WO2023095224A1 - Optical module and optical module mounting method - Google Patents

Optical module and optical module mounting method Download PDF

Info

Publication number
WO2023095224A1
WO2023095224A1 PCT/JP2021/043084 JP2021043084W WO2023095224A1 WO 2023095224 A1 WO2023095224 A1 WO 2023095224A1 JP 2021043084 W JP2021043084 W JP 2021043084W WO 2023095224 A1 WO2023095224 A1 WO 2023095224A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
optical
arrayed
optical module
optical element
Prior art date
Application number
PCT/JP2021/043084
Other languages
French (fr)
Japanese (ja)
Inventor
藍 柳原
賢哉 鈴木
慶太 山口
慈 金澤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023563398A priority Critical patent/JPWO2023095224A1/ja
Priority to PCT/JP2021/043084 priority patent/WO2023095224A1/en
Publication of WO2023095224A1 publication Critical patent/WO2023095224A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an optical module and an optical module mounting method.
  • optical communication devices and optical interconnection technology are becoming more sophisticated.
  • optical communication devices rather than using conventional single-function optical devices such as laser diodes (LDs), photodiodes (PDs), and optical waveguide filters, these multiple elements are combined.
  • LDs laser diodes
  • PDs photodiodes
  • optical waveguide filters optical waveguide filters
  • FIG. 1 is a diagram for explaining a known optical module, showing the upper surface of an optical transmission module 100.
  • the optical transmission module 100 includes a plurality of laser diodes 110a to 110d with different wavelengths, a planar light wave circuit (PLC) filter 112 for combining the laser beams, and a planar light wave circuit filter 112. and a plurality of lenses 111 for condensing laser light, which are housed in a package 150 .
  • the planar lightwave circuit filter 112 is arranged between an input waveguide 113a to which laser light is input, an output waveguide 113b to which the laser light input to the waveguide is output, and between the input waveguide 113a and the output waveguide 113b. and slab waveguides 114 a and 114 b provided at both ends of the arrayed waveguide 119 .
  • the optical transmission module 100 includes an electric circuit for driving and controlling the laser diode, a temperature controller, and the like.
  • Non-Patent Document 1 and Non-Patent Document 2 both aim to reduce the size of the optical assembly, and Patent Document 1 uses a TFF (thin film filter) that utilizes multilayer film reflection instead of a planar lightwave circuit type filter. configuration is described.
  • TFF thin film filter
  • FIG. 1 a configuration in which four laser diodes are integrated was explained, but when the number of integrated laser diodes is further increased, a planar lightwave circuit type filter is used rather than a TFF from the viewpoint of reducing variations in optical characteristics and downsizing. It is more advantageous to have a Non-Patent Document 2 describes an arrayed waveguide grating as a planar lightwave circuit filter.
  • a Demux (Demultiplexer) circuit using an arrayed waveguide grating consists of a plurality of input waveguides, slab waveguides, arrayed waveguides, slab waveguides and output waveguides. It is coupled to the waveguide end face of the lightwave circuit.
  • Optical semiconductors and waveguides of planar lightwave circuits have large numerical apertures (NA), making low-loss connections difficult.
  • SSCs spot Size Converters
  • laser light output from one laser diode 110a is collimated by two lenses 111, 111 and condensed into an input waveguide 113a.
  • the configuration of the optical coupling portion A which is the portion (indicated by the dashed line) between the laser diode 111 and the input waveguide 113a, is not limited to the example shown in FIG. , or alternatively, a configuration including three lenses is conceivable.
  • the optical coupling section A if only one lens is used to focus the laser light onto the input waveguide in order to reduce the size of the package, the tolerance for component mounting misalignment becomes severe, and mounting difficulty increases. As a result, it is difficult to improve the manufacturing yield of optical modules. Moreover, if the number of lenses is increased, the space for installing the lens components in the package of the optical module becomes large, which hinders miniaturization. Moreover, since the number of parts increases, the parts cost, the mounting cost, and the mounting process also increase, which is disadvantageous for cost reduction.
  • the configuration using an optical waveguide for inputting laser light to the planar lightwave circuit type filter 112 requires a space for routing from the input waveguide 113a to the slab waveguide 114a so as not to cause bending loss. This point is also disadvantageous for miniaturization of the optical module.
  • the wavelength interval of the integrated laser light has become narrower. Along with this, a high precision of the oscillation wavelength of the laser diode has been required. Also, regarding the filter characteristics of arrayed waveguides, there is a demand for high accuracy of transmission wavelength and highly rectangular filter characteristics. If the oscillation wavelength of the laser diode and the transmission wavelength of the arrayed waveguide deviate from the design, the optical characteristics of the multiplexed waves will deteriorate. It's becoming It is conceivable that the central wavelengths of the laser and the filter are shifted due to manufacturing errors.
  • the present invention has been made in view of the above points, and is advantageous in reducing the number of parts, miniaturizing, simplifying the mounting process, and improving the manufacturing yield by using a planar lightwave circuit type filter.
  • An optical module capable of adjusting the oscillation wavelength and the transmission wavelength during the mounting process even if the oscillation wavelength of the laser and the transmission wavelength of the filter deviate slightly from the design values due to manufacturing errors, and a mounting method thereof. Regarding.
  • an optical module having an optical waveguide substrate including an arrayed waveguide grating and an optical element that couples an optical signal to the arrayed waveguide grating.
  • the arrayed waveguide diffraction grating includes a first slab waveguide having a coupling surface to which light from the optical element is coupled, a plurality of arrayed waveguides connected to the first slab waveguide, and a plurality of a second slab waveguide connected to the arrayed waveguide, wherein the first slab waveguide has at least a portion of the coupling surface facing the optical element of the optical waveguide substrate when viewed from the top. They are in contact with each other, or arranged such that the coupling surface is in a space outside the optical waveguide substrate and intersects with the end surface.
  • An optical module mounting method includes an optical waveguide substrate including an arrayed waveguide grating, and an optical element that couples an optical signal to the arrayed waveguide grating.
  • an optical module mounting method for mounting an optical module arranged to intersect with the end surface comprising: measuring an oscillation wavelength of the optical element; and transmitting a wavelength of the arrayed waveguide diffraction grating. and deriving the mounting position of the optical element based on the oscillation wavelength and the transmission wavelength.
  • the planar lightwave circuit type filter is used, which is advantageous in reducing the number of parts, reducing the size, simplifying the mounting process, and improving the manufacturing yield.
  • a tunable optical module and a mounting method thereof can be provided.
  • the transmission wavelength and the transmission wavelength can be matched during the mounting process, it is possible to improve the yield of parts and the optical characteristics of the module.
  • FIG. 1 is a diagram for explaining an optical module according to a first embodiment of the present disclosure
  • FIG. (a) is a top view showing an enlarged range indicated by broken lines in FIG. 2, and (b) is a cross-sectional view taken along the arrow shown in (a).
  • (a) is a top view of a region including a slab waveguide having another configuration according to the first embodiment, and (b) is a cross-sectional view taken along the arrow shown in (a).
  • (a) is a diagram for explaining a mounting method of the optical module of the first embodiment.
  • (b) is a cross-sectional view along the arrow shown in (a).
  • (a) is a top view showing a region including a slab waveguide of a second embodiment, and (b) is a cross-sectional view taken along the arrow in (a).
  • (a) is a top view showing a region including a slab waveguide of a third embodiment, and (b) is a cross-sectional view taken along the arrow in (a).
  • (a) is a top view showing a region including a slab waveguide of a fourth embodiment, and (b) is a cross-sectional view taken along the arrow in (a).
  • (a) is a top view showing a region including a slab waveguide of a fifth embodiment, and (b) is a cross-sectional view taken along the arrow in (a).
  • (a) is a top view showing a region including a slab waveguide of a sixth embodiment, and (b) is a cross-sectional view taken along the arrow in (a).
  • FIG. 2 is a diagram for explaining the optical module 10 according to the first embodiment of the present disclosure, and is a top view of the optical module 10.
  • the optical module 10 is configured as an optical transmission module and is a planar lightwave circuit type filter using an optical waveguide substrate 12 made of quartz.
  • the Z axis is the light input/output direction
  • the X axis is the direction orthogonal to the light input/output direction
  • the Y axis is the main surface of the optical waveguide substrate 12 ( XZ plane).
  • the planar lightwave circuit filter referred to in the first embodiment includes an optical waveguide substrate 12 and an arrayed waveguide diffraction grating formed on the optical waveguide substrate 12.
  • the arrayed waveguide diffraction grating includes a slab waveguide 14a (first slab waveguide), 14b (second slab waveguide), an arrayed waveguide group 19 composed of a plurality of arrayed waveguides 19a connected to the slab waveguides 14a and 14b, and an output waveguide connected to the slab waveguide 14b. Including 13.
  • the optical module 10 also has laser diodes 11a, 11b, 11c, and 11d, which are optical elements, and the laser diodes 11a, 11b, 11c, and 11d output laser beams of different wavelengths.
  • the laser diodes 11 are simply referred to when there is no need to distinguish between the laser diodes.
  • an InP laser chip is used for the laser diode 11 in the first embodiment, any material can be used for the laser chip.
  • Laser light from each laser diode 11 is coupled to an input-side slab waveguide 14a of the arrayed waveguide grating.
  • the slab waveguide 14a has an end surface 14ab connected to the arrayed waveguide 19a and a coupling surface 14aa on the light coupling side.
  • a laser beam incident on the slab waveguide 14a from the end surface of the planar lightwave circuit chip is coupled to the arrayed waveguide 19a at the end surface 14ab, passes through the arrayed waveguide 19a, enters the slab waveguide 14b, and is collected at the slab waveguide portion 14b.
  • the light is then coupled into output waveguide 13 and through lenses 15 , 17 and isolator 16 into fiber 23 .
  • the laser diode 11 is provided with a space from the arrayed waveguide diffraction grating, and the cylindrical lens 20 is provided in the space between the laser diode 11 and the slab waveguide 14a. Therefore, the laser light output from the laser diode 11 passes through the space and the cylindrical lens 20, is input to the coupling surface 14aa of the slab waveguide 14a, and is then coupled to the arrayed waveguide at another pair of slab end surfaces 14ab.
  • the optical module 10 also includes lenses 15 and 17 and an isolator 16 for coupling the laser light from the optical module 10 to the fiber 18.
  • the lens 15 and the isolator 16 are contained in the ceramic package 25, and the lens 17 outside the Lenses 15 and 17 are a pair of collimating lenses that collimate the laser beam output from output waveguide 13 into parallel beams.
  • the isolator 16 is arranged between the lenses 15,17.
  • Fiber 18 is protected by resin member 23 .
  • Laser light enters the arrayed waveguide 19a from the free space of the slab waveguide 14a. The lengths of the arrayed waveguides 19a are different by ⁇ L.
  • the laser light After passing through the arrayed waveguide 19a, the laser light is input from the slab waveguide 14b to the output waveguide 13, and interferes so that only a specific wavelength is output. The laser light is then condensed into the fiber 18 by the lenses 15 and 17 and output from the ceramic package 25 .
  • the optical module 10 may be mounted together with a temperature controller (not shown), an RF circuit for driving the laser diode 11, a power meter for monitoring the power of the laser diode 11, and the like.
  • the arrayed waveguide diffraction grating is connected to the slab waveguide 14a having the coupling surfaces 14aa and 14ab, the plurality of arrayed waveguides 19a connected to the slab waveguide 14a, and the plurality of arrayed waveguides 19a. It includes a slab waveguide 14b.
  • the slab waveguide 14a when viewed from above, at least a part of the coupling surface 14aa is in contact with the end surface 12a of the optical waveguide substrate 12 facing the laser diode 11, or the coupling surface 14aa is in the space outside the optical waveguide substrate 12. and is arranged to intersect with the end surface 12a.
  • FIG. 3(a) is a top view showing an enlarged range B indicated by a dashed line in FIG. 2, and FIG. 3(b) is a sectional view taken along arrows IIIb and IIIb shown in FIG. 3(a).
  • the laser diode 11 is composed of a laser chip 28 and a subassembly 22.
  • the plurality of laser diodes 11 are arranged such that the central axes of the laser chips 28 form an angle with each other. Such a state is hereinafter also referred to as the laser diodes 11 being arranged radially.
  • the coupling surface 14aa is located in the space outside the optical waveguide substrate 12 and intersects the end surface 12a facing the laser diode 11 when viewed from above. are arranged to As shown in FIG. 3A, the slab waveguide 14a has a curved coupling surface 14aa, and is arranged so that the start and end points of the curve on the surface intersect the end surface 12a.
  • the degree of intersection between the slab waveguide 14a and the end face 12a that is, the extent to which the slab waveguide 14a is exposed from the optical waveguide substrate 12 is arbitrary.
  • the first embodiment can bring the coupling surface 14aa closer to the end face 12a and expose it from the end face 12a.
  • the laser diode 11 can be arranged sufficiently close to the coupling surface 14aa, and the laser light Lp can be input to the coupling surface 14aa without providing the input waveguide 113a shown in FIG. Become. Since the input waveguide 113a is not provided, a space for routing the input waveguide 113a is not required, and the ceramic package 25 can be miniaturized, and the optical module 10 can be miniaturized.
  • the laser diode 11 is spaced apart from the coupling surface 14aa, and the light from the laser diode 11 passes through the space and enters the slab from the coupling surface 14aa. It is coupled to the arrayed waveguide 19 at the coupling surface 14ab.
  • the spot size of the laser chip 28 and the end surface of the slab waveguide 14a can be matched to reduce the coupling loss.
  • a cylindrical lens 20 may be provided between the laser diode 11 and the coupling surface 14aa to adjust the spot size of the laser light Lp .
  • Such an optical module 10 is configured to receive laser light Lp from a laser diode 11 with a large NA by an array waveguide with a large aperture.
  • the cylindrical lens 20 is used to concentrate the power of the laser light Lp in the Y-axis direction.
  • the first embodiment described above eliminates the need for the plurality of lenses 111 and the input waveguide 113a shown in FIG. Become.
  • a waveguide requires an installation space that does not cause bending loss, the effect of size reduction by omitting the waveguide is remarkable.
  • the process of assembling and aligning the plurality of lenses 111 is unnecessary, the cost of assembling and mounting the optical module 10 can be reduced, the work can be facilitated, and the production yield can be increased.
  • the optical module 10 shown in FIGS. 3(a) and 3(b) is formed by, for example, depositing an under-cladding layer of about several tens of ⁇ m on a Si substrate, depositing a core layer of several ⁇ m with a different refractive index, and performing a known exposure method. It is manufactured by forming the pattern of the arrayed waveguide grating by an etching technique and then depositing an overcladding layer of several tens of ⁇ m. At this time, when manufacturing a curved coupling surface 14aa as shown in FIG. 3A, one end surface of the slab waveguide 14a is exposed by etching. Therefore, in the manufacturing process of the slab waveguide 14a shown in FIG. 3A, it is necessary to add an etching process after forming the slab waveguide 14a.
  • FIG. 4(a) and 4(b) are diagrams for explaining a configuration in which the coupling surface 14aa is not exposed from the optical waveguide substrate.
  • FIG. 4(a) is a top view of a region including the slab waveguide 14a where the coupling surface 14aa is not exposed from the optical waveguide substrate 12, and FIG. It is a sectional view.
  • an example of such an optical module has a configuration in which a coupling surface 14aa of a slab waveguide 14a is in contact with an end surface 12a.
  • the coupling surface 14aa is a curved surface
  • the slab waveguide 14a is arranged so that a part of the coupling surface 14aa is in contact with the end surface 12a.
  • optical elements include not only light-emitting elements such as the laser diode 11 but also light-receiving elements.
  • An optical module using a light receiving element is configured to receive and output light coupled with a coupling surface of a slab waveguide.
  • a photodiode is used as the light receiving element.
  • adjustment of the spot size of the laser light Lp in the slab waveguide 14a is not limited to using the cylindrical lens 20, and for example, a spot size converter may be used.
  • the spot size converter may be provided near the laser light output end of the laser diode 11, near the laser light input side facet of the arrayed waveguide grating, or both.
  • the optical waveguide substrate 12 is not limited to being made of quartz, and may be made of other materials such as a silicon photonics waveguide.
  • the mounting method of the first embodiment can finely adjust the transmission wavelength shift of the arrayed waveguide grating by adjusting the mounting positions of the laser diode 11 and the optical module 10 .
  • the power of the laser light output from the fiber 18 is monitored, and the position where the monitored power takes the maximum value, that is, the oscillation wavelength of the laser light and the array
  • a laser diode 11 is mounted at a position where the transmission wavelengths of the waveguide grating match.
  • mounting is performed using mounting marks formed on the optical module 10 .
  • FIG. 5(a) is a top view showing mounting marks for the optical module 10
  • FIG. 5(b) is a cross-sectional view taken along arrows Xb and Xb in FIG. 5(a).
  • the glass layer of the optical waveguide substrate 12 is removed by etching to form a removed region 95 .
  • the etching of the glass layer exposes the coupling surface 14aa of the slab waveguide 14a and mounts the laser diode 11 in the removed area 95.
  • FIG. A marker 91 for alignment of the laser diode 11 is formed in the removed region 95 .
  • the marker 91 may be formed on the optical waveguide substrate 12 from which the glass layer has not been removed. By creating the markers 91 during the exposure process when creating the arrayed waveguide diffraction grating, the arrayed waveguide group 19 and the markers 91 can be aligned on the order of submicrons.
  • the oscillation wavelength of each laser diode 11 and the transmission wavelength of the arrayed waveguide diffraction grating are measured in advance.
  • the mounting position of the laser diode 11 is determined under the condition that both the oscillation wavelength and the transmission wavelength match the design wavelength.
  • the laser diode 11 is mounted with the mounting position shifted by the deviation from the design wavelength with reference to the marker 91 formed on the optical module 10. .
  • the first embodiment can be implemented so that the oscillation wavelength of the arrayed waveguide grating and the transmission wavelength of the laser diode 11 match.
  • the laser diode 11 is mounted with a shift of ⁇ from the design mounting position.
  • the marker 91 may be formed in accordance with the designed mounting position, and the mounting position of the laser diode 11 may be shifted by ⁇ with respect to the marker 91 .
  • Nc is the core refractive index of the arrayed waveguide diffraction grating
  • ns is the refractive index of the slab waveguide 14a
  • d is the distance between the arrayed waveguides 19a (FIG. 2)
  • ⁇ L is the arrayed waveguide 19a.
  • f is the focal length of the slab waveguide 14a.
  • the alignment of the laser diode 11 and the arrayed waveguide diffraction grating may be performed by oscillating the laser diode 11 using the electrode 92 for the laser diode 11 and attaching an inspection port 93 to the coupling surface 14aa.
  • the laser diode 11 is mounted at a position where the oscillation wavelength of the laser diode 11 and the transmission wavelength of the arrayed waveguide grating match and the laser light output from the inspection port 93 takes the maximum value.
  • the common port 94 is used for monitoring the deviation of the transmission wavelength of the single arrayed waveguide diffraction grating.
  • the oscillation wavelength can be matched with the transmission wavelength of the arrayed waveguide grating when the laser diode 11 is mounted. It becomes possible to adjust the oscillation wavelength of the laser diode 11 with high precision. Moreover, the mounting method of the first embodiment can relax the requirements for the wavelength accuracy and shape of the arrayed waveguide grating. As a result, the production yield of the arrayed waveguide diffraction grating and thus the optical module is improved.
  • the mounting process described above is a method for mounting the optical module 10 of the first embodiment described with reference to FIGS. 2 to 4(b).
  • the mounting method of the first embodiment includes steps of measuring the oscillation wavelength of the laser diode 11, measuring the transmission wavelength of the arrayed waveguide diffraction grating, and measuring the transmission wavelength of the laser diode 11 based on the oscillation wavelength and the transmission wavelength. and deriving the mounting position.
  • Such a mounting method includes, for example, a wavelength measurement unit that measures the oscillation wavelength and the transmission wavelength, a computer that calculates the amount of deviation from the design wavelengths of both, and calculates the difference between the design mounting position and the actual mounting position. can be performed automatically and collectively by using a device equipped with
  • the mounting method of the first embodiment further includes the step of mounting the laser diode 11 at the mounting position derived in the deriving step. It is conceivable that such processes are automatically performed by combining the above-described computer-equipped device with a robot hand, a manipulator, or the like.
  • FIG. 6(a) is a top view showing a region including the slab waveguide 54 of the second embodiment
  • FIG. 6(b) is a cross-sectional view taken along arrows Vb and Vb in FIG. 6(a).
  • the slab waveguide 54 exposes the end surface of the slab waveguide 14a from the optical waveguide substrate 12 in the configuration shown in FIG. 3(a) of the first embodiment.
  • the vicinity of the arrayed waveguide group 19 is also exposed from the optical waveguide substrate 12 .
  • the slab waveguide 54 is arranged such that the coupling surface 54a to which the laser light Lp is coupled shown in FIG. 6B is in contact with the end surface 12a.
  • the end surface of the slab waveguide 54 opposite to the coupling surface 54a is defined as an end surface 54b.
  • the slab waveguide 14a, the arrayed waveguide 19a, the slab waveguide 14b, and the output waveguide 13 are formed on the optical waveguide substrate 12, more than the first embodiment. can be realized by etching the portion of The slab waveguide 14a is processed into a slab waveguide 54 by etching.
  • the length of the slab waveguide 54 in the Z-axis direction is further shortened, which is more advantageous for downsizing the optical module.
  • a cylindrical lens 20 or a spot size converter may be provided to adjust the spot size of the laser diode 11 and the spot size of the slab waveguide 14a.
  • FIG. 7A and 7B are diagrams for explaining the third embodiment
  • FIG. 7A is a top view and a diagram showing a region including the slab waveguide 14a of the third embodiment.
  • 7(b) is a cross-sectional view along arrows VIb and VIb in FIG. 7(a).
  • the third embodiment differs from the first embodiment in that the laser diode 11 is arranged farther from the coupling surface 14aa than in the first embodiment, and a plurality of lenses 61 are provided between the laser diode 11 and the cylindrical lens 20 . Different from the form.
  • the plurality of laser diodes 11 are arranged radially, and the coupling surface 14aa is a curved surface.
  • Each of the plurality of lenses 61 is arranged corresponding to one of the laser diodes 11 .
  • a lens 61 converts the light of the corresponding laser diode 11 into collimated light.
  • the collimated light is condensed in the Y direction by the cylindrical lens 20 and coupled to the coupling surface 14aa.
  • the effect of arranging the laser diode 11 farther from the coupling surface 14aa than in the first embodiment will be described.
  • One of the effects is that the degree of freedom in arranging the laser diode 11 is increased. For example, if the laser diodes 11 need to be spaced apart due to electrical wiring or the like, the laser diodes 11 cannot be placed within the width of the slab waveguide 14a in the X direction.
  • the laser light that spreads beyond the width of the slab waveguide 14a is converted into the collimated light Lpp by the lens 61 and then coupled to the coupling surface 14aa.
  • the interval between the incident positions 14ap of the plurality of laser beams can be narrowed, so that the focal length f1 of the input waveguide is As a result, the length of the slab waveguide 14a in the Z direction can be shortened. This point is advantageous for miniaturization of the optical module 10 .
  • the fourth embodiment differs from the third embodiment in which the laser diodes 11 are arranged radially in that the laser diodes 11 are arranged parallel to each other.
  • the fourth embodiment also differs from the third embodiment in that the coupling surface 14ca of the slab waveguide 14c is flat.
  • Such a fourth embodiment is effective when it is difficult to arrange the laser diodes 11 radially due to electrical wiring, etc., and when avoiding complication of the structure due to exposing the coupling surface of the slab waveguide. is.
  • FIGS. 8A and 8B are diagrams for explaining the fourth embodiment, and FIG. 8A is a top view and a diagram showing a region including the slab waveguide 14c of the fourth embodiment.
  • 8(b) is a cross-sectional view taken along arrows VIIb and VIIb in FIG. 8(a).
  • the laser diode 11 is arranged farther from the arrayed waveguide diffraction grating than in the third embodiment.
  • the laser diode 11 is arranged outside the Si substrate 21 that supports the optical waveguide substrate 12 .
  • the optical module of the fourth embodiment includes a plurality of lenses 61 arranged corresponding to each of the plurality of laser diodes 11, similarly to the third embodiment.
  • the lenses 61 of the fourth embodiment are arranged on a straight line along the X-axis in the figure.
  • the optical module of the fourth embodiment includes a cylindrical lens 20 between the lens 61 and the arrayed waveguide diffraction grating that converges laser light in the Y direction.
  • the traveling direction of the collimated light L pp is bent by shifting the position of each lens 61 from the center line P x of the corresponding laser diode 11 in the X direction to the ⁇ X direction, thereby coupling the slab waveguide 14 c. All the laser beams are condensed at one point on the surface 14ca.
  • the distances from the laser diode 11 to the lens 61 and from the lens 61 to the end surface of the optical waveguide substrate 12 are both the focal length f1. According to such a fourth embodiment, even when the laser diode 11 is arranged so that the optical axis is parallel to the Z-axis in the drawing, the laser light can be focused at an appropriate focal length. be possible.
  • FIG. 9A is a top view showing a region including the slab waveguide 14c of the fifth embodiment; 9(b) is a cross-sectional view taken along arrows VIIIb and VIIIb in FIG. 9(a).
  • the lens 81 of the fifth embodiment transmits all laser beams output from the plurality of laser diodes 11 between the laser diodes 11 and the cylindrical lens 20 .
  • the cylindrical lens is arranged so as to be in contact with the end surface of the optical waveguide substrate 12, and converges the laser light in the Y direction in the figure.
  • the spot size in the X direction of the laser light coupled to the coupling surface 14ca is denoted as ⁇ LD in the drawing.
  • the number of parts of the optical module can be reduced, the assembly accuracy can be relaxed, and the complication of the structure can be eliminated. can.
  • FIG. 10(a) and 10(b) are diagrams for explaining the sixth embodiment, and FIG. 10(a) is a top view and a diagram showing a region including the slab waveguide 54 of the sixth embodiment.
  • 10(b) is a cross-sectional view taken along arrows IXb and IXb in FIG. 10(a).
  • the laser diodes 11 are arranged parallel to each other and the laser light is converted into collimated light Lpp by the lens 81 .
  • a cylindrical lens 20 is arranged between the lens 81 and the slab waveguide 54 to converge the laser light in the Y direction. The laser light is focused at different positions on the straight coupling surface 54a.
  • the distance from the laser diode 11 to the arrayed waveguide grating was twice the focal length f1.
  • the distance from the laser diode 11 to the lens 81 is made the focal length f1.
  • the laser light is spread and made incident on the end surface behind the coupling surface 54a of the slab waveguide 54, so that the laser light is spread and condensed and made incident on the slab waveguide 14c.
  • the focal length is shorter than in the fourth and fifth embodiments, which is advantageous for downsizing the optical module.
  • optical module 11 laser diode 12 optical waveguide substrate 12a end surface 13 output waveguides 14a, 14b, 14c, 54 slab waveguides 14aa, 14ca, 54a coupling surface 14ap incidence positions 15, 17, 61, 81 lens 16 isolator 18 fiber 19 Arrayed waveguide 19a Arrayed waveguide 20 Cylindrical lens 21 Si substrate 22 Subassembly 23 Resin member 25 Ceramic package 26 Supporting portion 28 Laser chip 91 Marker 92 Electrode 93 Inspection port 95 Removal region

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

Provided is an optical module 10 comprising an optical waveguide substrate 12 that is provided with an arrayed waveguide grating, and a laser diode 11 that couples an optical signal to the arrayed waveguide grating, wherein the arrayed waveguide grating is configured from a slab waveguide 14a having a coupling surface 14aa to which laser light of the laser diode 11 is coupled, a plurality of arrayed waveguides 19a connected with the slab waveguide 14a, and a slab waveguide 14b connected with the plurality of arrayed waveguides 19a, and the slab waveguide 14a is disposed such that, when viewed from above, at least part of the coupling surface 14aa is in contact with an end surface 12 facing the laser diode 11 of the optical waveguide substrate 12, or the coupling surface 14aa is located in a space outside the optical waveguide substrate 12 and the end surface 12 crosses the slab waveguide 14. This makes it possible to provide an optical module that achieves a reduction in the number of components by using a planar light wave circuit type filter, thereby being favorable for size reduction, simplification of a mounting process, and improvement in manufacturing yield.

Description

光モジュール及び光モジュールの実装方法Optical module and mounting method of optical module
 本発明は、光モジュール及び光モジュールの実装方法に関する。 The present invention relates to an optical module and an optical module mounting method.
 データ通信の高速化、及び大容量化に伴い、光通信デバイスや光インターコネクション技術が高度化している。光通信デバイスでは、従来のレーザダイオード(LD: laser diode)、フォトダイオード(PD: photo-diode)、光導波路フィルタといった単一機能の光デバイスをそのまま使用するのではなく、これら複数の素子を組み合わせてワンパッケージに収容した、多チャネル、多機能、高機能な集積モジュールの必要性が高まっている。また、これらモジュールには、小型化及び低コスト化の要求がある。 With the increasing speed and capacity of data communication, optical communication devices and optical interconnection technology are becoming more sophisticated. In optical communication devices, rather than using conventional single-function optical devices such as laser diodes (LDs), photodiodes (PDs), and optical waveguide filters, these multiple elements are combined. There is an increasing need for multi-channel, multi-function, high-performance integrated modules housed in a single package. In addition, there is a demand for miniaturization and cost reduction for these modules.
 図1は、公知の光モジュールを説明するための図であって、光送信モジュール100の上面を示す図である。光送信モジュール100は、それぞれ波長の異なる複数のレーザダイオード110aから110dと、それらレーザ光を合波させるための平面光波回路(PLC: Planar Light wave Circuit)型フィルタ112と、平面光波回路型フィルタ112にレーザ光を集光するための複数のレンズ111とを備え、それらがパッケージ150に収容されている。平面光波回路型フィルタ112は、レーザ光が入力される入力導波路113a、導波路に入力されたレーザ光が出力される出力導波路113b、入力導波路113aと出力導波路113bとの間に配置される複数本のアレイ導波路119、アレイ導波路119の両端部に設けられるスラブ導波路114a、114bを備えている。 FIG. 1 is a diagram for explaining a known optical module, showing the upper surface of an optical transmission module 100. FIG. The optical transmission module 100 includes a plurality of laser diodes 110a to 110d with different wavelengths, a planar light wave circuit (PLC) filter 112 for combining the laser beams, and a planar light wave circuit filter 112. and a plurality of lenses 111 for condensing laser light, which are housed in a package 150 . The planar lightwave circuit filter 112 is arranged between an input waveguide 113a to which laser light is input, an output waveguide 113b to which the laser light input to the waveguide is output, and between the input waveguide 113a and the output waveguide 113b. and slab waveguides 114 a and 114 b provided at both ends of the arrayed waveguide 119 .
 レーザダイオード110aから110dから出力される光は、レンズ111を介して、レーザ光のビーム径を変換し、それぞれ入力導波路113aに結合する。また、アレイ導波路を通り合波した光は出力導波路113bから出射され、レンズ115、117やアイソレータ116等を通って光ファイバ118に結合される。その他、光送信モジュール100は、不図示ではあるが、レーザダイオードを駆動制御するための電気回路や温度コントローラー等を備えている。 Light output from the laser diodes 110a to 110d passes through the lens 111 to convert the beam diameter of the laser light and is coupled to the input waveguide 113a. Also, the light multiplexed through the arrayed waveguide is emitted from the output waveguide 113b and coupled to the optical fiber 118 through the lenses 115 and 117, the isolator 116, and the like. In addition, although not shown, the optical transmission module 100 includes an electric circuit for driving and controlling the laser diode, a temperature controller, and the like.
 このような平面光波回路型フィルタは、例えば、非特許文献1、非特許文献2に記載されている。非特許文献1、非特許文献2は、いずれも光アセンブリの小型化を目的とし、特許文献1には平面光波回路型フィルタの代わりに多層膜反射を利用したTFF(thin film filter)を用いた構成が記載されている。図1ではレーザダイオードを4つ集積した構成について説明したが、さらにレーザダイオードの集積数が増加した場合には、光学特性のばらつき低減や小型化の観点から、TFFより平面光波回路型フィルタを用いた構成の方が有利である。非特許文献2には、平面光波回路型フィルタとして、アレイ導波路回折格子(Arrayed waveguide grating)が記載されている。アレイ導波路回折格子を用いたDemux(Demultiplexer)回路は、複数の入力導波路、スラブ導波路、アレイ導波路、スラブ導波路及び出力導波路からなり、レーザダイオードの出力光はレンズを介して平面光波回路の導波路端面に結合される。光半導体と平面光波回路の導波路では開口数(NA)が大きく異なるので、低損失な接続が難しく、バルクレンズや光半導体及び石英PLC導波路端面部にSSC(Spot Size Converter)が導入される。 Such planar lightwave circuit filters are described in Non-Patent Document 1 and Non-Patent Document 2, for example. Non-Patent Document 1 and Non-Patent Document 2 both aim to reduce the size of the optical assembly, and Patent Document 1 uses a TFF (thin film filter) that utilizes multilayer film reflection instead of a planar lightwave circuit type filter. configuration is described. In FIG. 1, a configuration in which four laser diodes are integrated was explained, but when the number of integrated laser diodes is further increased, a planar lightwave circuit type filter is used rather than a TFF from the viewpoint of reducing variations in optical characteristics and downsizing. It is more advantageous to have a Non-Patent Document 2 describes an arrayed waveguide grating as a planar lightwave circuit filter. A Demux (Demultiplexer) circuit using an arrayed waveguide grating consists of a plurality of input waveguides, slab waveguides, arrayed waveguides, slab waveguides and output waveguides. It is coupled to the waveguide end face of the lightwave circuit. Optical semiconductors and waveguides of planar lightwave circuits have large numerical apertures (NA), making low-loss connections difficult. SSCs (Spot Size Converters) are introduced into bulk lenses, optical semiconductors, and quartz PLC waveguide end faces. .
 図1に光送信モジュール100の例は、例えば1つのレーザダイオード110aから出力されたレーザ光を2つのレンズ111、111で平行光束とし、入力導波路113aに集光する。ただし、レーザダイオード111と入力導波路113aとの間の部分(破線で示す)である光結合部Aの構成は、図1に示す例に限定されることがなく、例えば、レンズが1つの構成、あるいは、3つのレンズを含む構成が考えられる。 In the example of the optical transmission module 100 shown in FIG. 1, for example, laser light output from one laser diode 110a is collimated by two lenses 111, 111 and condensed into an input waveguide 113a. However, the configuration of the optical coupling portion A, which is the portion (indicated by the dashed line) between the laser diode 111 and the input waveguide 113a, is not limited to the example shown in FIG. , or alternatively, a configuration including three lenses is conceivable.
 しかしながら、光結合部Aにおいて、パッケージの小型化を図るために1つのレンズだけを使ってレーザ光を入力導波路に集光すると、部品搭載ずれに対する許容誤差のトレランスが厳しくなり、実装難易度が増し、光モジュールの製造歩留まり向上が難しい。また、レンズの数を増やすとすると、光モジュールのパッケージ内にレンズ部品を設置するためのスペースが大きくなって小型化が妨げられる。その上、部品点数が増えるため、部品コスト、実装コスト及び実装工程が増加して低コスト化にも不利である。さらに、平面光波回路型フィルタ112へのレーザ光の入力に光導波路を使う構成は、入力導波路113aからスラブ導波路114aまでを、曲げ損失が発生しないように取り回すためのスペースが必要になり、この点も光モジュールの小型化に不利である。 However, in the optical coupling section A, if only one lens is used to focus the laser light onto the input waveguide in order to reduce the size of the package, the tolerance for component mounting misalignment becomes severe, and mounting difficulty increases. As a result, it is difficult to improve the manufacturing yield of optical modules. Moreover, if the number of lenses is increased, the space for installing the lens components in the package of the optical module becomes large, which hinders miniaturization. Moreover, since the number of parts increases, the parts cost, the mounting cost, and the mounting process also increase, which is disadvantageous for cost reduction. Furthermore, the configuration using an optical waveguide for inputting laser light to the planar lightwave circuit type filter 112 requires a space for routing from the input waveguide 113a to the slab waveguide 114a so as not to cause bending loss. This point is also disadvantageous for miniaturization of the optical module.
 近年では、集積するレーザ光の波長間隔が狭くなってきている。これに伴い、レーザダイオードの発振波長の高精度が求められるようになった。またアレイ導波路のフィルタ特性についても透過波長の高精度かつフィルタ特性の高矩形化が求められるようになった。レーザダイオードの発振波長とアレイ導波路の透過波長が設計からずれてしまうと合波した光学特性が劣化してしまうが、信号光の波長間隔が狭くなったことによりこの両者の合わせの精度が厳しくなってきた。レーザ及びフィルタの中心波長は作製誤差によりずれてしまうことが考えられる。よって今後さらにレーザダイオードの発振波長とフィルタ特性の高精度化が求められるようになり、信号帯域の拡大に伴って、レーザダイオードの発振波長とアレイ導波路回折格子の透過波長のトレランスも厳密化してきている。このため、光モジュールには、その性能についても、波長分割多重(Wavelength Division Multiplexing)通信におけるフィルタ波長の高精度制御とレーザダイオード発振波長の高精度制御が求められている。しかし、光モジュールの小型化は、レーザダイオード及びアレイ導波路回折格の組付けや調芯を高度化し、発振波長と透過波長とを高精度に一致させることを困難にしている。 In recent years, the wavelength interval of the integrated laser light has become narrower. Along with this, a high precision of the oscillation wavelength of the laser diode has been required. Also, regarding the filter characteristics of arrayed waveguides, there is a demand for high accuracy of transmission wavelength and highly rectangular filter characteristics. If the oscillation wavelength of the laser diode and the transmission wavelength of the arrayed waveguide deviate from the design, the optical characteristics of the multiplexed waves will deteriorate. It's becoming It is conceivable that the central wavelengths of the laser and the filter are shifted due to manufacturing errors. Therefore, in the future, there will be a demand for higher precision in the oscillation wavelength and filter characteristics of laser diodes, and along with the expansion of the signal band, the tolerance between the oscillation wavelength of laser diodes and the transmission wavelength of arrayed waveguide diffraction gratings will become stricter. ing. For this reason, optical modules are required to have high-precision control of filter wavelengths and high-precision control of laser diode oscillation wavelengths in wavelength division multiplexing communications. However, miniaturization of optical modules has made assembly and alignment of laser diodes and arrayed waveguide diffraction gratings more sophisticated, making it difficult to precisely match the oscillation wavelength and the transmission wavelength.
 本発明は、上記の点に鑑みてなされたものであり、平面光波回路型フィルタを用いて、部品点数を抑え、小型化、実装工程の簡易化及び製造の歩留まり向上に有利であり、しかも部品の製造誤差によりレーザの発振波長やフィルタの透過波長が設計値から若干ずれてしまった場合であっても、それらの実装工程時に発振波長と透過波長とを調整できる光モジュール、及び、その実装方法に関する。 The present invention has been made in view of the above points, and is advantageous in reducing the number of parts, miniaturizing, simplifying the mounting process, and improving the manufacturing yield by using a planar lightwave circuit type filter. An optical module capable of adjusting the oscillation wavelength and the transmission wavelength during the mounting process even if the oscillation wavelength of the laser and the transmission wavelength of the filter deviate slightly from the design values due to manufacturing errors, and a mounting method thereof. Regarding.
 上記目的を達成するために本開示の一形態の光モジュールは、アレイ導波路回折格子を備える光導波路基板と、前記アレイ導波路回折格子に光信号を結合する光素子と、を有する光モジュールであって、前記アレイ導波路回折格子は、前記光素子の光が結合される結合面を有する第1スラブ導波路と、前記第1スラブ導波路と接続される複数のアレイ導波路と、複数の前記アレイ導波路と接続される第2スラブ導波路と、を含み、前記第1スラブ導波路は、上面視において、前記結合面の少なくとも一部が前記光導波路基板の前記光素子に向かう端面と接する、または、前記結合面が前記光導波路基板の外部の空間にあって、前記端面と交差するように配置されている。 To achieve the above object, an optical module according to one aspect of the present disclosure is an optical module having an optical waveguide substrate including an arrayed waveguide grating and an optical element that couples an optical signal to the arrayed waveguide grating. The arrayed waveguide diffraction grating includes a first slab waveguide having a coupling surface to which light from the optical element is coupled, a plurality of arrayed waveguides connected to the first slab waveguide, and a plurality of a second slab waveguide connected to the arrayed waveguide, wherein the first slab waveguide has at least a portion of the coupling surface facing the optical element of the optical waveguide substrate when viewed from the top. They are in contact with each other, or arranged such that the coupling surface is in a space outside the optical waveguide substrate and intersects with the end surface.
 本開示の一形態の光モジュールの実装方法は、アレイ導波路回折格子を備える光導波路基板と、前記アレイ導波路回折格子に光信号を結合する光素子と、を備え、前記アレイ導波路回折格子は前記光素子の光が結合される結合面を有する第1スラブ導波路、前記第1スラブ導波路と接続される複数のアレイ導波路及び前記アレイ導波路と接続される第2スラブ導波路を含み、前記第1スラブ導波路は、上面視において、前記結合面の少なくとも一部が前記光導波路基板の前記光素子に向かう端面と接する、または、前記結合面が前記光導波路基板の外部の空間にあって、前記端面と交差するように配置されている光モジュールを実装する光モジュールの実装方法であって、前記光素子の発振波長を計測する工程と、前記アレイ導波路回折格子の透過波長を計測する工程と、前記発振波長及び前記透過波長に基づいて、前記光素子の搭載位置を導出する工程と、を含む。 An optical module mounting method according to one embodiment of the present disclosure includes an optical waveguide substrate including an arrayed waveguide grating, and an optical element that couples an optical signal to the arrayed waveguide grating. is a first slab waveguide having a coupling surface to which light from the optical element is coupled, a plurality of arrayed waveguides connected to the first slab waveguide, and a second slab waveguide connected to the arrayed waveguide; At least a portion of the coupling surface of the first slab waveguide is in contact with an end surface of the optical waveguide substrate facing the optical element, or the coupling surface extends outside the optical waveguide substrate when viewed from above. 3, an optical module mounting method for mounting an optical module arranged to intersect with the end surface, the method comprising: measuring an oscillation wavelength of the optical element; and transmitting a wavelength of the arrayed waveguide diffraction grating. and deriving the mounting position of the optical element based on the oscillation wavelength and the transmission wavelength.
 以上の形態によれば、平面光波回路型フィルタを用いて、部品点数を抑え、小型化、実装工程の簡易化及び製造の歩留まり向上に有利であり、しかも発振波長と透過波長とを高い精度で調整できる光モジュール、及び、その実装方法を提供することができる。また、実装工程時に発信波長と透過波長とを合わせることができるので、部品の歩留まり向上やモジュールの光学特性向上が望める。 According to the above embodiment, the planar lightwave circuit type filter is used, which is advantageous in reducing the number of parts, reducing the size, simplifying the mounting process, and improving the manufacturing yield. A tunable optical module and a mounting method thereof can be provided. In addition, since the transmission wavelength and the transmission wavelength can be matched during the mounting process, it is possible to improve the yield of parts and the optical characteristics of the module.
公知の光モジュールを説明するための図である。It is a figure for demonstrating a well-known optical module. 本開示の第1実施形態の光モジュールを説明するための図である。1 is a diagram for explaining an optical module according to a first embodiment of the present disclosure; FIG. (a)は図2の破線で示す範囲を拡大して示す上面図、(b)は、(a)中に示す矢線に沿う断面図である。(a) is a top view showing an enlarged range indicated by broken lines in FIG. 2, and (b) is a cross-sectional view taken along the arrow shown in (a). (a)は第1実施形態の他の構成のスラブ導波路を含む領域の上面図、(b)は、(a)中に示す矢線に沿う断面図である。(a) is a top view of a region including a slab waveguide having another configuration according to the first embodiment, and (b) is a cross-sectional view taken along the arrow shown in (a). (a)は第1実施形態の光モジュールの実装方法を説明するための図である。(b)は(a)中に示す矢線に沿う断面図である。(a) is a diagram for explaining a mounting method of the optical module of the first embodiment. (b) is a cross-sectional view along the arrow shown in (a). (a)は、第2実施形態のスラブ導波路を含む領域を示す上面図、(b)は(a)中の矢線に沿う断面図である。(a) is a top view showing a region including a slab waveguide of a second embodiment, and (b) is a cross-sectional view taken along the arrow in (a). (a)は、第3実施形態のスラブ導波路を含む領域を示す上面図、(b)は(a)中の矢線に沿う断面図である。(a) is a top view showing a region including a slab waveguide of a third embodiment, and (b) is a cross-sectional view taken along the arrow in (a). (a)は、第4実施形態のスラブ導波路を含む領域を示す上面図、(b)は(a)中の矢線に沿う断面図である。(a) is a top view showing a region including a slab waveguide of a fourth embodiment, and (b) is a cross-sectional view taken along the arrow in (a). (a)は、第5実施形態のスラブ導波路を含む領域を示す上面図、(b)は(a)中の矢線に沿う断面図である。(a) is a top view showing a region including a slab waveguide of a fifth embodiment, and (b) is a cross-sectional view taken along the arrow in (a). (a)は、第6実施形態のスラブ導波路を含む領域を示す上面図、(b)は(a)中の矢線に沿う断面図である。(a) is a top view showing a region including a slab waveguide of a sixth embodiment, and (b) is a cross-sectional view taken along the arrow in (a).
[第1実施形態]
 以下、本開示の第1実施形態から第6実施形態を説明する。第1実施形態から第6実施形態で使用する図面は、本開示の技術思想、構成、各部材の関係、作用、効果、機能を説明することを目的にし、本開示の構成や形状を限定しない。このため、図面に示すスケールや縦横比、厚さ、高さ、幅等は、必ずしも正確ではなく、説明のために一部が拡大、または一部が省略されている場合がある。また、本実施形態の図面は、同じ部材に同じ符号を付し、その説明を一部略す場合がある。
[First embodiment]
Hereinafter, the first to sixth embodiments of the present disclosure will be described. The drawings used in the first to sixth embodiments are for the purpose of explaining the technical idea, configuration, relationship of each member, action, effect, and function of the present disclosure, and do not limit the configuration and shape of the present disclosure. . Therefore, the scales, aspect ratios, thicknesses, heights, widths, etc. shown in the drawings are not necessarily accurate, and may be partly enlarged or partly omitted for the sake of explanation. Also, in the drawings of the present embodiment, the same members are denoted by the same reference numerals, and the description thereof may be partly omitted.
(光モジュール)
 図2は、本開示の第1実施形態の光モジュール10を説明するための図であって、光モジュール10の上面図である。光モジュール10は、光送信モジュールとして構成されていて、石英製の光導波路基板12を使用した平面光波回路型フィルタである。図2中に示す座標系において、第1の実施形態は、以降、Z軸を光の入出力方向、X軸を光の入出力方向に対する直交方向、Y軸を光導波路基板12の主面(X-Z平面)に対する鉛直方向として説明する。第1実施形態でいう平面光波回路型フィルタは、光導波路基板12と、光導波路基板12に形成されたアレイ導波路回折格子を含み、アレイ導波路回折格子は、スラブ導波路14a(第1スラブ導波路)、14b(第2スラブ導波路)、スラブ導波路14a、14bと接続される複数のアレイ導波路19aで構成されるアレイ導波路群19、スラブ導波路14bと接続される出力導波路13を含む。
(optical module)
FIG. 2 is a diagram for explaining the optical module 10 according to the first embodiment of the present disclosure, and is a top view of the optical module 10. FIG. The optical module 10 is configured as an optical transmission module and is a planar lightwave circuit type filter using an optical waveguide substrate 12 made of quartz. In the coordinate system shown in FIG. 2, in the first embodiment, hereinafter, the Z axis is the light input/output direction, the X axis is the direction orthogonal to the light input/output direction, and the Y axis is the main surface of the optical waveguide substrate 12 ( XZ plane). The planar lightwave circuit filter referred to in the first embodiment includes an optical waveguide substrate 12 and an arrayed waveguide diffraction grating formed on the optical waveguide substrate 12. The arrayed waveguide diffraction grating includes a slab waveguide 14a (first slab waveguide), 14b (second slab waveguide), an arrayed waveguide group 19 composed of a plurality of arrayed waveguides 19a connected to the slab waveguides 14a and 14b, and an output waveguide connected to the slab waveguide 14b. Including 13.
 また、光モジュール10は、光素子であるレーザダイオード11a、11b、11c、11dを有し、レーザダイオード11a、11b、11c、11dは、それぞれ異なる波長のレーザ光を出力する。なお、第1実施形態において、以降、レーザダイオードの各々を区別する必要がない場合、単にレーザダイオード11とも記す。第1実施形態ではレーザダイオード11にInPのレーザチップを用いているが、レーザチップの材料は任意である。各レーザダイオード11からのレーザ光はアレイ導波路格子の入力側スラブ導波路14aに結合される。スラブ導波路14aは、アレイ導波路19aと接続されている端面14abと光が結合する側の結合面14aaを有する。平面光波回路チップ端面からスラブ導波路14aに入射したレーザ光は、端面14abでアレイ導波路19aに結合され、アレイ導波路19aを通ってスラブ導波路14bに入射し、スラブ導波路部14bで集光されて出力導波路13へ結合し、レンズ15、17、アイソレータ16を介してファイバ23へ結合される。 The optical module 10 also has laser diodes 11a, 11b, 11c, and 11d, which are optical elements, and the laser diodes 11a, 11b, 11c, and 11d output laser beams of different wavelengths. In the first embodiment, hereinafter, the laser diodes 11 are simply referred to when there is no need to distinguish between the laser diodes. Although an InP laser chip is used for the laser diode 11 in the first embodiment, any material can be used for the laser chip. Laser light from each laser diode 11 is coupled to an input-side slab waveguide 14a of the arrayed waveguide grating. The slab waveguide 14a has an end surface 14ab connected to the arrayed waveguide 19a and a coupling surface 14aa on the light coupling side. A laser beam incident on the slab waveguide 14a from the end surface of the planar lightwave circuit chip is coupled to the arrayed waveguide 19a at the end surface 14ab, passes through the arrayed waveguide 19a, enters the slab waveguide 14b, and is collected at the slab waveguide portion 14b. The light is then coupled into output waveguide 13 and through lenses 15 , 17 and isolator 16 into fiber 23 .
 第1実施形態は、レーザダイオード11がアレイ導波路回折格子と空間を隔てて設けられていて、レーザダイオード11とスラブ導波路14aとの間の空間にシリンドリカルレンズ20が設けられている。このため、レーザダイオード11から出力されたレーザ光は、空間及びシリンドリカルレンズ20を通ってスラブ導波路14aの結合面14aaに入力され、その後もう一対のスラブ端面14abでアレイ導波路に結合する。 In the first embodiment, the laser diode 11 is provided with a space from the arrayed waveguide diffraction grating, and the cylindrical lens 20 is provided in the space between the laser diode 11 and the slab waveguide 14a. Therefore, the laser light output from the laser diode 11 passes through the space and the cylindrical lens 20, is input to the coupling surface 14aa of the slab waveguide 14a, and is then coupled to the arrayed waveguide at another pair of slab end surfaces 14ab.
 また、光モジュール10は、光モジュール10からのレーザ光をファイバ18に結合するためのレンズ15、17、アイソレータ16を備え、レンズ15及びアイソレータ16はセラミックパッケージ25内に、レンズ17はセラミックパッケージ25の外に設けられる。レンズ15、17は、出力導波路13から出力されるレーザ光を平行な光束にする一対のコリメートレンズである。アイソレータ16は、レンズ15、17の間に配置されている。ファイバ18は樹脂部材23により保護されている。レーザ光は、スラブ導波路14aの自由空間からアレイ導波路19aに入る。アレイ導波路19aの長さは各々ΔLずつ相違する。アレイ導波路19aを通ったレーザ光は、スラブ導波路14bから出力導波路13に入力し、特定の波長のみが出力されるように干渉する。そして、レーザ光は、レンズ15、17によってファイバ18に集光され、セラミックパッケージ25から出力される。さらに、光モジュール10は、不図示の温度コントローラーやレーザダイオード11を駆動するためのRF回路、レーザダイオード11のパワーをモニタするためのパワーメータ等が一緒に実装されていてもよい。 The optical module 10 also includes lenses 15 and 17 and an isolator 16 for coupling the laser light from the optical module 10 to the fiber 18. The lens 15 and the isolator 16 are contained in the ceramic package 25, and the lens 17 outside the Lenses 15 and 17 are a pair of collimating lenses that collimate the laser beam output from output waveguide 13 into parallel beams. The isolator 16 is arranged between the lenses 15,17. Fiber 18 is protected by resin member 23 . Laser light enters the arrayed waveguide 19a from the free space of the slab waveguide 14a. The lengths of the arrayed waveguides 19a are different by ΔL. After passing through the arrayed waveguide 19a, the laser light is input from the slab waveguide 14b to the output waveguide 13, and interferes so that only a specific wavelength is output. The laser light is then condensed into the fiber 18 by the lenses 15 and 17 and output from the ceramic package 25 . Furthermore, the optical module 10 may be mounted together with a temperature controller (not shown), an RF circuit for driving the laser diode 11, a power meter for monitoring the power of the laser diode 11, and the like.
 以上説明したように、アレイ導波路回折格子は、結合面14aaと14abを有するスラブ導波路14a、スラブ導波路14aと接続される複数のアレイ導波路19a、複数のアレイ導波路19aと接続されるスラブ導波路14bを含んでいる。そして、スラブ導波路14aは、上面視において、結合面14aaの少なくとも一部が光導波路基板12のレーザダイオード11に向かう端面12aと接する、または、結合面14aaが光導波路基板12の外部の空間にあって、端面12aと交差するように配置されている。 As described above, the arrayed waveguide diffraction grating is connected to the slab waveguide 14a having the coupling surfaces 14aa and 14ab, the plurality of arrayed waveguides 19a connected to the slab waveguide 14a, and the plurality of arrayed waveguides 19a. It includes a slab waveguide 14b. In the slab waveguide 14a, when viewed from above, at least a part of the coupling surface 14aa is in contact with the end surface 12a of the optical waveguide substrate 12 facing the laser diode 11, or the coupling surface 14aa is in the space outside the optical waveguide substrate 12. and is arranged to intersect with the end surface 12a.
 このような構成を、図3(a)、図3(b)を用いてより詳細に説明する。図3(a)は、図2の破線で示す範囲Bを拡大して示す上面図、図3(b)は、図3(a)中に示す矢線IIIb、IIIbに沿う断面図である。図3(b)に示すように、レーザダイオード11は、レーザチップ28と、サブアセンブリ22とによって構成される。複数のレーザダイオード11は、レーザチップ28の中心軸が互いに角度をなすように配置されている。このような状態を、以降、レーザダイオード11が放射状に配置されているとも記す。レーザチップ28から出力されたレーザ光の上面視におけるスポットサイズはωLD、レーザチップ28の間隔はPLDである。図3(a)に示すように、第1実施形態のスラブ導波路14aは、上面視において、結合面14aaが光導波路基板12の外部の空間にあって、レーザダイオード11に向かう端面12aと交差するように配置されている。図3(a)に示すように、スラブ導波路14aは、その結合面14aaが曲面であり、表面の曲線の始点と終点が端面12aと交差するように配置される。ただし、スラブ導波路14aと端面12aとの交差の程度、つまりスラブ導波路14aが光導波路基板12から露出する程度は任意である。 Such a configuration will be described in more detail with reference to FIGS. 3(a) and 3(b). FIG. 3(a) is a top view showing an enlarged range B indicated by a dashed line in FIG. 2, and FIG. 3(b) is a sectional view taken along arrows IIIb and IIIb shown in FIG. 3(a). As shown in FIG. 3B, the laser diode 11 is composed of a laser chip 28 and a subassembly 22. As shown in FIG. The plurality of laser diodes 11 are arranged such that the central axes of the laser chips 28 form an angle with each other. Such a state is hereinafter also referred to as the laser diodes 11 being arranged radially. The spot size of the laser light output from the laser chip 28 when viewed from above is ω LD , and the interval between the laser chips 28 is P LD . As shown in FIG. 3A, in the slab waveguide 14a of the first embodiment, the coupling surface 14aa is located in the space outside the optical waveguide substrate 12 and intersects the end surface 12a facing the laser diode 11 when viewed from above. are arranged to As shown in FIG. 3A, the slab waveguide 14a has a curved coupling surface 14aa, and is arranged so that the start and end points of the curve on the surface intersect the end surface 12a. However, the degree of intersection between the slab waveguide 14a and the end face 12a, that is, the extent to which the slab waveguide 14a is exposed from the optical waveguide substrate 12 is arbitrary.
 スラブ導波路14aが端面12aと交差するようにスラブ導波路14aを配置することにより、第1実施形態は、結合面14aaを端面12aに接近させて、かつ端面12aから露出させることができる。このような構成によれば、レーザダイオード11を結合面14aaに充分接近させて配置し、図1に示す入力導波路113aを設けることなくレーザ光Lを結合面14aaに入力させることが可能になる。そして、入力導波路113aを設けないことから、入力導波路113aを引き回すスペースが不要になり、セラミックパッケージ25を小型化し、ひいては光モジュール10を小型化することができる。 By arranging the slab waveguide 14a so that the slab waveguide 14a intersects the end face 12a, the first embodiment can bring the coupling surface 14aa closer to the end face 12a and expose it from the end face 12a. According to such a configuration, the laser diode 11 can be arranged sufficiently close to the coupling surface 14aa, and the laser light Lp can be input to the coupling surface 14aa without providing the input waveguide 113a shown in FIG. Become. Since the input waveguide 113a is not provided, a space for routing the input waveguide 113a is not required, and the ceramic package 25 can be miniaturized, and the optical module 10 can be miniaturized.
 また、入力導波路113aが不要な第1実施形態は、レーザダイオード11を結合面14aaと空間を隔てて配置し、レーザダイオード11の光が空間を通って結合面14aaにからスラブに入射し、結合面14abでアレイ導波路19に結合する。光モジュール10においては、レーザダイオード11が出力するレーザ光Lを結合面14aaに結合させる際、レーザチップ28とスラブ導波路14aの端面とでスポットサイズを一致させて結合損失を低減することが知られている。このため、第1実施形態は、レーザダイオード11と結合面14aaとの間にシリンドリカルレンズ20を設け、レーザ光Lのスポットサイズを調整してもよい。このような光モジュール10は、NAの大きいレーザダイオード11のレーザ光Lを開口の大きいアレイ導波路で受光するように構成されている。しかし、光導波路基板12の主面に垂直な方向(図中のY方向)については、レーザ光Lを集光して光損失を低減することが可能である。このことから、第1実施形態は、シリンドリカルレンズ20を使ってレーザ光LのパワーをY軸方向に集中させるようにする。 In the first embodiment, which does not require the input waveguide 113a, the laser diode 11 is spaced apart from the coupling surface 14aa, and the light from the laser diode 11 passes through the space and enters the slab from the coupling surface 14aa. It is coupled to the arrayed waveguide 19 at the coupling surface 14ab. In the optical module 10, when the laser light Lp output from the laser diode 11 is coupled to the coupling surface 14aa, the spot size of the laser chip 28 and the end surface of the slab waveguide 14a can be matched to reduce the coupling loss. Are known. Therefore, in the first embodiment, a cylindrical lens 20 may be provided between the laser diode 11 and the coupling surface 14aa to adjust the spot size of the laser light Lp . Such an optical module 10 is configured to receive laser light Lp from a laser diode 11 with a large NA by an array waveguide with a large aperture. However, in the direction perpendicular to the main surface of the optical waveguide substrate 12 (the Y direction in the figure), it is possible to reduce the optical loss by condensing the laser light Lp . Therefore, in the first embodiment, the cylindrical lens 20 is used to concentrate the power of the laser light Lp in the Y-axis direction.
 以上説明した第1実施形態は、図1に示す複数のレンズ111及び入力導波路113aが不要になるので、セラミックパッケージ25内の部品点数を低減し、光モジュール1を小型化することが可能になる。特に、導波路は曲げ損失を生じない設置スペースが必要になるため、導波路を省くことによる小型化の効果は顕著である。また、複数のレンズ111の組付けや調芯工程が不要であるため、光モジュール10の組み立てや実装に係るコストを低減し、作業を容易にして生産の歩留まりを高めることができる。 The first embodiment described above eliminates the need for the plurality of lenses 111 and the input waveguide 113a shown in FIG. Become. In particular, since a waveguide requires an installation space that does not cause bending loss, the effect of size reduction by omitting the waveguide is remarkable. In addition, since the process of assembling and aligning the plurality of lenses 111 is unnecessary, the cost of assembling and mounting the optical module 10 can be reduced, the work can be facilitated, and the production yield can be increased.
 図3(a)、図3(b)に示す光モジュール10は、例えば、Si基板上にアンダークラッド層を数10μm程度堆積し、屈折率の異なるコア層を数μm堆積し、公知の露光とエッチング技術によってアレイ導波路回折格子のパターンを形成し、その後オーバークラッド層を数10μm堆積させることによって製造される。この際、図3(a)のように、曲面である結合面14aaを製造する場合、スラブ導波路14aの一方の端面をエッチング加工して露出させている。したがって、図3(a)に示すスラブ導波路14aの製造工程には、スラブ導波路14a形成後にエッチング工程を追加することが必要になる。 The optical module 10 shown in FIGS. 3(a) and 3(b) is formed by, for example, depositing an under-cladding layer of about several tens of μm on a Si substrate, depositing a core layer of several μm with a different refractive index, and performing a known exposure method. It is manufactured by forming the pattern of the arrayed waveguide grating by an etching technique and then depositing an overcladding layer of several tens of μm. At this time, when manufacturing a curved coupling surface 14aa as shown in FIG. 3A, one end surface of the slab waveguide 14a is exposed by etching. Therefore, in the manufacturing process of the slab waveguide 14a shown in FIG. 3A, it is necessary to add an etching process after forming the slab waveguide 14a.
 図4(a)、図4(b)は、結合面14aaを光導波路基板から露出させない構成を説明するための図である。図4(a)は、結合面14aaが光導波路基板12から露出しないスラブ導波路14aを含む領域の上面図、図4(b)は、図4(a)中の矢線IV、IVに沿う断面図である。図4(a)に示すように、このような光モジュールの例は、スラブ導波路14aの結合面14aaが端面12aに接する構成である。また、図4(a)に示す例は、結合面14aaが曲面であり、スラブ導波路14aは、結合面14aaの一部が端面12aに接するように配置される。 4(a) and 4(b) are diagrams for explaining a configuration in which the coupling surface 14aa is not exposed from the optical waveguide substrate. FIG. 4(a) is a top view of a region including the slab waveguide 14a where the coupling surface 14aa is not exposed from the optical waveguide substrate 12, and FIG. It is a sectional view. As shown in FIG. 4A, an example of such an optical module has a configuration in which a coupling surface 14aa of a slab waveguide 14a is in contact with an end surface 12a. Further, in the example shown in FIG. 4A, the coupling surface 14aa is a curved surface, and the slab waveguide 14a is arranged so that a part of the coupling surface 14aa is in contact with the end surface 12a.
 なお、第1実施形態は、以上説明した構成に限定されるものではない。例えば、光素子は、レーザダイオード11のような発光素子ばかりでなく、受光素子をも含む。受光素子を用いる光モジュールは、スラブ導波路の結合面と結合する光を受光し、出力するように構成される。受光素子としては、例えば、フォトダイオードが用いられる。また、スラブ導波路14aのレーザ光Lのスポットサイズの調整は、シリンドリカルレンズ20を使うことに限定されず、例えば、スポットサイズコンバータを用いてもよい。また、スポットサイズコンバータは、レーザダイオード11のレーザ光の出力端の近傍、アレイ導波路回折格子のレーザ光の入力側の端面の近傍、あるいはその両方に設けてもよい。光導波路基板12は、石英を材料とすることに限定されず、例えば、シリコンフォトニクス導波路等の他の材料で構成してもよい。 In addition, 1st Embodiment is not limited to the structure demonstrated above. For example, optical elements include not only light-emitting elements such as the laser diode 11 but also light-receiving elements. An optical module using a light receiving element is configured to receive and output light coupled with a coupling surface of a slab waveguide. For example, a photodiode is used as the light receiving element. Further, adjustment of the spot size of the laser light Lp in the slab waveguide 14a is not limited to using the cylindrical lens 20, and for example, a spot size converter may be used. The spot size converter may be provided near the laser light output end of the laser diode 11, near the laser light input side facet of the arrayed waveguide grating, or both. The optical waveguide substrate 12 is not limited to being made of quartz, and may be made of other materials such as a silicon photonics waveguide.
(光モジュールの実装方法)
 次に、以上説明した第1実施形態の光モジュールの実装方法を説明する。第1実施形態の実装方法は、アレイ導波路回折格子の透過波長のずれをレーザダイオード11と光モジュール10との搭載位置を調整することによって微調整することが可能である。レーザダイオード11に電流を注入しながらアクティブ動作が可能である場合、ファイバ18から出力されるレーザ光のパワーをモニタし、モニタされるパワーが最大値をとる位置、すなわちレーザ光の発振波長とアレイ導波路回折格子の透過波長が一致する位置にレーザダイオード11が実装される。
(Mounting method of optical module)
Next, a method for mounting the optical module of the first embodiment described above will be described. The mounting method of the first embodiment can finely adjust the transmission wavelength shift of the arrayed waveguide grating by adjusting the mounting positions of the laser diode 11 and the optical module 10 . When active operation is possible while injecting a current into the laser diode 11, the power of the laser light output from the fiber 18 is monitored, and the position where the monitored power takes the maximum value, that is, the oscillation wavelength of the laser light and the array A laser diode 11 is mounted at a position where the transmission wavelengths of the waveguide grating match.
 また、レーザダイオード11に電流を注入しながらのアクティブ調芯が困難である場合、実装は、光モジュール10上に形成された搭載用マークを利用して行われる。 Also, if active alignment while injecting current into the laser diode 11 is difficult, mounting is performed using mounting marks formed on the optical module 10 .
 図5(a)は、光モジュール10の搭載用マークを示す上面図、図5(b)は、図5(a)中の矢線Xb、Xbに沿う断面図である。このような場合、アレイ導波路回折格子単体の特性を評価するため、エッチングによって光導波路基板12のガラス層を除去して除去領域95を形成する。ガラス層のエッチングによってスラブ導波路14aの結合面14aaが露出し、レーザダイオード11を除去領域95に搭載する。また、除去領域95には、レーザダイオード11の位置合わせ用のマーカ91が形成される。ただし、マーカ91は、ガラス層が除去されていない光導波路基板12上に形成されてもよい。マーカ91をアレイ導波路回折格子作成時の露光プロセス中で作成することにより、アレイ導波路群19とマーカ91は、サブミクロンオーダーで位置合わせすることが可能である。 FIG. 5(a) is a top view showing mounting marks for the optical module 10, and FIG. 5(b) is a cross-sectional view taken along arrows Xb and Xb in FIG. 5(a). In such a case, in order to evaluate the characteristics of the single arrayed waveguide diffraction grating, the glass layer of the optical waveguide substrate 12 is removed by etching to form a removed region 95 . The etching of the glass layer exposes the coupling surface 14aa of the slab waveguide 14a and mounts the laser diode 11 in the removed area 95. FIG. A marker 91 for alignment of the laser diode 11 is formed in the removed region 95 . However, the marker 91 may be formed on the optical waveguide substrate 12 from which the glass layer has not been removed. By creating the markers 91 during the exposure process when creating the arrayed waveguide diffraction grating, the arrayed waveguide group 19 and the markers 91 can be aligned on the order of submicrons.
 次に、光モジュール10の実装工程を説明する。実装工程において、先ず、各レーザダイオード11の発振波長及びアレイ導波路回折格子の透過波長が予め測定される。レーザダイオード11の搭載位置は、発振波長と透過波長はいずれも設計波長に一致している条件の下で決定されている。発振波長または透過波長が設計波長に対してずれている場合、レーザダイオード11は、光モジュール10上に形成されたマーカ91を基準として、設計波長からずれた分だけ搭載位置をずらして実装される。このような手法により、第1実施形態は、アレイ導波路回折格子の発振波長とレーザダイオード11の透過波長とが一致するように両者を実装することができる。 Next, the process of mounting the optical module 10 will be described. In the mounting process, first, the oscillation wavelength of each laser diode 11 and the transmission wavelength of the arrayed waveguide diffraction grating are measured in advance. The mounting position of the laser diode 11 is determined under the condition that both the oscillation wavelength and the transmission wavelength match the design wavelength. When the oscillation wavelength or transmission wavelength deviates from the design wavelength, the laser diode 11 is mounted with the mounting position shifted by the deviation from the design wavelength with reference to the marker 91 formed on the optical module 10. . With such a method, the first embodiment can be implemented so that the oscillation wavelength of the arrayed waveguide grating and the transmission wavelength of the laser diode 11 match.
 例えば、アレイ導波路回折格子の透過波長が設計波長λに対しΔλずれた場合、レーザダイオード11は、設計搭載位置に対してΔαだけずらして搭載される。この際、例えば、マーカ91を設計搭載位置に合わせて形成しておき、マーカ91を基準にしてレーザダイオード11の搭載位置をΔαずつずらせばよい。 For example, if the transmission wavelength of the arrayed waveguide diffraction grating is shifted by Δλ from the design wavelength λ, the laser diode 11 is mounted with a shift of Δα from the design mounting position. At this time, for example, the marker 91 may be formed in accordance with the designed mounting position, and the mounting position of the laser diode 11 may be shifted by Δα with respect to the marker 91 .
 設計波長λ、波長のずれ量Δλ、搭載位置のずれ量Δαとの間には、以下の式(1)の関係がある。なお、式(1)において、Ncはアレイ導波路回折格子のコア屈折率、nsはスラブ導波路14aの屈折率、dはアレイ導波路19a(図2)間の間隔、ΔLはアレイ導波路19aの導波路長差、fはスラブ導波路14aの焦点距離である。 The relationship between the design wavelength λ, the wavelength shift amount Δλ, and the mounting position shift amount Δα is given by the following formula (1). In equation (1), Nc is the core refractive index of the arrayed waveguide diffraction grating, ns is the refractive index of the slab waveguide 14a, d is the distance between the arrayed waveguides 19a (FIG. 2), and ΔL is the arrayed waveguide 19a. and f is the focal length of the slab waveguide 14a.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 さらに、レーザダイオード11及びアレイ導波路回折格子の調芯は、レーザダイオード11をレーザダイオード11用の電極92を使って発振させ、結合面14aaに検査ポート93を取り付けて行ってもよい。このような場合、レーザダイオード11の発振波長とアレイ導波路回折格子の透過波長とが一致し、検査ポート93から出力されるレーザ光が最大値をとる位置にレーザダイオード11を搭載する。なお、コモンポート94は、アレイ導波路回折格子単体の透過波長のずれをモニタすることに使用される。このような第1実施形態の光モジュールの実装方法によれば、レーザダイオード11の搭載時に発振波長をアレイ導波路回折格子の透過波長に合わせることができるため、アレイ導波路回折格子の透過波長とレーザダイオード11の発振波長とを高い精度で調整することが可能になる。また、第1実施形態の実装方法は、アレイ導波路回折格子の波長の精度や形状に対する要求を緩和することができる。このために、アレイ導波路回折格子、ひいては光モジュールの製造の歩留まりが向上する。 Furthermore, the alignment of the laser diode 11 and the arrayed waveguide diffraction grating may be performed by oscillating the laser diode 11 using the electrode 92 for the laser diode 11 and attaching an inspection port 93 to the coupling surface 14aa. In such a case, the laser diode 11 is mounted at a position where the oscillation wavelength of the laser diode 11 and the transmission wavelength of the arrayed waveguide grating match and the laser light output from the inspection port 93 takes the maximum value. Incidentally, the common port 94 is used for monitoring the deviation of the transmission wavelength of the single arrayed waveguide diffraction grating. According to the optical module mounting method of the first embodiment, the oscillation wavelength can be matched with the transmission wavelength of the arrayed waveguide grating when the laser diode 11 is mounted. It becomes possible to adjust the oscillation wavelength of the laser diode 11 with high precision. Moreover, the mounting method of the first embodiment can relax the requirements for the wavelength accuracy and shape of the arrayed waveguide grating. As a result, the production yield of the arrayed waveguide diffraction grating and thus the optical module is improved.
 以上説明した実装工程は、図2から図4(b)で説明した第1実施形態の光モジュール10を実装する方法である。そして、第1実施形態の実装方法は、レーザダイオード11の発振波長を計測する工程と、アレイ導波路回折格子の透過波長を計測する工程と、発振波長及び透過波長に基づいて、レーザダイオード11の搭載位置を導出する工程と、を含む。このような実装方法は、例えば、発振波長及び透過波長を測定する波長測定部、両者の設計波長とのずれ量を算出し、設計時の搭載位置に対する実際の搭載位置との差分を算出するコンピュータを備えた装置を用いることによって自動的に一括して行うことができる。 The mounting process described above is a method for mounting the optical module 10 of the first embodiment described with reference to FIGS. 2 to 4(b). The mounting method of the first embodiment includes steps of measuring the oscillation wavelength of the laser diode 11, measuring the transmission wavelength of the arrayed waveguide diffraction grating, and measuring the transmission wavelength of the laser diode 11 based on the oscillation wavelength and the transmission wavelength. and deriving the mounting position. Such a mounting method includes, for example, a wavelength measurement unit that measures the oscillation wavelength and the transmission wavelength, a computer that calculates the amount of deviation from the design wavelengths of both, and calculates the difference between the design mounting position and the actual mounting position. can be performed automatically and collectively by using a device equipped with
 また、第1実施形態の実装方法は、さらに、導出する工程において導出された搭載位置に、レーザダイオード11を搭載する工程をさらに含む。このような工程は、上記のコンピュータを備えた装置と、ロボットハンドやマニピュレータ等とを組み合わせて自動的に行うことが考えられる。 In addition, the mounting method of the first embodiment further includes the step of mounting the laser diode 11 at the mounting position derived in the deriving step. It is conceivable that such processes are automatically performed by combining the above-described computer-equipped device with a robot hand, a manipulator, or the like.
[第2実施形態]
 次に、本開示の第2実施形態を説明する。第2実施形態は、スラブ導波路14aの端面ばかりでなく、さらに多くの部分を光導波路基板12から露出させる点で第1実施形態と相違する。図6(a)は、第2実施形態のスラブ導波路54を含む領域を示す上面図、図6(b)は、図6(a)中の矢線Vb、Vbに沿う断面図である。図6(a)に示すように、スラブ導波路54は、第1実施形態の図3(a)に示す構成がスラブ導波路14aの端面を光導波路基板12から露出させているのに対し、さらに、アレイ導波路群19の近くまで光導波路基板12から露出する。このような第2実施形態においても、図6(b)に示すレーザ光Lが結合する結合面54aが端面12aと接するようにスラブ導波路54が配置される。スラブ導波路54の結合面54aと反対の側の端面を端面54bとする。
[Second embodiment]
Next, a second embodiment of the present disclosure will be described. The second embodiment differs from the first embodiment in that not only the end face of the slab waveguide 14a but also more portions are exposed from the optical waveguide substrate 12. FIG. FIG. 6(a) is a top view showing a region including the slab waveguide 54 of the second embodiment, and FIG. 6(b) is a cross-sectional view taken along arrows Vb and Vb in FIG. 6(a). As shown in FIG. 6(a), the slab waveguide 54 exposes the end surface of the slab waveguide 14a from the optical waveguide substrate 12 in the configuration shown in FIG. 3(a) of the first embodiment. Furthermore, the vicinity of the arrayed waveguide group 19 is also exposed from the optical waveguide substrate 12 . Also in the second embodiment, the slab waveguide 54 is arranged such that the coupling surface 54a to which the laser light Lp is coupled shown in FIG. 6B is in contact with the end surface 12a. The end surface of the slab waveguide 54 opposite to the coupling surface 54a is defined as an end surface 54b.
 第2実施形態は、第1実施形態と同様に、光導波路基板12にスラブ導波路14a、アレイ導波路19a、スラブ導波路14b及び出力導波路13を形成した後、第1実施形態よりも多くの部分をエッチングすることによって実現できる。エッチングにより、スラブ導波路14aはスラブ導波路54に加工される。第2実施形態は、スラブ導波路54のZ軸方向の長さがより短縮され、光モジュールの小型化にいっそう有利である。また、第2実施形態においても、シリンドリカルレンズ20、あるいは不図示のスポットサイズコンバータを設け、レーザダイオード11のスポットサイズとスラブ導波路14aのスポットサイズとを調整するようにしてもよい。 In the second embodiment, as in the first embodiment, after the slab waveguide 14a, the arrayed waveguide 19a, the slab waveguide 14b, and the output waveguide 13 are formed on the optical waveguide substrate 12, more than the first embodiment. can be realized by etching the portion of The slab waveguide 14a is processed into a slab waveguide 54 by etching. In the second embodiment, the length of the slab waveguide 54 in the Z-axis direction is further shortened, which is more advantageous for downsizing the optical module. Also in the second embodiment, a cylindrical lens 20 or a spot size converter (not shown) may be provided to adjust the spot size of the laser diode 11 and the spot size of the slab waveguide 14a.
[第3実施形態]
 次に、本開示の第3実施形態を説明する。図7(a)、(b)は、第3実施形態を説明するための図であって、図7(a)は、第3実施形態のスラブ導波路14aを含む領域を示す上面図、図7(b)は、図7(a)中の矢線VIb、VIbに沿う断面図である。第3実施形態は、第1実施形態よりもレーザダイオード11が結合面14aaから離れて配置され、レーザダイオード11とシリンドリカルレンズ20との間に複数のレンズ61が設けられている点で第1実施形態と相違する。複数のレーザダイオード11は、放射状に配置されていて、結合面14aaは曲面である。複数のレンズ61は、各々がレーザダイオード11のいずれか1つに対応して配置される。レンズ61は、対応するレーザダイオード11の光をコリメート光に変換する。コリメート光は、シリンドリカルレンズ20によってY方向に集光されて結合面14aaに結合される。
[Third embodiment]
Next, a third embodiment of the present disclosure will be described. 7A and 7B are diagrams for explaining the third embodiment, and FIG. 7A is a top view and a diagram showing a region including the slab waveguide 14a of the third embodiment. 7(b) is a cross-sectional view along arrows VIb and VIb in FIG. 7(a). The third embodiment differs from the first embodiment in that the laser diode 11 is arranged farther from the coupling surface 14aa than in the first embodiment, and a plurality of lenses 61 are provided between the laser diode 11 and the cylindrical lens 20 . Different from the form. The plurality of laser diodes 11 are arranged radially, and the coupling surface 14aa is a curved surface. Each of the plurality of lenses 61 is arranged corresponding to one of the laser diodes 11 . A lens 61 converts the light of the corresponding laser diode 11 into collimated light. The collimated light is condensed in the Y direction by the cylindrical lens 20 and coupled to the coupling surface 14aa.
 ここで、レーザダイオード11を結合面14aaから第1実施形態よりも離して配置したことによる効果を説明する。効果の1つは、レーザダイオード11の配置の自由度が高まる点である。例えば、電気配線等の関係によりレーザダイオード11の間隔を空けて配置する必要がある場合、スラブ導波路14aのX方向の幅の範囲でレーザダイオード11を配置することができなくなる。この点を解消するため、第3実施形態は、スラブ導波路14aの幅を超えて広がるレーザ光をレンズ61によってコリメート光Lppに変換した後に結合面14aaに結合する。また、第3実施形態は、レンズ61を介してレーザ光を結合面14aaに結合することにより、複数のレーザ光の入射位置14apの間隔を狭めることができるので、入力導波路の焦点距離f1が短くなってスラブ導波路14aのZ方向の長さを短くすることができる。この点は、光モジュール10の小型化に有利である。 Here, the effect of arranging the laser diode 11 farther from the coupling surface 14aa than in the first embodiment will be described. One of the effects is that the degree of freedom in arranging the laser diode 11 is increased. For example, if the laser diodes 11 need to be spaced apart due to electrical wiring or the like, the laser diodes 11 cannot be placed within the width of the slab waveguide 14a in the X direction. In order to solve this problem, in the third embodiment, the laser light that spreads beyond the width of the slab waveguide 14a is converted into the collimated light Lpp by the lens 61 and then coupled to the coupling surface 14aa. In addition, in the third embodiment, by coupling the laser beams to the coupling surface 14aa via the lens 61, the interval between the incident positions 14ap of the plurality of laser beams can be narrowed, so that the focal length f1 of the input waveguide is As a result, the length of the slab waveguide 14a in the Z direction can be shortened. This point is advantageous for miniaturization of the optical module 10 .
[第4実施形態]
 次に、本開示の第4実施形態を説明する。第4実施形態は、レーザダイオード11を互いに平行に配置する点で、レーザダイオード11を放射状に配置する第3実施形態と相違する。また、第4実施形態は、スラブ導波路14cの結合面14caが平面である点でも第3実施形態と相違する。このような第4実施形態は、電気配線等の関係によりレーザダイオード11を放射状に配置することが難しく、また、スラブ導波路の結合面を露出させることによる構造の複雑化を回避する場合に有効である。
[Fourth Embodiment]
Next, a fourth embodiment of the present disclosure will be described. The fourth embodiment differs from the third embodiment in which the laser diodes 11 are arranged radially in that the laser diodes 11 are arranged parallel to each other. The fourth embodiment also differs from the third embodiment in that the coupling surface 14ca of the slab waveguide 14c is flat. Such a fourth embodiment is effective when it is difficult to arrange the laser diodes 11 radially due to electrical wiring, etc., and when avoiding complication of the structure due to exposing the coupling surface of the slab waveguide. is.
 図8(a)、(b)は、第4実施形態を説明するための図であって、図8(a)は、第4実施形態のスラブ導波路14cを含む領域を示す上面図、図8(b)は、図8(a)中の矢線VIIb、VIIbに沿う断面図である。第4実施形態は、第3実施形態よりもレーザダイオード11をアレイ導波路回折格子から離して配置している。図8(a)、図8(b)に示す例では、レーザダイオード11は、光導波路基板12を支持するSi基板21の外部に配置されている。第4実施形態の光モジュールは、第3実施形態と同様に、複数のレーザダイオード11の各々に対応して配置される複数のレンズ61を備えている。ただし、第4実施形態のレンズ61は、図中のX軸に沿う一直線上に配置されている。また、第4実施形態の光モジュールは、レンズ61とアレイ導波路回折格子との間に、レーザ光をY方向に集光するシリンドリカルレンズ20を備えている。第4実施形態は、各レンズ61の位置を、対応するレーザダイオード11のX方向の中心線Pから-X方向にずらすことによってコリメート光Lppの進行方向を曲げ、スラブ導波路14cの結合面14caの一か所にすべてのレーザ光を集光させている。なお、第4実施形態において、図8(b)に示すように、レーザダイオード11からレンズ61、レンズ61から光導波路基板12の端面までの距離はいずれも焦点距離f1である。このような第4実施形態によれば、光軸が図中のZ軸に平行になるようにレーザダイオード11を配置した場合であっても、適当な焦点距離にレーザ光を集光することが可能になる。 8A and 8B are diagrams for explaining the fourth embodiment, and FIG. 8A is a top view and a diagram showing a region including the slab waveguide 14c of the fourth embodiment. 8(b) is a cross-sectional view taken along arrows VIIb and VIIb in FIG. 8(a). In the fourth embodiment, the laser diode 11 is arranged farther from the arrayed waveguide diffraction grating than in the third embodiment. In the examples shown in FIGS. 8A and 8B, the laser diode 11 is arranged outside the Si substrate 21 that supports the optical waveguide substrate 12 . The optical module of the fourth embodiment includes a plurality of lenses 61 arranged corresponding to each of the plurality of laser diodes 11, similarly to the third embodiment. However, the lenses 61 of the fourth embodiment are arranged on a straight line along the X-axis in the figure. Further, the optical module of the fourth embodiment includes a cylindrical lens 20 between the lens 61 and the arrayed waveguide diffraction grating that converges laser light in the Y direction. In the fourth embodiment, the traveling direction of the collimated light L pp is bent by shifting the position of each lens 61 from the center line P x of the corresponding laser diode 11 in the X direction to the −X direction, thereby coupling the slab waveguide 14 c. All the laser beams are condensed at one point on the surface 14ca. In the fourth embodiment, as shown in FIG. 8B, the distances from the laser diode 11 to the lens 61 and from the lens 61 to the end surface of the optical waveguide substrate 12 are both the focal length f1. According to such a fourth embodiment, even when the laser diode 11 is arranged so that the optical axis is parallel to the Z-axis in the drawing, the laser light can be focused at an appropriate focal length. be possible.
[第5実施形態]
 次に、本開示の第5実施形態を説明する。第5実施形態は、第4実施形態がレーザダイオード11の各々に対応する複数のレンズ61を備えるのに対し、1つのレンズ81を備える点で相違する。図9(a)、(b)は、第5実施形態を説明するための図であって、図9(a)は、第5実施形態のスラブ導波路14cを含む領域を示す上面図、図9(b)は、図9(a)中の矢線VIIIb、VIIIbに沿う断面図である。第5実施形態のレンズ81は、レーザダイオード11及びシリンドリカルレンズ20の間で複数のレーザダイオード11が出力するレーザ光を全て透過する。また、シリンドリカルレンズは、光導波路基板12の端面に接するように配置され、図中のY方向にレーザ光を集光させている。結合面14caに結合されるレーザ光のX方向のスポットサイズを、図中にωLDと記す。
[Fifth embodiment]
Next, a fifth embodiment of the present disclosure will be described. The fifth embodiment differs in that one lens 81 is provided while the fourth embodiment includes a plurality of lenses 61 corresponding to each of the laser diodes 11 . 9A and 9B are diagrams for explaining the fifth embodiment, and FIG. 9A is a top view showing a region including the slab waveguide 14c of the fifth embodiment; 9(b) is a cross-sectional view taken along arrows VIIIb and VIIIb in FIG. 9(a). The lens 81 of the fifth embodiment transmits all laser beams output from the plurality of laser diodes 11 between the laser diodes 11 and the cylindrical lens 20 . The cylindrical lens is arranged so as to be in contact with the end surface of the optical waveguide substrate 12, and converges the laser light in the Y direction in the figure. The spot size in the X direction of the laser light coupled to the coupling surface 14ca is denoted as ω LD in the drawing.
 このような第5実施形態によれば、複数のレンズ61を1つのレンズに代えたため、光モジュールの部品点数を低減し、また、組付け精度を緩和し、構造の複雑化を解消することができる。 According to the fifth embodiment, since the plurality of lenses 61 are replaced with one lens, the number of parts of the optical module can be reduced, the assembly accuracy can be relaxed, and the complication of the structure can be eliminated. can.
(第6実施形態)
 次に、本開示の第6実施形態を説明する。第6実施形態は、第5実施形態のスラブ導波路14cに代えて、第2実施形態のスラブ導波路54を設けた点で第5実施形態と相違する。図10(a)、(b)は、第6実施形態を説明するための図であって、図10(a)は、第6実施形態のスラブ導波路54を含む領域を示す上面図、図10(b)は、図10(a)中の矢線IXb、IXbに沿う断面図である。レーザダイオード11は、互いに平行に配置されており、レンズ81によってレーザ光はコリメート光Lppに変換される。レンズ81とスラブ導波路54の間にはシリンドリカルレンズ20が配置され、レーザ光をY方向に集光させる。レーザ光は、直線の結合面54aの異なる位置に集光される。
(Sixth embodiment)
Next, a sixth embodiment of the present disclosure will be described. The sixth embodiment differs from the fifth embodiment in that the slab waveguide 54 of the second embodiment is provided instead of the slab waveguide 14c of the fifth embodiment. 10(a) and 10(b) are diagrams for explaining the sixth embodiment, and FIG. 10(a) is a top view and a diagram showing a region including the slab waveguide 54 of the sixth embodiment. 10(b) is a cross-sectional view taken along arrows IXb and IXb in FIG. 10(a). The laser diodes 11 are arranged parallel to each other and the laser light is converted into collimated light Lpp by the lens 81 . A cylindrical lens 20 is arranged between the lens 81 and the slab waveguide 54 to converge the laser light in the Y direction. The laser light is focused at different positions on the straight coupling surface 54a.
 第4実施形態、第5実施形態において、レーザダイオード11からアレイ導波路回折格子までの距離は焦点距離f1の2倍であった。しかし、第6実施形態は、レーザダイオード11からレンズ81までの距離を短くすることによってレーザダイオード11からアレイ導波路回折格子までの距離を焦点距離f1とした。このような第6実施形態は、レーザ光を広げた状態でスラブ導波路54の結合面54a後方の端面に入射させることにより、レーザ光を広げた後に集光させてスラブ導波路14cに入射させる第4実施形態、第5実施形態よりも焦点距離を短くし、光モジュールの小型化に有利である。 In the fourth and fifth embodiments, the distance from the laser diode 11 to the arrayed waveguide grating was twice the focal length f1. However, in the sixth embodiment, by shortening the distance from the laser diode 11 to the lens 81, the distance from the laser diode 11 to the arrayed waveguide grating is made the focal length f1. In such a sixth embodiment, the laser light is spread and made incident on the end surface behind the coupling surface 54a of the slab waveguide 54, so that the laser light is spread and condensed and made incident on the slab waveguide 14c. The focal length is shorter than in the fourth and fifth embodiments, which is advantageous for downsizing the optical module.
10,100 光モジュール
11 レーザダイオード
12 光導波路基板
12a 端面
13 出力導波路
14a、14b、14c、54 スラブ導波路
14aa、14ca、54a 結合面
14ap 入射位置
15、17、61、81 レンズ
16 アイソレータ
18 ファイバ
19 アレイ導波路
19a アレイ導波路
20 シリンドリカルレンズ
21 Si基板
22 サブアセンブリ
23 樹脂部材
25 セラミックパッケージ
26 支持部
28 レーザチップ
91 マーカ
92 電極
93 検査ポート
95 除去領域
10, 100 optical module 11 laser diode 12 optical waveguide substrate 12a end surface 13 output waveguides 14a, 14b, 14c, 54 slab waveguides 14aa, 14ca, 54a coupling surface 14ap incidence positions 15, 17, 61, 81 lens 16 isolator 18 fiber 19 Arrayed waveguide 19a Arrayed waveguide 20 Cylindrical lens 21 Si substrate 22 Subassembly 23 Resin member 25 Ceramic package 26 Supporting portion 28 Laser chip 91 Marker 92 Electrode 93 Inspection port 95 Removal region

Claims (7)

  1.  アレイ導波路回折格子を備える光導波路基板と、前記アレイ導波路回折格子に光信号を結合する光素子と、を有する光モジュールであって、
     前記アレイ導波路回折格子は、前記光素子の光が結合される結合面を有する第1スラブ導波路と、前記第1スラブ導波路と接続される複数のアレイ導波路と、複数の前記アレイ導波路と接続される第2スラブ導波路と、を含み、前記第1スラブ導波路は、上面視において、前記結合面の少なくとも一部が前記光導波路基板の前記光素子に向かう端面と接する、または、前記結合面が前記光導波路基板の外部の空間にあって、前記端面と交差するように配置されている、光モジュール。
    An optical module comprising an optical waveguide substrate having an arrayed waveguide grating and an optical element for coupling an optical signal to the arrayed waveguide grating,
    The arrayed waveguide diffraction grating includes a first slab waveguide having a coupling surface to which light from the optical element is coupled, a plurality of arrayed waveguides connected to the first slab waveguide, and a plurality of the arrayed waveguides. a second slab waveguide connected to a wave path, wherein at least part of the coupling surface of the first slab waveguide is in contact with an end surface of the optical waveguide substrate facing the optical element, or , the optical module, wherein the coupling surface is in a space outside the optical waveguide substrate and arranged to intersect with the end surface.
  2.  前記光素子は前記結合面と空間を隔てて配置され、前記光素子の光は、前記空間を通って前記結合面に結合される、請求項1に記載の光モジュール。 The optical module according to claim 1, wherein the optical element is spaced apart from the coupling surface, and light from the optical element is coupled to the coupling surface through the space.
  3.  前記アレイ導波路回折格子と、前記光素子との間にあって、前記アレイ導波路回折格子の端面、または前記光素子のスポットサイズを調整するスポットサイズ調整部を備え、
     前記スポットサイズ調整部は、少なくとも、前記光導波路基板の主面に垂直な方向に光を集光するシリンドリカルレンズまたはスポットサイズコンバータの一方を含む、請求項1または2に記載の光モジュール。
    a spot size adjustment unit located between the arrayed waveguide grating and the optical element for adjusting the spot size of the end surface of the arrayed waveguide grating or the optical element;
    3. The optical module according to claim 1, wherein said spot size adjuster includes at least one of a cylindrical lens and a spot size converter for condensing light in a direction perpendicular to the main surface of said optical waveguide substrate.
  4.  前記アレイ導波路回折格子と、前記光素子との間にあって、前記光素子が発光する光をコリメート光に変換するレンズを備える、請求項1から3のいずれか一項に記載の光モジュール。 The optical module according to any one of claims 1 to 3, comprising a lens interposed between the arrayed waveguide diffraction grating and the optical element for converting light emitted by the optical element into collimated light.
  5.  アレイ導波路回折格子を備える光導波路基板と、前記アレイ導波路回折格子に光信号を結合する光素子と、を備え、前記アレイ導波路回折格子は前記光素子の光が結合される結合面を有する第1スラブ導波路、前記第1スラブ導波路と接続される複数のアレイ導波路及び前記アレイ導波路と接続される第2スラブ導波路を含み、前記第1スラブ導波路は、上面視において、前記結合面の少なくとも一部が前記光導波路基板の前記光素子に向かう端面と接する、または、前記結合面が前記光導波路基板の外部の空間にあって、前記端面と交差するように配置されている光モジュールを実装する光モジュールの実装方法であって、
     前記光素子の発振波長を計測する工程と、
     前記アレイ導波路回折格子の透過波長を計測する工程と、
     前記発振波長及び前記透過波長に基づいて、前記光素子の搭載位置を導出する工程と、を含む、光モジュールの実装方法。
    An optical waveguide substrate having an arrayed waveguide grating, and an optical element for coupling an optical signal to the arrayed waveguide diffraction grating, the arrayed waveguide diffraction grating forming a coupling surface to which the light of the optical element is coupled. a first slab waveguide, a plurality of arrayed waveguides connected to the first slab waveguide, and a second slab waveguide connected to the arrayed waveguide, wherein the first slab waveguide has , at least a part of the coupling surface is in contact with an end surface of the optical waveguide substrate facing the optical element, or the coupling surface is located in a space outside the optical waveguide substrate and is arranged to intersect with the end surface. An optical module mounting method for mounting an optical module with
    a step of measuring the oscillation wavelength of the optical element;
    measuring a transmission wavelength of the arrayed waveguide grating;
    and deriving a mounting position of the optical element based on the oscillation wavelength and the transmission wavelength.
  6.  前記搭載位置を導出する工程において導出された搭載位置に、前記光素子を搭載する工程をさらに含む、請求項5に記載の光モジュールの実装方法。 6. The optical module mounting method according to claim 5, further comprising the step of mounting said optical element at the mounting position derived in said mounting position deriving step.
  7.  前記光素子を搭載する工程においては、前記光モジュールに形成されたマーカを使用する、請求項6に記載の光モジュールの実装方法。 The method of mounting an optical module according to claim 6, wherein a marker formed on the optical module is used in the step of mounting the optical element.
PCT/JP2021/043084 2021-11-24 2021-11-24 Optical module and optical module mounting method WO2023095224A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023563398A JPWO2023095224A1 (en) 2021-11-24 2021-11-24
PCT/JP2021/043084 WO2023095224A1 (en) 2021-11-24 2021-11-24 Optical module and optical module mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043084 WO2023095224A1 (en) 2021-11-24 2021-11-24 Optical module and optical module mounting method

Publications (1)

Publication Number Publication Date
WO2023095224A1 true WO2023095224A1 (en) 2023-06-01

Family

ID=86539097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043084 WO2023095224A1 (en) 2021-11-24 2021-11-24 Optical module and optical module mounting method

Country Status (2)

Country Link
JP (1) JPWO2023095224A1 (en)
WO (1) WO2023095224A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195051A (en) * 1996-09-02 1999-04-09 Nippon Telegr & Teleph Corp <Ntt> Optical signal processor and optical signal processing method
JPH11202265A (en) * 1998-01-12 1999-07-30 Oki Electric Ind Co Ltd Optical information processing element
JP2004239991A (en) * 2003-02-04 2004-08-26 Fujitsu Ltd Optical functional device
WO2009025333A1 (en) * 2007-08-23 2009-02-26 Nippon Telegraph And Telephone Corporation Optical signal processing device
US20150029572A1 (en) * 2013-07-26 2015-01-29 Neophotonics Corporation Adjustable grid tracking transmitters and receivers
JP2016213246A (en) * 2015-04-30 2016-12-15 日本電信電話株式会社 Hybrid integrated optical device and manufacturing method therefor
US20180128978A1 (en) * 2016-11-08 2018-05-10 Electronics And Telecommunications Research Institute Multi-wavelength transmission apparatus using cylindrical lenses

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195051A (en) * 1996-09-02 1999-04-09 Nippon Telegr & Teleph Corp <Ntt> Optical signal processor and optical signal processing method
JPH11202265A (en) * 1998-01-12 1999-07-30 Oki Electric Ind Co Ltd Optical information processing element
JP2004239991A (en) * 2003-02-04 2004-08-26 Fujitsu Ltd Optical functional device
WO2009025333A1 (en) * 2007-08-23 2009-02-26 Nippon Telegraph And Telephone Corporation Optical signal processing device
US20150029572A1 (en) * 2013-07-26 2015-01-29 Neophotonics Corporation Adjustable grid tracking transmitters and receivers
JP2016213246A (en) * 2015-04-30 2016-12-15 日本電信電話株式会社 Hybrid integrated optical device and manufacturing method therefor
US20180128978A1 (en) * 2016-11-08 2018-05-10 Electronics And Telecommunications Research Institute Multi-wavelength transmission apparatus using cylindrical lenses

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAROM D M, ET AL: "Compact Spectral Pulse Shaping using Hybrid Planar Lighwave Circuit and Free-Space Optics with MEMS piston Micromirror and Spectrogram Feedback Control", IEEE, 1 January 2004 (2004-01-01), pages 585 - 586, XP002674925, ISBN: 0-7803-8557-8, DOI: 10.1109/LEOS.2004.1363374 *
NAOKI OOBA, KENYA SUZUKI, MOTOHAYA ISHII, ATSUSHI ARATAKE, TOMOHIRO SHIBATA, SHINJI MINO: "Compact Wide-Band Wavelength Blocker Utilizing Novel Hybrid AWG-Free Space Focusing Optics", OFC/NFOEC 2008, 2008 CONFERENCE ON OPTICAL FIBER COMMUNICATION/NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, IEEE, 1 February 2008 (2008-02-01) - 28 February 2008 (2008-02-28), pages 1 - 3, XP055354091, DOI: 10.1109/OFC.2008.4528709 *

Also Published As

Publication number Publication date
JPWO2023095224A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US6267515B1 (en) Optical coupling module and manufacturing method of the same
KR100389837B1 (en) Packaging device for waveguide element
JP4983391B2 (en) Optical module and manufacturing method thereof
US5778120A (en) Optical module and method for manufacturing the optical modules
KR100360766B1 (en) Arrayed waveguide grating type optical multiplexer/demultiplexer and a method of manufacturing the same
WO2010098171A1 (en) Optical waveguide and optical waveguide module
EP3025179B1 (en) Adjustable grid tracking transmitters and receivers
CN109891284B (en) Optical fiber apparatus and optical fiber alignment method
CN105242360A (en) Dual-lensed unitary optical receiver assembly
US20060088246A1 (en) Multi-wavelength optical transceiver module, and multiplexer/demultiplexer using thin film filter
JP4280290B2 (en) Optical module and manufacturing method thereof
US6788848B2 (en) Arrayed waveguide grating device, process for producing the same, arrayed waveguide module, and optical communication system
US8983252B2 (en) Optical circuit and optical signal processing apparatus using the same
US6721511B1 (en) Optical communication equipment and optical communication network equipment
JP2006189672A (en) Optical module
CN110785686A (en) Free space CWDM MUX/DEMUX for integration with silicon photonics platforms
WO2023095224A1 (en) Optical module and optical module mounting method
WO2020105472A1 (en) Wavelength checker
WO2019244554A1 (en) Planar lightwave circuit and optical device
CN112114401A (en) Miniaturized wavelength division multiplexing light receiving assembly and assembling method thereof
CN1878035B (en) Hybrid integrated silicon-based photosignal processing chip
JP7215593B2 (en) wavelength checker
JP6714555B2 (en) Optical waveguide component, core alignment method, and optical element mounting method
JP2002131566A (en) Optical part having optical waveguide interval converting part, optical circuit and method for manufacturing optical circuit
US20040086221A1 (en) Low cost, hybrid integrated dense wavelength division multiplexer/demultiplexer for fiber optical networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965597

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023563398

Country of ref document: JP