WO2023092902A1 - 消声体、消声器及信息通信系统 - Google Patents

消声体、消声器及信息通信系统 Download PDF

Info

Publication number
WO2023092902A1
WO2023092902A1 PCT/CN2022/080825 CN2022080825W WO2023092902A1 WO 2023092902 A1 WO2023092902 A1 WO 2023092902A1 CN 2022080825 W CN2022080825 W CN 2022080825W WO 2023092902 A1 WO2023092902 A1 WO 2023092902A1
Authority
WO
WIPO (PCT)
Prior art keywords
anechoic
muffler
sound
absorbing
shell
Prior art date
Application number
PCT/CN2022/080825
Other languages
English (en)
French (fr)
Inventor
徐青松
刘兆恒
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023092902A1 publication Critical patent/WO2023092902A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain

Definitions

  • the present application relates to the technical field of noise control, for example, to a muffler, a muffler and an information communication system.
  • the muffler in the used muffler only includes a muffler cavity with a perforation rate greater than 50% of the muffler shell, and the muffler is more effective for middle and high frequency noise, but not ideal for low frequency noise. Therefore, how to widen the noise reduction bandwidth of the noise reduction body in a limited space is an urgent problem to be solved by those skilled in the art.
  • the present application proposes a muffler, a muffler and an information communication system, aiming at widening the muffler bandwidth of the muffler.
  • the present application provides a sound-absorbing body, the sound-absorbing body comprising: at least one first sound-absorbing chamber and at least one second sound-absorbing chamber;
  • the first anechoic chamber includes a first anechoic shell, and a plurality of first perforations are arranged on the first anechoic shell, and the perforation rate of the first anechoic shell is greater than 50%;
  • the peak sound frequency is lower than the peak sound frequency of the first sound deadening cavity.
  • the present application also provides a muffler, which includes a shell, and at least one muffler as described above; the muffler is arranged inside the shell.
  • the present application also provides an information communication system, which includes the above-mentioned muffler, and electronic equipment located in the muffler.
  • Fig. 1 is a schematic structural diagram of a sound absorber provided in the embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of another sound absorber provided in the embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of another sound absorber provided in the embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another sound absorber provided in the embodiment of the present application.
  • Fig. 5 is an enlarged expanded view of the first sound-absorbing shell in Fig. 2 and an enlarged expanded view of the second sound-absorbing shell;
  • Fig. 6 is a schematic structural diagram of another sound absorber provided in the embodiment of the present application.
  • Fig. 7 is a schematic flow chart of a method for preparing a muffler provided in an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a muffler provided in an embodiment of the present application.
  • Fig. 9 is the right side view of Fig. 8.
  • Fig. 10 is a structural diagram of an information communication system provided by an embodiment of the present application.
  • the sound attenuation bandwidth of the sound attenuation body is relatively narrow.
  • the embodiments of the present application provide the following technical solutions, aiming to realize a muffler body, a muffler and an information communication system with a wide muffler bandwidth.
  • An embodiment of the present application provides a sound-absorbing body, which includes: at least one first sound-absorbing chamber and at least one second sound-absorbing chamber; the first sound-absorbing chamber includes a first sound-absorbing shell, and the first sound-absorbing shell is provided with A plurality of first perforations, the perforation rate of the first anechoic shell is greater than 50%; the anechoic peak frequency of at least one second anechoic chamber is lower than the anechoic peak frequency of the first anechoic chamber.
  • Fig. 1 is a schematic structural diagram of a sound dampening body provided in an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of another sound absorbing body provided in the embodiment of the present application.
  • the muffler body 100 in FIG. 1 and FIG. 2 includes two mufflers, respectively the first muffler chamber 20 and the second muffler chamber 10.
  • the first muffler chamber 20 includes a first muffler shell 22.
  • a plurality of first perforations 220 are set on the first anechoic casing 22, and the perforation rate of the first anechoic casing 22 is greater than 50%; the anechoic peak frequency of the second anechoic cavity 10 is lower than that of the first anechoic cavity .
  • the anechoic peak frequency is a frequency corresponding to a significant anechoic effect of the anechoic chamber within a range of anechoic frequencies.
  • the direction of the arrow in Figure 1- Figure 2 is the propagation direction of the noise.
  • the anechoic frequency of the anechoic cavity can be calculated by referring to the following formula (1).
  • f r is the noise elimination frequency
  • c is the sound velocity
  • h is the hole depth
  • L k is the effective diameter of the hole
  • p is the perforation rate.
  • the perforation rate of the first sound-absorbing shell 22 is greater than 50%, which can ensure that the first sound-absorbing cavity 20 can effectively reduce the middle and high frequency noise.
  • the frequency of the silencing frequency range S2 of the first silencing cavity 20 is between A1-A3, the silencing peak frequency of the first silencing cavity 20 is f1, and the silencing frequency range S1 of the second silencing cavity 10
  • the frequency is between A1-A2
  • the peak noise frequency of the second silencer chamber 10 is f2
  • the peak silencer frequency f2 of the second silencer chamber 10 is smaller than the peak silencer frequency f1 of the first silencer chamber 20.
  • Fig. 3 is a schematic structural diagram of another sound absorbing body provided in the embodiment of the present application.
  • the anechoic body 200 in FIG. 3 includes three anechoic cavities, namely the second anechoic cavity 10, the second anechoic cavity 20 and the first anechoic cavity 30, and the anechoic frequency range S1 of the second anechoic cavity 10 is The frequency is between A1-A2, the frequency of the noise reduction frequency range S2 of the second noise reduction chamber 20 is between A2-A3, and the frequency of the noise reduction frequency range S3 of the first noise reduction chamber 30 is between A1-A4.
  • the silencing peak frequency of the first anechoic chamber 30 is f1
  • the anechoic peak frequency of the second anechoic chamber 10 is f2
  • the anechoic peak frequency of the second anechoic chamber 20 is f3
  • the anechoic peak frequency f2 of the second anechoic chamber 10 is smaller than the peak noise reduction frequency f1 of the first noise reduction chamber 30
  • the noise reduction peak frequency f3 of the second noise reduction chamber 20 is smaller than the noise reduction peak frequency f1 of the first noise reduction chamber 30 .
