WO2023093228A1 - 控制电路、方法、可穿戴设备和可读存储介质 - Google Patents

控制电路、方法、可穿戴设备和可读存储介质 Download PDF

Info

Publication number
WO2023093228A1
WO2023093228A1 PCT/CN2022/118974 CN2022118974W WO2023093228A1 WO 2023093228 A1 WO2023093228 A1 WO 2023093228A1 CN 2022118974 W CN2022118974 W CN 2022118974W WO 2023093228 A1 WO2023093228 A1 WO 2023093228A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermistor
temperature
wearable device
circuit
signal
Prior art date
Application number
PCT/CN2022/118974
Other languages
English (en)
French (fr)
Inventor
刘福龙
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023093228A1 publication Critical patent/WO2023093228A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present application relates to the technical field of wearable devices, and more specifically, relates to a control circuit, a method, a wearable device and a readable storage medium.
  • wearable devices can integrate the function of measuring body temperature to continuously detect body temperature.
  • wearable devices generally can only measure the temperature of the human skin surface, and cannot accurately measure the actual body temperature of the human body. Therefore, there is a problem that the accuracy of body temperature measurement is limited when traditional wearable devices measure body temperature.
  • the present application discloses a control circuit, a method, a wearable device, and a readable storage medium, which can solve the problem of limited accuracy of body temperature measurement when traditional wearable devices measure body temperature.
  • a control circuit is provided, the control circuit is applied to a wearable device, the control circuit includes a first thermistor, a temperature sensor and a detection circuit; the wearable device includes a housing, and the first The thermistor is arranged on the side of the shell close to the human body;
  • the detection circuit is configured to collect a first temperature through the first thermistor and a second temperature through the temperature sensor, and determine the target of the human body according to the first temperature and the second temperature temperature.
  • a wearable device in a second aspect, includes the control circuit as described in the first aspect.
  • a control method is provided, the control method is applied to a wearable device, the wearable device includes a shell, and the method includes:
  • the first temperature is collected by a first thermistor in the wearable device, and the second temperature is collected by a temperature sensor in the wearable device; wherein, the first thermistor is arranged on a side of the housing close to the human body;
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in the third aspect are implemented.
  • a fifth aspect provides a computer program product, including a computer program, and when the computer program is executed by a processor, the steps of the method described in the third aspect are implemented.
  • control circuit is applied to the wearable device, and the control circuit includes a first thermistor, a temperature sensor and a detection circuit; the above-mentioned wearable device includes a shell, the first thermal The resistance is arranged on the side of the above-mentioned casing close to the human body. Since the detection circuit collects the first temperature through the first thermistor arranged on the side of the above-mentioned casing close to the human body, the thermistor is in direct contact with the skin of the human body, reducing the The heat conduction path of human body temperature, thereby improving the accuracy of the first temperature collected.
  • the detection circuit can collect the second temperature through the temperature sensor, which realizes the measurement of the body temperature conducted by the human body. In this way, the detection circuit can be based on the collected first The temperature and the second temperature accurately determine the target temperature of the human body, which improves the accuracy of determining the target temperature of the human body.
  • Fig. 1 is an application environment diagram of a control circuit in an embodiment
  • FIG. 2 is a schematic diagram of a control circuit provided by an embodiment of the present application.
  • Fig. 2a is a schematic diagram of the formation process of the first thermistor and the principle of collecting the first temperature of the human body provided by an embodiment of the present application;
  • Fig. 2b is a schematic diagram of a circuit for collecting the first temperature provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the principle of collecting the target temperature of the human body provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a control circuit provided by another embodiment of the present application.
  • Fig. 4a is a schematic diagram of the arrangement position of the first thermistor provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a control circuit provided by another embodiment of the present application.
  • Fig. 5a is a schematic diagram of the principle of adjusting the PPG signal by using the temperature change of the human body provided by another embodiment of the present application;
  • FIG. 6 is a schematic diagram of a control circuit provided by another embodiment of the present application.
  • Fig. 7 is a schematic diagram of the relationship between the output voltage of the first thermistor and the contact information between the wearable device and human skin provided by an embodiment of the present application;
  • Fig. 7a is a schematic diagram of the relationship between the change of the contact force between the human skin and the wearable device and the output voltage of the first thermistor provided by an embodiment of the present application;
  • FIG. 8 is a schematic diagram of the arrangement structure of the second thermistor provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a control circuit provided by another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a circuit for detecting human body temperature provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a control method provided by an embodiment of the present application.
  • Fig. 12 is a schematic diagram of a control method provided by another embodiment of the present application.
  • Fig. 13 is a schematic diagram of a control method provided by another embodiment of the present application.
  • Fig. 14 is a schematic diagram of a control method provided by another embodiment of the present application.
  • Fig. 15 is a schematic diagram of a control method provided by another embodiment of the present application.
  • Fig. 16 is a schematic diagram of a control method provided by another embodiment of the present application.
  • Fig. 17 is a schematic diagram of a control method provided by another embodiment of the present application.
  • Fig. 18 is a schematic diagram of a control method provided by another embodiment of the present application.
  • Fig. 19 is a schematic diagram of a control method provided by another embodiment of the present application.
  • 01 control circuit
  • 10 first thermistor
  • 20 temperature sensor
  • 402 signal amplifying circuit
  • 50 generating circuit
  • 501 light emitting diode
  • 502 photodiode
  • 60 second thermistor
  • 70 first fixed resistor
  • first, second and the like used in this application may be used to describe various elements herein, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element.
  • a first client could be termed a second client, and, similarly, a second client could be termed a first client, without departing from the scope of the present application.
  • Both the first client and the second client are clients, but they are not the same client.
  • wearable devices can integrate the function of measuring body temperature to continuously detect the body temperature of the human body.
  • the temperature sensor set on the wearable device is usually set inside the wearable device
  • the temperature sensor can be placed in the cavity formed by the shell of the wearable device as shown in Figure 1.
  • the temperature reaches the temperature sensor through the heat conduction path and forms a stable temperature field. It needs to go through a relatively long heat conduction path and heat Stabilization time, therefore, the accuracy of existing wearable devices for body temperature measurement is very limited.
  • the embodiment of the present application proposes a detection circuit capable of accurately measuring human body temperature, so as to improve the accuracy of body temperature measurement of wearable devices .
  • the present application provides a control circuit 01, which is applied to wearable devices, and the control circuit 01 includes a first thermistor 10, a temperature sensor 20 and a detection circuit 30
  • the above-mentioned wearable device includes a shell, and the first thermistor 10 is arranged on the side of the above-mentioned shell close to the human body; the detection circuit 30 is used to collect the first temperature through the first thermistor, and collect the second temperature through the temperature sensor 20 , and determine the target temperature of the human body according to the first temperature and the second temperature.
  • the thermistor is a sensitive component.
  • the typical feature of the thermistor is that it is sensitive to temperature and exhibits different resistance values at different temperatures. Therefore, the temperature value can be obtained by obtaining the resistance value of the thermistor.
  • thermistors can be divided into positive temperature coefficient thermistors (PTC) and negative temperature coefficient thermistors (NTC). The larger the resistance value, the lower the resistance value of the negative temperature coefficient thermistor (NTC) when the temperature is higher.
  • the first thermistor 10 can be a positive temperature coefficient thermistor, It may also be a negative temperature coefficient thermistor, which is not limited in this embodiment.
  • heat-sensitive materials can be printed on the shell of the wearable device close to the skin through processes and other means, and then sintered to form a thermistor.
  • the printed heat-sensitive materials can be manganese, Cobalt and other metal mixtures.
  • the wearable device in this embodiment may be a smart watch, smart bracelet, smart glasses, and the like.
  • the material of the shell of the wearable device may be ceramics, sapphire, etc., which is not limited in this embodiment.
  • the formation process of the first thermistor disposed on the side of the wearable device shell close to the human body and the principle of collecting the first temperature can be shown in Figure 2a, and 3 in Figure 2a indicates that the wearable device shell is close to the human body 2 in Figure 2a, and then sintered to form a thermistor, that is, 1 in Figure 2a, and then on the side of the wearable device shell close to the human body Holes are punched on the shell and conductive silver glue is poured to form the conductive pin 4 as shown in Figure 2a.
  • the first For temperature acquisition it should be noted that R2 in the circuit shown in Figure 2b can be the first thermistor 10 described above, and R1 in the circuit shown in Figure 2b can be a fixed resistor for voltage division, detection
  • the circuit 30 can obtain the first temperature by collecting the resistance value of the thermistor R2.
  • the temperature sensor 20 included in the above detection circuit 01 may be arranged on a side of the wearable device housing away from the human body. Further, as shown in FIG. 2 a , the temperature sensor 5 is arranged on the side of the wearable device shell away from the human body, and the temperature sensor 5 overlaps the first thermistor 2 in the vertical direction.
  • the temperature sensor 20 can also be arranged at other positions of the wearable device.
  • the temperature sensor 20 can be arranged on other devices inside the wearable device, and the temperature sensor 20 is vertically connected to the first thermistor 10. overlapping.
  • the temperature sensor 20 included in the control circuit 01 refers to a sensor that can sense temperature and convert it into an available output signal.
  • the above-mentioned temperature sensor 20 can be a digital integrated temperature sensor. Through the digital integrated temperature sensor The second temperature can be read directly.
  • the detection circuit 30 can determine the first temperature by collecting the resistance value of the first thermistor, and then make the detection circuit 30 determine the target temperature of the human body according to the collected first temperature and the second temperature.
  • the target temperature of the human body here is the actual temperature of the human body. It can be understood that when the wearable device is a smart watch or a smart bracelet, the side of the shell of the wearable device close to the human body can be the side close to the skin of the elbow of the human body, then the target temperature of the human body determined by the detection circuit 30 is It can be the temperature of the elbow of the human body; or, when the wearable device is smart glasses, the side of the shell of the wearable device close to the human body can be the side close to the eyes of the human body, then the target temperature of the human body determined by the detection circuit 30 can be is the temperature of the human eye.
  • the above detection circuit 30 may be the original control circuit in the wearable device, that is, the function of the detection circuit 30 in this embodiment is realized through the existing circuit of the wearable device with processing functions, or, The above-mentioned detection circuit 30 may also be a circuit provided in the wearable device independent of the original control circuit.
  • the control circuit in this embodiment is applied to a wearable device, and the control circuit includes a first thermistor, a temperature sensor and a detection circuit;
  • the wearable device includes a housing, and the first thermistor is arranged on the side of the housing close to the human body , because the detection circuit collects the first temperature through the first thermistor disposed on the side of the housing close to the human body, the thermistor is in direct contact with the skin of the human body, reducing the heat conduction path of the body temperature, thereby improving the acquisition
  • the detection circuit can collect the second temperature through the temperature sensor, so that the detection circuit can accurately determine the actual body temperature of the human body according to the principle of heat conduction according to the collected first temperature and the second temperature, and improve In order to determine the accuracy of the target temperature of the human body.
  • the temperature sensor 20 is arranged on the side of the housing away from the human body.
  • a wearable device generally includes a shell with one side close to the human body and one side away from the human body.
  • the temperature sensor 20 included in the control circuit 01 is set on the side of the wearable device shell away from the human body. That is, the temperature transmitted by the human body can be measured through the temperature sensor 20 disposed on the side of the wearable device shell away from the human body.
  • the schematic diagram of collecting the first temperature by the above-mentioned first thermistor 10 and collecting the second temperature by the temperature sensor 20 can be shown in FIG. 3 , 1 in FIG. 3 represents the above-mentioned first thermistor, 2 in FIG.
  • 3 in Figure 3 represents the shell on the side close to the human body, the target temperature of the human body is transmitted to the body surface through heat conduction, that is, the temperature corresponding to the shell on the side of the wearable device close to the human body It is T1 shown in FIG. 3, and then conducts heat through the shell of the wearable device to the inside of the device.
  • 4 in FIG. 3 represents the above-mentioned temperature sensor 20, and the second temperature collected by the temperature sensor 20 corresponds to that shown in FIG. T2.
  • the temperature sensor included in the detection circuit is set on the shell of the wearable device on the side away from the skin, and the temperature transmitted by the human body can be measured through the temperature sensor, so that the measured body surface temperature of the human body can be
  • the first temperature of the human body and the second temperature of the human body collected by the temperature sensor accurately determine the actual body temperature of the human body, which improves the accuracy of the determined target temperature of the human body.
  • the detection circuit can collect the first temperature through the resistance value of the first thermistor.
  • the detection The circuit 30 is used to collect the resistance value of the first thermistor 10, and determine the first temperature according to the resistance value.
  • the detection circuit 30 can collect the resistance value of the first thermistor 10, according to the first thermal
  • the resistance value of the sensitive resistor 10 determines the first temperature of the human body.
  • the detection circuit 30 may collect the voltage and current of the first thermistor 10 , and determine the resistance value of the first thermistor 10 according to the voltage and current of the first thermistor 10 .
  • the circuit for detecting the resistance value of the first thermistor 10 by the detection circuit 30 can be shown in FIG. Since R1 is a fixed resistor, the voltage and current of the first thermistor 10 can be determined by the characteristic that the current flowing through each resistor in the series circuit is equal, so that the voltage and current of the first thermistor 10 can be determined according to the voltage and current of the first thermistor 10 The resistance value of the first thermistor, and then the first temperature is determined according to the resistance value of the first thermistor 10 .
  • the detection circuit can accurately collect the resistance value of the first thermistor. Since the accuracy of the resistance value of the first thermistor is improved, the The first temperature is determined, thereby improving the accuracy of determining the first temperature.
  • the detection circuit 30 can calculate the first temperature and the second temperature according to the temperature compensation coefficient to determine the target temperature of the human body.
  • the detection circuit 30 is used to determine the target temperature of the human body according to the temperature compensation coefficient, the first temperature and the second temperature.
  • the above-mentioned temperature compensation coefficient can be obtained by standard calibration in a constant temperature environment, and the above-mentioned detection circuit 30 can collect the first temperature according to the temperature compensation coefficient and the second temperature to deduce the target temperature of the human body.
  • the detection circuit can quickly and accurately determine the target temperature of the human body according to the temperature compensation coefficient, the first temperature and the second temperature, thereby improving the efficiency and accuracy of determining the target temperature of the human body.
  • the scheme of measuring heart rate and blood oxygen by using the PPG principle of photoplethysmography method in wearable devices has been widely used, but the change of human body temperature is also one of the important factors affecting the PPG signal.
  • the PPG signal of the wearable device can also be adjusted by using the determined target temperature of the human body.
  • the above-mentioned control circuit further includes an adjustment circuit 40, the input end of the adjustment circuit 40 is connected to the output end of the above-mentioned detection circuit 30, and the adjustment circuit 40 The output end is connected with the generation circuit 50 of the photoplethysmography signal PPG signal of the wearable device; the above-mentioned detection circuit 30 is also used to generate a control signal according to the above-mentioned target temperature; the adjustment circuit 40 is used to adjust the PPG signal according to the control signal .
  • PPG photoplethysmography
  • HR heart rate
  • the PPG signal detection system is composed of a light emitting diode LED, a photodiode PD and a signal processing circuit (it should be noted here that the signal processing circuit can be the detection circuit described in this application, or it can also be independent of the above-mentioned control circuit.
  • the existing circuit inside the wearable device constitutes, after the LED emits light, the light beam is reflected by the human tissue and detected by the PD to obtain the PPG signal.
  • the change of human body temperature is one of the important factors affecting the PPG signal.
  • the main performance is that when the temperature rises, the amplitude of the PPG signal will increase and the overall baseline signal will increase, and when the temperature drops, the amplitude of the PPG signal will decrease.
  • the PPG signal is compensated and improved by using the measured target temperature of the human body, that is, the detection circuit 30 is also used to generate a control signal according to the determined target temperature, and the generated The control signal is transmitted to the adjustment circuit 40, so that the adjustment circuit 40 adjusts the PPG signal according to the control signal.
  • the adjustment circuit 40 may adjust the strength of the PPG signal or the signal-to-noise ratio according to the control signal to adjust the PPG signal.
  • the arrangement position of the above-mentioned first thermistor 10 can be as shown in the figure
  • 2 in Fig. 4a can be the above-mentioned first thermistor 10
  • 1 in Fig. 4a can be a schematic diagram of opening a window for the PPG signal in the bottom case of the wearable device, which is for the optical device LED to emit light through The light and the light received by the PD provide an optical path.
  • the arrangement of the first thermistor 10 can also be adjusted according to actual conditions. It can be understood that the first thermistor 10 in FIG. 4a is arranged in the central area of the wearable device housing on the side close to the human body without affecting the PPG optical path, mainly to reduce the influence of the ambient temperature on the measurement of the human body temperature.
  • the geometric shape of the above-mentioned first thermistor 10 may also be other shapes than those shown in FIG. 4a.
  • the layout of the PPG signal in this application may also be based on the optimal optical path.
  • control circuit further includes an adjustment circuit, the input end of the adjustment circuit is connected to the output end of the detection circuit, and the output end of the adjustment circuit is connected to the generation circuit of the photoplethysmography signal of the wearable device, that is, the PPG signal , the detection circuit can generate a control signal according to the target temperature of the human body, so that the adjustment circuit can adjust the PPG signal according to the control signal, thus avoiding the influence of the human body temperature on the PPG signal, and improving the accuracy of the adjusted PPG signal. This ensures the accuracy of the PPG signal.
  • the generation circuit 50 includes a light emitting diode 501
  • the adjustment circuit 40 includes a current
  • the circuit 401 and the current control circuit 401 are respectively connected to the light emitting diode 501 and the detection circuit 30; the current control circuit 401 adjusts the input current of the light emitting diode 501 according to the above control signal to adjust the above PPG signal.
  • the generation circuit 50 of the PPG signal of the above-mentioned wearable device includes a light-emitting diode 501.
  • the light-emitting diode 501 emits light
  • the light beam is reflected by human tissue and detected by the photodiode 502 to obtain the above-mentioned PPG signal.
  • the above-mentioned adjustment circuit 40 includes a current
  • the control circuit 401 and the current control circuit 401 are respectively connected to the light emitting diode 501 and the detection circuit 30, and the control signal generated by the detection circuit 30 can adjust the input current of the light emitting diode 501 to adjust the PPG signal.
  • the generation circuit 50 of the PPG signal of the wearable device includes a photodiode 502
  • the adjustment circuit 40 includes a signal amplification circuit 402, and the signal amplification circuit 402 respectively It is connected with the photodiode 502 and the detection circuit 30; the signal amplifying circuit 402 adjusts the receiving gain of the photodiode 502 according to the above-mentioned control signal, so as to adjust the above-mentioned PPG signal.
  • the generation circuit of the PPG signal of the wearable device includes a photodiode
  • the adjustment circuit includes a signal amplification circuit
  • the signal amplification circuit is connected to the photodiode and the detection circuit respectively, so that the signal amplification circuit can be based on
  • the control signal generated by the detection circuit adjusts the receiving gain of the photodiode to adjust the PPG signal
  • the control signal is generated by the control circuit according to the target temperature of the human body, which avoids the influence of the body temperature on the PPG signal, and makes the adjusted PPG signal Accuracy has been improved, enhancing the accuracy of the PPG signal.
  • the above detection circuit 30 can To generate the above control signal, optionally, the first condition can be that the target temperature of the human body is lower than the temperature threshold and/or the target temperature continues to decrease, then in this scenario, the above current control circuit 401 can increase the light emitting diode 501 to adjust the PPG signal, or, the signal amplifying circuit 402 can increase the receiving gain of the photodiode 502 according to the control signal to adjust the PPG signal.
  • the foregoing temperature threshold may be 20 degrees, 30 degrees, or other temperature values, which are not limited in this embodiment.
  • the above detection circuit 30 may also generate the above control signal when the target temperature of the human body satisfies the second condition.
  • the second condition may be that the target temperature of the human body is lower than the temperature threshold and/or If the target temperature continues to decrease, in this scenario, the signal amplifying circuit 402 may increase the receiving gain of the photodiode 502 according to the control signal to adjust the PPG signal.
  • the above-mentioned temperature threshold may be 20 degrees, 30 degrees, or other temperature values, etc., which are not limited in this embodiment
  • the amplitude of the PPG signal will increase and the overall baseline signal will increase when the temperature rises.
  • a first control signal is generated, and the above-mentioned current control circuit 401 can reduce the input current of the light-emitting diode 501 according to the first control signal to adjust the PPG signal, or, the above-mentioned
  • the signal amplifying circuit 402 can reduce the receiving gain of the photodiode 502 according to the first control signal to adjust the PPG signal.
  • the foregoing temperature threshold may be 20 degrees, 30 degrees, or other temperature values, which are not limited in this embodiment.
  • the generation circuit of the PPG signal of the wearable device includes a light-emitting diode
  • the adjustment circuit includes a current control circuit
  • the current control circuit is connected to the light-emitting diode and the control circuit respectively, so that the current control circuit can Adjust the input current of the LED to adjust the PPG signal
  • the control signal is generated by the detection circuit according to the target temperature of the human body, which avoids the influence of the body temperature on the PPG signal, and improves the accuracy of the adjusted PPG signal. Enhanced the accuracy of the PPG signal.
  • the PPG signal is often affected by exercise, and the influence of exercise may even cause distortion of the PPG signal, thereby affecting the extraction of human health information.
  • wearable devices such as watches and bracelets detect PPG signals
  • the relative motion between the wearable device and the skin is the main source of motion influence.
  • the wearable device is not in good contact with the skin, the PPG optical detection system and the skin There is an air gap between them, and the medium in the light propagation has changed, which affects the measurement of the PPG signal; in addition, when the wearable device is in too tight contact with the skin, the wearable device is pressed against the skin, making the detection of the PPG signal difficult.
  • the above-mentioned detection circuit 30 is also used to determine the contact information between the wearable device and the human skin according to the output voltage of the first thermistor 10; The contact information adjusts the PPG signal of the wearable device.
  • the contact between the wearable device and the skin or the different contact forces will lead to changes in the thermal conductivity of the heat transfer path from the body temperature to the skin.
  • there is a space gap when the wearable device is not in contact with the skin and the wearable device There is a space gap when it is not in contact with the skin, which is the main factor affecting the thermal conductivity.
  • the wearable device when the wearable device is in contact with the skin too much, it will press the skin, and the skin will sag, resulting in changes in its thermal conduction path and thermal conductivity, and the corresponding human body temperature will also change. Therefore, it is possible to judge whether the wearable device is in contact with the skin and the closeness of the contact force by detecting the body temperature information.
  • the detection circuit 30 can use the output voltage of the first thermistor 10 to detect the contact information between the wearable device and the human skin, and determine the contact information between the wearable device and the human skin.
  • the adjustment circuit 40 The PPG signal of the wearable device is adjusted according to the contact information between the wearable device and human skin.
  • the contact information between the wearable device and the human skin may include whether the wearable device is in contact with the human skin, and how closely the wearable device is in contact with the human skin.
  • the relationship between the output voltage of the first thermistor 10 and the contact information between the wearable device and the human skin can be a schematic diagram as shown in FIG. 7, where the abscissa in FIG.
  • the distance, the ordinate is the output voltage of the first thermistor 10, it can be seen from Figure 7 that when the wearable device is in contact with human skin or not, the output voltage Uout of the first thermistor 10 has obvious voltage changes , therefore, a threshold can be set to determine whether the wearable device is in contact with human skin and the degree of close contact, and the relationship diagram shown in Figure 7a is obtained, wherein the relationship diagram shown in Figure 7a represents the relationship between human skin and human skin
  • the detection circuit can determine the contact information between the wearable device and human skin according to the output voltage of the first thermistor, and then the adjustment circuit can adjust the PPG signal of the wearable device according to the contact information between the wearable device and human skin , avoiding the influence of the movement between the wearable device and the human skin on the PPG signal, so that the accuracy of the adjusted PPG signal is improved, and the accuracy of the PPG signal is enhanced.
  • a second thermistor can be arranged on the outer ring of the outer shell of the wearable device away from the skin to form a
  • the structural diagram shown in Figure 8 on the basis of the above-mentioned embodiment, in one embodiment, as shown in Figure 9, the above-mentioned control circuit also includes a second thermistor 60; the second thermistor 60 is arranged at The side of the wearable device shell close to the human body; the second thermistor 60 is connected in parallel with the first thermistor 10; the detection circuit 30 determines the wearable device according to the output voltage of the first thermistor and the output voltage of the second thermistor. Information on exposure of the device to human skin.
  • the geometric shapes of the first thermistor 10 and the second thermistor 60 are the same.
  • the materials and manufacturing process of the first thermistor 10 and the second thermistor 60 may also be the same.
  • the detection circuit 30 can determine the contact information between the wearable device and the human skin according to the output voltage of the first thermistor 10 and the output voltage of the second thermistor 60, and then the adjustment circuit 40 can determine the contact information between the wearable device and the human skin according to the output voltage of the first thermistor 10 and the output voltage of the second thermistor 60.
  • the contact information of the wearable device adjusts the PPG signal of the wearable device to avoid the influence of the motion between the wearable device and the human skin on the PPG signal.
  • the detection circuit 30 determines the contact information between the wearable device and the human skin according to the output voltage of the first thermistor and the output voltage of the second thermistor, and determines the contact information between the wearable device and the human body according to the output voltage of the first thermistor.
  • the principle of the skin contact information is the same, and will not be repeated here in this embodiment.
  • the above-mentioned control circuit 01 further includes a first fixed resistor 70 and a second fixed resistor 80, the first The fixed resistor 70 is connected in series with the above-mentioned first thermistor 10, and the second fixed resistor 80 is connected in series with the second thermistor 60 to form a circuit diagram as shown in FIG. 10.
  • the circuit diagram shown in FIG. 10 is A Wheatstone bridge circuit.
  • R1 and R2 correspond to the first fixed resistor 70
  • R4 corresponds to the second fixed resistor 80
  • R5 is the above-mentioned second thermistor 60.
  • R5 The function of R5 is to make the wearable device The temperature difference between the ring and the outer ring is not affected by external interference factors.
  • the detection circuit can determine the contact information between the wearable device and the human skin according to the output voltage of the first thermistor and the output voltage of the second thermistor, and then the adjustment circuit can be adjusted according to the contact information between the wearable device and the human skin.
  • the contact information of the wearable device adjusts the PPG signal of the wearable device, avoiding the influence of the movement between the wearable device and the human skin on the PPG signal, so that the accuracy of the adjusted PPG signal is improved, and the accuracy of the PPG signal is enhanced.
  • the embodiment of the present application also provides a wearable device, and the wearable device includes any control circuit 01 provided in the previous embodiments.
  • the wearable device may include smart watches, smart bracelets, smart glasses, and the like. It should be noted that, for the working principle and beneficial effects of the wearable device provided in this embodiment, reference may be made to the description of the detection circuit 01 above, and details will not be repeated here in this embodiment.
  • a control method is provided, which is applied to a wearable device, and the wearable device includes a shell.
  • the control method includes:
  • the thermistor is a sensitive component.
  • the typical feature of the thermistor is that it is sensitive to temperature and exhibits different resistance values at different temperatures. Therefore, the temperature value can be obtained by obtaining the resistance value of the thermistor.
  • thermistors can be divided into positive temperature coefficient thermistors (PTC) and negative temperature coefficient thermistors (NTC). The larger the resistance value, the lower the resistance value of the negative temperature coefficient thermistor (NTC) when the temperature is higher.
  • the first thermistor in the wearable device can be a positive temperature coefficient thermistor.
  • the sensitive resistor may also be a negative temperature coefficient thermistor, which is not limited in this embodiment.
  • heat-sensitive materials can be printed on the side of the wearable device shell close to the human body through processes and other means, and then sintered to form a thermistor.
  • the printed heat-sensitive materials can be manganese, Cobalt and other metal mixtures.
  • the wearable device in this embodiment may be a smart watch, smart bracelet, smart glasses, and the like.
  • the material of the shell of the wearable device may be ceramics, sapphire, etc., which is not limited in this embodiment.
  • the formation process of the first thermistor disposed on the side of the wearable device shell close to the human body and the principle of collecting the first temperature can be referred to above-mentioned Figure 2a, and 3 in Figure 2a indicates that the wearable device shell is close to the human body
  • 3 in Figure 2a indicates that the wearable device shell is close to the human body
  • the circuit shown in Figure 2b above is formed.
  • the first For temperature collection it should be noted that R2 in the circuit shown in Figure 2b can be the first thermistor described above, and R1 in the circuit shown in Figure 2b can be a fixed resistor for voltage division, wearable
  • the device can obtain the first temperature by collecting the resistance value of the thermistor R2.
  • the above-mentioned temperature sensor may be arranged on a side of the wearable device shell away from the human body. As shown in FIG. 2 a , the temperature sensor 5 is arranged on the side of the wearable device shell away from the human body, and the temperature sensor 5 overlaps the first thermistor 2 in the vertical direction.
  • the temperature sensor can also be arranged at other positions of the wearable device.
  • the temperature sensor can be arranged on other devices inside the wearable device, and the temperature sensor overlaps with the first thermistor in the vertical direction.
  • the temperature sensor in this embodiment refers to a sensor that can sense temperature and convert it into an available output signal.
  • the above-mentioned temperature sensor can be a digital integrated temperature sensor, through which the digital integrated temperature sensor can directly Read the second temperature.
  • the wearable device can determine the first temperature by collecting the resistance value of the first thermistor.
  • S1102. Determine the target temperature of the human body according to the first temperature and the second temperature.
  • the target temperature of the human body here is the actual temperature of the human body. It can be understood that when the wearable device is a smart watch or a smart bracelet, the side of the wearable device shell close to the human body can be the side close to the elbow skin of the human body, and the target temperature of the human body determined by the wearable device can be is the temperature of the human elbow; or, when the wearable device is smart glasses, the side of the shell of the wearable device close to the human body can be the side close to the eyes of the human body, then the target temperature of the human body determined by the wearable device can be the human body Eye temperature.
  • the control method in this embodiment is applied to wearable devices, and the first temperature is collected through the first thermistor disposed on the side of the wearable device shell close to the human body.
  • the thermistor is in direct contact with human skin, reducing the body temperature.
  • the heat conduction path improves the accuracy of the collected first temperature.
  • the second temperature is collected through the temperature sensor in the wearable device, which realizes the measurement of the body temperature conducted by the human body, so that the wearable device can be collected according to the collected first temperature.
  • the first temperature and the second temperature accurately determine the actual temperature of the human body, which improves the accuracy of determining the target temperature of the human body.
  • the above S1101 includes:
  • the foregoing S1201 includes:
  • S1302. Determine the resistance value according to the voltage and current.
  • the above S1102 includes:
  • S1401. Determine the target temperature of the human body according to the temperature compensation coefficient, the first temperature and the second temperature.
  • the temperature compensation coefficient is obtained by calibration in a constant temperature environment.
  • the above method further includes:
  • the above S1501 includes:
  • the above S1502 includes: increasing the input current of the light emitting diode generating the PPG signal according to the control signal, so as to adjust the PPG signal.
  • the above S1501 includes:
  • the above S1502 includes: increasing the receiving gain of the photodiode that generates the PPG signal according to the control signal, so as to adjust the PPG signal.
  • the above method further includes:
  • the above S1801 includes:
  • S1901 according to the output voltage of the first thermistor and the output voltage of the second thermistor in the wearable device, determine the contact information between the wearable device and the human skin; the second thermistor is arranged on the shell of the wearable device close to the human body side; the second thermistor is connected in parallel with the first thermistor.
  • steps in the flow charts of FIGS. 11-19 are shown sequentially as indicated by the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in FIGS. 11-19 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily performed at the same time, but may be performed at different times. These sub-steps or The execution order of the stages is not necessarily performed sequentially, but may be executed alternately or alternately with at least a part of other steps or substeps of other steps or stages.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • One or more non-volatile computer-readable storage media containing computer-executable instructions, when the computer-executable instructions are executed by one or more processors, causing the processors to perform any of the above-mentioned embodiments.
  • the embodiment of the present application also provides a computer program product containing instructions, which, when run on a computer, causes the computer to execute the steps of any detection method provided in the above embodiments.
  • Non-volatile memory can include ROM (Read-Only Memory, read-only memory), PROM (Programmable Read-only Memory, programmable read-only memory), EPROM (Erasable Programmable Read-Only Memory, erasable programmable read-only memory) Memory), EEPROM (Electrically Erasable Programmable Read-only Memory, Electrically Erasable Programmable Read-only Memory) or flash memory.
  • Volatile memory can include RAM (Random Access Memory, random access memory), which is used as an external cache memory.
  • RAM is available in various forms, such as SRAM (Static Random Access Memory, static random access memory), DRAM (Dynamic Random Access Memory, dynamic random access memory), SDRAM (Synchronous Dynamic Random Access Memory, synchronous dynamic Random access memory), double data rate DDR SDRAM (Double Data Rate Synchronous Dynamic Random Access memory, double data rate synchronous dynamic random access memory), ESDRAM (Enhanced Synchronous Dynamic Random Access memory, enhanced synchronous dynamic random access memory), SLDRAM (Sync LinkDynamic Random Access Memory, synchronous link dynamic random access memory), RDRAM (Rambus Dynamic Random Access Memory, bus type dynamic random access memory), DRDRAM (Direct Rambus Dynamic Random Access Memory, interface dynamic random access memory).
  • SRAM Static Random Access Memory, static random access memory
  • DRAM Dynanamic Random Access Memory, dynamic random access memory
  • SDRAM Synchronous Dynamic Random Access Memory, synchronous dynamic Random access memory
  • double data rate DDR SDRAM Double Data Rate Synchronous Dynamic Random Access memory, double data rate

Abstract

一种控制电路(01)、方法、可穿戴设备和可读存储介质。控制电路(01)包括第一热敏电阻(10)、温度传感器(20)和检测电路(30);第一热敏电阻(10)设置于可穿戴设备外壳靠近人体的一侧;检测电路(30)根据第一热敏电阻(10)采集的第一温度(T1)、温度传感器(20)采集的第二温度(T2)确定人体的目标温度。提高了确定人体目标温度的准确度。

Description

控制电路、方法、可穿戴设备和可读存储介质
相关申请
本申请要求2021年11月26日申请的,申请号为2021114208043,名称为“控制电路、方法、可穿戴设备和可读存储介质”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及可穿戴设备技术领域,更具体的说,涉及一种控制电路、方法、可穿戴设备和可读存储介质。
背景技术
随着可穿戴设备的发展,目前的可穿戴设备可以集成测量体温的功能以连续检测体温。但是,可穿戴式设备一般只能测量到人体皮肤表面的温度,无法准确测量到人体实际的体温。因此,传统的可穿戴设备测量体温时存在体温测量的准确性受限的问题。
发明内容
有鉴于此,本申请公开一种控制电路、方法、可穿戴设备和可读存储介质,可以解决传统的可穿戴设备测量体温时存在体温测量的准确性受限的问题。
第一方面,提供了一种控制电路,所述控制电路应用于可穿戴设备,所述控制电路包括第一热敏电阻、温度传感器和检测电路;所述可穿戴设备包括外壳,所述第一热敏电阻设置于所述外壳靠近人体的一侧;
所述检测电路,用于通过所述第一热敏电阻采集第一温度,以及通过所述温度传感器采集第二温度,并根据所述第一温度和所述第二温度确定所述人体的目标温度。
第二方面,提供了一种可穿戴设备,所述可穿戴设备包括如第一方面所述的控制电路。
第三方面,提供了一种控制方法,所述控制方法应用于可穿戴设备,所述可穿戴设备包括外壳,所述方法包括:
通过可穿戴设备中的第一热敏电阻采集第一温度,以及通过可穿戴设备中的温度传感器采集第二温度;其中,所述第一热敏电阻设置于所述外壳靠近人体的一侧;
根据所述第一温度和所述第二温度确定所述人体的目标温度。
第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第三方面所述的方法的步骤。
第五方面,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现如第三方面所述的方法的步骤。
上述控制电路、方法、可穿戴设备和可读存储介质,控制电路应用于可穿戴设备,该控制电路包括第一热敏电阻、温度传感器和检测电路;上述可穿戴设备包括外壳,第一热敏电阻设置于上述外壳靠近人体的一侧,由于检测电路是通过设置于上述外壳靠近人体的一侧上的第一热敏电阻采集的第一温度,该热敏电阻与人体皮肤直接接触,减少了人体体温的热传导路径,从而提高了采集的第一温度的准确度,另外,检测电路能够通过温度传感器采集第二温度,实现了对人体传导的体温的测量,这样检测电路可以根据采集的第一温度和第二温度准确地确定出人体的目标温度,提高了确定人体目标温度的准确度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为一个实施例中控制电路的应用环境图;
图2为本申请一实施例提供的控制电路示意图;
图2a为本申请一实施例提供的第一热敏电阻的形成工艺以及采集人体的第一温度的原理示意图;
图2b为本申请一实施例提供的采集第一温度的电路示意图;
图3为本申请一实施例提供的采集人体的目标温度的原理示意图;
图4为本申请另一实施例提供的控制电路示意图;
图4a为本申请一实施例提供的第一热敏电阻的布置位置示意图;
图5为本申请另一实施例提供的控制电路示意图;
图5a为本申请另一实施例提供的利用人体温度变化调整PPG信号的原理示意图;
图6为本申请另一实施例提供的控制电路示意图;
图7为本申请一实施例提供的第一热敏电阻的输出电压与可穿戴设备与人体皮肤的接触信息的关系示意图;
图7a为本申请一实施例提供的人体皮肤与可穿戴设备的接触力变化与第一热敏电阻的输出电压之间的关系示意图;
图8为本申请一实施例提供的第二热敏电阻的布置结构示意图;
图9为本申请另一实施例提供的控制电路示意图;
图10为本申请一实施例提供的对人体温度进行检测的电路示意图;
图11为本申请一实施例提供的控制方法示意图;
图12为本申请另一实施例提供的控制方法示意图;
图13为本申请另一实施例提供的控制方法示意图;
图14为本申请另一实施例提供的控制方法示意图;
图15为本申请另一实施例提供的控制方法示意图;
图16为本申请另一实施例提供的控制方法示意图;
图17为本申请另一实施例提供的控制方法示意图;
图18为本申请另一实施例提供的控制方法示意图;
图19为本申请另一实施例提供的控制方法示意图;
附图标记说明:
01:控制电路;         10:第一热敏电阻;      20:温度传感器;
30:检测电路;         40:调整电路;       401:电流控制电路;
402:信号放大电路;     50:生成电路;         501:发光二极管;
502:光电二极管;       60:第二热敏电阻;     70:第一固定电阻;
80:第二固定电阻。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一客户端称为第二客户端,且类似地,可将第二客户端称为第一客户端。第一客户端和第二客户端两者都是客户端,但其不是同一 客户端。
目前,随着如图1所示的可穿戴设备的发展,可穿戴设备可以集成测量体温的功能以对人体进行连续体温检测,但是,设置在可穿戴设备的温度传感器通常设置在可穿戴设备内部,例如,温度传感器可以设置在如图1所示的可穿戴设备的外壳形成的空腔内,测量体温时温度通过热传导路径到达温度传感器并形成稳定的温度场需要经过比较长的热传导路径和热稳定时间,因此,现有的可穿戴设备对于体温测量的准确性非常受限。
基于此,针对现有的可穿戴设备对于体温测量的准确性受限的技术问题,本申请实施例提出一种能够准确地测量人体体温的检测电路,以提高可穿戴设备对体温测量的准确度。
如图2所示,在一实施例中,本申请提供一种控制电路01,该控制电路01应用于可穿戴设备,该控制电路01包括第一热敏电阻10、温度传感器20和检测电路30;上述可穿戴设备包括外壳,第一热敏电阻10设置于上述外壳靠近人体的一侧;检测电路30,用于通过第一热敏电阻采集第一温度,以及通过温度传感器20采集第二温度,并根据第一温度和第二温度确定人体的目标温度。
其中,热敏电阻是一种敏感元件,热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值,因此,可以通过得到热敏电阻的电阻值来得到温度值。通常,按照温度系数不同可以将热敏电阻分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC),正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,可选的,在本实施例中,第一热敏电阻10可以是正温度系数热敏电阻器,也可以是负温度系数热敏电阻器,本实施例在此不做限制。可选的,在本实施例中,可以通过工艺等手段在可穿戴设备靠近皮肤一侧的外壳上印刷热敏材料,然后烧结成型形成热敏电阻,通常,印刷的热敏材料可以是锰、钴等金属混合物。可选的,本实施例中的可穿戴设备可以是智能手表、智能手环、智能眼镜等。可选的,可穿戴设备的外壳的材料可以为陶瓷,也可以为蓝宝石等等,本实施例在此不做限制。
示例性地,设置于可穿戴设备外壳靠近人体的一侧的第一热敏电阻的形成工艺以及采集第一温度的原理可以如图2a所示,图2a中的3表示可穿戴设备外壳靠近人体的一侧,通过在图2a中的3上印刷上述热敏材料即图2a中的2,然后通过烧结成型形成热敏电阻即图2a中的1,再在可穿戴设备外壳靠近人体的一侧的外壳上打孔并灌注导电银胶形成如图2a中所示的导电引脚4,控制电路与导电引脚4形成电气连接后形成如图2b所示的电路,通过该电路实现对第一温度的采集,需要说明的是,图2b所示的电路中的R2可以为上文描述第一热敏电阻10,图2b所示的电路中的R1可以为一固定电阻用来分压,检测电路30可以通过采集热敏电阻R2的电阻值采集得到第一温度。可选的,上述检测电路01包括的温度传感器20可以设置于可穿戴设备外壳远离人体的一侧。进一步地,如图2a所示,温度传感器5设置于可穿戴设备外壳远离人体的一侧,温度传感器5在垂直方向上与第一热敏电阻2有重叠。或者,温度传感器20也可以设置在可穿戴设备的其他位置,例如,温度传感器20可以设置在可穿戴设备的内部的其他器件上,且温度传感器20在垂直方向上与第一热敏电阻10有重叠。可以理解的是,控制电路01包括的温度传感器20是指能感受温度并转换成可用输出信号的传感器,可选的,上述温度传感器20可以是数字集成式温度传感器,通过该数字集成式温度传感器能够直接读取出第二温度。可选的,上述检测电路30,可以通过采集第一热敏电阻的阻值确定出第一温度,进而使检测电路30根据采集的第一温度和第二温度确定人体的目标温度。需要说明的是,这里的人体目标温度是人体的实际温度。可以理解的是,当可穿戴设备为智能手表或智能手环时,可穿戴设备的外壳靠近人体的一侧可以为靠近人体手肘皮肤的一侧,则上述检测电路30确定的人体的目标温度可以为人体手肘的温度;或者,当可穿戴设备为智能眼镜时,可穿戴设备的外壳靠近人体的一侧可以为靠近人体眼睛的一侧,则上述检测电路30确定的人体的目标温度可以为人体眼部的温度。
这里需要说明的是,上述检测电路30可以为可穿戴设备中的原有控制电路,即通过可穿戴设备的已有的具备处理功能的电路实现本实施例检测电路30所具有的功能,或者,上述检测电路30也可以为设置在可穿戴设备中独立于原有控制电路的电路。
本实施例中的控制电路应用于可穿戴设备,该控制电路包括第一热敏电阻、温度传感器和检测电路;上述可穿戴设备包括外壳,第一热敏电阻设置于上述外壳靠近人体的一侧,由于检测电路是通过设置于上述外壳靠近人体的一侧上的第一热敏电阻采集的第一温度,该热敏电阻与人体皮肤直接接触,减少了人体体温的热传导路径,从而提高了采集的第一温度的准确度,另外,检测电路能够通过温度传感器采集第二温度,这样检测电路可以根据采集的第一温度和第二温度准确地根据热传导的原理,确定出人体的实际体温,提高了确定人体目标温度的准确度。
进一步地,在上述实施例的基础上,在一个实施例中,上述温度传感器20设置于上述外壳远离人体的一侧。
可以理解的是,可穿戴设备一般包括的外壳,一侧靠近人体,一侧远离人体,在本实施例中,上述控制电路01包括的温度传感器20设置于可穿戴设备外壳远离人体的一侧,即通过设置在可穿戴设备外壳远离人体的一侧的温度传感器20实现对人体传递的温度的测量。示例性地,上述第一热敏电阻10采集第一温度以及温度传感器20采集第二温度的示意图可以如图3所示,图3中的1表示上述第一热敏电阻,图3中的2表示人体的皮肤层,对应的为上述人体的目标温度,图3中的3表示靠近人体一侧的外壳,人体的目标温度通过热传导到体表即可穿戴设备靠近人体一侧的外壳对应的温度为图3中所示的T1,然后通过可穿戴设备的外壳热传导到设备的内部,图3中的4表示上述温度传感器20,温度传感器20采集的第二温度对应的为图3中所示的T2。
本实施例中,检测电路包括的温度传感器设置于可穿戴设备远离皮肤一侧的外壳上,通过该温度传感器实现了对人体传递的温度的测量,从而可以通过测得的人体的体表温度即人体的第一温度和该温度传感器采集的人体的第二温度,准确地确定出人体的实际体温,提高了确定的人体的目标温度的准确度。
在上述检测电路通过第一热敏电阻采集第一温度的场景中,检测电路可以通过第一热敏电阻的电阻值采集第一温度,在上述实施例的基础上,在一个实施例中,检测电路30,用于采集第一热敏电阻10的电阻值,根据电阻值确定第一温度。
在本实施例中,由于第一热敏电阻10的电阻值是随温度的变化而发生变化的,电阻值与温度值之间具有一定的对应关系,例如,第一热敏电阻的电阻值越高,对应的温度值越低,或者,第一热敏电阻的电阻值越低,对应的温度值越高,因此,检测电路30可以采集第一热敏电阻10的电阻值,根据第一热敏电阻10的电阻值确定人体的第一温度。可选的,检测电路30可以采集第一热敏电阻10的电压和电流,根据第一热敏电阻10的电压和电流确定第一热敏电阻10的电阻值。可以理解的是,检测电路30采集第一热敏电阻10的电阻值的电路可以如图2b所示,该电路为一个串联电路,当串联电路的输入电压和电流为额定电压和额定电流时,由于R1是一个固定电阻,由串联电路中流过每个电阻的电流相等的特点,可以确定出第一热敏电阻10的电压和电流,从而可以根据第一热敏电阻10的电压和电流确定出第一热敏电阻的电阻值,进而根据第一热敏电阻10的电阻值确定出第一温度。
本实施例中,检测电路能够准确地采集出第一热敏电阻的电阻值,由于第一热敏电阻的电阻值的准确度得到了提高,从而能够根据第一热敏电阻的电阻值准确地确定出第一温度,进而提高了确定第一温度的准确度。
在上述检测电路30根据第一温度和第二温度确定人体的目标温度的场景中,检测电路30可以根据温度补偿系数对第一温度和第二温度进行计算确定出人体的目标温度,在上述实施例的基础上,在一个实施例中,上述检测电路30,用于根据温度补偿系数、第一温度和第二温度,确定人体的目标温度。
在本实施例中,作为一种可选的实施方式,上述温度补偿系数可以为在恒温环境下采用标准标定的方式得到的,上述检测电路30可以根据该温度补偿系数、采集到的第一温度和第二温度推算出人体的目标温度。示例性地,检测电路30可以根据公式:T b=λ×(T 1-T 2)+T 1+b,确定人体的目标温度,或者,控制电路30可根据公式:T b=λ×|T 2-T 1|+T 1+b,确定人体的目标温度,式中,λ、b均为温度补偿系数,T b表示人体的目标温度,T 1表示第一温度,T 2表示第二温度。
本实施例中,检测电路根据温度补偿系数、第一温度和第二温度,能够快速准确地确定出人体的目标温度,从而提高了确定人体的目标温度的效率和准确度。
在可穿戴设备中利用光体积变化描记图法PPG原理测量心率血氧的方案已经得到了比较广泛的应用,但是人体温度的变化也是影响PPG信号的重要因素之一,因此,在上述确定出人体的目标温度的基础上,还可以利用确定的人体的目标温度对可穿戴设备的PPG信号进行调整。在上述实施例的基础上,在一个实施例中,如图4所示,上述控制电路还包括调整电路40,该调整电路40的输入端与上述检测电路30的输出端连接,调整电路40的输出端与可穿戴设备的光体积变化描记图法信号PPG信号的生成电路50连接;上述检测电路30,还用于根据上述目标温度生成控制信号;调整电路40,用于根据控制信号调整PPG信号。
其中,光体积变化描记图法PPG是一种低成本、无创的光学技术,它利用光传输随组织内血量变化的变化来提供心血管健康的信息,可以监测心率(HR)等参数,通常,PPG信号检测系统是由发光二极管LED、光电二极管PD和信号处理电路(这里需要说明的是,信号处理电路可以为本申请中所描述的检测电路,或者,也可以为独立于上述控制电路的可穿戴设备内部已有的电路)构成,LED发光后光束经过人体组织反射由PD检测得到PPG信号。而人体温度的变化是影响PPG信号的重要因素之一,主要表现为温度上升时PPG信号幅度会增加同时整体的基线信号会增加,温度下降时PPG信号的幅度会减小,而现有的基于温度测量补偿改善PPG信号的方式很缺乏,主要原因是布置在可穿戴设备上的温度传感器不能直接准确的测量人体温度,因此不能很好的利用温度信息去补偿改善PPG信号,因此,本实施例在上述准确测得人体的目标温度的基础上,利用测得的人体的目标温度对PPG信号进行补偿改善,即,上述检测电路30还用于根据确定的目标温度生成控制信号,并将生成的控制信号传输给调整电路40,以使调整电路40根据该控制信号调整PPG信号。可选的,调整电路40可以根据该控制信号调整PPG信号的强度,或者信噪比等以对PPG信号进行调整。这里需要说明的是,在确保可穿戴设备能够实现上述准确测量人体的目标温度的基础上,为了保证可穿戴设备能够实现PPG信号的检测,上述第一热敏电阻10的布置位置可以采用如图4a所示的布置方式,图4a中的2可以为上述第一热敏电阻10,图4a中的1可以为PPG信号在可穿戴设备底壳开窗的示意,其是为光学器件LED发光透光和PD接收光提供光学路径,需要说明的是,图4a所示的布置方式仅是一种示意,还可以根据实际情况对第一热敏电阻10的布置方式进行调整。可以理解的是,图4a中的第一热敏电阻10在不影响PPG光学路径的情况下布置在可穿戴设备外壳靠近人体的一侧的中心区域,主要是为了减少环境温度对人体温度测量的影响,另外,上述第一热敏电阻10的几何形状也可以是除图4a中所示的其他形状。可选的,本申请中PPG信号的布局还可以根据最优光路径进行布局。
本实施例中,控制电路还包括调整电路,该调整电路的输入端与检测电路的输出端连接,调整电路的输出端与可穿戴设备的光体积变化描记图法信号即PPG信号的生成电路连接,检测电路可以根据人体的目标温度生成控制信号,使得调整电路能够根据该控制信号调整PPG信号,这样避免了人体体温对PPG信号的影响,使得调整后的PPG信号的准确 度得到了提高,增强了PPG信号的准确度。
在上述调整电路根据控制信号调整PPG信号的场景中,在上述实施例的基础上,在一个实施例中,如图5所示,上述生成电路50包括发光二极管501,上述调整电路40包括电流控制电路401,电流控制电路401分别与发光二极管501和检测电路30连接;电流控制电路401根据上述控制信号调整发光二极管501的输入电流,以调整上述PPG信号。
在本实施例中,上述可穿戴设备的PPG信号的生成电路50包括发光二极管501,发光二极管501发光后光束经过人体组织反射由光电二极管502检测得到上述PPG信号,同时,上述调整电路40包括电流控制电路401,电流控制电路401分别与发光二极管501和上述检测电路30连接,通过检测电路30生成的控制信号可以调整发光二极管501的输入电流,以对PPG信号进行调整。
可选的,作为另一种可以实现的实施方式,如图6所示,上述可穿戴设备的PPG信号的生成电路50包括光电二极管502,调整电路40包括信号放大电路402,信号放大电路402分别与光电二极管502和检测电路30连接;信号放大电路402根据上述控制信号调整光电二极管502的接收增益,以调整上述PPG信号。在本实施例中,可以理解的是,可穿戴设备的PPG信号的生成电路包括光电二极管,调整电路包括信号放大电路,信号放大电路分别与光电二极管和检测电路连接,这样,信号放大电路能够根据检测电路生成的控制信号调整光电二极管的接收增益对PPG信号进行调整,而控制信号是控制电路根据人体的目标温度生成的,这样避免了人体体温对PPG信号的影响,使得调整后的PPG信号的准确度得到了提高,增强了PPG信号的准确度。
可选的,根据人体温度变化对PPG信号的影响主要表现为温度下降时PPG信号的幅度会减小的原理,如图5a所示,上述检测电路30可以在人体目标温度满足第一条件时,生成上述控制信号,可选的,第一条件可以为人体的目标温度小于温度阈值和/或目标温度持续减小,则在该场景下,上述电流控制电路401可以根据该控制信号增大发光二极管501的输入电流,以调整PPG信号,或者,上述信号放大电路402可以根据该控制信号增大光电二极管502的接收增益,以调整PPG信号。可选的,上述温度阈值可以为20度、30度,或者其他温度值等,本实施例在此不做限制。可选的,在本实施例中,上述检测电路30还可以在人体目标温度满足第二条件时,生成上述控制信号,可选的,第二条件可以为人体的目标温度小于温度阈值和/或目标温度持续减小,则在该场景下,上述信号放大电路402可以根据该控制信号增大光电二极管502的接收增益,以调整PPG信号。可选的,上述温度阈值可以为20度、30度,或者其他温度值等,本实施例在此不做限制
可选的,根据人体温度变化对PPG信号的影响主要表现为温度上升时PPG信号幅度会增加同时整体的基线信号会增加的原理,如图5a所示,上述检测电路30可以在人体的目标温度大于温度阈值和/或人体的目标温度持续增大时,生成第一控制信号,上述电流控制电路401可以根据该第一控制信号减小发光二极管501的输入电流,以调整PPG信号,或者,上述信号放大电路402可以根据该第一控制信号减小光电二极管502的接收增益,以调整PPG信号。可选的,上述温度阈值可以为20度、30度,或者其他温度值等,本实施例在此不做限制。
本实施例中,可穿戴设备的PPG信号的生成电路包括发光二极管,调整电路包括电流控制电路,电流控制电路分别与发光二极管和控制电路连接,这样,电流控制电路能够根据检测电路生成的控制信号调整发光二极管的输入电流对PPG信号进行调整,而控制信号是检测电路根据人体的目标温度生成的,这样避免了人体体温对PPG信号的影响,使得调整后的PPG信号的准确度得到了提高,增强了PPG信号的准确度。
在可穿戴设备中利用光体积变化描记图法PPG原理测量心率血氧的方案中,PPG信号也会经常受到运动的影响,运动的影响甚至会导致PPG信号的畸变,从而影响人体健康信息的提取,在手表手环等可穿戴设备在检测PPG信号的时候,可穿戴设备与皮肤之间的相对运动是运动影响的主要来源,当可穿戴设备没有与皮肤接触良好时,PPG光学检测系统 与皮肤之间有空气间隙,其中光传播中的介质发生了变化,进而影响了PPG信号的测量;此外当可穿戴设备与皮肤接触过紧时,由于可穿戴设备对皮肤有按压情况,使得PPG信号检测系统的光传播路径发生了变化,进而影响PPG信号的检测,因此需要对手表、手环等可穿戴设备与皮肤的接触情况和接触力度进行检测,根据检测的信息来改善PPG信号,从而获取更精准的健康参数信息。在上述实施例的基础上,在一个实施例中,上述检测电路30,还用于根据第一热敏电阻10的输出电压确定可穿戴设备与人体皮肤的接触信息;调整电路40,用于根据接触信息调整可穿戴设备的PPG信号。
可以理解的是,可穿戴设备与皮肤接触、或者接触力不同将导致体温往皮肤的传热路径上的导热系数发生变化,其中,可穿戴设备与皮肤未接触时存在空间间隙,而可穿戴设备与皮肤未接触时存在空间间隙是影响导热系数的主要因素,另外,可穿戴设备与皮肤接触力过大时将会按压皮肤,皮肤凹陷导致其导热路径和导热系数发生变化,对应的人体温度也会发生变化,因此,可以通过检测人体体温信息来判断可穿戴设备是否与皮肤接触、以及接触力度的紧密情况。在本实施例中,上述检测电路30可以利用上述第一热敏电阻10的输出电压对可穿戴设备与人体皮肤的接触信息进行检测,确定可穿戴设备与人体皮肤的接触信息,上述调整电路40根据可穿戴设备与人体皮肤的接触信息调整可穿戴设备的PPG信号。可选的,可穿戴设备与人体皮肤的接触信息可以包括可穿戴设备是否与人体皮肤接触、可穿戴设备与人体皮肤接触的紧密程度。示例性地,第一热敏电阻10的输出电压与可穿戴设备与人体皮肤的接触信息的关系可以为如图7所示的示意图,图7中的横坐标是可穿戴设备与人体皮肤间隙的距离,纵坐标是第一热敏电阻10的输出电压,从图7中可可以看出可穿戴设备与人体皮肤接触、未接触时,第一热敏电阻10的输出电压Uout有明显的电压变化,因此,可以通过设定一个阈值来判断可穿戴设备是否与人体皮肤接触以及接触时的紧密程度,得到如图7a所示的关系图,其中,图7a所示的关系图表征了人体皮肤与可穿戴设备的接触力F变化时与第一热敏电阻10的输出电压Uout之间的关系,通过第一热敏电阻10的输出电压Uout与人体皮肤与可穿戴设备的接触力F的对应关系,通过拟合的方式构建Uout=f(F)的函数关系,进而可以检测电路30可以通过第一热敏电阻10的输出电压Uout确定可穿戴设备与人体皮肤的接触信息,进而调整电路40根据可穿戴设备与人体皮肤的接触信息调整可穿戴设备的PPG信号,得到调整后的PPG信号。
本实施例中,检测电路根据第一热敏电阻的输出电压能够确定出可穿戴设备与人体皮肤的接触信息,进而调整电路可以根据可穿戴设备与人体皮肤的接触信息调整可穿戴设备的PPG信号,避免了可穿戴设备与人体皮肤间的运动对PPG信号的影响,使得调整后的PPG信号的准确度得到了提高,增强了PPG信号的准确度。
进一步地,为了避免在对人体体温进行检测时环境温度的影响,可以在图4a所示的基础上,在可穿戴设备远离皮肤一侧的外壳的外圈上再布置一个第二热敏电阻形成如图8所示的结构图,在上述实施例的基础上,在一个实施例中,如图9所示,上述控制电路还包括第二热敏电阻60;第二热敏电阻60设置于可穿戴设备外壳靠近人体的一侧;上述第二热敏电阻60与第一热敏电阻10并联连接;检测电路30根据第一热敏电阻的输出电压和第二热敏电阻的输出电压确定可穿戴设备与人体皮肤的接触信息。
在本实施例中,为了保证第一热敏电阻10和第二热敏电阻60之间的温度的稳定性,上述第一热敏电阻10和第二热敏电阻60的几何形状相同。可选地,第一热敏电阻10和第二热敏电阻60的材料和制备工艺也可以相同。这样上述检测电路30可以根据上述第一热敏电阻10的输出电压和第二热敏电阻60的输出电压确定可穿戴设备与人体皮肤的接触信息,进而调整电路40可以根据可穿戴设备与人体皮肤的接触信息调整可穿戴设备的PPG信号,避免可穿戴设备与人体皮肤之间的运动对PPG信号的影响。其中,检测电路30根据第一热敏电阻的输出电压和第二热敏电阻的输出电压确定可穿戴设备与人体皮肤的接触信息与上述根据第一热敏电阻的输出电压确定可穿戴设备与人体皮肤的接触信息的原理相同,本实施例在此不再赘述。可选的,本实施例中为了避免第一热敏电阻10和第二 热敏电阻60不受环境温度的影响,上述控制电路01还包括第一固定电阻70和第二固定电阻80,第一固定电阻70与上述第一热敏电阻10串联连接,第二固定电阻80与第二热敏电阻60串联连接,形成如图10所示的电路图,可以理解的是,图10所示的电路图为一个惠斯通电桥电路,该电路中,R1、R2对应为第一固定电阻70,R4对应为第二固定电阻80,R5为上述第二热敏电阻60,R5的作用是使得可穿戴设备内圈和外圈的温度差不受外界干扰因素的影响,具体推导如下:该电桥电路中有:R1R3=R4(R2+R5),假定R1=R4,则R2=R3-R5,也就是说,可穿戴设备内圈和外圈的电阻差值是固定值,不受外界其他因素的影响,这样就避免了在确定可穿戴设备与人体皮肤的接触信息外界其他因素的影响,保证了确定的可穿戴设备与人体皮肤的接触信息的准确度。
本实施例中,检测电路根据第一热敏电阻的输出电压和第二热敏电阻的输出电压,能够确定出可穿戴设备与人体皮肤的接触信息,进而调整电路可以根据可穿戴设备与人体皮肤的接触信息调整可穿戴设备的PPG信号,避免了可穿戴设备与人体皮肤间的运动对PPG信号的影响,使得调整后的PPG信号的准确度得到了提高,增强了PPG信号的准确度。
另外,本申请实施例还提供了一种可穿戴设备,该可穿戴设备包括前面实施例中所提供的任一种控制电路01。该可穿戴设备可以包括智能手表、智能手环、智能眼镜等等。需要说明的是,本实施例提供的可穿戴设备的工作原理和有益效果可以参见上述检测电路01的描述,本实施例在此不再赘述。
另外,在一个实施例中,如图11所示,提供了一种控制方法,应用于可穿戴设备,可穿戴设备包括外壳,该控制方法包括:
S1101,通过可穿戴设备中的第一热敏电阻采集第一温度,以及通过可穿戴设备中的温度传感器采集第二温度;其中,第一热敏电阻设置于上述外壳靠近人体的一侧。
其中,热敏电阻是一种敏感元件,热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值,因此,可以通过得到热敏电阻的电阻值来得到温度值。通常,按照温度系数不同可以将热敏电阻分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC),正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,可选的,在本实施例中,可穿戴设备中的第一热敏电阻可以是正温度系数热敏电阻器,也可以是负温度系数热敏电阻器,本实施例在此不做限制。可选的,在本实施例中,可以通过工艺等手段在可穿戴设备外壳靠近人体的一侧上印刷热敏材料,然后烧结成型形成热敏电阻,通常,印刷的热敏材料可以是锰、钴等金属混合物。可选的,本实施例中的可穿戴设备可以是智能手表、智能手环、智能眼镜等。可选的,可穿戴设备的外壳的材料可以为陶瓷,也可以为蓝宝石等等,本实施例在此不做限制。示例性地,设置于可穿戴设备外壳靠近人体的一侧的第一热敏电阻的形成工艺以及采集第一温度的原理可以参见上述图2a,图2a中的3表示可穿戴设备外壳靠近人体的一侧,通过在图2a中的3上印刷上述热敏材料即图2a中的2,然后通过烧结成型形成热敏电阻即图2a中的1,再在可穿戴设备外壳靠近人体的一侧的外壳上打孔并灌注导电银胶形成如图2a中所示的导电引脚4,控制电路与导电引脚4形成电气连接后形成如上述图2b所示的电路,通过该电路实现对第一温度的采集,需要说明的是,图2b所示的电路中的R2可以为上文描述第一热敏电阻,图2b所示的电路中的R1可以为一固定电阻用来分压,可穿戴设备可以通过采集热敏电阻R2的电阻值采集得到第一温度。可选的,上述温度传感器可以设置于可穿戴设备外壳远离人体的一侧。如图2a所示,温度传感器5设置于可穿戴设备外壳远离人体的一侧,温度传感器5在垂直方向上与第一热敏电阻2有重叠。或者,温度传感器也可以设置在可穿戴设备的其他位置,例如,温度传感器可以设置在可穿戴设备内部的其他器件上,且温度传感器在垂直方向上与第一热敏电阻有重叠。可以理解的是,本实施例中的温度传感器是指能感受温度并转换成可用输出信号的传感器,可选的,上述温度传感器可以是数字集成式温度传感器,通过该数字集成式温度传感器能够直接读取出第二温度。可选的,可穿戴设备可以通过采集第一热敏电阻的阻值确定出第一温 度。
S1102,根据第一温度和第二温度确定人体的目标温度。
需要说明的是,在本实施例中,这里的人体目标温度是人体的实际温度。可以理解的是,当可穿戴设备为智能手表或智能手环时,可穿戴设备的外壳靠近人体的一侧可以为靠近人体手肘皮肤的一侧,则可穿戴设备确定的人体的目标温度可以为人体手肘的温度;或者,当可穿戴设备为智能眼镜时,可穿戴设备的外壳靠近人体的一侧可以为靠近人体眼睛的一侧,则可穿戴设备确定的人体的目标温度可以为人体眼部的温度。
本实施例中的控制方法应用于可穿戴设备,通过设置于可穿戴设备外壳靠近人体的一侧的第一热敏电阻采集第一温度,该热敏电阻与人体皮肤直接接触,减少了人体体温的热传导路径,从而提高了采集的第一温度的准确度,另外,通过可穿戴设备中的温度传感器采集第二温度,实现了对人体传导的体温的测量,这样可穿戴设备可以根据采集的第一温度和第二温度准确地确定出人体的实际温度,提高了确定人体得到目标温度的准确度。
进一步地,在上述实施例的基础上,在一个实施例中,如图12所示,上述S1101,包括:
S1201,采集第一热敏电阻的电阻值。
S1202,根据电阻值确定第一温度。
本实施例提供的检测方法的实现原理和有益效果,可以参见上述检测电路的描述,在此不再赘述。
可选的,在上述实施例的基础上,在一个实施例中,如图13所示,上述S1201,包括:
S1301,采集第一热敏电阻的电压和电流。
S1302,根据电压和电流确定电阻值。
本实施例提供的检测方法的实现原理和有益效果,可以参见上述检测电路的描述,在此不再赘述。
进一步地,在上述实施例的基础上,在一个实施例中,如图14所示,上述S1102,包括:
S1401,根据温度补偿系数、第一温度和第二温度,确定人体的目标温度。
可选的,温度补偿系数为在恒温环境下采用校准标定的方式得到的。
本实施例提供的检测方法的实现原理和有益效果,可以参见上述检测电路的描述,在此不再赘述。
在上述实施例的基础上,在一个实施例中,如图15所示,上述方法还包括:
S1501,根据目标温度生成控制信号。
S1502,根据控制信号调整可穿戴设备的PPG信号。
本实施例提供的检测方法的实现原理和有益效果,可以参见上述检测电路的描述,在此不再赘述。
在上述实施例的基础上,在一个实施例中,如图16所示,上述S1501,包括:
S1601,在目标温度满足第一条件时,生成控制信号;
上述S1502,包括:根据控制信号增大生成PPG信号的发光二极管的输入电流,以调整PPG信号。
本实施例提供的检测方法的实现原理和有益效果,可以参见上述检测电路的描述,在此不再赘述。
在上述实施例的基础上,在一个实施例中,如图17所示,上述S1501,包括:
S1701,在目标温度满足第二条件时,生成控制信号;
上述S1502,包括:根据所述控制信号增大生成所述PPG信号的光电二极管的接收增益,以调整所述PPG信号。
在上述实施例的基础上,在一个实施例中,如图18所示,上述方法还包括:
S1801,根据第一热敏电阻的输出电压确定可穿戴设备与人体皮肤的接触信息;
S1802,根据接触信息调整可穿戴设备的PPG信号。
本实施例提供的检测方法的实现原理和有益效果,可以参见上述检测电路的描述,在此不再赘述。
在上述实施例的基础上,在一个实施例中,如图19所示,上述S1801包括:
S1901,根据第一热敏电阻的输出电压和可穿戴设备中的第二热敏电阻的输出电压,确定可穿戴设备与人体皮肤的接触信息;第二热敏电阻设置于可穿戴设备外壳靠近人体的一侧;第二热敏电阻与第一热敏电阻并联连接。
本实施例提供的检测方法的实现原理和有益效果,可以参见上述检测电路的描述,在此不再赘述。
应该理解的是,虽然图11-图19的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图11-图19中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行上述实施例提供的任一种检测方法步骤。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例提供的任一种检测方法步骤。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括ROM(Read-Only Memory,只读存储器)、PROM(Programmable Read-only Memory,可编程只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦除可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-only Memory,电可擦除可编程只读存储器)或闪存。易失性存储器可包括RAM(RandomAccess Memory,随机存取存储器),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如SRAM(Static RandomAccess Memory,静态随机存取存储器)、DRAM(Dynamic RandomAccess Memory,动态随机存取存储器)、SDRAM(Synchronous Dynamic RandomAccess Memory,同步动态随机存取存储器)、双数据率DDR SDRAM(Double Data Rate Synchronous Dynamic RandomAccess memory,双数据率同步动态随机存取存储器)、ESDRAM(Enhanced Synchronous Dynamic RandomAccess memory,增强型同步动态随机存取存储器)、SLDRAM(Sync LinkDynamic RandomAccess Memory,同步链路动态随机存取存储器)、RDRAM(Rambus Dynamic Random Access Memory,总线式动态随机存储器)、DRDRAM(Direct Rambus Dynamic Random Access Memory,接口动态随机存储器)。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种控制电路,其特征在于,所述控制电路应用于可穿戴设备,所述控制电路包括第一热敏电阻、温度传感器和检测电路;所述可穿戴设备包括外壳,所述第一热敏电阻设置于所述外壳靠近人体的一侧;
    所述检测电路,用于通过所述第一热敏电阻采集第一温度,以及通过所述温度传感器采集第二温度,并根据所述第一温度和所述第二温度确定所述人体的目标温度。
  2. 根据权利要求1所述的控制电路,其特征在于,所述温度传感器设置于所述外壳远离人体的一侧。
  3. 根据权利要求1或2所述的控制电路,其特征在于,所述控制电路还包括调整电路,所述调整电路的输入端与所述检测电路的输出端连接,所述调整电路的输出端与所述可穿戴设备的PPG信号的生成电路连接;
    所述检测电路,还用于根据所述目标温度生成控制信号;
    所述调整电路,用于根据所述控制信号调整所述PPG信号。
  4. 根据权利要求3所述的控制电路,其特征在于,所述生成电路包括发光二极管,所述调整电路包括电流控制电路,所述电流控制电路分别与所述发光二极管和所述检测电路连接;
    所述电流控制电路,用于根据所述控制信号调整所述发光二极管的输入电流,以调整所述PPG信号。
  5. 根据权利要求4所述的控制电路,其特征在于,所述检测电路,用于在所述目标温度满足第一条件时,生成所述控制信号;
    所述电流控制电路,用于根据所述控制信号增大所述发光二极管的输入电流,以调整所述PPG信号。
  6. 根据权利要求3所述的控制电路,其特征在于,所述生成电路包括光电二极管,所述调整电路包括信号放大电路,所述信号放大电路分别与所述光电二极管连接和所述检测电路连接;
    所述信号放大电路,用于根据所述控制信号调整所述光电二极管的接收增益,以调整所述PPG信号。
  7. 根据权利要求6所述的控制电路,其特征在于,所述检测电路,用于在所述目标温度满足第二条件时,生成所述控制信号;
    所述信号放大电路,用于根据所述控制信号增大所述光电二极管的接收增益,以调整 所述PPG信号。
  8. 根据权利要求3所述的控制电路,其特征在于,所述检测电路,还用于根据所述第一热敏电阻的输出电压确定所述可穿戴设备与人体皮肤的接触信息;
    所述调整电路,用于根据所述接触信息调整所述可穿戴设备的PPG信号。
  9. 根据权利要求8所述的控制电路,其特征在于,所述控制电路还包括第二热敏电阻;所述第二热敏电阻设置于所述外壳靠近人体的一侧;所述第二热敏电阻与所述第一热敏电阻并联连接;
    所述检测电路,用于根据所述第一热敏电阻的输出电压和所述第二热敏电阻的输出电压确定所述可穿戴设备与人体皮肤的接触信息。
  10. 根据权利要求9所述的控制电路,其特征在于,所述控制电路还包括第一固定电阻和第二固定电阻,所述第一固定电阻与所述第一热敏电阻串联连接,所述第二固定电阻与所述第二热敏电阻串联连接。
  11. 根据权利要求9所述的控制电路,其特征在于,所述第一热敏电阻和所述第二热敏电阻的几何形状均相同。
  12. 一种可穿戴设备,其特征在于,所述可穿戴设备包括如权利要求1-11任一项所述的控制电路。
  13. 一种控制方法,其特征在于,所述控制方法应用于可穿戴设备,所述可穿戴设备包括外壳,所述方法包括:
    通过可穿戴设备中的第一热敏电阻采集第一温度,以及通过可穿戴设备中的温度传感器采集第二温度;其中,所述第一热敏电阻设置于所述外壳靠近人体的一侧;
    根据所述第一温度和所述第二温度确定所述人体的目标温度。
  14. 根据权利要求13所述的控制方法,其特征在于,所述方法还包括:
    根据所述目标温度生成控制信号;
    根据所述控制信号调整所述可穿戴设备的PPG信号。
  15. 根据权利要求14所述的控制方法,其特征在于,所述根据所述目标温度生成控制信号,包括:
    在所述目标温度满足第一条件时,生成所述制信号;
    所述根据所述控制信号调整所述可穿戴设备的PPG信号,包括:
    根据所述控制信号增大生成所述PPG信号的发光二极管的输入电流,以调整所述PPG信号。
  16. 根据权利要求14所述的控制方法,其特征在于,所述根据所述目标温度生成控 制信号,包括:
    在所述目标温度满足第二条件时,生成所述制信号;
    所述根据所述控制信号调整所述可穿戴设备的PPG信号,包括:
    根据所述控制信号增大生成所述PPG信号的光电二极管的接收增益,以调整所述PPG信号。
  17. 根据权利要求13所述的控制方法,其特征在于,所述方法还包括:
    根据所述第一热敏电阻的输出电压确定所述可穿戴设备与人体皮肤的接触信息;
    根据所述接触信息调整所述可穿戴设备的PPG信号。
  18. 根据权利要求17所述的检测方法,其特征在于,所述根据所述第一热敏电阻的输出电压确定所述可穿戴设备与人体皮肤的接触信息,包括:
    根据所述第一热敏电阻的输出电压和所述可穿戴设备中的第二热敏电阻的输出电压,确定所述可穿戴设备与人体皮肤的接触信息;所述第二热敏电阻设置于所述外壳靠近人体的一侧;所述第二热敏电阻与所述第一热敏电阻并联连接。
  19. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求13至18中任一项所述的方法的步骤。
  20. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求13至18中任一项所述的方法的步骤。
PCT/CN2022/118974 2021-11-26 2022-09-15 控制电路、方法、可穿戴设备和可读存储介质 WO2023093228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111420804.3A CN116185101A (zh) 2021-11-26 2021-11-26 控制电路、方法、可穿戴设备和可读存储介质
CN202111420804.3 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023093228A1 true WO2023093228A1 (zh) 2023-06-01

Family

ID=86436930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118974 WO2023093228A1 (zh) 2021-11-26 2022-09-15 控制电路、方法、可穿戴设备和可读存储介质

Country Status (2)

Country Link
CN (1) CN116185101A (zh)
WO (1) WO2023093228A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030036685A1 (en) * 2000-04-27 2003-02-20 Vitalsines International, Inc. Physiological signal monitoring system
CN204169828U (zh) * 2014-08-14 2015-02-25 深圳市宇君康科技有限公司 体温测量仪
CN104523243A (zh) * 2014-12-23 2015-04-22 金陵科技学院 体温采集装置
CN204336896U (zh) * 2014-08-26 2015-05-20 深圳市景新浩科技有限公司 一种基于蓝牙技术的穿戴式温度计贴片
CN108420411A (zh) * 2018-01-24 2018-08-21 广东乐心医疗电子股份有限公司 信号处理方法及电子设备
CN108871609A (zh) * 2017-05-09 2018-11-23 维瓦灵克有限公司 一种长工作周期的可穿戴温度测量贴片
CN212592089U (zh) * 2020-03-11 2021-02-26 广州波通通信有限公司 一种耳戴式体温监测仪
CN113164091A (zh) * 2018-11-30 2021-07-23 微软技术许可有限责任公司 具有皮肤温度调节器的光电容积描记设备
CN113347916A (zh) * 2019-10-15 2021-09-03 因普瑞缇夫护理公司 用于多变量卒中检测的系统和方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030036685A1 (en) * 2000-04-27 2003-02-20 Vitalsines International, Inc. Physiological signal monitoring system
CN204169828U (zh) * 2014-08-14 2015-02-25 深圳市宇君康科技有限公司 体温测量仪
CN204336896U (zh) * 2014-08-26 2015-05-20 深圳市景新浩科技有限公司 一种基于蓝牙技术的穿戴式温度计贴片
CN104523243A (zh) * 2014-12-23 2015-04-22 金陵科技学院 体温采集装置
CN108871609A (zh) * 2017-05-09 2018-11-23 维瓦灵克有限公司 一种长工作周期的可穿戴温度测量贴片
CN108420411A (zh) * 2018-01-24 2018-08-21 广东乐心医疗电子股份有限公司 信号处理方法及电子设备
CN113164091A (zh) * 2018-11-30 2021-07-23 微软技术许可有限责任公司 具有皮肤温度调节器的光电容积描记设备
CN113347916A (zh) * 2019-10-15 2021-09-03 因普瑞缇夫护理公司 用于多变量卒中检测的系统和方法
CN212592089U (zh) * 2020-03-11 2021-02-26 广州波通通信有限公司 一种耳戴式体温监测仪

Also Published As

Publication number Publication date
CN116185101A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
JP2003344156A (ja) 赤外線センサおよびそれを用いた電子装置
KR101639838B1 (ko) 적외선 센서 및 이것을 구비한 회로 기판
TW496951B (en) Infrared sensor stabilisable in temperature, and infrared thermometer with a sensor of this type
JP6076549B1 (ja) 赤外線温度センサ、回路基板及び赤外線温度センサを用いた装置
US10551252B2 (en) Internal temperature measuring apparatus and sensor package
JP6144540B2 (ja) 圧力センサ
GB2561193A (en) Sensor system and method for continuous and wireless monitoring and analysis of temperature in organisms
WO2023093228A1 (zh) 控制电路、方法、可穿戴设备和可读存储介质
JP2015175671A (ja) 内部温度測定方法及び内部温度測定装置
CN207300417U (zh) 红外线温度传感器以及使用红外线温度传感器的装置
CN210642460U (zh) 发热组件以及电子烟
JP2011095143A (ja) 赤外線センサ
US20090207882A1 (en) Temperature Sensor Module
US20200249101A1 (en) Thermal sensor package for earbuds
JP2016170014A (ja) 温度差測定装置
JP6030273B1 (ja) 赤外線温度センサ及び赤外線温度センサを用いた装置
JP2016170013A (ja) センサパッケージ
CN111207883A (zh) 压力传感器
JP2016170027A (ja) 内部温度測定装置及び温度差測定モジュール
US11808633B2 (en) Infrared thermopile sensor
CN104173026A (zh) 一种体温计
NO20170555A1 (en) Sensor system and method for continuous and wireless monitoring and analysis of temperature in organisms
CN210487079U (zh) 红外温度传感器及包括其的探头、红外体温计
US20190035751A1 (en) Measuring device
JP2003156395A (ja) 赤外線温度センサー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897314

Country of ref document: EP

Kind code of ref document: A1