a belt 6 made up of two belt layers disposed in the tread portion 3 (more specifically, disposed outside the crown portion of the carcass 5 in the tire radial direction).
 図1に示すタイヤにおいて、カーカス5は、一枚のカーカスプライから構成されており、また、ビード部1内に夫々埋設した一対のビードコア4間にトロイド状に延在する本体部と、各ビードコア4の周りでタイヤ幅方向の内側から外側に向けて半径方向外方に巻上げた折り返し部とからなるが、本発明のタイヤにおいて、カーカス5のプライ数及び構造は、これに限られるものではない。ここで、カーカス5を構成するカーカスプライは、複数の補強コード(スチールコード、有機繊維コード等の補強材)を被覆ゴムで被覆してなる。 In the tire shown in FIG. 1, the carcass 5 is composed of one carcass ply, and includes a main body portion extending in a toroidal shape between a pair of bead cores 4 embedded in the bead portion 1, and each bead core. 4, which is wound radially outward from the inside to the outside in the tire width direction, but in the tire of the present invention, the number of plies and the structure of the carcass 5 are not limited to this. . Here, the carcass ply that constitutes the carcass 5 is formed by covering a plurality of reinforcing cords (reinforcing materials such as steel cords and organic fiber cords) with a covering rubber.
 また、図1に示すタイヤのベルト6は、二枚のベルト層から構成されており、各ベルト層は、通常、タイヤ赤道面に対して傾斜して延びる補強コード(補強材)のゴム引き層、好ましくは、スチールコード(補強材)のゴム引き層からなり、更に、二枚のベルト層が、該ベルト層を構成する補強コードが互いにタイヤ赤道面を挟んで交差するように積層されてベルト6を構成している。なお、図1中のベルト6は、二枚のベルト層からなるが、本発明のタイヤにおいて、ベルト6を構成するベルト層の枚数は、一枚以上であればよく、これに限られるものではない。 The belt 6 of the tire shown in FIG. 1 is composed of two belt layers, and each belt layer is usually a rubberized layer of reinforcing cords (reinforcing materials) extending obliquely with respect to the tire equatorial plane. Preferably, the belt is composed of a rubber-coated layer of steel cords (reinforcing material), and further, two belt layers are laminated so that the reinforcing cords constituting the belt layers intersect with each other across the tire equatorial plane. 6. The belt 6 in FIG. 1 is composed of two belt layers, but in the tire of the present invention, the number of belt layers constituting the belt 6 may be one or more, and is not limited to this. do not have.
 ここで、前記コーティングゴム組成物で被覆した補強材(補強材-ゴム複合体)を適用するタイヤ部材としては、ベルト6、カーカス5、ビードコア4等が好適に挙げられる。 Here, the belt 6, the carcass 5, the bead core 4 and the like are suitable examples of the tire member to which the reinforcing material (reinforcing material-rubber composite) coated with the coating rubber composition is applied.
 本発明のタイヤは、適用するタイヤの種類に応じ、未加硫のゴム組成物を用いて成形後に加硫して得てもよく、又は予備加硫工程等を経た半加硫ゴムを用いて成形後、さらに本加硫して得てもよい。なお、本発明のタイヤは、空気入りタイヤでも、ソリッドタイヤでもよい。ここで、本発明のタイヤが空気入りタイヤの場合、空気入りタイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。 Depending on the type of tire to be applied, the tire of the present invention may be obtained by vulcanizing after molding using an unvulcanized rubber composition, or using a semi-vulcanized rubber that has undergone a pre-vulcanization step or the like. After molding, it may be obtained by further vulcanization. The tire of the present invention may be either a pneumatic tire or a solid tire. Here, when the tire of the present invention is a pneumatic tire, the gas to be filled in the pneumatic tire may be normal air or air with adjusted oxygen partial pressure, or an inert gas such as nitrogen, argon, or helium. can be done.
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples.
<実施例1~7及び比較例1>
(ゴム組成物の調製)
 表1に示す配合処方に従い、ゴム組成物を製造する。
 得られるゴム組成物に対して、下記の方法で、熱劣化後の切断時伸び(EB)及び引張強さ(TB)と、熱劣化後の耐亀裂性を評価する。
<Examples 1 to 7 and Comparative Example 1>
(Preparation of rubber composition)
A rubber composition is produced according to the formulation shown in Table 1.
The resulting rubber composition is evaluated for elongation at break (EB) and tensile strength (TB) after heat deterioration and crack resistance after heat deterioration by the following methods.
(1)熱劣化後の切断時伸び(EB)及び引張強さ(TB)
 ゴム組成物を加硫して、加硫ゴム試験片を準備する。
 次に、加硫ゴム試験片を100℃で24時間放置して熱劣化させ、熱劣化後の試験片に対して、JIS K 6251に準拠して引張試験を行い、熱劣化後の切断時伸び(EB)及び引張強さ(TB)を測定し、比較例1の熱劣化後の切断時伸び(EB)及び引張強さ(TB)を100として、それぞれ指数表示する。指数値が大きい程、熱劣化後の切断時伸び(EB)及び引張強さ(TB)が大きく、耐熱劣化性(熱劣化後の耐久性)が高いことを示す。
(1) Elongation at break (EB) and tensile strength (TB) after thermal aging
A rubber composition is vulcanized to prepare a vulcanized rubber test piece.
Next, the vulcanized rubber test piece is left at 100 ° C. for 24 hours to be thermally deteriorated, and a tensile test is performed on the test piece after thermal deterioration in accordance with JIS K 6251 to determine the elongation at break after thermal deterioration. (EB) and tensile strength (TB) are measured, and indexed with the elongation at break (EB) and tensile strength (TB) after heat deterioration of Comparative Example 1 as 100, respectively. The larger the index value, the higher the elongation at break (EB) and tensile strength (TB) after heat deterioration, indicating that the resistance to heat deterioration (durability after heat deterioration) is high.
(2)熱劣化後の耐亀裂性
 各サンプルのゴム組成物を加硫して加硫ゴムを得る。該加硫ゴムを120℃で7日間放置して熱劣化させ、打ち抜いて2mm×50mm×6mmの試験片を得、試験片の中心部に微小な穴を空けて初期亀裂とする。次に、該試験片に対して、応力2.0MPa、周波数6Hz、雰囲気温度80℃の条件で、長辺方向に繰り返し応力を加える。サンプルごとに、繰り返し応力を加えてから、試験片が破断するまでの繰り返し回数を測定し、その繰り返し回数の常用対数を算出する。なお、破断までの測定試験は、サンプルごとに4度実施して常用対数を算出し、それらの平均を平均常用対数とする。評価については、比較例1の平均常用対数を100とした場合の指数として示し、サンプルの平均常用対数が大きい程、耐亀裂進展性に優れることを示す。
(2) Crack resistance after heat deterioration A vulcanized rubber is obtained by vulcanizing the rubber composition of each sample. The vulcanized rubber is left at 120° C. for 7 days for thermal deterioration, punched out to obtain a test piece of 2 mm×50 mm×6 mm, and a small hole is made in the center of the test piece to form an initial crack. Next, stress is repeatedly applied to the test piece in the long side direction under conditions of a stress of 2.0 MPa, a frequency of 6 Hz, and an ambient temperature of 80°C. For each sample, the number of repetitions from the application of repeated stress until the test piece breaks is measured, and the common logarithm of the number of repetitions is calculated. In addition, the measurement test until breakage is performed four times for each sample, the common logarithms are calculated, and the average thereof is taken as the average common logarithm. The evaluation is shown as an index when the average common logarithm of Comparative Example 1 is 100, and the larger the average common logarithm of the sample, the better the crack growth resistance.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
*1 NR: 天然ゴム
*2 IR: 合成イソプレンゴム、JSR(株)製、商品名「JSR IR2200」
*3 カーボンブラック: 旭カーボン(株)製、商品名「旭#70L」、DBP吸収量=75cm/100g
*4 酸化亜鉛: ハクスイテック(株)製、商品名「3号亜鉛華」
*5 アルキルフェノールホルムアルデヒド樹脂: 住友ベークライト社製、商品名「DUREZ 19900」
*6 老化防止剤o-MBp14: ビスフェノール系老化防止剤、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、大内新興化学工業株式会社製、商品名「ノクラックNS-6」
*7 コバルト化合物: 有機酸コバルト、OMG社製、商品名「マノボンドC」、コバルト含有率=22.0質量%、コバルト換算での含有量を表中に示す
*8 老化防止剤TMDQ: キノリン系老化防止剤、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合体、精工化学株式会社製、商品名「ノンフレックスRD」
*9 老化防止剤6PPD: 一般式(1)中のR及びRの一方が不飽和炭化水素基(フェニル基)であるアミン系老化防止剤、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン、住友化学株式会社製、商品名「アンチゲン6C」
*10 老化防止剤77PD: 一般式(1)中のR及びRが飽和炭化水素基(1,4-ジメチルペンチル基)であるアミン系老化防止剤、N,N’-ビス(1,4-ジメチルペンチル)-p-フェニレンジアミン、EASTMAN社製、商品名「Santoflex 77PD」
*11 硫黄: 鶴見化学(株)製、商品名「粉末硫黄」
*12 加硫促進剤DCBS: N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学工業(株)製、商品名「ノクセラー DZ」
*1 NR: Natural rubber *2 IR: Synthetic isoprene rubber, manufactured by JSR Corporation, trade name “JSR IR2200”
*3 Carbon black: Asahi Carbon Co., Ltd., trade name “Asahi #70L”, DBP absorption = 75 cm 3 /100 g
*4 Zinc oxide: Manufactured by Hakusui Tech Co., Ltd., trade name “No. 3 Zinc White”
*5 Alkylphenol formaldehyde resin: Sumitomo Bakelite Co., Ltd., trade name “DUREZ 19900”
* 6 Anti-aging agent o-MBp14: Bisphenol-based anti-aging agent, 2,2'-methylenebis(4-methyl-6-tert-butylphenol), manufactured by Ouchi Shinko Chemical Industry Co., Ltd., trade name "Nocrac NS-6"
*7 Cobalt compound: Organic acid cobalt, manufactured by OMG, trade name “Manobond C”, cobalt content = 22.0 mass%, content in terms of cobalt is shown in the table *8 Anti-aging agent TMDQ: quinoline system Antiaging agent, 2,2,4-trimethyl-1,2-dihydroquinoline polymer, manufactured by Seiko Chemical Co., Ltd., trade name "Nonflex RD"
*9 Anti-aging agent 6PPD: N-phenyl-N'-(1,3), an amine anti-aging agent in which one of R 1 and R 2 in the general formula (1) is an unsaturated hydrocarbon group (phenyl group) -Dimethylbutyl)-p-phenylenediamine, manufactured by Sumitomo Chemical Co., Ltd., trade name "Antigen 6C"
*10 Antioxidant 77PD: An amine antioxidant, N , N'-bis(1 , 4-dimethylpentyl)-p-phenylenediamine, manufactured by EASTMAN, trade name “Santoflex 77PD”
*11 Sulfur: Manufactured by Tsurumi Chemical Co., Ltd., trade name “powder sulfur”
*12 Vulcanization accelerator DCBS: N,N-dicyclohexyl-2-benzothiazolylsulfenamide, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., trade name “Noxeller DZ”
 表1の比較例1と、実施例1~6との対比から、本発明に従う実施例のゴム組成物は、熱劣化後の切断時伸び(EB)及び引張強さ(TB)が向上しており、また、熱劣化後の耐亀裂性(耐亀裂進展性)に優れることが分かる。また、実施例7から、ゴム成分の一部を合成イソプレンゴム(IR)で置き換えても、熱劣化後の耐亀裂性(耐亀裂進展性)を維持できることが分かる。 From the comparison between Comparative Example 1 in Table 1 and Examples 1 to 6, the rubber compositions of Examples according to the present invention have improved elongation at break (EB) and tensile strength (TB) after heat deterioration. In addition, it can be seen that the crack resistance (crack growth resistance) after thermal deterioration is excellent. In addition, from Example 7, it can be seen that the crack resistance (resistance to crack propagation) after thermal deterioration can be maintained even when part of the rubber component is replaced with synthetic isoprene rubber (IR).
<実施例8及び比較例2>
(ゴム組成物の調製)
 表2に示す配合処方に従い、ゴム組成物を製造した。得られたゴム組成物に対して、下記の方法で、熱劣化後の切断時伸び(EB)の保持率、及び熱劣化後の耐亀裂性を評価した。
<Example 8 and Comparative Example 2>
(Preparation of rubber composition)
A rubber composition was produced according to the formulation shown in Table 2. The obtained rubber composition was evaluated for retention of elongation at break (EB) after heat deterioration and crack resistance after heat deterioration by the following methods.
(3)熱劣化後の切断時伸び(EB)の保持率
 ゴム組成物を加硫して、加硫ゴム試験片を準備した。作製直後の試験片に対して、JIS K 6251に準拠して引張試験を行い、初期の切断時伸び(EB)を測定した。
 次に、加硫ゴム試験片を100℃で24時間放置して熱劣化させ、熱劣化後の試験片に対して、JIS K 6251に準拠して引張試験を行い、熱劣化後の切断時伸び(EB)を測定した。
 初期の切断時伸び(EB)と、熱劣化後の切断時伸び(EB)とから、下記式に従い熱劣化後の切断時伸び(EB)の保持率を算出した。
  熱劣化後の切断時伸び(EB)の保持率=熱劣化後の切断時伸び(EB)/初期の切断時伸び(EB)×100(%)
 更に、比較例2の熱劣化後の切断時伸び(EB)の保持率を100として、指数表示した。指数値が大きい程、熱劣化後の切断時伸び(EB)の保持率が高く、耐熱劣化性(熱劣化後の耐久性)が高いことを示す。
(3) Retention rate of elongation at break (EB) after thermal aging A rubber composition was vulcanized to prepare a vulcanized rubber test piece. A tensile test was performed on the test piece immediately after production in accordance with JIS K 6251 to measure the initial elongation at break (EB).
Next, the vulcanized rubber test piece is left at 100 ° C. for 24 hours to be thermally deteriorated, and a tensile test is performed on the test piece after thermal deterioration in accordance with JIS K 6251 to determine the elongation at break after thermal deterioration. (EB) was measured.
From the initial elongation at break (EB) and the elongation at break (EB) after heat deterioration, the retention rate of the elongation at break (EB) after heat deterioration was calculated according to the following formula.
Retention rate of elongation at break after heat deterioration (EB) = elongation at break after heat deterioration (EB) / initial elongation at break (EB) × 100 (%)
Further, the retention rate of the elongation at break (EB) after heat deterioration in Comparative Example 2 was set to 100, and indicated as an index. The larger the index value, the higher the retention of elongation at break (EB) after heat deterioration, indicating that the resistance to heat deterioration (durability after heat deterioration) is high.