  • the peak frequency of the second anechoic cavity is lower than the peak frequency of the first anechoic cavity, which can be obtained by controlling the perforation rate of the second anechoic cavity and the effective diameter of the hole, referring to formula (1). It is realized that the peak frequency of noise reduction of the second noise reduction chamber is lower than the peak frequency of noise reduction of the first noise reduction chamber.
  • the embodiment of the present application provides a sound-absorbing body, the sound-absorbing body includes at least one first sound-absorbing chamber and at least one second sound-absorbing chamber, the perforation rate of the first sound-absorbing chamber is greater than 50%, and the first sound-absorbing chamber can achieve
  • the noise is anechoiced, and the anechoic peak frequency of the second anechoic cavity is lower than that of the first anechoic cavity, which widens the anechoic bandwidth of the anechoic body. Since the perforation rate of the first sound-absorbing cavity is greater than 50%, the effect of the sound-absorbing body on middle and high-frequency noise is relatively remarkable.
  • the technical solution provided by the embodiment of the present application improves the noise reduction effect of the noise reduction body for low frequency.
  • the anechoic body also includes a first anechoic material, a second anechoic material, and a partition;
  • the second anechoic cavity includes a second anechoic shell;
  • the first sound-absorbing material in the space formed by the plate and the first sound-absorbing shell constitutes the first sound-absorbing cavity;
  • the two sound-absorbing materials form the second sound-absorbing cavity.
  • the sound-absorbing body 100 also includes a first sound-absorbing material 21 , a second sound-absorbing material 12 and a partition plate 13 ;
  • the second sound-absorbing chamber 10 includes a second sound-absorbing shell 11 ;
  • the first sound-absorbing The shell 22, the partition plate 13, and the first silencing material 21 filled in the space formed by the partition plate 13 and the first silencing shell 22 form the first silencing chamber 20;
  • the second silencing material 12 filled in the space formed by the partition plate 13 and the second silencing shell 11 constitutes the 2nd silencing cavity 10 .
  • the sound-absorbing material can choose porous sound-absorbing materials with good sound-cancelling effect, such as mineral wool, glass wool and polyurethane foam, etc., to improve the overall sound-absorbing effect.
  • Different sound-absorbing chambers can be filled with different sound-absorbing materials, and can also be filled with the same sound-absorbing materials.
  • the second noise-absorbing material 12 is made of porous sound-absorbing materials such as mineral wool or glass wool
  • the first noise-absorbing material 21 is made of polyurethane foam. Polyurethane foam has a better effect on high-frequency noise reduction, but the cost is lower. Therefore, under the condition of ensuring the sound-absorbing performance, using a lower-cost sound-absorbing material for the first sound-absorbing material 21 can effectively save costs.
  • the materials of the partition plate 13 , the second sound-absorbing shell 11 and the first sound-absorbing shell 22 are not limited, and may be metal or other materials.
  • the connection methods of the partition plate 13, the second sound-absorbing casing 11 and the first sound-absorbing casing 22 include but are not limited to the following connection methods: Exemplarily, the partition plate 13 can be bonded, welded, screwed, etc. It is connected with the second sound attenuation shell 11 and the first sound attenuation shell 22 ; the partition plate 13 can also be integrally formed with the second sound attenuation shell 11 and the first sound attenuation shell 22 .
  • the planes where at least two adjacent anechoic cavities are located are on the same plane or there is a preset angle between the planes where at least two adjacent anechoic cavities are located.
  • the planes of the two adjacent anechoic cavities in the anechoic body 100 and the anechoic body 200 are located on the same plane, and the preparation of the anechoic body 100 is less difficult.
  • Fig. 4 is a schematic structural diagram of another sound dampening body provided in the embodiment of the present application.
  • the muffler 100 there is a preset angle ⁇ between the midline L1 of the plane where the second muffler chamber 10 is located and the midline L2 of the plane where the first muffler chamber 20 is located, and the preset included angle ⁇ is also a preset included angle ⁇ between the plane where the second anechoic chamber 10 is located and the plane where the first anechoic chamber 20 is located.
  • the muffler body 100 can refract the noise and change the propagation direction of the noise in the muffler body 100 .
  • the anechoic body can refract the noise and change the propagation direction of the noise in the anechoic body. During the refraction process, the energy of the noise is attenuated. The noise reduction effect of the noise reduction body can be enhanced.
  • a plurality of second perforations are arranged on the second sound-absorbing shell.
  • the silencing frequency of the second silencing cavity 10 can be changed by adjusting the aperture and perforation rate of the second perforation 110 of the second silencing cavity 10 , thereby realizing the range of the silencing frequency of the second silencing cavity 10 Adjust the noise reduction peak frequency to achieve the technical effect of widening the noise reduction bandwidth of the noise reduction body.
  • the effective diameter of the second through hole 110 is 1-8 mm.
  • the effective diameter of the second through hole 110 is the diameter of the circular hole. If the second through hole 110 is square or rectangular, the effective diameter of the second through hole 110 is its diagonal. The effective diameter of the second through hole 110 is the longest linear distance between two points.
  • the shapes of the plurality of second through holes 110 may be the same or different, and the plurality of second through holes 110 may be distributed uniformly or randomly.
  • the perforation rate of the plurality of second through holes 110 is 0.1%-1%.
  • the second sound-absorbing housing 11 adopts the second perforation 110 with an effective diameter of 1-8mm and a perforation rate of 0.1%-1%.
  • the effective diameter is 0.2-1mm long, and the perforation rate is lower than the usual perforation rate of 1%-3%, which can improve the noise reduction of low-frequency noise peaks and reduce the preparation cost of the sound-absorbing body.
  • the shapes of the plurality of first through holes 220 are not limited, and may be circular, square, rectangular and irregular.
  • the effective diameter length of the plurality of first through holes 220 is not limited, and the plurality of first through holes 220 may be distributed evenly or randomly, which is not limited in this application.
  • the muffler body provided by the embodiment of the present application is arranged in separate chambers, and the second muffler shell 11 and the first muffler shell 22 respectively adopt perforated plates with different perforation rates, and the second muffler shell 11 adopts a large aperture and a small perforation rate.
  • the perforated plate can improve the noise reduction of low-frequency noise, and the first noise-absorbing shell 22 adopts a perforated plate with a perforation rate greater than 50% to improve the noise reduction of medium and high-frequency noise.
  • the muffler 100 achieves better noise reduction effects for noises in different frequency bands, widens the minimum effective noise reduction frequency from 500Hz to 215Hz, and doubles the peak noise reduction capacity for noises with a frequency of 315Hz. Under the same heat dissipation capacity, the sound pressure level noise is reduced by more than 10dBA.
  • the present application does not limit the number of the second anechoic cavity 10 and the first anechoic cavity 20, and the effective diameter length and perforation rate of the second perforation 110 of different second anechoic cavity 10 can be changed according to actual needs, and different first anechoic cavity
  • the effective diameter length and the perforation rate of the first perforation 220 of the acoustic cavity 20 may vary according to actual needs.
  • the second noise-absorbing shell 11 adopts a perforated plate with a large aperture and a small perforation rate to improve the noise reduction of low-frequency noise. Compared with increasing the hole depth, the noise reduction of low-frequency noise is improved.
  • the technical solution prevents the deep holes from blocking the flow channel in the muffler formed by the muffler, and on the other hand, does not need to make deep holes, which reduces the preparation cost of the muffler.
  • the muffler is a cuboid or an ellipsoid.
  • Fig. 6 is a schematic structural diagram of another sound absorbing body provided in the embodiment of the present application.
  • the muffler 100 when the shape of the muffler 100 is an ellipsoid, the muffler 100 is streamlined, has lower flow resistance, and has a better muffler effect.
  • the shape of the sound absorbing body 100 is a cube or a cuboid, the manufacture and processing of the sound absorbing body is simpler.
  • Fig. 7 is a schematic flow chart of a method for preparing a muffler provided in an embodiment of the present application. Referring to Fig. 7, the method includes the following steps:
  • Step 110 determine the preset silencing frequencies of the first silencing cavity and the second silencing cavity in the silencing body through simulation.
  • Step 120 Determine the perforation parameters of the anechoic shell of the second anechoic cavity according to the preset anechoic frequency, wherein the perforation parameters include the effective diameter length of the perforation and the perforation rate.
  • Step 130 simulating the noise reduction effect of the noise reduction body.
  • Step 140 the sound-absorbing effect of the sound-absorbing body meets the preset standard, and a sample of the sound-absorbing body is prepared and tested.
  • Step 150 the noise reduction effect of the noise reduction body does not meet the preset standard, and the perforation parameters of the noise reduction shell of the noise reduction chamber are re-determined.
  • the preparation method of the muffler provided in the embodiment of the present application can determine the muffler conforming to the preset muffler bandwidth according to the required muffler bandwidth before preparing the muffler sample, which reduces the cost of preparing the muffler.
  • Fig. 8 is a schematic structural diagram of a muffler provided by an embodiment of the present application.
  • Fig. 9 is a right side view of Fig. 8 .
  • the muffler includes a housing 001 , a muffler 300 , a muffler 301 and a muffler 302 .
  • Each muffler includes a second muffler chamber 10 and a first muffler chamber 20 .
  • the housing 001 may be made of metal or other materials, and the application does not limit the material of the housing 001 .
  • the shape of the casing 001 may be a rectangular parallelepiped, a cube, etc., and the application does not limit the shape of the casing 001.
  • the manner in which the muffler 300, the muffler 301 and the muffler 302 are arranged inside the casing 001 can be fixed connection, movable connection, or other unconnected manners, the muffler 300, the muffler 301, and the muffler
  • the way 302 is arranged inside the housing 001 may be the same or different, and this application does not limit it.
  • the muffler of the embodiment of the present application includes the muffler in the above technical solution, the muffler is provided with at least two mufflers, and the muffler frequency ranges of the at least two mufflers are at least distributed in two incompletely overlapping values Within the range, the noise reduction bandwidth of the noise reduction body and the silencer is widened.
  • the muffler includes at least two mufflers, and adjacent mufflers form airflow channels.
  • an air flow channel 400 is formed between adjacent mufflers.
  • the airflow channel 400 serves as an air channel for the outlet of the fan.
  • the ratio of the thickness of the muffler to the thickness of the airflow channel is 1:1 to 5:1.
  • the thickness D of the muffler is a dimension parallel to the Y direction in the XOY rectangular coordinate system.
  • the thickness H of the airflow channel is a dimension parallel to the Y direction in the XOY rectangular coordinate system.
  • the ratio of the thickness of the muffler to the thickness of the airflow channel is between 1:1 and 5:1.
  • the flow resistance of the muffler is in a small range and will not hinder the passage of gas at the fan outlet, which can ensure The heat dissipation effect of the gas passing through the muffler.
  • the size of the muffler will not be too small, so as to ensure that the muffler has a preset muffler effect.
  • the present application also provides an information communication system, including the muffler described in the foregoing embodiments, and electronic equipment located in the muffler.
  • Fig. 10 is a structural diagram of an information communication system provided by an embodiment of the present application.
  • the information communication system includes a housing 001 , a noise reduction body 500 , a noise reduction body 501 , a noise reduction body 502 , and a noise reduction body 503 , and an electronic device 002 .
  • the present application does not limit the position and manner of setting the electronic device 002 in the muffler.
  • the second muffler chambers 10 of the plurality of mufflers are set close to the electronic device 002 , and the first muffler cavities 20 of the mufflers are set far away from the electronic device 002 .
  • a plurality of fans 003 are arranged between the electronic device 002 and the noise reduction body, which can improve the noise reduction effect and heat dissipation effect of the information communication system.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of multiple The physical components cooperate to perform.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
  • a processor such as a central processing unit, digital signal processor or microprocessor
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage media includes both volatile and nonvolatile media implemented in any method or technology arranged to store information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media include but not limited to Random Access Memory (Random Access Memory, RAM), Read Only Memory (Read Only Memory, ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Video Disc (DVD) or other optical disk storage, magnetic cartridges, tape, disk storage or other magnetic storage device, or any other medium that can be configured to store desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

一种消声体(100)、消声器及信息通信系统。该消声体(100)包括第一消声腔(20)和至少一个第二消声腔(10);第一消声腔(20)包括第一消声外壳(22),第一消声外壳(22)上设置多个第一穿孔(220),第一消声外壳(22)的穿孔率大于50%;第二消声腔(10)的消声峰值频率小于第一消声腔(20)的消声峰值频率。

Description

消声体、消声器及信息通信系统 技术领域
本申请涉及噪声控制技术领域,例如涉及一种消声体、消声器及信息通信系统。
背景技术
在通讯系统、中央空调等大型通风系统的噪声控制工程领域,常采用片式、折板式、蜂窝式(矩阵式)消声器,主要利用多孔介质材料的吸声性能实现降噪。
但是使用的消声器中的消声体只包含一个消声外壳的穿孔率大于50%的消声腔,消声体对于中高频的噪声消声效果比较显著,对于低频的噪声消声效果并不理想。因此,如何在有限的空间内拓宽消声体的消声带宽,是本领域技术人员亟待决的问题。
发明内容
本申请提出一种消声体、消声器及信息通信系统,旨在实现扩宽消声体的消声带宽。
本申请提供了一种消声体,所述消声体包括:至少一个第一消声腔和至少一个第二消声腔;
所述第一消声腔包括第一消声外壳,所述第一消声外壳上设置多个第一穿孔,所述第一消声外壳的穿孔率大于50%;所述第二消声腔的消声峰值频率小于所述第一消声腔的消声峰值频率。
本申请还提供了一种消声器,包括外壳,至少一个如上所述的消声体;所述消声体设置在所述外壳内部。
本申请还提供了一种信息通信系统,所述信息通信系统包括如上所述的消声器,以及位于所述消声器内的电子设备。
附图说明
图1是本申请实施例提供的一种消声体的结构示意图;
图2是本申请实施例提供的另一种消声体的结构示意图;
图3是本申请实施例提供的另一种消声体的结构示意图;
图4是本申请实施例提供的另一种消声体的结构示意图;
图5为图2中第一消声外壳的一种放大展开图以及第二消声外壳的一种放大展开图;
图6是本申请实施例提供的另一种消声体的结构示意图;
图7是本申请实施例提供的一种消声体的制备方法的流程示意图;
图8是本申请实施例提供的一种消声器的结构示意图;
图9是图8的右视图;
图10是本申请实施例提供的一种信息通信系统结构图。
具体实施方式
此处所描述的具体实施例仅仅用以解释本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
正如上述背景技术中所述,消声体对于声音的消声带宽较窄。针对上述技术问题,本申请实施例提供了如下技术方案,旨在实现一种具有宽消声带宽的消声体、消声器及信息通信系统。
本申请实施例提供了一种消声体,该消声体包括:至少一个第一消声腔和至少一个第二消声腔;第一消声腔包括第一消声外壳,第一消声外壳上设置多个第一穿孔,第一消声外壳的穿孔率大于50%;至少一个第二消声腔的消声峰值频率小于第一消声腔的消声峰值频率。
图1是本申请实施例提供的一种消声体的结构示意图。图2是本申请实施例提供的另一种消声体的结构示意图。示例性的,图1和图2中的消声体100包括两个消声腔,分别是第一消声腔20和第二消声腔10,参见图2,第一消声腔20包括第一消声外壳22,第一消声外壳22上设置多个第一穿孔220,第一消声外壳22的穿孔率大于50%;第二消声腔10的消声峰值频率小于第一消声腔的消声峰值频率。
消声峰值频率为消声腔在一个消声频率范围内对应的消声效果显著的频率。图1-图2中的箭头方向为噪声的传播方向。
消声腔的消声频率可以参见如下公式(1)进行计算。
Figure PCTCN2022080825-appb-000001
其中,f r为消声频率,c为声速,h为孔深,L k为孔的有效径长,p为穿孔率。
参见公式(1),在声速、孔深和孔的有效径长相同的情况下,穿孔率越大,消声腔的消声频率越大,相应的,消声腔的消声峰值频率越大。
因此,第一消声外壳22的穿孔率大于50%可以保证第一消声腔20对中高频噪声进行有效降噪。
在本申请实施例中第一消声腔20的消声频率范围S2的频率为A1-A3之间,第一消声腔20的消声峰值频率为f1,第二消声腔10的消声频率范围S1的频率为A1-A2之间,第二消声腔10的消声峰值频率为f2,第二消声腔10的消声峰值频率f2小于第一消声腔20的消声峰值频率f1。
图3是本申请实施例提供的另一种消声体的结构示意图。示例性的,图3中的消声体200包括三个消声腔,分别是第二消声腔10、第二消声腔20和第一消声腔30,第二消声腔10的消声频率范围S1的频率为A1-A2之间,第二消声腔20的消声频率范围S2的频率为A2-A3之间,第一消声腔30的消声频率范围S3的频率为A1-A4之间。第一消声腔30的消声峰值频率为f1,第二消声腔10的消声峰值频率为f2,第二消声腔20的消声峰值频率为f3,第二消声腔10的消声峰值频率f2小于第一消声腔30的消声峰值频率f1,且二消声腔20的消声峰值频率f3小于第一消声腔30的消声峰值频率f1。
在本申请实施例中,第二消声腔的消声峰值频率小于第一消声腔的消声峰值频率,可以参见公式(1),通过控制第二消声腔的穿孔率以及孔的有效径长来实现第二消声腔的消声峰值频率小于第一消声腔的消声峰值频率。
本申请实施例提供了一种消声体,消声体包括至少一个第一消声腔和至少一个第二消声腔,第一消声腔的穿孔率大于50%,第一消声腔可以实现对于中高频噪声进行消声,第二消声腔的消声峰值频率小于第一消声腔的消声峰值频率,拓宽了消声体的消声带宽。由于第一消声腔的穿孔率大于50%,消声体对于中高频的噪声消声效果比较显著。示例性的,当第二消声腔的消声峰值频率处于低频波段时,本申请实施例提供的技术方案提高了消声体对于低频的噪声消声效果。
可选的,消声体还包括第一消声材料、第二消声材料和分隔板;第二消声腔包括第二消声外壳;第一消声外壳、分隔板以及填充于分隔板和第一消声外壳所构成空间内的第一消声材料构成第一消声腔;第二消声外壳、分隔板以及 填充于分隔板和第二消声外壳所构成空间内的第二消声材料构成第二消声腔。
示例性的,参见图2,消声体100还包括第一消声材料21、第二消声材料12和分隔板13;第二消声腔10包括第二消声外壳11;第一消声外壳22、分隔板13以及填充于分隔板13和第一消声外壳22所构成空间内的第一消声材料21构成第一消声腔20;第二消声外壳11、分隔板13以及填充于分隔板13和第二消声外壳11所构成空间内的第二消声材料12构成第二消声腔10。
消声材料可以选取消声效果好的多孔性吸声材料,例如矿棉、玻璃棉以及聚氨酯泡沫等,提高整体消声效果。不同的消声腔内可以填充不同的消声材料,也可以填充相同的消声材料。示例性的,第二消声材料12采用矿棉或玻璃棉等多孔性吸声材料,第一消声材料21采用聚氨酯泡沫,聚氨酯泡沫在高频降噪具有较好效果,但是成本更低,因此,在保证性消声性能的条件下,第一消声材料21采用成本更低的消声材料能够有效节约成本。
分隔板13、第二消声外壳11和第一消声外壳22的材料不限,可以为金属或者其他材料。分隔板13、第二消声外壳11和第一消声外壳22的连接方式包括但是不限定为如下连接方式:示例性的,分隔板13可以通过黏贴、熔接、螺接等等方式与第二消声外壳11和第一消声外壳22相连;分隔板13还可以与第二消声外壳11和第一消声外壳22一体成型。
可选的,至少两个相邻的消声腔所在的平面位于同一平面或者至少两个相邻的消声腔所在的平面之间存在预设夹角。
示例性的,图1-图3中,消声体100和消声体200内两个相邻的消声腔所在的平面位于同一平面,消声体100的制备难度较低。
图4是本申请实施例提供的另一种消声体的结构示意图。示例性的,参见图4,对于消声体100来说,第二消声腔10所在平面的中线L1和第一消声腔20所在平面的中线L2之间存在预设夹角α,预设夹角α也是第二消声腔10所在平面和第一消声腔20所在平面之间的预设夹角α。由于第二消声腔10所在平面和第一消声腔20所在平面之间存在预设夹角α,消声体100可以对噪声产生折射,改变噪声在消声体100的传播方向。
至少两个相邻的消声腔所在的平面之间存在预设夹角,消声体可以对噪声产生折射,改变噪声在消声体的传播方向,噪声在折射的过程中,其能量得到衰减,可以增强消声体的消声效果。
可选的,第二消声外壳上设置多个第二穿孔。
参见公式(1),在声速和孔深相同的情况下,孔的有效径长越大,消声腔的消声频率越小;穿孔率越大,消声腔的消声频率越大。
综上,参见图2,可以通过调节第二消声腔10的第二穿孔110的孔径和穿孔率来改变第二消声腔10的消声频率,进而实现对第二消声腔10的消声频率范围和消声峰值频率进行调节,实现拓宽消声体的消声带宽的技术效果。
可选的,参见图2和图5,第二穿孔110的有效径长为1-8mm。
示例性的,第二穿孔110为圆孔时,第二穿孔110的有效径长为圆孔的直径。若第二穿孔110为正方形或者长方形,第二穿孔110的有效径长为其对角线。第二穿孔110的有效径长为两点之间的最长的直线距离。
多个第二穿孔110的形状可以相同也可以不同,多个第二穿孔110可以均匀分布也可以无规则分布。
可选的,参见图2和图5,多个第二穿孔110的穿孔率为0.1%-1%。
参见公式(1),第二消声外壳11采用有效径长为1-8mm,且穿孔率为0.1%-1%的第二穿孔110,第二穿孔110的有效径长大于通常设置的穿孔的有效径长0.2-1mm,穿孔率小于通常设置的穿孔的穿孔率1%-3%,能够提高对低频噪声峰值进行降噪,且降低了消声体的制备成本。
可选的,参见图5,多个第一穿孔220的形状不限,可以为圆形、正方形、长方形以及不规则形状。多个第一穿孔220的有效径长大小不限,多个第一穿孔220可以均匀分布、也可以无规则分布,本申请对此不做限制。
本申请实施例提供的消声体通过分腔设置,且第二消声外壳11和第一消声外壳22分别采取不同穿孔率的穿孔板,第二消声外壳11采取大孔径、小穿孔率的穿孔板能够提升对低频噪声的降噪,第一消声外壳22采取穿孔率大于50%的穿孔板能够提升对中高频噪声的降噪。最终,消声体100实现了针对不同频段的噪声都有较好的消声效果,将最低有效降噪频率从500Hz拓宽到了215Hz,针对频率为315Hz的噪声峰值降噪量提升一倍,整机在相同散热能力下,声压级噪声降低10dBA以上。本申请对第二消声腔10和第一消声腔20的数量不作限定,且不同第二消声腔10的第二穿孔110的有效径长和穿孔率可以随实际需要发生变化,且不同第一消声腔20的第一穿孔220的有效径长和穿孔率可以随实际需要发生变化。本申请实施例通过第二消声外壳11采取大孔径、小穿孔率的穿孔板能够提升对低频噪声的降噪的技术方案,相比通过增大孔深的方式提升对低频噪声的降噪的技术方案,一方面避免了深孔在由消声体构成的消声器中阻塞流道,另一方面,无需制作深孔,降低了消声体的制备成本。
可选的,消声体为长方体或者椭圆体。
图6是本申请实施例提供的另一种消声体的结构示意图。示例性的,参见图6,消声体100的形状为椭圆体时,消声体100呈流线型,具有更低的流阻, 消声效果更好。当消声体100的形状为正方体或长方体时,消声体的制作加工更加简单。
本申请还提供了一种消声体的制备方法。图7是本申请实施例提供的一种消声体的制备方法的流程示意图,参见图7,该方法包括如下步骤:
步骤110、通过仿真确定消声体中第一消声腔和第二消声腔的预设消声频率。
步骤120、根据预设消声频率确定第二消声腔的消声外壳的穿孔参数,其中所述穿孔参数包括穿孔的有效径长和穿孔率。
步骤130、模拟消声体的消声效果。
步骤140、消声体的消声效果符合预设标准,制备消声体的样品并测试。
步骤150、消声体的消声效果不符合预设标准,重新确定消声腔的消声外壳的穿孔参数。
本申请实施例提供的消声体的制备方法可以根据需要的消声带宽,在制备消声体的样品之前确定出符合预设消声带宽的消声体,降低了消声体的制备成本。
图8是本申请实施例提供的一种消声器的结构示意图。图9是图8的右视图。示例性的,参见图8和图9,消声器包括了外壳001以及消声体300、消声体301和消声体302。每个消声体均包括第二消声腔10和第一消声腔20。
外壳001可以是金属等材料,本申请对外壳001的材料不做限制。外壳001的形状可以是长方体、正方体等形状,本申请对外壳001的形状不做限制。
消声体300、消声体301和消声体302设置在外壳001内部的方式可以是固定连接、活动接连,或者是其他不连接方式,消声体300、消声体301、和消声体302设置在外壳001内部的方式可以相同、也可以不同,本申请对此不做限定。
本申请实施例的消声器包括上述技术方案中的消声体,该消声体通过设置至少两个消声腔,且至少两个消声腔的消声频率范围至少分布在两个不完全交叠的数值范围内,拓宽了消声体和消声器的消声带宽。
可选的,消声器包括至少两个消声体,相邻消声体形成气流通道。
示例性的,参见图9,相邻消声体之间形成气流通道400。
气流通道400用作风扇出口的气体通道。
可选的,消声体的厚度和气流通道的厚度的比值为1:1至5:1。
示例性的,参见图9,消声体的厚度D为平行于XOY直角坐标系中Y方向的尺寸。气流通道的厚度H为平行于XOY直角坐标系中Y方向的尺寸。
消声体的厚度和气流通道的厚度的比值为1:1至5:1之间,第一方面,消声体的流阻处于较小的范围,不会阻碍风扇出口的气体通过,可以保证通过消声器的气体的散热效果。第二方面,消声体的尺寸不会过小,以保证消声体具有预设的消声效果。
本申请还提供了一种信息通信系统,包括前述实施例所述的消声器,以及位于所述消声器内的电子设备。
图10是本申请实施例提供的一种信息通信系统结构图。如图10所示,信息通信系统包括外壳001、消声体500、消声体501、消声体502和消声体503,以及电子设备002。本申请对于电子设备002设置于消声器的位置以及方式不做限制。多个消声体的第二消声腔10靠近电子设备002设置,多个消声体的第一消声腔20远离电子设备002设置。电子设备002与消声体之间设置多个风扇003,能够提升信息通信系统的消声效果和散热效果。
上文中所公开方法中的全部或一些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由多个物理组件合作执行。一些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在设置为存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、带电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、只读光盘存储器(Compact Disc Read-Only Memory, CD-ROM)、数字多功能盘(Digital Video Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以设置为存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (11)

  1. 一种消声体,包括:至少一个第一消声腔和至少一个第二消声腔;
    所述第一消声腔包括第一消声外壳,所述第一消声外壳上设置多个第一穿孔,所述第一消声外壳的穿孔率大于50%;
    所述第二消声腔的消声峰值频率小于所述第一消声腔的消声峰值频率。
  2. 根据权利要求1所述的消声体,还包括第一消声材料、第二消声材料和分隔板;
    所述第二消声腔包括第二消声外壳;
    所述第一消声外壳、所述分隔板以及填充于所述分隔板和所述第一消声外壳所构成空间内的第一消声材料构成所述第一消声腔;
    所述第二消声外壳、所述分隔板以及填充于所述分隔板和所述第二消声外壳所构成空间内的第二消声材料构成所述第二消声腔。
  3. 根据权利要求2所述的消声体,其中,所述第二消声外壳上设置多个第二穿孔。
  4. 根据权利要求3所述的消声体,其中,所述第二穿孔的有效径长为1-8mm。
  5. 根据权利要求3所述的消声体,其中,所述多个第二穿孔的穿孔率为0.1%-1%。
  6. 根据权利要求1所述的消声体,其中,至少两个相邻的消声腔所在的平面位于同一平面或者至少两个相邻的消声腔所在的平面之间存在预设夹角。
  7. 根据权利要求1所述的消声体,其中,所述消声体为长方体或者椭圆体。
  8. 一种消声器,包括外壳,至少一个如权利要求1-7任一项所述的消声体;所述消声体设置在所述外壳内部。
  9. 根据权利要求8所述的消声器,其中,所述消声器包括至少两个消声体,相邻消声体形成气流通道。
  10. 根据权利要求9所述的消声器,其中,所述消声体的厚度和所述气流通道的厚度的比值为1:1至5:1。
  11. 一种信息通信系统,包括如权利要求8-10任一项所述的消声器,以及位于所述消声器内的电子设备。
PCT/CN2022/080825 2021-11-25 2022-03-15 消声体、消声器及信息通信系统 WO2023092902A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111414657.9 2021-11-25
CN202111414657.9A CN116168672A (zh) 2021-11-25 2021-11-25 一种消声体、消声器及信息通信系统

Publications (1)

Publication Number Publication Date
WO2023092902A1 true WO2023092902A1 (zh) 2023-06-01

Family

ID=86420640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080825 WO2023092902A1 (zh) 2021-11-25 2022-03-15 消声体、消声器及信息通信系统

Country Status (2)

Country Link
CN (1) CN116168672A (zh)
WO (1) WO2023092902A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109505808A (zh) * 2018-12-25 2019-03-22 广东美的白色家电技术创新中心有限公司 风机消声器和风机消声系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130410A (ja) * 2001-10-24 2003-05-08 Haseko Corp 消音換気装置
CN204552905U (zh) * 2015-03-31 2015-08-12 武汉理工大学 一种消声频率可调的消声器
CN208488970U (zh) * 2018-06-26 2019-02-12 香港大学浙江科学技术研究院 局部穿孔板消声单元、组合穿孔板消声单元、复合消声片、复合消声装置和管道系统
US20200223171A1 (en) * 2017-10-06 2020-07-16 3M Innovative Properties Company Acoustic composite and methods thereof
CN111477205A (zh) * 2020-05-22 2020-07-31 华电重工股份有限公司 一种片式消声器
CN212516539U (zh) * 2020-05-22 2021-02-09 华电重工股份有限公司 一种片式消声器
CN213839053U (zh) * 2020-12-04 2021-07-30 江苏美的清洁电器股份有限公司 消声结构和家电设备
CN113478818A (zh) * 2021-06-07 2021-10-08 南京航空航天大学 一种中低频吸声结构件及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130410A (ja) * 2001-10-24 2003-05-08 Haseko Corp 消音換気装置
CN204552905U (zh) * 2015-03-31 2015-08-12 武汉理工大学 一种消声频率可调的消声器
US20200223171A1 (en) * 2017-10-06 2020-07-16 3M Innovative Properties Company Acoustic composite and methods thereof
CN208488970U (zh) * 2018-06-26 2019-02-12 香港大学浙江科学技术研究院 局部穿孔板消声单元、组合穿孔板消声单元、复合消声片、复合消声装置和管道系统
CN111477205A (zh) * 2020-05-22 2020-07-31 华电重工股份有限公司 一种片式消声器
CN212516539U (zh) * 2020-05-22 2021-02-09 华电重工股份有限公司 一种片式消声器
CN213839053U (zh) * 2020-12-04 2021-07-30 江苏美的清洁电器股份有限公司 消声结构和家电设备
CN113478818A (zh) * 2021-06-07 2021-10-08 南京航空航天大学 一种中低频吸声结构件及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109505808A (zh) * 2018-12-25 2019-03-22 广东美的白色家电技术创新中心有限公司 风机消声器和风机消声系统
CN109505808B (zh) * 2018-12-25 2024-02-20 广东美的白色家电技术创新中心有限公司 风机消声器和风机消声系统

Also Published As

Publication number Publication date
CN116168672A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2023092902A1 (zh) 消声体、消声器及信息通信系统
US5792999A (en) Noise attenuating in ported enclosure
US10575098B2 (en) Speaker apparatus having a heat dissipation structure
CN214533437U (zh) 消音装置及冰箱
US5809154A (en) Ported loudspeaker system and method
CN210443263U (zh) 消声装置
US3738448A (en) Sound silencing method and apparatus
TW535451B (en) Acoustic structures
AU2020343462B2 (en) Directive multiway loudspeaker with a waveguide
CN116825063A (zh) 声学超材料大面积短通道宽频通风隔音器和屏障
US3207258A (en) Sound absorbing systems
CN113654232A (zh) 一种适用于暖通系统风口的消声结构
CN114756097A (zh) 吸音装置及加工方法及电子设备
CN208689931U (zh) 一种用于高压气流微缝多重消声结构消音器
CN220539970U (zh) 一种降噪结构及电子设备
CN107503824B (zh) 一种半主动排气消声器
CN210290018U (zh) 一种降噪设备及风力发电机组的机舱
JP4257960B2 (ja) 消音ダクト
CN215675652U (zh) 一种新型均匀混合、宽频消声的通风装置
CN205026905U (zh) 空调器和换热系统
CN220337029U (zh) 压缩机仓和冷藏冷冻装置
CN211082344U (zh) 散热风扇及电子设备
CN109707596B (zh) 消音装置及具有其的冰箱
CN213904930U (zh) 模块化金属共振消声弯头
CN118335045A (zh) 声学超材料大面积短通道宽频通风隔音器和屏障

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE