WO2023095409A1 - Synthetic resin container - Google Patents

Synthetic resin container Download PDF

Info

Publication number
WO2023095409A1
WO2023095409A1 PCT/JP2022/032909 JP2022032909W WO2023095409A1 WO 2023095409 A1 WO2023095409 A1 WO 2023095409A1 JP 2022032909 W JP2022032909 W JP 2022032909W WO 2023095409 A1 WO2023095409 A1 WO 2023095409A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
coating layer
roughened
preform
synthetic resin
Prior art date
Application number
PCT/JP2022/032909
Other languages
French (fr)
Japanese (ja)
Inventor
弘光 清都
秀人 門前
仁 藤岡
誠士 柴田
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Publication of WO2023095409A1 publication Critical patent/WO2023095409A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings

Definitions

  • the present invention relates to a synthetic resin container provided with a detachably laminated covering layer.
  • thermoplastic resin such as polyethylene terephthalate
  • molding this preform into a bottle shape by biaxial stretch blow molding or the like by biaxial stretch blow molding or the like.
  • various beverages and various seasonings.
  • Patent Document 1 In recent years, this type of synthetic resin container has become more and more familiar, and various proposals have been made accordingly. Under such circumstances in recent years, the present applicant, in Patent Document 1, produced a preform in which a coating material layer was laminated by double molding, and blow-molded the preform, thereby detachably laminated. It is proposed to produce a synthetic resin container with a coating layer.
  • the inventors of the present invention have made intensive studies on points for improving the synthetic resin container provided with the coating layer as described above. I found In order to prevent such a problem from occurring, the present invention was completed as a result of repeated further studies.
  • a synthetic resin container according to the present invention comprises a container body formed into a predetermined container shape including a mouth portion, a shoulder portion, a body portion and a bottom portion, and a coating layer detachably laminated on the outer peripheral surface side of the container body. At least part of the surface of the coating layer is roughened, and the roughened surface has a coefficient of friction of less than 1.0.
  • FIG. 1 is a perspective view showing an outline of a synthetic resin container according to an embodiment of the present invention
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a front view which shows the outline of the synthetic resin containers which concern on embodiment of this invention. It is an explanatory view showing an example of a mold. It is a longitudinal section showing an outline of a preform.
  • FIG. 4 is an explanatory diagram of a primary injection process; It is explanatory drawing of a secondary injection process.
  • FIG. 1 is a perspective view schematically showing a synthetic resin container according to this embodiment
  • FIG. 2 is a front view of the same.
  • the container 1 shown in these figures comprises a container body 1a molded into a predetermined container shape including a mouth portion 2, a shoulder portion 3, a body portion 4 and a bottom portion 5, and a container body 1a which is detachably laminated on the outer peripheral surface side of the container body 1a. and a coated coating layer 6 .
  • the container 1 (container main body 1a) has a container shape generally called a round bottle, in which the body portion 4 is formed in a cylindrical shape. is not limited to For example, a container shape called a rectangular bottle, or a constricted shape in which a portion of the body portion 4 is partially greatly reduced in diameter may be used.
  • FIG. 2 shows a cross section of the mouth portion 2 and the shoulder portion 3 with part cut away, and the thicknesses of the container body 1a and the coating layer 6 appearing in the cross section are exaggerated. .
  • the mouth portion 2 is a cylindrical part that serves as an outlet for pouring contents, and a side surface of the mouth portion 2 on the open end side is provided with a screw thread 2a for attaching a lid (not shown). Further, the mouth portion 2 is provided with an annular neck ring 2b protruding outward along the circumferential direction.
  • the mouth portion 2 includes the neck portion 2c which has a substantially uniform diameter and extends in a cylindrical shape from directly below the neck ring 2b.
  • the shoulder portion 3 is formed in a rounded truncated cone shape, but the shape of the shoulder portion 3 is not limited to this. For example, it can be formed in a so-called hanging neck shape.
  • the body portion 4 is a portion that occupies most of the height direction of the container 1 , and has an upper end connected to the shoulder portion 3 and a lower end connected to the bottom portion 5 .
  • the container 1 has a bottom portion 5 formed in a so-called petaloid shape so as to be suitable for use with a carbonated beverage as its content, but the shape of the bottom 5 is different for a non-carbonated beverage as its content. It may have other shapes suitable for the intended use, and can be changed as appropriate according to the intended use.
  • the height direction refers to the direction perpendicular to the horizontal surface when the container 1 is erected on a horizontal surface with the mouth portion 2 facing up. up, down, left, right, and vertical and horizontal directions.
  • the coating layer 6 can be laminated so as to cover at least the body portion 4 .
  • the entire peripheral surface of the trunk portion 4 from the bottom surface of the bottom portion 5 is covered with the coating layer 6, and the end side of the coating layer 6 covers the entire circumference of the neck portion 2c on the lower end side of the mouth portion 2. It is laminated so as to cover and reach directly below the neck ring 2b.
  • FIG. 3 shows an example of a mold 100 used for blow-molding the container 1 described above.
  • the mold 100 forms a body mold 104 for molding the shoulder portion 3 and the body portion 4 and the bottom portion 5.
  • a bottom mold 105 is provided.
  • the barrel mold 104 is composed of a pair of split molds that can be opened and closed, and FIG. 3 shows a simplified cross section of the mold 100 taken along a plane including the parting surface of the barrel mold 104 .
  • FIG. 4 shows an example of a preform 10 blow-molded into the container 1 described above.
  • the preform 10 is detachably laminated on the preform main body 10a and the outer peripheral surface side of the preform main body 10a. and a covering material layer 60 .
  • the preform body 10a When the preform body 10a is blow-molded as will be described later, the preform body 10a has a mouth portion forming region 20 which substantially maintains its appearance and becomes the mouth portion 2 of the container body 1a and a shoulder portion 3 of the container body 1a which is stretched. , a body portion 4 and an elongated region 30 formed on the bottom portion 5, and are formed into a bottomed cylindrical shape.
  • the mouth forming region 20 of the preform body 10a is provided with a screw thread 2a and a neck ring 2b indicated by the same reference numerals as the container 1, and the neck ring 2b of the mouth forming region 20 is provided.
  • the lower portion of is the neck portion 2c of the container body 1a.
  • FIG. 4 is a vertical cross-sectional view of the preform 10, in which the thicknesses of the preform main body 10a and the coating material layer 60 appearing in the cross section are exaggerated. Further, the vertical and horizontal directions and the vertical and horizontal directions of the preform 10 are defined in the state shown in FIG.
  • the covering material layer 60 laminated on the preform main body 10 a can be laminated so that the end side thereof covers the lower end side of the mouth forming region 20 .
  • the entire surface of the stretched region 30 is covered with the covering material layer 60, and the distal end of the covering material layer 60 is positioned below the neck ring 2b of the mouth forming area 20 (the neck of the container body 1a). It is laminated so as to cover the entire periphery of the lower portion 2c and reach directly below the neck ring 2b.
  • Such a preform 10 can be produced as follows by an injection molding method called double molding.
  • the first lower mold 402a for molding the lower outer peripheral surface of the preform body 10a from the lower surface to the bottom of 2b is clamped, and the resin material forming the preform body 10a is injected (see FIG. 5). ).
  • the preform body 10a molded into a cylindrical shape with a bottom including the opening forming region 20 and the extending region 30 is injection molded (primary injection step).
  • a second lower mold 402b configured to form a gap for molding the coating material layer 60 between the molded preform body 10a is used.
  • the resin material forming the covering material layer 60 is injected (see FIG. 6).
  • the covering material layer 60 that is detachably laminated on the outer peripheral surface side of the preform main body 10a and whose terminal side covers the lower end side of the mouth portion forming region 20 (the part below the neck ring 2b) is injection molded (second next injection process).
  • the first and second lower molds 402a and 402b are usually provided with a gate serving as an injection port for the resin material at a position corresponding to the bottom side of the preform 10. However, as shown in FIGS. In the example shown in , illustration of gates is omitted.
  • the resin material forming the preform main body 10a (that is, the resin material forming the container main body 1a)
  • ethylene terephthalate-based thermoplastic polyester such as polyethylene terephthalate. can.
  • the coating material layer 60 As the resin material forming the coating material layer 60 (that is, the resin material forming the coating layer 6), the coating material layer 60 (coating layer 6) is detachably laminated on the preform body 10a (container body 1a). From the viewpoint of making the preform main body 10a compatible, it is preferable to use a thermoplastic resin that is incompatible with the resin material forming the preform main body 10a. For example, when ethylene terephthalate-based thermoplastic polyester is used as the resin material forming the preform body 10a, it is particularly preferable to use a polyolefin resin such as polypropylene or polyethylene as the resin material forming the coating material layer 60.
  • the resin material forming the coating material layer 60 may be a thermoplastic resin having gas barrier properties such as ethylene-vinyl alcohol copolymer or polymeta-xylylene adipamide (MXD6). Resin can also be used. A pigment or a coloring agent may be added to the resin material forming the coating material layer 60 to give it a desired hue, thereby imparting light-shielding properties. In order to enhance the decorative effect, a plurality of pigments or colorants may be mixed and added to form a marble pattern. Various additives can be added to the resin material forming the coating material layer 60 as necessary without being restricted by the recyclability required for the container 1 .
  • MXD6 polymeta-xylylene adipamide
  • the preform 10 produced in this manner is softened by heating to be ready for blow molding, and then set in a mold 100 as indicated by the dashed line in FIG. While being stretched in the axial direction (longitudinal direction) by a non-stretching rod, the preform 10 is stretched in the axial direction and the circumferential direction (lateral direction) by blow air blown into the preform 10 .
  • the preform 10 When heating the preform 10 , for example, the preform 10 is heated from the coating material layer 60 side by an infrared heater or the like, and a rod-shaped high-frequency induction heating element heated by high-frequency induction heating is inserted into the preform 10 . It is preferable to appropriately adjust the heating temperature from the inside and outside by heating the preform main body 10a from the inside as well.
  • the mouth forming region 20 of the preform body 10a is not stretched except for the connecting portion with the stretching region 30 on the lower end side, and the appearance is generally It is maintained and becomes the mouth portion 2 of the container main body 1a. Then, the stretched region 30 is stretched and the shape of the cavity surface 101 of the mold 100 is transferred, thereby forming the shoulder portion 3, the body portion 4 and the bottom portion 5 of the container body 1a, and the preform body 10a.
  • the covering material layer 60 laminated on the container body 1a is molded integrally with the preform body 10a to form the covering layer 6 laminated on the container body 1a.
  • the container 1 manufactured by blow-molding the preform 10 as described above is usually transported to a filling process, where the contents are filled and sealed, then boxed, and then loaded onto a truck or the like. shipped. Therefore, the container 1 is required to be designed in consideration of the influence of vibration during transportation. If the frictional resistance of the layer 6 is large and it is in a non-slip state, the surface of the coating layer 6 is likely to be damaged by abrasion, which may lead to poor appearance, which is not preferable. In addition, in the conveying process after manufacturing the container 1 and the filling process, the container 1 may be slid and conveyed on the line, and the coating layer 6 prevents the container 1 from slipping. As a result, there is a risk that the container 1 will fall over in the middle of the transport line, causing trouble in transport.
  • the surface of the coating layer 6 is roughened, and the coefficient of friction of the roughened surface is appropriately adjusted to be less than 1.0, thereby effectively solving such problems. make it avoidable.
  • the coefficient of friction of the surface of the coating layer 6 is the coefficient of static friction ⁇ s between the coating layers 6 measured according to JIS K 7125:1999 "Test method for coefficient of friction".
  • the correlation between the coefficient of friction of the surface of the coating layer 6 and the surface roughness parameter According to the inventors' examination, although the correlation with the arithmetic mean height Ra, which is an index of the height difference of unevenness, is low, the correlation with the reciprocal 1/Ra of the arithmetic mean height Ra tends to be slightly high. It was found that there is a partial correlation with the skewness Rsk, which is an index of unevenness of unevenness. Therefore, as a parameter of the surface roughness, in addition to the arithmetic mean height Ra, skewness Rsk, which is an index of unevenness of unevenness, is introduced.
  • Such a correlation is particularly strong when the resin material forming the coating layer 6 is low-density polyethylene. It is preferable to roughen the surface of the coating layer 6 so that the arithmetic mean height Ra is large and the skewness Rsk is small within the range satisfying Ra+0.097 ⁇ Rsk+0.2 ⁇ 1.0. Further, the correlation shown in the above regression equation tends to be recognized regardless of the resin material forming the coating layer 6, although there are some differences in the values of the coefficients and constant terms. In view of this, regardless of the resin material forming the coating layer 6, the arithmetic mean height Ra is preferably 0.1 or more, more preferably 1.8 to 10, and the skewness Rsk is preferably 0.2 or less, more preferably -1.0 to 0.
  • the cavity surface 101 of the mold 100 for molding the stretched stretched region 30 is roughened. It is preferable to transfer the roughened cavity surface 101 to the surface of the coating layer 6 that is molded in close contact with the cavity surface 101 by performing the roughening treatment.
  • Mold 100 is usually formed using a hard material such as stainless steel or aluminum alloy.
  • the surface can be roughened by blasting such as shot blasting using a projecting material such as glass powder, alumina, or carborundum, or laser blasting by laser irradiation.
  • the particle size of the projection material, the spraying pressure, etc. are appropriately adjusted so that the arithmetic mean height Ra and the skewness Rsk of the roughened surface transferred to the surface of the coating layer 6 are desired values.
  • laser blasting is preferable because the arithmetic mean height Ra and the skewness Rsk of the rough surface transferred to the surface of the coating layer 6 can be adjusted more easily.
  • the skewness Rsk is too small or too large, it tends to be difficult to process the cavity surface 101 when performing the roughening treatment. If the arithmetic mean height Ra is too small, mold release failure tends to occur, and if the arithmetic mean height Ra is too large, the haze of the coating layer 6 tends to increase. In consideration of these matters, it is preferable to adjust the arithmetic mean height Ra and the skewness Rsk of the rough surface transferred to the surface of the coating layer 6 so as to fall within the ranges described above.
  • roughening the surface of the coating layer 6 is not limited to roughening the entire surface of the coating layer 6 .
  • at least a part of the surface of the coating layer 6 may be roughened corresponding to an arbitrary portion of the container 1 where the resistance due to friction of the coating layer 6 is required to be reduced. good.
  • Example 1 Using polyethylene terephthalate as the resin material forming the preform main body 10a and using polyethylene (low-density polyethylene) as the resin material forming the coating layer 60, the preform 10 shown in FIG. 4 was produced by double molding. . Then, after softening the preform 10 by heating so that it can be blow-molded, it is set in the mold 100 and blow-molded to obtain the number of containers 1 shown in FIGS. 1 and 2 required for evaluation. manufactured.
  • the entire surface of the cavity surface 101 of the mold 100 was roughened by shot blasting using glass beads (J70 GB705K manufactured by Potters Barrotini) as a projection material. At that time, the blowing pressure was 0.3 MPa. Cavity surface 101 subjected to such a roughening treatment was transferred, and the surface roughness of roughened coating layer 6 was measured by a surface roughness measuring instrument, and the arithmetic average height Ra was 1.8. , the skewness Rsk was ⁇ 0.33.
  • ⁇ Vibration test> Each of 12 containers 1, which were arbitrarily selected from the manufactured containers 1, were filled and sealed and packed in a carton containing 12 (3 ⁇ 4) pieces. This was fixed to a vibration table of a vibration tester, and a random vibration test was performed in accordance with JIS Z 0232:2020 "Packaged freight-Vibration test method". The test conditions were vibration direction: vertical (longitudinal), average acceleration: 5.8 m/s 2 , vibration frequency: 10 Hz, and test time: 90 minutes.
  • Example 2 A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using glass beads (J80 GB704K manufactured by Potters-Barotini) as a projection material. evaluated.
  • the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic mean height Ra was 1.6 and the skewness Rsk was -0.18. Also, the coefficient of static friction ⁇ s between the coating layers 6 was 0.23.
  • Example 3 A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using glass beads (J100 GB703K manufactured by Potters-Barotini) as a projection material. evaluated.
  • the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic mean height Ra was 1.2 and the skewness Rsk was -0.12. Also, the coefficient of static friction ⁇ s between the coating layers 6 was 0.22.
  • Example 4 A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using glass beads (J320 GB732 manufactured by Potters-Barotini) as a projection material. evaluated.
  • the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic mean height Ra was 0.9 and the skewness Rsk was -0.25. Also, the coefficient of static friction ⁇ s between the coating layers 6 was 0.21.
  • Example 5 A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using glass beads (J400 GB731 manufactured by Potters-Barotini) as a projection material. evaluated.
  • the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic mean height Ra was 0.4 and the skewness Rsk was -0.13. Also, the coefficient of static friction ⁇ s between the coating layers 6 was 0.27.
  • Example 6 A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using alumina (Morundum (registered trademark) F16 manufactured by Showa Denko) as a projection material. and evaluated.
  • alumina Moundum (registered trademark) F16 manufactured by Showa Denko
  • the arithmetic average height Ra was 10.7 and the skewness Rsk was 0.16.
  • the coefficient of static friction ⁇ s between the coating layers 6 was 0.22.
  • Example 7 A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using alumina (Morundum (registered trademark) F24 manufactured by Showa Denko) as a projection material. and evaluated.
  • alumina Moundum (registered trademark) F24 manufactured by Showa Denko
  • the coefficient of static friction ⁇ s between the coating layers 6 was 0.20.
  • Example 8 The container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using alumina (Morundum (registered trademark) F36 manufactured by Showa Denko) as a projection material. and evaluated.
  • alumina Moundum (registered trademark) F36 manufactured by Showa Denko
  • the coefficient of static friction ⁇ s between the coating layers 6 was 0.20.
  • Example 9 The container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using alumina (Morundum (registered trademark) F60 manufactured by Showa Denko) as a projection material. and evaluated.
  • alumina Moundum (registered trademark) F60 manufactured by Showa Denko
  • the coefficient of static friction ⁇ s between the coating layers 6 was 0.23.
  • Example 10 Container 1 in the same manner as in Example 1, except that carborundum (manufactured by Showa Denko Co., Ltd.: Densic (registered trademark) CF46) was used as a projection material and the entire cavity surface 101 was roughened by shot blasting. was manufactured and evaluated.
  • carborundum manufactured by Showa Denko Co., Ltd.: Densic (registered trademark) CF46
  • the arithmetic mean height Ra was 4.8 and the skewness Rsk was 0.07.
  • the coefficient of static friction ⁇ s between the coating layers 6 was 0.20.
  • Example 11 Container 1 in the same manner as in Example 1, except that carborundum (manufactured by Showa Denko Co., Ltd.: Densic (registered trademark) CF100) was used as a projection material and the entire cavity surface 101 was roughened by shot blasting. was manufactured and evaluated.
  • carborundum manufactured by Showa Denko Co., Ltd.: Densic (registered trademark) CF100
  • the arithmetic mean height Ra was 1.8 and the skewness Rsk was -0.09.
  • the coefficient of static friction ⁇ s between the coating layers 6 was 0.21.
  • Example 12 A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using glass powder (manufactured by Potters-Barotini: GP250A) as a projection material. evaluated.
  • glass powder manufactured by Potters-Barotini: GP250A
  • the coefficient of static friction ⁇ s between the coating layers 6 was 0.19.
  • Example 1 The container 1 was manufactured and evaluated in the same manner as in Example 1, except that the cavity surface 101 was not roughened and the cavity surface 101 was mirror-finished.
  • the arithmetic mean height Ra was less than 0.1 and the skewness Rsk was ⁇ 0.96.
  • the coefficient of static friction ⁇ s between the coating layers 6 was 1.00.

Abstract

Provided is a container comprising: a container body formed in a predetermined container shape including a mouth part, a shoulder part, a trunk part, and a bottom part; and a coating layer releasably laminated on the outer peripheral surface side of the container body, wherein at least a portion of the surface of the coating layer is roughened, and the friction coefficient of the roughened surface is less than 1.0.

Description

合成樹脂製容器Synthetic resin container
 本発明は、剥離可能に積層された被覆層を備える合成樹脂製容器に関する。 The present invention relates to a synthetic resin container provided with a detachably laminated covering layer.
 従来、ポリエチレンテレフタレートなどの熱可塑性樹脂を用いて有底筒状に成形されたプリフォームを作製し、このプリフォームを二軸延伸ブロー成形などによってボトル状に成形してなる合成樹脂製の容器が、各種飲料品、各種調味料等を内容物とする容器として広い分野で利用されている。 Conventionally, synthetic resin containers have been manufactured by using a thermoplastic resin such as polyethylene terephthalate to prepare a bottomed tubular preform, and molding this preform into a bottle shape by biaxial stretch blow molding or the like. , various beverages, and various seasonings.
 この種の合成樹脂製容器は、近年、益々身近な存在となってきており、それに伴って様々な提案がなされている。このような近年の状況において、本出願人は、特許文献1において、ダブルモールドにより被覆材層が積層されたプリフォームを作製し、かかるプリフォームをブロー成形することによって、剥離可能に積層された被覆層を備える合成樹脂製容器を製造することを提案している。 In recent years, this type of synthetic resin container has become more and more familiar, and various proposals have been made accordingly. Under such circumstances in recent years, the present applicant, in Patent Document 1, produced a preform in which a coating material layer was laminated by double molding, and blow-molded the preform, thereby detachably laminated. It is proposed to produce a synthetic resin container with a coating layer.
特開2020-90297号公報JP 2020-90297 A
 本発明者らは、上記の如き被覆層を備える合成樹脂製容器の改善点について鋭意検討を重ねてきたところ、被覆層の摩擦による抵抗が大きいと、これに起因する不具合が生じる虞があることを見いだした。そして、そのような不具合が生じないようにするべく、さらなる鋭意検討を重ねた結果、本発明を完成するに至った。 The inventors of the present invention have made intensive studies on points for improving the synthetic resin container provided with the coating layer as described above. I found In order to prevent such a problem from occurring, the present invention was completed as a result of repeated further studies.
 本発明に係る合成樹脂製容器は、口部、肩部、胴部及び底部を含む所定の容器形状に形成された容器本体と、前記容器本体の外周面側に剥離可能に積層された被覆層とを備える合成樹脂製容器であって、前記被覆層の表面の少なくとも一部が粗面化され、粗面化された当該表面の摩擦係数が1.0未満とされた構成としてある。 A synthetic resin container according to the present invention comprises a container body formed into a predetermined container shape including a mouth portion, a shoulder portion, a body portion and a bottom portion, and a coating layer detachably laminated on the outer peripheral surface side of the container body. At least part of the surface of the coating layer is roughened, and the roughened surface has a coefficient of friction of less than 1.0.
 本発明によれば、剥離可能に積層された被覆層を備える合成樹脂製容器において、被覆層の摩擦による抵抗を低減させることができる。 According to the present invention, in a synthetic resin container provided with a releasably laminated coating layer, it is possible to reduce resistance due to friction of the coating layer.
本発明の実施形態に係る合成樹脂製容器の概略を示す斜視図である。1 is a perspective view showing an outline of a synthetic resin container according to an embodiment of the present invention; FIG. 本発明の実施形態に係る合成樹脂製容器の概略を示す正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a front view which shows the outline of the synthetic resin containers which concern on embodiment of this invention. 成形型の一例を示す説明図である。It is an explanatory view showing an example of a mold. プリフォームの概略を示す縦断面図である。It is a longitudinal section showing an outline of a preform. 一次射出工程の説明図である。FIG. 4 is an explanatory diagram of a primary injection process; 二次射出工程の説明図である。It is explanatory drawing of a secondary injection process.
 以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。
 図1は、本実施形態に係る合成樹脂製容器の概略を示す斜視図であり、図2は、同正面図ある。
Preferred embodiments of the present invention are described below with reference to the drawings.
FIG. 1 is a perspective view schematically showing a synthetic resin container according to this embodiment, and FIG. 2 is a front view of the same.
 これらの図に示す容器1は、口部2、肩部3、胴部4及び底部5を含む所定の容器形状に成形された容器本体1aと、容器本体1aの外周面側に剥離可能に積層された被覆層6とを備えている。図示する例において、容器1(容器本体1a)は、胴部4が円筒状に形成された、一般に、丸形ボトルと称される容器形状を有しているが、容器1の形状は、これに限定されない。例えば、角形ボトルと称される容器形状としたり、胴部4の一部が部分的に大きく縮径して括れた形状としたりすることもできる。 The container 1 shown in these figures comprises a container body 1a molded into a predetermined container shape including a mouth portion 2, a shoulder portion 3, a body portion 4 and a bottom portion 5, and a container body 1a which is detachably laminated on the outer peripheral surface side of the container body 1a. and a coated coating layer 6 . In the illustrated example, the container 1 (container main body 1a) has a container shape generally called a round bottle, in which the body portion 4 is formed in a cylindrical shape. is not limited to For example, a container shape called a rectangular bottle, or a constricted shape in which a portion of the body portion 4 is partially greatly reduced in diameter may be used.
 なお、図2には、口部2及び肩部3の一部を切り欠いて、その断面を示しており、断面にあらわれる容器本体1a、被覆層6の肉厚を誇張して描写している。 FIG. 2 shows a cross section of the mouth portion 2 and the shoulder portion 3 with part cut away, and the thicknesses of the container body 1a and the coating layer 6 appearing in the cross section are exaggerated. .
 口部2は、内容物の注入出口となる円筒状の部位であり、口部2の開口端側の側面には、図示しない蓋体を取り付けるためのネジ山2aが設けられている。
 また、口部2には、周方向に沿って外方に突出する環状のネックリング2bが設けられている。そして、ネックリング2bの直下から、概ね同一径で円筒状に垂下する首下部2cを含めて口部2というものとする。
The mouth portion 2 is a cylindrical part that serves as an outlet for pouring contents, and a side surface of the mouth portion 2 on the open end side is provided with a screw thread 2a for attaching a lid (not shown).
Further, the mouth portion 2 is provided with an annular neck ring 2b protruding outward along the circumferential direction. The mouth portion 2 includes the neck portion 2c which has a substantially uniform diameter and extends in a cylindrical shape from directly below the neck ring 2b.
 このような口部2の下端は、胴部4に向かって拡径して口部2と胴部4との間をつなぐ肩部3に連接している。図示する例において、肩部3は、丸みを帯びた円錐台状に形成されているが、肩部3の形状は、これに限定されない。例えば、いわゆるつる首状に形成したりすることもできる。 The lower end of such a mouth portion 2 is connected to a shoulder portion 3 that expands in diameter toward the body portion 4 and connects the mouth portion 2 and the body portion 4 . In the illustrated example, the shoulder portion 3 is formed in a rounded truncated cone shape, but the shape of the shoulder portion 3 is not limited to this. For example, it can be formed in a so-called hanging neck shape.
 また、胴部4は、容器1の高さ方向の多くを占める部位であり、上端が肩部3に連接し、下端が底部5に連接している。図示する例において、容器1は、炭酸飲料を内容物とする用途に適するように、いわゆるペタロイド形状に形成された底部5を備えているが、底部5の形状は、非炭酸飲料を内容物とする用途に適したその他の形状としてもよく、用途に応じて適宜変更することができる。 Also, the body portion 4 is a portion that occupies most of the height direction of the container 1 , and has an upper end connected to the shoulder portion 3 and a lower end connected to the bottom portion 5 . In the illustrated example, the container 1 has a bottom portion 5 formed in a so-called petaloid shape so as to be suitable for use with a carbonated beverage as its content, but the shape of the bottom 5 is different for a non-carbonated beverage as its content. It may have other shapes suitable for the intended use, and can be changed as appropriate according to the intended use.
 ここで、高さ方向とは、口部2を上にして容器1を水平面に正立させたときに、水平面に直交する方向をいうものとし、この状態(図2に示す状態)で容器1の上下左右及び縦横の方向を規定するものとする。 Here, the height direction refers to the direction perpendicular to the horizontal surface when the container 1 is erected on a horizontal surface with the mouth portion 2 facing up. up, down, left, right, and vertical and horizontal directions.
 このような容器形状に成形された容器1において、被覆層6は、少なくとも胴部4を覆うように積層することができる。図示する例では、底部5の底面から胴部4の周面の全面が被覆層6で覆われているとともに、被覆層6の末端側が、口部2の下端側の首下部2cの全周を覆ってネックリング2bの直下に達するように積層されている。 In the container 1 molded into such a container shape, the coating layer 6 can be laminated so as to cover at least the body portion 4 . In the illustrated example, the entire peripheral surface of the trunk portion 4 from the bottom surface of the bottom portion 5 is covered with the coating layer 6, and the end side of the coating layer 6 covers the entire circumference of the neck portion 2c on the lower end side of the mouth portion 2. It is laminated so as to cover and reach directly below the neck ring 2b.
 次に、本実施形態に係る合成樹脂製容器の製造方法について説明する。
 図3は、前述した容器1をブロー成形するために用いる成形型100の一例を示しており、成形型100は、肩部3及び胴部4を成形する胴型104と、底部5を成形する底型105とを備えている。胴型104は、開閉可能に構成された一対の分割型からなり、図3には、胴型104のパーティング面を含む面で成形型100を切り取った断面を簡略化して示している。
Next, a method for manufacturing a synthetic resin container according to this embodiment will be described.
FIG. 3 shows an example of a mold 100 used for blow-molding the container 1 described above. The mold 100 forms a body mold 104 for molding the shoulder portion 3 and the body portion 4 and the bottom portion 5. A bottom mold 105 is provided. The barrel mold 104 is composed of a pair of split molds that can be opened and closed, and FIG. 3 shows a simplified cross section of the mold 100 taken along a plane including the parting surface of the barrel mold 104 .
 また、図4は、前述した容器1にブロー成形されるプリフォーム10の一例を示しており、プリフォーム10は、プリフォーム本体10aと、プリフォーム本体10aの外周面側に剥離可能に積層された被覆材層60とを備えている。 Further, FIG. 4 shows an example of a preform 10 blow-molded into the container 1 described above. The preform 10 is detachably laminated on the preform main body 10a and the outer peripheral surface side of the preform main body 10a. and a covering material layer 60 .
 プリフォーム本体10aは、後述するようにしてブロー成形する際に、その外観を概ね維持して容器本体1aの口部2となる口部形成領域20と、延伸されて容器本体1aの肩部3、胴部4及び底部5に成形される延伸領域30とを含む有底筒状に成形されている。そして、プリフォーム本体10aの口部形成領域20には、容器1に付された符号と同一の符号を以て示すネジ山2a、ネックリング2bが設けられており、口部形成領域20のネックリング2bの下側の部位が、容器本体1aの首下部2cとなる。 When the preform body 10a is blow-molded as will be described later, the preform body 10a has a mouth portion forming region 20 which substantially maintains its appearance and becomes the mouth portion 2 of the container body 1a and a shoulder portion 3 of the container body 1a which is stretched. , a body portion 4 and an elongated region 30 formed on the bottom portion 5, and are formed into a bottomed cylindrical shape. The mouth forming region 20 of the preform body 10a is provided with a screw thread 2a and a neck ring 2b indicated by the same reference numerals as the container 1, and the neck ring 2b of the mouth forming region 20 is provided. The lower portion of is the neck portion 2c of the container body 1a.
 ここで、図4は、プリフォーム10の縦断面図であり、断面にあらわれるプリフォーム本体10a、被覆材層60の肉厚を誇張して描写している。
 また、プリフォーム10の上下左右及び縦横の方向は、口部形成領域20側を上にした図4に示す状態で規定するものとする。
Here, FIG. 4 is a vertical cross-sectional view of the preform 10, in which the thicknesses of the preform main body 10a and the coating material layer 60 appearing in the cross section are exaggerated.
Further, the vertical and horizontal directions and the vertical and horizontal directions of the preform 10 are defined in the state shown in FIG.
 また、プリフォーム本体10aに積層される被覆材層60は、その末端側が、口部形成領域20の下端側を覆うように積層することができる。図示する例では、延伸領域30の全面が被覆材層60で覆われているとともに、被覆材層60の末端側が、口部形成領域20のネックリング2bの下側の部位(容器本体1aの首下部2cとなる部位)の全周を覆ってネックリング2bの直下に達するように積層されている。 Also, the covering material layer 60 laminated on the preform main body 10 a can be laminated so that the end side thereof covers the lower end side of the mouth forming region 20 . In the illustrated example, the entire surface of the stretched region 30 is covered with the covering material layer 60, and the distal end of the covering material layer 60 is positioned below the neck ring 2b of the mouth forming area 20 (the neck of the container body 1a). It is laminated so as to cover the entire periphery of the lower portion 2c and reach directly below the neck ring 2b.
 このようなプリフォーム10は、ダブルモールドなどと称される射出成形法により、次のようにして作製することができる。 Such a preform 10 can be produced as follows by an injection molding method called double molding.
 まず、プリフォーム本体10aの内周面及び上端面を成形するコア型400と、ネックリング2bの上面及び周端面を含むプリフォーム本体10aの上側の外周面を成形する上型401と、ネックリング2bの下面から底部に至るまでのプリフォーム本体10aの下側の外周面を成形する第一の下型402aとを型締めし、プリフォーム本体10aを形成する樹脂材料を射出する(図5参照)。これにより、口部形成領域20と延伸領域30とを含む有底筒状に成形されたプリフォーム本体10aを射出成形する(一次射出工程)。 First, a core mold 400 for molding the inner peripheral surface and the upper end surface of the preform body 10a, an upper mold 401 for molding the upper outer peripheral surface of the preform body 10a including the upper surface and the peripheral end surface of the neck ring 2b, and the neck ring. The first lower mold 402a for molding the lower outer peripheral surface of the preform body 10a from the lower surface to the bottom of 2b is clamped, and the resin material forming the preform body 10a is injected (see FIG. 5). ). As a result, the preform body 10a molded into a cylindrical shape with a bottom including the opening forming region 20 and the extending region 30 is injection molded (primary injection step).
 次いで、第一の下型402aに代えて、成形されたプリフォーム本体10aとの間に、被覆材層60を成形する空隙が形成されるように構成された第二の下型402bを用いて型締めし直してから、被覆材層60を形成する樹脂材料を射出する(図6参照)。これにより、プリフォーム本体10aの外周面側に剥離可能に積層され、末端側が口部形成領域20の下端側(ネックリング2bの下側の部位)を覆う被覆材層60を射出成形する(二次射出工程)。 Next, instead of the first lower mold 402a, a second lower mold 402b configured to form a gap for molding the coating material layer 60 between the molded preform body 10a is used. After re-closing the molds, the resin material forming the covering material layer 60 is injected (see FIG. 6). As a result, the covering material layer 60 that is detachably laminated on the outer peripheral surface side of the preform main body 10a and whose terminal side covers the lower end side of the mouth portion forming region 20 (the part below the neck ring 2b) is injection molded (second next injection process).
 なお、第一及び第二の下型402a,402bには、通常、プリフォーム10の底部側に相当する位置に、樹脂材料の射出口となるゲートが配設されるが、図5及び図6に示す例では、ゲートの図示を省略している。 The first and second lower molds 402a and 402b are usually provided with a gate serving as an injection port for the resin material at a position corresponding to the bottom side of the preform 10. However, as shown in FIGS. In the example shown in , illustration of gates is omitted.
 プリフォーム本体10aを形成する樹脂材料(すなわち、容器本体1aを形成する樹脂材料)としては、容器1に求められるリサイクル性を考慮すると、ポリエチレンテレフタレートなどのエチレンテレフタレート系熱可塑性ポリエステルを好ましく用いることができる。 As the resin material forming the preform main body 10a (that is, the resin material forming the container main body 1a), considering the recyclability required for the container 1, it is preferable to use ethylene terephthalate-based thermoplastic polyester such as polyethylene terephthalate. can.
 被覆材層60を形成する樹脂材料(すなわち、被覆層6を形成する樹脂材料)としては、被覆材層60(被覆層6)がプリフォーム本体10a(容器本体1a)に剥離可能に積層されるようにするという観点から、プリフォーム本体10aを形成する樹脂材料と非相溶性の熱可塑性樹脂を用いるのが好ましい。例えば、プリフォーム本体10aを形成する樹脂材料として、エチレンテレフタレート系熱可塑性ポリエステルを用いる場合、被覆材層60を形成する樹脂材料には、ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂を用いるのが特に好ましいが、容器1にガスバリア性が要求される場合には、被覆材層60を形成する樹脂材料に、エチレン-ビニルアルコール共重合体やポリメタキシリレンアジパミド(MXD6)等のガスバリア性を有する熱可塑性樹脂を用いることもできる。被覆材層60を形成する樹脂材料には、顔料や着色剤などを添加して、所望の色相に着色することで遮光性を付与したりすることもできる。装飾効果を高めるために、複数の顔料や着色剤を混ぜてマーブル模様となるように添加することもできる。被覆材層60を形成する樹脂材料には、容器1に求められるリサイクル性によって制限されずに、各種の添加剤を必要に応じて添加することができる。 As the resin material forming the coating material layer 60 (that is, the resin material forming the coating layer 6), the coating material layer 60 (coating layer 6) is detachably laminated on the preform body 10a (container body 1a). From the viewpoint of making the preform main body 10a compatible, it is preferable to use a thermoplastic resin that is incompatible with the resin material forming the preform main body 10a. For example, when ethylene terephthalate-based thermoplastic polyester is used as the resin material forming the preform body 10a, it is particularly preferable to use a polyolefin resin such as polypropylene or polyethylene as the resin material forming the coating material layer 60. If the container 1 is required to have gas barrier properties, the resin material forming the coating material layer 60 may be a thermoplastic resin having gas barrier properties such as ethylene-vinyl alcohol copolymer or polymeta-xylylene adipamide (MXD6). Resin can also be used. A pigment or a coloring agent may be added to the resin material forming the coating material layer 60 to give it a desired hue, thereby imparting light-shielding properties. In order to enhance the decorative effect, a plurality of pigments or colorants may be mixed and added to form a marble pattern. Various additives can be added to the resin material forming the coating material layer 60 as necessary without being restricted by the recyclability required for the container 1 .
 このようにして作製されたプリフォーム10は、加熱により軟化させてブロー成形が可能な状態とされてから、図3に一点鎖線で示すようにして成形型100にセットされ、必要に応じて図示しない延伸ロッドにより軸方向(縦方向)に延伸されつつ、プリフォーム10内に吹き込まれたブローエアーによって軸方向及び周方向(横方向)に延伸される。 The preform 10 produced in this manner is softened by heating to be ready for blow molding, and then set in a mold 100 as indicated by the dashed line in FIG. While being stretched in the axial direction (longitudinal direction) by a non-stretching rod, the preform 10 is stretched in the axial direction and the circumferential direction (lateral direction) by blow air blown into the preform 10 .
 プリフォーム10を加熱するに際しては、例えば、赤外線ヒータなどによりプリフォーム10を被覆材層60側から加熱するとともに、高周波誘導加熱により発熱させた棒状の高周波誘導発熱体をプリフォーム10内に挿通するなどして、プリフォーム本体10aの内面側からも加熱することにより、内外からの加熱温度を適宜調整するのが好ましい。 When heating the preform 10 , for example, the preform 10 is heated from the coating material layer 60 side by an infrared heater or the like, and a rod-shaped high-frequency induction heating element heated by high-frequency induction heating is inserted into the preform 10 . It is preferable to appropriately adjust the heating temperature from the inside and outside by heating the preform main body 10a from the inside as well.
 このようにして、プリフォーム10をブロー成形することにより、プリフォーム本体10aの口部形成領域20は、その下端側の延伸領域30との接続部を除いて延伸されずに、その外観が概ね維持されて容器本体1aの口部2となる。そして、延伸領域30が延伸されて、成形型100のキャビティ面101の形状が転写されることによって、容器本体1aの肩部3、胴部4及び底部5に成形されるとともに、プリフォーム本体10aに積層された被覆材層60が、プリフォーム本体10aと一体に成形されて、容器本体1aに積層された被覆層6となる。 By blow-molding the preform 10 in this manner, the mouth forming region 20 of the preform body 10a is not stretched except for the connecting portion with the stretching region 30 on the lower end side, and the appearance is generally It is maintained and becomes the mouth portion 2 of the container main body 1a. Then, the stretched region 30 is stretched and the shape of the cavity surface 101 of the mold 100 is transferred, thereby forming the shoulder portion 3, the body portion 4 and the bottom portion 5 of the container body 1a, and the preform body 10a. The covering material layer 60 laminated on the container body 1a is molded integrally with the preform body 10a to form the covering layer 6 laminated on the container body 1a.
 以上のようにして、プリフォーム10をブロー成形することによって製造された容器1は、通常、充填工程に搬送され、内容物が充填密封された後に箱詰めされてから、トラックなどの荷台に積まれて出荷される。そのため、容器1には、輸送時の振動による影響を考慮した製品設計が求められるが、例えば、箱詰めされた状態で隣接する容器1どうしが、輸送時の振動によって擦れ合う際に、互いに接触する被覆層6の摩擦による抵抗が大きく、滑り難い状態にあると、被覆層6の表面に摩耗による損傷が生じ易くなってしまい、外観不良を招く虞があるため好ましくない。
 また、容器1を製造した後の搬送工程や、充填工程にあっては、容器1を滑走させてライン上を搬送することもあり、被覆層6を備えることで容器1が滑り難くなっていると、搬送ラインの途中で容器1が転倒するなどして、搬送に支障をきたす虞もある。
The container 1 manufactured by blow-molding the preform 10 as described above is usually transported to a filling process, where the contents are filled and sealed, then boxed, and then loaded onto a truck or the like. shipped. Therefore, the container 1 is required to be designed in consideration of the influence of vibration during transportation. If the frictional resistance of the layer 6 is large and it is in a non-slip state, the surface of the coating layer 6 is likely to be damaged by abrasion, which may lead to poor appearance, which is not preferable.
In addition, in the conveying process after manufacturing the container 1 and the filling process, the container 1 may be slid and conveyed on the line, and the coating layer 6 prevents the container 1 from slipping. As a result, there is a risk that the container 1 will fall over in the middle of the transport line, causing trouble in transport.
 本実施形態にあっては、被覆層6の表面を粗面化し、粗面化された当該表面の摩擦係数が1.0未満となるように適宜調整することで、このような不具合を有効に回避できるようにしている。
 なお、被覆層6の表面の摩擦係数は、JIS K 7125:1999「摩擦係数試験方法」に準拠して測定された、被覆層6どうしの静摩擦係数μsをいうものとする。
In this embodiment, the surface of the coating layer 6 is roughened, and the coefficient of friction of the roughened surface is appropriately adjusted to be less than 1.0, thereby effectively solving such problems. make it avoidable.
The coefficient of friction of the surface of the coating layer 6 is the coefficient of static friction μs between the coating layers 6 measured according to JIS K 7125:1999 "Test method for coefficient of friction".
 また、被覆層6の表面を粗面化することによって、被覆層6の表面の摩擦係数を調整するにあたり、被覆層6の表面の摩擦係数と、表面粗さのパラメーターとの間の相関関係について、本発明者らが検討したところ、凹凸の高低差の指標となる算術平均高さRaとの相関は低いものの、算術平均高さRaの逆数1/Raとの相関がやや高い傾向にあり、凹凸の偏り具合の指標となるスキューネスRskについては、部分的な相関が認められるという知見が得られた。そこで、表面粗さのパラメーターとして、算術平均高さRaに加えて、凹凸の偏り具合の指標となるスキューネスRskを導入し、例えば、後述する実施例に基づいて、算術平均高さRaの逆数1/RaとスキューネスRskとを説明変数とし、被覆層6の表面の摩擦係数(静摩擦係数μs)を目的変数として重回帰分析してみたところ、次の回帰式が導かれ、R値+0.86の高い相関関係にあることが見いだされた。
  回帰式:μs=0.035/Ra+0.097×Rsk+0.2
Also, in adjusting the coefficient of friction of the surface of the coating layer 6 by roughening the surface of the coating layer 6, the correlation between the coefficient of friction of the surface of the coating layer 6 and the surface roughness parameter , According to the inventors' examination, although the correlation with the arithmetic mean height Ra, which is an index of the height difference of unevenness, is low, the correlation with the reciprocal 1/Ra of the arithmetic mean height Ra tends to be slightly high. It was found that there is a partial correlation with the skewness Rsk, which is an index of unevenness of unevenness. Therefore, as a parameter of the surface roughness, in addition to the arithmetic mean height Ra, skewness Rsk, which is an index of unevenness of unevenness, is introduced. /Ra and skewness Rsk as explanatory variables, and the friction coefficient (static friction coefficient μs) of the surface of the coating layer 6 as an objective variable, multiple regression analysis was performed. A high correlation was found.
Regression formula: μs=0.035/Ra+0.097×Rsk+0.2
 このような相関関係は、被覆層6を形成する樹脂材料が低密度ポリエチレンの場合に特に強く認められることから、被覆層6を形成する樹脂材料が低密度ポリエチレンの場合には、0.035/Ra+0.097×Rsk+0.2<1.0を満たす範囲で、算術平均高さRaが大きく、スキューネスRskが小さくなるように、被覆層6の表面を粗面化するのが好ましい。
 また、上記回帰式に示されるような相関関係は、係数や定数項の値に多少の違いがあるものの、被覆層6を形成する樹脂材料によらずに同様に認められる傾向にある。このことに鑑みると、被覆層6を形成する樹脂材料に関わらず、被覆層6の粗面化された表面の摩擦係数が1.0未満となるように調整する上で、算術平均高さRaは、0.1以上であるのが好ましく、より好ましくは1.8~10であり、スキューネスRskは、0.2以下であるのが好ましく、より好ましくは、-1.0~0である。
Such a correlation is particularly strong when the resin material forming the coating layer 6 is low-density polyethylene. It is preferable to roughen the surface of the coating layer 6 so that the arithmetic mean height Ra is large and the skewness Rsk is small within the range satisfying Ra+0.097×Rsk+0.2<1.0.
Further, the correlation shown in the above regression equation tends to be recognized regardless of the resin material forming the coating layer 6, although there are some differences in the values of the coefficients and constant terms. In view of this, regardless of the resin material forming the coating layer 6, the arithmetic mean height Ra is preferably 0.1 or more, more preferably 1.8 to 10, and the skewness Rsk is preferably 0.2 or less, more preferably -1.0 to 0.
 被覆層6の表面を粗面化するには、前述したようにして、プリフォーム10をブロー成形するにあたり、延伸された延伸領域30を成形する成形型100のキャビティ面101に粗面化処理を施しておくことによって、当該キャビティ面101に密着して成形される被覆層6の表面に、粗面化処理が施されたキャビティ面101を転写するのが好ましい。 In order to roughen the surface of the coating layer 6, as described above, when the preform 10 is blow-molded, the cavity surface 101 of the mold 100 for molding the stretched stretched region 30 is roughened. It is preferable to transfer the roughened cavity surface 101 to the surface of the coating layer 6 that is molded in close contact with the cavity surface 101 by performing the roughening treatment.
 また、成形型100は、通常、ステンレス鋼、アルミニウム合金などの硬質素材を用いて形成されるが、そのような成形型100のキャビティ面101に粗面化処理を施すには、例えば、ガラスビーズ、ガラスパウダー、アルミナ、カーボランダムなどの投射材を用いたショットブラスト、レーザー照射によるレーザーブラストなどのブラスト処理によって粗面化することができる。ショットブラストにより粗面化する場合には、被覆層6の表面に転写される粗面の算術平均高さRa、スキューネスRskが所望の値となるように、投射材の粒度や吹き付け圧力などを適宜調整すればよいが、レーザーブラストによれば、被覆層6の表面に転写される粗面の算術平均高さRa、スキューネスRskをより容易に調整できるため好ましい。 Mold 100 is usually formed using a hard material such as stainless steel or aluminum alloy. The surface can be roughened by blasting such as shot blasting using a projecting material such as glass powder, alumina, or carborundum, or laser blasting by laser irradiation. When the surface is roughened by shot blasting, the particle size of the projection material, the spraying pressure, etc. are appropriately adjusted so that the arithmetic mean height Ra and the skewness Rsk of the roughened surface transferred to the surface of the coating layer 6 are desired values. However, laser blasting is preferable because the arithmetic mean height Ra and the skewness Rsk of the rough surface transferred to the surface of the coating layer 6 can be adjusted more easily.
 ここで、スキューネスRskが小さ過ぎても、大き過ぎても、キャビティ面101に粗面化処理を施す際の加工が困難となる傾向にある。算術平均高さRaが小さ過ぎると、離型不良が発生し易くなる傾向にあり、算術平均高さRaが大き過ぎると、被覆層6のヘーズが高まる傾向にある。これらのことを考慮して、被覆層6の表面に転写される粗面の算術平均高さRa、スキューネスRskが、前述した範囲となるように調整するのが好ましい。 Here, if the skewness Rsk is too small or too large, it tends to be difficult to process the cavity surface 101 when performing the roughening treatment. If the arithmetic mean height Ra is too small, mold release failure tends to occur, and if the arithmetic mean height Ra is too large, the haze of the coating layer 6 tends to increase. In consideration of these matters, it is preferable to adjust the arithmetic mean height Ra and the skewness Rsk of the rough surface transferred to the surface of the coating layer 6 so as to fall within the ranges described above.
 また、被覆層6の表面を粗面化するにあたっては、被覆層6の全面を粗面化するには限られない。例えば、箱詰めされた状態で隣接する容器1どうしが互いに接触する部位、搬送ラインを滑走させる際の底部5の摺動面、搬送ラインを滑走させる際に搬送ガイドに接触する部位など、前述の如き不具合を回避するために、被覆層6の摩擦による抵抗を低減することが求められる容器1の任意の部位に対応させて、被覆層6の表面の少なくとも一部を粗面化するようにしてもよい。 In addition, roughening the surface of the coating layer 6 is not limited to roughening the entire surface of the coating layer 6 . For example, the portion where adjacent containers 1 in a boxed state come into contact with each other, the sliding surface of the bottom portion 5 when the conveying line is slid, the portion where the conveying guide is contacted when the conveying line is slid, etc., as described above. In order to avoid problems, at least a part of the surface of the coating layer 6 may be roughened corresponding to an arbitrary portion of the container 1 where the resistance due to friction of the coating layer 6 is required to be reduced. good.
 以下、具体的な実施例を挙げて、本発明をより詳細に説明する。 The present invention will be described in more detail below with specific examples.
[実施例1]
 プリフォーム本体10aを形成する樹脂材料として、ポリエチレンテレフタレートを用い、被覆材層60を形成する樹脂材料として、ポリエチレン(低密度ポリエチレン)を用いて、図4に示すプリフォーム10をダブルモールドによって作製した。そして、かかるプリフォーム10を加熱により軟化させてブロー成形が可能な状態としてから、成形型100にセットしてブロー成形することによって、図1及び図2に示す容器1を評価に必要な数だけ製造した。
[Example 1]
Using polyethylene terephthalate as the resin material forming the preform main body 10a and using polyethylene (low-density polyethylene) as the resin material forming the coating layer 60, the preform 10 shown in FIG. 4 was produced by double molding. . Then, after softening the preform 10 by heating so that it can be blow-molded, it is set in the mold 100 and blow-molded to obtain the number of containers 1 shown in FIGS. 1 and 2 required for evaluation. manufactured.
 成形型100のキャビティ面101には、ガラスビーズ(ポッターズ・バロティーニ社製:J70 GB705K)を投射材として、ショットブラストにより、その全面に粗面化処理を施した。その際、吹き付け圧力は、0.3MPaとした。このような粗面化処理が施されたキャビティ面101が転写され、粗面化された被覆層6の表面粗さを表面粗さ測定機により測定したところ、算術平均高さRaが1.8、スキューネスRskが-0.33であった。 The entire surface of the cavity surface 101 of the mold 100 was roughened by shot blasting using glass beads (J70 GB705K manufactured by Potters Barrotini) as a projection material. At that time, the blowing pressure was 0.3 MPa. Cavity surface 101 subjected to such a roughening treatment was transferred, and the surface roughness of roughened coating layer 6 was measured by a surface roughness measuring instrument, and the arithmetic average height Ra was 1.8. , the skewness Rsk was −0.33.
 また、製造した容器1から任意に選択された、2本の容器1のそれぞれの被覆層6から試験片を切り出した。かかる試験片を用いて、JIS K 7125:1999「摩擦係数試験方法」に準拠して、被覆層6どうしの静摩擦係数μsを測定したところ、その値は、0.18であった。 Also, a test piece was cut out from the coating layer 6 of each of two containers 1 arbitrarily selected from the manufactured containers 1 . Using this test piece, the static friction coefficient μs between the coating layers 6 was measured according to JIS K 7125:1999 "Friction coefficient test method", and the value was 0.18.
<振動試験>
 製造した容器1から任意に選択された、12本の容器1のそれぞれに内容物を充填密封し、12(3×4)本入りカートンに箱詰めした。これを振動試験機の振動台に固定して、JIS Z 0232:2020「包装貨物-振動試験方法」に準拠したランダム振動試験を行った。試験条件は、振動方向:上下(縦)、平均加速度:5.8m/s、振動数:10Hz、試験時間:90分とした。
<Vibration test>
Each of 12 containers 1, which were arbitrarily selected from the manufactured containers 1, were filled and sealed and packed in a carton containing 12 (3×4) pieces. This was fixed to a vibration table of a vibration tester, and a random vibration test was performed in accordance with JIS Z 0232:2020 "Packaged freight-Vibration test method". The test conditions were vibration direction: vertical (longitudinal), average acceleration: 5.8 m/s 2 , vibration frequency: 10 Hz, and test time: 90 minutes.
<評価>
 試験終了後、カートンから取り出した12本の容器1のそれぞれについて、粉吹きキズの発生の有無を目視にして観察し、次の評価基準で評価した。
◎:外観に問題無し
〇:目視では判断が難しい、小レベルの粉吹きキズ
×:目視で明瞭に判断できる大レベルの粉吹きキズ
 評価の結果を表1に示す。
<Evaluation>
After completion of the test, each of the 12 containers 1 taken out of the carton was visually observed for the occurrence of dust blowing scratches, and evaluated according to the following evaluation criteria.
⊚: No problem in appearance ⊚: Small-level dust blowing flaws that are difficult to judge visually ×: Large-level dust blowing flaws that can be clearly judged visually Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例2]
 ガラスビーズ(ポッターズ・バロティーニ社製:J80 GB704K)を投射材として、ショットブラストにより、キャビティ面101の全面に粗面化処理を施した以外は、実施例1と同様にして容器1を製造して評価した。
 本実施例において、表面粗さ測定機により粗面化された被覆層6の表面粗さを測定したところ、算術平均高さRaが1.6、スキューネスRskが-0.18であった。
 また、被覆層6どうしの静摩擦係数μsは、0.23であった。
[Example 2]
A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using glass beads (J80 GB704K manufactured by Potters-Barotini) as a projection material. evaluated.
In this example, when the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic mean height Ra was 1.6 and the skewness Rsk was -0.18.
Also, the coefficient of static friction μs between the coating layers 6 was 0.23.
[実施例3]
 ガラスビーズ(ポッターズ・バロティーニ社製:J100 GB703K)を投射材として、ショットブラストにより、キャビティ面101の全面に粗面化処理を施した以外は、実施例1と同様にして容器1を製造して評価した。
 本実施例において、表面粗さ測定機により粗面化された被覆層6の表面粗さを測定したところ、算術平均高さRaが1.2、スキューネスRskが-0.12であった。
 また、被覆層6どうしの静摩擦係数μsは、0.22であった。
[Example 3]
A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using glass beads (J100 GB703K manufactured by Potters-Barotini) as a projection material. evaluated.
In this example, when the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic mean height Ra was 1.2 and the skewness Rsk was -0.12.
Also, the coefficient of static friction μs between the coating layers 6 was 0.22.
[実施例4]
 ガラスビーズ(ポッターズ・バロティーニ社製:J320 GB732)を投射材として、ショットブラストにより、キャビティ面101の全面に粗面化処理を施した以外は、実施例1と同様にして容器1を製造して評価した。
 本実施例において、表面粗さ測定機により粗面化された被覆層6の表面粗さを測定したところ、算術平均高さRaが0.9、スキューネスRskが-0.25であった。
 また、被覆層6どうしの静摩擦係数μsは、0.21であった。
[Example 4]
A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using glass beads (J320 GB732 manufactured by Potters-Barotini) as a projection material. evaluated.
In this example, when the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic mean height Ra was 0.9 and the skewness Rsk was -0.25.
Also, the coefficient of static friction μs between the coating layers 6 was 0.21.
[実施例5]
 ガラスビーズ(ポッターズ・バロティーニ社製:J400 GB731)を投射材として、ショットブラストにより、キャビティ面101の全面に粗面化処理を施した以外は、実施例1と同様にして容器1を製造して評価した。
 本実施例において、表面粗さ測定機により粗面化された被覆層6の表面粗さを測定したところ、算術平均高さRaが0.4、スキューネスRskが-0.13であった。
 また、被覆層6どうしの静摩擦係数μsは、0.27であった。
[Example 5]
A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using glass beads (J400 GB731 manufactured by Potters-Barotini) as a projection material. evaluated.
In this example, when the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic mean height Ra was 0.4 and the skewness Rsk was -0.13.
Also, the coefficient of static friction μs between the coating layers 6 was 0.27.
[実施例6]
 アルミナ(昭和電工社製:モランダム(登録商標) F16)を投射材として、ショットブラストにより、キャビティ面101の全面に粗面化処理を施した以外は、実施例1と同様にして容器1を製造して評価した。
 本実施例において、表面粗さ測定機により粗面化された被覆層6の表面粗さを測定したところ、算術平均高さRaが10.7、スキューネスRskが0.16であった。
 また、被覆層6どうしの静摩擦係数μsは、0.22であった。
[Example 6]
A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using alumina (Morundum (registered trademark) F16 manufactured by Showa Denko) as a projection material. and evaluated.
In this example, when the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic average height Ra was 10.7 and the skewness Rsk was 0.16.
Also, the coefficient of static friction μs between the coating layers 6 was 0.22.
[実施例7]
 アルミナ(昭和電工社製:モランダム(登録商標) F24)を投射材として、ショットブラストにより、キャビティ面101の全面に粗面化処理を施した以外は、実施例1と同様にして容器1を製造して評価した。
 本実施例において、表面粗さ測定機により粗面化された被覆層6の表面粗さを測定したところ、算術平均高さRaが7.5、スキューネスRskが-0.02であった。
 また、被覆層6どうしの静摩擦係数μsは、0.20であった。
[Example 7]
A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using alumina (Morundum (registered trademark) F24 manufactured by Showa Denko) as a projection material. and evaluated.
In this example, when the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic average height Ra was 7.5 and the skewness Rsk was -0.02.
Also, the coefficient of static friction μs between the coating layers 6 was 0.20.
[実施例8]
 アルミナ(昭和電工社製:モランダム(登録商標) F36)を投射材として、ショットブラストにより、キャビティ面101の全面に粗面化処理を施した以外は、実施例1と同様にして容器1を製造して評価した。
 本実施例において、表面粗さ測定機により粗面化された被覆層6の表面粗さを測定したところ、算術平均高さRaが6.2、スキューネスRskが-0.13であった。
 また、被覆層6どうしの静摩擦係数μsは、0.20であった。
[Example 8]
The container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using alumina (Morundum (registered trademark) F36 manufactured by Showa Denko) as a projection material. and evaluated.
In this example, when the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic mean height Ra was 6.2 and the skewness Rsk was -0.13.
Also, the coefficient of static friction μs between the coating layers 6 was 0.20.
[実施例9]
 アルミナ(昭和電工社製:モランダム(登録商標) F60)を投射材として、ショットブラストにより、キャビティ面101の全面に粗面化処理を施した以外は、実施例1と同様にして容器1を製造して評価した。
 本実施例において、表面粗さ測定機により粗面化された被覆層6の表面粗さを測定したところ、算術平均高さRaが3.4、スキューネスRskが0.03であった。
 また、被覆層6どうしの静摩擦係数μsは、0.23であった。
[Example 9]
The container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using alumina (Morundum (registered trademark) F60 manufactured by Showa Denko) as a projection material. and evaluated.
In this example, when the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic average height Ra was 3.4 and the skewness Rsk was 0.03.
Also, the coefficient of static friction μs between the coating layers 6 was 0.23.
[実施例10]
 カーボランダム(昭和電工社製:デンシック(登録商標)C F46)を投射材として、ショットブラストにより、キャビティ面101の全面に粗面化処理を施した以外は、実施例1と同様にして容器1を製造して評価した。
 本実施例において、表面粗さ測定機により粗面化された被覆層6の表面粗さを測定したところ、算術平均高さRaが4.8、スキューネスRskが0.07であった。
 また、被覆層6どうしの静摩擦係数μsは、0.20であった。
[Example 10]
Container 1 in the same manner as in Example 1, except that carborundum (manufactured by Showa Denko Co., Ltd.: Densic (registered trademark) CF46) was used as a projection material and the entire cavity surface 101 was roughened by shot blasting. was manufactured and evaluated.
In this example, when the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic mean height Ra was 4.8 and the skewness Rsk was 0.07.
Also, the coefficient of static friction μs between the coating layers 6 was 0.20.
[実施例11]
 カーボランダム(昭和電工社製:デンシック(登録商標)C F100)を投射材として、ショットブラストにより、キャビティ面101の全面に粗面化処理を施した以外は、実施例1と同様にして容器1を製造して評価した。
 本実施例において、表面粗さ測定機により粗面化された被覆層6の表面粗さを測定したところ、算術平均高さRaが1.8、スキューネスRskが-0.09であった。
 また、被覆層6どうしの静摩擦係数μsは、0.21であった。
[Example 11]
Container 1 in the same manner as in Example 1, except that carborundum (manufactured by Showa Denko Co., Ltd.: Densic (registered trademark) CF100) was used as a projection material and the entire cavity surface 101 was roughened by shot blasting. was manufactured and evaluated.
In this example, when the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic mean height Ra was 1.8 and the skewness Rsk was -0.09.
Also, the coefficient of static friction μs between the coating layers 6 was 0.21.
[実施例12]
 ガラスパウダー(ポッターズ・バロティーニ社製:GP250A)を投射材として、ショットブラストにより、キャビティ面101の全面に粗面化処理を施した以外は、実施例1と同様にして容器1を製造して評価した。
 本実施例において、表面粗さ測定機により粗面化された被覆層6の表面粗さを測定したところ、算術平均高さRaが3.7、スキューネスRskが-0.08であった。
 また、被覆層6どうしの静摩擦係数μsは、0.19であった。
[Example 12]
A container 1 was manufactured in the same manner as in Example 1, except that the entire cavity surface 101 was roughened by shot blasting using glass powder (manufactured by Potters-Barotini: GP250A) as a projection material. evaluated.
In this example, when the surface roughness of the roughened coating layer 6 was measured with a surface roughness measuring machine, the arithmetic mean height Ra was 3.7 and the skewness Rsk was -0.08.
Also, the coefficient of static friction μs between the coating layers 6 was 0.19.
[比較例1]
 キャビティ面101に粗面化処理を施すことなく、キャビティ面101を鏡面に仕上げた以外は、実施例1と同様にして容器1を製造して評価した。
 本比較例において、表面粗さ測定機により被覆層6の表面粗さを測定したところ、算術平均高さRaが0.1未満、スキューネスRskが-0.96であった。
 また、被覆層6どうしの静摩擦係数μsは、1.00であった。
[Comparative Example 1]
The container 1 was manufactured and evaluated in the same manner as in Example 1, except that the cavity surface 101 was not roughened and the cavity surface 101 was mirror-finished.
In this comparative example, when the surface roughness of the coating layer 6 was measured by a surface roughness measuring machine, the arithmetic mean height Ra was less than 0.1 and the skewness Rsk was −0.96.
Also, the coefficient of static friction μs between the coating layers 6 was 1.00.
 以上、本発明について、好ましい実施形態を示して説明したが、本発明は、前述した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることはいうまでもない。 Although the present invention has been described above with reference to preferred embodiments, it goes without saying that the present invention is not limited to the above-described embodiments, and that various modifications can be made within the scope of the present invention. Nor.
 1     容器
 1a     容器本体
 2     口部
 3     肩部
 4     胴部
 5     底部
 6     被覆層

 
REFERENCE SIGNS LIST 1 container 1a container body 2 mouth portion 3 shoulder portion 4 trunk portion 5 bottom portion 6 coating layer

Claims (4)

  1.  口部、肩部、胴部及び底部を含む所定の容器形状に形成された容器本体と、前記容器本体の外周面側に剥離可能に積層された被覆層とを備える合成樹脂製容器であって、
     前記被覆層の表面の少なくとも一部が粗面化され、粗面化された当該表面の摩擦係数が1.0未満とされたことを特徴とする合成樹脂製容器。
    A synthetic resin container comprising a container body formed into a predetermined container shape including a mouth, a shoulder, a body and a bottom, and a coating layer detachably laminated on the outer peripheral surface of the container body. ,
    A synthetic resin container, wherein at least a portion of the surface of the coating layer is roughened, and the friction coefficient of the roughened surface is less than 1.0.
  2.  前記被覆層の粗面化された表面の算術平均高さRaが0.1以上、スキューネスRskが0.2以下である請求項1に記載の合成樹脂製容器。 The synthetic resin container according to claim 1, wherein the roughened surface of the coating layer has an arithmetic mean height Ra of 0.1 or more and a skewness Rsk of 0.2 or less.
  3.  前記被覆層が低密度ポリエチレンからなる請求項1又は2に記載の合成樹脂製容器。 The synthetic resin container according to claim 1 or 2, wherein the coating layer is made of low-density polyethylene.
  4.  前記被覆層の粗面化された表面の算術平均高さRaと、スキューネスRskとの間に、
       0.035/Ra+0.097×Rsk+0.2<1.0
    なる関係が成り立つ請求項3に記載の合成樹脂製容器。

     
    Between the arithmetic mean height Ra of the roughened surface of the coating layer and the skewness Rsk,
    0.035/Ra+0.097×Rsk+0.2<1.0
    4. The synthetic resin container according to claim 3, wherein the following relationship holds.

PCT/JP2022/032909 2021-11-26 2022-09-01 Synthetic resin container WO2023095409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021192357A JP2023078988A (en) 2021-11-26 2021-11-26 Synthetic resin container
JP2021-192357 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023095409A1 true WO2023095409A1 (en) 2023-06-01

Family

ID=86539133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032909 WO2023095409A1 (en) 2021-11-26 2022-09-01 Synthetic resin container

Country Status (2)

Country Link
JP (1) JP2023078988A (en)
WO (1) WO2023095409A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542641A (en) * 1991-08-13 1993-02-23 Toppan Printing Co Ltd Multi-layer plastic container
JP2006337932A (en) * 2005-06-06 2006-12-14 Fuji Seal International Inc Plastic label and container with label
JP2009292510A (en) * 2008-06-06 2009-12-17 Toppan Printing Co Ltd Blow-molded container
JP2010155616A (en) * 2008-12-26 2010-07-15 Coca Cola Co:The Grippable container
JP2016022971A (en) * 2014-07-18 2016-02-08 株式会社フジシール Container with label
JP2020038103A (en) * 2018-09-03 2020-03-12 株式会社神戸製鋼所 Friction coefficient prediction method, manufacturing method of aluminum metal plate, manufacturing method of aluminum compact, and aluminum metal plate
JP2020090297A (en) * 2018-12-04 2020-06-11 東洋製罐株式会社 Preform and synthetic resin container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542641A (en) * 1991-08-13 1993-02-23 Toppan Printing Co Ltd Multi-layer plastic container
JP2006337932A (en) * 2005-06-06 2006-12-14 Fuji Seal International Inc Plastic label and container with label
JP2009292510A (en) * 2008-06-06 2009-12-17 Toppan Printing Co Ltd Blow-molded container
JP2010155616A (en) * 2008-12-26 2010-07-15 Coca Cola Co:The Grippable container
JP2016022971A (en) * 2014-07-18 2016-02-08 株式会社フジシール Container with label
JP2020038103A (en) * 2018-09-03 2020-03-12 株式会社神戸製鋼所 Friction coefficient prediction method, manufacturing method of aluminum metal plate, manufacturing method of aluminum compact, and aluminum metal plate
JP2020090297A (en) * 2018-12-04 2020-06-11 東洋製罐株式会社 Preform and synthetic resin container

Also Published As

Publication number Publication date
JP2023078988A (en) 2023-06-07

Similar Documents

Publication Publication Date Title
JP5683783B2 (en) Overmolded container and method of making and using the same
US20100304169A1 (en) Preform for plastics material bottles or wide-necked vessels
US20100304168A1 (en) Preform for plastics material bottles or wide-necked vessels
US20070045216A1 (en) Plastic container finish with structural rib
US20050048235A1 (en) Blow molded wide mouth pet container and method of manufacture
JP2011506132A5 (en)
US10150241B2 (en) High stretch ratio preforms and related containers and methods
WO2018167192A1 (en) Container
JP2018524211A (en) Glossy container
US20160346986A1 (en) System and process for double-blow molding a heat resistant and biaxially stretched plastic container
WO2023095409A1 (en) Synthetic resin container
US6666346B2 (en) Blow molded plastic container with inclined mouth and method and apparatus for obtaining same
US6730259B1 (en) Method for stretch blow molding wide-mouthed container
JP6932448B2 (en) Laminated preform, container, manufacturing method of laminated preform, and manufacturing method of container
WO2018061379A1 (en) Synthetic resin container
KR20040044989A (en) Resin tube-like container and preform thereof
US20090236302A1 (en) Finish Portion For Plastic Preform and Container and Method of Making
JP4752128B2 (en) Manufacturing method of two-layer preform
GB2212435A (en) Blow moulded container
US10569923B2 (en) Wide mouth container and method of making the same
JP7400402B2 (en) mold
CA2855150C (en) Container formed via plural blow molding
WO2016067511A1 (en) Preform for liquid blow moulding
JP2016088087A (en) Preform for liquid blow molding
JP2022086904A (en) Lamination blow molding container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898194

Country of ref document: EP

Kind code of ref document: A1