WO2023093537A1 - 高渗透率光伏接入的配电网多端协同电压治理方法、系统及存储介质 - Google Patents

高渗透率光伏接入的配电网多端协同电压治理方法、系统及存储介质 Download PDF

Info

Publication number
WO2023093537A1
WO2023093537A1 PCT/CN2022/131111 CN2022131111W WO2023093537A1 WO 2023093537 A1 WO2023093537 A1 WO 2023093537A1 CN 2022131111 W CN2022131111 W CN 2022131111W WO 2023093537 A1 WO2023093537 A1 WO 2023093537A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
bus node
agent
power compensation
voltage regulation
Prior art date
Application number
PCT/CN2022/131111
Other languages
English (en)
French (fr)
Inventor
岳东
窦春霞
丁孝华
李群
郭王勇
罗剑波
张智俊
张占强
赵景涛
杨毅
李延满
杜红卫
赵昕
汪鹤
Original Assignee
南京邮电大学
国网电力科学研究院有限公司
国网江苏省电力有限公司电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京邮电大学, 国网电力科学研究院有限公司, 国网江苏省电力有限公司电力科学研究院 filed Critical 南京邮电大学
Publication of WO2023093537A1 publication Critical patent/WO2023093537A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention belongs to the technical field of distribution network voltage management, and in particular relates to a multi-terminal coordinated voltage management method and system of a distribution network with high-permeability photovoltaic access.
  • the distribution network mainly adopts decentralized voltage control methods, that is, deploy voltage control equipment wherever the key pollution sources are, and solve voltage problems on the spot.
  • the cost of equipment configuration is high, and it is also difficult to realize the coordinated operation of different voltage management equipment, and the management efficiency is not high.
  • the technical problem to be solved by the present invention is: in view of the ubiquitous periodical and intermittent voltage over-limit problems in the distribution network with high-permeability photovoltaic access, it is difficult for traditional voltage regulation equipment to realize the key to the whole network and decentralization.
  • the coordinated control of voltage pollution sources how to use the intelligent matching and coordinated adjustment of the source network load storage multi-terminal voltage control equipment to solve the voltage limit problem of the distribution network.
  • the present invention provides a multi-terminal coordinated voltage management method of distribution network, which includes the following steps:
  • the distributed cooperative intelligent body device evaluates the local bus voltage, and compares the collected bus voltage with the upper and lower limit thresholds of the voltage, and judges that when the bus voltage appears periodical and systematic over/under voltage, it is activated by different levels of intelligent agents.
  • Master-slave interaction mode that is, when the secondary agent receives the voltage regulation request of the primary agent, it decides whether to respond to the voltage regulation request according to the voltage limit of the primary intelligent bus.
  • the primary agent receives the power adjustment request of the secondary agent
  • the first-level agents must respond; when it is judged that the bus voltage has intermittent local over/undervoltage, the peer-to-peer interaction mode is adopted between the first-level agents on the same layer, and the first-level agents receive other first-level agents.
  • a voltage regulation request is made, it decides whether to respond to the voltage regulation request according to its own remaining power compensation capacity.
  • a distribution network multi-terminal coordinated voltage management system including:
  • PCC Point of Common Coupling, public connection point
  • the information interaction between agents refers to the use of master-slave interaction mode between agents of different levels, that is, when the second-level agent receives the voltage regulation request of the first-level agent, it decides whether to respond according to the voltage limit of the first-level intelligent bus Voltage adjustment request, when the first-level agent receives the power adjustment command of the second-level agent, the first-level agent must respond; the peer-to-peer interaction mode is adopted between the first-level agents on the same layer, when the first-level agent receives other When the first-level agent requests voltage regulation, it decides whether to respond to the voltage regulation request according to its own remaining power compensation capacity.
  • a computer-readable storage medium is used for storing the above-mentioned multi-terminal coordinated voltage management method of distribution network with high penetration rate photovoltaic access.
  • the beneficial effects achieved by the present invention Based on the centralized coordination interaction between the secondary intelligent body and the primary intelligent body proposed by the present invention, and the distributed collaborative interaction control framework between the primary intelligent bodies, it has different response times and different control methods
  • the multi-terminal voltage management equipment of source network, load and storage can be flexibly coordinated and systematically coordinated, and can maximize the voltage management capability of distribution network source network, load and storage. Aiming at the problem of full-grid and decentralized voltage exceeding the limit in the distribution network with high-permeability photovoltaic access, the present invention proposes a multi-functional grid-connected inverter reactive/active power based on grid-end transformer gear switching and distributed power supply.
  • the network-load-storage multi-terminal voltage management equipment is the optimal matching object.
  • the predictive compensation method is adopted to deal with the influence of communication delay on system control, which reduces the investment cost of management equipment, improves the voltage regulation ability and the consumption of distributed resources, and effectively solves the problem. Periodic, systematic over/undervoltage problems and intermittent local over/undervoltage problems are solved.
  • Fig. 1 is a flow chart of the centralized coordination and pressure regulation algorithm of the centralized coordination agent device provided by the embodiment of the present invention
  • Fig. 2 is a flow chart of a distributed collaborative intelligent terminal distributed cooperative voltage regulation algorithm provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a multi-agent-based hierarchical voltage regulation architecture provided by an embodiment of the present invention
  • Fig. 4 is a structural block diagram of a centralized coordination agent device provided by an embodiment of the present invention.
  • Fig. 5 is a structural block diagram of a distributed collaborative agent device provided by an embodiment of the present invention.
  • this embodiment provides a multi-terminal coordinated voltage management method for distribution network with high penetration photovoltaic access, including network-end transformer gear switching, distributed power multi-functional grid-connected inverter Transformer reactive power/active power Q/P regulation, distributed energy storage inverter Q/P regulation, adopting reactive power compensator SVC at the load end.
  • An embodiment of the present invention provides a multi-terminal coordinated voltage management method for a distribution network with high-permeability photovoltaic access, which specifically includes the following steps:
  • Each distributed cooperative intelligent body device collects the voltage information of the local bus node respectively, and calculates the corresponding voltage per unit value according to their respective nominal voltages, as shown in formula (1), and sends the voltage per unit value to the centralized coordination intelligent body device;
  • the distributed collaborative smart body device is a first-level smart body, and the centralized coordination smart body device is a second-level smart body;
  • Step 2 The distributed cooperative intelligent body device judges whether the voltage of the local bus node exceeds the limit according to the set voltage safety threshold.
  • the safety threshold can be 0.95 and 1.05, that is, less than 0.95 is undervoltage, and greater than 1.05 is overvoltage. If the voltage exceeds the limit , then send a pressure regulation request to the centralized coordination agent device;
  • V i (t) is the i-th bus node voltage on the same feeder
  • V meme (t) is the per unit value of the i-th bus node voltage
  • V ni is the nominal voltage of the i-th bus node, superscript "-1" indicates reciprocal
  • Step 3 Based on the received voltage information of each bus node on the feeder, the centralized coordination agent device calculates the average per unit value of all feeder bus node voltages under the transformer, as shown in formula (2), and judges whether the average per unit value is Exceeding the set threshold range of each feeder, the set threshold range of the feeder can be 0.95-1.05, if it does not exceed the set threshold range of the feeder, the transformer tap remains at the current gear; if a certain feeder exceeds the set threshold range of the feeder , then under the condition that the transformer switching interval time is allowed, the feeder transformer tap is preferentially triggered to switch to the next gear, specifically:
  • the voltage regulation triggered by the transformer event can only ensure that the average voltage level of all bus nodes under the transformer is maintained in the safe area.
  • the centralized coordinated voltage regulation method of first reactive power and then active power compensation for sensitivity is used for voltage regulation, that is, the centralized coordinated intelligent body device compares the bus node voltage of each distributed collaborative intelligent body device, and preferentially selects the distributed collaborative intelligent device with the largest voltage deviation
  • the centralized coordinated voltage regulation algorithm is used to determine the power regulation method of each bus node, and the control command is sent to the corresponding distributed collaborative agent device.
  • the centralized coordinated voltage regulation algorithm specifically includes the following steps:
  • All distributed cooperative intelligent body devices collect the injection power information of local bus nodes, and calculate the capacity information of local power compensation equipment.
  • the capacity information of the power compensation equipment includes the maximum reactive power compensation capacity of the inverter and the maximum charge and discharge capacity of the energy storage device;
  • the bus nodes are numbered sequentially according to the reverse direction of the power flow.
  • the radial network topology, feeder impedance and feeder flow direction information are known, and the injection of the jth bus node is calculated.
  • X h-1,h is the feeder inductance between the h-1th bus node and the h-th bus node
  • R h-1,h is the feeder line between the h-1th bus node and the h-th bus node Resistance
  • the superscript "-1" means to find the reciprocal, means all;
  • each distributed collaborative agent device first performs reactive power compensation in order of reactive power-voltage sensitivity from large to small, and its calculation is shown in formula (5):
  • ⁇ V i (t) is the residual voltage regulation amplitude of the i-th bus node
  • ⁇ Q j (t) is the reactive power compensation value of the j-th bus node
  • superscript "-1" means the reciprocal
  • the reactive power compensation value ⁇ Q j (t) is less than the remaining reactive power compensation capacity of the inverter at the jth bus node, it means that the reactive power compensation of the distributed collaborative
  • the bus node voltage of the agent is adjusted to the safe area. At this time, 0.95 ⁇ the voltage of the bus node of the main voltage regulating agent ⁇ 1.05, so there is no need to perform further reactive power compensation, and the voltage regulation of the main voltage regulating agent is completed;
  • the reactive power compensation value ⁇ Q j (t) is greater than the remaining reactive power compensation capacity of the inverter at the j-th bus node, it means that the maximum reactive power compensation of the distributed collaborative agent device at the j-th bus node is not enough to convert the main
  • the bus node voltage of the voltage regulation agent is adjusted to the safe area. At this time, the bus node voltage of the main voltage regulation agent is still less than 0.95 or greater than 1.05, and the next level of agent needs to be executed in the order of reactive power-voltage sensitivity from large to small reactive power compensation;
  • ⁇ P j (t) is the active power compensation value of the jth bus node, and the superscript "-1" indicates the reciprocal;
  • the active power compensation value ⁇ P j (t) is less than the remaining active power compensation capacity of the energy storage equipment at the j-th bus node, it means that the active power compensation of the distributed cooperative agent device located at the j-th bus node is sufficient to convert the main voltage regulation agent bus
  • the node voltage is adjusted to the safe area. At this time, 0.95 ⁇ the bus node voltage of the main voltage regulating agent ⁇ 1.05, so no further active power compensation needs to be performed, and the voltage regulation of the main voltage regulating agent ends;
  • the active power compensation value ⁇ P j (t) is greater than the remaining active power compensation capacity of the energy storage equipment at the jth bus node, it means that the maximum active power compensation of the distributed collaborative agent device located at the jth bus node is not enough to convert the main voltage regulation intelligent
  • the bus node voltage of the body bus is adjusted to the safe area.
  • the bus node voltage of the main voltage regulating agent is still less than 0.95 or greater than 1.05, so it is necessary to perform active power compensation of the next distributed cooperative agent device in accordance with the order of active power-voltage sensitivity until the main regulator The bus node voltage of the voltage agent is adjusted to the safe area.
  • the predictive power compensation method is triggered to ensure the efficient regulation of overvoltage, and the predictive power compensation method based on the maximum tolerable time delay estimation is adopted, which specifically includes the following steps:
  • the power compensation performed by each distributed cooperative agent device can match the voltage regulation requirements of the current system, that is, it is enough to make the global system bus
  • the node voltage returns to the safe area; when there is a transmission delay in the communication network, any power fluctuation during the delay may cause the voltage fluctuation of the bus node of the distributed collaborative intelligent body device, thereby changing the voltage regulation requirements of the system. If the distributed collaborative intelligent If the body device still executes the power compensation request sent by the centralized coordination agent device, it may not be able to effectively adjust the bus node voltage of the global system due to the mismatch between the two.
  • ⁇ (t) is the transmission delay of the communication network; is the maximum tolerable communication delay; V′ pot (t) is the i-th bus node voltage under the influence of power fluctuation during the delay;
  • the maximum allowable voltage change under power fluctuations is a set threshold, such as 0.05, based on formulas (5) and (6) to calculate each distributed collaborative agent
  • the maximum allowable power fluctuation amplitude of the bus node of the device is less than the set threshold, such as 0.05; if the power change rate remains unchanged during the delay period, the maximum tolerance communication time delay It is numerically equal to the ratio of the maximum power fluctuation amplitude to the power change rate, otherwise, select the maximum power change rate to calculate the minimum upper limit of the maximum tolerable communication delay, that is, the delay threshold, as shown in formula (8):
  • the distributed cooperative agent device chooses to execute the power compensation request issued by the centralized coordination agent device; if the communication delay exceeds The delay threshold, that is, the time delay threshold of the distributed collaborative agent device If the power compensation request issued by the centralized coordination agent device cannot be received within the time range, the local prediction system will be activated, and the voltage regulation request of the current system will be satisfied by performing the prediction power compensation;
  • the predicted power compensation method is as follows: according to the received or predicted power compensation request of the centralized coordination agent device, each distributed collaborative agent device adjusts the local power compensation equipment through the control execution module, according to the reactive power compensation control command and the active power compensation control command , use the set control method to dynamically adjust the reactive power/reactive power control of local node inverters, SVCs and other equipment, so that the bus voltage of the global system can be restored to the safe domain.
  • a computer-readable storage medium characterized in that it is used to store the above-mentioned multi-terminal coordinated voltage management method for distribution network connected to high-permeability photovoltaics.
  • Embodiment 2 of the present invention provides a multi-terminal coordinated voltage control method for a distribution network with high-permeability photovoltaic access, which specifically includes the following steps:
  • the distributed cooperative agent device determines whether to execute the distributed cooperative voltage regulation algorithm according to the evaluation of the local bus voltage. When the voltage deviation is greater than the set threshold, the power information from the adjacent bus nodes is used to determine the multi-terminal power cooperative regulation method. The power information of the adjacent bus nodes is sent to the distributed collaborative intelligent device of the corresponding bus nodes, and the power of each compensation equipment is adjusted to maintain the system voltage of the local distribution network within the safe zone.
  • Step 1 On the i-th bus node, the distributed cooperative intelligent body device collects the voltage information and injected power information of the local bus node, calculates the voltage per unit value by using formula (1), and sends the collected information to the adjacent distributed collaborative intelligent body device;
  • V i (t) is the i-th bus node voltage on the same feeder
  • V meme (t) is the per unit value of the i-th bus node voltage
  • V ni is the nominal voltage of the i-th bus node, superscript "-1" indicates reciprocal
  • Step 2 The distributed cooperative intelligent body device judges whether the local bus node has intermittent voltage overrun. If there is no intermittent voltage overrun, that is, the voltage remains ⁇ 0.95 and ⁇ 1.05, then there is no need to send a voltage regulation request to the local and Other distributed cooperative intelligent body devices; if intermittent voltage exceeds the limit, that is, voltage ⁇ 0.95 or >1.05, then send a voltage regulation request to other distributed cooperative intelligent body devices, denoted as agent j;
  • Step 3 When receiving voltage regulation requests from multiple first-level agents at the same time, agent j judges whether it can respond to the voltage regulation request according to the remaining reactive capacity of the local inverter and the remaining capacity of the energy storage device. power compensation capacity, then refuse to respond to the requests of all agents; if there is power compensation capacity, choose to respond to the request of one of the agents by comparing the voltage regulation amplitude of all agents that send voltage regulation requests, if the i-th bus node If the voltage limit problem is the most serious, it will give priority to responding to the request of agent i, and refuse to respond to the requests of other agents. At the same time, the capacity of the local power compensation equipment and the injected power information of the jth bus node will be sent to the agent i.
  • Step 4 If the voltage regulation request of agent i gets a response from other first-level agents, use the voltage regulation amplitude of the local i-th bus node and the received power regulation capacity information of other first-level agents to adopt the voltage-based
  • the distributed cooperative voltage regulation algorithm of reactive power compensation first and then active power compensation of sensitivity, iterates in order of reactive power-voltage sensitivity from large to small, and then active power-voltage sensitivity from large to small, to determine the control of each power compensation equipment command, and send a power compensation request to the corresponding first-level agent.
  • the distributed cooperative voltage regulation algorithm based on voltage sensitivity first reactive power compensation and then active power compensation specifically includes the following steps:
  • X h-1,h is the feeder inductance between the h-1th bus node and the h-th bus node
  • R h-1,h is the feeder line between the h-1th bus node and the h-th bus node Resistance
  • the superscript "-1" means to find the reciprocal, means all;
  • the agent i is the main voltage regulation agent, and it remains unchanged during the iterative process of the voltage regulation algorithm. Firstly, the local ith bus node voltage regulation amplitude, reactive power-voltage sensitivity, and each one from the response are used.
  • the reactive power compensation capacity information of the inverters of the level agent is used to perform reactive power compensation in order of reactive power-voltage sensitivity from large to small, and the inverter on the bus node corresponding to the maximum reactive power-voltage sensitivity is preferentially selected to perform reactive power.
  • ⁇ V i (t) is the residual voltage regulation amplitude of the i-th bus node
  • ⁇ Q j (t) is the reactive power compensation value of the j-th bus node
  • superscript "-1" means the reciprocal
  • the reactive power compensation ⁇ Q j (t) of the inverter is less than the reactive power compensation capacity of the inverter on the j-th bus node, it means that the reactive power compensation of the first-level agent on the j-th bus is sufficient to make the i-th bus node
  • the bus node corresponding to the maximum active-voltage sensitivity is the jth bus node, based on the remaining voltage regulation amplitude of the i-th bus node and the active-voltage sensitivity between the injected power of the j-th bus node
  • ⁇ P j (t) is the active power compensation value of the jth bus node, and the superscript "-1" indicates the reciprocal;
  • agent i sends the reactive power compensation control command and the active power compensation control command to the previous responding first-level agent, denoted as agent j, and each first-level agent adjusts the local power compensation equipment through the control execution module, according to the reactive power Compensation control command and active power compensation control command, using the set control method to realize the reactive/active output adjustment of local distributed photovoltaics, energy storage inverters, load SVC and other equipment, so that the voltage of the i-th bus node can be restored to the safe zone ;
  • step 1)-step 4) to restore the intermittent voltage fluctuations of all local bus nodes to the safe zone.
  • the present invention provides a distribution network multi-terminal coordinated voltage management system for high-permeability photovoltaic access, including:
  • the centralized coordination agent device deployed on the PCC bus of the transformer that is, the secondary agent
  • the information interaction between agents refers to the use of master-slave interaction mode between agents of different levels, that is, when the second-level agent receives the voltage regulation request of the first-level agent, it decides whether to respond according to the voltage limit of the first-level intelligent bus Voltage adjustment request, when the first-level agent receives the power adjustment command of the second-level agent, the first-level agent must respond; the peer-to-peer interaction mode is adopted between the first-level agents on the same layer, when the first-level agent receives other When the first-level agent requests voltage regulation, it decides whether to respond to the voltage regulation request according to its own remaining power compensation capacity.
  • the second-level intelligent body can obtain all bus voltage limit information and voltage regulation resource information under the transformer, and formulate a centralized coordinated voltage regulation decision to reasonably allocate voltage regulation tasks to each first-level intelligent body, and finally realize multi-terminal coordinated voltage synthesis goals of governance.
  • the secondary agent 1 specifically includes a data processing module 2, a voltage evaluation module 3, a database module 4, a knowledge base module 5, a voltage regulation decision module 6 and a control execution module 7:
  • the data processing module 2 of the secondary agent 1 is responsible for receiving all bus information from the primary agent 8, including voltage, capacity and power adjustment, and converting the information into a processable agent language;
  • the voltage evaluation module 3 of the secondary intelligent body 1 is responsible for judging all bus node information from the data processing module 2, and evaluating all feeder bus voltage violations, and autonomously judging whether to trigger the centralized coordination voltage regulation algorithm;
  • the database module 4 of described secondary intelligent body 1 is responsible for storing the information from data processing module 2, and can provide data for voltage regulation decision-making module 6 simultaneously;
  • the knowledge base module 5 of the secondary agent 1 is responsible for storing industry knowledge data from expert experience, providing basic data for the voltage regulation decision-making module 6 to make decisions, and the voltage evaluation module 3 to perform voltage over-limit evaluation;
  • the voltage regulation decision-making module 6 of the secondary intelligent body 1 utilizes the information from the data processing module 2, the database module 4 and the knowledge base module 5, and based on the centralized coordinated voltage regulation algorithm, formulates the transformer tap adjustment to each bus node Reactive power and active power adjustment commands such as photovoltaic inverters, energy storage inverters, and SVCs, and the commands are issued to the corresponding first-level agents located at bus nodes through the control execution module 7;
  • the control execution module 7 of the secondary intelligent body 1 is responsible for issuing the reactive power or active power adjustment command formulated by the voltage regulation decision-making module to the corresponding primary intelligent body 8 of the bus node located at the bus node;
  • the first-level intelligent agent can not only perceive the external environment but also act on the external environment, and can quickly respond to emergencies in the external environment; based on local node information and through information interaction with adjacent first-level intelligent agents, it has high Cooperatively control the reactive power/active power dynamic adjustment behavior of each adjacent busbar node with intelligent intelligence.
  • the first-level agent 9 includes a reaction layer and a negotiation layer
  • the reaction layer includes a perception module 10, a recognition module 11 and a control action execution module 12
  • the negotiation layer includes a data interaction module 13, a knowledge base module 14 and distributed collaborative decision-making module 15.
  • the perception module 10 of the first-level intelligent body 9 is responsible for collecting information such as voltage, capacity, and power regulation of all buses;
  • the recognition module 11 of the first-level agent 9 is responsible for converting the information from the perception module 10 into a processable agent language and sending it to the distributed collaborative decision-making module 15 of the negotiation layer, and can quickly identify sudden changes in the external environment. event, directly triggering the reaction layer control action execution module 12 to execute the corresponding emergency action instruction;
  • the control action execution module 12 of the first-level intelligent body 9 is responsible for sending instructions from the distributed collaborative decision-making module 15 of the negotiation layer and emergency action instructions from the identification module 11 of the reaction layer to the inverter 18;
  • the knowledge base module 14 of the first-level agent 9 is responsible for storing the industry knowledge from expert experience and the data of the distributed collaborative decision-making module 15, and at the same time providing basic data for the distributed collaborative decision-making module 15 to make decisions, such as providing voltage safety thresholds : 0.95-1.05 and other reference values;
  • the distributed collaborative decision-making module 15 of the first-level agent 9 utilizes the information from the identification module 11, the data interaction module 13 and the knowledge base module 14, and based on the distributed cooperative voltage regulation algorithm, formulates the photovoltaic inverter of each bus node. , energy storage inverter, and SVC and other reactive or active adjustment commands, and the command is sent to the corresponding inverter through the control action execution module 12, and the corresponding data is sent to the data interaction module 13 for the same secondary
  • the agent 16 and other first-level agents 17 perform information interaction;
  • the data interaction module 13 of the first-level agent 9 is responsible for receiving information from the second-level agent 16 and other first-level agents 17, and can send the instruction information of the distributed collaborative decision-making module 15 to the second-level agent 16 and other first-level agents17.
  • the multi-terminal collaborative voltage management system of the distribution network of the present invention supports the realization of information interaction between multiple agents, the intelligent execution of the upper-layer centralized coordinated voltage regulation algorithm and the lower-layer distributed collaborative intelligent voltage regulation algorithm.
  • a computer-readable storage medium characterized in that it is used to store the above-mentioned multi-terminal coordinated voltage management method and system for distribution network with high-permeability photovoltaic access.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种高渗透率光伏接入的配电网多端协同电压治理方法、系统及存储介质,本发明方法中,当出现时段性、系统性过/欠电压时,采用集中智能协调调压方法,包括网端变压器档位切换、分布式电源多功能并网逆变器器Q/P调节、分布式储能逆变器Q/P调节、采用负荷端无功补偿器SVC;当出现间歇性局部过/欠电压时,采用终端多智能体分布式协同电压调节方法,利用本地及相邻节点的分布式电源多功能并网逆变器、分布式储能逆变器、负荷端无功补偿器SVC的分布式协同调压算法,对局部节点电压进行分布式协同补偿。本发明的配电网多端协同电压治理方法及系统实现了对全网化、分散化电压问题的系统性治理。

Description

高渗透率光伏接入的配电网多端协同电压治理方法、系统及存储介质 技术领域
本发明属于配电网电压治理技术领域,具体涉及一种高渗透率光伏接入的配电网多端协同电压治理方法及系统。
背景技术
“双碳”目标驱动下,带来整县光伏的建设需求,整县光伏接入对电力系统“应接必接”的要求下,势必会造成农村和山区等轻载配电网整条馈线的时段性过电压问题,相应地,诸如重工业生产等城市重载配电网则会出现时段性欠电压问题。现阶段配电网主要采取分散式的电压治理手段,即关键污染源在哪里就在哪里部署电压治理设备,就地解决电压问题,然而基于分散式的电压治理模式不仅需要数量多、容量大的治理设备配置,成本高昂,同时也难以实现不同电压治理设备的协同运行,治理效率不高。考虑配电网中除了配置一定数量的专用电压治理设备外,还存在大量的分布式电源与储能等多功能并网逆变器以及网端变压器,如何将多元化治理设备在空间位置、治理功能和可调容量上与全网化、分散化的关键电压污染源建立一一匹配关系,利用多元化治理设备智能匹配和协同调节实现对全网化、分散化电压问题的综合治理,有效保证高渗透率光伏接入配电网的安全可靠运行,是需要解决的问题。
发明内容
本发明所要解决的技术问题是:针对高渗透率光伏接入的配电网中普遍存在的时段性和间歇性的电压越限问题,传统的调压设备难以实现对全网化、分散化关键电压污染源的协同治理,如何利用源网荷储多端电压治理设备的智能匹配与协同调节实现解决配电网的电压越限问题。
为解决上述技术问题,本发明提供一种配电网多端协同电压治理方法,包括以下步骤:
在变压器PCC母线上部署集中协调智能体装置,即二级智能体;
在各馈线每个可调节的母线节点上部署分布式协同智能终端装置,即一级智能体;
各智能体之间进行信息交互;
分布式协同智能体装置对本地母线电压进行评估,即将采集的各母线电压与电压上下限阈值进行比较,判断母线电压出现时段性、系统性过/欠电压时,由不同层级智能体之间启动主从交互模式,即二级智能体收到一级智能体调压请求时,根据一级智能母线电压越限情况决定是否响应调压请求,当一级智能体接到二级智能体功率调节指令时,一级智能体必须响应;判断母线电压出现间歇性局部过/欠电压时,同层一级多智能体之间采用对等交互模式,一级智能体收到其它一级智能体调压请求时,根据自身剩余功率补偿容量决定是否响应调压请求。
一种配电网多端协同电压治理系统,包括:
部署在变压器PCC(Point of Common Coupling,公共连接点)母线上的集中协调智能体 装置,即二级智能体;
部署在各馈线每个可调节的母线节点上的分布式协同智能终端装置,即一级智能体;
各智能体之间进行信息交互指,不同层级智能体之间采用主从交互模式,即二级智能体收到一级智能体调压请求时,根据一级智能母线电压越限情况决定是否响应调压请求,当一级智能体接到二级智能体功率调节指令时,一级智能体必须响应;同层一级多智能体之间采用对等交互模式,当一级智能体收到其它一级智能体调压请求时,根据自身剩余功率补偿容量决定是否响应调压请求。
一种计算机可读存储介质,用于存储上述的高渗透率光伏接入的配电网多端协同电压治理方法。
本发明所达到的有益效果:基于本发明提出的二级智能体和一级智能体集中式协调交互、一级智能体之间分布式协同交互的控制架构,使得具有不同响应时间和不同控制方式源网荷储多端电压治理设备能够灵活协同、系统协调,最大程度地挖掘配电网源网荷储多端的电压治理能力。针对高渗透率光伏接入的配电网中全网化、分散化的电压越限问题,本发明提出了基于网端变压器档位切换、分布式电源多功能并网逆变器无功/有功Q/P调节、分布式储能逆变器Q/P调节、负荷端设置无功补偿器SVC的集中式协调分布式协同的配电网电压综合治理方法,以最小功率削减为目标,以源网荷储多端电压治理设备为优化匹配对象,同时采用预测补偿方法应对通信时延对系统控制的影响,降低了治理设备投入成本,提升了电压调节能力以及分布式资源的消纳,有效地解决了时段性、系统性过/欠电压问题与间歇性局部过/欠电压问题。
附图说明
图1是本发明实施例提供的集中协调智能体装置集中式协调调压算法流程图;
图2是本发明实施例提供的分布式协同的智能终端分布式协同调压算法流程图;
图3是本发明实施例提供的基于多智能体的层级调压架构示意图;
图4是本发明实施例提供的集中协调智能体装置的结构框图;
图5是本发明实施例提供的分布式协同智能体装置的结构框图。
具体实施方式
以下结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1
针对时段性、系统性过/欠电压问题,本实施例提供一种高渗透率光伏接入的配电网多端协同电压治理方法,包括网端变压器档位切换、分布式电源多功能并网逆变器无功/有功Q/P调节、分布式储能逆变器Q/P调节、采用负荷端设置无功补偿器SVC。
本发明实施例提供了一种高渗透率光伏接入的配电网多端协同电压治理方法,具体包括以下步骤:
步骤一.各分布式协同智能体装置分别采集本地母线节点电压信息,根据各自标称电压分别计算对应的电压标幺值,如式(1)所示,将电压标幺值发送至集中协调智能体装置;所述分布式协同智能体装置为一级智能体,集中协调智能体装置为二级智能体;
步骤二.分布式协同智能体装置依据设定的电压安全阈值判断本地母线节点电压是否越限,安全阈值可以为0.95与1.05,即小于0.95为欠电压、大于1.05为过电压,如果电压越限,则发送调压请求至集中协调智能体装置;
Figure PCTCN2022131111-appb-000001
式中:V i(t)是同一馈线上第i个母线节点电压;V pui(t)是第i个母线节点电压标幺值;V ni是第i个母线节点的标称电压,上标“-1”表示求倒数;
步骤三.基于接收的馈线上各母线节点电压信息,集中协调智能体装置计算变压器下所有馈线母线节点电压的平均标幺值,如式(2)所示,并判断所述平均标幺值是否超出各馈线设定阈值范围,所述馈线设定阈值范围可以为0.95-1.05,若不超出馈线设定阈值范围,则变压器分接头保持在当前档位;若某条馈线超出馈线设定阈值范围,则在变压器切换间隔时间允许条件下,优先将所述馈线变压器分接头触发切换到下一档位,具体为:
当平均标幺值大于1.05时,将分接头提升一个档位;
当平均电压小于0.95时,将分接头降低一个档位;
当平均标幺值被变压器调节至0.95-1.05范围内时,即可结束分接头档位的调节;
Figure PCTCN2022131111-appb-000002
式中,
Figure PCTCN2022131111-appb-000003
是同一馈线上所有母线节点电压的平均标幺值,N是该馈线上母线节点数量,上标“-1”表示求倒数。
所述的变压器事件触发调压仅能保证该变压器下所有母线节点的平均电压水平维持在安全域内,当同一变压器下一个或部分母线节点存在时段性的过电压或欠电压时,则采用基于电压灵敏度的先无功再有功补偿的集中式协调调压方法进行调压,即所述集中协调智能体装置对比各分布式协同智能体装置的母线节点电压,优先选择最大电压偏差的分布式协同智能体装置的调压请求,利用集中式协调调压算法确定各母线节点功率调节方法,并发送控制指令至相应的分布式协同智能体装置。
如图1所示,所述集中式协调调压算法,具体包括以下步骤:
1)所有分布式协同智能体装置均采集本地母线节点注入功率信息,计算本地功率补偿设备容量信息,如果具备剩余可调容量,则将本地功率补偿设备容量信息发送至集中协调智能体 装置,所述功率补偿设备容量信息包括逆变器最大无功补偿容量、储能设备最大充放电容量;
2)在变压器下的任意馈线分支上,按照潮流反方向依次编号母线节点,在集中协调智能体装置中,已知径向网络拓扑、馈线阻抗以及馈线潮流方向信息,计算第j个母线节点注入功率与第i个母线节点电压之间的无功-电压灵敏度
Figure PCTCN2022131111-appb-000004
与有功-电压灵敏度
Figure PCTCN2022131111-appb-000005
Figure PCTCN2022131111-appb-000006
Figure PCTCN2022131111-appb-000007
式中,X h-1,h是第h-1个与第h个母线节点之间的馈线感抗,R h-1,h是第h-1个与第h个母线节点之间的馈线电阻,上标“-1”表示求倒数,
Figure PCTCN2022131111-appb-000008
表示所有;
3)假设第i个母线节点对应分布式协同智能体装置为主调压智能体,利用该母线节点调压幅值、电压灵敏度、以及同一馈线上各分布式协同智能体装置的功率补偿容量信息,各分布式协同智能体装置先按照先无功-电压灵敏度从大到小的顺序依次进行无功补偿,其计算如式(5)所示:
Figure PCTCN2022131111-appb-000009
式中:δV i(t)是第i个母线节点的剩余调压幅值,ΔQ j(t)是第j个母线节点的无功补偿数值,上标“-1”表示求倒数;
若无功补偿数值ΔQ j(t)小于第j个母线节点的逆变器剩余无功补偿容量,则表示位于第j个母线节点的分布式协同智能体装置的无功补偿足以将主调压智能体母线节点电压调至安全域内,此时,0.95≤主调压智能体母线节点电压≤1.05,故不需要执行进一步的无功补偿,所述主调压智能体的调压结束;
若无功补偿数值ΔQ j(t)大于第j个母线节点的逆变器剩余无功补偿容量,则表示位于第j个母线节点的分布式协同智能体装置的最大无功补偿不足以将主调压智能体母线节点电压调至安全域内,此时,主调压智能体母线节点电压仍小于0.95或大于1.05,需要按照无功-电压灵敏度从大到小的顺序执行下一个一级智能体的无功补偿;
4)当所有分布式协同智能体装置均达到各自无功补偿上限且主调压智能体母线节点仍存在电压越限问题时,则再按照有功-电压灵敏度从大到小的顺序依次进行有功补偿,各分布式协同智能体装置的有功补偿计算如式(6)所示:
Figure PCTCN2022131111-appb-000010
式中:ΔP j(t)是第j个母线节点的有功补偿数值,上标“-1”表示求倒数;
若有功补偿数值ΔP j(t)小于第j个母线节点的储能设备剩余有功补偿容量,则表示位于第j个母线节点的分布式协同智能体装置的有功补偿足以将主调压智能体母线节点电压调至安全域内,此时,0.95≤主调压智能体母线节点电压≤1.05,故不需要执行进一步的有功补偿,所述主调压智能体的调压结束;
若有功补偿数值ΔP j(t)大于第j个母线节点的储能设备剩余有功补偿容量,则表示位于第j个母线节点的分布式协同智能体装置的最大有功补偿不足以将主调压智能体母线节点电压调至安全域内,此时主调压智能体母线节点电压仍小于0.95或大于1.05,故需要按照有功-电压灵敏度顺序执行下一个分布式协同智能体装置的有功补偿,直至主调压智能体母线节点电压被调至安全域内。
5)在每次功率补偿后,若主调压智能体母线节点被调至安全域内,则需要同步更新所有分布式协同智能体装置母线节点电压,并对比所有母线节点的电压标幺值来确定最大电压偏差,若所有母线节点的最大电压偏差≤设定值,如0.05,则不再需要选择新的主调压智能体,调压算法迭代结束;若该偏差>设定值,如0.05,则需要重新选择新的主调压智能体,并执行功率补偿;按照步骤1)-步骤4)逐一迭代,直至所有分布式协同智能体装置母线节点的最大电压偏差≤设定值,如0.05,调压算法迭代结束,通过上述迭代过程,最终确定各功率补偿设备的控制指令,由分布式协同智能体分送给逆变器执行;
由于配电网复杂的网络传输环境,在时延越界情况下,触发预测功率补偿方法以保证过电压的高效调节,采用基于最大容忍时延估计的预测功率补偿方法,具体包括以下步骤:
当通信网络不存在传输时延时,基于集中协调智能体装置下发的功率补偿请求信号,各分布式协同智能体装置执行的功率补偿可以匹配当前系统的调压需求,即足以将全域系统母线节点电压恢复至安全域内;当通信网络存在传输时延时,时延期间任何的功率波动均可能造成分布式协同智能体装置母线节点电压波动,进而改变系统的调压需求,若分布式协同智能体装置依旧执行集中协调智能体装置下发的功率补偿请求,则可能因两者之间的不匹配性,不能实现全域系统母线节点电压的有效调节。
若时延期间的功率波动较小,则调压需求与功率补偿请求之间的匹配性较高,电压调节仍旧有效,而随着功率波动的逐渐增加,会降低两者之间的不匹配性,当功率波动超出可允许的阈值时,迫使电压调节无效。系统调压有效性主要取决于时延期间的功率波动大小,对于给定的功率变化速率,功率变化幅值与传输时延大小有关,随着时延的增加,功率与电压波动愈加明显,当其超出给定阈值,即最大容忍通信时延时,系统电压调节失败。因此,可将通信时延对主调压智能体,即第i个母线节点电压调节的影响表示为:
Figure PCTCN2022131111-appb-000011
式中,τ(t)是通信网络传输时延;
Figure PCTCN2022131111-appb-000012
是最大容忍通信时延;V′ pui(t)是时延期间功率波动影响下的第i个母线节点电压;
在通信时延期间,为了保持第i个母线电压调节有效性,功率波动下的最大可允许电压变化为设定阈值,如0.05,基于式(5)与(6)计算各分布式协同智能体装置母线节点可允许的最大功率波动幅值,当功率波动小于设定阈值时,第i个母线电压变化小于设定阈值,如0.05;若时延期间功率变化速率保持不变,则最大容忍通信时延
Figure PCTCN2022131111-appb-000013
在数值上等于最大功率波动幅值与功率变化速率的比值,否则,选取最大功率变化速率计算最大容忍通信时延的最小上限,即时延阈值,如式(8)所示:
Figure PCTCN2022131111-appb-000014
式中,
Figure PCTCN2022131111-appb-000015
是第j个母线节点的最大功率变化速率;
在系统集中式调压过程中,若通信时延小于式(8)中的时延阈值,则分布式协同智能体装置选择执行集中协调智能体装置下发的功率补偿请求;若通信时延超出所述时延阈值,即分布式协同智能体装置在时延阈值
Figure PCTCN2022131111-appb-000016
时间范围内不能接收到集中协调智能体装置下发的功率补偿请求,则激活本地预测系统,通过执行预测功率补偿,满足当前系统的调压请求;
预测功率补偿方法为:依据接收或预测的集中协调智能体装置的功率补偿请求,各分布式协同智能体装置均通过控制执行模块调节本地功率补偿设备,依据无功补偿控制指令与有功补偿控制指令,采用设定的控制方法进行本地节点逆变器、SVC等设备的无功/无功控制动态调节,使全域系统母线电压恢复至安全域内。
实施效果:基于变压器分接头档位切换控制的实施,实现了整线电压的调节,进一步,结合分布式电源与分布式储能多功能并网逆变器、负荷端无功补偿器SVC组成的集中式协调调压算法,按照从无功到有功以及功率-电压灵敏度从大到小的顺序,对部分节点电压进行多端协调补偿。通过该技术的实施,能够集中式协调利用源网荷储多元化可调节资源,在保证有功功率最小削减的前提下,系统性解决了各馈线母线节点的时段性过电压或欠电压问题。
一种计算机可读存储介质,其特征在于,用于存储上述的高渗透率光伏接入的配电网多端协同电压治理方法。
实施例2
如果母线电压出现间歇性局部过/欠电压问题,本发明实施例2提供一种高渗透率光伏接入的配电网多端协同电压治理方法,具体包括以下步骤:
分布式协同智能体装置根据本地母线电压评估情况,判定是否执行分布式协同调压算法,当电压偏差大于设定阈值时,利用来自相邻母线节点的功率信息确定多端功率协同调节方法, 将相邻母线节点的功率信息发送至对应母线节点分布式协同智能体装置,对各自补偿设备进行功率调节,使局部配电网系统电压维持在安全域内。
步骤一.在第i个母线节点上,分布式协同智能体装置采集本地母线节点电压信息与注入功率信息,通过采用式(1)计算电压标幺值,并将采集信息发送至相邻的分布式协同智能体装置;
Figure PCTCN2022131111-appb-000017
式中:V i(t)是同一馈线上第i个母线节点电压;V pui(t)是第i个母线节点电压标幺值;V ni是第i个母线节点的标称电压,上标“-1”表示求倒数;
步骤二.分布式协同智能体装置判断本地母线节点是否发生间歇性电压越限,若没有发生间歇性电压越限,即电压保持≥0.95,且≤1.05,则不需要发送调压请求至本地以及其它分布式协同智能体装置;若发生间歇性电压越限,即电压<0.95或>1.05,则发送调压请求至其它分布式协同智能体装置,记为智能体j;
步骤三.当同时收到来自多个一级智能体的调压请求时,智能体j根据本地逆变器剩余无功容量与储能设备剩余容量,判断是否能够响应调压请求,若不具备功率补偿容量,则拒绝响应所有智能体的请求;若具备功率补偿容量,通过对比所有发送来调压请求的各智能体调压幅值选择响应其中一个智能体的请求,若第i个母线节点电压越限问题最为严重,则优先响应智能体i的请求、并拒绝响应其它智能体的请求,同时将本地功率补偿设备容量与第j个母线节点注入功率信息发送至智能体i。
步骤四.若智能体i的调压请求得到来自其它一级智能体的响应,则利用本地第i个母线节点调压幅值以及接收到的其它一级智能体功率调节容量信息,采用基于电压灵敏度的先无功再有功补偿的分布式协同调压算法,按照先无功-电压灵敏度从大到小的顺序再有功-电压灵敏度从大到小的顺序依次迭代,确定各功率补偿装备的控制指令,并发送功率补偿请求至相应一级智能体。
如图2所示,所述的基于电压灵敏度的先无功再有功补偿的分布式协同调压算法具体包括以下步骤:
通过本地第i个母线节点与相邻母线节点的注入功率变化来动态感知第i个母线位于的馈线上潮流方向是否改变,若潮流方向发生变化,则相应馈线上所有的一级智能体可以重新匹配各自本地母线节点编号,已知径向网络拓扑、馈线阻抗以及馈线潮流方向信息,采用式(3)与式(4)来刷新计算无功-电压灵敏度与有功-电压灵敏度;
Figure PCTCN2022131111-appb-000018
Figure PCTCN2022131111-appb-000019
式中,X h-1,h是第h-1个与第h个母线节点之间的馈线感抗,R h-1,h是第h-1个与第h个母 线节点之间的馈线电阻,上标“-1”表示求倒数,
Figure PCTCN2022131111-appb-000020
表示所有;
2)以智能体i为主调压智能体,并在调压算法迭代过程中保持不变,先利用本地第i个母线节点调压幅值、无功-电压灵敏度、以及来自响应的各一级智能体的逆变器无功补偿容量信息,按照无功-电压灵敏度从大到小的顺序依次进行无功补偿,优先选取最大无功-电压灵敏度对应母线节点上的逆变器执行无功补偿,记最大无功-电压灵敏度对应母线节点为第j个母线节点,基于第i个母线节点调压幅值以及与第j个母线节点注入功率之间的无功-电压灵敏度
Figure PCTCN2022131111-appb-000021
采用式(5)计算第j个母线节点的逆变器无功补偿ΔQ j(t),并更新第i个母线节点剩余调压幅值,即用
Figure PCTCN2022131111-appb-000022
替代原δV i(t);
Figure PCTCN2022131111-appb-000023
式中:δV i(t)是第i个母线节点的剩余调压幅值,ΔQ j(t)是第j个母线节点的无功补偿数值,上标“-1”表示求倒数;
若逆变器无功补偿ΔQ j(t)小于第j个母线节点上逆变器无功补偿容量,则表示第j个母线上的一级智能体的无功补偿足以将第i个母线节点电压调至≥0.95、且≤1.05的安全域内,此时第i个母线节点剩余调压幅值δV i(t)=0,故不再需要额外的无功补偿,调压算法迭代结束;若逆变器无功补偿ΔQ j(t)大于第j个母线节点上逆变器无功补偿容量,则表示在第j个母线上的一级智能体最大无功补偿作用下,第i个母线节点电压仍不在安全域内,即小于0.95或大于1.05,此时第i个母线节点剩余调压幅值δV i(t)>0,需要按照无功-电压灵敏度顺序执行下一个一级智能体的无功补偿;
3)当所有相关一级智能体均达到各自无功补偿上限、且第i个母线节点仍存在电压越限问题时,则再利用本地第i个母线节点剩余调压幅值、有功-电压灵敏度以及来自响应的各一级智能体的储能设备有功补偿容量信息,按照有功-电压灵敏度从大到小的顺序依次进行有功补偿,优先选取最大有功-电压灵敏度对应母线节点上的储能设备执行有功补偿,记最大有功-电压灵敏度对应母线节点为第j个母线节点,基于第i个母线节点剩余调压幅值以及与第j个母线节点注入功率之间的有功-电压灵敏度
Figure PCTCN2022131111-appb-000024
采用式(6)计算该储能设备有功补偿ΔP j(t),并更新第i个母线节点剩余调压幅值,即用
Figure PCTCN2022131111-appb-000025
替代原δV i(t);
Figure PCTCN2022131111-appb-000026
式中:ΔP j(t)是第j个母线节点的有功补偿数值,上标“-1”表示求倒数;
若有功补偿ΔP j(t)小于第j个母线节点上储能设备有功补偿容量,则表示第j个母线上的一级智能体的有功补偿足以将第i个母线节点电压调至≥0.95、且≤1.05的安全域内,此时第i个母线节点剩余调压幅值δV i(t)=0,故不再需要额外的有功补偿,调压算法迭代结束;若有功 补偿ΔP j(t)大于第j个母线节点上储能设备有功补偿容量,则表示在第j个母线上的一级智能体最大有功补偿作用下,第i个母线节点电压仍不在安全域内,即小于0.95或大于1.05,此时第i个母线节点剩余调压幅值δV i(t)>0,需要按照有功-电压灵敏度顺序执行下一个一级智能体的有功补偿,直至第i个母线节点电压被调至安全域内,调压算法迭代结束,通过上述迭代过程,最终确定各功率补偿设备的控制指令;
4)智能体i将无功补偿控制指令与有功补偿控制指令发送至之前响应的一级智能体,记为智能体j,各一级智能体通过控制执行模块调节本地功率补偿设备,依据无功补偿控制指令与有功补偿控制指令,采用设定的控制方法实现本地分布式光伏、储能逆变器以及负荷SVC等设备的无功/有功出力调节,使第i个母线节点电压恢复至安全域内;
5)循环步骤1)-步骤4),使局部所有母线节点间歇式电压波动恢复至安全域内。
实施效果:通过利用本地及相邻节点的分布式电源多功能并网逆变器、分布式储能逆变器、负荷端无功补偿器SVC的分布式协同调压算法,按照从无功到有功以及功率-电压灵敏度从大到小的顺序,对局部节点电压进行分布式协同补偿。通过该技术的实施,能够充分利用本地及相的邻源荷储柔性可调节资源,在保证有功功率最小削减的前提下,高效解决局部间歇性过电压或欠电压问题。
如图3所示,本发明提供一种高渗透率光伏接入的配电网多端协同电压治理系统,包括:
部署在变压器PCC母线上的集中协调智能体装置,即二级智能体;
部署在各馈线每个可调节的母线节点上的分布式协同智能终端装置,即一级智能体;
各智能体之间进行信息交互指,不同层级智能体之间采用主从交互模式,即二级智能体收到一级智能体调压请求时,根据一级智能母线电压越限情况决定是否响应调压请求,当一级智能体接到二级智能体功率调节指令时,一级智能体必须响应;同层一级多智能体之间采用对等交互模式,当一级智能体收到其它一级智能体调压请求时,根据自身剩余功率补偿容量决定是否响应调压请求。
所述二级智能体可获取变压器下所有母线电压越限信息与调压资源信息,并制定集中式协调调压决策,以合理分配调压任务给各一级智能体,最终实现多端协调电压综合治理的目标。
如图4所示,所述二级智能体1具体包括数据处理模块2、电压评估模块3、数据库模块4、知识库模块5、调压决策模块6和控制执行模块7:
所述的二级智能体1的数据处理模块2负责接收来自一级智能体8的所有母线信息,包括电压、容量与功率调节量等,并将所述信息转化为可处理的智能体语言;
所述的二级智能体1的电压评估模块3负责判断来自数据处理模块2的所有母线节点信息,并评估所有馈线母线电压越限情况,自主判断是否触发启动集中协调调压算法;
所述的二级智能体1的数据库模块4负责存储来自数据处理模块2的信息,同时可为调压 决策模块6提供数据;
所述的二级智能体1的知识库模块5负责存储来自专家经验的行业知识数据,为调压决策模块6作出决策、电压评估模块3进行电压越限评估提供基础数据;
所述的二级智能体1的调压决策模块6利用来自数据处理模块2,数据库模块4和知识库模块5中的信息,基于集中式协调调压算法,制定变压器分接头调节以各母线节点光伏逆变器、储能逆变器以及SVC等无功和有功调节指令,并通过控制执行模块7将指令下发至相应的位于母线节点的一级智能体中;
所述的二级智能体1的控制执行模块7负责下发由调压决策模块制定的无功或用功调节指令至相应的位于母线节点的母线节点一级智能体8中;
所述的一级智能体既能感知外部环境也可作用于外部环境,可以快速响应外部环境中的突发事件;基于本地节点信息并通过与相邻一级智能体的信息交互,具备较高的智能性来协同控制临近各母线节点的无功/有功动态调节行为。
如图5所示,所述的一级智能体9包括反应层和协商层,所述反应层包括感知模块10、识别模块11和控制动作执行模块12,协商层包括数据交互模块13、知识库模块14和分布式协同决策模块15。
所述的一级智能体9的感知模块10负责采集所有母线的电压、容量与功率调节量等信息;
所述的一级智能体9的识别模块11负责将来自感知模块10的信息转化为可处理的智能体语言并发送至协商层的分布式协同决策模块15,同时可以快速识别外部环境中的突发事件,直接触发反应层控制动作执行模块12执行相应的紧急动作指令;
所述的一级智能体9的控制动作执行模块12负责下发来自协商层的分布式协同决策模块15的指令以及来自反应层的识别模块11的紧急动作指令至逆变器18;
所述的一级智能体9的知识库模块14负责存储来自专家经验的行业知识以及分布式协同决策模块15的数据,同时为分布式协同决策模块15作出决策提供基础数据,如提供电压安全阈值:0.95-1.05等参考值;
所述的一级智能体9的分布式协同决策模块15利用来自识别模块11、数据交互模块13和知识库模块14中的信息,基于分布式协同调压算法,制定各母线节点光伏逆变器、储能逆变器以及SVC等无功或用功调节指令,并通过控制动作执行模块12将指令下发至相应的逆变器中,并将相应数据发送至数据交互模块13用于同二级智能体16以及其它一级智能体17进行信息交互;
所述的一级智能体9的数据交互模块13负责接收来自二级智能体16以及其它一级智能体17的信息,同时可将分布式协同决策模块15的指令信息发送至二级智能体16以及其它一级智能体17。
本发明的配电网多端协同电压治理系统,支撑实现了多智能体之间信息交互以及上层集中 协式协调调压算法以及下层分布式协同智能调压算法的智能化执行。
一种计算机可读存储介质,其特征在于,用于存储上述的高渗透率光伏接入的配电网多端协同电压治理方法及系统。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (13)

  1. 一种高渗透率光伏接入的配电网多端协同电压治理方法,其特征在于,包括以下步骤:
    在变压器PCC母线上部署集中协调智能体装置,即二级智能体;
    在各馈线每个可调节的母线节点上部署分布式协同智能终端装置,即一级智能体;
    分布式协同智能体装置对本地母线电压进行评估,判断母线电压出现时段性、系统性过/欠电压时,由不同层级智能体之间启动主从交互模式,即二级智能体收到一级智能体调压请求时,根据一级智能母线电压越限情况决定是否响应调压请求,当一级智能体接到二级智能体功率调节指令时,一级智能体必须响应;判断母线电压出现间歇性局部过/欠电压时,同层一级多智能体之间采用对等交互模式,一级智能体收到其它一级智能体调压请求时,根据自身剩余功率补偿容量决定是否响应调压请求。
  2. 根据权利要求1所述的高渗透率光伏接入的配电网多端协同电压治理方法,其特征在于,当母线电压出现时段性、系统性过/欠电压时,按以下步骤进行调压:
    步骤一.各分布式协同智能体装置分别采集本地母线节点电压信息,根据各自标称电压分别计算对应的电压标幺值,将电压标幺值发送至集中协调智能体装置;
    步骤二.分布式协同智能体装置依据设定的电压安全阈值判断本地母线节点电压是否越限,如果电压越限,则发送调压请求至集中协调智能体装置;
    步骤三.集中协调智能体装置计算变压器下所有馈线母线节点电压的平均标幺值,并判断所述平均标幺值是否超出各馈线设定阈值范围,若不超出馈线设定阈值范围,则变压器分接头保持在当前档位;若某条馈线超出馈线设定阈值范围,则在变压器切换间隔时间允许条件下,优先将所述馈线变压器分接头触发切换到下一档位。
  3. 根据权利要求2所述的高渗透率光伏接入的配电网多端协同电压治理方法,其特征在于:
    当同一变压器下一个或部分母线节点存在时段性的过电压或欠电压时,所述集中协调智能体装置优先选择最大电压偏差的分布式协同智能体装置的调压请求,利用集中式协调调压算法确定各母线节点功率调节方法,并发送控制指令至相应的分布式协同智能体装置。
  4. 根据权利要求3所述的高渗透率光伏接入的配电网多端协同电压治理方法,其特征在于,所述集中式协调调压算法,具体包括以下步骤:
    1)所有分布式协同智能体装置均采集本地母线节点注入功率信息,计算本地功率补偿设备容量信息,如果具备剩余可调容量,则将本地功率补偿设备容量信息发送至集中协调智能体装置,所述功率补偿设备容量信息包括逆变器最大无功补偿容量、储能设备最大充放电容量;
    2)在变压器下的任意馈线分支上,按照潮流反方向依次编号母线节点,在集中协调智能体装置中,已知径向网络拓扑、馈线阻抗以及馈线潮流方向信息,计算第j个母线节点注入功率与第i个母线节点电压之间的无功-电压灵敏度
    Figure PCTCN2022131111-appb-100001
    与有功-电压灵敏度
    Figure PCTCN2022131111-appb-100002
    Figure PCTCN2022131111-appb-100003
    Figure PCTCN2022131111-appb-100004
    式中,X h-1,h是第h-1个与第h个母线节点之间的馈线感抗,R h-1,h是第h-1个与第h个母线节点之间的馈线电阻,V ni是第i个母线节点的标称电压,上标“-1”表示求倒数,
    Figure PCTCN2022131111-appb-100005
    表示所有;
    3)假设第i个母线节点对应分布式协同智能体装置为主调压智能体,利用第i个母线节点调压幅值、电压灵敏度以及同一馈线上各分布式协同智能体装置的功率补偿容量信息,各分布式协同智能体装置先按照先无功-电压灵敏度从大到小的顺序依次进行无功补偿,无功补偿计算如式(5)所示:
    Figure PCTCN2022131111-appb-100006
    式中:δV i(t)是第i个母线节点的剩余调压幅值,ΔQ j(t)是第j个母线节点的无功补偿数值,上标“-1”表示求倒数;
    若无功补偿数值ΔQ j(t)小于第j个母线节点的逆变器剩余无功补偿容量,表示位于第j个母线节点的分布式协同智能体装置的无功补偿足以将主调压智能体母线节点电压调至安全域内,不需要执行进一步的无功补偿,所述主调压智能体的调压结束;
    若无功补偿数值ΔQ j(t)大于第j个母线节点的逆变器剩余无功补偿容量,表示位于第j个母线节点的分布式协同智能体装置的最大无功补偿不足以将主调压智能体母线节点电压调至安全域内,按照无功-电压灵敏度从大到小的顺序执行下一个一级智能体的无功补偿;
    4)当所有分布式协同智能体装置均达到各自无功补偿上限且主调压智能体母线节点仍存在电压越限问题时,则再按照有功-电压灵敏度从大到小的顺序依次进行有功补偿,各分布式协同智能体装置的有功补偿计算如式(6)所示:
    Figure PCTCN2022131111-appb-100007
    式中:ΔP j(t)是第j个母线节点的有功补偿数值,上标“-1”表示求倒数;
    若有功补偿数值ΔP j(t)小于第j个母线节点的储能设备剩余有功补偿容量,则表示位于第j个母线节点的分布式协同智能体装置的有功补偿足以将主调压智能体母线节点电压调至安全域内,故不需要执行进一步的有功补偿,所述主调压智能体的调压结束;
    若有功补偿数值ΔP j(t)大于第j个母线节点的储能设备剩余有功补偿容量,表示位于第j个母线节点的分布式协同智能体装置的最大有功补偿不足以将主调压智能体母线节点电压调至安全域内,按照有功-电压灵敏度顺序执行下一个分布式协同智能体装置的有功补偿,直至 主调压智能体母线节点电压被调至安全域内;
    5)在每次功率补偿后,若主调压智能体母线节点被调至安全域内,则同步更新所有分布式协同智能体装置母线节点电压,并对比所有母线节点的电压标幺值来确定最大电压偏差,若所有母线节点的最大电压偏差≤设定值,则不再需要选择新的主调压智能体,调压算法迭代结束;若该偏差>设定值,则重新选择新的主调压智能体,并执行功率补偿;按照步骤1)-步骤4)逐一迭代,直至所有分布式协同智能体装置母线节点的最大电压偏差≤设定值,调压算法迭代结束,最终确定各功率补偿设备的控制指令。
  5. 根据权利要求4所述的高渗透率光伏接入的配电网多端协同电压治理方法,其特征在于:在通信时延越界情况下,采用基于最大容忍时延估计的预测功率补偿方法进行调压,具体包括以下步骤:
    将通信时延对主调压智能体,即第i个母线节点电压调节的影响表示为:
    Figure PCTCN2022131111-appb-100008
    式中,τ(t)是通信网络传输时延;
    Figure PCTCN2022131111-appb-100009
    是最大容忍通信时延;V′ pui(t)是时延期间功率波动影响下的第i个母线节点电压;
    在通信时延期间,基于式(5)与式(6)计算各分布式协同智能体装置母线节点可允许的最大功率波动幅值,当功率波动小于设定阈值时,第i个母线电压变化小于设定阈值;若时延期间功率变化速率保持不变,则最大容忍通信时延
    Figure PCTCN2022131111-appb-100010
    在数值上等于最大功率波动幅值与功率变化速率的比值,否则,选取最大功率变化速率计算最大容忍通信时延的最小上限,即时延阈值,如式(8)所示:
    Figure PCTCN2022131111-appb-100011
    式中,
    Figure PCTCN2022131111-appb-100012
    是第j个母线节点的最大功率变化速率;
    在集中式调压过程中,若通信时延小于式(8)中的时延阈值,则分布式协同智能体装置选择执行集中协调智能体装置下发的功率补偿请求;若通信时延超出所述时延阈值,即分布式协同智能体装置在时延阈值
    Figure PCTCN2022131111-appb-100013
    时间范围内不能接收到集中协调智能体装置下发的功率补偿请求,通过执行预测功率补偿,满足当前系统的调压请求。
  6. 根据权利要求5所述的高渗透率光伏接入的配电网多端协同电压治理方法,其特征在于,所述预测功率补偿方法为:依据接收或预测的集中协调智能体装置的功率补偿请求,各分布式协同智能体装置均通过控制执行模块调节本地功率补偿设备,依据无功补偿控制指令与有功补偿控制指令,采用设定的控制方法进行本地节点逆变器、SVC设备的无功/无功控制动态调节,使全域系统母线电压恢复至安全域内。
  7. 根据权利要求1所述的高渗透率光伏接入的配电网多端协同电压治理方法,其特征在于,如果母线电压出现间歇性局部过/欠电压时,具体包括以下步骤:
    步骤一.在第i个母线节点上,分布式协同智能体装置采集本地母线节点电压信息与注入功率信息,计算电压标幺值,并将采集信息发送至相邻的分布式协同智能体装置;
    步骤二.分布式协同智能体装置判断本地母线节点是否发生间歇性电压越限,若没有发生间歇性电压越限,则不发送调压请求至本地以及其它分布式协同智能体装置;若发生间歇性电压越限,则发送调压请求至其它分布式协同智能体装置,记为智能体j;
    步骤三.当同时收到来自多个一级智能体的调压请求时,智能体j根据本地逆变器剩余无功容量与储能设备剩余容量,判断是否能够响应调压请求,若不具备功率补偿容量,则拒绝响应所有智能体的请求;若具备功率补偿容量,通过对比所有发送来调压请求的各智能体调压幅值选择响应其中一个智能体的请求,若第i个母线节点电压越限问题最为严重,则优先响应智能体i的请求、并拒绝响应其它智能体的请求,同时将本地功率补偿设备容量与第j个母线节点注入功率信息发送至智能体i;
    步骤四.若智能体i的调压请求得到来自其它一级智能体的响应,则利用本地第i个母线节点调压幅值以及接收到的其它一级智能体功率调节容量信息,采用基于电压灵敏度的先无功再有功补偿的分布式协同调压算法,按照先无功-电压灵敏度从大到小的顺序再有功-电压灵敏度从大到小的顺序依次迭代,确定各功率补偿装备的控制指令,并发送功率补偿请求至相应一级智能体。
  8. 根据权利要求7所述的高渗透率光伏接入的配电网多端协同电压治理方法,其特征在于,所述基于电压灵敏度的先无功再有功补偿的分布式协同调压算法,具体包括以下步骤:
    1)通过本地第i个母线节点与相邻母线节点的注入功率变化来动态感知第i个母线位于的馈线上潮流方向是否改变,若潮流方向发生变化,则相应馈线上所有的一级智能体重新匹配各自本地母线节点编号,已知径向网络拓扑、馈线阻抗以及馈线潮流方向信息,采用式(3)与式(4)来刷新计算无功-电压灵敏度与有功-电压灵敏度;
    Figure PCTCN2022131111-appb-100014
    Figure PCTCN2022131111-appb-100015
    式中,X h-1,h是第h-1个与第h个母线节点之间的馈线感抗,R h-1,h是第h-1个与第h个母线节点之间的馈线电阻,上标“-1”表示求倒数,
    Figure PCTCN2022131111-appb-100016
    表示所有;
    2)以智能体i为主调压智能体,并在调压算法迭代过程中保持不变,先利用本地第i个母线节点调压幅值、无功-电压灵敏度以及来自响应的各一级智能体的逆变器无功补偿容量信息,按照无功-电压灵敏度从大到小的顺序依次进行无功补偿,优先选取最大无功-电压灵敏度对应 母线节点上的逆变器执行无功补偿,记最大无功-电压灵敏度对应母线节点为第j个母线节点,基于第i个母线节点调压幅值以及与第j个母线节点注入功率之间的无功-电压灵敏度
    Figure PCTCN2022131111-appb-100017
    采用式(5)计算第j个母线节点的逆变器无功补偿ΔQ j(t),并更新第i个母线节点剩余调压幅值,即用
    Figure PCTCN2022131111-appb-100018
    代替原δV i(t);
    Figure PCTCN2022131111-appb-100019
    式中:δV i(t)是第i个母线节点的剩余调压幅值,ΔQ j(t)是第j个母线节点的无功补偿数值,上标“-1”表示求倒数;
    若逆变器无功补偿ΔQ j(t)小于第j个母线节点上逆变器无功补偿容量,则表示第j个母线上的一级智能体的无功补偿足以将第i个母线节点电压调至安全域内,此时第i个母线节点剩余调压幅值δV i(t)=0,故不再需要额外的无功补偿,调压算法迭代结束;若逆变器无功补偿ΔQ j(t)大于第j个母线节点上逆变器无功补偿容量,则表示在第j个母线上的一级智能体最大无功补偿作用下,第i个母线节点电压仍不在安全域内,此时第i个母线节点剩余调压幅值δV i(t)>0,需要按照无功-电压灵敏度顺序执行下一个一级智能体的无功补偿;
    3)当所有相关一级智能体均达到各自无功补偿上限、且第i个母线节点仍存在电压越限问题时,则再利用本地第i个母线节点剩余调压幅值、有功-电压灵敏度以及来自响应的各一级智能体的储能设备有功补偿容量信息,按照有功-电压灵敏度从大到小的顺序依次进行有功补偿,优先选取最大有功-电压灵敏度对应母线节点上的储能设备执行有功补偿,记最大有功-电压灵敏度对应母线节点为第j个母线节点,基于第i个母线节点剩余调压幅值以及与第j个母线节点注入功率之间的有功-电压灵敏度
    Figure PCTCN2022131111-appb-100020
    采用式(6)计算该储能设备有功补偿ΔP j(t),并更新第i个母线节点剩余调压幅值,即用
    Figure PCTCN2022131111-appb-100021
    替代原δV i(t);
    Figure PCTCN2022131111-appb-100022
    式中:ΔP j(t)是第j个母线节点的有功补偿数值,上标“-1”表示求倒数;
    若有功补偿ΔP j(t)小于第j个母线节点上储能设备有功补偿容量,则表示第j个母线上的一级智能体的有功补偿足以将第i个母线节点电压调至安全域内,此时第i个母线节点剩余调压幅值δV i(t)=0,故不再需要额外的有功补偿,调压算法迭代结束;若有功补偿ΔP j(t)大于第j个母线节点上储能设备有功补偿容量,则表示在第j个母线上的一级智能体最大有功补偿作用下,第i个母线节点电压仍不在安全域内,此时第i个母线节点剩余调压幅值δV i(t)>0,需要按照有功-电压灵敏度顺序执行下一个一级智能体的有功补偿,直至第i个母线节点电压被调至安全域内,调压算法迭代结束,最终确定各功率补偿设备的控制指令;
    4)智能体i将无功补偿控制指令与有功补偿控制指令发送至之前响应的一级智能体,记为智能体j,各一级智能体通过控制执行模块调节本地功率补偿设备,依据无功补偿控制指令与有功补偿控制指令,采用设定的控制方法实现本地分布式光伏、储能逆变器以及负荷SVC设备的无功/有功出力调节,使第i个母线节点电压恢复至安全域内;
    5)循环步骤1)-步骤4),使局部所有母线节点间歇式电压波动恢复至安全域内。
  9. 一种高渗透率光伏接入的配电网多端协同电压治理系统,其特征在于,包括:
    部署在变压器PCC母线上的集中协调智能体装置,即二级智能体;
    部署在各馈线每个可调节的母线节点上的分布式协同智能终端装置,即一级智能体;
    各智能体之间进行信息交互指,不同层级智能体之间采用主从交互模式,即二级智能体收到一级智能体调压请求时,根据一级智能母线电压越限情况决定是否响应调压请求,当一级智能体接到二级智能体功率调节指令时,一级智能体必须响应;同层一级多智能体之间采用对等交互模式,当一级智能体收到其它一级智能体调压请求时,根据自身剩余功率补偿容量决定是否响应调压请求。
  10. 根据权利要求9所述的高渗透率光伏接入的配电网多端协同电压治理系统,其特征在于:所述二级智能体获取变压器下所有母线电压越限信息与调压资源信息,并制定集中式协调调压决策,合理分配调压任务给各一级智能体,实现多端协调电压综合治理。
  11. 根据权利要求9所述的高渗透率光伏接入的配电网多端协同电压治理系统,其特征在于:
    所述二级智能体包括数据处理模块、电压评估模块、数据库模块、知识库模块、调压决策模块和控制执行模块;
    所述二级智能体的数据处理模块负责接收来自一级智能体的所有母线的电压、容量与功率调节量信息,并将所述信息转化为可处理的智能体语言;
    所述二级智能体的电压评估模块负责判断来自数据处理模块的所有母线节点信息,并评估所有馈线母线电压越限情况,判断是否触发启动集中协调调压算法;
    所述二级智能体的数据库模块负责存储来自数据处理模块的信息,同时为调压决策模块提供数据;
    所述二级智能体的知识库模块负责存储来自专家经验的行业知识数据,为调压决策模块作出决策、电压评估模块进行电压越限评估提供基础数据;
    所述二级智能体的调压决策模块利用来自数据处理模块,数据库模块和知识库模块中的信息,基于集中式协调调压算法,制定变压器分接头调节以各母线节点光伏逆变器、储能逆变器以及SVC无功和有功调节指令,并通过控制执行模块将指令下发至相应的位于母线节点的一级智能体中;
    所述二级智能体的控制执行模块负责下发由调压决策模块制定的无功或用功调节指令至 相应的位于母线节点的母线节点一级智能体中;
  12. 根据权利要求9所述的高渗透率光伏接入的配电网多端协同电压治理系统,其特征在于:
    所述的一级智能体包括反应层和协商层,所述反应层包括感知模块、识别模块和控制动作执行模块,协商层包括数据交互模块、知识库模块和分布式协同决策模块;
    所述一级智能体的感知模块负责采集所有母线信息,包括电压、容量与功率调节量;
    所述的一级智能体的识别模块负责将来自感知模块的信息转化为可处理的智能体语言并发送至协商层的分布式协同决策模块,同时快速识别外部环境中的突发事件,直接触发反应层控制动作执行模块执行相应的紧急动作指令;
    所述一级智能体的控制动作执行模块负责下发来自协商层的分布式协同决策模块的指令以及来自反应层的识别模块的紧急动作指令至逆变器;
    所述一级智能体的知识库模块负责存储来自专家经验的行业知识以及分布式协同决策模块的数据,同时为分布式协同决策模块作出决策提供基础数据;
    所述一级智能体的分布式协同决策模块利用来自识别模块、数据交互模块和知识库模块中的信息,基于分布式协同调压算法,制定各母线节点光伏逆变器、储能逆变器以及SVC无功或用功调节指令,并通过控制动作执行模块将指令下发至相应的逆变器中,并将相应数据发送至数据交互模块用于同二级智能体以及其它一级智能体进行信息交互;
    所述一级智能体的数据交互模块负责接收来自二级智能体以及其它一级智能体的信息,同时将分布式协同决策模块的指令信息发送至二级智能体以及其它一级智能体。
  13. 一种计算机可读存储介质,其特征在于,用于存储权利要求1-8任一项所述的高渗透率光伏接入的配电网多端协同电压治理方法。
PCT/CN2022/131111 2021-11-26 2022-11-10 高渗透率光伏接入的配电网多端协同电压治理方法、系统及存储介质 WO2023093537A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111418565.8A CN114172161B (zh) 2021-11-26 2021-11-26 高渗透率光伏接入的配电网多端协同电压治理方法及存储介质
CN202111418565.8 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023093537A1 true WO2023093537A1 (zh) 2023-06-01

Family

ID=80481009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131111 WO2023093537A1 (zh) 2021-11-26 2022-11-10 高渗透率光伏接入的配电网多端协同电压治理方法、系统及存储介质

Country Status (2)

Country Link
CN (1) CN114172161B (zh)
WO (1) WO2023093537A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123178A (zh) * 2021-11-17 2022-03-01 哈尔滨工程大学 一种基于多智能体强化学习的智能电网分区网络重构方法
CN116505580A (zh) * 2023-06-26 2023-07-28 希格玛电气(珠海)有限公司 一种微电网控制系统及方法
CN116780529A (zh) * 2023-06-30 2023-09-19 国网北京市电力公司 一种配电网故障恢复方法、装置、设备及介质
CN117039956A (zh) * 2023-08-10 2023-11-10 福建雄风电气有限公司 基于光伏储能新技术的电能质量综合治理系统