(4)熱劣化後の耐亀裂性
 各サンプルのゴム組成物を加硫して加硫ゴムを得た。該加硫ゴムを120℃で7日間放置して熱劣化させ、打ち抜いて2mm×50mm×6mmの試験片を得、試験片の中心部に微小な穴を空けて初期亀裂とした。次に、該試験片に対して、応力2.0MPa、周波数6Hz、雰囲気温度80℃の条件で、長辺方向に繰り返し応力を加えた。サンプルごとに、繰り返し応力を加えてから、試験片が破断するまでの繰り返し回数を測定し、その繰り返し回数の常用対数を算出した。なお、破断までの測定試験は、サンプルごとに4度実施して常用対数を算出し、それらの平均を平均常用対数とした。評価については、比較例1の平均常用対数を100とした場合の指数として示し、サンプルの平均常用対数が大きい程、耐亀裂進展性に優れることを示す。
(4) Crack resistance after heat deterioration The rubber composition of each sample was vulcanized to obtain a vulcanized rubber. The vulcanized rubber was allowed to stand at 120° C. for 7 days for thermal deterioration, punched out to obtain a test piece of 2 mm×50 mm×6 mm, and a small hole was made in the center of the test piece to form an initial crack. Next, stress was repeatedly applied to the test piece in the long side direction under conditions of stress of 2.0 MPa, frequency of 6 Hz, and atmospheric temperature of 80°C. For each sample, the number of repetitions from the application of repeated stress to the breakage of the test piece was measured, and the common logarithm of the number of repetitions was calculated. The measurement test until breakage was performed four times for each sample, and the common logarithm was calculated, and the average thereof was taken as the average common logarithm. The evaluation is shown as an index when the average common logarithm of Comparative Example 1 is 100, and the larger the average common logarithm of the sample, the better the crack growth resistance.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
*1、*3、*4、*6、*8、*9、*10、*12 表1に同じ
*7 コバルト化合物: 有機酸コバルト、OMG社製、商品名「マノボンドC」、コバルト含有率=22.0質量%、表中には、コバルト化合物の含有量と共に、括弧内にコバルト換算での含有量を示す
*13 硫黄: イーストマンMFGジャパン社製、商品名「CRYTEX HS OT20」
*1, *3, *4, *6, *8, *9, *10, *12 Same as Table 1 *7 Cobalt compound: Organic acid cobalt, manufactured by OMG, trade name "Manobond C", cobalt content = 22.0% by mass. In the table, the content of cobalt compounds and the content in terms of cobalt are shown in parentheses *13 Sulfur: Eastman MFG Japan Co., Ltd., trade name “CRYTEX HS OT20”
 表2から、本発明に従う実施例8のゴム組成物は、比較例2のゴム組成物に比べて、熱劣化後の切断時伸び(EB)の保持率が高いことが分かる。また、実施例8のゴム組成物は、比較例2のゴム組成物に比べて、熱劣化後の耐亀裂性が向上していることがわかる。 From Table 2, it can be seen that the rubber composition of Example 8 according to the present invention has a higher retention of elongation at break (EB) after heat deterioration than the rubber composition of Comparative Example 2. Moreover, it can be seen that the rubber composition of Example 8 has improved crack resistance after heat deterioration as compared with the rubber composition of Comparative Example 2.
 1:ビード部、 2:サイドウォール部、 3:トレッド部、 4:ビードコア、 5:カーカス、 6:ベルト 1: bead part, 2: sidewall part, 3: tread part, 4: bead core, 5: carcass, 6: belt

Claims (12)

  1.  ゴム成分と、カーボンブラックと、コバルト化合物と、アミン系老化防止剤と、を含み、
     前記ゴム成分が、イソプレン骨格ゴムを60~100質量%含み、
     前記コバルト化合物のコバルト換算での含有量が、前記ゴム成分100質量部に対して0.01質量部以上であり、
     前記アミン系老化防止剤が、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、R及びRは、それぞれ独立して一価の飽和炭化水素基である]で表され、
     前記アミン系老化防止剤の含有量が、前記ゴム成分100質量部に対して0.1質量部以上0.9質量部以下であることを特徴とする、タイヤの補強材用コーティングゴム組成物。
    including a rubber component, carbon black, a cobalt compound, and an amine antioxidant,
    The rubber component contains 60 to 100% by mass of isoprene skeleton rubber,
    The content of the cobalt compound in terms of cobalt is 0.01 parts by mass or more with respect to 100 parts by mass of the rubber component,
    The amine antioxidant has the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 and R 2 are each independently a monovalent saturated hydrocarbon group],
    A coating rubber composition for a tire reinforcing material, wherein the content of the amine anti-aging agent is 0.1 parts by mass or more and 0.9 parts by mass or less with respect to 100 parts by mass of the rubber component.
  2.  前記カーボンブラックは、ジブチルフタレート(DBP)吸収量が50~100cm/100gである、請求項1に記載のタイヤの補強材用コーティングゴム組成物。 2. The coating rubber composition for a tire reinforcing material according to claim 1, wherein the carbon black has a dibutyl phthalate (DBP) absorption amount of 50 to 100 cm 3 /100 g.
  3.  上記一般式(1)中のR及びRが、それぞれ独立して炭素数1~20の鎖状又は環状の一価の飽和炭化水素基である、請求項1又は2に記載のタイヤの補強材用コーティングゴム組成物。 The tire according to claim 1 or 2, wherein R 1 and R 2 in the general formula (1) are each independently a linear or cyclic monovalent saturated hydrocarbon group having 1 to 20 carbon atoms. A coating rubber composition for reinforcing materials.
  4.  前記ゴム成分は、前記イソプレン骨格ゴムとして、合成イソプレンゴムを1~20質量%含む、請求項1~3のいずれか一項に記載のタイヤの補強材用コーティングゴム組成物。 The coating rubber composition for a tire reinforcing material according to any one of claims 1 to 3, wherein the rubber component contains 1 to 20% by mass of synthetic isoprene rubber as the isoprene skeleton rubber.
  5.  シリカを含まない、又は、シリカの含有量が、前記ゴム成分100質量部に対して1質量部以下である、請求項1~4のいずれか一項に記載のタイヤの補強材用コーティングゴム組成物。 The coating rubber composition for a tire reinforcing material according to any one of claims 1 to 4, which does not contain silica or has a silica content of 1 part by mass or less with respect to 100 parts by mass of the rubber component. thing.
  6.  熱可塑性樹脂を含まない、請求項1~5のいずれか一項に記載のタイヤの補強材用コーティングゴム組成物。 The coating rubber composition for a tire reinforcing material according to any one of claims 1 to 5, which does not contain a thermoplastic resin.
  7.  熱硬化性樹脂を含む、請求項1~6のいずれか一項に記載のタイヤの補強材用コーティングゴム組成物。 The coating rubber composition for a tire reinforcing material according to any one of claims 1 to 6, which contains a thermosetting resin.
  8.  前記カーボンブラックの含有量が、前記ゴム成分100質量部に対して65質量部以下である、請求項1~7のいずれか一項に記載のタイヤの補強材用コーティングゴム組成物。 The coating rubber composition for a tire reinforcing material according to any one of claims 1 to 7, wherein the carbon black content is 65 parts by mass or less with respect to 100 parts by mass of the rubber component.
  9.  2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)を含まない、請求項1~8のいずれか一項に記載のタイヤの補強材用コーティングゴム組成物。 The coating rubber composition for a tire reinforcing material according to any one of claims 1 to 8, which does not contain 2,2'-methylenebis(4-methyl-6-tert-butylphenol).
  10.  N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミンを含まない、請求項1~9のいずれか一項に記載のタイヤの補強材用コーティングゴム組成物。 The coating rubber composition for a tire reinforcing material according to any one of claims 1 to 9, which does not contain N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine.
  11.  請求項1~10のいずれか一項に記載のタイヤの補強材用コーティングゴム組成物で被覆した補強材を具えることを特徴とする、タイヤ。 A tire characterized by comprising a reinforcing material coated with the coating rubber composition for tire reinforcing material according to any one of claims 1 to 10.
  12.  重荷重用である、請求項11に記載のタイヤ。 The tire according to claim 11, which is for heavy loads.
PCT/JP2022/038826 2021-11-24 2022-10-18 Coating rubber composition for reinforcement material for tires, and tire WO2023095494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023563557A JPWO2023095494A1 (en) 2021-11-24 2022-10-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-190608 2021-11-24
JP2021190608 2021-11-24

Publications (1)

Publication Number Publication Date
WO2023095494A1 true WO2023095494A1 (en) 2023-06-01

Family

ID=86539324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038826 WO2023095494A1 (en) 2021-11-24 2022-10-18 Coating rubber composition for reinforcement material for tires, and tire

Country Status (2)

Country Link
JP (1) JPWO2023095494A1 (en)
WO (1) WO2023095494A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612543A (en) * 1984-03-22 1986-01-08 ユニローヤル グッドリッチ ライセンシング サービシス,インコーポレイティド Method of mass-producing belted pneumatic rubber tire
WO2020059673A1 (en) * 2018-09-18 2020-03-26 住友ゴム工業株式会社 Pneumatic tire
JP2020045408A (en) * 2018-09-18 2020-03-26 住友ゴム工業株式会社 Rubber composition for tire inner layer and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612543A (en) * 1984-03-22 1986-01-08 ユニローヤル グッドリッチ ライセンシング サービシス,インコーポレイティド Method of mass-producing belted pneumatic rubber tire
WO2020059673A1 (en) * 2018-09-18 2020-03-26 住友ゴム工業株式会社 Pneumatic tire
JP2020045408A (en) * 2018-09-18 2020-03-26 住友ゴム工業株式会社 Rubber composition for tire inner layer and process for producing the same

Also Published As

Publication number Publication date
JPWO2023095494A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US10864774B2 (en) Rubber composite reinforced by at least one steel reinforcing element rendered adhesive by an adhesive composition containing aromatic aldehyde and polyphenol
JP6648820B2 (en) Pneumatic tire
JP2010184992A (en) Rubber composition for coating steel cord and pneumatic tire
EP3444298A1 (en) Rubber composition
US20090151838A1 (en) Tire containing an internal cord reinforced rubber component
US8921470B2 (en) Rubber composition for adhering steel cord
WO2020246569A1 (en) Steel cord-rubber composite and pneumatic tire
JP5917197B2 (en) Rubber composition for covering belt cord or carcass cord and pneumatic tire
JP5389535B2 (en) Rubber composition for tread cushion and pneumatic tire
WO2021029378A1 (en) Steel cord/rubber composite, tire, conveyor belt, hose, and rubber crawler
JP7488698B2 (en) Rubber-steel cord composite and pneumatic tire
JP7485510B2 (en) Steel cord-rubber composite and tire, hose, crawler or conveyor using same
CN111295418B (en) Rubber composition, metal-rubber composite, and tire
WO2023095494A1 (en) Coating rubber composition for reinforcement material for tires, and tire
WO2023095480A1 (en) Coating rubber composition for tire-reinforcing material, and tire
WO2023095493A1 (en) Coating rubber composition for tire-reinforcing material, and tire
JP7504289B2 (en) Rubber Composition for Non-Pneumatic Support Components
JP7385442B2 (en) Rubber composition for covering steel cords and pneumatic tires
JP7500188B2 (en) tire
JP7572954B2 (en) Steel cord-rubber composites, tires, conveyor belts, hoses, and rubber crawlers
JP7354509B2 (en) Rubber composition for covering steel cords and pneumatic tires
JP2020063368A (en) Rubber composition for metal coating and tire
JP2023077416A (en) Laminate and tire
JP2008308672A (en) Rubber composition for adhering steel cord
JP2017088829A (en) Rubber composition for coating steel cord and pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898278

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023563557

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE