WO2023095202A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2023095202A1
WO2023095202A1 PCT/JP2021/042972 JP2021042972W WO2023095202A1 WO 2023095202 A1 WO2023095202 A1 WO 2023095202A1 JP 2021042972 W JP2021042972 W JP 2021042972W WO 2023095202 A1 WO2023095202 A1 WO 2023095202A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
valve
power
battery
control unit
Prior art date
Application number
PCT/JP2021/042972
Other languages
French (fr)
Japanese (ja)
Inventor
賢 三浦
啓 伊内
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2023563379A priority Critical patent/JPWO2023095202A1/ja
Priority to EP21965576.8A priority patent/EP4379274A1/en
Priority to PCT/JP2021/042972 priority patent/WO2023095202A1/en
Publication of WO2023095202A1 publication Critical patent/WO2023095202A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks

Definitions

  • This embodiment relates to an air conditioner.
  • the refrigerant used in the refrigeration cycle of air conditioners may use flammable refrigerants, including mildly flammable refrigerants, in order to improve air conditioning performance and environmental performance.
  • a refrigerant detection unit for detecting refrigerant is provided in a target room to be air-conditioned, and when refrigerant leakage from the refrigeration cycle is detected, , an electric on-off valve, also called a shut-off valve, shuts off a pipe for flowing a refrigerant to an indoor unit that air-conditions the room.
  • the air conditioner is equipped with a battery unit.
  • the shutoff valve for shutting off the pipe to the indoor unit is supplied with power from the battery unit to the drive circuit.
  • the battery unit supplies electric power to the cutoff valve to close the cutoff valve.
  • the indoor unit In the installation work of an air conditioner, the indoor unit is placed and fixed in a predetermined position such as behind the ceiling, and the indoor unit and the outdoor unit installed outdoors are connected with a refrigerant pipe called a connecting pipe. do. Further, it is necessary to wire to connect between the indoor unit and the outdoor unit and between the indoor unit and the remote control unit. In addition, each device must be connected to a power source to ensure proper communication between these devices. For this reason, in installation work, power-on and power-off are often repeated in each device.
  • the refrigerant circulation It is necessary to evacuate the piping that will be the path.
  • the cutoff valve when the cutoff valve is closed, the air in the indoor unit that is cut off by the cutoff valve cannot be exhausted. As a result, there is a risk that air will be mixed with the refrigerant during subsequent operation, resulting in failure of normal operation or failure of the air conditioner.
  • the refrigerant may be additionally charged into the refrigerating cycle after vacuuming during the installation work.
  • shut-off valves are often installed in the middle of pipes in the ceiling or under the floor near the indoor unit. And the battery unit will be installed near the isolation valve. Therefore, there is a problem that it takes a lot of time and effort to connect the battery units after all the installation work is completed.
  • An object of the present invention is to provide an air conditioner capable of
  • An air conditioner includes an outdoor unit, an indoor unit, piping, a battery unit, a permission unit, and a valve control unit.
  • the indoor unit cools or heats the interior of the room with the refrigerant supplied from the outdoor unit.
  • the piping connects between the outdoor unit and the indoor unit, through which refrigerant flows.
  • the battery unit supplies power when the power supply from the AC power supply is stopped.
  • the shutoff valve opens and closes the pipe with power from an AC power supply or power from a battery unit.
  • the permitting unit permits the shutoff valve to close.
  • the valve control unit closes the cutoff valve with power from the battery unit. To keep the piping open by the shutoff valve even if the power supply to the shutoff valve is stopped.
  • FIG. 1 is a refrigeration cycle diagram of an air conditioner according to the first embodiment
  • FIG. 2 is a schematic control block diagram of the air conditioner according to the first embodiment
  • FIG. 3 is a circuit block diagram of the indoor unit and valve control unit of the air conditioner according to the first embodiment
  • FIG. 4 is a schematic diagram showing the procedure in the installation work of the air conditioner according to the first embodiment
  • FIG. 5 is a control flowchart showing the flow of processing in the valve control circuit of the air conditioner according to the first embodiment
  • FIG. 6 is a control flowchart following the control flowchart of FIG.
  • FIG. 7 is a control flowchart showing the flow of processing in the battery control unit of the air conditioner according to the first embodiment
  • FIG. 1 is a refrigeration cycle diagram of an air conditioner according to the first embodiment
  • FIG. 2 is a schematic control block diagram of the air conditioner according to the first embodiment
  • FIG. 3 is a circuit block diagram of the indoor unit and valve control unit of the air conditioner according to the first embodiment
  • FIG. 4 is a schematic
  • FIG. 8 is a circuit block diagram of the indoor unit and the valve control unit in the air conditioner according to the second embodiment
  • FIG. 9 is a control flowchart showing the flow of processing in the valve control circuit of the air conditioner according to the second embodiment
  • FIG. 10 is a control flowchart following the control flowchart of FIG.
  • FIG. 11 is a control flow chart showing the flow of processing in the battery control section of the air conditioner according to the second embodiment.
  • the air conditioner 10 includes an outdoor unit 11, an indoor unit 12, a pipe 13, an energization detection unit 14, a refrigerant detection unit 15, a cutoff valve 16, a battery unit 17, and a valve control unit 18. ing.
  • These outdoor unit 11, indoor unit 12 and pipe 13 constitute a refrigeration cycle using a refrigerant as shown in FIG.
  • the pipe 13 is also called a connecting pipe.
  • one outdoor unit 11 is a so-called multi-type air conditioner 10 connected to a plurality of indoor units 12 via pipes 13 .
  • the air conditioner 10 may be a so-called single type in which one outdoor unit 11 is connected to one indoor unit 12 .
  • the outdoor unit 11 includes a compressor 21, a heat exchanger 22, an expansion valve 23, and an outdoor fan (not shown) that promotes heat exchange between the heat exchanger 22 and the outside air.
  • the outdoor unit 11 is provided outside a target room to be air-conditioned, usually outdoors.
  • the refrigerant for example, slightly flammable HFC-R32 or the like is used.
  • the refrigerant is filled in the outdoor unit 11, the refrigerating cycle components in the indoor unit 12, and the piping 13, which constitute the refrigerating cycle.
  • the indoor unit 12 is provided in each of one or more target rooms.
  • the target room is a space such as a room to be air-conditioned by the air conditioner 10 .
  • the indoor unit 12 has a heat exchanger 25, an expansion valve (not shown), an indoor fan, and the like.
  • the indoor unit 12 uses the low-temperature or high-temperature refrigerant supplied from the outdoor unit 11 to perform cooling operation or heating operation for the target room.
  • the pipe 13 connects between the outdoor unit 11 and the indoor unit 12 .
  • the refrigerant circulates between the outdoor unit 11 and the indoor unit 12 through the pipe 13 as the refrigeration cycle operates.
  • the piping 13 generally has two lines, a liquid passageway and a gas passageway. Liquid passages are so-called liquid pipes through which mainly liquefied refrigerant flows.
  • the gas passage is a so-called gas pipe through which mainly vaporized refrigerant flows.
  • the pipe 13 is at intermediate pressure. You may have three passages which added piping. In the example of this specification, the number of pipes 13 is assumed to be two for ease of explanation.
  • the outdoor unit 11 has an outdoor controller 31 as shown in FIG.
  • the outdoor control unit 31 is composed of, for example, a microcomputer having a CPU, ROM, and RAM (not shown), and controls the outdoor unit 11 by a computer program stored in the ROM.
  • the indoor unit 12 has an indoor controller 32 .
  • the indoor control unit 32 is composed of a microcomputer having a CPU, a ROM and a RAM, similarly to the outdoor control unit 31, and controls the indoor unit 12 by a computer program stored in the ROM.
  • Each indoor control unit 32 and the outdoor control unit 31 are communicably connected by a communication line L1, and exchange information and give instructions to each other.
  • the outdoor unit 11 is supplied with power from a commercial three-phase AC power source 33, for example.
  • the indoor unit 12 is supplied with power from, for example, a commercial single-phase AC power source 34 .
  • the indoor unit 12 is connected by wire to a remote control unit 35, which is a so-called remote controller.
  • the remote control unit 35 receives input for operating the indoor unit 12 .
  • the remote control unit 35 is connected to the indoor control unit 32 by, for example, two communication lines L2.
  • the communication line L2 is used both as a communication line and as a power line. Accordingly, operating power for the remote control unit 35 is supplied from the indoor unit 12 .
  • the remote control unit 35 receives inputs such as start of operation of the indoor unit 12, stop of operation, air conditioning temperature, humidity, air volume, and the like.
  • the indoor controller 32 operates the indoor unit 12 based on an input from the remote controller 35 .
  • the indoor unit 12 has a rectifier circuit 36 such as an AC/DC converter as shown in FIG. 3, for example. Electric power supplied from the power supply 34 is rectified and high-voltageized by the rectifier circuit 36, and supplied as a DC power supply to the indoor control unit 32, the remote control unit 35, and the refrigerant detection unit 15, which will be described later.
  • the refrigerant detection unit 15 is composed of, for example, a gas sensor, a detection judgment circuit, a notification circuit including a communication function, etc., and detects refrigerant leakage in the target room.
  • the refrigerant uses slightly flammable R32. Therefore, in order to ensure safety, the refrigerant detection unit 15 detects leakage of this refrigerant into the target chamber.
  • the volume of the target room is large, even if the refrigerant leaks, the concentration of the refrigerant in the air will be low and the influence of the leakage will be small.
  • the refrigerant detection unit 15 is not provided in all the indoor units 12, but may be provided in the indoor unit 12 of the target room having a relatively small volume where the influence of refrigerant leakage is large.
  • the refrigerant detection unit 15 is housed inside the indoor unit 12 in this embodiment, it may be attached to the wall surface of the target room outside the indoor unit 12 .
  • the coolant detection unit 15 may be provided at a position where leakage of the coolant can be appropriately detected.
  • the refrigerant detector 15 is electrically connected to the indoor controller 32 .
  • the refrigerant detection unit 15 detects refrigerant leakage, the refrigerant detection unit 15 outputs a specific electric signal to the indoor control unit 32 via the communication line L2 in order to notify that effect.
  • the indoor controller 32 Upon receiving the refrigerant leakage signal, the indoor controller 32 notifies the valve controller 18 to that effect via the communication line L3.
  • the shutoff valve 16 is provided in the middle of the pipe 13 as shown in FIG. 1 and opens and closes the pipe 13 .
  • the cutoff valve 16 is provided on the inlet side of the indoor unit 12 to which the refrigerant detection unit 15 is attached, that is, on the outdoor unit 11 side.
  • the shut-off valve 16 is electrically opened and closed by being driven by the valve driving circuit 45 based on an instruction from the valve control section 18 .
  • the shutoff valve 16 shuts off the refrigerant from flowing into the target indoor unit 12 by shutting off the pipe 13 .
  • the shutoff valve 16 shuts off the pipe 13 connected to the indoor unit 12 of the target room where the leak is detected, and Refrigerant flow to machine 12 is stopped.
  • a shutoff valve 16 is provided in each of the passages forming the pipe 13 to separate the indoor unit 12 from the refrigerating cycle. That is, if there are two pipes 13, two cutoff valves 16 are required, and the plurality of cutoff valves 16 are synchronously opened and closed by the valve driving circuit 45.
  • the shutoff valve 16 can be electrically controlled to open and close, and a pulse motor valve capable of fully closing the refrigerant passage, a so-called PMV, or a ball valve is used.
  • the battery unit 17 shown in FIGS. 2 and 3 is a small box-shaped housing.
  • the battery unit 17 accommodates therein an energization detection unit 14 for detecting the presence or absence of energization of the power source 34, in other words, detecting a power failure, a battery 41 and a battery control unit 42 .
  • the battery 41 rectifies and stores AC power supplied from the same commercial single-phase AC power supply 34 as the indoor unit 12 and the valve control unit 18 .
  • the indoor unit 12 may be supplied with power from an AC power supply separate from these devices.
  • the battery 41 is various secondary batteries and capacitors that can be charged and discharged.
  • the battery control unit 42 is composed of, for example, a microcomputer having a CPU, a ROM and a RAM that operates on the power of the power supply 34 or the battery, and executes a computer program stored in the ROM to charge and discharge the battery 41. It controls the operation of the battery unit 17 .
  • the refrigerant detection unit 15 for detecting refrigerant leakage and the battery unit 17 for ensuring the operation of the shutoff valve 16 during a power failure increase the safety of the air conditioner 10 as security devices.
  • the valve control section 18 has a valve control circuit 44 , a valve drive circuit 45 and a switch section 55 .
  • the valve control circuit 44 is composed of, for example, a microcomputer having a CPU, ROM and RAM, and controls opening and closing of the cutoff valve 16 by executing a computer program stored in the ROM.
  • the valve drive circuit 45 is electrically connected to the shutoff valve 16 .
  • the valve drive circuit 45 controls energization of the cutoff valve 16 according to instructions from the valve control circuit 44 to drive the cutoff valve 16 and open and close the cutoff valve 16 .
  • the valve control circuit 44 and the valve drive circuit 45 both receive power from a rectifier circuit 46 such as an AC/DC converter connected to the power supply 34 via a DC power supply line M1 to operate.
  • the DC power line M1 is also connected in parallel with a DC power line M2 that is a DC discharge line for the battery 41 . Therefore, even if the power source 34 is cut off, the valve control circuit 44 and the valve driving circuit 45 can continue to operate by being supplied with operating power as long as the battery 41 is discharged from the battery control unit 42 .
  • the DC output voltage of the rectifier circuit 46 and the DC output voltage due to the discharge of the battery 41 are substantially the same, or the output voltage on the battery 41 side is slightly lower within the operating voltage range of the valve control circuit 44 and the valve drive circuit 45. is set.
  • a diode D is connected to the DC output line M ⁇ b>2 on the “+output” side of the battery control unit 42 in the forward direction toward the rectifier circuit 46 . This prevents the output voltage of the rectifier circuit 46 from being reversely applied to the battery output terminal of the battery control section 42 .
  • the valve control unit 18 When the refrigerant detection unit 15 detects refrigerant leakage, the valve control unit 18 receives notification of the refrigerant leakage from the indoor control unit 32 via the communication line L3 and operates the valve drive circuit 45 . As a result, the valve control unit 18 closes the shutoff valve 16 to shut off the pipe 13 . Furthermore, when the power supply 34 is not energized after the conditions are satisfied as described later, the valve control unit 18 drives the cutoff valve 16 with electric power from the battery unit 17 to cut off the pipe 13 . In the case of using a flammable refrigerant, when leakage of the refrigerant is detected, the cutoff valve 16 is required to close even if the power supply 34 to the valve control section 18 is cut off.
  • the valve control unit 18 receives electric power supply from the battery unit 17 in advance to drive the shutoff valve 16 and shut off the pipe 13 in the event of a power failure.
  • the switch unit 55 is provided in the middle of the power supply line P2 between the power supply 34 and the battery unit 17, and interrupts the energization from the power supply 34 to the battery unit 17. As shown in FIG. In the case of the first embodiment, the switch section 55 is a normally open relay inserted into one side of the power supply line P2.
  • the switch unit 55 may be a relay inserted in both power lines P2, or the relay may be replaced with a semiconductor switch.
  • the valve control unit 18, the shutoff valve 16, and the battery unit 17 are incorporated in a shutoff valve unit 47, which is a box-shaped housing, so as to be installed in the ceiling space, under the floor, or in the piping installation space.
  • the shut-off valve unit 47 incorporates only the shut-off valve 16 and the valve control unit 18, is installed separately from the battery unit 17, and is connected to the single-phase AC power supply 34 and the valve control unit 18 by wiring outside. You may do so.
  • the air conditioner 10 includes a permission unit 50 and an input unit 51 as shown in FIGS. 2 and 3 .
  • the permitting section 50 is provided in the indoor control section 32 .
  • the permitting unit 50 is implemented in software by executing a computer program on the microcomputer of the indoor control unit 32, for example.
  • the permitting unit 50 may be realized by hardware or cooperation between software and hardware.
  • the permitting unit 50 permits the closing operation of the cutoff valve 16 that opens and closes the pipe 13 .
  • the valve control unit 18 When the battery unit 17 is electrically connected, the valve control unit 18 is in a state in which the shutoff valve 16 can be closed by the power supplied from the battery unit 17 even when the power source 34 is not energized. On the other hand, the valve control unit 18 may close the shutoff valve 16 with the electric power of the battery unit 17 if the energized state is shut off for some reason during the installation work of the air conditioner 10 . In this case, the pipe 13 is shut off by the shutoff valve 16 . If the pipe 13 is shut off by the shutoff valve 16, vacuuming and refrigerant charging are prevented during the installation work of the air conditioner 10. FIG.
  • the valve control unit 18 keeps the switch unit 55 in an open state until permission is given from the permission unit 50, and cuts off the energization from the power source 34 to the battery unit 17.
  • FIG. Therefore, the valve control section 18 does not close the shutoff valve 16 until permission is given from the permission section 50 .
  • the valve control unit 18 turns on the switch unit 55 to shut off the power supply to the power supply 34, that is, to close the shutoff valve 16 during a power failure, that is, to shut off the pipe 13 by the shutoff valve 16. becomes.
  • the permission unit 50 is not limited to the indoor control unit 32, and is provided in other control units such as the remote control unit 35 and the outdoor control unit 31 that can be indirectly connected to the valve control unit 18 and the valve control circuit 44 by communication. may be Furthermore, the permitting section 50 may be provided at a plurality of these locations.
  • the input unit 51 receives an input of a permission instruction from an operator who installs and installs the air conditioner 10 .
  • the input unit 51 is, for example, a mechanical switch or a software switch. It is desirable that the input unit 51 can be operated only by the installation operator of the air conditioner 10 . That is, it is desirable that the input unit 51 requires a special operation or is arranged at a position where the user cannot operate it, so as not to operate it by a normal user of the air conditioner 10. .
  • the installation worker of the air conditioner 10 inputs a permission instruction to the valve control section 18 through the input section 51 .
  • the permission unit 50 transmits the permission instruction to the valve control unit 18 through the communication line L3 in order to permit the shutoff of the piping 13 by the shutoff valve 16. It is transmitted to the valve control circuit 44 .
  • the valve control unit 18 is in a state where the shutoff valve 16 opens the pipe 13 in the initial state when the air conditioner 10 is shipped.
  • the air conditioner 10 and the power supplies 33 and 34 are electrically disconnected. Therefore, the indoor unit 12 of the air conditioner 10 is not supplied with power from the power supply 34 , that is, is not energized from the power supply 34 .
  • the shut-off valve 16 maintains its initial state and opens the pipe 13 .
  • the shutoff valve 16 is closed. is operable by the power supplied.
  • the shutoff valve 16 may shut off the pipe 13 depending on the conditions.
  • the air conditioner 10 needs to reduce the pressure in the pipe 13, that is, to draw a vacuum in order to fill the refrigerant. That is, when the refrigerant is charged, the vacuum pump 52 is connected to a predetermined position as shown in FIG. 1, and the pressure in the pipe 13 is reduced. In this case, it is required to sufficiently depressurize the pipe 13 and remove the air remaining in the pipe 13 . If the pipe 13 is shut off by the shutoff valve 16 during this vacuuming operation, air remains in the pipe 13 and the indoor unit 12 . Therefore, in the present embodiment, the valve control unit 18 does not drive the cutoff valve 16 and keeps the pipe 13 open until receiving the permission instruction from the permission unit 50 . Thus, the pipe 13 is kept open until the installation operator of the air conditioner 10 operates the input unit 51 to permit the operation of the cutoff valve 16 . Therefore, evacuation and additional charging of refrigerant can be easily performed. A specific control mechanism for carrying out this operation will be described.
  • the energization detection unit 14 detects whether power is supplied from the power source 34 to the battery unit 17 , that is, whether power is supplied from the power source 34 to the valve control unit 18 .
  • the energization detector 14 is composed of, for example, a photocoupler connected to the output side of a full-wave rectifier, and uses a so-called zero-cross detection circuit for detecting "zero-cross" of the voltage of the power supply 34 .
  • the output of the energization detection unit 14 is input to the battery control unit 42 .
  • the battery control unit 42 determines that there is power supply when the power supply detection unit 14 detects a "zero cross" during the half-cycle period of the AC power frequency.
  • the battery control unit 42 determines that the power source 34 has been cut off, ie, a power outage, if the "zero cross" of the power source 34 is not detected even after the half-cycle period of the AC power source frequency has passed from the above-described state of energization. .
  • the battery control unit 42 can operate when power is supplied from either the power supply 34 or the battery 41 . Therefore, even if the power supply 34 is cut off, the battery control unit 42 can operate as long as the battery 41 has electric power.
  • the battery control unit 42 may use only the battery 41 as a power source.
  • the energization detection unit 14 may be configured to include the above-described power cutoff determination in the battery control unit 42 .
  • the energization detection unit 14 independently inputs the determination result of energization and cutoff of the power supply 34 to the battery control unit 42 .
  • the determination of whether to turn on or off the power supply 34 is made using the periodic occurrence of "zero crossings" of the voltage of the power supply 34.
  • the determination of whether to turn on or off the power supply 34 may be detected by other methods such as detection of the voltage of the power supply 34, for example.
  • the permitting unit 50 permits power supply from the battery unit 17 to the shutoff valve 16 by permitting energization from the power supply 34 to the battery 41 of the battery unit 17 .
  • the valve control circuit 44 does not turn on the switch section 55 until there is a permission instruction from the permission section 50 . Therefore, the battery unit 17 is not supplied with power from the power source 34, and the battery unit 17 is not charged. Furthermore, the battery unit 17 does not detect power interruption even if the battery 41 is sufficiently charged at the time of shipment. This is because the energization detection unit 14 and the battery control unit 42 detect that energization from the power source 34 is stopped after energization once, and judge that the power is cut off. For this reason, it is not determined that the power supply has been turned off when the power supply 34 is not energized even once.
  • the shutoff valve 16 is operable by the valve drive circuit 45 with power from the battery 41 even when power is not supplied from the power supply 34 .
  • the valve control unit 18 uses the electric power supplied from the battery 41 to cut off the pipe 13 with the valve control circuit 44 and the valve driving unit 18 .
  • Circuit 45 drives isolation valve 16 .
  • the valve control unit 18 enters a state in which the cutoff valve 16 can be opened.
  • energization state signals regarding energization sent from the battery control unit 42 to the valve control circuit 44: a "discharge stop” signal indicating energization and a "discharging” signal indicating no energization.
  • the battery control unit 42 determines that the power supply 34 has started to re-energize when the energization state signal changes from "discharging" to "discharging stopped”.
  • the valve control circuit 44 When the cutoff valve 16 is closed, the operation of the air conditioner 10 is stopped. Therefore, when the valve control circuit 44 is newly instructed to start operation from the indoor unit 12 of the air conditioner 10 via the communication line L3 after the determination of re-energization, the valve control circuit 44 operates the valve drive circuit 45 to open the shutoff valve 16. do. On the other hand, the closing of the shutoff valve 16 based on the detection of refrigerant leakage is not opened unless inspection and special operation by the repairer are performed after inspection, confirmation and repair of refrigerant leakage.
  • the air conditioner 10 is installed as equipment in a building or the like.
  • the outdoor unit 11 and the indoor unit 12 of the air conditioner 10 are installed at preset positions in the facility (F101).
  • the air conditioner 10 is connected to piping and wiring by the installation operator (F102).
  • the pipe 13 connects the outdoor unit 11 and the indoor unit 12 .
  • the wiring includes a power line connecting the power source 33 and the outdoor unit 11, a power source 34 and the indoor unit 12, a communication line L1 between the outdoor unit 11 and the indoor unit 12, and a communication line L1 between the remote control unit 35 and the indoor unit 12.
  • Various wirings such as L2 are included.
  • the cutoff valve 16 is in a state in which the pipe 13 is opened as an initial state at the time of shipment. That is, the air conditioner 10 is installed as equipment in a state where the shutoff valve 16 keeps the pipe 13 open.
  • a security device is attached to the air conditioner 10 to ensure safety (F103).
  • the safety device is the cutoff valve unit 47 including the refrigerant detection section 15, the valve control section 18 and the battery unit 17 as described above.
  • a power line is connected between the power supply 34 and the cutoff valve unit 47 .
  • a communication line L2 between the refrigerant detection unit 15 and the indoor unit 12 a communication line L3 between the indoor unit 12 and the cutoff valve unit 47, and a communication line between the valve control unit 18 in the cutoff valve unit 47 and the battery unit 17
  • L4 is connected and installation of a security device is completed. Note that the procedures of F102 and F103 are not restricted in order and may be executed in parallel.
  • each part of the air conditioner 10 can communicate. In this case, even if the power supply 34 is cut off after this, the permission unit 50 does not output a permission instruction to the valve control unit 18 . Therefore, the switch section 55 is kept off, that is, in an open state. Therefore, the energization detection unit 14 does not detect that the power supply 34 has been cut off, and power is not supplied from the battery unit 17 to the valve control unit 18 . As a result, the valve control unit 18 does not operate, and the pipe 13 is kept open without closing the cutoff valve 16 .
  • the operator who installs the air conditioner 10 determines whether or not the connection of the pipe 13 has been completed and the vacuum can be drawn.
  • the installation worker of the air conditioner 10 evacuates the indoor unit 12 and the pipe 13 (F105).
  • the vacuum pump 52 is connected to a part of the pipe 13 with the valve of the pipe 13 on the outdoor unit 11 side closed, and the refrigeration cycle components in the pipe 13 and the indoor unit 12 are removed over several hours, for example. evacuate.
  • the installation worker removes the vacuum pump from the outdoor unit 11, and then opens the valve on the outdoor unit 11 side to the pipe 13 side to connect the refrigeration cycle.
  • the refrigerant is additionally charged into the refrigerating cycle through the valve of the outdoor unit 11 in F106. If the length of the pipe 13 is short and the amount of refrigerant charged in the outdoor unit 11 from the beginning is sufficient, the additional charging of refrigerant F106 is omitted. Even during this evacuation and additional charging of the refrigerant, the cutoff valve 16 is not permitted to operate, and the pipe 13 is open. Therefore, the outdoor unit 11, the indoor unit 12, and the pipe 13 can be evacuated without any trouble, and the refrigerant can be easily filled.
  • the installation worker of the air conditioner 10 confirms that each power line and communication line are connected, and operates the breaker or the like to turn on the power supplies 33 and 34 (F107). Then, the installation operator operates the input unit 51 to issue a permission instruction from the permission unit 50 (F108). Upon receiving this instruction, the valve control unit 18 determines that the cutoff valve 16 is in an operable state, that is, the pipe 13 can be cut off. As a result, the safety device starts to operate, and the refrigerant detector 15, cutoff valve 16 and battery unit 17 start to operate normally (S109). When the power source 34 is cut off after this permission instruction is issued, the valve control unit 18 closes the cutoff valve 16 and cuts off the pipe 13 using the battery 41 as the power source.
  • the valve control unit 18 and the valve drive circuit 45 operate using the battery 41 as a power source to drive the cutoff valve 16 and cut off the pipe 13 .
  • the power supply 34 is cut off, power is not supplied to the indoor unit 12 and the refrigerant detection unit 15 . Therefore, even if a refrigerant leak occurs, the refrigerant detection unit 15 may not be able to detect the refrigerant.
  • shutoff valve 16 is driven in advance to shut off the pipe 13 when the power supply 34 is shut off. Therefore, even if refrigerant leakage should occur during a power failure, the flow of the refrigerant to the indoor unit 12 is blocked, and the safety of the air conditioner 10 is improved.
  • the installation worker performs a test run of the air conditioner 10 (F110). That is, the test operation of the air conditioner 10 is performed with the refrigerant detection unit 15, the shutoff valve 16, and the battery unit 17 enabled.
  • the air conditioner 10 undergoes a series of installation, evacuation, refrigerant charging, and trial operation, and is ready for operation.
  • valve control circuit 44 of the valve control unit 18 will be described based on FIGS. 5 and 6, and the control operation by the battery control unit 42 will be described based on FIG. Control by the valve control circuit 44 and control by the battery control section 42 are executed in parallel.
  • valve control circuit 44 determines whether or not the refrigerant detection unit 15 has detected leakage of the refrigerant (S201). Specifically, it is determined whether or not notification of the occurrence of refrigerant leakage has been input from the indoor controller 32 of the indoor unit 12 to the valve control circuit 44 via the communication line L2.
  • the valve control circuit 44 detects the occurrence of refrigerant leakage (S201: Yes)
  • the valve control circuit 44 operates the valve drive circuit 45 to close the shutoff valve 16 and shut off the pipe 13 (S202). .
  • the valve control circuit 44 closes the cutoff valve 16 of the indoor unit 12 provided in the target room in which the refrigerant leakage is detected.
  • the valve control circuit 44 may close the shutoff valves 16 of all the indoor units 12 .
  • the valve control circuit 44 determines whether or not there is a recovery instruction (S203).
  • the recovery instruction is issued when it is determined that the operation of the air conditioner 10 can be recovered by taking preset safety measures such as repairing refrigerant leakage.
  • the recovery instruction is issued by the repair/inspection person of the air conditioner 10 by arbitrary means such as a mechanical switch (not shown), a software switch, or an input from the remote control unit 35 .
  • the valve control circuit 44 determines that there is a recovery instruction (S203: Yes)
  • it drives the cutoff valve 16 to open the pipe 13 (S204). That is, when there is a recovery instruction, it is considered that the safety of the operation has been secured, so the pipe 13 is opened and the normal air conditioning operation is resumed.
  • valve control circuit 44 closes the cutoff valve 16 via the valve drive circuit 45 to open the pipe 13 .
  • the valve control circuit 44 determines that there is no recovery instruction (S203: No)
  • it waits until there is a recovery instruction. That is, when there is no recovery instruction, the valve control circuit 44 maintains the state in which the pipe 13 is shut off by the shutoff valve 16 because it is considered that safe operation is not sufficiently ensured.
  • the valve control circuit 44 detects no refrigerant leakage in S201 (S201: No), the permitting instruction from the permitting unit 50 permitting closing of the shutoff valve 16 during a power failure, that is, the operation in F103 in the procedure of FIG. It is determined whether or not there is (S205). Specifically, the valve control circuit 44 determines whether or not a permission instruction has arrived from the indoor control unit 32 to the valve control circuit 44 via the communication line L3.
  • the valve control circuit 44 determines whether or not the cutoff valve 16 is closed (S207).
  • the valve control circuit 44 determines that the shutoff valve 16 is closed at that time to shut off the pipe 13 (S207: Yes)
  • Whether or not the battery 41 is discharging is determined by an energization state signal sent from the battery control section 42 via the communication line L4. That is, if the energization state signal is "discharge stop", the battery 41 is not discharging. On the other hand, if the energization state signal is "discharging", the battery 41 is discharging.
  • valve control circuit 44 determines whether the battery 41 is discharging (S208: Yes), it determines whether the battery 41 has stopped discharging, that is, whether the energization state signal has changed from "discharging” to “discharging stopped”. (S209). When the valve control circuit 44 determines that the discharge of the battery 41 has not stopped (S209: No), it waits until the discharge stops, and the cutoff valve 16 is kept closed.
  • valve control circuit 44 determines whether or not refrigerant leakage has been detected (S210).
  • the valve control circuit 44 determines whether or not there has been an instruction to open the valve (S211). That is, the valve control circuit 44 determines whether or not there is a valve open instruction to open the pipe 13 by the cutoff valve 16 when no refrigerant leakage is detected at the time of restoration from power failure.
  • the valve opening instruction is an instruction to start operation of the air conditioner 10, and the valve control circuit 44 is sent from the indoor control unit 32 via the communication line L3 by the user of the air conditioner 10 operating the remote control unit 35 or the like to start operation. is input to When the valve control circuit 44 determines that there is an instruction to open the valve (S211: Yes), it operates the valve drive circuit 45, drives the cutoff valve 16 to open it, opens the pipe 13 (S212), and proceeds to S207. return.
  • the air conditioner 10 will start operating.
  • the valve control circuit 44 determines in S211 that there is no valve opening instruction, that is, that the air conditioning operation is being stopped (S211: No)
  • the valve control circuit 44 returns to S210 and returns to S210. Wait for the valve opening instruction.
  • the process returns to S207, and the shutoff valve 16 keeps the pipe 13 closed.
  • the valve control circuit 44 determines whether or not there is a recovery instruction (S213).
  • the recovery instruction is the same as in S203.
  • the valve control circuit 44 proceeds to S212 and opens the pipe 13 by the cutoff valve 16.
  • the valve control circuit 44 waits until there is a recovery instruction. Therefore, in the air conditioner 10, the shutoff valve 16 remains closed and the air conditioning operation cannot be started until a recovery instruction is given, so that safety can be ensured.
  • valve control circuit 44 determines whether or not refrigerant leakage has been detected (S214). That is, when the valve control circuit 44 determines in S207 that the shutoff valve 16 has opened the pipe 13, it continues detection of refrigerant leakage. When the valve control circuit 44 detects refrigerant leakage in S214 (S214: Yes), the shutoff valve 16 shuts off the pipe 13 (S215), and the process returns to S207. On the other hand, when the valve control circuit 44 determines that no refrigerant leakage has been detected (S214: No), it determines whether the battery 41 is being discharged (S216).
  • valve control circuit 44 determines that the battery 41 is discharging (S216: Yes)
  • the process proceeds to S215, and the shutoff valve 16 shuts off the pipe 13.
  • power is supplied from the battery 41 to the valve drive circuit 45 for driving the cutoff valve 16 .
  • the valve control circuit 44 itself, which executes the procedure in this flow chart, is also operating with power supplied from the battery 41 at this time. It should be noted that, after a power failure such as a power failure occurs, it takes several tens of hours until the power detection unit 14 and the battery control unit 42 detect this, the battery 41 starts discharging, and the valve control circuit 44 is notified of this. A period of milliseconds occurs. During this period, the valve control circuit 44 continues to operate with power stored in a capacitor or the like provided in the rectifier circuit 46 or the like. Therefore, the processing of the valve control circuit 44 is not interrupted.
  • valve control circuit 44 determines that the battery 41 is not discharging (S216: No), it returns to S207. In a normal state, NO in S207, NO in S214, and NO in S216 are repeated. During this time, the shutoff valve 16 is open, so the operation of the air conditioner 10 can be stopped freely.
  • the battery control unit 42 determines whether or not the stoppage of the power supply to the power supply 34, that is, the power failure has been detected (S301).
  • the battery control unit 42 detects the stoppage of energization through the energization detection unit 14 (S301: Yes)
  • it starts discharging the battery 41 S302
  • the battery control unit 42 notifies the valve control circuit 44 of a "discharging” signal indicating that the battery 41 is discharging (S303), and sets "power failure" as an internal determination flag. (S304).
  • the battery control unit 42 determines whether or not the determination flag is set to "during power outage" (S305). That is, the battery control unit 42 determines whether or not there is a setting of "during power failure” in S304 in the flow of a series of processes.
  • the battery control unit 42 determines whether or not the power supply to the power supply 34 has been restored (S306). That is, the battery control unit 42 determines whether the power supply from the power supply 34 is restored through the power supply detection unit 14 .
  • the battery control unit 42 determines that the energization has been restored in S306 (S306: Yes), it stops discharging the battery 41 (S307). That is, the battery control unit 42 stops supplying power from the battery 41 to the valve control unit 18 . At the same time, the battery control unit 42 notifies the valve control circuit 44 of a "discharge stop" signal indicating that the battery 41 has stopped discharging as an energization state signal, and cancels the internal flag "during power outage” (S308). ). In S209, the valve control circuit 44 described above receives from the battery control unit 42 the energization state signal of "discharge stop" in S308. Further, when the battery control unit 42 determines that the energization has not been restored in S306 (S306: No), the process returns to S301.
  • the battery control unit 42 determines whether the remaining amount of the battery 41 is sufficient (S309).
  • the battery control unit 42 determines, for example, whether or not the remaining amount P of the battery 41 is greater than a preset charging amount Ps.
  • the set charge amount Ps can be arbitrarily set, such as 95% of the maximum capacity of the battery 41, for example.
  • the battery control unit 42 determines that the remaining amount of the battery 41 is insufficient, for example, P ⁇ Ps (S309: No), the battery 41 is charged using the power from the power supply 34 (S311), and the process returns to S301. do. Further, when the battery control unit 42 determines that it is not "during power outage" in S305 (S305: No), it proceeds to S309 and continues the subsequent processing. In a normal state, that is, in a state in which regular power is supplied from the power supply 34, the battery control unit 42 repeats NO in S301, NO in S305, S309, S310, or S311 until the charge amount of the battery 41 reaches the set charge amount. Ps.
  • the shutoff valve 16 powered by the battery 41 is not closed until the permission instruction is input to the valve control unit 18, and (2) after the permission instruction. (3) When the power supply to the valve control unit 18 is cut off and the shutoff valve 16 is closed when a refrigerant leak is detected, (3) When the power supply to the valve control unit 18 is cut off , the shutoff valve 16 is driven by the battery 41 as a power source.
  • the shutoff valve 16 when the power supply 34 stops energizing the valve control unit 18, the shutoff valve 16 can be shut off by the power of the battery 41, and safety can be improved. Furthermore, the valve control unit 18 restricts the driving of the cutoff valve 16 and maintains the open state of the pipe 13 until the permission instruction is given. Therefore, even if the connection and disconnection of the power source 34 to the battery unit 17 are repeated when the air conditioner 10 is installed, the shutoff valve 16 is not closed and the pipe 13 is kept open. Therefore, it is possible to easily perform evacuation and refrigerant charging before issuing the permission instruction.
  • connection location of the energization detection unit 14 is moved to the valve control unit 18 side instead of the battery unit 17 shown in the first embodiment.
  • the energization detection unit 14 and the valve control circuit 44 cooperate to detect whether power is supplied from the power source 34 to the valve control unit 18 .
  • the valve control circuit 44 instructs the battery control unit 42 to discharge the battery 41 via the communication line L4 when there is no power supply from the power supply 34, that is, when a cutoff or power failure is detected.
  • the battery control section discharges the battery 44 to supply operating power to the valve control circuit 44 and the valve drive circuit 45 .
  • valve control unit 18 and the battery unit 17 cooperate with each other to determine when it is necessary to close the cutoff valve 16, but in the case of the second embodiment, the valve control unit 18 It manages the closing operation of the cutoff valve 16 and the discharge from the battery unit 17 when the power supply 34 is cut off without any linkage.
  • Other configurations are common to the first embodiment.
  • the permitting unit 50 permits the valve control unit 18 to close the cutoff valve 16 .
  • the valve control unit 18 does not close the shutoff valve 16 until a permission instruction is given from the permission unit 50 .
  • the valve control unit 18 closes the cutoff valve 16 when refrigerant leakage is detected and when the power supply 34 is cut off.
  • valve control circuit 44 during normal operation of the air conditioner 10 according to the second embodiment will be described with reference to FIGS. 9 and 10, and a control flow by the battery control unit 42 is shown in FIG. will be explained based on Here, detailed description of the processing common to the first embodiment is omitted.
  • valve control circuit 44 First, the operation of the valve control circuit 44 shown in FIG. 9 is the same as each step in FIG. 5 except that the last step S206 in FIG. 5 is omitted, so the explanation is omitted. If there is a permission instruction in the last step S205 of FIG. 9 (S205: Yes), the process moves to the first step S406 of FIG. When the valve control circuit 44 determines that the shutoff valve 16 has shut off the pipe 13 (S406: Yes), it determines whether or not it stores "during a power outage" in which the power supply from the power source 34 is stopped. (S407). Here, the storage of "during power failure" is a flag set in S420, which will be described later.
  • valve control circuit 44 determines whether power supply from the power supply 34 to the valve control unit 18 has been restored through the power supply detection unit 14. (S408). When the valve control circuit 44 determines that the power supply has not been restored (S408: No), the valve control circuit 44 waits until the power supply to the power supply 34 is restored.
  • valve control circuit 44 determines that the energization has been restored (S408: Yes), it outputs a "discharge stop instruction" to the battery control unit 42 via the communication line L4 (S409).
  • the valve control unit 18 outputs a “discharge stop instruction” to the battery control unit 42 that controls the battery 41 to stop discharging the battery 41 .
  • the battery control unit 42 determines whether or not the battery 41 needs to be discharged.
  • the valve control circuit 44 determines whether or not the battery 41 needs to be discharged, direct to.
  • the valve control circuit 44 determines whether or not refrigerant leakage has been detected (S410). When the valve control circuit 44 determines that refrigerant leakage has not been detected (S410: No), it determines again whether a power failure has been detected (S411). Then, when the valve control unit 18 determines that a power failure has not been detected (S411: No), it determines whether or not a valve opening instruction, which is an instruction to start operation of the air conditioner 10, has been issued (S412). That is, the valve control circuit 44 determines whether or not there is an instruction to open the valve when no refrigerant leakage is detected and no power failure is detected.
  • valve control unit 18 determines that there is an instruction to open the valve (S412: Yes)
  • the shutoff valve 16 opens the pipe 13 (S413) and returns to S406.
  • the valve control unit 18 determines that there is no valve opening instruction in S412 (S412: No)
  • it returns to S410 and continues the subsequent processing.
  • the valve control unit 18 determines that a refrigerant leak has been detected in S410 (S410: Yes) and when it determines that a power failure has been detected in S411 (S411: Yes)
  • the valve control unit 18 indicates "power failure" in S420. After storing, the process returns to S406 to continue closing the pipe 13 by the shutoff valve 16.
  • valve control circuit 44 determines whether or not there is a recovery instruction (S414).
  • S414: Yes the process proceeds to S413, the cutoff valve 16 is driven to open, and the pipe 13 is opened.
  • S414: No it waits until there is a recovery instruction. If it is not "during power outage” in S407 (S407: No), it means that the shutoff valve 16 is closed due to detection of refrigerant leakage. Therefore, after taking measures against refrigerant leakage, the shutoff valve is prevented from opening unless the inspector inputs a recovery instruction, thereby enhancing safety.
  • valve control circuit 44 determines whether a power failure has been detected (S415). That is, when the valve control circuit 44 determines in S406 that the shutoff valve 16 has opened the pipe 13, it determines whether or not a power failure has occurred.
  • the valve control circuit 44 determines in S415 that a power failure has been detected (S415: Yes)
  • it outputs a "discharge instruction" for instructing discharge of the battery 41 to the battery control unit 42 (S416).
  • the valve drive circuit 45 is operated to close the shutoff valve 16 and shut off the pipe 13 (S417). After closing the cut-off valve 16 in S417, the valve control circuit 44 stores the flag indicating the state of "blackout” (S420), and returns to S406.
  • valve control circuit 44 determines whether or not refrigerant leakage has been detected (S418).
  • the valve control unit 18 proceeds to S417, and the shutoff valve 16 is closed to shut off the pipe 13 .
  • the process returns to S406 and repeats NO in S406, NO in S415, and NO in S418.
  • the shut-off valve 16 is in an open state, which is a normal state in which the pipe 13 is communicated. Therefore, the air conditioner 10 is operated and stopped by the user during this period.
  • the battery control unit 42 determines whether or not there is a "discharge instruction" (S501).
  • the battery control unit 42 uses the battery 41 or the power source 34 as a power source, but can operate with the electric power stored in the internal capacitor even if the power source 34 fails during the period from the power failure until the battery 41 is discharged. is.
  • the battery control unit 42 determines whether or not there is a "discharge instruction" output in S416 of the valve control unit 18 as described above. ” is stored as an internal flag as “instructing to discharge” (S502). That is, the battery control unit 42 stores the "discharge instruction” in a storage unit such as a RAM or non-volatile memory (not shown), and discharges the battery 41 (S504). That is, once the "discharge instruction" is issued, the battery control unit 42 receives the "discharge stop instruction", and until the storage of "discharge instruction in progress” is canceled in S506, which will be described later, the battery 41 is stored. The stored power is discharged, and the process returns to S501.
  • the battery control unit 42 determines whether the remaining amount of the battery 41 is sufficient (S508). When the battery control unit 42 determines that the remaining amount of the battery 41 is sufficient, that is, P>Ps (S508: Yes), the battery control unit 42 stops charging the battery 41 (S509) and returns to S501. When the battery control unit 42 determines that the remaining amount of the battery 41 is not sufficient (S508: No), it charges the battery 41 (S510) and returns to S501. When the power supply 34 is in a normal state, the battery control unit 42 repeats the processes of S501 NO, S505 NO, S503 NO, S507, S508, S509 or S510 without discharging the battery 41 .
  • the valve control circuit 44 prohibits the discharge from the battery unit 17 until a permission instruction is given. keep it open. Therefore, when the air conditioner 10 is installed, the piping 13 is kept open even if power is repeatedly supplied and interrupted by connecting to the power supply 34 or connecting the battery unit 17 . Therefore, the pipe 13 is not shut off until a permission instruction is issued, and the evacuation and refrigerant charging can be performed smoothly. After the evacuation and refrigerant filling work is completed and the power supply 34 is de-energized after the permission instruction is issued, the shut-off valve 16 is closed by the power of the battery unit 17 to improve safety. be able to.
  • 10 is an air conditioner
  • 11 is an outdoor unit
  • 12 is an indoor unit
  • 13 is a pipe
  • 14 is a current detection unit
  • 15 is a refrigerant detection unit
  • 16 is a cutoff valve
  • 17 is a battery unit
  • 18 is a valve control unit.
  • 34 is a commercial single-phase AC power supply
  • 41 is a battery
  • 42 is a battery control section
  • 44 is a valve control circuit
  • 45 is a valve driving section
  • 50 is a permission section
  • 51 is an input section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioner according to one embodiment of the present invention comprises an outdoor unit, an indoor unit, a pipe, a battery unit, a permission unit, and a valve control unit. The indoor unit cools or heats the interior of a room with the refrigerant supplied from the outdoor unit. The pipe connects the outdoor unit and the indoor unit and allows the refrigerant to flow therethrough. The battery unit supplies power when the power supply from an AC power supply is stopped. A shutoff valve opens and closes the pipe with electric power from the AC power source or from the battery unit. The permission unit permits the shutoff valve to close. The valve control unit closes the shutoff valve with electric power from the battery unit when the supply of electric power from the AC power source to the shutoff valve stops after the permission from the permission unit, and before the permission from the permission unit, maintains the opening of the pipe by the shutoff valve even if the supply of electric power from the AC power source to the shutoff valve stops.

Description

空気調和機air conditioner
 本実施形態は、空気調和機に関する。 This embodiment relates to an air conditioner.
 空気調和機の冷凍サイクルに用いられる冷媒は、空調性能や環境性能向上のために微燃性のものを含む可燃性の冷媒を使用する場合がある。このような空気調和機においては、例えばWO2016/088167に開示されているように、空調の対象となる対象室に冷媒を検出する冷媒検出部を設け、冷凍サイクルから冷媒の漏れが検出されると、遮断弁とも称される電動の開閉弁によって当該室内を空調する室内機に対して冷媒を流すための配管を遮断する。しかしながら、万が一、停電などが発生して電源が遮断すると、冷媒が漏洩しても遮断弁を駆動できず、冷媒漏洩を止めることができない。そのため、空気調和機の室外機を含む冷凍サイクル全体に充填されている冷媒は、漏洩カ所から対象室に放出されてしまう。 The refrigerant used in the refrigeration cycle of air conditioners may use flammable refrigerants, including mildly flammable refrigerants, in order to improve air conditioning performance and environmental performance. In such an air conditioner, for example, as disclosed in WO2016/088167, a refrigerant detection unit for detecting refrigerant is provided in a target room to be air-conditioned, and when refrigerant leakage from the refrigeration cycle is detected, , an electric on-off valve, also called a shut-off valve, shuts off a pipe for flowing a refrigerant to an indoor unit that air-conditions the room. However, if a power failure or the like occurs and the power source is cut off, even if the refrigerant leaks, the cutoff valve cannot be driven and the refrigerant leakage cannot be stopped. Therefore, the refrigerant filled in the entire refrigeration cycle including the outdoor unit of the air conditioner is released from the leakage point into the target room.
 そこで、空気調和機は、バッテリユニットを備えている。これにより、室内機への配管を遮断するための遮断弁は、このバッテリユニットから駆動回路に電力が供給される。そして、遮断弁に対する電源遮断を検出すると、その際にはバッテリユニットから遮断弁に電力を供給し、遮断弁を閉じる。これにより停電中に冷媒が漏洩したとしても既に遮断弁が閉じられていることから、対象室に大量の冷媒が漏洩することが防止される。これにより、停電時であっても、空気調和機の安全性の向上が図られる。 Therefore, the air conditioner is equipped with a battery unit. As a result, the shutoff valve for shutting off the pipe to the indoor unit is supplied with power from the battery unit to the drive circuit. When the cutoff of power to the cutoff valve is detected, the battery unit supplies electric power to the cutoff valve to close the cutoff valve. As a result, even if the refrigerant leaks during a power outage, since the cutoff valve is already closed, it is possible to prevent a large amount of refrigerant from leaking into the target room. This improves the safety of the air conditioner even during a power failure.
 このような電源遮断時にバッテリユニットから遮断弁に電力を供給して、遮断弁を閉止するように構成した場合、配管例えば設置工事においてバッテリユニットを接続した上で一旦遮断弁に電源から電力を供給した後に、何らかの都合で電源を遮断すると、この電源遮断に反応してバッテリユニットを電源として遮断弁を閉止される。そのため、室内機への配管は、遮断される。 When power is supplied from the battery unit to the shut-off valve to close the shut-off valve when the power is cut off, power is supplied from the power supply to the shut-off valve once after connecting the battery unit in piping, for example, during installation work. After that, if the power supply is cut off for some reason, the cutoff valve is closed using the battery unit as the power supply in response to this power cutoff. Therefore, the piping to the indoor unit is cut off.
 空気調和機の設置工事においては、室内機を天井裏などの所定の位置に配置・固定し、この室内機と屋外に設置される室外機との間を、いわゆる渡り配管といわれる冷媒配管で接続する。そして、これら室内機と室外機との間および室内機と遠隔操作部との間は配線で接続する作業が必要である。さらに、これらの機器の相互間では、正常に通信がなされることを確認するために、各機器を電源に接続する必要がある。このため、設置工事においては、各機器における電源投入および電源遮断が繰り返されることが多い。 In the installation work of an air conditioner, the indoor unit is placed and fixed in a predetermined position such as behind the ceiling, and the indoor unit and the outdoor unit installed outdoors are connected with a refrigerant pipe called a connecting pipe. do. Further, it is necessary to wire to connect between the indoor unit and the outdoor unit and between the indoor unit and the remote control unit. In addition, each device must be connected to a power source to ensure proper communication between these devices. For this reason, in installation work, power-on and power-off are often repeated in each device.
 ところが、設置工事においては、各機器と冷媒配管とを接続した後に、接続配管および室内機に収納される熱交換器などの配管類の内部に存在する空気を排気するために、これらの冷媒流通路となる配管を減圧する真空引きを行う必要がある。ところが、遮断弁が閉じていると、遮断弁によって切り離された室内機内の空気を排気することができない。その結果、その後の運転中に冷媒に空気が混入し、正常な運転ができなくなったり、空気調和機が故障したりするおそれがある。また、設置工事の真空引き後に配管長などによっては冷凍サイクル内に冷媒を追加して充填する場合がある。しかし、遮断弁が閉じていると、室内機内に冷媒を充填することができず、正常な冷媒の充填が困難になるという不具合も生じる。このような状態を引き起こさないために、設置工事の完了後にバッテリユニットを接続するという手順を行えばよい。しかし、遮断弁は、室内機近くの天井裏や床下の配管途中に設置される場合が多い。そしてバッテリユニットは、その遮断弁の近くに設置されることになる。このため、機器の配置においては、全ての設置工事が終了後にバッテリユニットを接続するのは非常に手間がかかるという問題がある。 However, in the installation work, after connecting the refrigerant pipes to each device, in order to exhaust the air existing inside the connecting pipes and the pipes such as the heat exchangers housed in the indoor unit, these refrigerant circulation It is necessary to evacuate the piping that will be the path. However, when the cutoff valve is closed, the air in the indoor unit that is cut off by the cutoff valve cannot be exhausted. As a result, there is a risk that air will be mixed with the refrigerant during subsequent operation, resulting in failure of normal operation or failure of the air conditioner. In addition, depending on the length of the piping, the refrigerant may be additionally charged into the refrigerating cycle after vacuuming during the installation work. However, if the cutoff valve is closed, the refrigerant cannot be charged into the indoor unit, and a problem arises in that normal charging of the refrigerant becomes difficult. In order to prevent such a situation from occurring, a procedure of connecting the battery unit after completion of the installation work should be performed. However, shut-off valves are often installed in the middle of pipes in the ceiling or under the floor near the indoor unit. And the battery unit will be installed near the isolation valve. Therefore, there is a problem that it takes a lot of time and effort to connect the battery units after all the installation work is completed.
 そこで、冷媒漏洩時や停電時には遮断弁を駆動して安全性を向上する一方、設置工事が完了するまでは、遮断弁の動作を禁止して冷媒配管の真空引きや冷媒の充填を適切に実施できる空気調和機を提供することを目的とする。 Therefore, in the event of a refrigerant leak or power outage, the shutoff valve is activated to improve safety, while the operation of the shutoff valve is prohibited until the installation work is completed, and the refrigerant piping is vacuumed and the refrigerant is properly charged. An object of the present invention is to provide an air conditioner capable of
 一実施形態による空気調和機は、室外機と、室内機と、配管と、バッテリユニットと、許可部と、弁制御部とを備える。
 室内機は、室外機から供給された冷媒によって、室内を冷却または加熱する。配管は、室外機と室内機との間を接続し、冷媒が流れる。バッテリユニットは、交流電源からの電力供給が停止したとき、電力を供給する。遮断弁は、交流電源からの電力またはバッテリユニットからの電力によって配管を開閉する。許可部は、遮断弁の閉弁動作を許可する。弁制御部は、許可部からの許可後に交流電源から遮断弁への電力の供給が停止すると、バッテリユニットからの電力によって遮断弁を閉弁するとともに、許可部からの許可前は、交流電源から遮断弁への電力の供給が停止しても遮断弁による配管の開放を維持する。
An air conditioner according to one embodiment includes an outdoor unit, an indoor unit, piping, a battery unit, a permission unit, and a valve control unit.
The indoor unit cools or heats the interior of the room with the refrigerant supplied from the outdoor unit. The piping connects between the outdoor unit and the indoor unit, through which refrigerant flows. The battery unit supplies power when the power supply from the AC power supply is stopped. The shutoff valve opens and closes the pipe with power from an AC power supply or power from a battery unit. The permitting unit permits the shutoff valve to close. When the supply of power from the AC power source to the cutoff valve is stopped after the permission from the permission unit, the valve control unit closes the cutoff valve with power from the battery unit. To keep the piping open by the shutoff valve even if the power supply to the shutoff valve is stopped.
図1は、第1実施形態による空気調和機の冷凍サイクル図であり、FIG. 1 is a refrigeration cycle diagram of an air conditioner according to the first embodiment, 図2は、第1実施形態による空気調和機の模式的な制御ブロック図であり、FIG. 2 is a schematic control block diagram of the air conditioner according to the first embodiment, 図3は、第1実施形態による空気調和機の室内機および弁制御部の回路ブロック図であり、FIG. 3 is a circuit block diagram of the indoor unit and valve control unit of the air conditioner according to the first embodiment, 図4は、第1実施形態による空気調和機の設置工事における手順を示す概略図であり、FIG. 4 is a schematic diagram showing the procedure in the installation work of the air conditioner according to the first embodiment; 図5は、第1実施形態による空気調和機の弁制御回路における処理の流れを示す制御フローチャートであり、FIG. 5 is a control flowchart showing the flow of processing in the valve control circuit of the air conditioner according to the first embodiment; 図6は、図5の制御フローチャートに続く制御フローチャートであり、FIG. 6 is a control flowchart following the control flowchart of FIG. 図7は、第1実施形態による空気調和機のバッテリ制御部における処理の流れを示す制御フローチャートであり、FIG. 7 is a control flowchart showing the flow of processing in the battery control unit of the air conditioner according to the first embodiment; 図8は、第2実施形態による空気調和機における室内機のおよび弁制御部の回路ブロック図であり、FIG. 8 is a circuit block diagram of the indoor unit and the valve control unit in the air conditioner according to the second embodiment, 図9は、第2実施形態による空気調和機の弁制御回路における処理の流れを示す制御フローチャートであり、FIG. 9 is a control flowchart showing the flow of processing in the valve control circuit of the air conditioner according to the second embodiment; 図10は、図9の制御フローチャートに続く制御フローチャートであり、FIG. 10 is a control flowchart following the control flowchart of FIG. 図11は、第2実施形態による空気調和機のバッテリ制御部における処理の流れを示す制御フローチャートである。FIG. 11 is a control flow chart showing the flow of processing in the battery control section of the air conditioner according to the second embodiment.
 以下、空気調和機の実施形態を図面に基づいて説明する。以下、複数の実施形態や変形例において、実質的に同一の構成部位には同一の符号を付し、説明を省略する。
 (第1実施形態)
 図1~図3に示すように空気調和機10は、室外機11、室内機12、配管13、通電検出部14、冷媒検出部15、遮断弁16、バッテリユニット17および弁制御部18を備えている。これら、室外機11、室内機12および配管13は、図1に示すように冷媒を用いる冷凍サイクルを構成する。配管13は、渡り配管とも称される。第1実施形態の場合、1つの室外機11は、配管13を経由して複数の室内機12と接続されている、いわゆるマルチタイプの空気調和機10である。但し、空気調和機10は、1つの室外機11に1つの室内機12と接続した、いわゆるシングルタイプでもよい。室外機11は、圧縮機21、熱交換器22、膨張弁23および熱交換器22の外気との熱交換を促進する図示しない室外ファンなどを有している。室外機11は、空調の対象となる対象室の外部、通常は屋外に設けられる。冷媒は、例えば微燃性のHFC-R32などが用いられる。冷媒は、冷凍サイクルを構成する室外機11、室内機12内の冷凍サイクル部品および配管13に充填される。
Hereinafter, embodiments of an air conditioner will be described based on the drawings. Hereinafter, in a plurality of embodiments and modified examples, substantially the same components are denoted by the same reference numerals, and descriptions thereof are omitted.
(First embodiment)
As shown in FIGS. 1 to 3, the air conditioner 10 includes an outdoor unit 11, an indoor unit 12, a pipe 13, an energization detection unit 14, a refrigerant detection unit 15, a cutoff valve 16, a battery unit 17, and a valve control unit 18. ing. These outdoor unit 11, indoor unit 12 and pipe 13 constitute a refrigeration cycle using a refrigerant as shown in FIG. The pipe 13 is also called a connecting pipe. In the case of the first embodiment, one outdoor unit 11 is a so-called multi-type air conditioner 10 connected to a plurality of indoor units 12 via pipes 13 . However, the air conditioner 10 may be a so-called single type in which one outdoor unit 11 is connected to one indoor unit 12 . The outdoor unit 11 includes a compressor 21, a heat exchanger 22, an expansion valve 23, and an outdoor fan (not shown) that promotes heat exchange between the heat exchanger 22 and the outside air. The outdoor unit 11 is provided outside a target room to be air-conditioned, usually outdoors. As the refrigerant, for example, slightly flammable HFC-R32 or the like is used. The refrigerant is filled in the outdoor unit 11, the refrigerating cycle components in the indoor unit 12, and the piping 13, which constitute the refrigerating cycle.
 室内機12は、1つ以上の対象室にそれぞれ設けられている。対象室は、空気調和機10による空調の対象となる例えば部屋などの空間である。室内機12は、熱交換器25、図示しない膨張弁および室内ファンなどを有している。室内機12は、室外機11から供給された低温もしくは高温の冷媒によって、対象室の冷房運転もしくは暖房運転を行なう。 The indoor unit 12 is provided in each of one or more target rooms. The target room is a space such as a room to be air-conditioned by the air conditioner 10 . The indoor unit 12 has a heat exchanger 25, an expansion valve (not shown), an indoor fan, and the like. The indoor unit 12 uses the low-temperature or high-temperature refrigerant supplied from the outdoor unit 11 to perform cooling operation or heating operation for the target room.
 配管13は、室外機11と室内機12との間を接続する。冷媒は、冷凍サイクルの運転にともなって、配管13を通して室外機11と室内機12との間を循環する。配管13は、一般に、液体通路および気体通路の2本を有している。液体通路は、主に液化した冷媒が流れるいわゆる液管である。気体通路は、主に気化した冷媒が流れるいわゆるガス管である。但し、1つの室外機11に複数の室内機12を接続し、その室内機12ごとに冷房運転または暖房運転を切り替え可能としたいわゆる「冷暖同時マルチ空調システム」の場合、配管13は中間圧の配管を加えた3本の通路を有していてもよい。本明細書の例では、説明を簡単にするため、配管13は2本の配管とする。 The pipe 13 connects between the outdoor unit 11 and the indoor unit 12 . The refrigerant circulates between the outdoor unit 11 and the indoor unit 12 through the pipe 13 as the refrigeration cycle operates. The piping 13 generally has two lines, a liquid passageway and a gas passageway. Liquid passages are so-called liquid pipes through which mainly liquefied refrigerant flows. The gas passage is a so-called gas pipe through which mainly vaporized refrigerant flows. However, in the case of a so-called "cooling and heating simultaneous multi-air conditioning system" in which a plurality of indoor units 12 are connected to one outdoor unit 11 and each indoor unit 12 can switch between cooling operation and heating operation, the pipe 13 is at intermediate pressure. You may have three passages which added piping. In the example of this specification, the number of pipes 13 is assumed to be two for ease of explanation.
 室外機11は、図2に示すように室外制御部31を有している。室外制御部31は、例えば図示しないCPU、ROMおよびRAMを有するマイクロコンピュータで構成され、ROMに記憶されたコンピュータプログラムによって室外機11を制御する。室内機12は、室内制御部32を有している。室内制御部32は、室外制御部31と同様にCPU、ROMおよびRAMを有するマイクロコンピュータで構成され、ROMに記憶されたコンピュータプログラムによって室内機12を制御する。各室内制御部32と室外制御部31とは通信線L1によって通信可能に接続され、相互に情報のやり取りや指示を行っている。 The outdoor unit 11 has an outdoor controller 31 as shown in FIG. The outdoor control unit 31 is composed of, for example, a microcomputer having a CPU, ROM, and RAM (not shown), and controls the outdoor unit 11 by a computer program stored in the ROM. The indoor unit 12 has an indoor controller 32 . The indoor control unit 32 is composed of a microcomputer having a CPU, a ROM and a RAM, similarly to the outdoor control unit 31, and controls the indoor unit 12 by a computer program stored in the ROM. Each indoor control unit 32 and the outdoor control unit 31 are communicably connected by a communication line L1, and exchange information and give instructions to each other.
 室外機11は、例えば商用三相交流の電源33から電力が供給される。室内機12は、例えば商用単相交流の電源34から電力が供給される。室内機12は、いわゆるリモートコントローラである遠隔操作部35が有線で接続されている。遠隔操作部35は、室内機12の操作のための入力を受け付ける。遠隔操作部35は、例えば2本の通信線L2によって室内制御部32と接続されている。通信線L2は、通信線と電力線とが兼用されている。これにより、遠隔操作部35の動作電力は、室内機12から供給される。遠隔操作部35は、例えば室内機12の運転の開始、運転の停止、空調温度、湿度および風量などの入力を受け付ける。室内制御部32は、遠隔操作部35からの入力に基づいて室内機12の運転を実行する。室内機12は、例えば図3に示すようにAC/DCコンバータなどの整流回路36を有している。電源34から供給された電力は、整流回路36で整流および高圧され、直流電源として室内制御部32、遠隔操作部35および後述する冷媒検出部15へ供給される。 The outdoor unit 11 is supplied with power from a commercial three-phase AC power source 33, for example. The indoor unit 12 is supplied with power from, for example, a commercial single-phase AC power source 34 . The indoor unit 12 is connected by wire to a remote control unit 35, which is a so-called remote controller. The remote control unit 35 receives input for operating the indoor unit 12 . The remote control unit 35 is connected to the indoor control unit 32 by, for example, two communication lines L2. The communication line L2 is used both as a communication line and as a power line. Accordingly, operating power for the remote control unit 35 is supplied from the indoor unit 12 . The remote control unit 35 receives inputs such as start of operation of the indoor unit 12, stop of operation, air conditioning temperature, humidity, air volume, and the like. The indoor controller 32 operates the indoor unit 12 based on an input from the remote controller 35 . The indoor unit 12 has a rectifier circuit 36 such as an AC/DC converter as shown in FIG. 3, for example. Electric power supplied from the power supply 34 is rectified and high-voltageized by the rectifier circuit 36, and supplied as a DC power supply to the indoor control unit 32, the remote control unit 35, and the refrigerant detection unit 15, which will be described later.
 冷媒検出部15は、例えばガスセンサおよび検出判断回路、通信機能を含む報知回路などで構成され、対象室における冷媒の漏れを検出する。本実施形態の場合、冷媒は微燃性のR32を用いている。そのため、安全性を確保するために、冷媒検出部15はこの冷媒の対象室への漏れを検出する。一方、冷媒は、対象室の容積が大きくなると、漏洩しても空気中の冷媒濃度が低くなり、漏れの影響が小さい。このことから、冷媒検出部15は、すべての室内機12に設けることなく、冷媒の漏れの影響が大きくなる容積が比較的小さな対象室の室内機12に設ければよい。冷媒検出部15は、本実施形態においては、室内機12内に収納しているが、室内機12の外側で、対象室の壁面などに取り付けてもよい。すなわち、冷媒検出部15は、冷媒が漏洩した場合に適切に検知できる位置に設ければよい。この冷媒検出部15は、電気的に室内制御部32に接続されている。冷媒検出部15は、冷媒の漏れを検出すると、その旨を報知するために特定の電気信号を、通信線L2を介して室内制御部32へ出力する。室内制御部32は、冷媒の漏れの信号を受けると通信線L3を介して弁制御部18にその旨を通知する。 The refrigerant detection unit 15 is composed of, for example, a gas sensor, a detection judgment circuit, a notification circuit including a communication function, etc., and detects refrigerant leakage in the target room. In the case of this embodiment, the refrigerant uses slightly flammable R32. Therefore, in order to ensure safety, the refrigerant detection unit 15 detects leakage of this refrigerant into the target chamber. On the other hand, if the volume of the target room is large, even if the refrigerant leaks, the concentration of the refrigerant in the air will be low and the influence of the leakage will be small. Therefore, the refrigerant detection unit 15 is not provided in all the indoor units 12, but may be provided in the indoor unit 12 of the target room having a relatively small volume where the influence of refrigerant leakage is large. Although the refrigerant detection unit 15 is housed inside the indoor unit 12 in this embodiment, it may be attached to the wall surface of the target room outside the indoor unit 12 . In other words, the coolant detection unit 15 may be provided at a position where leakage of the coolant can be appropriately detected. The refrigerant detector 15 is electrically connected to the indoor controller 32 . When the refrigerant detection unit 15 detects refrigerant leakage, the refrigerant detection unit 15 outputs a specific electric signal to the indoor control unit 32 via the communication line L2 in order to notify that effect. Upon receiving the refrigerant leakage signal, the indoor controller 32 notifies the valve controller 18 to that effect via the communication line L3.
 遮断弁16は、図1に示すように配管13途中に設けられ、この配管13を開閉する。具体的には、遮断弁16は、冷媒検出部15が取り付けられた室内機12の入口側つまり室外機11側に設けられる。遮断弁16は、弁制御部18から指示に基づき弁駆動回路45で駆動されて電気的に開閉される。遮断弁16は、配管13を遮断することにより、対象となる室内機12への冷媒の流入を止める。上述のように冷媒は可燃性であることから、対象室への漏れが検出されると、遮断弁16は漏れが検出された対象室の室内機12に接続する配管13を遮断し、その室内機12への冷媒の流入を止める。遮断弁16は、室内機12を冷凍サイクルから分離するために配管13を構成する通路のそれぞれに設けられる。すなわち、配管13が2本であれば、2個の遮断弁16が必要となり、この複数の遮断弁16は弁駆動回路45により同期して開閉される。遮断弁16は、電動で開閉の制御が可能であり、冷媒通路を全閉可能なパルスモータバルブ、いわゆるPMV、やボールバルブが使用される。 The shutoff valve 16 is provided in the middle of the pipe 13 as shown in FIG. 1 and opens and closes the pipe 13 . Specifically, the cutoff valve 16 is provided on the inlet side of the indoor unit 12 to which the refrigerant detection unit 15 is attached, that is, on the outdoor unit 11 side. The shut-off valve 16 is electrically opened and closed by being driven by the valve driving circuit 45 based on an instruction from the valve control section 18 . The shutoff valve 16 shuts off the refrigerant from flowing into the target indoor unit 12 by shutting off the pipe 13 . Since the refrigerant is combustible as described above, when leakage to the target room is detected, the shutoff valve 16 shuts off the pipe 13 connected to the indoor unit 12 of the target room where the leak is detected, and Refrigerant flow to machine 12 is stopped. A shutoff valve 16 is provided in each of the passages forming the pipe 13 to separate the indoor unit 12 from the refrigerating cycle. That is, if there are two pipes 13, two cutoff valves 16 are required, and the plurality of cutoff valves 16 are synchronously opened and closed by the valve driving circuit 45. FIG. The shutoff valve 16 can be electrically controlled to open and close, and a pulse motor valve capable of fully closing the refrigerant passage, a so-called PMV, or a ball valve is used.
 図2および図3に示すバッテリユニット17は、小さな箱型の筐体である。バッテリユニット17は、内部に電源34の通電の有無の検出、換言すれば停電検出を行う通電検出部14、バッテリ41およびバッテリ制御部42を収納している。バッテリ41は、室内機12および弁制御部18と同じ商用単相交流の電源34から供給された交流の電力を整流して蓄える。なお、バッテリ41と弁制御部18は同じ交流電源から電力が供給されることが望ましいが、室内機12は、これらの機器と別の交流電源から電力を供給してもよい。バッテリ41は、充電および放電が可能な各種の二次電池やキャパシタである。バッテリ制御部42は、電源34またはバッテリの電力により動作する例えばCPU、ROMおよびRAMを有するマイクロコンピュータで構成され、ROMに記憶されているコンピュータプログラムを実行することにより、バッテリ41の充電および放電などバッテリユニット17の動作を制御する。
 上述の冷媒の漏れを検出する冷媒検出部15、および停電時の遮断弁16の作動を確保するためのバッテリユニット17は、保安装置として空気調和機10の安全性を高める。
The battery unit 17 shown in FIGS. 2 and 3 is a small box-shaped housing. The battery unit 17 accommodates therein an energization detection unit 14 for detecting the presence or absence of energization of the power source 34, in other words, detecting a power failure, a battery 41 and a battery control unit 42 . The battery 41 rectifies and stores AC power supplied from the same commercial single-phase AC power supply 34 as the indoor unit 12 and the valve control unit 18 . Although the battery 41 and the valve control unit 18 are preferably supplied with power from the same AC power supply, the indoor unit 12 may be supplied with power from an AC power supply separate from these devices. The battery 41 is various secondary batteries and capacitors that can be charged and discharged. The battery control unit 42 is composed of, for example, a microcomputer having a CPU, a ROM and a RAM that operates on the power of the power supply 34 or the battery, and executes a computer program stored in the ROM to charge and discharge the battery 41. It controls the operation of the battery unit 17 .
The refrigerant detection unit 15 for detecting refrigerant leakage and the battery unit 17 for ensuring the operation of the shutoff valve 16 during a power failure increase the safety of the air conditioner 10 as security devices.
 弁制御部18は、弁制御回路44および弁駆動回路45およびスイッチ部55を有している。弁制御回路44は、例えばCPU、ROMおよびRAMを有するマイクロコンピュータで構成され、ROMに記憶されているコンピュータプログラムを実行することにより、遮断弁16の開閉を制御する。弁駆動回路45は、電気的に遮断弁16に接続されている。弁駆動回路45は、弁制御回路44からの指示にしたがって遮断弁16への通電を制御して、遮断弁16を駆動し、遮断弁16を開閉する。図3に示すように弁制御回路44および弁駆動回路45は、いずれも電源34に接続された例えばAC/DCコンバータなどの整流回路46からの直流電源ラインM1を介して電力を受けて動作する。また、この直流電源ラインM1は、バッテリ41の直流放電ラインである直流電源ラインM2と並列に接続されている。このため、弁制御回路44および弁駆動回路45は、電源34が遮断されても、バッテリ制御部42からバッテリ41の放電がなされれば、そのまま動作電力が供給され、動作が継続できる。整流回路46の直流出力電圧とバッテリ41の放電による直流出力電圧は、ほぼ同じか、弁制御回路44および弁駆動回路45の動作電圧範囲内でバッテリ41側の出力電圧がわずかに低くなるように設定されている。直流出力ラインM2には、バッテリ制御部42の「+出力」側に、整流回路46に向けて順方向となるようにダイオードDが接続されている。これにより、整流回路46の出力電圧がバッテリ制御部42のバッテリ出力端子に逆印加されることが防止される。 The valve control section 18 has a valve control circuit 44 , a valve drive circuit 45 and a switch section 55 . The valve control circuit 44 is composed of, for example, a microcomputer having a CPU, ROM and RAM, and controls opening and closing of the cutoff valve 16 by executing a computer program stored in the ROM. The valve drive circuit 45 is electrically connected to the shutoff valve 16 . The valve drive circuit 45 controls energization of the cutoff valve 16 according to instructions from the valve control circuit 44 to drive the cutoff valve 16 and open and close the cutoff valve 16 . As shown in FIG. 3, the valve control circuit 44 and the valve drive circuit 45 both receive power from a rectifier circuit 46 such as an AC/DC converter connected to the power supply 34 via a DC power supply line M1 to operate. . The DC power line M1 is also connected in parallel with a DC power line M2 that is a DC discharge line for the battery 41 . Therefore, even if the power source 34 is cut off, the valve control circuit 44 and the valve driving circuit 45 can continue to operate by being supplied with operating power as long as the battery 41 is discharged from the battery control unit 42 . The DC output voltage of the rectifier circuit 46 and the DC output voltage due to the discharge of the battery 41 are substantially the same, or the output voltage on the battery 41 side is slightly lower within the operating voltage range of the valve control circuit 44 and the valve drive circuit 45. is set. A diode D is connected to the DC output line M<b>2 on the “+output” side of the battery control unit 42 in the forward direction toward the rectifier circuit 46 . This prevents the output voltage of the rectifier circuit 46 from being reversely applied to the battery output terminal of the battery control section 42 .
 弁制御部18は、冷媒検出部15で冷媒の漏れが検出されたとき、室内制御部32から通信線L3を介した冷媒漏洩の通知を受けて、弁駆動回路45を動作させる。これにより、弁制御部18は、遮断弁16を閉弁して配管13を遮断する。さらに、後述するように条件が満たされた後、電源34から通電されていないとき、弁制御部18は、バッテリユニット17からの電力で遮断弁16を駆動し、配管13を遮断する。可燃性の冷媒を用いる場合において、冷媒の漏れが検出されると、遮断弁16は、電源34から弁制御部18への通電が遮断されても、閉弁動作することが求められる。そこで、弁制御部18は、停電時には、予めバッテリユニット17からの電力の供給を受けて遮断弁16を駆動し、配管13を遮断しておく。スイッチ部55は、電源34とバッテリユニット17間の電源ラインP2途中に設けられ、電源34からバッテリユニット17への通電を断続する。第1実施形態の場合、スイッチ部55は、電源ラインP2の片方に入れた常開型のリレーとしている。なお、スイッチ部55は、電源ラインP2の両方に入れたリレーとしてもよく、リレーを半導体スイッチに置き換えてもよい。 When the refrigerant detection unit 15 detects refrigerant leakage, the valve control unit 18 receives notification of the refrigerant leakage from the indoor control unit 32 via the communication line L3 and operates the valve drive circuit 45 . As a result, the valve control unit 18 closes the shutoff valve 16 to shut off the pipe 13 . Furthermore, when the power supply 34 is not energized after the conditions are satisfied as described later, the valve control unit 18 drives the cutoff valve 16 with electric power from the battery unit 17 to cut off the pipe 13 . In the case of using a flammable refrigerant, when leakage of the refrigerant is detected, the cutoff valve 16 is required to close even if the power supply 34 to the valve control section 18 is cut off. Therefore, the valve control unit 18 receives electric power supply from the battery unit 17 in advance to drive the shutoff valve 16 and shut off the pipe 13 in the event of a power failure. The switch unit 55 is provided in the middle of the power supply line P2 between the power supply 34 and the battery unit 17, and interrupts the energization from the power supply 34 to the battery unit 17. As shown in FIG. In the case of the first embodiment, the switch section 55 is a normally open relay inserted into one side of the power supply line P2. The switch unit 55 may be a relay inserted in both power lines P2, or the relay may be replaced with a semiconductor switch.
 弁制御部18、遮断弁16とバッテリユニット17とは、天井裏や床下もしくは配管設置スペースに設置されるように、箱型の筐体である遮断弁ユニット47に組み込まれている。なお、遮断弁ユニット47は、遮断弁16および弁制御部18のみを組み込み、バッテリユニット17を分離して設置し、単相交流の電源34や弁制御部18との間を外部で配線接続するようにしてもよい。 The valve control unit 18, the shutoff valve 16, and the battery unit 17 are incorporated in a shutoff valve unit 47, which is a box-shaped housing, so as to be installed in the ceiling space, under the floor, or in the piping installation space. The shut-off valve unit 47 incorporates only the shut-off valve 16 and the valve control unit 18, is installed separately from the battery unit 17, and is connected to the single-phase AC power supply 34 and the valve control unit 18 by wiring outside. You may do so.
 空気調和機10は、上記に加え、図2および図3に示すように許可部50および入力部51を備えている。
 本実施形態の場合、許可部50は、室内制御部32に設けられている。許可部50は、例えば室内制御部32のマイクロコンピュータでコンピュータプログラムを実行することにより、ソフトウェア的に実現されている。許可部50は、ハードウェア的またはソフトウェアとハードウェアとの協働で実現してもよい。許可部50は、配管13を開閉する遮断弁16の閉弁動作を許可するためのものである。
In addition to the above, the air conditioner 10 includes a permission unit 50 and an input unit 51 as shown in FIGS. 2 and 3 .
In the case of this embodiment, the permitting section 50 is provided in the indoor control section 32 . The permitting unit 50 is implemented in software by executing a computer program on the microcomputer of the indoor control unit 32, for example. The permitting unit 50 may be realized by hardware or cooperation between software and hardware. The permitting unit 50 permits the closing operation of the cutoff valve 16 that opens and closes the pipe 13 .
 弁制御部18は、バッテリユニット17が電気的に接続されると、電源34から通電がないときでも、バッテリユニット17から供給された電力によって遮断弁16を閉塞可能な状態となる。一方、弁制御部18は、空気調和機10の設置工事の際に何らかの事情で通電された状態が遮断されると、バッテリユニット17の電力によって遮断弁16を閉弁する可能性がある。この場合、配管13は、遮断弁16によって遮断される。配管13が遮断弁16で遮断されると、空気調和機10の設置工事の際に、真空引きおよび冷媒の充填が妨げられる。そこで、弁制御部18は、許可部50からの許可があるまでスイッチ部55を開放状態のまま維持し、バッテリユニット17への電源34からの通電を遮断する。このため、弁制御部18は、許可部50から許可があるまで遮断弁16を閉弁することがない。そして、弁制御部18は、許可部50から許可があると、スイッチ部55をオンして電源34の通電遮断すなわち停電時に遮断弁16の閉弁、つまり遮断弁16による配管13の遮断が可能となる。なお、許可部50は、室内制御部32に限らず、弁制御部18や弁制御回路44に間接的に通信で接続可能な遠隔操作部35、室外制御部31など他の制御部に設ける構成としてもよい。さらに、許可部50は、これらの複数個所に設けてもよい。 When the battery unit 17 is electrically connected, the valve control unit 18 is in a state in which the shutoff valve 16 can be closed by the power supplied from the battery unit 17 even when the power source 34 is not energized. On the other hand, the valve control unit 18 may close the shutoff valve 16 with the electric power of the battery unit 17 if the energized state is shut off for some reason during the installation work of the air conditioner 10 . In this case, the pipe 13 is shut off by the shutoff valve 16 . If the pipe 13 is shut off by the shutoff valve 16, vacuuming and refrigerant charging are prevented during the installation work of the air conditioner 10. FIG. Therefore, the valve control unit 18 keeps the switch unit 55 in an open state until permission is given from the permission unit 50, and cuts off the energization from the power source 34 to the battery unit 17. FIG. Therefore, the valve control section 18 does not close the shutoff valve 16 until permission is given from the permission section 50 . When there is permission from the permission unit 50, the valve control unit 18 turns on the switch unit 55 to shut off the power supply to the power supply 34, that is, to close the shutoff valve 16 during a power failure, that is, to shut off the pipe 13 by the shutoff valve 16. becomes. Note that the permission unit 50 is not limited to the indoor control unit 32, and is provided in other control units such as the remote control unit 35 and the outdoor control unit 31 that can be indirectly connected to the valve control unit 18 and the valve control circuit 44 by communication. may be Furthermore, the permitting section 50 may be provided at a plurality of these locations.
 入力部51は、空気調和機10の据付および設置作業者から、許可指示の入力を受け付ける。入力部51は、例えば機械的なスイッチ、ソフトウェア的なスイッチである。入力部51は、空気調和機10の設置作業者のみが操作できることが望ましい。すなわち、入力部51は、空気調和機10の通常の使用者が操作してしまうことがないように、特殊な操作を必要としたり、使用者の操作ができない位置に配置したりすることが望ましい。空気調和機10の設置作業者は、この入力部51を通して弁制御部18へ許可指示を入力する。すなわち、許可部50は、作業者から入力部51を通して許可指示が入力されると、遮断弁16による配管13の遮断を許可するために、この許可指示を、通信線L3を通じて弁制御部18の弁制御回路44へ伝達する。 The input unit 51 receives an input of a permission instruction from an operator who installs and installs the air conditioner 10 . The input unit 51 is, for example, a mechanical switch or a software switch. It is desirable that the input unit 51 can be operated only by the installation operator of the air conditioner 10 . That is, it is desirable that the input unit 51 requires a special operation or is arranged at a position where the user cannot operate it, so as not to operate it by a normal user of the air conditioner 10. . The installation worker of the air conditioner 10 inputs a permission instruction to the valve control section 18 through the input section 51 . That is, when a permission instruction is input from the operator through the input unit 51, the permission unit 50 transmits the permission instruction to the valve control unit 18 through the communication line L3 in order to permit the shutoff of the piping 13 by the shutoff valve 16. It is transmitted to the valve control circuit 44 .
 弁制御部18は、空気調和機10の出荷時の初期状態において遮断弁16が配管13を開放した状態となっている。例えば空気調和機10の設置工事を行なう場合、空気調和機10と電源33、34とは電気的に切断されている。そのため、空気調和機10の室内機12は、電源34から電力が供給されない、つまり電源34から通電されない。その結果、遮断弁16は、初期状態を維持し、配管13を開放した状態となっている。空気調和機10の設置工事や修理などが進行し、いずれかの時期に、弁制御部18にバッテリユニット17が接続されたとき、または室内機12が電源34に接続されたとき、遮断弁16は供給された電力によって作動可能となる。そのため、遮断弁16は、条件によって配管13を遮断するおそれがある。一方、空気調和機10は、冷媒を充填するために配管13の減圧、いわゆる真空引きが必要となる。つまり、冷媒を充填するとき、図1に示すように所定の位置に真空ポンプ52を接続し、配管13は減圧される。この場合、配管13を十分に減圧し、配管13に残存する空気を除去することが求められる。この真空引きの作業の際に、配管13が遮断弁16で遮断されていると、配管13および室内機12に空気が残存する。そこで、本実施形態では、弁制御部18は、許可部50から許可指示を受けるまで、遮断弁16を駆動せず、配管13を開放した状態を維持する。これにより、空気調和機10の設置作業者から遮断弁16の作動を許可するための入力部51の操作があるまで、配管13は開放が維持される。したがって、真空引きおよび冷媒の追加の充填を容易に実行することができる。この動作を実施するための具体的な制御の仕組みを説明する。 The valve control unit 18 is in a state where the shutoff valve 16 opens the pipe 13 in the initial state when the air conditioner 10 is shipped. For example, when performing installation work for the air conditioner 10, the air conditioner 10 and the power supplies 33 and 34 are electrically disconnected. Therefore, the indoor unit 12 of the air conditioner 10 is not supplied with power from the power supply 34 , that is, is not energized from the power supply 34 . As a result, the shut-off valve 16 maintains its initial state and opens the pipe 13 . When the battery unit 17 is connected to the valve control unit 18 or the indoor unit 12 is connected to the power supply 34 at any time during installation work or repair of the air conditioner 10, the shutoff valve 16 is closed. is operable by the power supplied. Therefore, the shutoff valve 16 may shut off the pipe 13 depending on the conditions. On the other hand, the air conditioner 10 needs to reduce the pressure in the pipe 13, that is, to draw a vacuum in order to fill the refrigerant. That is, when the refrigerant is charged, the vacuum pump 52 is connected to a predetermined position as shown in FIG. 1, and the pressure in the pipe 13 is reduced. In this case, it is required to sufficiently depressurize the pipe 13 and remove the air remaining in the pipe 13 . If the pipe 13 is shut off by the shutoff valve 16 during this vacuuming operation, air remains in the pipe 13 and the indoor unit 12 . Therefore, in the present embodiment, the valve control unit 18 does not drive the cutoff valve 16 and keeps the pipe 13 open until receiving the permission instruction from the permission unit 50 . Thus, the pipe 13 is kept open until the installation operator of the air conditioner 10 operates the input unit 51 to permit the operation of the cutoff valve 16 . Therefore, evacuation and additional charging of refrigerant can be easily performed. A specific control mechanism for carrying out this operation will be described.
 第1実施形態の場合、図3に示すようにバッテリユニット17内に通電検出部14、弁制御部18内にスイッチ部55を備えている。通電検出部14は、電源34からバッテリユニット17への通電の有無、すなわち電源34から弁制御部18へ電力が供給されているか否かを検出する。通電検出部14は、例えば全波整流器の出力側に接続されたフォトカプラなどからなり、電源34の電圧の「零クロス」を検出する、いわゆる零クロス検出回路が用いられている。この通電検出部14はその出力がバッテリ制御部42に入力される。バッテリ制御部42は、交流電源周波の半周期期間において通電検出部14が「零クロス」を検出すると、通電ありと判断する。一方、バッテリ制御部42は、前述の通電ありの状態から交流電源周波の半周期期間を超えても電源34の「零クロス」が検出されないと、電源34に遮断すなわち停電が発生したと判断する。なお、上述の通りバッテリ制御部42は、電源34とバッテリ41のいずれかから電力が供給されれば動作可能である。そのため、バッテリ制御部42は、電源34が遮断されても、バッテリ41に電力があれば動作可能である。なお、バッテリ制御部42は、バッテリ41のみを電源としてもよい。また、通電検出部14は、上述のバッテリ制御部42における電源遮断判断を含めた構成としてもよい。この場合、通電検出部14は、単独で電源34の通電および遮断の判断結果をバッテリ制御部42に入力する。さらに、ここでは、電源34の通電および遮断の判断は、電源34の電圧の「零クロス」の周期的発生を利用して行なう例について説明した。しかし、電源34の通電および遮断の判断は、例えば電源34の電圧の検出など他の方法によって検出してもよい。 In the case of the first embodiment, as shown in FIG. The energization detection unit 14 detects whether power is supplied from the power source 34 to the battery unit 17 , that is, whether power is supplied from the power source 34 to the valve control unit 18 . The energization detector 14 is composed of, for example, a photocoupler connected to the output side of a full-wave rectifier, and uses a so-called zero-cross detection circuit for detecting "zero-cross" of the voltage of the power supply 34 . The output of the energization detection unit 14 is input to the battery control unit 42 . The battery control unit 42 determines that there is power supply when the power supply detection unit 14 detects a "zero cross" during the half-cycle period of the AC power frequency. On the other hand, the battery control unit 42 determines that the power source 34 has been cut off, ie, a power outage, if the "zero cross" of the power source 34 is not detected even after the half-cycle period of the AC power source frequency has passed from the above-described state of energization. . As described above, the battery control unit 42 can operate when power is supplied from either the power supply 34 or the battery 41 . Therefore, even if the power supply 34 is cut off, the battery control unit 42 can operate as long as the battery 41 has electric power. Note that the battery control unit 42 may use only the battery 41 as a power source. Further, the energization detection unit 14 may be configured to include the above-described power cutoff determination in the battery control unit 42 . In this case, the energization detection unit 14 independently inputs the determination result of energization and cutoff of the power supply 34 to the battery control unit 42 . Further, here, an example has been described in which the determination of whether to turn on or off the power supply 34 is made using the periodic occurrence of "zero crossings" of the voltage of the power supply 34. FIG. However, the determination of whether to turn on or off the power supply 34 may be detected by other methods such as detection of the voltage of the power supply 34, for example.
 第1実施形態の場合、許可部50は、電源34からバッテリユニット17のバッテリ41への通電を許可することでバッテリユニット17から遮断弁16への電力の供給を許可する。許可部50から許可指示があるまで、弁制御回路44は、スイッチ部55をオンしない。このため、バッテリユニット17には電源34から電力が供給されず、バッテリユニット17は充電されない。さらに、バッテリユニット17は、バッテリ41が出荷時に十分充電されていたとしても、電源遮断を検知しない。なぜならば、通電検出部14とバッテリ制御部42は、一旦通電があった後に電源34からの通電がなくなったことを検出して電源遮断と判断するようになっている。このため、一度も電源34から通電がない状態では電源遮断と判断しないためである。 In the case of the first embodiment, the permitting unit 50 permits power supply from the battery unit 17 to the shutoff valve 16 by permitting energization from the power supply 34 to the battery 41 of the battery unit 17 . The valve control circuit 44 does not turn on the switch section 55 until there is a permission instruction from the permission section 50 . Therefore, the battery unit 17 is not supplied with power from the power source 34, and the battery unit 17 is not charged. Furthermore, the battery unit 17 does not detect power interruption even if the battery 41 is sufficiently charged at the time of shipment. This is because the energization detection unit 14 and the battery control unit 42 detect that energization from the power source 34 is stopped after energization once, and judge that the power is cut off. For this reason, it is not determined that the power supply has been turned off when the power supply 34 is not energized even once.
 この結果、許可部50から許可指示があるまで、電源34が遮断されてもバッテリユニット17から弁制御部18の弁制御回路44および弁駆動回路45に電力が供給されず、遮断弁16は動作しない。一方、許可部50から許可指示があると、スイッチ部55がオンし、電源34がバッテリユニット17に接続されてバッテリ41の充電が開始されるとともに、バッテリ41から遮断弁16へ電力の供給が可能となる。バッテリ制御部42は、許可指示の後に通電検出部14で電源34からの電力供給の停止を検出すると、バッテリ41から弁制御部18、すなわち弁制御回路44、弁駆動回路45へ電力を供給する。これにより、遮断弁16は、電源34からの電力の供給がないときでも、バッテリ41からの電力によって弁駆動回路45によって作動可能な状態となる。その結果、弁制御部18は、許可部50から許可指示の後に電源34の遮断状態になると、バッテリ41から供給される電力を用いて、配管13を遮断するように弁制御回路44と弁駆動回路45によって遮断弁16を駆動する。バッテリ制御部42は、電源34の遮断検出によって遮断弁16が閉塞された後、通電検出部14によって電源34の遮断後に再通電が検出されると、その旨を弁制御部18の弁制御回路44に通信線L4を介して通知する。これにより、弁制御部18は、遮断弁16を開放可能な状態となる。バッテリ制御部42から弁制御回路44に送られる通電に関する通電状態信号は、通電ありを示す「放電停止」信号と、通電なしを示す「放電中」信号との2種類である。バッテリ制御部42は、通電状態信号が「放電中」から「放電停止」に変化した時点で電源34が再通電開始したと判断する。 As a result, power is not supplied from the battery unit 17 to the valve control circuit 44 and the valve drive circuit 45 of the valve control unit 18 until the permission instruction is issued from the permission unit 50, and the shutoff valve 16 operates. do not. On the other hand, when there is a permission instruction from the permission unit 50, the switch unit 55 is turned on, the power source 34 is connected to the battery unit 17, charging of the battery 41 is started, and power is supplied from the battery 41 to the cutoff valve 16. It becomes possible. The battery control unit 42 supplies power from the battery 41 to the valve control unit 18, that is, the valve control circuit 44 and the valve drive circuit 45, when the energization detection unit 14 detects the stop of the power supply from the power source 34 after the permission instruction. . As a result, the shutoff valve 16 is operable by the valve drive circuit 45 with power from the battery 41 even when power is not supplied from the power supply 34 . As a result, when the power supply 34 is cut off after the permission instruction from the permission unit 50 , the valve control unit 18 uses the electric power supplied from the battery 41 to cut off the pipe 13 with the valve control circuit 44 and the valve driving unit 18 . Circuit 45 drives isolation valve 16 . After the shutdown valve 16 has been closed by detecting the interruption of the power supply 34, the battery control unit 42 detects the re-energization after the interruption of the power supply 34 by the energization detection unit 14, the valve control circuit of the valve control unit 18 44 via the communication line L4. As a result, the valve control unit 18 enters a state in which the cutoff valve 16 can be opened. There are two types of energization state signals regarding energization sent from the battery control unit 42 to the valve control circuit 44: a "discharge stop" signal indicating energization and a "discharging" signal indicating no energization. The battery control unit 42 determines that the power supply 34 has started to re-energize when the energization state signal changes from "discharging" to "discharging stopped".
 遮断弁16が閉鎖しているとき、空気調和機10の運転は停止している。そこで、弁制御回路44は、再通電判断後に新たに空気調和機10の室内機12から通信線L3を介して運転開始が指示されると、弁駆動回路45を動作させて遮断弁16を開放する。一方、冷媒漏洩検出に基づく遮断弁16の閉弁は、冷媒漏洩の点検確認・修理後に点検および修理者による特殊な操作が行わなければ開放されない。 When the cutoff valve 16 is closed, the operation of the air conditioner 10 is stopped. Therefore, when the valve control circuit 44 is newly instructed to start operation from the indoor unit 12 of the air conditioner 10 via the communication line L3 after the determination of re-energization, the valve control circuit 44 operates the valve drive circuit 45 to open the shutoff valve 16. do. On the other hand, the closing of the shutoff valve 16 based on the detection of refrigerant leakage is not opened unless inspection and special operation by the repairer are performed after inspection, confirmation and repair of refrigerant leakage.
 次に、空気調和機10の設置工事の流れ、すなわち手順を図4に基づいて説明する。
 空気調和機10は、建物などの設備として取り付けられる。この場合、空気調和機10の室外機11および室内機12は、設備において予め設定された位置に取り付けられる(F101)。続いて、空気調和機10は、設置作業者によって配管および配線が接続される(F102)。配管13は、室外機11と室内機12とを接続する。また、配線は、電源33と室外機11、電源34と室内機12とを接続する電力線、さらに室外機11と室内機12間の通信線L1、遠隔操作部35と室内機12間の通信線L2などの各種の配線が含まれる。遮断弁16は、出荷時の初期状態として配管13を開放した状態となっている。すなわち、空気調和機10は、遮断弁16が配管13の開放を維持した状態で設備として設置される。
Next, the flow of the installation work of the air conditioner 10, that is, the procedure will be described with reference to FIG.
The air conditioner 10 is installed as equipment in a building or the like. In this case, the outdoor unit 11 and the indoor unit 12 of the air conditioner 10 are installed at preset positions in the facility (F101). Subsequently, the air conditioner 10 is connected to piping and wiring by the installation operator (F102). The pipe 13 connects the outdoor unit 11 and the indoor unit 12 . Further, the wiring includes a power line connecting the power source 33 and the outdoor unit 11, a power source 34 and the indoor unit 12, a communication line L1 between the outdoor unit 11 and the indoor unit 12, and a communication line L1 between the remote control unit 35 and the indoor unit 12. Various wirings such as L2 are included. The cutoff valve 16 is in a state in which the pipe 13 is opened as an initial state at the time of shipment. That is, the air conditioner 10 is installed as equipment in a state where the shutoff valve 16 keeps the pipe 13 open.
 空気調和機10は、安全を確保するための保安装置が取り付けられる(F103)。本実施形態の場合、保安装置は、上述のように冷媒検出部15と、弁制御部18およびバッテリユニット17を含む遮断弁ユニット47である。続いて、電源34と遮断弁ユニット47間を電力線で接続する。さらに、冷媒検出部15と室内機12間の通信線L2、室内機12と遮断弁ユニット47間の通信線L3、さらには遮断弁ユニット47内の弁制御部18とバッテリユニット17間の通信線L4の配線が接続されて保安装置の取り付けが完了する。なお、F102とF103の手順に順序の制約はなく、同時並行で実行してもよい。仮に、F103の時点で電源33、34が投入されると、空気調和機10は各部で通信可能となる。この場合、この後に電源34が遮断されたとしても、許可部50は、弁制御部18に対して許可指示を出力していない。そのため、スイッチ部55はオフつまり開放状態が維持されている。そのため、通電検出部14は、電源34の遮断を検出することなく、バッテリユニット17から弁制御部18へ電力供給がなされない。その結果、弁制御部18は動作せず、遮断弁16が閉弁することなく配管13の開放が維持される。 A security device is attached to the air conditioner 10 to ensure safety (F103). In the case of this embodiment, the safety device is the cutoff valve unit 47 including the refrigerant detection section 15, the valve control section 18 and the battery unit 17 as described above. Next, a power line is connected between the power supply 34 and the cutoff valve unit 47 . Further, a communication line L2 between the refrigerant detection unit 15 and the indoor unit 12, a communication line L3 between the indoor unit 12 and the cutoff valve unit 47, and a communication line between the valve control unit 18 in the cutoff valve unit 47 and the battery unit 17 The wiring of L4 is connected and installation of a security device is completed. Note that the procedures of F102 and F103 are not restricted in order and may be executed in parallel. If the power sources 33 and 34 are turned on at the time of F103, each part of the air conditioner 10 can communicate. In this case, even if the power supply 34 is cut off after this, the permission unit 50 does not output a permission instruction to the valve control unit 18 . Therefore, the switch section 55 is kept off, that is, in an open state. Therefore, the energization detection unit 14 does not detect that the power supply 34 has been cut off, and power is not supplied from the battery unit 17 to the valve control unit 18 . As a result, the valve control unit 18 does not operate, and the pipe 13 is kept open without closing the cutoff valve 16 .
 続いて、空気調和機10の設置作業者は、配管13の接続が完了し、真空引きが可能な状態となったか否かを判断する。真空引きが可能な状態になると(F104:Yes)、空気調和機10の設置作業者は、室内機12および配管13の真空引きを実行する(F105)。図1に示すように室外機11側の配管13のバルブを閉じた状態で真空ポンプ52を配管13の一部に接続し、例えば数時間かけて配管13内および室内機12内の冷凍サイクル部品の真空引きを行う。設置作業者は、F105の真空引きが終了すると、真空ポンプを室外機11から取り外し、続いて室外機11側のバルブを配管13側に開放して、冷凍サイクルを連通させる。さらに、配管長が長いなどの設置条件によっては、F106において室外機11のバルブを介して冷凍サイクル中に冷媒を追加で充填する。なお、配管13の長さが短く、最初から室外機11に充填されている冷媒量で十分であれば、F106の冷媒の追加充填は省略される。この真空引き、冷媒の追加充填時においても遮断弁16は作動が許可されておらず、配管13は開放されている。したがって、室外機11、室内機12および配管13は支障なく真空引きできるとともに、冷媒も容易に充填することができる。 Next, the operator who installs the air conditioner 10 determines whether or not the connection of the pipe 13 has been completed and the vacuum can be drawn. When it becomes possible to evacuate (F104: Yes), the installation worker of the air conditioner 10 evacuates the indoor unit 12 and the pipe 13 (F105). As shown in FIG. 1, the vacuum pump 52 is connected to a part of the pipe 13 with the valve of the pipe 13 on the outdoor unit 11 side closed, and the refrigeration cycle components in the pipe 13 and the indoor unit 12 are removed over several hours, for example. evacuate. When the vacuuming of F105 is completed, the installation worker removes the vacuum pump from the outdoor unit 11, and then opens the valve on the outdoor unit 11 side to the pipe 13 side to connect the refrigeration cycle. Furthermore, depending on installation conditions such as a long pipe length, the refrigerant is additionally charged into the refrigerating cycle through the valve of the outdoor unit 11 in F106. If the length of the pipe 13 is short and the amount of refrigerant charged in the outdoor unit 11 from the beginning is sufficient, the additional charging of refrigerant F106 is omitted. Even during this evacuation and additional charging of the refrigerant, the cutoff valve 16 is not permitted to operate, and the pipe 13 is open. Therefore, the outdoor unit 11, the indoor unit 12, and the pipe 13 can be evacuated without any trouble, and the refrigerant can be easily filled.
 続いて、空気調和機10の設置作業者は、各電源線および通信線が接続されていることを確認し、ブレーカーなどを操作して電源33、34を投入する(F107)。そして、設置作業者は、入力部51を操作して許可部50から許可指示を行う(F108)。この指示を受け、弁制御部18は、遮断弁16が作動可能な状態、つまり配管13を遮断可能な状態と判断する。これにより、保安装置の作動が開始し、冷媒検出部15、遮断弁16およびバッテリユニット17は、正常な作動を開始する(S109)。この許可指示が発せられた後に電源34が遮断された場合、バッテリ41を電源として弁制御部18は、遮断弁16を閉弁し、配管13を遮断する。このとき、真空引きおよび冷媒の充填は完了しており、遮断弁16を閉弁しても問題はない。以上の手順によれば、許可指示は、上述のように真空引きや冷媒の充填が完了した後に発せられる。そのため、真空引きおよび冷媒の充填に支障は生じない。また、弁制御部18および弁駆動回路45は、許可指示が発せられた後に電源34の遮断があると、バッテリ41を電源として動作して遮断弁16を駆動して配管13を遮断する。電源34が遮断されると、室内機12および冷媒検出部15は電力が供給されなくなる。そのため、冷媒検出部15は、冷媒の漏洩が発生しても、冷媒を検出できないおそれがある。しかし、この場合、遮断弁16は、電源34の遮断時において事前に駆動され、配管13を遮断している。このことから、万が一、停電中に冷媒漏洩が発生しても、室内機12への冷媒の流通は遮断されており、空気調和機10の安全性の向上が図られる。 Next, the installation worker of the air conditioner 10 confirms that each power line and communication line are connected, and operates the breaker or the like to turn on the power supplies 33 and 34 (F107). Then, the installation operator operates the input unit 51 to issue a permission instruction from the permission unit 50 (F108). Upon receiving this instruction, the valve control unit 18 determines that the cutoff valve 16 is in an operable state, that is, the pipe 13 can be cut off. As a result, the safety device starts to operate, and the refrigerant detector 15, cutoff valve 16 and battery unit 17 start to operate normally (S109). When the power source 34 is cut off after this permission instruction is issued, the valve control unit 18 closes the cutoff valve 16 and cuts off the pipe 13 using the battery 41 as the power source. At this time, evacuation and refrigerant charging have been completed, and there is no problem even if the shutoff valve 16 is closed. According to the above procedure, the permission instruction is issued after the evacuation and refrigerant charging are completed as described above. Therefore, there is no problem in drawing a vacuum and charging the refrigerant. When the power source 34 is cut off after the permission instruction is issued, the valve control unit 18 and the valve drive circuit 45 operate using the battery 41 as a power source to drive the cutoff valve 16 and cut off the pipe 13 . When the power supply 34 is cut off, power is not supplied to the indoor unit 12 and the refrigerant detection unit 15 . Therefore, even if a refrigerant leak occurs, the refrigerant detection unit 15 may not be able to detect the refrigerant. However, in this case, the shutoff valve 16 is driven in advance to shut off the pipe 13 when the power supply 34 is shut off. Therefore, even if refrigerant leakage should occur during a power failure, the flow of the refrigerant to the indoor unit 12 is blocked, and the safety of the air conditioner 10 is improved.
 続いて、設置作業者は、空気調和機10の試運転を実行する(F110)。すなわち、空気調和機10は、冷媒検出部15、遮断弁16およびバッテリユニット17が有効な状態で試運転が実行される。
 以上の手順によって、空気調和機10は、一連の設置、真空引き、冷媒の充填および試運転が実行され、運転可能な状態に至る。
Subsequently, the installation worker performs a test run of the air conditioner 10 (F110). That is, the test operation of the air conditioner 10 is performed with the refrigerant detection unit 15, the shutoff valve 16, and the battery unit 17 enabled.
Through the above procedure, the air conditioner 10 undergoes a series of installation, evacuation, refrigerant charging, and trial operation, and is ready for operation.
 次に、第1実施形態による弁制御部18の弁制御回路44による制御動作を図5および図6に基づいて、バッテリ制御部42による制御動作を図7に基づいて説明する。弁制御回路44による制御、およびバッテリ制御部42による制御は、並行して実行される。 Next, the control operation by the valve control circuit 44 of the valve control unit 18 according to the first embodiment will be described based on FIGS. 5 and 6, and the control operation by the battery control unit 42 will be described based on FIG. Control by the valve control circuit 44 and control by the battery control section 42 are executed in parallel.
  (弁制御回路44による制御)
 弁制御部18内の弁制御回路44は、動作開始すると、冷媒検出部15で冷媒の漏れを検出したか否かを判断する(S201)。具体的には、室内機12の室内制御部32から冷媒漏洩の発生の通知が通信線L2を介して弁制御回路44に入力されたか否かを判断する。弁制御回路44は、冷媒の漏れの発生を検出すると(S201:Yes)、弁制御回路44は、弁駆動回路45を動作させて遮断弁16を閉弁し、配管13を遮断する(S202)。この場合、弁制御回路44は、冷媒の漏れを検出した対象室に設けられている室内機12の遮断弁16を閉弁する。なお、複数の室内機12に遮断弁16が設けられている場合、弁制御回路44は、そのすべての室内機12の遮断弁16を閉弁してもよい。
(Control by valve control circuit 44)
When the valve control circuit 44 in the valve control unit 18 starts operating, it determines whether or not the refrigerant detection unit 15 has detected leakage of the refrigerant (S201). Specifically, it is determined whether or not notification of the occurrence of refrigerant leakage has been input from the indoor controller 32 of the indoor unit 12 to the valve control circuit 44 via the communication line L2. When the valve control circuit 44 detects the occurrence of refrigerant leakage (S201: Yes), the valve control circuit 44 operates the valve drive circuit 45 to close the shutoff valve 16 and shut off the pipe 13 (S202). . In this case, the valve control circuit 44 closes the cutoff valve 16 of the indoor unit 12 provided in the target room in which the refrigerant leakage is detected. In addition, when a plurality of indoor units 12 are provided with shutoff valves 16 , the valve control circuit 44 may close the shutoff valves 16 of all the indoor units 12 .
 続いて、弁制御回路44は、回復指示があるか否かを判断する(S203)。回復指示は、例えば冷媒の漏れが修復されるなど予め設定された安全確保の措置によって空気調和機10の運転を回復してもよいと判断されたとき発せられる。回復指示は、例えば図示しない機械的なスイッチ、ソフトウェア的なスイッチ、あるいは遠隔操作部35からの入力などの任意の手段によって空気調和機10の修理・点検者の操作によって発せられる。弁制御回路44は、回復指示があると判断すると(S203:Yes)、遮断弁16を駆動し、配管13を開放する(S204)。すなわち、回復指示があるときは、運転の安全が確保されたと考えられることから、配管13は開放され、通常の空調運転に復帰する。このとき、弁制御回路44は、弁駆動回路45を介して遮断弁16を閉弁して配管13を開放する。一方、弁制御回路44は、回復指示がないと判断すると(S203:No)、回復指示があるまで待機する。すなわち、回復指示がないとき、安全な運転が十分に確保されていないと考えられることから、弁制御回路44は遮断弁16で配管13を遮断した状態を維持する。 Subsequently, the valve control circuit 44 determines whether or not there is a recovery instruction (S203). The recovery instruction is issued when it is determined that the operation of the air conditioner 10 can be recovered by taking preset safety measures such as repairing refrigerant leakage. The recovery instruction is issued by the repair/inspection person of the air conditioner 10 by arbitrary means such as a mechanical switch (not shown), a software switch, or an input from the remote control unit 35 . When the valve control circuit 44 determines that there is a recovery instruction (S203: Yes), it drives the cutoff valve 16 to open the pipe 13 (S204). That is, when there is a recovery instruction, it is considered that the safety of the operation has been secured, so the pipe 13 is opened and the normal air conditioning operation is resumed. At this time, the valve control circuit 44 closes the cutoff valve 16 via the valve drive circuit 45 to open the pipe 13 . On the other hand, when the valve control circuit 44 determines that there is no recovery instruction (S203: No), it waits until there is a recovery instruction. That is, when there is no recovery instruction, the valve control circuit 44 maintains the state in which the pipe 13 is shut off by the shutoff valve 16 because it is considered that safe operation is not sufficiently ensured.
 弁制御回路44は、S201において冷媒の漏れを検出しないとき(S201:No)、停電時の遮断弁16の閉鎖を許可する許可部50から許可指示、すなわち図4の手順中のF103における操作があったか否かを判断する(S205)。具体的には、弁制御回路44は、室内制御部32から通信線L3を介して弁制御回路44に許可指示が届いたかどうかを判断する。 When the valve control circuit 44 detects no refrigerant leakage in S201 (S201: No), the permitting instruction from the permitting unit 50 permitting closing of the shutoff valve 16 during a power failure, that is, the operation in F103 in the procedure of FIG. It is determined whether or not there is (S205). Specifically, the valve control circuit 44 determines whether or not a permission instruction has arrived from the indoor control unit 32 to the valve control circuit 44 via the communication line L3.
 弁制御回路44は、許可指示があると(S205:Yes)、バッテリユニット17のスイッチ部55をオンにする(S206)。これにより、電源34とバッテリユニット17のバッテリ41との間は、電気的に接続される。そのため、バッテリ41には、電源34から電力が供給される。一方、運転開始の指示がないと(S205:No)、S201へリターンし、これらの処理を繰り返す。空気調和機10の設置当初は、通常S201がNOとなり、S205がYESとなり、S206を通って、図6のステップS207へと移行する。一方、設置の時点において漏れが検出されると(S201:Yes)、ステップ202、203の処理が実行される。 When the permission instruction is given (S205: Yes), the valve control circuit 44 turns on the switch section 55 of the battery unit 17 (S206). Thereby, the power supply 34 and the battery 41 of the battery unit 17 are electrically connected. Therefore, power is supplied to the battery 41 from the power supply 34 . On the other hand, if there is no instruction to start operation (S205: No), the process returns to S201 and these processes are repeated. At the beginning of installation of the air conditioner 10, normally S201 is NO, S205 is YES, and the process goes through S206 to step S207 in FIG. On the other hand, if leakage is detected at the time of installation (S201: Yes), the processes of steps 202 and 203 are executed.
 弁制御回路44は、スイッチ部55をオンにした後、遮断弁16が閉となっているか否かを判断する(S207)。ここで弁制御回路44は、その時点で遮断弁16が閉となって配管13を遮断していると判断すると(S207:Yes)、バッテリ41が放電中であるか否かを判断する(S208)。バッテリ41が放電中であるか否かは通信線L4を介してバッテリ制御部42より送られている通電状態信号で判別される。すなわち、通電状態信号が「放電停止」であれば、バッテリ41は放電中ではない。一方、通電状態信号が「放電中」であれば、バッテリ41は放電中である。弁制御回路44は、バッテリ41が放電中であると判断したとき(S208:Yes)、バッテリ41の放電が停止した、すなわち通電状態信号が「放電中」から「放電停止」に変化したか否かを判断する(S209)。弁制御回路44は、バッテリ41の放電が停止していないと判断すると(S209:No)、放電が停止するまで待機し、遮断弁16は、閉弁状態が維持される。 After turning on the switch section 55, the valve control circuit 44 determines whether or not the cutoff valve 16 is closed (S207). Here, when the valve control circuit 44 determines that the shutoff valve 16 is closed at that time to shut off the pipe 13 (S207: Yes), it determines whether or not the battery 41 is discharging (S208). ). Whether or not the battery 41 is discharging is determined by an energization state signal sent from the battery control section 42 via the communication line L4. That is, if the energization state signal is "discharge stop", the battery 41 is not discharging. On the other hand, if the energization state signal is "discharging", the battery 41 is discharging. When the valve control circuit 44 determines that the battery 41 is discharging (S208: Yes), it determines whether the battery 41 has stopped discharging, that is, whether the energization state signal has changed from "discharging" to "discharging stopped". (S209). When the valve control circuit 44 determines that the discharge of the battery 41 has not stopped (S209: No), it waits until the discharge stops, and the cutoff valve 16 is kept closed.
 弁制御回路44は、バッテリ41の放電が停止した、すなわち停電復帰と判断すると(S209:Yes)、冷媒の漏れを検出したか否かを判断する(S210)。弁制御回路44は、冷媒の漏れを検出していないと判断したとき(S210:No)、開弁指示があったか否かを判断する(S211)。すなわち、弁制御回路44は、停電復帰時に冷媒の漏れを検出しないとき、遮断弁16による配管13の開放を指示する開弁指示の有無を判断する。開弁指示は、空気調和機10の運転開始の指示であり、空気調和機10の使用者による遠隔操作部35などにおける運転開始の操作によって室内制御部32から通信線L3を介し弁制御回路44へ入力される。弁制御回路44は、開弁指示があったと判断すると(S211:Yes)、弁駆動回路45を動作させ、遮断弁16を駆動して開弁し、配管13を開放(S212)してS207にリターンする。 When the valve control circuit 44 determines that the discharge of the battery 41 has stopped, ie, that the power has been restored (S209: Yes), it determines whether or not refrigerant leakage has been detected (S210). When the valve control circuit 44 determines that no refrigerant leakage has been detected (S210: No), it determines whether or not there has been an instruction to open the valve (S211). That is, the valve control circuit 44 determines whether or not there is a valve open instruction to open the pipe 13 by the cutoff valve 16 when no refrigerant leakage is detected at the time of restoration from power failure. The valve opening instruction is an instruction to start operation of the air conditioner 10, and the valve control circuit 44 is sent from the indoor control unit 32 via the communication line L3 by the user of the air conditioner 10 operating the remote control unit 35 or the like to start operation. is input to When the valve control circuit 44 determines that there is an instruction to open the valve (S211: Yes), it operates the valve drive circuit 45, drives the cutoff valve 16 to open it, opens the pipe 13 (S212), and proceeds to S207. return.
 この後、空気調和機10は運転を開始することになる。一方、弁制御回路44は、S211において開弁指示がない、すなわち空調運転の停止状態を維持していると判断すると(S211:No)、S210にリターンして空調運転開始の際に送信されてくる開弁指示を待つ。一方、S210において冷媒の漏れが検出されると(S210:Yes)、S207へリターンし、遮断弁16による配管13の閉鎖は継続される。 After this, the air conditioner 10 will start operating. On the other hand, if the valve control circuit 44 determines in S211 that there is no valve opening instruction, that is, that the air conditioning operation is being stopped (S211: No), the valve control circuit 44 returns to S210 and returns to S210. Wait for the valve opening instruction. On the other hand, when refrigerant leakage is detected in S210 (S210: Yes), the process returns to S207, and the shutoff valve 16 keeps the pipe 13 closed.
 弁制御回路44は、S208においてバッテリ41が放電中でないと判断したとき(S208:No)、回復指示があるか否かを判断する(S213)。回復指示は、S203と同様である。ここで、S208においてバッテリ41が放電中でない場合、冷媒の漏洩を検知したことで遮断弁16を閉弁している状態であることを意味しており、この場合、点検修理が完了し、回復指示がないと遮断弁16を開かない。弁制御回路44は、回復指示があると(S213:Yes)、S212へ移行し、遮断弁16によって配管13を開放する。一方、弁制御回路44は、回復指示がないと(S213:No)、回復指示があるまで待機する。このため、空気調和機10は、回復指示があるまで遮断弁16が閉じたままであり、かつ空調運転を開始できないため、安全が確保できる。 When the valve control circuit 44 determines in S208 that the battery 41 is not discharging (S208: No), it determines whether or not there is a recovery instruction (S213). The recovery instruction is the same as in S203. Here, if the battery 41 is not discharging in S208, it means that the shutoff valve 16 is closed due to detection of refrigerant leakage. The cutoff valve 16 is not opened without an instruction. When there is a recovery instruction (S213: Yes), the valve control circuit 44 proceeds to S212 and opens the pipe 13 by the cutoff valve 16. On the other hand, if there is no recovery instruction (S213: No), the valve control circuit 44 waits until there is a recovery instruction. Therefore, in the air conditioner 10, the shutoff valve 16 remains closed and the air conditioning operation cannot be started until a recovery instruction is given, so that safety can be ensured.
 弁制御回路44は、S207において遮断弁16が配管13を遮断していないと判断すると(S207:No)、続いて冷媒の漏れを検出したか否かを判断する(S214)。すなわち、弁制御回路44は、S207において遮断弁16が配管13を開放していると判断すると、冷媒の漏れの検出を継続する。弁制御回路44は、S214において、冷媒の漏れを検出すると(S214:Yes)、遮断弁16で配管13を遮断し(S215)、S207へリターンする。一方、弁制御回路44は、冷媒の漏れを検出していないと判断すると(S214:No)、バッテリ41が放電中であるか否かを判断する(S216)。弁制御回路44は、バッテリ41が放電中であると判断したとき(S216:Yes)、S215へ移行し、遮断弁16によって配管13を遮断する。この場合、遮断弁16を駆動するための弁駆動回路45の電源はバッテリ41から供給されている。なお、本フローチャートにおける手順を実行している弁制御回路44そのものも、この時点でバッテリ41から供給される電力で動作している。なお、停電などの電源喪失が発生してから通電検出部14およびバッテリ制御部42がこれを検出して、バッテリ41が放電を開始し、弁制御回路44にこれを通知するまでは、数十ミリsecの期間が生じる。この期間において、弁制御回路44は、整流回路46などに設けられているキャパシタなどに蓄積されている電力で動作を継続する。そのため、弁制御回路44は、処理が途切れることはない。 When the valve control circuit 44 determines in S207 that the shutoff valve 16 has not shut off the pipe 13 (S207: No), it then determines whether or not refrigerant leakage has been detected (S214). That is, when the valve control circuit 44 determines in S207 that the shutoff valve 16 has opened the pipe 13, it continues detection of refrigerant leakage. When the valve control circuit 44 detects refrigerant leakage in S214 (S214: Yes), the shutoff valve 16 shuts off the pipe 13 (S215), and the process returns to S207. On the other hand, when the valve control circuit 44 determines that no refrigerant leakage has been detected (S214: No), it determines whether the battery 41 is being discharged (S216). When the valve control circuit 44 determines that the battery 41 is discharging (S216: Yes), the process proceeds to S215, and the shutoff valve 16 shuts off the pipe 13. In this case, power is supplied from the battery 41 to the valve drive circuit 45 for driving the cutoff valve 16 . It should be noted that the valve control circuit 44 itself, which executes the procedure in this flow chart, is also operating with power supplied from the battery 41 at this time. It should be noted that, after a power failure such as a power failure occurs, it takes several tens of hours until the power detection unit 14 and the battery control unit 42 detect this, the battery 41 starts discharging, and the valve control circuit 44 is notified of this. A period of milliseconds occurs. During this period, the valve control circuit 44 continues to operate with power stored in a capacitor or the like provided in the rectifier circuit 46 or the like. Therefore, the processing of the valve control circuit 44 is not interrupted.
 弁制御回路44は、バッテリ41が放電中でないと判断すると(S216:No)、S207へリターンする。正常な状態においては、S207のNO、S214のNO、S216のNOが繰り返される。この間、遮断弁16は開放状態にあるため、空気調和機10は自由に運転停止ができる。 When the valve control circuit 44 determines that the battery 41 is not discharging (S216: No), it returns to S207. In a normal state, NO in S207, NO in S214, and NO in S216 are repeated. During this time, the shutoff valve 16 is open, so the operation of the air conditioner 10 can be stopped freely.
  (バッテリ制御部42による制御)
 続いて弁制御回路44と連携して動作するバッテリ制御部42の動作を、図7を参照して説明する。バッテリ制御部42は、処理が開始されると、電源34の通電停止つまり停電を検出したか否かを判断する(S301)。バッテリ制御部42は、通電検出部14を通して通電停止を検出すると(S301:Yes)、バッテリ41の放電を開始する(S302)。そして、バッテリ制御部42は、弁制御回路44に対してバッテリ41が放電中であることを示す「放電中」信号を通知するとともに(S303)、内部の判断用フラグとして「停電中」を設定する(S304)。
(Control by battery control unit 42)
Next, the operation of the battery control section 42 that operates in cooperation with the valve control circuit 44 will be described with reference to FIG. When the process is started, the battery control unit 42 determines whether or not the stoppage of the power supply to the power supply 34, that is, the power failure has been detected (S301). When the battery control unit 42 detects the stoppage of energization through the energization detection unit 14 (S301: Yes), it starts discharging the battery 41 (S302). Then, the battery control unit 42 notifies the valve control circuit 44 of a "discharging" signal indicating that the battery 41 is discharging (S303), and sets "power failure" as an internal determination flag. (S304).
 バッテリ制御部42は、S301において通電停止を検出しないとき(S301:No)、判断フラグが「停電中」が設定されているか否かを判断する(S305)。すなわち、バッテリ制御部42は、一連の処理の流れにおいてS304における「停電中」の設定があるか否かを判断する。バッテリ制御部42は、「停電中」の設定があると判断したとき(S305:Yes)、電源34の通電が復旧したか否かを判断する(S306)。すなわち、バッテリ制御部42は、通電検出部14を通して電源34からの通電が回復したかを判断する。 When the battery control unit 42 does not detect the energization stoppage in S301 (S301: No), it determines whether or not the determination flag is set to "during power outage" (S305). That is, the battery control unit 42 determines whether or not there is a setting of "during power failure" in S304 in the flow of a series of processes. When the battery control unit 42 determines that there is a setting of "during power failure" (S305: Yes), it determines whether or not the power supply to the power supply 34 has been restored (S306). That is, the battery control unit 42 determines whether the power supply from the power supply 34 is restored through the power supply detection unit 14 .
 バッテリ制御部42は、S306において通電が復旧したと判断すると(S306:Yes)、バッテリ41の放電を停止する(S307)。すなわち、バッテリ制御部42は、バッテリ41から弁制御部18への電力の供給を停止する。これとともに、バッテリ制御部42は、弁制御回路44へ通電状態信号として、バッテリ41が放電を停止したことを示す「放電停止」信号を通知するとともに内部フラッグの「停電中」を解除する(S308)。上述の弁制御回路44は、S209において、S308における「放電停止」の通電状態信号をバッテリ制御部42から受け取る。また、バッテリ制御部42は、S306において通電が復旧していないと判断すると(S306:No)、S301へリターンする。 When the battery control unit 42 determines that the energization has been restored in S306 (S306: Yes), it stops discharging the battery 41 (S307). That is, the battery control unit 42 stops supplying power from the battery 41 to the valve control unit 18 . At the same time, the battery control unit 42 notifies the valve control circuit 44 of a "discharge stop" signal indicating that the battery 41 has stopped discharging as an energization state signal, and cancels the internal flag "during power outage" (S308). ). In S209, the valve control circuit 44 described above receives from the battery control unit 42 the energization state signal of "discharge stop" in S308. Further, when the battery control unit 42 determines that the energization has not been restored in S306 (S306: No), the process returns to S301.
 バッテリ制御部42は、S308において「放電停止」を通知した後、バッテリ41の残量が十分であるか否かを判断する(S309)。バッテリ制御部42は、例えばバッテリ41の残量Pが予め設定された設定充電量Psより多いか否かを判断する。設定充電量Psは、例えばバッテリ41の最大容量の95%などのように任意に設定することができる。バッテリ制御部42は、バッテリ41の残量が十分である、つまりP>Psと判断すると(S309:Yes)、バッテリ41の充電を停止し(S310)、S301へリターンする。一方、バッテリ制御部42は、バッテリ41の残量が十分でない、例えばP≦Psと判断すると(S309:No)、電源34からの電力を用いてバッテリ41を充電し(S311)、S301へリターンする。また、バッテリ制御部42は、S305において「停電中」でないと判断したとき(S305:No)、S309へ移行し、その後の処理を継続する。正常時、すなわち電源34から正規の電力が供給されている状態においては、バッテリ制御部42は、S301のNO、S305のNO、S309、S310又はS311を繰り返し、バッテリ41の充電量が設定充電量Psとなるように制御する。 After notifying "stop discharging" in S308, the battery control unit 42 determines whether the remaining amount of the battery 41 is sufficient (S309). The battery control unit 42 determines, for example, whether or not the remaining amount P of the battery 41 is greater than a preset charging amount Ps. The set charge amount Ps can be arbitrarily set, such as 95% of the maximum capacity of the battery 41, for example. When the battery control unit 42 determines that the remaining amount of the battery 41 is sufficient, that is, P>Ps (S309: Yes), the battery control unit 42 stops charging the battery 41 (S310) and returns to S301. On the other hand, when the battery control unit 42 determines that the remaining amount of the battery 41 is insufficient, for example, P≦Ps (S309: No), the battery 41 is charged using the power from the power supply 34 (S311), and the process returns to S301. do. Further, when the battery control unit 42 determines that it is not "during power outage" in S305 (S305: No), it proceeds to S309 and continues the subsequent processing. In a normal state, that is, in a state in which regular power is supplied from the power supply 34, the battery control unit 42 repeats NO in S301, NO in S305, S309, S310, or S311 until the charge amount of the battery 41 reaches the set charge amount. Ps.
 第1実施形態の動作のポイントをまとめると、(1)許可指示が弁制御部18に入力されるまではバッテリ41を電源とした遮断弁16の閉弁は行なわない、(2)許可指示後は、弁制御部18の電源が遮断された場合および冷媒漏洩が検出された場合、遮断弁16は閉弁する、(3)弁制御部18の電源が遮断されて遮断弁を閉弁する場合、遮断弁16はバッテリ41を電源として駆動される。 To summarize the operation points of the first embodiment, (1) the shutoff valve 16 powered by the battery 41 is not closed until the permission instruction is input to the valve control unit 18, and (2) after the permission instruction. (3) When the power supply to the valve control unit 18 is cut off and the shutoff valve 16 is closed when a refrigerant leak is detected, (3) When the power supply to the valve control unit 18 is cut off , the shutoff valve 16 is driven by the battery 41 as a power source.
 以上説明した第1実施形態では、電源34から弁制御部18に対する通電が停止されているときは、バッテリ41の電力によって遮断弁16が遮断でき、安全性を向上することができる。さらに、弁制御部18は、許可指示があるまで、遮断弁16の駆動を制限し、配管13を開放した状態を維持する。そのため、空気調和機10の設置時に、バッテリユニット17に対する電源34接続と遮断が繰り返されても、遮断弁16が閉塞されることなく、配管13の開放は維持される。そのため、許可指示を出す前に真空引きや冷媒の充填を容易に実施することができる。 In the first embodiment described above, when the power supply 34 stops energizing the valve control unit 18, the shutoff valve 16 can be shut off by the power of the battery 41, and safety can be improved. Furthermore, the valve control unit 18 restricts the driving of the cutoff valve 16 and maintains the open state of the pipe 13 until the permission instruction is given. Therefore, even if the connection and disconnection of the power source 34 to the battery unit 17 are repeated when the air conditioner 10 is installed, the shutoff valve 16 is not closed and the pipe 13 is kept open. Therefore, it is possible to easily perform evacuation and refrigerant charging before issuing the permission instruction.
 (第2実施形態)
 続いて図8を参照して第2実施形態を説明する。第2実施形態の場合、通電検出部14の接続場所は、第1実施形態に示したバッテリユニット17ではなく、弁制御部18側に移している。これにより、通電検出部14および弁制御回路44は、連携して電源34から弁制御部18への電力の供給の有無を検出する。弁制御回路44は、電源34からの電力供給がない、つまり遮断または停電を検出した場合、通信線L4を介してバッテリ制御部42にバッテリ41の放電を指示する。この信号を受けてバッテリ制御部は44バッテリを放電して、弁制御回路44や弁駆動回路45の動作電力を供給する。すなわち、第1実施形態では、弁制御部18とバッテリユニット17が連係することで必要時を判断して遮断弁16の閉弁を行ったが、第2実施形態の場合、弁制御部18が連係することなく電源34遮断時の遮断弁16の閉弁動作、およびバッテリユニット17からの放電を管理する。その他の構成は、第1実施形態と共通である。
(Second embodiment)
Next, a second embodiment will be described with reference to FIG. In the case of the second embodiment, the connection location of the energization detection unit 14 is moved to the valve control unit 18 side instead of the battery unit 17 shown in the first embodiment. As a result, the energization detection unit 14 and the valve control circuit 44 cooperate to detect whether power is supplied from the power source 34 to the valve control unit 18 . The valve control circuit 44 instructs the battery control unit 42 to discharge the battery 41 via the communication line L4 when there is no power supply from the power supply 34, that is, when a cutoff or power failure is detected. Upon receiving this signal, the battery control section discharges the battery 44 to supply operating power to the valve control circuit 44 and the valve drive circuit 45 . That is, in the first embodiment, the valve control unit 18 and the battery unit 17 cooperate with each other to determine when it is necessary to close the cutoff valve 16, but in the case of the second embodiment, the valve control unit 18 It manages the closing operation of the cutoff valve 16 and the discharge from the battery unit 17 when the power supply 34 is cut off without any linkage. Other configurations are common to the first embodiment.
 第2実施形態の場合、許可部50は、弁制御部18に対して遮断弁16の閉弁を許可する。弁制御部18は許可部50から許可指示があるまで、遮断弁16を閉弁しない。一方、許可部50から許可指示を受け取り後は、冷媒漏洩の検出時および電源34の遮断時に弁制御部18は遮断弁16を閉弁する。 In the case of the second embodiment, the permitting unit 50 permits the valve control unit 18 to close the cutoff valve 16 . The valve control unit 18 does not close the shutoff valve 16 until a permission instruction is given from the permission unit 50 . On the other hand, after receiving the permission instruction from the permission unit 50 , the valve control unit 18 closes the cutoff valve 16 when refrigerant leakage is detected and when the power supply 34 is cut off.
 第2実施形態による空気調和機10の通常運転時における弁制御回路44による具体的な制御の流れを図9および図10に基づいて説明するとともに、バッテリ制御部42による制御の流れを図11に基づいて説明する。ここで第1実施形態と共通する処理については、詳細な説明を省略する。 A specific control flow by the valve control circuit 44 during normal operation of the air conditioner 10 according to the second embodiment will be described with reference to FIGS. 9 and 10, and a control flow by the battery control unit 42 is shown in FIG. will be explained based on Here, detailed description of the processing common to the first embodiment is omitted.
  (弁制御回路44による制御)
 まず、図9に示す弁制御回路44の動作は、図5の最後のステップS206を削除していることを除き図5の各ステップと同一であるため、説明を省略する。
 図9の最後のステップS205において許可指示があると(S205:Yes)、図10の最初のステップS406に移動し、遮断弁16が配管13を遮断しているか否かを判断する。弁制御回路44は、遮断弁16が配管13を遮断していると判断すると(S406:Yes)、電源34からの通電が停止されている「停電中」を記憶しているか否かを判断する(S407)。ここで、「停電中」の記憶は後述するS420にて設定されるフラグである。弁制御回路44は、「停電中」が設定中であると判断したとき(S407:Yes)、通電検出部14を通して、電源34から弁制御部18への通電が復旧したか否かを判断する(S408)。弁制御回路44は、通電が復旧していないと判断すると(S408:No)、電源34の通電が復旧するまで待機する。
(Control by valve control circuit 44)
First, the operation of the valve control circuit 44 shown in FIG. 9 is the same as each step in FIG. 5 except that the last step S206 in FIG. 5 is omitted, so the explanation is omitted.
If there is a permission instruction in the last step S205 of FIG. 9 (S205: Yes), the process moves to the first step S406 of FIG. When the valve control circuit 44 determines that the shutoff valve 16 has shut off the pipe 13 (S406: Yes), it determines whether or not it stores "during a power outage" in which the power supply from the power source 34 is stopped. (S407). Here, the storage of "during power failure" is a flag set in S420, which will be described later. When the valve control circuit 44 determines that "during a power outage" is being set (S407: Yes), the valve control circuit 44 determines whether power supply from the power supply 34 to the valve control unit 18 has been restored through the power supply detection unit 14. (S408). When the valve control circuit 44 determines that the power supply has not been restored (S408: No), the valve control circuit 44 waits until the power supply to the power supply 34 is restored.
 弁制御回路44は、通電が復旧したと判断すると(S408:Yes)、バッテリ制御部42に対して通信線L4を介して「放電停止指示」を出力する(S409)。通電が復旧すると、バッテリ41からの電力の供給は不要である。そのため、弁制御部18は、バッテリ41を制御するバッテリ制御部42に対し、バッテリ41の放電を停止させるために「放電停止指示」を出力する。第1実施形態においては、バッテリ制御部42がバッテリ41の放電の要否を判断したが、この第2実施形態では弁制御回路44がバッテリ41の放電要否を判断して、バッテリ制御部42に指示する。 When the valve control circuit 44 determines that the energization has been restored (S408: Yes), it outputs a "discharge stop instruction" to the battery control unit 42 via the communication line L4 (S409). When power supply is restored, power supply from the battery 41 is unnecessary. Therefore, the valve control unit 18 outputs a “discharge stop instruction” to the battery control unit 42 that controls the battery 41 to stop discharging the battery 41 . In the first embodiment, the battery control unit 42 determines whether or not the battery 41 needs to be discharged. In the second embodiment, the valve control circuit 44 determines whether or not the battery 41 needs to be discharged, direct to.
 弁制御回路44は、「放電停止指示」を出力した後、冷媒の漏れを検出したか否かを判断する(S410)。弁制御回路44は、冷媒の漏れを検出していないと判断したとき(S410:No)、再び停電を検出したか否かを判断する(S411)。そして、弁制御部18は、停電を検出していないと判断したとき(S411:No)、空気調和機10の運転開始の指示である開弁指示があったか否かを判断する(S412)。すなわち、弁制御回路44は、冷媒の漏れを検出せず、かつ停電を検出しないとき、開弁指示の有無を判断する。弁制御部18は、開弁指示があったと判断すると(S412:Yes)、遮断弁16によって配管13を開放し(S413)、S406にリターンする。一方、弁制御部18は、S412において開弁指示がないと判断すると(S412:No)、S410にリターンし、以降の処理を継続する。また、弁制御部18は、S410において冷媒の漏れを検出したと判断したとき(S410:Yes)、およびS411において停電を検出したと判断したとき(S411:Yes)、S420において「停電中」を記憶して、S406へリターンし、遮断弁16による配管13の閉鎖を継続する。 After outputting the "discharge stop instruction", the valve control circuit 44 determines whether or not refrigerant leakage has been detected (S410). When the valve control circuit 44 determines that refrigerant leakage has not been detected (S410: No), it determines again whether a power failure has been detected (S411). Then, when the valve control unit 18 determines that a power failure has not been detected (S411: No), it determines whether or not a valve opening instruction, which is an instruction to start operation of the air conditioner 10, has been issued (S412). That is, the valve control circuit 44 determines whether or not there is an instruction to open the valve when no refrigerant leakage is detected and no power failure is detected. When the valve control unit 18 determines that there is an instruction to open the valve (S412: Yes), the shutoff valve 16 opens the pipe 13 (S413) and returns to S406. On the other hand, when the valve control unit 18 determines that there is no valve opening instruction in S412 (S412: No), it returns to S410 and continues the subsequent processing. Further, when the valve control unit 18 determines that a refrigerant leak has been detected in S410 (S410: Yes) and when it determines that a power failure has been detected in S411 (S411: Yes), the valve control unit 18 indicates "power failure" in S420. After storing, the process returns to S406 to continue closing the pipe 13 by the shutoff valve 16. FIG.
 また、弁制御回路44は、S407において「停電中」でないと判断したとき(S407:No)、回復指示があるか否かを判断する(S414)。ここで、回復指示があると判断すると(S414:Yes)、S413へ移行し、遮断弁16が開に駆動され、配管13が開放される。一方、回復指示がなければ(S414:No)、回復指示があるまで待機する。S407において「停電中」でないときは(S407:No)、冷媒漏洩が検出されたことで遮断弁16が閉弁している場合である。そのため、冷媒の漏れに対する対策がなされた後に、点検者による回復指示の入力がない限り、遮断弁は開弁しないようにして、安全性を高めている。 Also, when the valve control circuit 44 determines in S407 that it is not "out of power" (S407: No), it determines whether or not there is a recovery instruction (S414). Here, if it is determined that there is a recovery instruction (S414: Yes), the process proceeds to S413, the cutoff valve 16 is driven to open, and the pipe 13 is opened. On the other hand, if there is no recovery instruction (S414: No), it waits until there is a recovery instruction. If it is not "during power outage" in S407 (S407: No), it means that the shutoff valve 16 is closed due to detection of refrigerant leakage. Therefore, after taking measures against refrigerant leakage, the shutoff valve is prevented from opening unless the inspector inputs a recovery instruction, thereby enhancing safety.
 弁制御回路44は、S406において遮断弁16が配管13を遮断していないと判断すると(S406:No)、停電を検出したか否かを判断する(S415)。すなわち、弁制御回路44は、S406において遮断弁16が配管13を開放していると判断すると、停電が生じたか否かを判断する。弁制御回路44は、S415において、停電を検出したと判断すると(S415:Yes)、バッテリ41の放電を指示する「放電指示」をバッテリ制御部42へ出力するとともに(S416)、このバッテリ41を電源として、弁駆動回路45を動作させて遮断弁16を閉弁し、配管13を遮断する(S417)。弁制御回路44は、S417で遮断弁16を閉弁した後、状態を示すフラグである「停電中」を記憶して(S420)、S406へリターンする。 When the valve control circuit 44 determines in S406 that the shutoff valve 16 has not shut off the pipe 13 (S406: No), it determines whether a power failure has been detected (S415). That is, when the valve control circuit 44 determines in S406 that the shutoff valve 16 has opened the pipe 13, it determines whether or not a power failure has occurred. When the valve control circuit 44 determines in S415 that a power failure has been detected (S415: Yes), it outputs a "discharge instruction" for instructing discharge of the battery 41 to the battery control unit 42 (S416). As a power source, the valve drive circuit 45 is operated to close the shutoff valve 16 and shut off the pipe 13 (S417). After closing the cut-off valve 16 in S417, the valve control circuit 44 stores the flag indicating the state of "blackout" (S420), and returns to S406.
 弁制御回路44は、S415において停電を検出していないと(S415:No)、冷媒の漏れを検出したか否かを判断する(S418)。弁制御部18は、冷媒検出部15において冷媒の漏れを検出、すなわち通信線L3を通して室内制御器32から「冷媒漏れ」の通知があると(S418:Yes)、S417へ移行し、遮断弁16を閉弁して配管13を遮断する。一方、冷媒の漏れを検出していなければ(S418:No)、S406へリターンして、S406のNO、S415のNO、S418のNOを繰り返す。この流れにおいて遮断弁16は、開弁状態にあり、配管13を連通させている正常な状態である。そのため、この間において使用者によって空気調和機10の運転および停止が実行される。 If the valve control circuit 44 has not detected a power failure in S415 (S415: No), it determines whether or not refrigerant leakage has been detected (S418). When the refrigerant detection unit 15 detects the leakage of the refrigerant, that is, when the indoor controller 32 notifies of the “refrigerant leakage” through the communication line L3 (S418: Yes), the valve control unit 18 proceeds to S417, and the shutoff valve 16 is closed to shut off the pipe 13 . On the other hand, if no refrigerant leakage has been detected (S418: No), the process returns to S406 and repeats NO in S406, NO in S415, and NO in S418. In this flow, the shut-off valve 16 is in an open state, which is a normal state in which the pipe 13 is communicated. Therefore, the air conditioner 10 is operated and stopped by the user during this period.
  (バッテリ制御部42による制御)
 続いて、第2実施形態におけるバッテリ制御部42の動作を、図11を参照して説明する。バッテリ制御部42は、「放電指示」の有無を判断する(S501)。なお、バッテリ制御部42は、バッテリ41または電源34を電源とするが、停電してからバッテリ41が放電するまでの期間、電源34が停電しても内部のキャパシタに蓄えられた電力で動作可能である。
(Control by battery control unit 42)
Next, operation of the battery control unit 42 in the second embodiment will be described with reference to FIG. 11 . The battery control unit 42 determines whether or not there is a "discharge instruction" (S501). The battery control unit 42 uses the battery 41 or the power source 34 as a power source, but can operate with the electric power stored in the internal capacitor even if the power source 34 fails during the period from the power failure until the battery 41 is discharged. is.
 バッテリ制御部42は、上述のように弁制御部18のS416で出力される「放電指示」があったか否かを判断し、「放電指示」があったと判断すると(S501:Yes)、「放電指示」があったことを内部フラグとして「放電指示中」として記憶する(S502)。すなわち、バッテリ制御部42は、図示しないRAMや不揮発性メモリなどの記憶部に「放電指示」があったことを記憶し、バッテリ41を放電する(S504)。すなわち、バッテリ制御部42は、一旦「放電指示」が出された後は、「放電停止指示」を受け取り、後述するS506において「放電指示中」の記憶を解除するまでは、バッテリ41に蓄えられている電力を放電し、S501へリターンする。 The battery control unit 42 determines whether or not there is a "discharge instruction" output in S416 of the valve control unit 18 as described above. ” is stored as an internal flag as “instructing to discharge” (S502). That is, the battery control unit 42 stores the "discharge instruction" in a storage unit such as a RAM or non-volatile memory (not shown), and discharges the battery 41 (S504). That is, once the "discharge instruction" is issued, the battery control unit 42 receives the "discharge stop instruction", and until the storage of "discharge instruction in progress" is canceled in S506, which will be described later, the battery 41 is stored. The stored power is discharged, and the process returns to S501.
 バッテリ制御部42は、S501において弁制御回路44からの「放電指示」がないと判断すると(S501:No)、図10に示す弁制御回路44の制御フローチャートのS409で出力される「放電停止指示」があったか否かを判断する(S505)。バッテリ制御部42は、「放電停止指示」を受けると(S505:Yes)、「放電指示中」の記憶を解除する(S506)。すなわち、バッテリ制御部42は、S502において図示しない記憶部に記憶した「放電指示中」を消去する。そして、バッテリ制御部42は、バッテリ41からの放電を停止する(S507)。なお、「放電指示中」の情報を内部フラグとして記憶するのは、弁制御回路44からバッテリ制御部42に送られる「放電指示」が電源34の遮断検出時の1回のみしか送られないためである。 When the battery control unit 42 determines in S501 that there is no "discharge instruction" from the valve control circuit 44 (S501: No), the "discharge stop instruction" output in S409 of the control flowchart of the valve control circuit 44 shown in FIG. ” is found (S505). When receiving the "discharge stop instruction" (S505: Yes), the battery control unit 42 cancels the memory of "discharge instruction in progress" (S506). In other words, the battery control unit 42 erases "instructing to discharge" stored in the storage unit (not shown) in S502. Then, the battery control unit 42 stops discharging from the battery 41 (S507). The reason why the information "instructing to discharge" is stored as an internal flag is that the "instruction to discharge" sent from the valve control circuit 44 to the battery control unit 42 is sent only once when the interruption of the power supply 34 is detected. is.
 バッテリ制御部42は、S506においてバッテリ41からの放電を停止すると、バッテリ41の残量が十分であるか否かを判断する(S508)。バッテリ制御部42は、バッテリ41の残量が十分である、つまりP>Psと判断すると(S508:Yes)、バッテリ41の充電を停止し(S509)、S501へリターンする。また、バッテリ制御部42は、バッテリ41の残量が十分でないと判断すると(S508:No)、バッテリ41を充電し(S510)、S501へリターンする。電源34が正常な状態では、バッテリ制御部42は、バッテリ41を放電することなく、S501のNO、S505のNO、S503のNO、S507、S508、S509またはS510の処理を繰り返すことになる。 After stopping the discharge from the battery 41 in S506, the battery control unit 42 determines whether the remaining amount of the battery 41 is sufficient (S508). When the battery control unit 42 determines that the remaining amount of the battery 41 is sufficient, that is, P>Ps (S508: Yes), the battery control unit 42 stops charging the battery 41 (S509) and returns to S501. When the battery control unit 42 determines that the remaining amount of the battery 41 is not sufficient (S508: No), it charges the battery 41 (S510) and returns to S501. When the power supply 34 is in a normal state, the battery control unit 42 repeats the processes of S501 NO, S505 NO, S503 NO, S507, S508, S509 or S510 without discharging the battery 41 .
 第2実施形態では、弁制御回路44は、許可指示があるまで、バッテリユニット17からの放電を禁止するため、電源34の停電検出時における遮断弁16の閉弁動作を禁止し、配管13を開放した状態を維持する。そのため、空気調和機10の設置時に、電源34と接続されたり、バッテリユニット17が接続されたりすることで電力が供給・遮断を繰り返しても、配管13の開放は維持される。そのため、許可指示があるまで配管13が遮断されることはなく、真空引きおよび冷媒の充填が円滑に実施可能である。そして、真空引きや冷媒の充填作業が終了し、許可指示が出された後に、電源34の通電が停止されたときには、バッテリユニット17の電力によって遮断弁16を閉弁して安全性を向上することができる。 In the second embodiment, the valve control circuit 44 prohibits the discharge from the battery unit 17 until a permission instruction is given. keep it open. Therefore, when the air conditioner 10 is installed, the piping 13 is kept open even if power is repeatedly supplied and interrupted by connecting to the power supply 34 or connecting the battery unit 17 . Therefore, the pipe 13 is not shut off until a permission instruction is issued, and the evacuation and refrigerant charging can be performed smoothly. After the evacuation and refrigerant filling work is completed and the power supply 34 is de-energized after the permission instruction is issued, the shut-off valve 16 is closed by the power of the battery unit 17 to improve safety. be able to.
 以上説明した本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
The present invention described above is not limited to the above-described embodiments, and can be applied to various embodiments without departing from the gist of the present invention.
While several embodiments of the invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.
 図面中、10は空気調和機、11は室外機、12は室内機、13は配管、14は通電検出部、15は冷媒検出部、16は遮断弁、17はバッテリユニット、18は弁制御部、34は商用単相の交流電源、41はバッテリ、42はバッテリ制御部、44は弁制御回路、45は弁駆動部、50は許可部、51は入力部を示す。 In the drawing, 10 is an air conditioner, 11 is an outdoor unit, 12 is an indoor unit, 13 is a pipe, 14 is a current detection unit, 15 is a refrigerant detection unit, 16 is a cutoff valve, 17 is a battery unit, and 18 is a valve control unit. , 34 is a commercial single-phase AC power supply, 41 is a battery, 42 is a battery control section, 44 is a valve control circuit, 45 is a valve driving section, 50 is a permission section, and 51 is an input section.

Claims (9)

  1.  室外機と、
     前記室外機から供給された冷媒によって、室内を冷却または加熱する室内機と、
     前記室外機と前記室内機との間を接続し、前記冷媒が流れる配管と、
     交流電源からの電力供給が停止したとき、電力を供給するバッテリユニットと、
     前記交流電源からの電力または前記バッテリユニットからの電力によって前記配管を開閉する遮断弁と、
     前記遮断弁の閉弁動作を許可する許可部と、
     前記許可部からの許可後に前記交流電源から前記遮断弁への電力の供給が停止すると、前記バッテリユニットからの電力によって前記遮断弁を閉弁するとともに、前記許可部からの許可前は、前記交流電源から前記遮断弁への電力の供給が停止しても前記遮断弁による前記配管の開放を維持する弁制御部と、
     を備える空気調和機。
    outdoor unit and
    an indoor unit that cools or heats a room with the refrigerant supplied from the outdoor unit;
    a pipe that connects between the outdoor unit and the indoor unit and through which the refrigerant flows;
    a battery unit that supplies power when the power supply from the AC power supply is stopped;
    a shutoff valve that opens and closes the pipe with power from the AC power supply or power from the battery unit;
    a permitting unit that permits the shutoff valve to close;
    When the supply of electric power from the AC power source to the cutoff valve is stopped after the permission from the permission unit, the cutoff valve is closed by the electric power from the battery unit, and before the permission from the permission unit, the AC a valve control unit that maintains opening of the pipe by the shutoff valve even when power supply from a power source to the shutoff valve is stopped;
    air conditioner.
  2.  前記室内機が冷却または加熱する室内における前記冷媒の漏れを検出する冷媒検出部をさらに備え、
     前記弁制御部は、前記冷媒検出部で前記冷媒の漏れが検出されたとき、前記許可部の許可の有無にかかわらず、前記遮断弁を閉弁して前記配管を遮断する請求項1記載の空気調和機。
    further comprising a refrigerant detection unit that detects leakage of the refrigerant in the room cooled or heated by the indoor unit;
    2. The valve control unit according to claim 1, wherein when the refrigerant detection unit detects leakage of the refrigerant, the valve control unit closes the shutoff valve to shut off the pipe regardless of whether or not permission is given by the permission unit. Air conditioner.
  3.  前記室外機または前記室内機の少なくともいずれか一方に設けられ、前記遮断弁の閉弁動作を許可する許可指示の入力を受け付ける入力部をさらに備え、
     前記許可部は、前記入力部の入力に基づき閉弁動作を許可する請求項1記載の空気調和機。
    Further comprising an input unit provided in at least one of the outdoor unit and the indoor unit for receiving an input of a permission instruction for permitting closing operation of the shutoff valve,
    The air conditioner according to claim 1, wherein the permitting section permits the valve closing operation based on an input from the input section.
  4.  前記弁制御部は、前記許可部からの許可に基づき、前記電源から前記バッテリユニットへの通電、および前記バッテリユニットから前記遮断弁への電力の供給を許可する請求項1または2記載の空気調和機。 3. The air conditioner according to claim 1 or 2, wherein the valve control unit permits energization from the power source to the battery unit and power supply from the battery unit to the cutoff valve based on permission from the permission unit. machine.
  5.  前記電源と前記バッテリユニットとの間に設けられている通電検出部をさらに備え、
     前記バッテリユニットは、前記通電検出部において前記電源からの電力の供給の停止を検出すると、前記遮断弁へ電力を供給する請求項3記載の空気調和機。
    further comprising an energization detection unit provided between the power supply and the battery unit,
    4. The air conditioner according to claim 3, wherein the battery unit supplies power to the cutoff valve when the power detection unit detects that the supply of power from the power source is stopped.
  6.  前記電源と前記弁制御部との間に設けられている通電検出部をさらに備え、
     前記弁制御部は、前記通電検出部において前記電源からの電力の供給の停止を検出すると、前記バッテリユニットから供給される電力を用いて前記遮断弁を駆動する請求項1または2記載の空気調和機。
    further comprising an energization detection unit provided between the power supply and the valve control unit;
    3. The air conditioner according to claim 1, wherein the valve control unit drives the shutoff valve using the power supplied from the battery unit when the electricity supply detection unit detects that the supply of power from the power source is stopped. machine.
  7.  前記弁制御部は、前記電源からの電力の供給の停止時には、前記バッテリユニットから供給される電力を電源として動作する請求項1から6のいずれか一項記載の空気調和機。 The air conditioner according to any one of claims 1 to 6, wherein the valve control section operates using power supplied from the battery unit as a power source when power supply from the power supply is stopped.
  8.  前記弁制御部は、前記電源からの電力の供給が停止して前記遮断弁を閉弁してから前記電源から再び電力の供給が開始された後に、前記室内機の運転開始の指示があると、前記遮断弁を開弁し、前記配管を連通させる請求項1から7のいずれか一項記載の空気調和機。 When the valve control unit receives an instruction to start the operation of the indoor unit after the supply of power from the power supply is stopped and the shutoff valve is closed and the supply of power from the power supply is restarted. 8. The air conditioner according to any one of claims 1 to 7, wherein the shutoff valve is opened to allow the pipe to communicate.
  9.  前記弁制御部は、前記遮断弁を駆動する弁駆動回路を有する請求項1から8のいずれか一項記載の空気調和機。 The air conditioner according to any one of claims 1 to 8, wherein the valve control section has a valve drive circuit that drives the cutoff valve.
PCT/JP2021/042972 2021-11-24 2021-11-24 Air conditioner WO2023095202A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023563379A JPWO2023095202A1 (en) 2021-11-24 2021-11-24
EP21965576.8A EP4379274A1 (en) 2021-11-24 2021-11-24 Air conditioner
PCT/JP2021/042972 WO2023095202A1 (en) 2021-11-24 2021-11-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042972 WO2023095202A1 (en) 2021-11-24 2021-11-24 Air conditioner

Publications (1)

Publication Number Publication Date
WO2023095202A1 true WO2023095202A1 (en) 2023-06-01

Family

ID=86539056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042972 WO2023095202A1 (en) 2021-11-24 2021-11-24 Air conditioner

Country Status (3)

Country Link
EP (1) EP4379274A1 (en)
JP (1) JPWO2023095202A1 (en)
WO (1) WO2023095202A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189470A (en) * 1992-12-18 1994-07-08 Kansai Electric Power Co Inc:The High speed power supply changeover apparatus
WO2016088167A1 (en) 2014-12-01 2016-06-09 三菱電機株式会社 Air-conditioning device
WO2020110425A1 (en) * 2018-11-26 2020-06-04 日立ジョンソンコントロールズ空調株式会社 Air-conditioning system and refrigerant leakage prevention system
JP2021131200A (en) * 2020-02-20 2021-09-09 パナソニックIpマネジメント株式会社 Air conditioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189470A (en) * 1992-12-18 1994-07-08 Kansai Electric Power Co Inc:The High speed power supply changeover apparatus
WO2016088167A1 (en) 2014-12-01 2016-06-09 三菱電機株式会社 Air-conditioning device
WO2020110425A1 (en) * 2018-11-26 2020-06-04 日立ジョンソンコントロールズ空調株式会社 Air-conditioning system and refrigerant leakage prevention system
JP2021131200A (en) * 2020-02-20 2021-09-09 パナソニックIpマネジメント株式会社 Air conditioning device

Also Published As

Publication number Publication date
JPWO2023095202A1 (en) 2023-06-01
EP4379274A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
KR102095757B1 (en) Air conditioning system
WO2021010295A1 (en) Refrigeration cycle system
JP6598878B2 (en) Refrigeration cycle equipment
EP4040060B1 (en) Air conditioning and ventilation system
WO2017199808A1 (en) Refrigeration cycle device
WO2020110425A1 (en) Air-conditioning system and refrigerant leakage prevention system
US10823445B2 (en) Refrigeration cycle apparatus
JP2012013339A (en) Air conditioner
JP2019060517A (en) Air conditioner
JP7336595B2 (en) refrigeration cycle equipment
US20160348927A1 (en) Air conditioner
CN103940157A (en) Air conditioner outdoor unit, air conditioner system and shutdown method of air conditioner system
CN110603412A (en) Air conditioning system and refrigerant quantity setting method thereof
JP2024009283A (en) Air conditioning device
JP6851500B2 (en) Duct type air conditioner
WO2023095202A1 (en) Air conditioner
CN114729769A (en) Air conditioner
US20240117989A1 (en) Shut-off valve control device for refrigeration cycle, and air conditioner
WO2017037841A1 (en) Refrigeration cycle apparatus and method for positioning same
JP7211913B2 (en) heat pump equipment
WO2020217380A1 (en) Indoor unit of air conditioner and air conditioner
JP6778888B1 (en) Repeater and air conditioner
JP2011247498A (en) Air conditioner
CN115053103A (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021965576

Country of ref document: EP

Effective date: 20240229

ENP Entry into the national phase

Ref document number: 2023563379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE