WO2023093362A1 - 一种简化管道设备室整体临界安全分析方法 - Google Patents

一种简化管道设备室整体临界安全分析方法 Download PDF

Info

Publication number
WO2023093362A1
WO2023093362A1 PCT/CN2022/125580 CN2022125580W WO2023093362A1 WO 2023093362 A1 WO2023093362 A1 WO 2023093362A1 CN 2022125580 W CN2022125580 W CN 2022125580W WO 2023093362 A1 WO2023093362 A1 WO 2023093362A1
Authority
WO
WIPO (PCT)
Prior art keywords
simplified
pipeline
tube bundle
pipelines
equipment
Prior art date
Application number
PCT/CN2022/125580
Other languages
English (en)
French (fr)
Inventor
陈添
张毅诚
胡小利
费钧天
易璇
邵增
杨海峰
于淼
Original Assignee
中国核电工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国核电工程有限公司 filed Critical 中国核电工程有限公司
Priority to JP2024514083A priority Critical patent/JP2024532913A/ja
Priority to EP22897445.7A priority patent/EP4439371A1/en
Publication of WO2023093362A1 publication Critical patent/WO2023093362A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/14Pipes

Definitions

  • the invention belongs to the technical field of nuclear criticality safety analysis, in particular to a method for simplifying the overall criticality safety analysis of a pipeline equipment room.
  • the pipeline layout of the equipment room has the following characteristics: the layout is complex and the number is large; the pipelines are of different thicknesses, and most of the pipelines are thin; most of the pipelines are located between the equipment and the wall, and a few are located between the equipment rooms; There are also pipelines for transporting non-fissile material.
  • refined analysis or conservative analysis methods are usually used.
  • the refined analysis method is to establish the critical calculation model of each pipe one by one according to the starting position, diameter, wall thickness, length, pipe wall material, material and liquid composition and other parameters of each pipe.
  • the advantage of this method is that it takes the pipe’s
  • the disadvantage of the actual layout is that a large amount of pipeline modeling work is required, and the sampling of source neutrons needs to be reasonably distributed to each pipeline or equipment containing fissile materials when using the Monte Cal program critical calculation.
  • the randomness of Monte Cal sampling cannot Guaranteed, it also needs to consume a lot of calculation time.
  • the results of the refined analysis are not enveloping, and must be recalculated when the piping layout design changes.
  • Another commonly used method is to simply gather the feed liquid containing fissile material together into a simple geometry, such as a solution wall.
  • the purpose of the present invention is to provide a method for simplifying the overall criticality safety analysis of the pipeline equipment room, which can evaluate the criticality safety problems of a large number of pipelines and equipment arranged in the equipment room as a whole, and improve the efficiency of calculation analysis At the same time, it can avoid the problem that the calculation result exceeds the critical safety acceptance criterion caused by the over-conservative simple gathering of the pipeline material and liquid.
  • a method for simplifying the overall criticality safety analysis of a pipeline equipment room comprising the following steps:
  • step S1 the screening and analysis of the pipeline in step S1 is as follows:
  • step S1 the concentrations of uranium and plutonium in the feed liquid state with the highest reactivity are selected for analysis.
  • step S1 the outer diameter of the effective pipeline is used to calculate the total volume of the effective pipeline material and liquid, and the corrosion of the pipe wall is covered.
  • All effective pipes in the simplified pipe bundle model are closely arranged in a triangular array to form a hexagonal pipe bundle shape, and the distance between pipes is calculated according to the actual minimum arrangement distance of the thickest pipes among the selected effective pipes.
  • the wall thickness of the pipeline in the simplified tube bundle model considers the set corrosion allowance.
  • step S3 is specifically:
  • the number of turns of the hexagonal tube bundle is gradually increased, and the length of the tube bundle is gradually reduced accordingly, and the hexagonal simplified tube bundle model with the highest reactivity is finally obtained through search calculation.
  • step S4 the hexagonal simplified tube bundle model with the maximum reactivity is placed next to the equipment with the greatest reactivity in the equipment room, specifically:
  • the invention is applicable to nuclear critical safety design and analysis and evaluation of all facilities containing fissile material solution pipelines.
  • Fig. 1 is a flow chart of the overall critical safety analysis method for the simplified pipeline equipment room provided in the specific embodiment of the present invention
  • Figure 2 is a cross-sectional view of a simplified tube bundle model
  • Fig. 3 is a cross-sectional view of the layout of the equipment room where the simplified tube bundle is close to the most reactive equipment.
  • Fig. 1 shows the flowchart of the overall criticality safety analysis method for the simplified pipeline equipment room provided in the specific embodiment of the present invention, and the method includes the following steps:
  • Step S1 According to the medium in the pipelines, all the pipelines in the equipment room to be analyzed are screened and analyzed, and the pipelines containing the fissile material solution are selected as effective pipelines, and the total volume of the effective pipeline feed liquid is calculated.
  • the specific method of screening and analyzing pipelines is: screening out pipelines in which the feed liquid (ie, the medium in the pipeline) is gas or does not contain fissile material solution, so as to obtain effective pipelines through screening.
  • the feed liquid ie, the medium in the pipeline
  • fissile material solution ie, the concentration of uranium and plutonium in the liquid state with the highest reactivity among various solution states is conservatively selected for analysis regardless of the gas in it.
  • Step S2 establishing a simplified tube bundle model, in which all the pipes are arranged closely together according to the set layout.
  • all the pipes in the simplified tube bundle model have the same length, and the pipe diameter in the pipe bundle is the thickest pipe diameter among the effective pipes; all the effective pipes are conservatively arranged according to the tightest arrangement, That is, the pipes are distributed in a triangular array to form a hexagonal pipe bundle.
  • the cross-sectional view of the simplified pipe bundle model is shown in Figure 2. The distance between pipes is arranged according to the actual minimum arrangement of the thickest pipe among the selected effective pipes. The calculation is based on the spacing; the feed liquid is considered according to the most reactive uranium and plutonium concentrations in the effective pipeline; the wall thickness of the pipeline is conservative and a certain corrosion allowance is considered.
  • Step S3 keeping the total volume of the feed liquid of the tube bundle model constant, by changing the number and height of the tube bundle models, searching and calculating the tube bundle size with the maximum reactivity of the simplified tube bundle model.
  • the tube bundle model refers to the simplified tube bundle model obtained in step S2, and the height refers to the length of the tube bundle.
  • the search and calculation process is specifically: keep the total volume of the material and liquid in the tube bundle model constant, gradually increase the number of turns of the hexagonal tube bundle (that is, gradually increase the number of pipes in the simplified tube bundle model), and the tube bundle The length of is gradually reduced, and the hexagonal simplified tube bundle model with the maximum reactivity is finally obtained through search calculation, that is, the tube bundle size with the maximum reactivity of the simplified tube bundle model is obtained.
  • the simplified tube bundle model with maximum reactivity envelops the effect of all the tubes being gathered together, and conservatively considers the tube diameter, feed liquid composition, and tube spacing.
  • Step S4 the simplified tube bundle model with the maximum reactivity obtained through search and calculation is placed next to the equipment with the highest reactivity in the equipment room, so as to envelop and consider the interaction between the pipes in the equipment room and the equipment.
  • the simplified tube bundle model with the maximum reactivity is placed next to the equipment with the maximum reactivity in the equipment room, and is arranged close to each other in a way that maximizes the interaction.
  • the specific situations are as follows: As shown in Figure 3, the hexagonal tube bundle is vertically The direction is arranged next to the most reactive vertically arranged cylindrical equipment, and the side of the hexagonal prism is close to the equipment; if there are other highly reactive equipment near the most reactive equipment, the tube bundle should be placed on both sides. between each piece of equipment and close to the most reactive equipment; if there is an equipment room wall near the most reactive equipment, the tube bundle should be placed between the equipment and the wall and close to the most reactive equipment.
  • step S4 From step S2 to step S4, if there are pipes with larger diameters (such as pipe diameters exceeding the set upper limit value) and small numbers (such as the number is less than the set value) in the effective pipelines, the actual size and actual The position is modeled separately, and the remaining effective pipelines with smaller diameters (such as the remaining effective pipelines whose diameters do not exceed the set upper limit) are modeled and analyzed according to steps S2-S4. For example, execute step S1 to obtain N effective pipes in the equipment room to be analyzed, sort the pipe diameters of the N effective pipes in descending order, and select M effective pipes with the highest pipe diameters from the N effective pipes.
  • larger diameters such as pipe diameters exceeding the set upper limit value
  • small numbers such as the number is less than the set value
  • analyze according to step S2-step S4 obtain the arrangement result of remaining effective pipeline.
  • the lengths of the tubes in the simplified tube bundle model are all the same.
  • the diameter of the tubes in the tube bundle is the thickest tube diameter among the effective tubes (ie, the outer radius is 2.415cm and the inner radius is 2.047cm).
  • the corrosion of the pipe wall is considered to be 0.2cm, and the spacing is considered according to the actual minimum layout spacing of the thickest pipe of 13cm, and the pipes are distributed in a triangular array.
  • the effective value-added factor k eff of the tube bundle itself is the largest when the number of coils of the tube bundle is 8 (169), and the k eff in the case of 3.5 times the concentration of the feed liquid is 0.4723 ⁇ 0.0005.
  • the k eff of a certain annular groove equipment is the largest, and there is another annular groove equipment with a larger k eff near this equipment, the simplified tube bundle with the maximum reactivity obtained by searching and calculating is close to the equipment with the largest k eff , and Close to nearby equipment, a cross-sectional view (partial) of the equipment room is shown in Figure 3.
  • the overall critical safety calculation result k eff of the equipment room considering the pipeline layout under the condition of 3.5 times the material liquid concentration is 0.7550 ⁇ 0.0005, which is slightly larger than the critical calculation result of the equipment room without considering the pipeline 0.7407 ⁇ 0.0005, but still meets the critical safety Require.
  • the overall criticality safety analysis method of the simplified pipeline equipment room conservatively considers the centralized arrangement of pipelines containing fissile materials in the equipment room and is close to the most reactive equipment model, which can envelop the actual layout and also consider the actual pipeline Arranged pipe diameters, spacing, etc., to avoid excessively conservative analysis to obtain critical calculation results exceeding the limit.
  • the process of calculation and analysis is much simpler than the process of finely establishing pipelines one by one, which improves the efficiency of calculation and analysis, and avoids the problem that the calculation results exceed the critical safety acceptance criteria caused by simple aggregation of pipeline materials and liquids.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

一种简化管道设备室整体临界安全分析方法,属于临界安全分析技术领域,包括以下步骤:根据管道内介质,对待分析设备室的所有管道进行筛选分析,筛选出含易裂变材料溶液的管道作为有效管道,并计算所有有效管道内液料总体积(S1);建立简化管束模型,所述简化管束模型中所有的管道按照最小布置间距紧密排列(S2);保持管束模型的料液总体积不变,通过改变管束模型的数目和高度,搜索计算得到所述简化管束模型反应性最大的管束尺寸(S3);将所述具有最大反应性的简化管束模型紧贴设备室内反应性最大的设备旁,以相互作用最大的方式紧贴布置(S4)。上述方法比精细化逐一建立管道的过程简便很多,提高了计算分析效率,又避免了将管道料液简单聚拢过度保守导致的计算结果超过临界安全接收准则的问题。

Description

一种简化管道设备室整体临界安全分析方法
本公开要求申请日为2021年11月23日、申请号为CN202111394652.4、名称为“一种简化管道设备室整体临界安全分析方法”的中国专利申请的优先权。
技术领域
本发明属于核临界安全分析技术领域,具体为一种简化管道设备室整体临界安全分析方法。
背景技术
在处理溶液状态的易裂变材料时,常采用管道的形式在各处理设备之间传输易裂变材料的料液,由于处理溶液状态的易裂变材料的设施往往工艺流程复杂,易裂变材料浓度高,设备室内布置的管道数量也较多,料液总量也很庞大,含管道的设备室整体临界安全问题成为不可忽视的关键问题,设备室的整体临界安全分析必须考虑这些管道对临界安全的影响。设备室的管道布置有以下特点:布置复杂,数量众多;管道粗细不一,大多数管道较细;管道大多位于设备和墙体之间,少量位于设备间之间;管道中既有输送易裂变材料的管道,也有输送不含易裂变材料的管道。在进行考虑管道布置的设备室整体临界安全计算分析时,通常采用精细化分析或保守分析方法。精细化分析方法就是根据每根管道的起始位置、直径、壁厚、长度、管壁材料、料液成分等参数逐一建立每根管道的临界计算模型,这种方法的优点是考虑了管道的实际布置,缺点是需要进行大量的管道建模工作,并且使用蒙卡程序临界计算时源中子的抽样需要合理地分布到每个含易裂变材料的管道或设备,蒙卡抽样的随机性无法保证,还需要消耗大量的计算时间,除此之外精细化分析的结果不具有包络性,当管道布置设计出现变更时必须重新计算。 另一种常用的方法是将含易裂变材料的料液简单聚拢在一起成为简单几何体,例如溶液墙。这种保守方法的优点是建模简便,缺点是这种过度保守的方法在管道料液总量较大时计算结果很难满足临界安全的要求。因此,需要寻求一种适度保守并且建模较为简便的考虑管道布置的设备室整体临界安全分析方法。
根据相关专利的检索,目前有一些乏燃料后处理厂相关设备的临界安全分析方法或临界安全控制方法的发明专利,例如“一种乏燃料溶解器的临界安全控制装置”(申请号:CN201420325882.4)、“一种核燃料后处理中流化床的临界安全设计方法”(申请号:CN201910899705.4)、“一种环状固体中子毒物分区布置的溶解器临界安全控制方法”(申请号:CN201410271524.4)、“一种用于临界安全分析的溶解器乏燃料剪切段建模方法”(申请号:CN202010994165.0)等。但是目前基本还没有针对乏燃料后处理厂设备室包含管道的整体临界安全分析的方法。
发明内容
为解决现有技术存在的缺陷,本发明的目的在于提供一种简化管道设备室整体临界安全分析方法,该方法能够整体评估设备室内布置的大量管道以及设备的临界安全问题,提高计算分析的效率的同时又可避免将管道料液简单聚拢过度保守导致的计算结果超过临界安全接收准则的问题。
为达到以上目的,本发明采用的技术方案是:
一种简化管道设备室整体临界安全分析方法,包括以下步骤:
S1、根据管道内介质,对待分析设备室的所有管道进行筛选分析,筛选出含易裂变材料溶液的管道作为有效管道,并计算所有有效管道内料液总体积;
S2、建立简化管束模型,所述简化管束模型中所有的管道按照最小布置间距紧密排列;
S3、保持管束模型的料液总体积不变,通过改变管束模型管道的数目和 高度,搜索计算得到所述简化管束模型反应性最大的管束尺寸;
S4、将所述具有最大反应性的简化管束模型紧贴设备室内反应性最大的设备旁,以相互作用最大的方式紧贴布置。
进一步,如上所述的简化管道设备室整体临界安全分析方法,步骤S1中对管道进行筛选分析的具体为:
将料液为气体或不含易裂变材料溶液的管道筛除,以筛选得到有效管道;对于传输多种介质的管道,不考虑其中气体的情形。
进一步,如上所述的简化管道设备室整体临界安全分析方法,步骤S1中选取反应性最大的料液状态的铀、钚浓度进行分析。
进一步,如上所述的简化管道设备室整体临界安全分析方法,步骤S1中使用有效管道的外径尺寸计算有效管道料液总体积,包络管壁被腐蚀的情况。
进一步,如上所述的简化管道设备室整体临界安全分析方法,步骤S2中所述简化管束模型中所有的管道长度均相同,管道管径为有效管道中最粗的管径。
进一步,如上所述的简化管道设备室整体临界安全分析方法,步骤S2中所述简化管束模型中所有的管道按照最小布置间距紧密排列具体为:
所述简化管束模型中所有的有效管道按照三角形阵列紧密排列,组成轮廓为六边形的管束形状,管道间距按照筛选出的有效管道中最粗管道的实际最小布置间距来计算。
进一步,如上所述的简化管道设备室整体临界安全分析方法,所述简化管束模型中管道壁厚考虑设定的腐蚀裕量。
进一步,如上所述的简化管道设备室整体临界安全分析方法,步骤S3具体为:
保持管束模型的料液总体积不变,逐步增大六边形管束的圈数,相应地逐步减小管束的长度,通过搜索计算最终得到反应性最大的六边形简化管束模型。
进一步,如上所述的简化管道设备室整体临界安全分析方法,步骤S4中将所述具有最大反应性的六边形简化管束模型紧贴设备室内反应性最大的设 备旁,具体为:
将六边形简化管束模型以竖直方向布置在反应性最大的竖直布置的设备旁,并以六棱柱的一面紧贴所述设备;若反应性最大的设备附近有其他反应性较大的设备,则将六边形简化管束模型置于两个设备之间并紧贴反应性最大的设备;若反应性最大的设备附近有设备室墙壁,则将六边形简化管束模型置于设备与墙壁之间并紧贴反应性最大的设备。
进一步,如上所述的简化管道设备室整体临界安全分析方法,若有效管道中存在管径超过设定上限值且数量少于设定值的管道,可按照其实际尺寸和实际位置进行单独建模,其余管径未超过所述设定上限值的有效管道按照步骤S2-S4开展建模和分析。
采用本发明所述的简化管道设备室整体临界安全分析方法,具有以下显著的技术效果:
(1)可避免精细化建模中逐个建立大量管道模型的繁琐工作,简化了计算分析过程,提高了计算分析效率;
(2)可避免将管道料液简单聚拢导致过度保守地考虑管道布置对临界安全设计的影响,更合理地分析评估管道布置的临界安全影响,提高设计的经济性、合理性。
本发明可适用于所有含易裂变材料溶液管道的设施的核临界安全设计与分析评价。
附图说明
图1为本发明具体实施方式中提供的简化管道设备室整体临界安全分析方法的流程图;
图2为简化管束模型的横截面图;
图3为简化管束紧贴反应性最大设备的设备室布置横截面图。
具体实施方式
下面结合具体的实施例与说明书附图对本发明进行进一步的描述。
图1示出了本发明具体实施方式中提供的简化管道设备室整体临界安全分析方法的流程图,该方法包括以下步骤:
步骤S1、根据管道内介质,将待分析设备室的所有管道进行筛选分析,筛选出含易裂变材料溶液的管道作为有效管道,并计算有效管道料液总体积。
在一种优选的实施方式中,对管道进行筛选分析的具体做法为:将料液(即管道内介质)为气体或不含易裂变材料溶液的管道筛除,以筛选得到有效管道。对于有可能传输多种介质的管道,不考虑其中气体的情形,保守地在各种溶液状态中选取反应性最大的料液状态的铀、钚浓度进行分析。
在计算有效管道料液总体积时,保守按有效管道外径尺寸来计算,包络管壁被腐蚀的情况。
步骤S2、建立简化管束模型,所述简化管束模型中所有的管道按照设定的布置方式紧密排列在一起。
在一种优选的实施方式中,简化管束模型中所有的管道长度都一致,管束中的管道管径为有效管道中最粗的管径;所有的有效管道保守地按照最紧密的布置方式排列,即管道与管道之间按照三角形阵列分布,组成轮廓为六边形的管束形状,简化管束模型的横截面图如图2所示,管道间距按照筛选出的有效管道中最粗管道的实际最小布置间距来计算;料液按照有效管道中反应性最大的铀、钚浓度来考虑;管道的壁厚保守考虑一定的腐蚀裕量。
步骤S3、保持管束模型的料液总体积不变,通过改变管束模型的数目和高度,搜索计算得到所述简化管束模型反应性最大的管束尺寸。
本实施例中,管束模型指步骤S2中得到的简化管束模型,高度指管束的长度。在一种优选的实施方式中,搜索计算的过程具体为:保持管束模型的料液总体积不变,逐步增大六边形管束的圈数(即逐步增多简化管束模型的管道数目),管束的长度逐步减小,通过搜索计算最终得到反应性最大的六边形简化管束模型,即得到简化管束模型反应性最大的管束尺寸。该最大反应性的简化管束模型包络地考虑了所有管道都聚集在一起的效应,并且在管径、料液成分、管道间距都做了保守考虑。
步骤S4、将搜索计算得到的具有最大反应性的简化管束模型紧贴设备室内反应性最大的设备旁,以包络考虑设备室内管道与设备间的相互作用。
将最大反应性的简化管束模型紧贴设备室内反应性最大的设备旁,以相互作用最大的方式紧贴布置,具体的有如下几种情况:如图3所示,六边形管束以竖直方向布置在反应性最大的竖直布置的圆柱形设备旁,并以六棱柱的一面紧贴该设备;若反应性最大的设备附近有其他反应性较大的设备,则应将管束置于两个设备之间并紧贴反应性最大的设备;若反应性最大的设备附近有设备室墙壁,则应将管束置于设备与墙壁之间并紧贴反应性最大的设备。
步骤S2至步骤S4中,若有效管道中存在管径较大(如管径超过设定上限值)且数量较少(如数量少于设定值)的管道,可按照其实际尺寸和实际位置进行单独建模,其余的管径更小的有效管道(如其余的管径未超过设定上限值的有效管道)按照步骤S2-S4开展建模和分析。例如,执行步骤S1,得到待分析设备室的N个有效管道,对N个有效管道的管径进行降序排列,从N个有效管道中挑选出管径排序靠前的M个有效管道,根据管道的实际尺寸和实际位置,分别对M个有效管道进行单独建模,得到M个有效管道的布置结果,如M=N*0.5%。对于剩余的 有效管道,根据步骤S2-步骤S4进行分析,得到剩余的有效管道的布置结果。当有效管道中存在少量管道的管径远远大于其他管道的管径,若采用最大管径进行分析计算,将导致简化管束模型的分析结果的保守程度较大,因此,挑选少量管径较大的管道单独建模,可合理降低管道布置分析的保守程度。
为更清楚的描述本发明的技术方案,这里以某设备室为例进行表述。
含易裂变材料溶液管道的某设备室里共布置有800余根管道,对这些管道进行梳理,不考虑气体、酸溶液、纯水、有机溶剂等不含易裂变材料的管道后共有450根有效管道,有效管道料液总体积为385.7L,选取这些管道料液中反应性最大的料液的铀、钚浓度,这些管道中直径最大的尺寸为外半径2.415cm、内半径2.047cm,实际管道布置间距最小为13cm。
根据上述参数建立六边形的简化管束模型,简化管束模型中的管道长度都一致,管束中的管道管径为有效管道中最粗的管径(即外半径2.415cm、内半径2.047cm),管壁考虑0.2cm的腐蚀,间距按照最粗管道的实际最小布置间距13cm来考虑,管道之间呈三角形阵列分布。保持管束模型的料液总体积不变,逐步增大六边形管束的圈数,管束的长度逐步减小,1圈(1根)、2圈(7根)、3圈(19根)、4圈(37根)等,将料液体积分配到这些有限的管道中。根据搜索的临界计算结果,当管束圈数为8圈(169根)时管束本身的有效增值因子k eff最大,3.5倍料液浓度情况下的k eff为0.4723±0.0005,管束模型的横截面图如图2所示。
在该设备室内,某环形槽设备的k eff最大,该设备附近另还有一个环形槽设备的k eff较大,将搜索计算得到的最大反应性的简化管束紧贴 k eff最大的设备,并靠向附近的设备,设备室的横截面图(部分)如图3所示。3.5倍料液浓度情况下的考虑管道布置的设备室整体临界安全计算结果k eff为0.7550±0.0005,相比未考虑管道时的设备室临界计算结果0.7407±0.0005略大,但仍能满足临界安全要求。
本发明提供的简化管道设备室整体临界安全分析方法保守的考虑了设备室内盛装易裂变材料的管道集中布置并紧邻反应性最大的设备的模型,能够包络实际布置情况,并且还考虑了实际管道布置的管径、间距等,避免过度地保守分析从而得到临界计算结果超过限值的情况。计算分析的过程相比精细化逐一建立管道的过程简便很多,提高了计算分析的效率,又避免了将管道料液简单聚拢过度保守导致的计算结果超过临界安全接收准则的问题。
上述实施例只是对本发明的举例说明,本发明也可以以其它的特定方式或其它的特定形式实施,而不偏离本发明的要旨或本质特征。因此,描述的实施方式从任何方面来看均应视为说明性而非限定性的。本发明的范围应由附加的权利要求说明,任何与权利要求的意图和范围等效的变化也应包含在本发明的范围内。

Claims (10)

  1. 一种简化管道设备室整体临界安全分析方法,包括以下步骤:
    S1、根据管道内介质,对待分析设备室的所有管道进行筛选分析,筛选出含易裂变材料溶液的管道作为有效管道,并计算所有有效管道内料液总体积;
    S2、建立简化管束模型,所述简化管束模型中所有的管道按照最小布置间距紧密排列;
    S3、保持管束模型的料液总体积不变,通过改变管束模型管道的数目和高度,搜索计算得到所述简化管束模型反应性最大的管束尺寸;
    S4、将所述具有最大反应性的简化管束模型紧贴设备室内反应性最大的设备旁,以相互作用最大的方式紧贴布置。
  2. 根据权利要求1所述的简化管道设备室整体临界安全分析方法,其特征在于,步骤S1中对管道进行筛选分析具体为:
    将料液为气体或不含易裂变材料溶液的管道筛除,以筛选得到有效管道;对于传输多种介质的管道,不考虑其中气体的情形。
  3. 根据权利要求2所述的简化管道设备室整体临界安全分析方法,其特征在于,步骤S1中选取反应性最大的料液状态的铀、钚浓度进行分析。
  4. 根据权利要求3所述的简化管道设备室整体临界安全分析方法,其特征在于,步骤S1中使用有效管道的外径尺寸计算有效管道料液总体积,包络管壁被腐蚀的情况。
  5. 根据权利要求1-4任一项所述的简化管道设备室整体临界安全分析方法,其特征在于,步骤S2中所述简化管束模型中所有的管道长度均相同,管道管径为有效管道中最粗的管径。
  6. 根据权利要求5所述的简化管道设备室整体临界安全分析方法,其特征在于,步骤S2中所述简化管束模型中所有的管道按照最小布置间距紧密排列具体为:
    所述简化管束模型中所有的管道按照三角形阵列紧密排列,组成轮廓为六边形的管束形状,管道间距按照筛选出的有效管道中最粗管道的实际最小布置间距来计算。
  7. 根据权利要求6所述的简化管道设备室整体临界安全分析方法,其特征在于,所述简化管束模型中管道壁厚考虑设定的腐蚀裕量。
  8. 根据权利要求7所述的简化管道设备室整体临界安全分析方法,其特征在于,步骤S3具体为:
    保持管束模型的料液总体积不变,逐步增大六边形管束的圈数,相应地逐步减小管束的长度,通过搜索计算最终得到反应性最大的六边形简化管束模型。
  9. 根据权利要求8所述的简化管道设备室整体临界安全分析方法,其特征在于,步骤S4中将所述具有最大反应性的六边形简化管束模型紧贴设备室内反应性最大的设备旁,具体为:
    将六边形简化管束模型以竖直方向布置在反应性最大的竖直布置的设备旁,并以六棱柱的一面紧贴所述设备;若反应性最大的设备附近有其他反应性较大的设备,则将六边形简化管束模型置于两个设备之间并紧贴反应性最大的设备;若反应性最大的设备附近有设备室墙壁,则将六边形简化管束模型置于设备与墙壁之间并紧贴反应性最大的设备。
  10. 根据权利要求6-9任一项所述的简化管道设备室整体临界安全分析方法,其特征在于,若有效管道中存在管径超过设定上限值且数量少于设定值的管道,可按照其实际尺寸和实际位置进行单独建模,其余管径未超过所述设定上限值的有效管道按照步骤S2-S4开展建模和分析。
PCT/CN2022/125580 2021-11-23 2022-10-17 一种简化管道设备室整体临界安全分析方法 WO2023093362A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024514083A JP2024532913A (ja) 2021-11-23 2022-10-17 簡略化管路設備室全体臨界安全分析方法
EP22897445.7A EP4439371A1 (en) 2021-11-23 2022-10-17 Simplified method for overall criticality safety analysis of pipeline equipment room

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111394652.4A CN114239226A (zh) 2021-11-23 2021-11-23 一种简化管道设备室整体临界安全分析方法
CN202111394652.4 2021-11-23

Publications (1)

Publication Number Publication Date
WO2023093362A1 true WO2023093362A1 (zh) 2023-06-01

Family

ID=80750624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125580 WO2023093362A1 (zh) 2021-11-23 2022-10-17 一种简化管道设备室整体临界安全分析方法

Country Status (4)

Country Link
EP (1) EP4439371A1 (zh)
JP (1) JP2024532913A (zh)
CN (1) CN114239226A (zh)
WO (1) WO2023093362A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110728033A (zh) * 2019-09-23 2020-01-24 中国核电工程有限公司 一种核燃料后处理中流化床的临界安全设计方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114239226A (zh) * 2021-11-23 2022-03-25 中国核电工程有限公司 一种简化管道设备室整体临界安全分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887260A (zh) * 2017-03-30 2017-06-23 中国核动力研究设计院 一种工艺系统管道布置方法
CN109635394A (zh) * 2018-11-30 2019-04-16 深圳中广核工程设计有限公司 一种自动判断高能管道破裂范围靶物安全的方法及装置
CN110020399A (zh) * 2017-11-21 2019-07-16 中国石油天然气股份有限公司 一种管道内腐蚀评价位置的确定方法
CN112199788A (zh) * 2020-09-28 2021-01-08 广州广燃设计有限公司 一种埋地燃气管道的设计方法
US20210019460A1 (en) * 2019-06-30 2021-01-21 Zhejiang University Node Flow Optimization Distribution Method for Improving Accuracy of Transient Hydraulic Simulation of Water Supply In-series Pipeline
CN114239226A (zh) * 2021-11-23 2022-03-25 中国核电工程有限公司 一种简化管道设备室整体临界安全分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887260A (zh) * 2017-03-30 2017-06-23 中国核动力研究设计院 一种工艺系统管道布置方法
CN110020399A (zh) * 2017-11-21 2019-07-16 中国石油天然气股份有限公司 一种管道内腐蚀评价位置的确定方法
CN109635394A (zh) * 2018-11-30 2019-04-16 深圳中广核工程设计有限公司 一种自动判断高能管道破裂范围靶物安全的方法及装置
US20210019460A1 (en) * 2019-06-30 2021-01-21 Zhejiang University Node Flow Optimization Distribution Method for Improving Accuracy of Transient Hydraulic Simulation of Water Supply In-series Pipeline
CN112199788A (zh) * 2020-09-28 2021-01-08 广州广燃设计有限公司 一种埋地燃气管道的设计方法
CN114239226A (zh) * 2021-11-23 2022-03-25 中国核电工程有限公司 一种简化管道设备室整体临界安全分析方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110728033A (zh) * 2019-09-23 2020-01-24 中国核电工程有限公司 一种核燃料后处理中流化床的临界安全设计方法

Also Published As

Publication number Publication date
CN114239226A (zh) 2022-03-25
EP4439371A1 (en) 2024-10-02
JP2024532913A (ja) 2024-09-10

Similar Documents

Publication Publication Date Title
WO2023093362A1 (zh) 一种简化管道设备室整体临界安全分析方法
Nanjo et al. Revolatilization of iodine by bubbly flow in the suppression pool during an accident
Murphy Simulation of low-enriched uranium (LEU) burnup in Russian VVER reactors with the HELIOS code package
Zhang et al. A Strategic Approach to Employ Risk-Informed Methods to Enable Margin Recovery of Nuclear Power Plants Operating Margins
Yamano et al. Development of probabilistic risk assessment methodology against volcanic eruption for sodium-cooled fast reactors
Lou et al. Hybrid reactivity-equivalent physical transformation method on double-heterogeneous system containing dispersed fuel particles and burnable poison particles
Li et al. Chemical Forms of Important Fission Products in Primary Circuit of HTR‐PM under Conditions of Normal Operation and Overpressure and Water Ingress Accidents: A Study with a Chemical Thermodynamics Approach
Zhang et al. R&D Roadmap for Enhanced Resilient Plant Systems, Metrics, Scenarios, Risk Analysis, and Modeling and Simulation
Sonwalkar et al. Identification of the contributors (Ag-110 m) for higher radiation field on primary heat transport system of Tarapur Atomic Power Station-3 and its impact on collective dose
Fischer et al. Environmental sampling for detecting undeclared nuclear material/activities
Freiría López et al. Criticality Characteristics and Sensitivity Analysis of Fukushima Debris Beds Containing MCCI Products
Moghrabi et al. Investigation of Fuel Burnup Impacts on Nuclear Reactor Safety Parameters in the Canadian Pressure Tube Supercritical Water-Cool Reactor
Dastur et al. Confirmation of CANDU shutdown system design and performance during commissioning
Osada et al. STUDIES IN MANUFACTURE OF LABELED FERTILIZER
Zhang et al. Demonstration of Multi-Physics Evaluation of Fuel Rod Burst Probability With Burnup Extension Under LBLOCA Conditions
Braase GAIN Fuel Safety Research Workshop
Rodgers Exhaust stack monitoring issues at the Waste Isolation Pilot Plant
Buck et al. PLATR critical experiments on mixed-oxide fuel assemblies for BWR's and comparison with calculations.
Liikala et al. Uncertainties in the analysis of plutonium fueled light water moderated assemblies
Wang et al. The Flow Visualization for the Separation of Air-water Bubbly Two-phase Flow Through a Vertical T-junction
Kontautas et al. Diffusive deposition of aerosols in PHEBUS containment during FPT-2 test
Abhold et al. Design of the improved plutonium canister assay system (IPCAS)
Moeck The Canadian R and D program targeted at CANDU reactors
Callihan Critical Experiments and Nuclear Safety at Oak Ridge National Laboratory
Curtis Safeguarding a NWS International Enrichment Center as an Enriched Uranium Store

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024514083

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022897445

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022897445

Country of ref document: EP

Effective date: 20240624