CN117691753A (zh) * 2024-02-02 2024-03-12 中国电力科学研究院有限公司 一种基于云边端一体协同的分布式光伏分层分级调控方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114172161B (zh) * 2021-11-26 2022-11-29 南京邮电大学 高渗透率光伏接入的配电网多端协同电压治理方法及存储介质
CN117353315B (zh) * 2023-10-25 2024-04-26 夏尔特拉(上海)新能源科技有限公司 基于光伏、风力发电电压暂态波动控制发电电压的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150311718A1 (en) * 2014-04-24 2015-10-29 Varentec, Inc. Optimizing voltage and var on the electric grid using distributed var sources
CN106451473A (zh) * 2016-11-03 2017-02-22 成都信息工程大学 基于模糊多智能体的配电网多目标电压控制系统
CN107196315A (zh) * 2017-06-09 2017-09-22 华南理工大学 含光储系统配电网的动态拓展无功优化控制方法
CN107994587A (zh) * 2017-12-06 2018-05-04 国网江苏省电力有限公司淮安供电分公司 一种高渗透率光伏配电网就地电压控制方法
CN113258581A (zh) * 2021-05-31 2021-08-13 广东电网有限责任公司佛山供电局 一种基于多智能体的源荷协调电压控制方法及装置
CN114172161A (zh) * 2021-11-26 2022-03-11 南京邮电大学 高渗透率光伏接入的配电网多端协同电压治理方法、系统及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994097A (zh) * 2021-03-04 2021-06-18 河北工业大学 一种基于智能配变终端系统的高比例分布式光伏协同控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150311718A1 (en) * 2014-04-24 2015-10-29 Varentec, Inc. Optimizing voltage and var on the electric grid using distributed var sources
CN106451473A (zh) * 2016-11-03 2017-02-22 成都信息工程大学 基于模糊多智能体的配电网多目标电压控制系统
CN107196315A (zh) * 2017-06-09 2017-09-22 华南理工大学 含光储系统配电网的动态拓展无功优化控制方法
CN107994587A (zh) * 2017-12-06 2018-05-04 国网江苏省电力有限公司淮安供电分公司 一种高渗透率光伏配电网就地电压控制方法
CN113258581A (zh) * 2021-05-31 2021-08-13 广东电网有限责任公司佛山供电局 一种基于多智能体的源荷协调电压控制方法及装置
CN114172161A (zh) * 2021-11-26 2022-03-11 南京邮电大学 高渗透率光伏接入的配电网多端协同电压治理方法、系统及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN YUFANG: "Research on Voltage Coordination Control Method of Distribution Network Containing High Penetration Photovoltaic", THEORETICAL RESEARCH IN URBAN CONSTRUCTION (ELECTRONIC VERSION), no. 15, 25 May 2019 (2019-05-25), pages 11 - 11, XP093068506, DOI: 10.19569/j.cnki.cn119313/tu.201915010 *
GONG XIANGYANG, ZHOU KAIHE; XU XIAOZHONG; WANG WEI; WANG BO; YU YINSHU: "Voltage Partition Coordinated Control Scheme for Distribution Network with Distributed PV", PROCEEDINGS OF THE CSU-EPSA, vol. 30, 15 May 2018 (2018-05-15), pages 127 - 133, XP093068503, ISSN: 1003-8930, DOI: 10.3969/j.issn.1003-8930.2018.05.020 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123178A (zh) * 2021-11-17 2022-03-01 哈尔滨工程大学 一种基于多智能体强化学习的智能电网分区网络重构方法
CN114123178B (zh) * 2021-11-17 2023-12-19 哈尔滨工程大学 一种基于多智能体强化学习的智能电网分区网络重构方法
CN116505580A (zh) * 2023-06-26 2023-07-28 希格玛电气(珠海)有限公司 一种微电网控制系统及方法
CN116780529A (zh) * 2023-06-30 2023-09-19 国网北京市电力公司 一种配电网故障恢复方法、装置、设备及介质
CN116780529B (zh) * 2023-06-30 2024-06-11 国网北京市电力公司 一种配电网故障恢复方法、装置、设备及介质
CN117039956A (zh) * 2023-08-10 2023-11-10 福建雄风电气有限公司 基于光伏储能新技术的电能质量综合治理系统
CN117039956B (zh) * 2023-08-10 2024-04-02 福建雄风电气有限公司 基于光伏储能新技术的电能质量综合治理系统
CN117691753A (zh) * 2024-02-02 2024-03-12 中国电力科学研究院有限公司 一种基于云边端一体协同的分布式光伏分层分级调控方法
CN117691753B (zh) * 2024-02-02 2024-04-19 中国电力科学研究院有限公司 一种基于云边端一体协同的分布式光伏分层分级调控方法

Also Published As

Publication number Publication date
CN114172161A (zh) 2022-03-11
CN114172161B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2023093537A1 (zh) 高渗透率光伏接入的配电网多端协同电压治理方法、系统及存储介质
Guo et al. MPC-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system
Bedawy et al. Optimal voltage control strategy for voltage regulators in active unbalanced distribution systems using multi-agents
Xu et al. A decentralized control strategy for autonomous transient power sharing and state-of-charge recovery in hybrid energy storage systems
Liu et al. Decentralized multi-agent system-based cooperative frequency control for autonomous microgrids with communication constraints
Sepehrzad et al. Intelligent energy management and multi-objective power distribution control in hybrid micro-grids based on the advanced fuzzy-PSO method
Li et al. Volt/var control for power grids with connections of large-scale wind farms: A review
Ng et al. Capacitor allocation by approximate reasoning: fuzzy capacitor placement
Zhang et al. Coordinated day-ahead reactive power dispatch in distribution network based on real power forecast errors
Bahramipanah et al. Decentralized voltage control of clustered active distribution network by means of energy storage systems
CN109301878B (zh) 一种基于多智能体的分布式电源一致性控制方法及控制系统
CN106549380A (zh) 多模态微电网能量协调优化控制方法
CN103178536A (zh) 基于供蓄能力的配电网储能装置选址定容方法
Vijayalakshmi et al. Optimized Control of IoT-Monitored Microgrid Systems Using Genetic Algorithm
Barakat et al. An enhanced Jaya optimization algorithm (EJOA) for solving multi-objective ORPD problem
CN111884258B (zh) 考虑负荷重要等级的多微网被动并离网平滑切换方法
CN116565922A (zh) 一种基于多微网互联运行结构的混合储能控制调度方法
Feng et al. Stability constrained reinforcement learning for decentralized real-time voltage control
CN113258590B (zh) 高风电渗透率下交直流系统分阶段电压控制方法及系统
Arshad et al. Multi-agent based distributed voltage regulation scheme with grid-tied inverters in active distribution networks
CN105977992B (zh) 一种基于负载变化智能调节无功输出的配电系统
CN111799810A (zh) 一种交直流系统无功控制方法及系统
Elgamal et al. An adaptive multiagent control system for autonomous economic operation and resilience assurance in a hybrid-energy islanded microgrid
Elmitwally et al. Multi-agent-based voltage stabilization scheme considering load model effect
Peng et al. Event-triggered mechanism based control method of SMES to improve microgrids stability under extreme conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897620

Country of ref document: EP

Kind code of ref document: A1