WO2023095389A1 - Tank operation plan derivation system and tank operation plan derivation method - Google Patents

Tank operation plan derivation system and tank operation plan derivation method Download PDF

Info

Publication number
WO2023095389A1
WO2023095389A1 PCT/JP2022/029773 JP2022029773W WO2023095389A1 WO 2023095389 A1 WO2023095389 A1 WO 2023095389A1 JP 2022029773 W JP2022029773 W JP 2022029773W WO 2023095389 A1 WO2023095389 A1 WO 2023095389A1
Authority
WO
WIPO (PCT)
Prior art keywords
tanks
operation plan
tank
arithmetic processing
liquefied fuel
Prior art date
Application number
PCT/JP2022/029773
Other languages
French (fr)
Japanese (ja)
Inventor
孔一郎 手塚
雅之 口井
康太 渡邊
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to TW111140802A priority Critical patent/TW202326580A/en
Publication of WO2023095389A1 publication Critical patent/WO2023095389A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G61/00Use of pick-up or transfer devices or of manipulators for stacking or de-stacking articles not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the present invention provides a tank operation plan derivation system and tank operation for deriving an operation plan for a tank storing liquefied fuel (for example, fuel stored in a liquid state such as liquefied natural gas, propane, hydrogen, and ammonia; the same shall apply hereinafter). It relates to a plan derivation method.
  • liquefied fuel for example, fuel stored in a liquid state such as liquefied natural gas, propane, hydrogen, and ammonia; the same shall apply hereinafter.
  • Mathematical programming is known as a method of formulating plans for efficient delivery of goods and operation of equipment, in which a problem is reduced to a mathematical expression to find a solution.
  • problems solved by mathematical programming include mixed integer programming problems in which decision variables include both continuous and discrete variables, linear programming problems in which constraints and objective functions are linear, and linear programming problems in which constraints and objective functions are linear.
  • nonlinear programming problems expressed by arbitrary continuous functions that are not
  • the calorific value of liquefied fuel not only varies depending on the place of production and the environment during transportation, but also varies depending on the reception and transfer, etc.
  • the calorific value is expressed by a complex nonlinear formula. be done.
  • the increase or decrease of the liquefied fuel stored in the tank is a continuous variable, but the variable of whether or not the tank receives or expels the liquefied fuel is a binary discrete variable, and both are mixed. In this way, in order to solve the operation plan of the tank that stores the liquefied fuel by the mathematical programming method, it is necessary to solve a highly complex mixed-integer non-linear programming problem, resulting in an enormous amount of computation.
  • Patent Document 1 when solving an operation plan for a liquefied fuel tank by mathematical programming, a mixed integer programming problem in which nonlinearity is linearly approximated and a nonlinear programming problem in which discrete variables are relaxed to continuous variables are A system has been proposed in which the computational load is reduced by alternately obtaining the solution two or more times.
  • the present invention has been made to solve the above problems, and provides a tank operation plan derivation system and a tank operation plan derivation method that reduce the burden of arithmetic processing.
  • the tank operation plan derivation system disclosed below provides information on the inflow and outflow of the liquefied fuel with respect to all of the plurality of tanks storing the liquefied fuel and information on the state of each of the plurality of tanks.
  • a storage unit for storing input information and constraint information including constraint conditions for inflow/outflow and storage of the liquefied fuel in each of the plurality of tanks; and based on the input information and the constraint information, the plurality of a calculation processing unit for deriving an operation plan, which is a plan for the inflow and outflow of the liquefied fuel in each of the plurality of tanks, wherein the calculation processing unit calculates the heat quantity or density of the stored liquefied fuel for each of the plurality of tanks
  • a first process for deriving the operation plan by solving a mixed-integer linear programming problem assuming that is a constant or a linearly changing variable, and each of the plurality of tanks in the operation plan derived in the first process and a second process of calculating the transition of the calorie or density of the stored liquefied fuel, and when the first process is re-executed after the second process, the plurality of values calculated in the second process
  • the heat quantity or density of the liquefied fuel stored in the nonlinearly fluctuating tank is not treated as a variable in the mathematical programming problem and is calculated separately, thereby solving the mixed integer linear programming problem. to derive the operation plan. Therefore, according to the above-described tank operation plan derivation system, it is possible to reduce the load of arithmetic processing.
  • FIG. 1 is a schematic diagram showing a simplified example of the configuration of a storage facility including tanks.
  • FIG. 2 is a block diagram showing a schematic configuration of this system.
  • FIG. 3 is a table showing the principal variables and constants used in solving the mixed integer linear programming problem for deriving the operational plan for tank 10.
  • FIG. 4 is a flow chart showing an outline of arithmetic processing by the arithmetic processing unit 2 of the system S.
  • FIG. 5 is a flow chart showing details of the arithmetic processing of step #1 by the arithmetic processing section 2 of the system S.
  • FIG. 6 is a table showing an example of a ship allocation plan.
  • FIG. 7 is a table showing an example of tank specifications.
  • FIG. 1 is a schematic diagram showing a simplified example of the configuration of a storage facility including tanks.
  • FIG. 2 is a block diagram showing a schematic configuration of this system.
  • FIG. 3 is a table showing the principal variables and constants used in solving the mixed integer linear
  • FIG. 8 is a table showing an example of line demand.
  • FIG. 9 is a table showing an example of acceptance patterns.
  • FIG. 10 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing section 2 of the system S according to the first embodiment.
  • FIG. 11 is a table showing an example of a transfer table.
  • FIG. 12 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing section 2 of the system S according to the first embodiment.
  • FIG. 13 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing unit 2 of the system S according to the second embodiment.
  • FIG. 14 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing unit 2 of the system S according to the second embodiment.
  • FIG. 15 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing unit 2 of the system S according to the third embodiment.
  • FIG. 16 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing unit 2 of the system S according to the third embodiment.
  • FIG. 17 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing unit 2 of the system S according to the fourth embodiment.
  • FIG. 18 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing unit 2 of the system S according to the fourth embodiment.
  • this system the tank operation plan derivation system according to the embodiment of the present invention (hereinafter referred to as "this system”) will describe the configuration of the tank, etc. for which the operation plan is derived, as well as the details of various operations performed on the tank. , variables and constraints used in calculations are explained.
  • a tank storing liquefied natural gas (LNG) will be described as an example, but the system can also derive an operation plan for tanks storing liquefied fuels other than LNG.
  • LNG liquefied natural gas
  • Fig. 1 is a schematic diagram showing a simplified example of the configuration of a storage facility including tanks.
  • LNG transported from a production site or other storage facility or the like is supplied to an arbitrary tank 10 by a transportation means 11 such as an LNG tanker. This operation is called “accept”.
  • a portion of the LNG stored in any tank 10 is supplied to another tank 10 via transfer line 12 . This operation is called “transfer”.
  • LNG stored in an arbitrary tank 10 is supplied for demand such as city gas and power generation via a payout line 14 associated with the tank 10. This operation is called “payout”.
  • the tank 10 includes a transfer pump 13 for transferring and a dispensing pump 15 for dispensing.
  • a plurality of these pumps may be provided for one tank 10 so that transfer or dispensing can be performed even if one of them becomes unusable due to failure or the like.
  • "cooling" can also be performed in which LNG is sent to the transfer line 12 or the discharge line 14 and collected in the tank 10.
  • cooling may be treated as an operation separate from transfer or payout, or may be treated as a part of the transfer or payout operation. Note that FIG.
  • FIG. 1 shows a simplified configuration of the storage facility, and the actual storage facility may be more complicated than shown in FIG.
  • one tank 10 and one payout pump 15 are shown to be able to pay out only one payout line 14, but they may be able to pay out to a plurality of payout lines.
  • FIG. 1 shows lines and equipment for cooling, and lines and equipment for compressing and liquefying BOG (Boil Off Gas) generated by vaporizing LNG in the tank 10. omitted.
  • BOG Wood Off Gas
  • FIG. 2 is a block diagram showing the schematic configuration of this system.
  • the system S includes a storage unit 1 that stores input information and constraint information, and an arithmetic processing unit 2 that derives an operation plan for the tank 10 based on the input information and constraint information.
  • the storage unit 1 includes a non-volatile storage device such as a HDD (Hard Disk Drive) or an SSD (Solid State Drive), and a volatile storage device such as a RAM (Random Access memory).
  • the arithmetic processing unit 2 is composed of an arithmetic processing device such as a CPU (Central Processing Unit).
  • the storage unit 1 may be configured by a plurality of storage devices, and may be configured by combining a nonvolatile storage device and a volatile storage device, for example.
  • the storage unit 1 may be configured as part of a server or the like located away from the arithmetic processing unit 2, and may exchange information with the arithmetic processing unit 2 via a network such as the Internet.
  • the storage unit 1 and the arithmetic processing unit 2 may be configured as a part of one personal computer.
  • the arithmetic processing unit 2 plans the input and output of LNG in each of the plurality of tanks 10 for a predetermined planning target period (for example, 30 days). Derive the operation plan. Therefore, at least the input information includes information on the input/output of LNG with respect to the entire tank 10 from which the operation plan is to be derived, and information on the status of each tank 10 .
  • the restriction information includes information regarding restrictions on LNG inflow/outflow and storage in each of the plurality of tanks 10 .
  • the arithmetic processing unit 2 outputs the output information including the operation plan of the tank 10 by displaying it on a display, transmitting it as data to other devices, or printing it on a printer.
  • the arithmetic processing unit 2 solves the mixed integer linear programming problem based on the input information and constraint information acquired from the storage unit 1 to derive the operation plan for the planning target period.
  • the main continuous variables, discrete variables, constants, and constraints for solving this problem will be described below.
  • the planning target period T is 30 days
  • the unit period is 1 day
  • Figure 3 is a table showing the main variables and constants used in solving the mixed integer linear programming problem for deriving the tank operation plan.
  • the symbols of continuous variables, discrete variables, and constants are described in the left column of each table in FIGS. 3A to 3C, and the contents are described in the right column.
  • the dimensions of the received amount, transferred amount, discharged amount, BOG generation amount, cooling return amount, BOG amount, and planned delivery amount shown in FIGS. 3A and 3C are volume (liquid state).
  • the amount of heat of LNG (amount of received heat, amount of heat stored in tank 10, amount of heat in payout line 14, etc.) can be converted to density (mass per unit volume) in a liquid state. Therefore, all continuous variables and constants relating to the calorific value of LNG can be replaced with continuous variables and constants relating to density. During this replacement, for example, the heat quantity of LNG is converted to the heat quantity per unit volume in the standard state of the vaporized gas [MJ/Nm 3 ] (standard state vaporization heat quantity), and the standard state vaporization heat quantity of LNG and the density of LNG (liquid state) to a linear expression of the other.
  • the calorie constraint for city gas obtained by vaporizing the delivered LNG is replaced by the constraint on the density (liquid state) of the delivered LNG. Can be replaced with conditions.
  • Constraints are mainly defined as physical quantity constraints and heat quantity constraints for various facilities at each stage of receiving, storing, transferring, discharging, and cooling.
  • Quantity constraints include constraints on the volume of LNG and constraints on possible combinations of tanks 10, transfer lines 12, and payout lines 14 subject to each operation.
  • the calorific value constraint is a constraint on the calorific value of LNG at each operation stage, but as described above, the calorific value and the density can be replaced with each other, so it is also a constraint on the density of the LNG.
  • the heat quantity constraint is a non-linear constraint, but as will be described later, the heat quantity is treated as a constant or a variable that varies linearly in this embodiment, so it is not a non-linear constraint in this embodiment.
  • Equation 1 and 2 show the constraint condition expressions regarding the volume change of each tank 10 on a daily basis. Both Equations 1 and 2 are constraints on continuous variables. Each of the constraint condition expressions of Equation 1 and Equation 2 exists in the same number as the product of the number of days in the planning target period T and the number of tanks 10 .
  • Equation 1 expresses that in tank j, the initial storage volume at time t becomes the initial storage volume at time t+1 after undergoing volume changes due to various operations occurring at time t and the occurrence of BOG. Specifically, to the initial storage volume at time t, the received amount, the inflow transfer amount, and the inflow cooling return amount at time t are added, and the outflow transfer amount, the discharge amount, and the BOG generation amount are subtracted. is the initial storage volume at the next time t+1. Therefore, the constraint condition shown in Equation 1 indicates a physical quantity constraint including all operations of receiving, storing, transferring, discharging, and cooling.
  • the amount of BOG generated in the seventh term on the right side of Equation 1 is the total amount of BOG generated by each operation at time t. , it is obtained by using values that are tabulated in advance for each operation.
  • Equation 2 is a constraint condition formula that defines physical quantity constraints at the storage stage regarding the upper and lower limits of the storage amount in each tank 10. Specifically, the storage amount in each tank 10 at time t is It stipulates that the volume should be equal to or less than the upper limit of volume determined by the storage capacity and equal to or more than the lower limit of volume.
  • Equation 3 is a constraint on continuous variables
  • Equation 4 is a constraint on continuous and discrete variables (mixed integer constraint).
  • Equation 3 expresses that the acceptance amount of the acceptance plan whose acceptance date is time t is the sum of the acceptance amounts accepted by each tank 10 at time t. Of the tanks 10 on the left-hand side of Equation 3, the tanks 10 that are not used as receiving tanks have a receiving amount of zero. The number 3 is the same number as the number of days in the planning period T. If there is no acceptance plan at time t, the value of the constant on the right side of Equation 3 is zero.
  • Equation 4 is a multiplication symbol (the same shall apply hereinafter). Equation 4 indicates that if the amount of acceptance in tank j at time t+1 is acceptance at time t, it is equal to or less than the upper volume limit of tank j. It represents 0 if there is no acceptance at time t. In addition, the number of formulas 4 is the same as the product of the number of days in the planning target period T and the number of tanks 10 .
  • Equations 5 to 7 are all constraints on continuous variables. There are as many constraint conditional expressions as the number of days in the planning target period T multiplied by the number of payout lines 14 . There are as many constraint condition expressions as number 6 as the product of the number of days in the planning target period T and the number of tanks 10 . There are as many constraint conditional expressions as the product of the number of days in the planning period T, the number of tanks 10 and the number of delivery lines 14 .
  • Equation 5 defines the volume balance between the total payout amount to payout line l at time t and the planned delivery amount of payout line l.
  • the sum of the amounts dispensed to the dispensation line 1 at time t is the sum of the cooling return amounts from the dispensation line 1 to each tank 10, and the destination m of the dissemination plan for the dispensation line 1 at time t.
  • ' (m' indicates the destination corresponding to payout line 1) by adding the total planned amount of each delivery and subtracting the total amount of each BOG mixed in the delivery destination m' at time t; be equal.
  • the amount of BOG that is mixed in with dispensing can be obtained by using values tabulated in advance for each operation using the density of BOG at the time of the operation as a parameter.
  • Equation 6 defines that the total amount dispensed from tank j to each dispensing line l at time t is the total amount dispensed from the dispensing pumps connected to tank j.
  • Equation 7 expresses that the amount dispensed from tank j to dispensing line l at time t is limited to an upper limit determined by the performance of dispensing pump 15 provided between tank j and dispensing line l.
  • Equation 8 is a constraint on continuous variables. There are as many constraint conditional expressions as number 8 as the product of the number of days in the planning target period T and the number of payout lines 14 .
  • Equation 8 prescribes that the density of each payout line l at time t falls within the range below its upper limit and above its lower limit.
  • Equations 9 to 11 show the constraint condition expressions related to quantity restrictions in transportation. Equations 9 to 11 are all constraints on continuous variables. There are as many constraint condition expressions as number 9 as the product of the number of days in the planning target period T, the number of tanks 10, and the number of tanks 10 minus 1. 10 and 11, the same number as the product of the number of days in the planning target period T and the number of tanks 10 exists.
  • Equation 9 expresses that the transfer amount from tank i to tank j at time t is limited to an upper limit determined by the performance of transfer pump 13 provided in tank i.
  • Equation 10 expresses that the total amount of transfer from one tank to another tank is equal to or less than the upper limit value at time t.
  • Equation 11 expresses that at time t, the total transfer amount to a certain tank from other tanks is equal to or less than the upper limit.
  • Equation 12 is a constraint on continuous variables. There are as many constraint conditional expressions as the number of days in the planning target period T multiplied by the number of payout lines 14 .
  • Equation 12 defines the volume balance for cooling LNG provided via payout line l at time t. Specifically, the total cooling return amount from the payout line 1 to each tank j at time t is equal to the cooling return amount from the payout line 1 to the predetermined transfer line 12 at time t.
  • Equations 13 and 14 are formulas that express the constraints on changes in tank density on the day of acceptance. Equations 13 and 14 update the density of the tank with the receiving density (the density of LNG received from the transportation means 11) in the receiving plan for the tank with receiving, but change to the density for the tank without receiving shall not occur.
  • M is a constant value sufficiently larger than the incoming density and the tank density.
  • Equation 15 is an expression that expresses a constraint on fluctuations in tank density on days when there is no reception.
  • the LNG inlet is determined based on the relationship between the storage amount of the tank 10 and the density difference between the inflowing LNG and the stored LNG.
  • constraints that determine either the top of the tank or the bottom of the tank.
  • This is a constraint condition (stratification determination condition) related to the heat amount constraint for preventing stratification due to density distribution occurring in the LNG in the tank 10 due to the above relationship.
  • the storage amount of the receiving tank whose LNG inlet is at the top of the tank is determined in advance. It can be changed to a constraint that is the lower storage amount.
  • the variable that determines whether the LNG inlet to tank 10 is at the top or bottom of the tank is a discrete variable.
  • the constraint when it is necessary to unify the inlet of LNG to the tank upper part or the tank lower part becomes the constraint using the discrete variable.
  • the difference in tank liquid level between receiving tanks determined by each storage amount before receiving is within a predetermined range. If there are multiple receiving tanks, the constraint that stipulates that the difference in the tank liquid level determined by each storage amount after receiving is equal between the receiving tanks, If there are multiple receiving tanks, the Constraints that stipulate that the ratio of incoming volumes between tanks is a predetermined ratio, and that stipulate that the number of incoming tanks is determined by the incoming volume of the acceptance plan, etc. may be added.
  • a constraint condition related to quantity restrictions in payout for example, a constraint condition that stipulates that the correspondence between the payout pump 15 and the payout line 14 is fixed without being changed for a certain period of time, and that each payout line 14 is operated
  • a constraint condition or the like may be added that specifies that the number of payout pumps 15 is set to be one more than the required number determined by the planned delivery amount for each payout line 14 .
  • the correspondence between the dispensing pump 15 and the dispensing line 14 and the fixed period for fixing the correspondence may be configured to be appropriately changeable as part of the input information.
  • Constraint conditions stipulating that the density in the tank 10, which is the delivery source before starting the pump 15, is within a predetermined range, and that the amount of BOG mixed in the LNG delivered from the delivery line 14 is not more than a predetermined upper limit value. Constraint conditions or the like that define that there is a certain condition may be added.
  • Constraint condition related to quantity restrictions in transfer for example, it is specified that the tank 10 that is the transfer source and the tank 10 that is the transfer destination are fixed to a specific tank 10 for each transfer line 12. Constraints, Constraints stipulating that transfer is not performed within the same area when receiving within the same area, Storage amount or liquid level in tank 10 to be transferred before starting transfer pump 13 Constraint conditions or the like that define being within a predetermined range may be added.
  • a possible combination of the discharge line 14 from which the LNG for cooling is sent out and the cooling return tank is fixed in advance to a predetermined combination. Constraints and the like may be added.
  • FIG. 4 is a flow chart showing an outline of arithmetic processing by the arithmetic processing unit 2 of the system S. As shown in FIG. Note that FIG. 4 shows an outline of arithmetic processing by the arithmetic processing unit 2 of the present system S according to each of the first embodiment described below and the second embodiment described later. This is common to the two embodiments.
  • the arithmetic processing unit 2 first sets a plurality of tank groups 100 (see FIG. 1) formed by dividing the plurality of tanks 10 into groups, each of which receives LNG from the transportation means 11. Create an acceptance pattern (step #1). Next, the arithmetic processing unit 2 solves a mixed integer linear programming problem for the acceptance pattern created in step #1 to derive an operation plan (step #2). Further, based on the operation plan derived in step #2, the arithmetic processing unit 2 solves the mixed integer linear programming problem under the condition that at least one of the number of transfers and the transfer amount is reduced, and derives the operation plan (step # 3). Finally, the arithmetic processing unit 2 outputs the operation plan derived in step #3 (step #4). When multiple acceptance patterns are created in step #1, the operation plans derived for all acceptance patterns in step #4 may be output as output information. The operation plan may be selectively output as output information.
  • the arithmetic processing unit 2 may be configured to execute only steps #1, #2 and #4, and even in this case it is possible to derive the operation plan. In this case, the arithmetic processing unit 2 outputs the operation plan derived in step #2. However, although the details will be described below, the execution of step #3 by the arithmetic processing unit 2 reduces at least one of the number of transfers and the transfer amount, making it possible to output an operation plan that is easy to execute. Alternatively, the arithmetic processing unit 2 may create only one acceptance pattern in step #1. However, when the arithmetic processing unit 2 creates a plurality of receiving patterns in step #1, it also optimizes the receiving from the transportation means 11 to the tank 10 by comparing the operation plan obtained for each receiving pattern. becomes possible.
  • FIG. 5 is a flow chart showing details of the arithmetic processing of step #1 by the arithmetic processing section 2 of the system S. As shown in FIG. It should be noted that FIG. 5 is also common to the first embodiment and the second embodiment, as is the case with FIG.
  • the arithmetic processing unit 2 first acquires input information (step #10).
  • the input information includes, for example, a ship allocation plan illustrated in FIG. 6, a tank specification illustrated in FIG. 7, and a line demand illustrated in FIG.
  • the ship allocation plan exemplified in FIG. 6 includes, for each means of transport 11, a "date of acceptance” that is the time to visit the storage facility, a "heat amount” of the LNG to be supplied, and a “amount of acceptance” that is the amount of LNG to be supplied. included.
  • the unit of "calorie” is [MJ/Nm 3 ]
  • the unit of "acceptance amount” is [Nm 3 ].
  • Tank 10 "cross-sectional area”, and a "tie line” which is a payout line 14 from which the tank 10 can pay out.
  • the unit of “initial stock liquid level”, “upper limit of liquid level” and “lower limit of liquid level” is [m]
  • the unit of “initial heat quantity” is [MJ/Nm 3 ]
  • the unit of “cross-sectional area” is [ m 2 ].
  • the line demand illustrated in FIG. 8 includes the demand for each unit period t in the planned period T for each payout line 14, and the unit of the demand is [Nm 3 ] (gas).
  • the arithmetic processing unit 2 creates a plurality of tank groups 100 by grouping the plurality of tanks 10 (step #11).
  • a tank group 100 is created based on a predetermined rule. For example, acceptable tanks are included in a group of tanks, the "tie line" is the same, and so on.
  • the tank group 100 may be created in advance and the information thereof may be stored in the storage unit 1 .
  • the arithmetic processing unit 2 creates a plurality of acceptance patterns (step #12).
  • the receiving pattern is a combination of vehicles 11 and tanks 100 .
  • Acceptance patterns are also created based on predetermined rules. For example, on the premise that one transport means 11 supplies LNG only to one tank group 100, the heat quantity of the ship allocation plan illustrated in FIG. For example, the transport means 11 to which the LNG belongs is supplied to the tank group 100 in which the heat quantity of the stored LNG is high. All patterns that can be combined with the transportation means 11 and the group of tanks 100 may be created as receiving patterns.
  • the arithmetic processing unit 2 calculates changes in the calorific value of LNG, etc. for each of the acceptance patterns for each tank group 100 (step #13). At this time, for each tank group 100, the arithmetic processing unit 2 adds the amount of LNG supplied from the transportation means 11 according to the receiving pattern, calculates the transition of the heat amount, and calculates the amount of LNG paid out as the line demand. Subtract
  • the arithmetic processing unit 2 narrows down the acceptance patterns based on the calculation result of step #13 (step #14). For example, for the LNG stored in the tank group 100, the acceptance patterns are narrowed down by excluding acceptance patterns with large violation amounts such as the storage amount and the average heat quantity. Then, the arithmetic processing unit 2 stores the narrowed-down acceptance pattern in the storage unit 1 (step #15), and ends step #1.
  • FIG. 10 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing section 2 of the system S according to the first embodiment. Note that the arithmetic processing shown in FIG. 10 is performed for each acceptance pattern created in step #1.
  • the arithmetic processing unit 2 first acquires input information (step #20).
  • the input information includes, for example, a ship allocation plan illustrated in FIG. 6, a tank specification illustrated in FIG. 7, a line demand illustrated in FIG. 8, and a transfer table illustrated in FIG.
  • a weighting factor W i in an objective function F which will be described later, is defined for each combination of the tanks 10 of the transfer source and the transfer destination.
  • the arithmetic processing unit 2 acquires constraint information (step #21).
  • the constraint information is information representing the constraint conditions described above.
  • the arithmetic processing unit 2 solves a mixed integer linear programming problem for each of the plurality of tanks 10 based on the acquired input information and constraint information, regarding the heat quantity of the LNG to be stored as a constant. is derived (step #22).
  • an objective function F shown in Equation 16 below is used as an objective function.
  • P i is a penalty indicated by the deviation from the value of a predetermined monitoring target item or a predetermined reference value
  • W i is a weighting factor when weighting and adding the penalty P i .
  • items to be monitored include the amount of heat dispensed, the number of transfers, and the amount transferred.
  • the decision variables are, for example, the amount received and discharged for each tank 10, the presence or absence of operation of each discharge pump 15, the presence or absence of transfer between tanks 10, and the transfer amount for each transfer, and these are included in the operation plan.
  • the calorific value of the LNG stored in the tank 10 varies non-linearly depending on the supply of LNG from the outside. Therefore, if the heat quantity of the LNG stored in the tank 10 is used as a variable, the mixed-integer nonlinear programming problem must be solved. Therefore, in step #22, the calorific value of the LNG stored in the tank 10 is regarded as a constant, and the operation plan can be derived by solving the mixed integer linear programming problem.
  • the heat quantity of the LNG stored in the tank 10 as a constant means treating the heat quantity as a constant, and is not limited to fixing the heat quantity to a constant value.
  • step #22 executed for the first time, even if LNG is supplied to the tank 10 from the outside, the heat amount of the LNG stored in the tank 10 does not change before and after that, or the amount of LNG in the tank 10 and the amount of LNG from the outside It is updated to a predetermined value independent of the amount of LNG supplied. Specifically, when LNG is supplied to the tank 10 by transfer or cooling return, the heat quantity of the LNG stored in the tank 10 does not change, but when the tank 10 receives LNG, the amount of LNG stored in the tank 10 The heat value is updated with the heat value of the incoming LNG.
  • the arithmetic processing unit 2 calculates changes in the heat quantity of the LNG stored in the tank 10 in the operation plan derived in step #22 (step #23). Specifically, the arithmetic processing unit 2 also calculates changes in the volume of LNG stored in the tank 10 in addition to changes in the amount of heat of the LNG stored in the tank 10 . This is because, as described above, heat quantity and density are interchangeable, and if the heat quantity of LNG fluctuates, the density also fluctuates, and if the density fluctuates, the volume also fluctuates.
  • the arithmetic processing unit 2 calculates the amount of additional fuel required for dispensing in each of the plurality of tanks 10 based on the operation plan derived in step #22 (step #24).
  • Additional fuel is, for example, LPG.
  • the required amount of additional fuel can be obtained by the calculation of (target heat amount - payout heat amount) / (additional fuel heat amount - payout heat amount) x payout amount x payout production amount / additional fuel production amount.
  • the production volume is the volume of gas when a predetermined amount of liquefied fuel is vaporized, and the target heat quantity is, for example, 45 MJ/Nm 3 .
  • the arithmetic processing unit 2 updates the line demand as a new demand with a value obtained by subtracting the amount of additional fuel calculated in step #24 from the line demand included in the input information (step #25). Then, the arithmetic processing unit 2 determines whether or not the result of calculating the transition of the amount of heat, etc. in step #23 violates the restrictions on the LNG stored in the tank 10 (step #26).
  • the constraint for confirming whether or not there is a violation in step #26 may be a constraint regarding the LNG discharged from the tank 10 in addition to (or instead of) the constraint regarding the LNG stored in the tank 10, or in step #22.
  • the constraints may be the same as or different from the constraints used in solving the mixed integer linear programming problem.
  • step #22 the arithmetic processing unit 2 finds a solution so as to satisfy the constraint conditions.
  • the constraint may be violated (step #26, YES).
  • the heat amount of the LNG stored in the tank 10 or the heat amount of the LNG paid out to the payout line 14 is out of the limited range, or the volume of the LNG stored in the tank 10 (for example, the liquid level) is out of the limited range.
  • step #27, NO the arithmetic processing unit 2 changes the amount of heat calculated in step #23,
  • the new line demand updated in step #25 is acquired (step #28), and the mixed integer linear programming problem is solved again by reflecting these as new constant changes (step #22).
  • step #22 executed immediately before the mixed integer linear programming problem can be solved and the operation plan can be derived in a state in which the change in the amount of heat is accurately reflected.
  • step #22 A calculation result based on the derived operation plan is stored in the storage unit 1 (step #29), and the process of step #2 is terminated.
  • the calculation results include, for example, the amount of fuel received for each tank 10, changes in demand allocation and calorific value, a receiving plan, and the amount of additional fuel required.
  • step #26 if there is a constraint violation (step #26, YES), but the processing of step #22 has reached the N-th time (step #27, YES), the operation plan finally derived in step #22 is stored in the storage unit 1. (step #29), and the process of step #2 is terminated.
  • step #29 since the constraint violation has not been resolved, it is preferable to store this fact together as a calculation result and include it in the output information to alert the operator of the storage facility.
  • FIG. 12 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing section 2 of the system S according to the first embodiment. Note that, as shown in FIG. 12, the arithmetic processing unit 2 also performs the same processing as in step #2 shown in FIG. 10 in step #3. In the following, regarding the processing of step #3, detailed descriptions of the same portions as in step #2 will be omitted, and different portions will be described.
  • the arithmetic processing unit 2 acquires not only the input information but also the calculation result of step #2 (step #30). Next, the arithmetic processing unit 2 acquires constraint information (step #31), solves a mixed integer linear programming problem, and derives an operation plan (step #32). At this time, for example, the arithmetic processing unit 2 may derive the operation plan under the same kind of conditions as in step #2. Specifically, for example, in step #22 of step #2, the arithmetic processing unit 2 derives an operation plan under conditions that minimize the number of transfers, and in step #32, transfers more than the operation plan derived in step #2.
  • the operation plan may be derived under the condition that the number of times is reduced, or the operation plan is derived under the condition that the transfer amount is minimized in step #22 of step #2, and in step #32, the operation plan is derived in step #2.
  • An operation plan may be derived on the condition that the transfer amount is further reduced than the operation plan.
  • the arithmetic processing unit 2 may derive the operation plan under conditions different from those in step #2. Specifically, for example, the arithmetic processing unit 2 may derive the operation plan under the condition that the number of transfers is minimized in step #22, and derive the operation plan under the condition that the transfer amount is further reduced in step #32.
  • the operation plan may be derived under the condition of minimizing the transfer amount
  • the operation plan may be derived under the condition of further reducing the number of transfers.
  • the transfer amount based on the transfer amount in the calculation result of step #2 is not transferred for the combination of tanks that are not transferred in the calculation result of step #2. and allow transfer within the upper and lower limits of
  • step #33 to #39 is the same as the processing of step #2 (steps #23 to #29) shown in FIG. Then, the operation plan derived in step #3 becomes the finally derived operation plan.
  • the heat quantity of the liquefied fuel stored in the tank 10 that varies nonlinearly is not treated as a variable in the mathematical programming problem, but is calculated separately.
  • the system S calculates the calorific value of the LNG stored in the tank 10 separately from the mixed integer linear programming problem and treats it as a constant in the mixed integer linear programming problem, thereby reflecting the change in the calorific value. to solve. Thereby, this system S becomes possible [ reducing the load of arithmetic processing ].
  • steps #2 and #3 while repeatedly solving the mixed integer linear programming problem, the required amount of additional fuel is calculated and the line demand is updated (steps #24, #25, #34 and #35). Therefore, it is possible to derive an operation plan including the amount of fuel to be delivered, which is determined by taking into account the amount of additional fuel to be supplied.
  • FIG. 13 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing unit 2 of the system S according to the second embodiment.
  • step #26 after there is no constraint violation (step #26, NO) or the solution-finding process reaches the N-th time (step #27, NO), that is, in step #2, mixed integer linear
  • step #27, NO the N-th time
  • step #28A the heat amount of the LNG stored in the tank 10 Only the transition is acquired
  • FIG. 14 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing unit 2 of the system S according to the second embodiment.
  • Step #3 is similar to step #2, and after solving the mixed integer linear programming problem in step #3, the amount of additional fuel required is calculated (step #34).
  • the arithmetic processing unit 2 does not update the line demand (step #35 in FIG. 12), and when resolving the mixed integer linear programming problem in step #32, the heat amount of the LNG stored in the tank 10 Only transitions are acquired (step #38A).
  • the heat quantity of the liquefied fuel stored in the nonlinearly varying tank 10 is calculated separately without being treated as a variable in the mathematical programming problem. Since the operation plan is derived by solving the problem as an integer linear programming problem, it is possible to reduce the computational load. Furthermore, in the present system S according to the second embodiment, it is possible to minimize the computational processing related to the amount of additional fuel, thereby reducing the computational processing load.
  • FIG. 15 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing unit 2 of the system S according to the third embodiment.
  • acquisition information and constraint information are acquired (steps #20 and #21).
  • the arithmetic processing unit 2 regards the heat quantity of the LNG to be stored for each of the plurality of tanks 10 as a variable that varies linearly rather than as a constant, and solves the mixed integer linear programming problem.
  • An operation plan is derived (step #22B).
  • the arithmetic processing unit 2 uses the objective function F shown in Equation 16 as in the first embodiment as the objective function for deriving the operation plan. Based on the formula, the operation plan is derived by regarding the heat quantity of the LNG stored in the tank as a variable that varies linearly.
  • the arithmetic processing unit 2 performs the same processing as in the first embodiment (steps #23 to #29). However, when performing step #22B again after step #28, the arithmetic processing unit 2 recalculates the mixed integer linear programming problem by reflecting the change in the amount of heat as a constant change in the first embodiment.
  • the amount of change in the amount of heat regarded as a variable that varies linearly so as to correspond to the transition (difference) of the amount of heat (for example, when the storage tank j in the above-mentioned equation 13 receives the time t density change ⁇ , inventory density change ⁇ at time t in storage tank j in Equation 15, density change ⁇ when transferred from storage tank i at time t in storage tank j in Equation 15, etc.) to solve the mixed-integer linear programming problem again.
  • FIG. 16 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing unit 2 of the system S according to the third embodiment.
  • the arithmetic processing unit 2 also performs the same processing as step #2 shown in FIG. 15 in step #3.
  • the arithmetic processing unit 3 performs the processing of step #3 in the same manner as in the first embodiment, but as described in step #2, when solving the mixed integer linear programming problem and deriving the operation plan, For each of the plurality of tanks 10, the mixed-integer linear programming problem is solved by considering the heat quantity of the LNG to be stored not as a constant but as a variable that varies linearly (step #32B).
  • the heat quantity of the liquefied fuel stored in the nonlinearly varying tank 10 is calculated as a variable that varies linearly, so that the mixed integer linear programming problem Since the operation plan is derived by finding the solution, it is possible to reduce the load of arithmetic processing. Also, as in the first embodiment, while solving the mixed integer linear programming problem repeatedly in steps #2 and #3, the required amount of additional fuel is calculated and the line demand is updated (steps #24, #25, #34, and #35), it is possible to derive an operation plan including a payout amount determined by taking into consideration the amount of additional fuel to be supplied.
  • FIG. 17 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing unit 2 of the system S according to the third embodiment.
  • the arithmetic processing unit 2 calculates the required amount of additional fuel (step #24) after solving the mixed integer linear programming problem in step #2, as in the second embodiment. ), updating the line demand (step #25 in FIGS. 10 and 15) is not executed, and when resolving the mixed integer linear programming problem in step #22B, only the change in the heat amount of LNG stored in the tank 10 is acquired. (step #28A).
  • the heat quantity of the LNG to be stored for each of the plurality of tanks 10 is set to a constant A mixed-integer linear programming problem is solved by regarding variables that change linearly instead of (step #22B).
  • FIG. 18 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing unit 2 of the system S according to the fourth embodiment.
  • Step #3 is similar to step #2, and after solving the mixed integer linear programming problem in step #3, the amount of additional fuel required is calculated (step #34).
  • the arithmetic processing unit 2 does not update the line demand (step #35 in FIGS. 12 and 16), and when resolving the mixed integer linear programming problem in step #32B, the LNG stored in the tank 10 is acquired (step #38A).
  • the heat quantity of the LNG to be stored for each of the plurality of tanks 10 is set to a constant A mixed-integer linear programming problem is solved by regarding variables that change linearly instead of (step #32B).
  • the heat quantity of the liquefied fuel stored in the nonlinearly varying tank 10 is calculated as a variable that varies linearly, so that the mixed integer linear programming problem Since the operation plan is derived by finding the solution, it is possible to reduce the load of arithmetic processing. Furthermore, in the present system S according to the fourth embodiment, similarly to the second embodiment, it is possible to minimize the computational processing related to the amount of additional fuel, thereby reducing the computational processing load.
  • steps #26, #36, YES update the heat amount of LNG stored in the tank and solve the mixed integer linear programming problem again.
  • Steps #22, #32, #22B, #32B update the mixed integer linear programming problem again.
  • the mixed integer linear programming problem may be solved again by updating the calorific value of the LNG stored in the tanks, for example to improve the accuracy of the derived operational plan.
  • the calorific value of the LNG stored in the tank is updated a predetermined number of times, and the mixed integer linear programming problem can be solved again.
  • the input information includes the transfer table, but the input information may not include the transfer table.
  • the input information may not include the transfer table. For example, by setting a condition that the weight is smaller when transferring from a tank with a large calorific value of LNG to be stored to a tank with a smaller calorific value, and the weight is larger when transferring from a tank with a small calorific value of LNG to be stored to a tank with a large calorific value. , it is possible to derive an operational plan without using a transfer table.
  • the solution when solving the mixed integer linear programming problem and deriving the operation plan (steps #22, #32, #22B, #32B), the solution is solved according to some rule.
  • the arithmetic processing unit 2 of the system S may perform this solution based on a predetermined operating rule that suppresses nonlinear fluctuations in the heat quantity of LNG.
  • a tank with a large calorific value of LNG to be stored and a tank with a small calorific value are distinguished in advance, and a tank that receives the LNG loaded by the transport means 11 is determined according to the calorific value of the LNG loaded by the transport means 11 ( If the calorific value of the LNG to be stored is large, it is received in a tank with a large calorific value of the LNG to be stored, and if the calorific value of the LNG loaded by the transport means 11 is small, the LNG to be stored is received in a tank with a small calorific value), and the calorific value of the LNG to be stored is Between tanks where the difference is greater than a certain level, a large weight is set for transfer to avoid transfer as much as possible.
  • the arithmetic processing unit 2 can easily derive the optimum operation plan, so that the burden of arithmetic processing can be reduced more appropriately. Become.
  • the arithmetic processing unit 2 solves the mixed integer linear programming problem by regarding the heat amount of LNG stored in the tank as a constant or a linearly changing variable, and further calculates the heat amount It was explained that the transition of is calculated as a change in a constant or linearly changing variable when solving the mixed integer linear programming problem, but the density instead of the heat quantity can be regarded as a constant or linearly changing variable, Both heat content and density may be considered as constant or linearly varying variables.
  • the amount of LNG such as the amount of LNG received, transferred, and discharged was calculated by volume was described, but it is calculated by mass (for example, the unit is tons).
  • step #1 in FIG. 4 may be omitted by separately determining the acceptance pattern in advance. Further, for example, in the above-described first to fourth embodiments, step #1 of FIG. 4 may be omitted by solving the acceptance pattern as a mixed integer linear programming problem in step #2 of FIG.
  • the tank operation plan derivation system includes input information including information on the inflow and outflow of the liquefied fuel with respect to the entire plurality of tanks storing the liquefied fuel and information on the state of each of the plurality of tanks, and input information in each of the plurality of tanks a storage unit for storing constraint information including constraint conditions for the input/output and storage of the liquefied fuel; and a plan for the input/output of the liquefied fuel in each of the plurality of tanks based on the input information and the constraint information an arithmetic processing unit for deriving a certain operation plan, wherein the arithmetic processing unit considers the calorific value or density of the liquefied fuel stored in each of the plurality of tanks as a constant or a variable that varies linearly, and calculates a mixed integer linear
  • a first process of deriving the operation plan by solving a planning problem, and calculating changes in the calorific value or density of the liquefied fuel stored in each of the pluralit
  • the heat quantity or density of the liquefied fuel stored in each of the plurality of tanks calculated in the second process is regarded as a change in a constant or linearly changing variable, and the first process is re-executed (first configuration).
  • the calorific value or density of the liquefied fuel stored in the nonlinearly fluctuating tank is not treated as a variable in the mathematical programming problem but is calculated separately, so that it is solved as a mixed integer linear programming problem and operated. Derive the plan. Therefore, according to this configuration, it is possible to reduce the load of arithmetic processing.
  • the arithmetic processing unit may execute the first processing based on an operating rule that suppresses nonlinear fluctuations in the calorific value or density of the liquefied fuel (second configuration). According to this configuration, it becomes easier to derive the optimum operation plan, so that it is possible to more preferably reduce the load of arithmetic processing.
  • the arithmetic processing unit performs The first process may be re-executed by regarding the transition of the calculated calorific value or density of the liquefied fuel stored in each of the plurality of tanks as a constant or linearly changing variable. According to this configuration, it is possible to derive an operational plan that does not violate the constraints.
  • the arithmetic processing unit calculates changes in the volume of the liquefied fuel stored in each of the plurality of tanks in the second processing, and the result is the volume of the liquefied fuel stored in each of the plurality of tanks. If the restriction on the volume of the liquefied fuel is violated, the change in the calorific value or density of the liquefied fuel stored in each of the plurality of tanks calculated in the second process is regarded as a constant or linearly changing variable, and the second process is performed. 1 processing may be re-executed (fourth configuration). According to this configuration, it is possible to derive an operation plan in which the volume of liquefied fuel stored in the tank does not violate the constraints.
  • the arithmetic processing unit calculates in the second process
  • the first process may be re-executed by regarding the change in the calorific value or density of the liquefied fuel stored in each of the plurality of tanks as a constant or linearly changing variable (fifth configuration). According to this configuration, it is possible to derive an operation plan in which the heat quantity of the liquefied fuel discharged from the tank does not violate the constraints.
  • the arithmetic processing unit determines that the result of the second processing is the liquefied fuel stored in the plurality of tanks and the liquefied fuel discharged from the plurality of tanks. Even if at least one of the constraints is violated, if the number of times the first process has already been executed has reached N times (N is a natural number equal to or greater than 2), the first process must be re-executed. (sixth configuration). According to this configuration, when it is difficult to expect that the constraint violation will be resolved, it is possible to prevent occurrence of an excessive computational load by terminating further solution-finding processing.
  • the arithmetic processing unit performs Under the condition that at least one of the number of times of transfer and the amount of transfer is reduced from the operation plan, the calorific value or density of the liquefied fuel stored in each of the plurality of tanks is regarded as a constant or a variable that varies linearly, and is a mixed integer
  • a third process of deriving the operation plan may be executed by solving a linear programming problem (seventh configuration). According to this configuration, it is possible to derive an operation plan that reduces at least one of the number of times of transfer and the amount of transfer and that is easy to execute.
  • the arithmetic processing unit determines, based on the operation plan derived by the first processing, the amount of additional fuel required to be dispensed from each of the plurality of tanks. is calculated, and a new demand is derived by subtracting the amount corresponding to the amount of the additional fuel from the demand corresponding to the payout, and when the first process is executed again after the second process, The first process may be re-executed based on the new demand (eighth configuration). According to this configuration, it is possible to derive an operation plan including a payout amount determined by also considering the amount of additional fuel to be supplied.
  • the arithmetic processing unit performs A required amount of additional fuel may be calculated based on the operational plan (ninth configuration). According to this configuration, it is possible to minimize the computational processing related to the amount of additional fuel and reduce the computational processing load.
  • the arithmetic processing unit is a combination in which each of a plurality of tank groups formed by grouping the plurality of tanks receives the supply of the liquefied fuel from the transportation means.
  • a plurality of acceptance patterns may be created, and the first process and the second process may be executed for each acceptance pattern to derive a plurality of the operation plans (tenth configuration). According to this configuration, by comparing the operation plan obtained for each receiving pattern, it becomes possible to optimize the receiving from the transportation means to the tank.
  • input information including information on the inflow and outflow of the liquefied fuel with respect to all of the plurality of tanks storing the liquefied fuel and information on the state of each of the plurality of tanks; Based on constraint information including constraints on the inflow and outflow and storage of the liquefied fuel in each of the plurality of tanks, the heat quantity or density of the liquefied fuel stored in each of the plurality of tanks is regarded as a constant or a variable that varies linearly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention provides a tank operation plan derivation system and a tank operation plan derivation method in which burden of computing processes is reduced. A tank operation plan derivation system S is provided with a storage unit 1 and a computing processing unit 2. The computing processing unit 2 executes, for each of a plurality of tanks, a first process that derivates an operation plan by using the calorific value or density of a stored liquefied fuel as a constant or a linearly changing variable and thus solving a mixed integer linear programming problem and a second process that calculates a change in the calorific value or density of a liquefied fuel stored in each of the plurality of tanks, in the operation plan derived in the first process. When re-executing the first process after the second process, the computing processing unit 2 uses, as a constant or a linearly changing variable, the change in the calorific value or density of a liquefied fuel stored in each of the plurality of tanks calculated in the second process and thus executes the first process.

Description

タンク運用計画導出システム及びタンク運用計画導出方法Tank operation plan derivation system and tank operation plan derivation method
 本発明は、液化燃料(例えば、液化天然ガス、プロパン、水素、アンモニアなどの液体状態で貯蔵される燃料。以下同じ。)を貯蔵するタンクの運用計画を導出するタンク運用計画導出システム及びタンク運用計画導出方法に関する。 The present invention provides a tank operation plan derivation system and tank operation for deriving an operation plan for a tank storing liquefied fuel (for example, fuel stored in a liquid state such as liquefied natural gas, propane, hydrogen, and ammonia; the same shall apply hereinafter). It relates to a plan derivation method.
 効率良く物を配送したり機器を運用したりするための計画を策定する手法として、問題を数式表現に帰着させて解を求める数理計画法が知られている。例えば、数理計画法により求解する問題としては、決定変数に連続変数及び離散変数の両者が含まれる混合整数計画問題、制約条件や目的関数が線形である線形計画問題、制約条件や目的関数が線形ではない任意の連続関数で表現された非線形計画問題などがある。 Mathematical programming is known as a method of formulating plans for efficient delivery of goods and operation of equipment, in which a problem is reduced to a mathematical expression to find a solution. Examples of problems solved by mathematical programming include mixed integer programming problems in which decision variables include both continuous and discrete variables, linear programming problems in which constraints and objective functions are linear, and linear programming problems in which constraints and objective functions are linear. There are nonlinear programming problems expressed by arbitrary continuous functions that are not
 しかし、液化燃料を貯蔵するタンクの運用計画を数理計画法により求解する場合、高度かつ複雑な問題を解く必要があるため、演算量が膨大になるという問題がある。具体的に、液化燃料は、生産地や輸送中の環境などによって熱量に差異があるだけでなく、受入や移送等によってもその熱量が変動するものであり、その熱量は複雑な非線形式で表される。さらに、タンクに貯蔵される液化燃料の増減は連続変数になるが、タンクが液化燃料を受け入れるか否かまたは払い出すか否かという変数は2値の離散変数になり、両者が混在する。このように、液化燃料を貯蔵するタンクの運用計画を数理計画法により求解するためには、高度かつ複雑な混合整数非線形計画問題を解く必要があるため、演算量が膨大になる。 However, when using mathematical programming to solve the operation plan for tanks that store liquefied fuel, it is necessary to solve sophisticated and complex problems, so there is the problem of an enormous amount of computation. Specifically, the calorific value of liquefied fuel not only varies depending on the place of production and the environment during transportation, but also varies depending on the reception and transfer, etc. The calorific value is expressed by a complex nonlinear formula. be done. Furthermore, the increase or decrease of the liquefied fuel stored in the tank is a continuous variable, but the variable of whether or not the tank receives or expels the liquefied fuel is a binary discrete variable, and both are mixed. In this way, in order to solve the operation plan of the tank that stores the liquefied fuel by the mathematical programming method, it is necessary to solve a highly complex mixed-integer non-linear programming problem, resulting in an enormous amount of computation.
 この点、特許文献1では、液化燃料のタンクの運用計画を数理計画法で求解する際に、非線形を線形に近似した混合整数計画問題と、離散変数を連続変数に緩和した非線形計画問題を、交互に2回以上求解することで、演算処理の負担を軽減したシステムが提案されている。 In this regard, in Patent Document 1, when solving an operation plan for a liquefied fuel tank by mathematical programming, a mixed integer programming problem in which nonlinearity is linearly approximated and a nonlinear programming problem in which discrete variables are relaxed to continuous variables are A system has been proposed in which the computational load is reduced by alternately obtaining the solution two or more times.
特開2013-092162号公報JP 2013-092162 A
 しかし、特許文献1で提案されているシステムでは、離散変数を連続変数として扱うことで演算処理の負担を緩和しているものの、非線形計画問題を2回以上求解する必要があるため、演算処理の負担を軽減する効果が限定的である。 However, in the system proposed in Patent Document 1, although the load of arithmetic processing is alleviated by treating discrete variables as continuous variables, it is necessary to solve the nonlinear programming problem two or more times, so the arithmetic processing is slowed down. The effect of reducing the burden is limited.
 本発明は、上記のような課題を解決するためになされたものであり、演算処理の負担を軽減したタンク運用計画導出システム及びタンク運用計画導出方法を提供する。 The present invention has been made to solve the above problems, and provides a tank operation plan derivation system and a tank operation plan derivation method that reduce the burden of arithmetic processing.
 上記の目的を達成するために、以下に開示するタンク運用計画導出システムは、液化燃料を貯蔵する複数のタンクの全体に対する前記液化燃料の出入に関する情報及び前記複数のタンクのそれぞれの状態に関する情報が含まれる入力情報と、前記複数のタンクのそれぞれにおける前記液化燃料の出入及び貯蔵の制約条件が含まれる制約情報と、を記憶する記憶部と、前記入力情報及び前記制約情報に基づいて、前記複数のタンクのそれぞれにおける前記液化燃料の出入の計画である運用計画を導出する演算処理部と、を備え、前記演算処理部は、前記複数のタンクのそれぞれについて、貯蔵する前記液化燃料の熱量または密度を定数または線形変化する変数とみなして混合整数線形計画問題を求解することで前記運用計画を導出する第1処理と、前記第1処理で導出した前記運用計画における、前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を計算する第2処理と、を実行し、前記第2処理のあとに前記第1処理を実行し直す場合、前記第2処理で計算した前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を定数とみなして前記第1処理を実行し直す。 In order to achieve the above object, the tank operation plan derivation system disclosed below provides information on the inflow and outflow of the liquefied fuel with respect to all of the plurality of tanks storing the liquefied fuel and information on the state of each of the plurality of tanks. a storage unit for storing input information and constraint information including constraint conditions for inflow/outflow and storage of the liquefied fuel in each of the plurality of tanks; and based on the input information and the constraint information, the plurality of a calculation processing unit for deriving an operation plan, which is a plan for the inflow and outflow of the liquefied fuel in each of the plurality of tanks, wherein the calculation processing unit calculates the heat quantity or density of the stored liquefied fuel for each of the plurality of tanks A first process for deriving the operation plan by solving a mixed-integer linear programming problem assuming that is a constant or a linearly changing variable, and each of the plurality of tanks in the operation plan derived in the first process and a second process of calculating the transition of the calorie or density of the stored liquefied fuel, and when the first process is re-executed after the second process, the plurality of values calculated in the second process The transition of the calorific value or density of the liquefied fuel stored in each tank is regarded as a constant, and the first process is re-executed.
 上記のタンク運用計画導出システムによれば、非線形的に変動するタンクが貯蔵する液化燃料の熱量または密度を、数理計画問題上の変数としては扱わずに別途計算することによって、混合整数線形計画問題として求解して運用計画を導出する。そのため、上記のタンク運用計画導出システムによれば、演算処理の負担を軽減することが可能になる。 According to the tank operation plan derivation system described above, the heat quantity or density of the liquefied fuel stored in the nonlinearly fluctuating tank is not treated as a variable in the mathematical programming problem and is calculated separately, thereby solving the mixed integer linear programming problem. to derive the operation plan. Therefore, according to the above-described tank operation plan derivation system, it is possible to reduce the load of arithmetic processing.
図1は、タンクを含む貯蔵施設の構成の一例を簡略化して示した模式図である。FIG. 1 is a schematic diagram showing a simplified example of the configuration of a storage facility including tanks. 図2は、本システムの概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of this system. 図3は、タンク10の運用計画を導出するための混合整数線形計画問題を求解する際に使用される主たる変数及び定数を示す表である。FIG. 3 is a table showing the principal variables and constants used in solving the mixed integer linear programming problem for deriving the operational plan for tank 10. As shown in FIG. 図4は、本システムSの演算処理部2による演算処理の概要を示すフローチャートである。FIG. 4 is a flow chart showing an outline of arithmetic processing by the arithmetic processing unit 2 of the system S. As shown in FIG. 図5は、本システムSの演算処理部2によるステップ#1の演算処理の詳細を示すフローチャートである。FIG. 5 is a flow chart showing details of the arithmetic processing of step #1 by the arithmetic processing section 2 of the system S. As shown in FIG. 図6は、配船計画の一例を示す表である。FIG. 6 is a table showing an example of a ship allocation plan. 図7は、タンク仕様の一例を示す表である。FIG. 7 is a table showing an example of tank specifications. 図8は、ライン需要の一例を示す表である。FIG. 8 is a table showing an example of line demand. 図9は、受入パターンの一例を示す表である。FIG. 9 is a table showing an example of acceptance patterns. 図10は、第1実施形態に係る本システムSの演算処理部2によるステップ#2の演算処理の詳細を示すフローチャートである。FIG. 10 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing section 2 of the system S according to the first embodiment. 図11は、移送テーブルの一例を示す表である。FIG. 11 is a table showing an example of a transfer table. 図12は、第1実施形態に係る本システムSの演算処理部2によるステップ#3の演算処理の詳細を示すフローチャートである。FIG. 12 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing section 2 of the system S according to the first embodiment. 図13は、第2実施形態に係る本システムSの演算処理部2によるステップ#2の演算処理の詳細を示すフローチャートである。FIG. 13 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing unit 2 of the system S according to the second embodiment. 図14は、第2実施形態に係る本システムSの演算処理部2によるステップ#3の演算処理の詳細を示すフローチャートである。FIG. 14 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing unit 2 of the system S according to the second embodiment. 図15は、第3実施形態に係る本システムSの演算処理部2によるステップ#2の演算処理の詳細を示すフローチャートである。FIG. 15 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing unit 2 of the system S according to the third embodiment. 図16は、第3実施形態に係る本システムSの演算処理部2によるステップ#3の演算処理の詳細を示すフローチャートである。FIG. 16 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing unit 2 of the system S according to the third embodiment. 図17は、第4実施形態に係る本システムSの演算処理部2によるステップ#2の演算処理の詳細を示すフローチャートである。FIG. 17 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing unit 2 of the system S according to the fourth embodiment. 図18は、第4実施形態に係る本システムSの演算処理部2によるステップ#3の演算処理の詳細を示すフローチャートである。FIG. 18 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing unit 2 of the system S according to the fourth embodiment.
 以下、本発明の一実施形態を図面に基づいて説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の構成を充足する範囲内で、適宜設計変更を行うことが可能である。また、以下の説明において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、実施形態および変形例に記載された各構成は、適宜組み合わされてもよいし、変更されてもよい。また、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。 An embodiment of the present invention will be described below based on the drawings. The present invention is not limited to the following embodiments, and design changes can be made as appropriate within the scope of satisfying the configuration of the present invention. Further, in the following description, the same reference numerals are used in common for the same parts or parts having similar functions in different drawings, and the repeated description thereof will be omitted. Also, each configuration described in the embodiment and modification may be appropriately combined or changed. Also, in order to make the explanation easier to understand, in the drawings referred to below, the configuration is shown in a simplified or schematic form, or some constituent members are omitted.
<<全体構成等>>
 最初に、本発明の実施形態に係るタンク運用計画導出システム(以下、「本システム」という。)によって運用計画が導出されるタンク等の構成のほか、当該タンクに対して行われる各種操作の内容、演算で使用される変数や制約条件等について説明する。なお、以下では、液化天然ガス(LNG)を貯蔵するタンクを例示して説明するが、本システムは、LNG以外の液化燃料を貯蔵するタンクの運用計画についても導出可能である。
<<Overall composition, etc.>>
First, the tank operation plan derivation system according to the embodiment of the present invention (hereinafter referred to as "this system") will describe the configuration of the tank, etc. for which the operation plan is derived, as well as the details of various operations performed on the tank. , variables and constraints used in calculations are explained. In the following description, a tank storing liquefied natural gas (LNG) will be described as an example, but the system can also derive an operation plan for tanks storing liquefied fuels other than LNG.
 図1は、タンクを含む貯蔵施設の構成の一例を簡略化して示した模式図である。図1に示すように、LNGタンカー等の輸送手段11によって、産出地や他の貯蔵施設等から輸送されてきたLNGが、任意のタンク10に供給される。この操作を「受入」という。また、図1に示すように、任意のタンク10に貯蔵されているLNGの一部が、移送ライン12を介して別のタンク10に供給される。この操作を「移送」という。また、図1に示すように、任意のタンク10に貯蔵されているLNGが、当該タンク10に対応付けられた払出ライン14を介して、都市ガスや発電などの需要のために供給される。この操作を「払出」という。 Fig. 1 is a schematic diagram showing a simplified example of the configuration of a storage facility including tanks. As shown in FIG. 1, LNG transported from a production site or other storage facility or the like is supplied to an arbitrary tank 10 by a transportation means 11 such as an LNG tanker. This operation is called "accept". Also, as shown in FIG. 1, a portion of the LNG stored in any tank 10 is supplied to another tank 10 via transfer line 12 . This operation is called "transfer". Also, as shown in FIG. 1, LNG stored in an arbitrary tank 10 is supplied for demand such as city gas and power generation via a payout line 14 associated with the tank 10. This operation is called "payout".
 また、図1に示すように、タンク10は、移送を行うための移送ポンプ13と、払出を行うための払出ポンプ15を備えている。これらのポンプは、1つが故障等して使用不能になっても移送または払出を行うことができるように、1つのタンク10に対して複数(例えば2つずつ)備えられることがある。また、LNGを通流させる配管類の内部を極低温状態に維持する目的で、移送ライン12や払出ライン14にLNGを送出してタンク10に回収する「クーリング」も行われ得る。なお、本システムにおいて運用計画を導出する際に、クーリングを、移送や払出とは別の操作として扱ってもよいし、移送や払出の一部の操作として扱ってもよい。なお、図1では、貯蔵施設の構成を簡略化して図示しており、実際の貯蔵施設は図1に示すよりも複雑になり得る。例えば、図1では、1つのタンク10及び払出ポンプ15が1つの払出ライン14に対してのみ払出可能なように図示しているが、複数の払出ラインに対して払出可能であってもよい。また、例えば、図1では、クーリングを行うためのライン及び設備や、タンク10内においてLNGが気化して発生したBOG(Boil Off Gas)を圧縮して液化するためのライン及び設備などの図示を省略している。 Further, as shown in FIG. 1, the tank 10 includes a transfer pump 13 for transferring and a dispensing pump 15 for dispensing. A plurality of these pumps (for example, two each) may be provided for one tank 10 so that transfer or dispensing can be performed even if one of them becomes unusable due to failure or the like. In addition, for the purpose of maintaining the inside of the pipes through which LNG flows in a cryogenic state, "cooling" can also be performed in which LNG is sent to the transfer line 12 or the discharge line 14 and collected in the tank 10. Incidentally, when deriving an operation plan in this system, cooling may be treated as an operation separate from transfer or payout, or may be treated as a part of the transfer or payout operation. Note that FIG. 1 shows a simplified configuration of the storage facility, and the actual storage facility may be more complicated than shown in FIG. For example, in FIG. 1, one tank 10 and one payout pump 15 are shown to be able to pay out only one payout line 14, but they may be able to pay out to a plurality of payout lines. Also, for example, FIG. 1 shows lines and equipment for cooling, and lines and equipment for compressing and liquefying BOG (Boil Off Gas) generated by vaporizing LNG in the tank 10. omitted.
 図2は、本システムの概略構成を示すブロック図である。図2に示すように、本システムSは、入力情報及び制約情報を記憶する記憶部1と、入力情報及び制約情報に基づいてタンク10の運用計画を導出する演算処理部2を備える。記憶部1は、HDD(Hard Disk Drive)やSSD(Solid State Drive)などの不揮発性の記憶装置や、RAM(Ramdom Access memory)などの揮発性の記憶装置で構成される。演算処理部2は、例えばCPU(Central Processing Unit)などの演算処理装置で構成される。なお、記憶部1は、複数の記憶装置で構成されてもよく、例えば不揮発性の記憶装置と揮発性の記憶装置を組み合わせて構成されてもよい。また、記憶部1は、演算処理部2から離れた場所にあるサーバ等の一部として構成され、インターネット等のネットワークを介して演算処理部2と情報のやり取りを行うものであってもよい。また、記憶部1と演算処理部2は、1台のパソコンの一部として構成されてもよい。 FIG. 2 is a block diagram showing the schematic configuration of this system. As shown in FIG. 2, the system S includes a storage unit 1 that stores input information and constraint information, and an arithmetic processing unit 2 that derives an operation plan for the tank 10 based on the input information and constraint information. The storage unit 1 includes a non-volatile storage device such as a HDD (Hard Disk Drive) or an SSD (Solid State Drive), and a volatile storage device such as a RAM (Random Access memory). The arithmetic processing unit 2 is composed of an arithmetic processing device such as a CPU (Central Processing Unit). Note that the storage unit 1 may be configured by a plurality of storage devices, and may be configured by combining a nonvolatile storage device and a volatile storage device, for example. The storage unit 1 may be configured as part of a server or the like located away from the arithmetic processing unit 2, and may exchange information with the arithmetic processing unit 2 via a network such as the Internet. Moreover, the storage unit 1 and the arithmetic processing unit 2 may be configured as a part of one personal computer.
 演算処理部2は、記憶部1に記憶されている入力情報と制約情報に基づいて、所定の計画対象期間(例えば、30日間)について、複数のタンク10のそれぞれにおけるLNGの出入の計画である運用計画を導出する。そのため、少なくとも入力情報には、運用計画を導出する対象となるタンク10の全体に対するLNGの出入に関する情報や、タンク10のそれぞれの状況に関する情報が含まれる。また、制約情報には、複数のタンク10のそれぞれにおけるLNGの出入及び貯蔵の制約に関する情報が含まれる。演算処理部2は、タンク10の運用計画を含む出力情報を、ディスプレイに表示させたり、データとして他の機器に送信したり、プリンターに印刷させたりするなどして出力する。 Based on the input information and the constraint information stored in the storage unit 1, the arithmetic processing unit 2 plans the input and output of LNG in each of the plurality of tanks 10 for a predetermined planning target period (for example, 30 days). Derive the operation plan. Therefore, at least the input information includes information on the input/output of LNG with respect to the entire tank 10 from which the operation plan is to be derived, and information on the status of each tank 10 . In addition, the restriction information includes information regarding restrictions on LNG inflow/outflow and storage in each of the plurality of tanks 10 . The arithmetic processing unit 2 outputs the output information including the operation plan of the tank 10 by displaying it on a display, transmitting it as data to other devices, or printing it on a printer.
 詳細については後述するが、演算処理部2は、記憶部1から取得する入力情報及び制約情報に基づいて、混合整数線形計画問題を求解することにより、計画対象期間の運用計画を導出する。以下、この問題を求解する際の連続変数、離散変数、定数、制約条件の主たるものにつき説明する。以下では、計画対象期間Tを30日、単位期間を1日とし、計画対象期間T内における時点t(t=1~30)を日単位で表すものとする。 Although the details will be described later, the arithmetic processing unit 2 solves the mixed integer linear programming problem based on the input information and constraint information acquired from the storage unit 1 to derive the operation plan for the planning target period. The main continuous variables, discrete variables, constants, and constraints for solving this problem will be described below. In the following, it is assumed that the planning target period T is 30 days, the unit period is 1 day, and the time t (t=1 to 30) within the planning target period T is expressed in units of days.
 図3は、タンクの運用計画を導出するための混合整数線形計画問題を求解する際に使用される主たる変数及び定数を示す表である。図3(A)~(C)の各一覧表の左列に連続変数、離散変数及び定数の記号を、右列に内容をそれぞれ記載する。図3(A)及び(C)に示す受入量、移送量、払出量、BOG発生量、クーリング戻り量、BOGの量、送出計画量の次元は体積(液体状態)である。  Figure 3 is a table showing the main variables and constants used in solving the mixed integer linear programming problem for deriving the tank operation plan. The symbols of continuous variables, discrete variables, and constants are described in the left column of each table in FIGS. 3A to 3C, and the contents are described in the right column. The dimensions of the received amount, transferred amount, discharged amount, BOG generation amount, cooling return amount, BOG amount, and planned delivery amount shown in FIGS. 3A and 3C are volume (liquid state).
 LNGの熱量(受入熱量、タンク10内の貯蔵熱量、払出ライン14内の熱量等)は、液体状態における密度(単位体積当たりの質量)に換算可能である。そのため、LNGの熱量に関する連続変数及び定数は、全て密度に関する連続変数及び定数に置換可能である。この置換の際、例えば、LNGの熱量を気化ガスの標準状態の単位体積当たりの熱量[MJ/Nm](標準状態気化熱量)に換算し、LNGの標準状態気化熱量とLNGの密度(液体状態)の一方を他方の1次式に近似する。また、LNGの密度(液体状態)をLNGの標準状態気化熱量に換算することができるため、払出されたLNGを気化した都市ガスに対する熱量制約を、払出されたLNGの密度(液体状態)に対する制約条件に置換可能である。 The amount of heat of LNG (amount of received heat, amount of heat stored in tank 10, amount of heat in payout line 14, etc.) can be converted to density (mass per unit volume) in a liquid state. Therefore, all continuous variables and constants relating to the calorific value of LNG can be replaced with continuous variables and constants relating to density. During this replacement, for example, the heat quantity of LNG is converted to the heat quantity per unit volume in the standard state of the vaporized gas [MJ/Nm 3 ] (standard state vaporization heat quantity), and the standard state vaporization heat quantity of LNG and the density of LNG (liquid state) to a linear expression of the other. In addition, since the density (liquid state) of LNG can be converted into the standard state vaporization heat quantity of LNG, the calorie constraint for city gas obtained by vaporizing the delivered LNG is replaced by the constraint on the density (liquid state) of the delivered LNG. Can be replaced with conditions.
 次に、制約条件について説明する。制約条件は、主として、受入、貯蔵、移送、払出、クーリングの各段階での各種設備に対する物量制約及び熱量制約として規定される。物量制約には、LNGの体積に関する制約、及び、各操作の対象となるタンク10、移送ライン12、払出ライン14の可能な組み合わせに関する制約が含まれる。熱量制約は、各操作段階でのLNGの熱量に関する制約であるが、上記のとおり、熱量と密度は相互に置換可能であるため、LNGの密度に関する制約でもある。なお、通常、熱量制約は非線形的な制約となるが、後述のように本実施形態では熱量を定数または線形変化する変数として扱うため、本実施形態においては非線形的な制約とならない。 Next, I will explain the constraints. Constraints are mainly defined as physical quantity constraints and heat quantity constraints for various facilities at each stage of receiving, storing, transferring, discharging, and cooling. Quantity constraints include constraints on the volume of LNG and constraints on possible combinations of tanks 10, transfer lines 12, and payout lines 14 subject to each operation. The calorific value constraint is a constraint on the calorific value of LNG at each operation stage, but as described above, the calorific value and the density can be replaced with each other, so it is also a constraint on the density of the LNG. Normally, the heat quantity constraint is a non-linear constraint, but as will be described later, the heat quantity is treated as a constant or a variable that varies linearly in this embodiment, so it is not a non-linear constraint in this embodiment.
 以下、主たる制約条件について具体的に説明する。まず、タンク10毎の日単位での体積変化に関する制約条件式を以下の数1及び数2に示す。数1及び数2はいずれも連続変数に関する制約条件である。数1及び数2の制約条件式のそれぞれは、計画対象期間Tの日数とタンク10の数の積と同数存在する。 Below, we will specifically explain the main constraints. First, equations 1 and 2 below show the constraint condition expressions regarding the volume change of each tank 10 on a daily basis. Both Equations 1 and 2 are constraints on continuous variables. Each of the constraint condition expressions of Equation 1 and Equation 2 exists in the same number as the product of the number of days in the planning target period T and the number of tanks 10 .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 数1は、タンクjにおいて、時点tでの当初貯蔵体積に対して時点tで発生する各操作やBOG発生等による体積変化を経て次の時点t+1の当初貯蔵体積となることを表している。具体的には、時点tでの当初貯蔵体積に、時点tでの受入量と流入する移送量と流入するクーリング戻り量を加算し、流出する移送量と払出量とBOG発生量を減算することで、次の時点t+1の当初貯蔵体積となる。したがって、数1に示す制約条件は、受入、貯蔵、移送、払出、クーリングの全ての操作を含む物量制約を示している。ここで、数1の右辺第7項のBOG発生量は、時点tでの各操作で発生したBOGの総量であり、操作毎のBOG発生量として、その操作時点でのBOGの密度等をパラメータとして、操作別に予めテーブル化された値を使用することで求められる。 Equation 1 expresses that in tank j, the initial storage volume at time t becomes the initial storage volume at time t+1 after undergoing volume changes due to various operations occurring at time t and the occurrence of BOG. Specifically, to the initial storage volume at time t, the received amount, the inflow transfer amount, and the inflow cooling return amount at time t are added, and the outflow transfer amount, the discharge amount, and the BOG generation amount are subtracted. is the initial storage volume at the next time t+1. Therefore, the constraint condition shown in Equation 1 indicates a physical quantity constraint including all operations of receiving, storing, transferring, discharging, and cooling. Here, the amount of BOG generated in the seventh term on the right side of Equation 1 is the total amount of BOG generated by each operation at time t. , it is obtained by using values that are tabulated in advance for each operation.
 数2は、各タンク10における貯蔵量の上下限に関する貯蔵段階での物量制約を規定する制約条件式であり、具体的には、時点tでの各タンク10における貯蔵量が、各タンク10の貯蔵容量で定まる体積上限値以下、体積下限値以上となることを規定している。 Equation 2 is a constraint condition formula that defines physical quantity constraints at the storage stage regarding the upper and lower limits of the storage amount in each tank 10. Specifically, the storage amount in each tank 10 at time t is It stipulates that the volume should be equal to or less than the upper limit of volume determined by the storage capacity and equal to or more than the lower limit of volume.
 次に、受入における物量制約に係る制約条件式を以下の数3及び数4に示す。数3は連続変数に関する制約条件であり、数4は、連続変数と離散変数に関する制約条件(混合整数制約条件)である。 Next, the constraint condition formulas related to physical quantity restrictions in acceptance are shown in Equations 3 and 4 below. Equation 3 is a constraint on continuous variables, and Equation 4 is a constraint on continuous and discrete variables (mixed integer constraint).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 数3は、時点tが受入日となっている受入計画の受入量が、時点tで各タンク10に受け入れられた受入量の合計となることを表している。数3の左辺の各タンク10の内、受入タンクとして使用されないタンク10の受入量は0である。数3は、計画対象期間Tの日数と同数存在する。時点tで受入計画のない場合は、数3の右辺の定数の値は0である。 Equation 3 expresses that the acceptance amount of the acceptance plan whose acceptance date is time t is the sum of the acceptance amounts accepted by each tank 10 at time t. Of the tanks 10 on the left-hand side of Equation 3, the tanks 10 that are not used as receiving tanks have a receiving amount of zero. The number 3 is the same number as the number of days in the planning period T. If there is no acceptance plan at time t, the value of the constant on the right side of Equation 3 is zero.
 数4中の「・」は乗算記号である(以下同じ。)数4は、時点t+1でのタンクjでの受入量が、時点tに受入が有る場合は、タンクjの体積上限値以下であり、時点tに受入が無い場合は、0であることを表している。また、数4は、計画対象期間Tの日数とタンク10の数の積と同数存在する。 "·" in Equation 4 is a multiplication symbol (the same shall apply hereinafter). Equation 4 indicates that if the amount of acceptance in tank j at time t+1 is acceptance at time t, it is equal to or less than the upper volume limit of tank j. It represents 0 if there is no acceptance at time t. In addition, the number of formulas 4 is the same as the product of the number of days in the planning target period T and the number of tanks 10 .
 次に、払出における物量制約に係る制約条件式を以下の数5~数7に示す。数5~数7はいずれも連続変数に関する制約条件である。数5の制約条件式は、計画対象期間Tの日数と払出ライン14の数の積と同数存在する。数6の制約条件式は、計画対象期間Tの日数とタンク10の数の積と同数存在する。数7の制約条件式は、計画対象期間Tの日数とタンク10の数と払出ライン14の数の積と同数存在する。 Next, the constraint condition formulas related to physical quantity restrictions in payout are shown in Equations 5 to 7 below. Equations 5 to 7 are all constraints on continuous variables. There are as many constraint conditional expressions as the number of days in the planning target period T multiplied by the number of payout lines 14 . There are as many constraint condition expressions as number 6 as the product of the number of days in the planning target period T and the number of tanks 10 . There are as many constraint conditional expressions as the product of the number of days in the planning period T, the number of tanks 10 and the number of delivery lines 14 .
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 数5は、時点tでの払出ラインlへの払出量の合計と払出ラインlの送出計画量との間の体積バランスを規定している。具体的には、時点tでの払出ラインlへの払出量の合計が、払出ラインlから各タンク10へのクーリング戻り量の合計と、時点tの払出ラインlに係る送出計画の送出先m’(m’は払出ラインlに対応する送出先を示す)への各送出計画量の合計を加算し、時点tでの送出先m’に混入する各BOGの量の合計を減算した体積と等しくなる。例えば、払出に伴い混入するBOGの量は、その操作時点でのBOGの密度等をパラメータとして、操作別に予めテーブル化された値を使用することで求められる。 Equation 5 defines the volume balance between the total payout amount to payout line l at time t and the planned delivery amount of payout line l. Specifically, the sum of the amounts dispensed to the dispensation line 1 at time t is the sum of the cooling return amounts from the dispensation line 1 to each tank 10, and the destination m of the dissemination plan for the dispensation line 1 at time t. ' (m' indicates the destination corresponding to payout line 1) by adding the total planned amount of each delivery and subtracting the total amount of each BOG mixed in the delivery destination m' at time t; be equal. For example, the amount of BOG that is mixed in with dispensing can be obtained by using values tabulated in advance for each operation using the density of BOG at the time of the operation as a parameter.
 数6は、時点tでのタンクjから各払出ラインlへの払出量の合計が、タンクjに接続している払出用ポンプからの払出量の合計となることを規定している。 Equation 6 defines that the total amount dispensed from tank j to each dispensing line l at time t is the total amount dispensed from the dispensing pumps connected to tank j.
 数7は、時点tでのタンクjから払出ラインlへの払出量がタンクjと払出ラインl間の設けられた払出ポンプ15の能力で決まる上限値以下に制限されることを表している。 Equation 7 expresses that the amount dispensed from tank j to dispensing line l at time t is limited to an upper limit determined by the performance of dispensing pump 15 provided between tank j and dispensing line l.
 次に、払出における熱量制約に係る制約条件式を以下の数8に示す。数8は連続変数に関する制約条件である。数8の制約条件式は、計画対象期間Tの日数と払出ライン14の数の積と同数存在する。 Next, the constraint condition formula related to the calorie constraint in payout is shown in Equation 8 below. Equation 8 is a constraint on continuous variables. There are as many constraint conditional expressions as number 8 as the product of the number of days in the planning target period T and the number of payout lines 14 .
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 数8は、時点tでの各払出ラインlの密度が、その上限値以下及び下限値以上の範囲内に収まることを規定している。 Equation 8 prescribes that the density of each payout line l at time t falls within the range below its upper limit and above its lower limit.
 次に、移送における物量制約に係る制約条件式を以下の数9~数11に示す。数9~数11はいずれも連続変数に関する制約条件である。数9の制約条件式は、計画対象期間Tの日数とタンク10の数とタンク10の数から1引いた数との積と同数存在する。数10及び数11の制約条件式のそれぞれは、計画対象期間Tの日数とタンク10の数の積と同数存在する。 Next, Expressions 9 to 11 below show the constraint condition expressions related to quantity restrictions in transportation. Equations 9 to 11 are all constraints on continuous variables. There are as many constraint condition expressions as number 9 as the product of the number of days in the planning target period T, the number of tanks 10, and the number of tanks 10 minus 1. 10 and 11, the same number as the product of the number of days in the planning target period T and the number of tanks 10 exists.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 数9は、時点tでのタンクiからタンクjへの移送量がタンクiに設けられた移送ポンプ13の能力で決まる上限値以下に制限されることを表している。 Equation 9 expresses that the transfer amount from tank i to tank j at time t is limited to an upper limit determined by the performance of transfer pump 13 provided in tank i.
 数10は、時点tにおいて、あるタンクからその他のタンクへと出ていく移送量の合計が上限値以下であることを表している。数11は、時点tにおいて、あるタンクへのその他のタンクからの移送量の合計が上限値以下であることを表している。 Equation 10 expresses that the total amount of transfer from one tank to another tank is equal to or less than the upper limit value at time t. Equation 11 expresses that at time t, the total transfer amount to a certain tank from other tanks is equal to or less than the upper limit.
 次に、クーリングにおける物量制約に係る制約条件式を以下の数12に示す。数12は連続変数に関する制約条件である。数12の制約条件式は、計画対象期間Tの日数と払出ライン14の数の積と同数存在する。 Next, the constraint condition formula related to physical quantity restrictions in cooling is shown in Equation 12 below. Equation 12 is a constraint on continuous variables. There are as many constraint conditional expressions as the number of days in the planning target period T multiplied by the number of payout lines 14 .
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 数12は、時点tでの払出ラインlを経由して提供されるクーリング用LNGに関する体積バランスを規定している。具体的には、時点tでの払出ラインlから各タンクjへのクーリング戻り量の合計が、時点tでの払出ラインlから所定の移送ライン12へのクーリング戻り量と等しくなる。 Equation 12 defines the volume balance for cooling LNG provided via payout line l at time t. Specifically, the total cooling return amount from the payout line 1 to each tank j at time t is equal to the cooling return amount from the payout line 1 to the predetermined transfer line 12 at time t.
 次に、後述する第3実施形態及び第4実施形態などのように、タンクが貯蔵するLNGの密度または熱量を線形変化する変数として扱う場合における、熱量制約に係る制約条件式を以下の数13~数15に示す。数13~数15の制約条件式のそれぞれは、計画対象期間Tの日数とタンク10の数の積と同数存在する。
 
Next, as in the third and fourth embodiments to be described later, when the density or heat quantity of the LNG stored in the tank is treated as a variable that varies linearly, the constraint condition expression related to the heat quantity constraint is given by Equation 13 below. 15. 13 to 15 are present in the same number as the product of the number of days in the planning target period T and the number of tanks 10 .
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 数13及び数14は、受け入れがある日における、タンクの密度の変動に関する制約条件を表した式である。数13及び数14は、受入があるタンクについては、当該タンクの密度を、受入計画における受入密度(輸送手段11から受け入れるLNGの密度)で更新するが、受入がないタンクについては、密度に変化が生じないものとすることを規定している。ここで、Mは、受入密度やタンク密度よりも十分に大きな数値の定数である。数15は、受け入れがない日における、タンクの密度の変動に関する制約条件を表した式である。 Equations 13 and 14 are formulas that express the constraints on changes in tank density on the day of acceptance. Equations 13 and 14 update the density of the tank with the receiving density (the density of LNG received from the transportation means 11) in the receiving plan for the tank with receiving, but change to the density for the tank without receiving shall not occur. Here, M is a constant value sufficiently larger than the incoming density and the tank density. Equation 15 is an expression that expresses a constraint on fluctuations in tank density on days when there is no reception.
 以上、主たる制約条件について、受入、貯蔵、移送、払出、クーリングの各段階での物量制約及び熱量制約に分類して、詳細に説明した。なお、制約条件は、LNGの貯蔵施設の構成及び個々の構成要素の個数や個々の構成要素の属性(大きさや性能等)等に大きく依存するため、数1~数12で例示した主たる制約条件に追加して、別の制約条件を設定しても良い。更に、当該主たる制約条件の一部を、別の制約条件に変更しても良い。 Above, we explained in detail the main constraints by classifying them into physical quantity constraints and heat quantity constraints at each stage of receiving, storing, transferring, discharging, and cooling. In addition, since the constraints greatly depend on the configuration of the LNG storage facility, the number of individual components, the attributes of individual components (size, performance, etc.), etc., the main constraints illustrated in Equations 1 to 12 In addition to , another constraint may be set. Furthermore, some of the main constraints may be changed to other constraints.
 一例として、受入、移送、或いは、クーリングによってLNGをタンク10に流入させる場合の制約として、タンク10の貯蔵量と、流入するLNGと貯蔵LNGの密度差との関係に基づいて、LNGの入口をタンク上部またはタンク下部のいずれか一方に決定する制約条件がある。これは、上記関係によって、タンク10内でLNGに密度分布が生じて層状化するのを防止するための熱量制約に係る制約条件(層状化判定条件)である。当該制約条件は、例えば、受入タンクが複数の場合にLNGの入口をタンク下部に統一する運用を行う場合等において、LNGの入口がタンク上部となる受入タンクの貯蔵量を予めLNGの入口がタンク下部となる貯蔵量とする制約条件に変更できる。いずれの場合においても、タンク10のLNGの入口がタンク上部かタンク下部かを決める変数は離散変数となる。例えば、受入対象となるタンク10が複数の場合に、LNGの入口をタンク上部またはタンク下部に統一する必要がある場合の制約条件は、当該離散変数を用いた制約条件となる。 As an example, as a constraint when LNG flows into the tank 10 by receiving, transferring, or cooling, the LNG inlet is determined based on the relationship between the storage amount of the tank 10 and the density difference between the inflowing LNG and the stored LNG. There are constraints that determine either the top of the tank or the bottom of the tank. This is a constraint condition (stratification determination condition) related to the heat amount constraint for preventing stratification due to density distribution occurring in the LNG in the tank 10 due to the above relationship. For example, when there are multiple receiving tanks and the LNG inlet is unified at the bottom of the tank, the storage amount of the receiving tank whose LNG inlet is at the top of the tank is determined in advance. It can be changed to a constraint that is the lower storage amount. In either case, the variable that determines whether the LNG inlet to tank 10 is at the top or bottom of the tank is a discrete variable. For example, in the case where there are a plurality of tanks 10 to receive LNG, the constraint when it is necessary to unify the inlet of LNG to the tank upper part or the tank lower part becomes the constraint using the discrete variable.
 他の一例として、受入における物量制約に係る制約条件に、例えば、受入タンクが複数の場合に、受入タンク間で、受入前の各貯蔵量で決まるタンク液位の差が所定範囲内であることを規定する制約条件、受入タンクが複数の場合に、受入タンク間で、受入後の各貯蔵量で決まるタンク液位の差が等しいことを規定する制約条件、受入タンクが複数の場合に、受入タンク間で、受入量の比率が所定の比率となることを規定する制約条件、受入タンクの数が、受入計画の受入量によって決定されることを規定する制約条件等を追加しても良い。 As another example, in the case of a plurality of receiving tanks, the difference in tank liquid level between receiving tanks determined by each storage amount before receiving is within a predetermined range. If there are multiple receiving tanks, the constraint that stipulates that the difference in the tank liquid level determined by each storage amount after receiving is equal between the receiving tanks, If there are multiple receiving tanks, the Constraints that stipulate that the ratio of incoming volumes between tanks is a predetermined ratio, and that stipulate that the number of incoming tanks is determined by the incoming volume of the acceptance plan, etc. may be added.
 他の一例として、払出における物量制約に係る制約条件として、例えば、払出ポンプ15と払出ライン14間の対応関係を一定期間変更せず固定することを規定する制約条件、払出ライン14毎に稼働させる払出ポンプ15の台数を払出ライン14毎の送出計画量で定まる必要台数より1台多く設定することを規定する制約条件等を追加しても良い。尚、前者の制約条件の内、払出ポンプ15と払出ライン14間の対応関係と、当該対応関係を固定する一定期間は、入力情報の一部として適宜変更可能に構成しても良い。 As another example, as a constraint condition related to quantity restrictions in payout, for example, a constraint condition that stipulates that the correspondence between the payout pump 15 and the payout line 14 is fixed without being changed for a certain period of time, and that each payout line 14 is operated A constraint condition or the like may be added that specifies that the number of payout pumps 15 is set to be one more than the required number determined by the planned delivery amount for each payout line 14 . Among the former constraints, the correspondence between the dispensing pump 15 and the dispensing line 14 and the fixed period for fixing the correspondence may be configured to be appropriately changeable as part of the input information.
 他の一例として、払出における熱量制約に係る制約条件として、例えば、数11及び数12に示す制約条件が、払出ポンプ15の1台が故障等しても満足することを規定する制約条件、払出ポンプ15を起動する前の払出元となるタンク10内の密度が所定の範囲内にあることを規定する制約条件、払出ライン14から送出されるLNGに混入するBOG量が所定の上限値以下であることを規定する制約条件等を追加しても良い。 As another example, as a constraint condition related to the heat quantity constraint in dispensing, for example, the constraint conditions shown in Equations 11 and 12 are satisfied even if one of the dispensing pumps 15 fails, etc. Constraint conditions stipulating that the density in the tank 10, which is the delivery source before starting the pump 15, is within a predetermined range, and that the amount of BOG mixed in the LNG delivered from the delivery line 14 is not more than a predetermined upper limit value. Constraint conditions or the like that define that there is a certain condition may be added.
 他の一例として、移送における物量制約に係る制約条件として、例えば、移送ライン12毎に、移送元となるタンク10と移送先となるタンク10が特定のタンク10に固定されていることを規定する制約条件、同じエリア内で受入を行う場合は、同じエリア内で移送を行わないことを規定する制約条件、移送ポンプ13を起動する前の移送元となるタンク10内の貯蔵量または液位が所定の範囲内にあることを規定する制約条件等を追加しても良い。 As another example, as a constraint condition related to quantity restrictions in transfer, for example, it is specified that the tank 10 that is the transfer source and the tank 10 that is the transfer destination are fixed to a specific tank 10 for each transfer line 12. Constraints, Constraints stipulating that transfer is not performed within the same area when receiving within the same area, Storage amount or liquid level in tank 10 to be transferred before starting transfer pump 13 Constraint conditions or the like that define being within a predetermined range may be added.
 他の一例として、クーリングにおける物量制約に係る制約条件として、例えば、移送ライン12毎に、クーリング用LNGの送出元となる払出ライン14とクーリング戻りタンクの可能な組み合わせを予め所定の組み合わせに固定する制約条件等を追加しても良い。 As another example, as a constraint condition related to quantity restrictions in cooling, for example, for each transfer line 12, a possible combination of the discharge line 14 from which the LNG for cooling is sent out and the cooling return tank is fixed in advance to a predetermined combination. Constraints and the like may be added.
<<演算処理の内容>>
<第1実施形態>
 以下、第1実施形態に係る本システムSの演算処理部2による演算処理の内容について説明する。最初に、演算処理部2の処理の概要について説明する。図4は、本システムSの演算処理部2による演算処理の概要を示すフローチャートである。なお、図4は、以下説明する第1実施形態及び後述する第2実施形態のそれぞれに係る本システムSの演算処理部2による演算処理の概要を示したものであり、第1実施形態及び第2実施形態で共通するものである。
<<Details of arithmetic processing>>
<First embodiment>
Hereinafter, the content of arithmetic processing by the arithmetic processing unit 2 of the system S according to the first embodiment will be described. First, an overview of the processing of the arithmetic processing unit 2 will be described. FIG. 4 is a flow chart showing an outline of arithmetic processing by the arithmetic processing unit 2 of the system S. As shown in FIG. Note that FIG. 4 shows an outline of arithmetic processing by the arithmetic processing unit 2 of the present system S according to each of the first embodiment described below and the second embodiment described later. This is common to the two embodiments.
 図4に示すように、演算処理部2は、最初に、複数のタンク10をグループ分けして成る複数のタンク群100(図1参照)のそれぞれが輸送手段11からLNGの供給を受ける組み合わせである受入パターンを作成する(ステップ#1)。次に、演算処理部2は、ステップ#1で作成した受入パターンについて、混合整数線形計画問題を求解して運用計画を導出する(ステップ#2)。さらに、演算処理部2は、ステップ#2で導出した運用計画に基づいて、移送回数及び移送量の少なくとも一方を低減する条件で混合整数線形計画問題を求解し、運用計画を導出する(ステップ#3)。最後に、演算処理部2は、ステップ#3で導出した運用計画を出力する(ステップ#4)。なお、ステップ#1で複数の受入パターンを作成する場合、ステップ#4で全ての受入パターンについて導出した運用計画を出力情報として出力してもよいし、例えば導出する際の制約違反が小さいまたは少ない運用計画を選択的に出力情報として出力してもよい。 As shown in FIG. 4, the arithmetic processing unit 2 first sets a plurality of tank groups 100 (see FIG. 1) formed by dividing the plurality of tanks 10 into groups, each of which receives LNG from the transportation means 11. Create an acceptance pattern (step #1). Next, the arithmetic processing unit 2 solves a mixed integer linear programming problem for the acceptance pattern created in step #1 to derive an operation plan (step #2). Further, based on the operation plan derived in step #2, the arithmetic processing unit 2 solves the mixed integer linear programming problem under the condition that at least one of the number of transfers and the transfer amount is reduced, and derives the operation plan (step # 3). Finally, the arithmetic processing unit 2 outputs the operation plan derived in step #3 (step #4). When multiple acceptance patterns are created in step #1, the operation plans derived for all acceptance patterns in step #4 may be output as output information. The operation plan may be selectively output as output information.
 なお、演算処理部2が、ステップ#1、#2及び#4のみを実行するように構成してもよく、この場合でも運用計画を導出することは可能である。この場合、演算処理部2は、ステップ#2で導出した運用計画を出力する。ただし、詳細については以下説明するが、演算処理部2がステップ#3を実行することによって、移送回数及び移送量の少なくとも一方が低減されて実行し易い運用計画を出力することが可能になる。また、演算処理部2が、ステップ#1において、1つの受入パターンのみを作成してもよい。ただし、演算処理部2が、ステップ#1において複数の受入パターンを作成すると、受入パターン毎に得られた運用計画を比較等することにより、輸送手段11からタンク10への受入についても最適化することが可能になる。 Note that the arithmetic processing unit 2 may be configured to execute only steps #1, #2 and #4, and even in this case it is possible to derive the operation plan. In this case, the arithmetic processing unit 2 outputs the operation plan derived in step #2. However, although the details will be described below, the execution of step #3 by the arithmetic processing unit 2 reduces at least one of the number of transfers and the transfer amount, making it possible to output an operation plan that is easy to execute. Alternatively, the arithmetic processing unit 2 may create only one acceptance pattern in step #1. However, when the arithmetic processing unit 2 creates a plurality of receiving patterns in step #1, it also optimizes the receiving from the transportation means 11 to the tank 10 by comparing the operation plan obtained for each receiving pattern. becomes possible.
 図4に示したステップ#1の詳細について説明する。図5は、本システムSの演算処理部2によるステップ#1の演算処理の詳細を示すフローチャートである。なお、図4と同様に、図5も第1実施形態及び第2実施形態で共通するものである。 The details of step #1 shown in FIG. 4 will be described. FIG. 5 is a flow chart showing details of the arithmetic processing of step #1 by the arithmetic processing section 2 of the system S. As shown in FIG. It should be noted that FIG. 5 is also common to the first embodiment and the second embodiment, as is the case with FIG.
 図5に示すように、演算処理部2は、最初に入力情報を取得する(ステップ#10)。入力情報には、例えば、図6に例示する配船計画、図7に例示するタンク仕様、図8に例示するライン需要が含まれる。 As shown in FIG. 5, the arithmetic processing unit 2 first acquires input information (step #10). The input information includes, for example, a ship allocation plan illustrated in FIG. 6, a tank specification illustrated in FIG. 7, and a line demand illustrated in FIG.
 図6に例示する配船計画には、輸送手段11毎の、貯蔵施設に来訪する時期である「受入日」、供給するLNGの「熱量」、供給するLNGの量である「受入量」が含まれる。なお、「熱量」の単位は[MJ/Nm]、「受入量」の単位は[Nm]である。図7に例示するタンク仕様には、タンク10毎の、計画対象期間Tの開始時点で貯蔵しているLNGの液面の位置(液位)である「初期在庫液位」、貯蔵可能な液位の上限である「液位上限」、貯蔵可能な液位の下限である「液位下限」、計画対象期間Tの開始時点で貯蔵しているLNGの熱量である「初期在庫熱量」、タンク10の「断面積」、タンク10が払出可能な払出ライン14である「紐付けライン」が含まれる。なお、「初期在庫液位」、「液位上限」及び「液位下限」の単位は[m]、「初期在庫熱量」の単位は[MJ/Nm]、「断面積」の単位は[m]である。図8に例示するライン需要には、払出ライン14毎の、計画対象期間Tにおける単位期間t毎の需要が含まれており、当該需要の単位は[Nm](気体)である。 The ship allocation plan exemplified in FIG. 6 includes, for each means of transport 11, a "date of acceptance" that is the time to visit the storage facility, a "heat amount" of the LNG to be supplied, and a "amount of acceptance" that is the amount of LNG to be supplied. included. The unit of "calorie" is [MJ/Nm 3 ], and the unit of "acceptance amount" is [Nm 3 ]. The tank specifications exemplified in FIG. "Liquid level upper limit" that is the upper limit of the level, "Liquid level lower limit" that is the lower limit of the liquid level that can be stored, "Initial stock heat amount" that is the heat amount of LNG stored at the start of the planning target period T, Tank 10 "cross-sectional area", and a "tie line" which is a payout line 14 from which the tank 10 can pay out. The unit of “initial stock liquid level”, “upper limit of liquid level” and “lower limit of liquid level” is [m], the unit of “initial heat quantity” is [MJ/Nm 3 ], and the unit of “cross-sectional area” is [ m 2 ]. The line demand illustrated in FIG. 8 includes the demand for each unit period t in the planned period T for each payout line 14, and the unit of the demand is [Nm 3 ] (gas).
 次に、演算処理部2は、複数のタンク10をグループ分けして成る複数のタンク群100を作成する(ステップ#11)。タンク群100は、所定のルールに基づいて作成される。例えば、タンク群の中に受入可能なタンクが含まれる、「紐付けライン」が同一であるなどである。なお、タンク群100は、予め作成されており、その情報が記憶部1に記憶されていてもよい。 Next, the arithmetic processing unit 2 creates a plurality of tank groups 100 by grouping the plurality of tanks 10 (step #11). A tank group 100 is created based on a predetermined rule. For example, acceptable tanks are included in a group of tanks, the "tie line" is the same, and so on. The tank group 100 may be created in advance and the information thereof may be stored in the storage unit 1 .
 次に、演算処理部2は、複数の受入パターンを作成する(ステップ#12)。図9に例示するように、受入パターンは、輸送手段11とタンク群100との組み合わせである。受入パターンも、所定のルールに基づいて作成される。例えば、1つの輸送手段11は1つのタンク群100にのみLNGを供給することを前提として、図6に例示した配船計画の熱量を複数(例えば4)のクラスに分け、熱量が高いクラスに属する輸送手段11ほど、貯蔵しているLNGの熱量が高いタンク群100に供給するなどである。なお、輸送手段11及びタンク群100の組み合わせ可能な全てのパターンを、受入パターンとして作成してもよい。 Next, the arithmetic processing unit 2 creates a plurality of acceptance patterns (step #12). As illustrated in FIG. 9 , the receiving pattern is a combination of vehicles 11 and tanks 100 . Acceptance patterns are also created based on predetermined rules. For example, on the premise that one transport means 11 supplies LNG only to one tank group 100, the heat quantity of the ship allocation plan illustrated in FIG. For example, the transport means 11 to which the LNG belongs is supplied to the tank group 100 in which the heat quantity of the stored LNG is high. All patterns that can be combined with the transportation means 11 and the group of tanks 100 may be created as receiving patterns.
 次に、演算処理部2は、受入パターンのそれぞれに対して、タンク群100単位で、LNGの熱量等の推移を計算する(ステップ#13)。このとき、演算処理部2は、タンク群100のそれぞれについて、受入パターンにしたがって輸送手段11から供給されるLNGの量を加算するとともに熱量の推移も計算し、ライン需要として払出されるLNGの量を減算する。 Next, the arithmetic processing unit 2 calculates changes in the calorific value of LNG, etc. for each of the acceptance patterns for each tank group 100 (step #13). At this time, for each tank group 100, the arithmetic processing unit 2 adds the amount of LNG supplied from the transportation means 11 according to the receiving pattern, calculates the transition of the heat amount, and calculates the amount of LNG paid out as the line demand. Subtract
 次に、演算処理部2は、ステップ#13の計算結果に基づいて、受入パターンを絞り込む(ステップ#14)。例えば、タンク群100が貯蔵するLNGについて、貯蔵量や平均熱量等の違反量が大きい受入パターンを除外することで、受入パターンを絞り込む。そして、演算処理部2は、絞り込んだ受入パターンを記憶部1に記憶して(ステップ#15)、ステップ#1を終了する。 Next, the arithmetic processing unit 2 narrows down the acceptance patterns based on the calculation result of step #13 (step #14). For example, for the LNG stored in the tank group 100, the acceptance patterns are narrowed down by excluding acceptance patterns with large violation amounts such as the storage amount and the average heat quantity. Then, the arithmetic processing unit 2 stores the narrowed-down acceptance pattern in the storage unit 1 (step #15), and ends step #1.
 図4に示したステップ#2の詳細について説明する。図10は、第1実施形態に係る本システムSの演算処理部2によるステップ#2の演算処理の詳細を示すフローチャートである。なお、図10に示す演算処理は、ステップ#1で作成した受入パターン毎に行う。 The details of step #2 shown in FIG. 4 will be described. FIG. 10 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing section 2 of the system S according to the first embodiment. Note that the arithmetic processing shown in FIG. 10 is performed for each acceptance pattern created in step #1.
 図10に示すように、演算処理部2は、最初に入力情報を取得する(ステップ#20)。入力情報には、例えば、図6に例示する配船計画、図7に例示するタンク仕様、図8に例示するライン需要、図11に例示する移送テーブルが含まれる。図11に例示する移送テーブルには、移送元と移送先のタンク10の組み合わせ毎の、後述する目的関数Fにおける重み係数Wが規定されている。また、演算処理部2は、制約情報を取得する(ステップ#21)。制約情報は、上述した制約条件を表す情報である。 As shown in FIG. 10, the arithmetic processing unit 2 first acquires input information (step #20). The input information includes, for example, a ship allocation plan illustrated in FIG. 6, a tank specification illustrated in FIG. 7, a line demand illustrated in FIG. 8, and a transfer table illustrated in FIG. In the transfer table illustrated in FIG. 11, a weighting factor W i in an objective function F, which will be described later, is defined for each combination of the tanks 10 of the transfer source and the transfer destination. Further, the arithmetic processing unit 2 acquires constraint information (step #21). The constraint information is information representing the constraint conditions described above.
 次に、演算処理部2は、取得した入力情報と制約情報に基づいて、複数のタンク10のそれぞれについて、貯蔵するLNGの熱量を定数とみなして混合整数線形計画問題を求解することで運用計画を導出する(ステップ#22)。このとき、目的関数として、以下の数16に示す目的関数Fを使用する。数16において、Pは、所定の監視対象項目の値または所定の基準値からの乖離幅で示されるペナルティで、Wは当該ペナルティPを加重加算するときの重み係数である。例えば、監視対象項目は、払出熱量、移送回数、移送量などである。また、決定変数は、例えば、タンク10毎の受入量及び払出量、払出ポンプ15毎の稼働の有無、タンク10間毎の移送の有無、移送毎の移送量であり、これらが運用計画に含まれる。 Next, the arithmetic processing unit 2 solves a mixed integer linear programming problem for each of the plurality of tanks 10 based on the acquired input information and constraint information, regarding the heat quantity of the LNG to be stored as a constant. is derived (step #22). At this time, an objective function F shown in Equation 16 below is used as an objective function. In Equation 16, P i is a penalty indicated by the deviation from the value of a predetermined monitoring target item or a predetermined reference value, and W i is a weighting factor when weighting and adding the penalty P i . For example, items to be monitored include the amount of heat dispensed, the number of transfers, and the amount transferred. In addition, the decision variables are, for example, the amount received and discharged for each tank 10, the presence or absence of operation of each discharge pump 15, the presence or absence of transfer between tanks 10, and the transfer amount for each transfer, and these are included in the operation plan. be
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 タンク10が貯蔵するLNGの熱量は、外部からのLNGの供給によって非線形的に変動する。そのため、タンク10が貯蔵するLNGの熱量を変数とすると、混合整数非線形計画問題を解かざるを得なくなる。そこで、ステップ#22では、タンク10が貯蔵するLNGの熱量を定数とみなして、混合整数線形計画問題として求解することで運用計画を導出することができるようにしている。なお、タンク10が貯蔵するLNGの熱量を定数とみなすとは、熱量を定数として扱うということであり、熱量を一定値に固定することには限られない。例えば、初回に実行するステップ#22では、タンク10に外部からLNGが供給されたとしても、その前後でタンク10が貯蔵するLNGの熱量は変動しないか、タンク10内のLNGの量及び外部から供給されるLNGの量によらない所定の値に更新される。具体的には、移送やクーリング戻りによってタンク10にLNGが供給される場合は、タンク10が貯蔵するLNGの熱量が変動しないが、タンク10がLNGを受け入れる場合は、タンク10が貯蔵するLNGの熱量が、受け入れるLNGの熱量で更新される。 The calorific value of the LNG stored in the tank 10 varies non-linearly depending on the supply of LNG from the outside. Therefore, if the heat quantity of the LNG stored in the tank 10 is used as a variable, the mixed-integer nonlinear programming problem must be solved. Therefore, in step #22, the calorific value of the LNG stored in the tank 10 is regarded as a constant, and the operation plan can be derived by solving the mixed integer linear programming problem. Considering the heat quantity of the LNG stored in the tank 10 as a constant means treating the heat quantity as a constant, and is not limited to fixing the heat quantity to a constant value. For example, in step #22 executed for the first time, even if LNG is supplied to the tank 10 from the outside, the heat amount of the LNG stored in the tank 10 does not change before and after that, or the amount of LNG in the tank 10 and the amount of LNG from the outside It is updated to a predetermined value independent of the amount of LNG supplied. Specifically, when LNG is supplied to the tank 10 by transfer or cooling return, the heat quantity of the LNG stored in the tank 10 does not change, but when the tank 10 receives LNG, the amount of LNG stored in the tank 10 The heat value is updated with the heat value of the incoming LNG.
 次に、演算処理部2は、ステップ#22で導出した運用計画における、タンク10が貯蔵するLNGの熱量等の推移を計算する(ステップ#23)。具体的に、演算処理部2は、タンク10が貯蔵するLNGの熱量の推移のほかに、タンク10が貯蔵するLNGの体積の推移も計算する。これは、上述のとおり、熱量と密度は相互に置換可能であり、LNGの熱量が変動すれば密度も変動し、密度が変動すれば体積も変動するからである。 Next, the arithmetic processing unit 2 calculates changes in the heat quantity of the LNG stored in the tank 10 in the operation plan derived in step #22 (step #23). Specifically, the arithmetic processing unit 2 also calculates changes in the volume of LNG stored in the tank 10 in addition to changes in the amount of heat of the LNG stored in the tank 10 . This is because, as described above, heat quantity and density are interchangeable, and if the heat quantity of LNG fluctuates, the density also fluctuates, and if the density fluctuates, the volume also fluctuates.
 次に、演算処理部2は、ステップ#22で導出した運用計画に基づいて、複数のタンク10のそれぞれにおける払出に必要な追加燃料の量を計算する(ステップ#24)。追加燃料とは、例えばLPGである。また、必要な追加燃料の量は、(目標熱量-払出熱量)/(追加燃料の熱量-払出熱量)×払出量×払出産気量/追加燃料の産気量、の計算で求めることができる。産気量とは、所定量の液化燃料を気化させた場合のガスの体積であり、目標熱量は、例えば45MJ/Nmである。 Next, the arithmetic processing unit 2 calculates the amount of additional fuel required for dispensing in each of the plurality of tanks 10 based on the operation plan derived in step #22 (step #24). Additional fuel is, for example, LPG. In addition, the required amount of additional fuel can be obtained by the calculation of (target heat amount - payout heat amount) / (additional fuel heat amount - payout heat amount) x payout amount x payout production amount / additional fuel production amount. . The production volume is the volume of gas when a predetermined amount of liquefied fuel is vaporized, and the target heat quantity is, for example, 45 MJ/Nm 3 .
 次に、演算処理部2は、入力情報に含まれるライン需要から、ステップ#24で計算した追加燃料の量を減じた値をもって新たな需要として、ライン需要を更新する(ステップ#25)。そして、演算処理部2は、ステップ#23で熱量等の推移を計算した結果が、タンク10が貯蔵するLNGに関する制約に違反していないかを判断する(ステップ#26)。なお、ステップ#26で違反の有無を確認する制約は、タンク10が貯蔵するLNGに関する制約に加えて(または代えて)タンク10から払い出されるLNGに関する制約であってもよいし、ステップ#22において混合整数線形計画問題を求解する際に用いる制約条件と同じであってもよいし、当該制約条件と異なってもよい。 Next, the arithmetic processing unit 2 updates the line demand as a new demand with a value obtained by subtracting the amount of additional fuel calculated in step #24 from the line demand included in the input information (step #25). Then, the arithmetic processing unit 2 determines whether or not the result of calculating the transition of the amount of heat, etc. in step #23 violates the restrictions on the LNG stored in the tank 10 (step #26). Note that the constraint for confirming whether or not there is a violation in step #26 may be a constraint regarding the LNG discharged from the tank 10 in addition to (or instead of) the constraint regarding the LNG stored in the tank 10, or in step #22. The constraints may be the same as or different from the constraints used in solving the mixed integer linear programming problem.
 演算処理部2は、ステップ#22において制約条件をみたすように求解するが、その際にタンク10が貯蔵するLNGの熱量を定数とみなすため、ステップ#23においてタンク10が貯蔵するLNGの熱量等の推移を正しく計算した結果、制約条件に違反するということがあり得る(ステップ#26、YES)。具体的には、タンク10が貯蔵するLNGの熱量や払出ライン14に払い出されたLNGの熱量が制限範囲を外れたり、タンク10が貯蔵するLNGの体積(例えば液位)が制限範囲を外れたりすることがあり得る。この場合、演算処理部2は、ステップ#22の求解処理がN回目(Nは2以上の自然数)に達していなければ(ステップ#27、NO)、ステップ#23で計算した熱量の推移と、ステップ#25で更新した新たなライン需要を取得し(ステップ#28)、これらを新たな定数の変化として反映させて混合整数線形計画問題を求解し直す(ステップ#22)。これにより、1つ前に実行したステップ#22と比較して、熱量の推移を正確に反映した状態で混合整数線形計画問題を求解し、運用計画を導出することができる。 In step #22, the arithmetic processing unit 2 finds a solution so as to satisfy the constraint conditions. As a result of correctly calculating the transition of , the constraint may be violated (step #26, YES). Specifically, the heat amount of the LNG stored in the tank 10 or the heat amount of the LNG paid out to the payout line 14 is out of the limited range, or the volume of the LNG stored in the tank 10 (for example, the liquid level) is out of the limited range. It is possible that In this case, if the solution-finding process of step #22 has not reached the N-th time (N is a natural number of 2 or more) (step #27, NO), the arithmetic processing unit 2 changes the amount of heat calculated in step #23, The new line demand updated in step #25 is acquired (step #28), and the mixed integer linear programming problem is solved again by reflecting these as new constant changes (step #22). As a result, compared with step #22 executed immediately before, the mixed integer linear programming problem can be solved and the operation plan can be derived in a state in which the change in the amount of heat is accurately reflected.
 そして、演算処理部2は、ステップ#23で熱量等の推移を計算した結果が、タンク10が貯蔵するLNGに関する制約に違反していなければ(ステップ#26、NO)、最後にステップ#22で導出された運用計画に基づいた計算結果を記憶部1に記憶させ(ステップ#29)、ステップ#2の処理を終了する。このとき、計算結果には、例えば、タンク10毎の受入量、需要割当及び熱量の推移、受入計画、必要な追加燃料の量が含まれる。 Then, if the calculation result of the transition of the amount of heat and the like in step #23 does not violate the restrictions on the LNG stored in the tank 10 (step #26, NO), the arithmetic processing unit 2 finally determines in step #22 A calculation result based on the derived operation plan is stored in the storage unit 1 (step #29), and the process of step #2 is terminated. At this time, the calculation results include, for example, the amount of fuel received for each tank 10, changes in demand allocation and calorific value, a receiving plan, and the amount of additional fuel required.
 また、制約違反はあるが(ステップ#26、YES)、ステップ#22の処理がN回目に達した場合(ステップ#27、YES)、最後にステップ#22で導出された運用計画を記憶部1に記憶させ(ステップ#29)、ステップ#2の処理を終了する。なお、この場合、制約違反は解消していないため、その旨も合わせて計算結果として記憶させるとともに、出力情報にも含めて、貯蔵施設のオペレータに注意喚起すると好ましい。 Also, if there is a constraint violation (step #26, YES), but the processing of step #22 has reached the N-th time (step #27, YES), the operation plan finally derived in step #22 is stored in the storage unit 1. (step #29), and the process of step #2 is terminated. In this case, since the constraint violation has not been resolved, it is preferable to store this fact together as a calculation result and include it in the output information to alert the operator of the storage facility.
 図4に示したステップ#3の詳細について説明する。図12は、第1実施形態に係る本システムSの演算処理部2によるステップ#3の演算処理の詳細を示すフローチャートである。なお、図12に示すように、演算処理部2は、ステップ#3においても、図10に示したステップ#2と同様の処理を行う。以下、ステップ#3の処理について、ステップ#2と同様である部分については詳細な説明を省略し、異なる部分について説明する。 The details of step #3 shown in FIG. 4 will be described. FIG. 12 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing section 2 of the system S according to the first embodiment. Note that, as shown in FIG. 12, the arithmetic processing unit 2 also performs the same processing as in step #2 shown in FIG. 10 in step #3. In the following, regarding the processing of step #3, detailed descriptions of the same portions as in step #2 will be omitted, and different portions will be described.
 図12に示すように、演算処理部2は、入力情報だけでなくステップ#2の計算結果を取得する(ステップ#30)。次に、演算処理部2は、制約情報を取得し(ステップ#31)、混合整数線形計画問題を求解して運用計画を導出する(ステップ#32)。このとき、例えば、演算処理部2は、ステップ#2と同種の条件で運用計画を導出してもよい。具体的に、例えば、演算処理部2は、ステップ#2のステップ#22において移送回数を最小化する条件で運用計画を導出し、ステップ#32ではステップ#2で導出した運用計画よりもさらに移送回数が低減されるという条件で運用計画を導出してもよいし、ステップ#2のステップ#22において移送量を最小化する条件で運用計画を導出し、ステップ#32ではステップ#2で導出した運用計画よりもさらに移送量が低減されるという条件で運用計画を導出してもよい。また、例えば、演算処理部2は、ステップ#2と異なる条件で運用計画を導出してもよい。具体的に、例えば、演算処理部2は、ステップ#22では移送回数を最小化する条件で運用計画を導出し、ステップ#32では移送量がさらに低減される条件で運用計画を導出してもよいし、ステップ#22では移送量を最小化する条件で運用計画を導出し、ステップ#32では移送回数がさらに低減される条件で運用計画を導出してもよい。なお、ステップ#32において移送回数や移送量をさらに低減させる条件として、ステップ#2の計算結果において移送のないタンクの組み合わせについては移送しない、ステップ#2の計算結果における移送量に基づいた移送量の上限及び下限の範囲内で移送を許容する、などが挙げられる。 As shown in FIG. 12, the arithmetic processing unit 2 acquires not only the input information but also the calculation result of step #2 (step #30). Next, the arithmetic processing unit 2 acquires constraint information (step #31), solves a mixed integer linear programming problem, and derives an operation plan (step #32). At this time, for example, the arithmetic processing unit 2 may derive the operation plan under the same kind of conditions as in step #2. Specifically, for example, in step #22 of step #2, the arithmetic processing unit 2 derives an operation plan under conditions that minimize the number of transfers, and in step #32, transfers more than the operation plan derived in step #2. The operation plan may be derived under the condition that the number of times is reduced, or the operation plan is derived under the condition that the transfer amount is minimized in step #22 of step #2, and in step #32, the operation plan is derived in step #2. An operation plan may be derived on the condition that the transfer amount is further reduced than the operation plan. Further, for example, the arithmetic processing unit 2 may derive the operation plan under conditions different from those in step #2. Specifically, for example, the arithmetic processing unit 2 may derive the operation plan under the condition that the number of transfers is minimized in step #22, and derive the operation plan under the condition that the transfer amount is further reduced in step #32. Alternatively, in step #22, the operation plan may be derived under the condition of minimizing the transfer amount, and in step #32, the operation plan may be derived under the condition of further reducing the number of transfers. As a condition for further reducing the number of times of transfer and the transfer amount in step #32, the transfer amount based on the transfer amount in the calculation result of step #2 is not transferred for the combination of tanks that are not transferred in the calculation result of step #2. and allow transfer within the upper and lower limits of
 また、混合整数線形計画問題を求解するにあたり、払出ポンプ15毎の稼働の有無についてはステップ#2の計算結果に基づいて固定するため、決定変数から除外する。これ以降の処理(ステップ#33~#39)については、図10に示したステップ#2の処理(ステップ#23~#29)と同様である。そして、ステップ#3で導出される運用計画が、最終的に導出される運用計画となる。 Also, when solving the mixed integer linear programming problem, whether or not each payout pump 15 is in operation is fixed based on the calculation result of step #2, so it is excluded from the decision variables. Subsequent processing (steps #33 to #39) is the same as the processing of step #2 (steps #23 to #29) shown in FIG. Then, the operation plan derived in step #3 becomes the finally derived operation plan.
 以上のように、第1実施形態に係る本システムSでは、非線形的に変動するタンク10が貯蔵する液化燃料の熱量を、数理計画問題上の変数としては扱わずに別途計算することによって、混合整数線形計画問題として求解して運用計画を導出する。具体的に、本システムSは、タンク10が貯蔵するLNGの熱量を、混合整数線形計画問題とは別に計算した上で混合整数線形計画問題において定数として扱うことにより、当該熱量の変動を反映して求解する。これにより、本システムSは、演算処理の負担を軽減することが可能になる。 As described above, in the system S according to the first embodiment, the heat quantity of the liquefied fuel stored in the tank 10 that varies nonlinearly is not treated as a variable in the mathematical programming problem, but is calculated separately. Solve as an integer linear programming problem to derive an operational plan. Specifically, the system S calculates the calorific value of the LNG stored in the tank 10 separately from the mixed integer linear programming problem and treats it as a constant in the mixed integer linear programming problem, thereby reflecting the change in the calorific value. to solve. Thereby, this system S becomes possible [ reducing the load of arithmetic processing ].
 また、本システムSでは、ステップ#2及び#3において、混合整数線形計画問題を繰り返し求解する間に、必要な追加燃料の量を計算してライン需要を更新する(ステップ#24、#25、#34及び#35)。そのため、供給される追加燃料の量も考慮して決定された払出量を含む運用計画を導出することができる。 In addition, in this system S, in steps #2 and #3, while repeatedly solving the mixed integer linear programming problem, the required amount of additional fuel is calculated and the line demand is updated (steps #24, #25, #34 and #35). Therefore, it is possible to derive an operation plan including the amount of fuel to be delivered, which is determined by taking into account the amount of additional fuel to be supplied.
 <第2実施形態>
 次に、第2実施形態に係る本システムSの演算処理部2による演算処理の内容について説明する。ただし、第2実施形態に係る本システムSの演算処理部2の演算処理のうち、第1実施形態と同様である部分については詳細な説明を省略し、第1実施形態と異なる部分について説明する。
<Second embodiment>
Next, the content of arithmetic processing by the arithmetic processing unit 2 of the system S according to the second embodiment will be described. However, in the arithmetic processing of the arithmetic processing unit 2 of the system S according to the second embodiment, the detailed explanation of the parts that are the same as in the first embodiment will be omitted, and the parts that are different from the first embodiment will be explained. .
 図13は、第2実施形態に係る本システムSの演算処理部2によるステップ#2の演算処理の詳細を示すフローチャートである。図13に示すように、第2実施形態では、制約違反がない(ステップ#26、NO)または求解処理がN回目に達した後(ステップ#27、NO)、すなわちステップ#2において混合整数線形計画問題の求解を終了した後に、必要な追加燃料の量を計算する(ステップ#24)。また、演算処理部2は、ライン需要の更新(図10のステップ#25)は実行せず、ステップ#22で混合整数線形計画問題を求解し直す際にはタンク10が貯蔵するLNGの熱量の推移だけ取得する(ステップ#28A)。 FIG. 13 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing unit 2 of the system S according to the second embodiment. As shown in FIG. 13, in the second embodiment, after there is no constraint violation (step #26, NO) or the solution-finding process reaches the N-th time (step #27, NO), that is, in step #2, mixed integer linear After solving the planning problem, the amount of additional fuel required is calculated (step #24). In addition, the arithmetic processing unit 2 does not update the line demand (step #25 in FIG. 10), and when resolving the mixed integer linear programming problem in step #22, the heat amount of the LNG stored in the tank 10 Only the transition is acquired (step #28A).
 図14は、第2実施形態に係る本システムSの演算処理部2によるステップ#3の演算処理の詳細を示すフローチャートである。ステップ#3もステップ#2と同様であり、ステップ#3において混合整数線形計画問題の求解を終了した後に、必要な追加燃料の量を計算する(ステップ#34)。また、演算処理部2は、ライン需要の更新(図12のステップ#35)は実行せず、ステップ#32で混合整数線形計画問題を求解し直す際にはタンク10が貯蔵するLNGの熱量の推移だけ取得する(ステップ#38A)。 FIG. 14 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing unit 2 of the system S according to the second embodiment. Step #3 is similar to step #2, and after solving the mixed integer linear programming problem in step #3, the amount of additional fuel required is calculated (step #34). In addition, the arithmetic processing unit 2 does not update the line demand (step #35 in FIG. 12), and when resolving the mixed integer linear programming problem in step #32, the heat amount of the LNG stored in the tank 10 Only transitions are acquired (step #38A).
 以上のように、第2実施形態に係る本システムSでも、非線形的に変動するタンク10が貯蔵する液化燃料の熱量を、数理計画問題上の変数としては扱わずに別途計算することによって、混合整数線形計画問題として求解して運用計画を導出するため、演算処理の負担を軽減することが可能になる。さらに、第2実施形態に係る本システムSでは、追加燃料の量に関する演算処理を最小限にして、演算処理の負担を軽減することができる。 As described above, in the system S according to the second embodiment as well, the heat quantity of the liquefied fuel stored in the nonlinearly varying tank 10 is calculated separately without being treated as a variable in the mathematical programming problem. Since the operation plan is derived by solving the problem as an integer linear programming problem, it is possible to reduce the computational load. Furthermore, in the present system S according to the second embodiment, it is possible to minimize the computational processing related to the amount of additional fuel, thereby reducing the computational processing load.
 <第3実施形態>
 次に、第3実施形態に係る本システムSの演算処理部2による演算処理の内容について説明する。ただし、第2実施形態に係る本システムSの演算処理部2の演算処理のうち、第1実施形態と同様である部分については詳細な説明を省略し、第1実施形態と異なる部分について説明する。
<Third Embodiment>
Next, the content of arithmetic processing by the arithmetic processing unit 2 of the system S according to the third embodiment will be described. However, in the arithmetic processing of the arithmetic processing unit 2 of the system S according to the second embodiment, the detailed explanation of the parts that are the same as in the first embodiment will be omitted, and the parts that are different from the first embodiment will be explained. .
 図15は、第3実施形態に係る本システムSの演算処理部2によるステップ#2の演算処理の詳細を示すフローチャートである。図15に示すように、第3実施形態では、第1実施形態と同様に、入手情報及び制約情報を取得する(ステップ#20及び#21)。次に、第3実施形態では、演算処理部2が、複数のタンク10のそれぞれについて、貯蔵するLNGの熱量を、定数ではなく線形変化する変数とみなして混合整数線形計画問題を求解することで運用計画を導出する(ステップ#22B)。このとき、演算処理部2は、運用計画を導出するための目的関数として、第1実施形態と同様に数16に示す目的関数Fを使用するが、例えば上述した数13~数15の制約条件式に基づいて、タンクが貯蔵するLNGの熱量を線形変化する変数とみなして運用計画を導出する。 FIG. 15 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing unit 2 of the system S according to the third embodiment. As shown in FIG. 15, in the third embodiment, similarly to the first embodiment, acquisition information and constraint information are acquired (steps #20 and #21). Next, in the third embodiment, the arithmetic processing unit 2 regards the heat quantity of the LNG to be stored for each of the plurality of tanks 10 as a variable that varies linearly rather than as a constant, and solves the mixed integer linear programming problem. An operation plan is derived (step #22B). At this time, the arithmetic processing unit 2 uses the objective function F shown in Equation 16 as in the first embodiment as the objective function for deriving the operation plan. Based on the formula, the operation plan is derived by regarding the heat quantity of the LNG stored in the tank as a variable that varies linearly.
 その後、演算処理部2は、第1実施形態と同様の処理を行う(ステップ#23~#29)。ただし、演算処理部2は、ステップ#28の後に再度ステップ#22Bを行う際に、第1実施形態では熱量の推移を定数の変化として反映させて混合整数線形計画問題を求解し直したところを、第3実施形態では、熱量の推移(差分)に対応するように、線形変化する変数とみなした熱量における変化量(例えば、上述した数13における、貯蔵タンクjで時点tの受入をした時の密度変化量α、数15における貯蔵タンクjで時点tの在庫の密度変化量β、数15における貯蔵タンクjで時点tに貯蔵タンクiから移送された時の密度変化量γなど)を更新して、混合整数線形計画問題を求解し直す。 After that, the arithmetic processing unit 2 performs the same processing as in the first embodiment (steps #23 to #29). However, when performing step #22B again after step #28, the arithmetic processing unit 2 recalculates the mixed integer linear programming problem by reflecting the change in the amount of heat as a constant change in the first embodiment. , In the third embodiment, the amount of change in the amount of heat regarded as a variable that varies linearly so as to correspond to the transition (difference) of the amount of heat (for example, when the storage tank j in the above-mentioned equation 13 receives the time t density change α, inventory density change β at time t in storage tank j in Equation 15, density change γ when transferred from storage tank i at time t in storage tank j in Equation 15, etc.) to solve the mixed-integer linear programming problem again.
 図16は、第3実施形態に係る本システムSの演算処理部2によるステップ#3の演算処理の詳細を示すフローチャートである。図16に示すように、演算処理部2は、ステップ#3においても、図15に示したステップ#2と同様の処理を行う。また、演算処理部3は、第1実施形態と同様にステップ#3の処理を行うが、ステップ#2において説明したとおり、混合整数線形計画問題を求解して運用計画を導出する際には、複数のタンク10のそれぞれについて、貯蔵するLNGの熱量を、定数ではなく線形変化する変数とみなして混合整数線形計画問題を求解する(ステップ#32B)。 FIG. 16 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing unit 2 of the system S according to the third embodiment. As shown in FIG. 16, the arithmetic processing unit 2 also performs the same processing as step #2 shown in FIG. 15 in step #3. In addition, the arithmetic processing unit 3 performs the processing of step #3 in the same manner as in the first embodiment, but as described in step #2, when solving the mixed integer linear programming problem and deriving the operation plan, For each of the plurality of tanks 10, the mixed-integer linear programming problem is solved by considering the heat quantity of the LNG to be stored not as a constant but as a variable that varies linearly (step #32B).
 以上のように、第3実施形態に係る本システムSでは、非線形的に変動するタンク10が貯蔵する液化燃料の熱量を、線形変化する変数とみなして計算することによって、混合整数線形計画問題として求解して運用計画を導出するため、演算処理の負担を軽減することが可能になる。また、第1実施形態と同様に、ステップ#2及び#3において、混合整数線形計画問題を繰り返し求解する間に、必要な追加燃料の量を計算してライン需要を更新する(ステップ#24、#25、#34及び#35)ため、供給される追加燃料の量も考慮して決定された払出量を含む運用計画を導出することができる。 As described above, in the system S according to the third embodiment, the heat quantity of the liquefied fuel stored in the nonlinearly varying tank 10 is calculated as a variable that varies linearly, so that the mixed integer linear programming problem Since the operation plan is derived by finding the solution, it is possible to reduce the load of arithmetic processing. Also, as in the first embodiment, while solving the mixed integer linear programming problem repeatedly in steps #2 and #3, the required amount of additional fuel is calculated and the line demand is updated (steps #24, #25, #34, and #35), it is possible to derive an operation plan including a payout amount determined by taking into consideration the amount of additional fuel to be supplied.
 <第4実施形態>
 次に、第4実施形態に係る本システムSの演算処理部2による演算処理の内容について説明する。ただし、第4実施形態に係る本システムSの演算処理部2の演算処理のうち、第1~第3実施形態と同様である部分については詳細な説明を省略し、第1~第3実施形態と異なる部分について説明する。
<Fourth Embodiment>
Next, the content of arithmetic processing by the arithmetic processing unit 2 of the system S according to the fourth embodiment will be described. However, among the arithmetic processing of the arithmetic processing unit 2 of the present system S according to the fourth embodiment, detailed explanations of the same parts as those in the first to third embodiments are omitted, and the first to third embodiments are omitted. A different part will be explained.
 図17は、第3実施形態に係る本システムSの演算処理部2によるステップ#2の演算処理の詳細を示すフローチャートである。図17に示すように、演算処理部2は、第2実施形態と同様に、ステップ#2において混合整数線形計画問題の求解を終了した後に、必要な追加燃料の量を計算し(ステップ#24)、ライン需要の更新(図10、図15のステップ#25)は実行せず、ステップ#22Bで混合整数線形計画問題を求解し直す際にはタンク10が貯蔵するLNGの熱量の推移だけ取得する(ステップ#28A)。また、演算処理部2は、第3実施形態と同様に、混合整数線形計画問題を求解して運用計画を導出する際には、複数のタンク10のそれぞれについて、貯蔵するLNGの熱量を、定数ではなく線形変化する変数とみなして混合整数線形計画問題を求解する(ステップ#22B)。 FIG. 17 is a flow chart showing details of the arithmetic processing of step #2 by the arithmetic processing unit 2 of the system S according to the third embodiment. As shown in FIG. 17, the arithmetic processing unit 2 calculates the required amount of additional fuel (step #24) after solving the mixed integer linear programming problem in step #2, as in the second embodiment. ), updating the line demand (step #25 in FIGS. 10 and 15) is not executed, and when resolving the mixed integer linear programming problem in step #22B, only the change in the heat amount of LNG stored in the tank 10 is acquired. (step #28A). Further, similarly to the third embodiment, when the arithmetic processing unit 2 solves the mixed integer linear programming problem and derives the operation plan, the heat quantity of the LNG to be stored for each of the plurality of tanks 10 is set to a constant A mixed-integer linear programming problem is solved by regarding variables that change linearly instead of (step #22B).
 図18は、第4実施形態に係る本システムSの演算処理部2によるステップ#3の演算処理の詳細を示すフローチャートである。ステップ#3もステップ#2と同様であり、ステップ#3において混合整数線形計画問題の求解を終了した後に、必要な追加燃料の量を計算する(ステップ#34)。また、演算処理部2は、ライン需要の更新(図12、図16のステップ#35)は実行せず、ステップ#32Bで混合整数線形計画問題を求解し直す際にはタンク10が貯蔵するLNGの熱量の推移だけ取得する(ステップ#38A)。また、演算処理部2は、第3実施形態と同様に、混合整数線形計画問題を求解して運用計画を導出する際には、複数のタンク10のそれぞれについて、貯蔵するLNGの熱量を、定数ではなく線形変化する変数とみなして混合整数線形計画問題を求解する(ステップ#32B)。 FIG. 18 is a flow chart showing details of the arithmetic processing of step #3 by the arithmetic processing unit 2 of the system S according to the fourth embodiment. Step #3 is similar to step #2, and after solving the mixed integer linear programming problem in step #3, the amount of additional fuel required is calculated (step #34). In addition, the arithmetic processing unit 2 does not update the line demand (step #35 in FIGS. 12 and 16), and when resolving the mixed integer linear programming problem in step #32B, the LNG stored in the tank 10 is acquired (step #38A). Further, similarly to the third embodiment, when the arithmetic processing unit 2 solves the mixed integer linear programming problem and derives the operation plan, the heat quantity of the LNG to be stored for each of the plurality of tanks 10 is set to a constant A mixed-integer linear programming problem is solved by regarding variables that change linearly instead of (step #32B).
 以上のように、第4実施形態に係る本システムSでも、非線形的に変動するタンク10が貯蔵する液化燃料の熱量を、線形変化する変数とみなして計算することによって、混合整数線形計画問題として求解して運用計画を導出するため、演算処理の負担を軽減することが可能になる。さらに、第4実施形態に係る本システムSでは、第2実施形態と同様に、追加燃料の量に関する演算処理を最小限にして、演算処理の負担を軽減することができる。 As described above, in the present system S according to the fourth embodiment as well, the heat quantity of the liquefied fuel stored in the nonlinearly varying tank 10 is calculated as a variable that varies linearly, so that the mixed integer linear programming problem Since the operation plan is derived by finding the solution, it is possible to reduce the load of arithmetic processing. Furthermore, in the present system S according to the fourth embodiment, similarly to the second embodiment, it is possible to minimize the computational processing related to the amount of additional fuel, thereby reducing the computational processing load.
 <<変形例>>
 以上、上述した実施形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変形して実施することが可能である。
<<Modification>>
The above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and it is possible to modify the above-described embodiment appropriately without departing from the scope of the invention.
 例えば、上記第1及~第4実施形態において、制約違反がある場合(ステップ#26,#36、YES)に、タンクが貯蔵するLNGの熱量を更新して、混合整数線形計画問題を再度求解する(ステップ#22,#32,#22B,#32B)と説明した。しかし、制約違反がなくても、例えば導出される運用計画の精度を高めるために、タンクが貯蔵するLNGの熱量を更新して、混合整数線形計画問題を再度求解するようにしてもよい。具体的には、制約違反がないことを確認した後(または、制約違反の有無を確認することなく)、所定の回数だけ、タンクが貯蔵するLNGの熱量を更新して、混合整数線形計画問題を求解し直してもよい。 For example, in the above first to fourth embodiments, if there is a constraint violation (steps #26, #36, YES), update the heat amount of LNG stored in the tank and solve the mixed integer linear programming problem again. (Steps #22, #32, #22B, #32B). However, even if there are no constraint violations, the mixed integer linear programming problem may be solved again by updating the calorific value of the LNG stored in the tanks, for example to improve the accuracy of the derived operational plan. Specifically, after confirming that there is no constraint violation (or without confirming whether there is a constraint violation), the calorific value of the LNG stored in the tank is updated a predetermined number of times, and the mixed integer linear programming problem can be solved again.
 また、例えば、上記第1~第4実施形態では、入力情報に移送テーブルが含まれると説明したが、入力情報に移送テーブルが含まれなくてもよい。例えば、貯蔵するLNGの熱量が大きいタンクから小さいタンクへ移送をする場合ほど重みが小さく、貯蔵するLNGの熱量が小さいタンクから大きいタンクへ移送をする場合ほど重みが大きいという条件を設定することによって、移送テーブルを用いることなく運用計画を導出することが可能である。 Also, for example, in the first to fourth embodiments, the input information includes the transfer table, but the input information may not include the transfer table. For example, by setting a condition that the weight is smaller when transferring from a tank with a large calorific value of LNG to be stored to a tank with a smaller calorific value, and the weight is larger when transferring from a tank with a small calorific value of LNG to be stored to a tank with a large calorific value. , it is possible to derive an operational plan without using a transfer table.
 また、例えば、上記第1~第4実施形態において、混合整数線形計画問題を求解して運用計画を導出する際に(ステップ#22,#32,#22B,#32B)、何らかの規則に従って求解してもよい。例えば、本システムSの演算処理部2が、LNGの熱量の非線形的な変動を抑制する所定の運用規則に基づいて、この求解を行ってもよい。このような運用規則として、例えば、貯蔵するLNGの熱量が大きいタンクと小さいタンクを予め区別して、輸送手段11が積載しているLNGの熱量に応じて受け入れるタンクを決定する(輸送手段11が積載するLNGの熱量が大きければ、貯蔵するLNGの熱量が大きいタンクで受け入れ、輸送手段11が積載するLNGの熱量が小さければ、貯蔵するLNGの熱量が小さいタンクで受け入れる)、貯蔵するLNGの熱量の差がある程度以上大きいタンク間では移送の重みを大きく設定してできるだけ移送が行われないようにする、貯蔵するLNGの熱量が小さいタンクから大きいタンクへの移送の重みを大きく設定してできるだけ移送が行われないようにする、などが挙げられる。演算処理部2が、このような運用規則を用いて混合整数線形計画問題を求解することによって、最適な運用計画を導出し易くなるため、演算処理の負担をさらに好適に軽減することが可能になる。 Further, for example, in the first to fourth embodiments, when solving the mixed integer linear programming problem and deriving the operation plan (steps #22, #32, #22B, #32B), the solution is solved according to some rule. may For example, the arithmetic processing unit 2 of the system S may perform this solution based on a predetermined operating rule that suppresses nonlinear fluctuations in the heat quantity of LNG. As such an operation rule, for example, a tank with a large calorific value of LNG to be stored and a tank with a small calorific value are distinguished in advance, and a tank that receives the LNG loaded by the transport means 11 is determined according to the calorific value of the LNG loaded by the transport means 11 ( If the calorific value of the LNG to be stored is large, it is received in a tank with a large calorific value of the LNG to be stored, and if the calorific value of the LNG loaded by the transport means 11 is small, the LNG to be stored is received in a tank with a small calorific value), and the calorific value of the LNG to be stored is Between tanks where the difference is greater than a certain level, a large weight is set for transfer to avoid transfer as much as possible. to prevent it from happening, and so on. By solving the mixed-integer linear programming problem using such operation rules, the arithmetic processing unit 2 can easily derive the optimum operation plan, so that the burden of arithmetic processing can be reduced more appropriately. Become.
 また、例えば、上記第1~第4実施形態において、演算処理部2が、タンクが貯蔵するLNGの熱量を定数または線形変化する変数とみなして混合整数線形計画問題を求解し、さらに計算した熱量の推移を次に混合整数線形計画問題を求解する際の定数または線形変化する変数の変化とみなして計算すると説明したが、熱量ではなく密度を定数または線形変化する変数とみなしてもよいし、熱量と密度の両方を定数または線形変化する変数とみなしてもよい。 Further, for example, in the first to fourth embodiments, the arithmetic processing unit 2 solves the mixed integer linear programming problem by regarding the heat amount of LNG stored in the tank as a constant or a linearly changing variable, and further calculates the heat amount It was explained that the transition of is calculated as a change in a constant or linearly changing variable when solving the mixed integer linear programming problem, but the density instead of the heat quantity can be regarded as a constant or linearly changing variable, Both heat content and density may be considered as constant or linearly varying variables.
 また、例えば、上記第1~第4実施形態において、LNGの受入量、移送量、払出量などLNGの量を体積で計算する場合について説明したが、質量(例えば、単位はトン)で計算してもよい。 Further, for example, in the above first to fourth embodiments, the case where the amount of LNG such as the amount of LNG received, transferred, and discharged was calculated by volume was described, but it is calculated by mass (for example, the unit is tons). may
 また、例えば、上記第1~第4実施形態において、受入パターンについては事前に別途決めておくこととして、図4のステップ#1を省略してもよい。また、例えば、上記第1~第4実施形態において、受入パターンも図4のステップ#2における混合整数線形計画問題として合わせて求解することで、図4のステップ#1を省略してもよい。 Also, for example, in the above-described first to fourth embodiments, step #1 in FIG. 4 may be omitted by separately determining the acceptance pattern in advance. Further, for example, in the above-described first to fourth embodiments, step #1 of FIG. 4 may be omitted by solving the acceptance pattern as a mixed integer linear programming problem in step #2 of FIG.
 上述したタンク運用計画導出システム及びタンク運用計画導出方法は、以下のように説明することができる。 The tank operation plan derivation system and tank operation plan derivation method described above can be explained as follows.
 タンク運用計画導出システムは、液化燃料を貯蔵する複数のタンクの全体に対する前記液化燃料の出入に関する情報及び前記複数のタンクのそれぞれの状態に関する情報が含まれる入力情報と、前記複数のタンクのそれぞれにおける前記液化燃料の出入及び貯蔵の制約条件が含まれる制約情報と、を記憶する記憶部と、前記入力情報及び前記制約情報に基づいて、前記複数のタンクのそれぞれにおける前記液化燃料の出入の計画である運用計画を導出する演算処理部と、を備え、前記演算処理部は、前記複数のタンクのそれぞれについて、貯蔵する前記液化燃料の熱量または密度を定数または線形変化する変数とみなして混合整数線形計画問題を求解することで前記運用計画を導出する第1処理と、前記第1処理で導出した前記運用計画における、前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を計算する第2処理と、を実行し、前記第2処理のあとに前記第1処理を実行し直す場合、前記第2処理で計算した前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を定数または線形変化する変数の変化とみなして前記第1処理を実行し直す(第1の構成)。この構成によれば、非線形的に変動するタンクが貯蔵する液化燃料の熱量または密度を、数理計画問題上の変数としては扱わずに別途計算することによって、混合整数線形計画問題として求解して運用計画を導出する。そのため、この構成によれば、演算処理の負担を軽減することが可能になる。 The tank operation plan derivation system includes input information including information on the inflow and outflow of the liquefied fuel with respect to the entire plurality of tanks storing the liquefied fuel and information on the state of each of the plurality of tanks, and input information in each of the plurality of tanks a storage unit for storing constraint information including constraint conditions for the input/output and storage of the liquefied fuel; and a plan for the input/output of the liquefied fuel in each of the plurality of tanks based on the input information and the constraint information an arithmetic processing unit for deriving a certain operation plan, wherein the arithmetic processing unit considers the calorific value or density of the liquefied fuel stored in each of the plurality of tanks as a constant or a variable that varies linearly, and calculates a mixed integer linear A first process of deriving the operation plan by solving a planning problem, and calculating changes in the calorific value or density of the liquefied fuel stored in each of the plurality of tanks in the operation plan derived by the first process. and when re-executing the first process after the second process, the heat quantity or density of the liquefied fuel stored in each of the plurality of tanks calculated in the second process is regarded as a change in a constant or linearly changing variable, and the first process is re-executed (first configuration). According to this configuration, the calorific value or density of the liquefied fuel stored in the nonlinearly fluctuating tank is not treated as a variable in the mathematical programming problem but is calculated separately, so that it is solved as a mixed integer linear programming problem and operated. Derive the plan. Therefore, according to this configuration, it is possible to reduce the load of arithmetic processing.
 第1の構成において、前記演算処理部は、前記液化燃料の熱量または密度の非線形的な変動を抑制する運用規則に基づいて前記第1処理を実行してもよい(第2の構成)。この構成によれば、最適な運用計画を導出し易くなるため、演算処理の負担をさらに好適に軽減することが可能になる。 In the first configuration, the arithmetic processing unit may execute the first processing based on an operating rule that suppresses nonlinear fluctuations in the calorific value or density of the liquefied fuel (second configuration). According to this configuration, it becomes easier to derive the optimum operation plan, so that it is possible to more preferably reduce the load of arithmetic processing.
 前記演算処理部は、前記第2処理の結果が、前記複数のタンクが貯蔵する前記液化燃料及び前記複数のタンクから払い出される前記液化燃料の少なくとも一方の制約に違反する場合、前記第2処理で計算した前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を定数または線形変化する変数の変化とみなして前記第1処理を実行し直してもよい。この構成によれば、制約に違反しない運用計画を導出することができる。 If the result of the second process violates the constraint of at least one of the liquefied fuel stored in the plurality of tanks and the liquefied fuel discharged from the plurality of tanks, the arithmetic processing unit performs The first process may be re-executed by regarding the transition of the calculated calorific value or density of the liquefied fuel stored in each of the plurality of tanks as a constant or linearly changing variable. According to this configuration, it is possible to derive an operational plan that does not violate the constraints.
 第3の構成において、前記演算処理部は、前記第2処理において前記複数のタンクのそれぞれが貯蔵する前記液化燃料の体積の推移を計算し、その結果が前記複数のタンクのそれぞれが貯蔵する前記液化燃料の体積の制約に違反する場合、前記第2処理で計算した前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を定数または線形変化する変数の変化とみなして前記第1処理を実行し直してもよい(第4の構成)。この構成によれば、タンクに貯蔵される液化燃料の体積が制約に違反しない運用計画を導出することができる。 In the third configuration, the arithmetic processing unit calculates changes in the volume of the liquefied fuel stored in each of the plurality of tanks in the second processing, and the result is the volume of the liquefied fuel stored in each of the plurality of tanks. If the restriction on the volume of the liquefied fuel is violated, the change in the calorific value or density of the liquefied fuel stored in each of the plurality of tanks calculated in the second process is regarded as a constant or linearly changing variable, and the second process is performed. 1 processing may be re-executed (fourth configuration). According to this configuration, it is possible to derive an operation plan in which the volume of liquefied fuel stored in the tank does not violate the constraints.
 第3または第4の構成において、前記演算処理部は、前記第2処理の結果が、前記複数のタンクから払い出される前記液化燃料の熱量または密度の制約に違反する場合、前記第2処理で計算した前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を定数または線形変化する変数の変化とみなして前記第1処理を実行し直してもよい(第5の構成)。この構成によれば、タンクから払い出される液化燃料の熱量が制約に違反しない運用計画を導出することができる。 In the third or fourth configuration, if the result of the second process violates constraints on the calorific value or density of the liquefied fuel dispensed from the plurality of tanks, the arithmetic processing unit calculates in the second process The first process may be re-executed by regarding the change in the calorific value or density of the liquefied fuel stored in each of the plurality of tanks as a constant or linearly changing variable (fifth configuration). According to this configuration, it is possible to derive an operation plan in which the heat quantity of the liquefied fuel discharged from the tank does not violate the constraints.
 第3~第5の構成のいずれか1つにおいて、前記演算処理部は、前記第2処理の結果が、前記複数のタンクが貯蔵する前記液化燃料及び前記複数のタンクから払い出される前記液化燃料の少なくとも一方の制約に違反する場合であっても、既に実行した前記第1処理の回数がN回(Nは2以上の自然数)に達している場合は、前記第1処理を実行し直さなくてもよい(第6の構成)。この構成によれば、制約違反の解消が期待し難い場合、それ以上の求解処理を終了することにより、過度な演算処理の負担の発生を防止することができる。 In any one of the third to fifth configurations, the arithmetic processing unit determines that the result of the second processing is the liquefied fuel stored in the plurality of tanks and the liquefied fuel discharged from the plurality of tanks. Even if at least one of the constraints is violated, if the number of times the first process has already been executed has reached N times (N is a natural number equal to or greater than 2), the first process must be re-executed. (sixth configuration). According to this configuration, when it is difficult to expect that the constraint violation will be resolved, it is possible to prevent occurrence of an excessive computational load by terminating further solution-finding processing.
 第1~第6の構成のいずれか1つにおいて、前記演算処理部は、前記第2処理のあとに前記第1処理を実行し直さない場合、最後に実行した前記第1処理によって導出された前記運用計画よりも移送の回数及び移送量の少なくとも一方が低減される条件で、前記複数のタンクのそれぞれについて、貯蔵する前記液化燃料の熱量または密度を定数または線形変化する変数とみなして混合整数線形計画問題を求解することで前記運用計画を導出する第3処理を実行してもよい(第7の構成)。この構成によれば、移送回数及び移送量の少なくとも一方が低減されて実行し易い運用計画を導出することができる。 In any one of the first to sixth configurations, if the first process is not re-executed after the second process, the arithmetic processing unit performs Under the condition that at least one of the number of times of transfer and the amount of transfer is reduced from the operation plan, the calorific value or density of the liquefied fuel stored in each of the plurality of tanks is regarded as a constant or a variable that varies linearly, and is a mixed integer A third process of deriving the operation plan may be executed by solving a linear programming problem (seventh configuration). According to this configuration, it is possible to derive an operation plan that reduces at least one of the number of times of transfer and the amount of transfer and that is easy to execute.
 第1~第7の構成のいずれか1つにおいて、前記演算処理部は、前記第1処理によって導出された前記運用計画に基づいて、前記複数のタンクのそれぞれにおける払出に必要な追加燃料の量を計算するとともに、当該払出に対応する需要から当該追加燃料の量に相当する分を減じることで新たな需要を導出し、前記第2処理のあとに前記第1処理を実行し直す場合は、前記新たな需要に基づいて前記第1処理を実行し直してもよい(第8の構成)。この構成によれば、供給される追加燃料の量も考慮して決定された払出量を含む運用計画を導出することができる。 In any one of the first to seventh configurations, the arithmetic processing unit determines, based on the operation plan derived by the first processing, the amount of additional fuel required to be dispensed from each of the plurality of tanks. is calculated, and a new demand is derived by subtracting the amount corresponding to the amount of the additional fuel from the demand corresponding to the payout, and when the first process is executed again after the second process, The first process may be re-executed based on the new demand (eighth configuration). According to this configuration, it is possible to derive an operation plan including a payout amount determined by also considering the amount of additional fuel to be supplied.
 第1~第7の構成のいずれか1つにおいて、前記演算処理部は、前記第2処理のあとに前記第1処理を実行し直さない場合、最後に実行した前記第1処理によって導出された前記運用計画に基づいて、必要な追加燃料の量を計算してもよい(第9の構成)。この構成によれば、追加燃料の量に関する演算処理を最小限にして、演算処理の負担を軽減することができる。 In any one of the first to seventh configurations, if the first process is not re-executed after the second process, the arithmetic processing unit performs A required amount of additional fuel may be calculated based on the operational plan (ninth configuration). According to this configuration, it is possible to minimize the computational processing related to the amount of additional fuel and reduce the computational processing load.
 第1~第9の構成のいずれか1つにおいて、前記演算処理部は、前記複数のタンクをグループ分けして成る複数のタンク群のそれぞれが輸送手段から前記液化燃料の供給を受ける組み合わせである受入パターンを複数作成し、前記受入パターン毎に前記第1処理及び前記第2処理を実行して複数の前記運用計画を導出してもよい(第10の構成)。この構成によれば、受入パターン毎に得られた運用計画を比較等することにより、輸送手段からタンクへの受入についても最適化することが可能になる。 In any one of the first to ninth configurations, the arithmetic processing unit is a combination in which each of a plurality of tank groups formed by grouping the plurality of tanks receives the supply of the liquefied fuel from the transportation means. A plurality of acceptance patterns may be created, and the first process and the second process may be executed for each acceptance pattern to derive a plurality of the operation plans (tenth configuration). According to this configuration, by comparing the operation plan obtained for each receiving pattern, it becomes possible to optimize the receiving from the transportation means to the tank.
 本発明の他の実施形態は、液化燃料を貯蔵する複数のタンクの全体に対する前記液化燃料の出入に関する情報及び前記複数のタンクのそれぞれの状態に関する情報が含まれる入力情報と、前記複数のタンクのそれぞれにおける前記液化燃料の出入及び貯蔵の制約条件が含まれる制約情報とに基づいて、複数のタンクのそれぞれについて、貯蔵する前記液化燃料の熱量または密度を定数または線形変化する変数とみなして混合整数線形計画問題を求解することで、前記複数のタンクのそれぞれにおける前記液化燃料の出入の計画である運用計画を導出する第1ステップと、前記第1ステップで導出した前記運用計画における、前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を計算する第2ステップと、を備え、前記第2処理のあとに前記第1処理を実行し直す場合、前記第2ステップで計算した前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を定数または線形変化する変数の変化とみなして前記第1ステップを実行し直す、タンク運用計画導出方法である(第11の構成)。 In another embodiment of the present invention, input information including information on the inflow and outflow of the liquefied fuel with respect to all of the plurality of tanks storing the liquefied fuel and information on the state of each of the plurality of tanks; Based on constraint information including constraints on the inflow and outflow and storage of the liquefied fuel in each of the plurality of tanks, the heat quantity or density of the liquefied fuel stored in each of the plurality of tanks is regarded as a constant or a variable that varies linearly. Mixed integer A first step of deriving an operation plan that is a plan for the liquefied fuel in and out of each of the plurality of tanks by solving a linear programming problem; and in the operation plan derived in the first step, the plurality of a second step of calculating transitions in the calorific value or density of the liquefied fuel stored in each of the tanks; A method for deriving a tank operation plan, wherein the change in the calorific value or density of the liquefied fuel stored in each of the plurality of tanks is regarded as a change in a constant or linearly changing variable, and the first step is re-executed (11th composition).
S…タンク運用計画導出システム、1…記憶部、2…演算処理部、10…タンク、11…輸送手段、12…移送ライン、13…移送ポンプ、14…払出ライン、15…払出ポンプ、100…タンク群 S... Tank operation plan derivation system 1... Storage unit 2... Arithmetic processing unit 10... Tank 11... Transportation means 12... Transfer line 13... Transfer pump 14... Payout line 15... Payout pump 100... group of tanks

Claims (11)

  1.  液化燃料を貯蔵する複数のタンクの全体に対する前記液化燃料の出入に関する情報及び前記複数のタンクのそれぞれの状態に関する情報が含まれる入力情報と、前記複数のタンクのそれぞれにおける前記液化燃料の出入及び貯蔵の制約条件が含まれる制約情報と、を記憶する記憶部と、
     前記入力情報及び前記制約情報に基づいて、前記複数のタンクのそれぞれにおける前記液化燃料の出入の計画である運用計画を導出する演算処理部と、を備え、
     前記演算処理部は、
     前記複数のタンクのそれぞれについて、貯蔵する前記液化燃料の熱量または密度を定数または線形変化する変数とみなして混合整数線形計画問題を求解することで前記運用計画を導出する第1処理と、
     前記第1処理で導出した前記運用計画における、前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を計算する第2処理と、を実行し、
     前記第2処理のあとに前記第1処理を実行し直す場合、前記第2処理で計算した前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を定数または線形変化する変数の変化とみなして前記第1処理を実行し直す、タンク運用計画導出システム。
    input information including information on the input/output of the liquefied fuel to/from the entire plurality of tanks storing the liquefied fuel and information on the state of each of the plurality of tanks; input/output and storage of the liquefied fuel in each of the plurality of tanks; a storage unit that stores constraint information including constraint conditions of
    an arithmetic processing unit that derives an operation plan, which is a plan for entering and exiting the liquefied fuel in each of the plurality of tanks, based on the input information and the constraint information;
    The arithmetic processing unit is
    a first process of deriving the operation plan by solving a mixed-integer linear programming problem regarding each of the plurality of tanks, regarding the heat quantity or density of the stored liquefied fuel as a constant or a linearly changing variable;
    a second process of calculating changes in the calorific value or density of the liquefied fuel stored in each of the plurality of tanks in the operation plan derived in the first process,
    When re-executing the first process after the second process, a constant or linearly changing variable of the transition of the calorie or density of the liquefied fuel stored in each of the plurality of tanks calculated in the second process A tank operation plan derivation system that regards a change and re-executes the first process.
  2.  前記演算処理部は、前記液化燃料の熱量または密度の非線形的な変動を抑制する運用規則に基づいて前記第1処理を実行する、請求項1に記載のタンク運用計画導出システム。 The tank operation plan derivation system according to claim 1, wherein the arithmetic processing unit executes the first process based on an operation rule that suppresses nonlinear fluctuations in the calorific value or density of the liquefied fuel.
  3.  前記演算処理部は、前記第2処理の結果が、前記複数のタンクが貯蔵する前記液化燃料及び前記複数のタンクから払い出される前記液化燃料の少なくとも一方の制約に違反する場合、前記第2処理で計算した前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を定数または線形変化する変数の変化とみなして前記第1処理を実行し直す、請求項1または2に記載のタンク運用計画導出システム。 If the result of the second process violates the constraint of at least one of the liquefied fuel stored in the plurality of tanks and the liquefied fuel discharged from the plurality of tanks, the arithmetic processing unit performs 3. The tank according to claim 1 or 2, wherein the calculated change in the calorific value or density of the liquefied fuel stored in each of the plurality of tanks is regarded as a change in a constant or linearly changing variable, and the first process is re-executed. Operation plan derivation system.
  4.  前記演算処理部は、前記第2処理において前記複数のタンクのそれぞれが貯蔵する前記液化燃料の体積の推移を計算し、その結果が前記複数のタンクのそれぞれが貯蔵する前記液化燃料の体積の制約に違反する場合、前記第2処理で計算した前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を定数または線形変化する変数の変化とみなして前記第1処理を実行し直す、請求項3に記載のタンク運用計画導出システム。 The arithmetic processing unit calculates a transition of the volume of the liquefied fuel stored in each of the plurality of tanks in the second processing, and the result is a constraint on the volume of the liquefied fuel stored in each of the plurality of tanks. is violated, the transition of the calorific value or density of the liquefied fuel stored in each of the plurality of tanks calculated in the second process is regarded as a constant or linear variable change, and the first process is re-executed. 4. The tank operation plan derivation system according to claim 3.
  5.  前記演算処理部は、前記第2処理の結果が、前記複数のタンクから払い出される前記液化燃料の熱量または密度の制約に違反する場合、前記第2処理で計算した前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を定数または線形変化する変数の変化とみなして前記第1処理を実行し直す、請求項3または4に記載のタンク運用計画導出システム。 When the result of the second processing violates the constraint of the calorific value or density of the liquefied fuel discharged from the plurality of tanks, the arithmetic processing unit determines that each of the plurality of tanks calculated in the second processing is stored. 5. The tank operation plan deriving system according to claim 3 or 4, wherein the change in the calorific value or density of said liquefied fuel is regarded as a change in a constant or linearly changing variable, and said first process is re-executed.
  6.  前記演算処理部は、前記第2処理の結果が、前記複数のタンクが貯蔵する前記液化燃料及び前記複数のタンクから払い出される前記液化燃料の少なくとも一方の制約に違反する場合であっても、既に実行した前記第1処理の回数がN回(Nは2以上の自然数)に達している場合は、前記第1処理を実行し直さない、請求項3~5のいずれか1項に記載のタンク運用計画導出システム。 The arithmetic processing unit already performs The tank according to any one of claims 3 to 5, wherein the first process is not re-executed when the number of times the first process has been executed has reached N times (N is a natural number of 2 or more). Operation plan derivation system.
  7.  前記演算処理部は、前記第2処理のあとに前記第1処理を実行し直さない場合、最後に実行した前記第1処理によって導出された前記運用計画よりも移送の回数及び移送量の少なくとも一方が低減される条件で、前記複数のタンクのそれぞれについて、貯蔵する前記液化燃料の熱量または密度を定数または線形変化する変数とみなして混合整数線形計画問題を求解することで前記運用計画を導出する第3処理を実行する、請求項1~6のいずれか1項に記載のタンク運用計画導出システム。 When the first process is not re-executed after the second process, the arithmetic processing unit determines that at least one of the number of transfers and the transfer amount is higher than the operation plan derived by the last executed first process. is reduced, the operation plan is derived by solving a mixed-integer linear programming problem with the calorific value or density of the liquefied fuel stored in each of the plurality of tanks as a constant or linearly changing variable. The tank operation plan derivation system according to any one of claims 1 to 6, which executes a third process.
  8.  前記演算処理部は、
     前記第1処理によって導出された前記運用計画に基づいて、前記複数のタンクのそれぞれにおける払出に必要な追加燃料の量を計算するとともに、当該払出に対応する需要から当該追加燃料の量に相当する分を減じることで新たな需要を導出し、
     前記第2処理のあとに前記第1処理を実行し直す場合は、前記新たな需要に基づいて前記第1処理を実行し直す、請求項1~7のいずれか1項に記載のタンク運用計画導出システム。
    The arithmetic processing unit is
    Based on the operation plan derived by the first process, the amount of additional fuel required for dispensing in each of the plurality of tanks is calculated, and the amount of additional fuel is calculated from the demand corresponding to the dispensing. Deriving new demand by subtracting
    The tank operation plan according to any one of claims 1 to 7, wherein when the first process is re-executed after the second process, the first process is re-executed based on the new demand. derivation system.
  9.  前記演算処理部は、前記第2処理のあとに前記第1処理を実行し直さない場合、最後に実行した前記第1処理によって導出された前記運用計画に基づいて、必要な追加燃料の量を計算する、請求項1~7のいずれか1項に記載のタンク運用計画導出システム。 When the first process is not re-executed after the second process, the arithmetic processing unit calculates the required amount of additional fuel based on the operation plan derived by the last executed first process. The tank operation plan derivation system according to any one of claims 1 to 7, which calculates.
  10.  前記演算処理部は、前記複数のタンクをグループ分けして成る複数のタンク群のそれぞれが輸送手段から前記液化燃料の供給を受ける組み合わせである受入パターンを複数作成し、前記受入パターン毎に前記第1処理及び前記第2処理を実行して複数の前記運用計画を導出する、請求項1~9のいずれか1項に記載のタンク運用計画導出システム。 The arithmetic processing unit creates a plurality of receiving patterns that are combinations in which each of the plurality of tank groups formed by grouping the plurality of tanks receives the supply of the liquefied fuel from the transportation means, and the first receiving pattern for each of the receiving patterns. The tank operation plan derivation system according to any one of claims 1 to 9, wherein the first process and the second process are executed to derive a plurality of the operation plans.
  11.  液化燃料を貯蔵する複数のタンクの全体に対する前記液化燃料の出入に関する情報及び前記複数のタンクのそれぞれの状態に関する情報が含まれる入力情報と、前記複数のタンクのそれぞれにおける前記液化燃料の出入及び貯蔵の制約条件が含まれる制約情報とに基づいて、複数のタンクのそれぞれについて、貯蔵する前記液化燃料の熱量または密度を定数または線形変化する変数とみなして混合整数線形計画問題を求解することで、前記複数のタンクのそれぞれにおける前記液化燃料の出入の計画である運用計画を導出する第1ステップと、
     前記第1ステップで導出した前記運用計画における、前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を計算する第2ステップと、を備え、
     前記第2処理のあとに前記第1処理を実行し直す場合、前記第2ステップで計算した前記複数のタンクのそれぞれが貯蔵する前記液化燃料の熱量または密度の推移を定数または線形変化する変数の変化とみなして前記第1ステップを実行し直す、タンク運用計画導出方法。
    input information including information on the input/output of the liquefied fuel to/from the entire plurality of tanks storing the liquefied fuel and information on the state of each of the plurality of tanks; input/output and storage of the liquefied fuel in each of the plurality of tanks; Based on the constraint information including the constraint of, for each of the plurality of tanks, the heat quantity or density of the liquefied fuel to be stored is regarded as a constant or linearly changing variable to solve a mixed integer linear programming problem, a first step of deriving an operation plan, which is a plan for entering and exiting the liquefied fuel in each of the plurality of tanks;
    a second step of calculating changes in the calorific value or density of the liquefied fuel stored in each of the plurality of tanks in the operation plan derived in the first step;
    When re-executing the first process after the second process, the change in the calorific value or density of the liquefied fuel stored in each of the plurality of tanks calculated in the second step is a constant or a variable that changes linearly. A method for deriving a tank operation plan, which considers a change and re-executes the first step.
PCT/JP2022/029773 2021-11-24 2022-08-03 Tank operation plan derivation system and tank operation plan derivation method WO2023095389A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111140802A TW202326580A (en) 2021-11-24 2022-10-27 System and method for deriving tank operation plans

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-190638 2021-11-24
JP2021190638A JP7121180B1 (en) 2021-11-24 2021-11-24 Tank operation plan derivation system and tank operation plan derivation method

Publications (1)

Publication Number Publication Date
WO2023095389A1 true WO2023095389A1 (en) 2023-06-01

Family

ID=82850968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029773 WO2023095389A1 (en) 2021-11-24 2022-08-03 Tank operation plan derivation system and tank operation plan derivation method

Country Status (3)

Country Link
JP (1) JP7121180B1 (en)
TW (1) TW202326580A (en)
WO (1) WO2023095389A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319557A (en) * 2002-04-22 2003-11-07 Mitsubishi Electric Corp Energy management device and energy management method
JP2013092162A (en) * 2011-10-24 2013-05-16 Osaka Gas Co Ltd System and method for deriving storage tank operation plan
WO2015093262A1 (en) * 2013-12-16 2015-06-25 Jfeスチール株式会社 Energy supply/demand management guidance device and ironworks energy supply/demand management method
JP2017187932A (en) * 2016-04-06 2017-10-12 三菱電機株式会社 Energy supply/demand plan preparation device and energy supply/demand plan preparation program
JP2019144897A (en) * 2018-02-21 2019-08-29 株式会社豊田中央研究所 Optimization device and optimization program for gas energy supply-demand system
JP2020096521A (en) * 2018-12-05 2020-06-18 住友電気工業株式会社 Operation plan creation device, operation plan creation method, and computer program
JP2021005311A (en) * 2019-06-27 2021-01-14 Jfeスチール株式会社 Energy operation supporting device and method for supporting operation of energy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319557A (en) * 2002-04-22 2003-11-07 Mitsubishi Electric Corp Energy management device and energy management method
JP2013092162A (en) * 2011-10-24 2013-05-16 Osaka Gas Co Ltd System and method for deriving storage tank operation plan
WO2015093262A1 (en) * 2013-12-16 2015-06-25 Jfeスチール株式会社 Energy supply/demand management guidance device and ironworks energy supply/demand management method
JP2017187932A (en) * 2016-04-06 2017-10-12 三菱電機株式会社 Energy supply/demand plan preparation device and energy supply/demand plan preparation program
JP2019144897A (en) * 2018-02-21 2019-08-29 株式会社豊田中央研究所 Optimization device and optimization program for gas energy supply-demand system
JP2020096521A (en) * 2018-12-05 2020-06-18 住友電気工業株式会社 Operation plan creation device, operation plan creation method, and computer program
JP2021005311A (en) * 2019-06-27 2021-01-14 Jfeスチール株式会社 Energy operation supporting device and method for supporting operation of energy

Also Published As

Publication number Publication date
JP2023077351A (en) 2023-06-05
TW202326580A (en) 2023-07-01
JP7121180B1 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
JP5809520B2 (en) Storage tank operation plan derivation system and method
US10867261B2 (en) Method of generating an optimized ship schedule to deliver liquefied natural gas
CN107274045B (en) Energy supply and demand plan creation device and energy supply and demand plan creation method
JP6513039B2 (en) Energy supply and demand planning device and energy supply and demand planning program
Borisovsky et al. Genetic algorithms for a supply management problem: MIP-recombination vs greedy decoder
Thanh et al. A DC programming heuristic applied to the logistics network design problem
Kazda et al. Optimal utilization of natural gas pipeline storage capacity under future supply uncertainty
Park et al. A stochastic simulation-based holistic evaluation approach with DEA for vendor selection
Rocha et al. Cascading knapsack inequalities: reformulation of a crude oil distribution problem
Escudero et al. Some matheuristic algorithms for multistage stochastic optimization models with endogenous uncertainty and risk management
Masone et al. A three‐stage p‐median based exact method for the optimal diversity management problem
JP2022525381A (en) Processing equipment, processing method, and processing program
Ye et al. Integrated optimization of design, storage sizing, and maintenance policy as a Markov decision process considering varying failure rates
WO2023095389A1 (en) Tank operation plan derivation system and tank operation plan derivation method
Van den Berg et al. Allocating service parts in two-echelon networks at a utility company
JP5752616B2 (en) Acceptance plan formulation method and acceptance plan formulation system
Foss et al. Dynamic optimization of the LNG value chain
Zhao et al. Pipe sharing: A bilevel optimization model for the optimal capacity allocation of natural gas network
Chen et al. Integrating Reliability and Uncertainty in Process Synthesis
Lee et al. Optimisation frameworks for integrated planning with allocation of transportation resources for industrial gas supply chains
Wang et al. A decision making framework for joint replenishment and delivery scheduling problems under mixed uncertainty
Wang et al. A Novel Mixed-Integer Linear Programming Formulation for Continuous-Time Inventory Routing
FAROUK et al. ADVANCED ALGORITHM FOR SOLVING A TRANSPORTATION PROBLEM WITH FIVE INDICATORS AND FIXED COST.
BELGACEM ADVANCED ALGORITHM FOR SOLVING A TRANSPORTATION PROBLEM WITH FIVE INDICATORS AND FIXED COST BENOUMELAZ FAROUK1, ABED SAMIRA2, KHELIL NACER3, REBIAI
Bell A decoupling inventory problem with storage capacity constraints

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898174

Country of ref document: EP

Kind code of ref document: A1