WO2023092873A1 - 间接蒸发冷却机组、数据中心及其制冷控制方法 - Google Patents

间接蒸发冷却机组、数据中心及其制冷控制方法 Download PDF

Info

Publication number
WO2023092873A1
WO2023092873A1 PCT/CN2022/077165 CN2022077165W WO2023092873A1 WO 2023092873 A1 WO2023092873 A1 WO 2023092873A1 CN 2022077165 W CN2022077165 W CN 2022077165W WO 2023092873 A1 WO2023092873 A1 WO 2023092873A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan assembly
mode
circulation fan
electronic expansion
expansion valve
Prior art date
Application number
PCT/CN2022/077165
Other languages
English (en)
French (fr)
Inventor
居静
吴四海
陆涛
王正华
冯淑琴
刘交通
崔振军
何剑荣
Original Assignee
河北秦淮数据有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北秦淮数据有限公司 filed Critical 河北秦淮数据有限公司
Publication of WO2023092873A1 publication Critical patent/WO2023092873A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the field of cooling regulation of data centers, in particular to an indirect evaporative cooling unit, a data center and a cooling control method thereof.
  • the current data center refrigeration equipment has a single mode, and cannot use seasonal and day-night temperature changes to reduce energy consumption. It has low utilization of natural cold sources and cannot reasonably adjust and control the temperature of the data room.
  • the spray cooling of traditional evaporative cooling units does not match the load on the cooling side. , excessive water consumption, unreasonable investment timing of mechanical refrigeration, long running time, high energy consumption and other reasons, resulting in the power consumption of cooling accounting for more than 35% of the energy consumption of the computer room, and the cooling effect needs to be improved, which has great impact on the data
  • the daily management of the center brings certain difficulties.
  • the purpose of this application is to provide an indirect evaporative cooling unit, a data center and a refrigeration control method thereof, which can perform refrigeration adjustment according to real-time temperature and reduce energy consumption.
  • the present application provides an indirect evaporative cooling unit on the one hand, including a heat exchange core, a spray assembly and a mechanical refrigeration assembly;
  • the heat exchange core has an inner circulation air inlet, an inner circulation air outlet, an outer Circulation air inlet and outer circulation air outlet;
  • said inner circulation air outlet is provided with an internal circulation fan assembly,
  • said outer circulation air outlet is provided with an outer circulation fan assembly, said internal circulation fan assembly and said outer circulation fan
  • the rotation speed of the assembly can be adjusted;
  • the mechanical refrigeration assembly includes a compressor, a condenser, an electronic expansion valve, and an evaporator;
  • the compressor, condenser, electronic expansion valve, and evaporator are connected in series to form a circulation loop, and the The electronic expansion valve is used to adjust the flow of refrigerant in the circulation loop.
  • a first electronic expansion valve and a second electronic expansion valve there are specifically two electronic expansion valves, namely a first electronic expansion valve and a second electronic expansion valve; the first electronic expansion valve and the second electronic expansion valve are connected in series Between the condenser and the evaporator, a dry filter is connected in series between the second electronic expansion valve and the condenser, and the second electronic expansion valve and the dry filter are connected to the The first electronic expansion valves are connected in parallel.
  • the condenser is located between the outer circulation air outlet and the outer circulation fan assembly; the evaporator is located between the inner circulation air outlet and the inner circulation fan assembly.
  • the spray assembly includes a liquid storage tank, a spray part and a water pump; the water outlet of the liquid storage tank is connected to a water pump and a spray part through another pipeline, and the water pump is used for
  • the refrigerant liquid is extracted from the liquid storage tank, so that the refrigerant liquid is sprayed from the spray part onto the heat exchange core;
  • the flow rate of the water pump is adjustable;
  • the spray part includes a first spray A head and a second shower head; the first shower head is arranged corresponding to the outer circulation air inlet, and the outer circulation air outlet is arranged corresponding to the second shower head.
  • another aspect of the present application also provides a data center, including an area to be cooled and the above-mentioned indirect evaporative cooling unit; the indirect evaporative cooling unit is connected to one side of the area to be cooled; the indirect evaporative cooling
  • the outer circulation air inlet and the outer circulation air outlet of the unit communicate with the outside air of the data center, thereby forming an external cooling cycle; the inner circulation air inlet and the inner circulation air outlet of the indirect evaporative cooling unit communicate with the to-be-cooled
  • the zones are internally connected, thereby creating an internal cooling cycle.
  • a temperature sensor and a humidity sensor are provided in the area to be cooled.
  • another aspect of the present application provides a cooling control method for a data center, including: dividing the cooling control mode into four cooling modes, namely mode 1, mode 2, mode 3 and mode 4;
  • the external circulation fan assembly and the internal circulation fan assembly operate, and the external cooling cycle and the internal cooling cycle perform heat exchange at the heat exchange core;
  • the outer circulation fan assembly, the inner circulation fan assembly and the spray assembly act simultaneously to spray the air flowing through the external cooling cycle, and the evaporation after spraying absorbs heat
  • the external cooling cycle exchanges heat with the internal cooling cycle through the heat exchange core
  • the external circulation fan assembly, the internal circulation fan assembly, the spray assembly and the mechanical refrigeration assembly operate simultaneously, at this time, the first electronic expansion valve is opened, and the The second electronic expansion valve is closed, and the air outlet of the internal circulation air outlet is mechanically refrigerated;
  • the mode four starts: on the basis of the mode three, the first electronic expansion valve is closed and the second electronic expansion valve is opened. At this time, the circulation circuit of the mechanical refrigeration assembly flows through the The filter is dried, so as to perform dehumidification treatment while performing mechanical refrigeration on the air outlet of the internal circulation air outlet.
  • the first mode When it is winter, the first mode is started; when it is spring or autumn, the second mode is started; when it is summer, the third mode is started; after the third mode is started, it is judged based on the detection result of the humidity sensor Whether to start the mode four; wherein, when the detection result is greater than the threshold, the mode four starts; in any mode, the air inlet temperature of the area to be cooled can be based on the detection value of the temperature sensor and The size of the preset target temperature value can be adjusted in real time.
  • the energy consumption of the external circulation is reduced; further, the condenser is set between the outlet of the external circulation and the external circulation fan assembly, the condenser can be cooled while the external cooling cycle is running, and the external circulation fan assembly is rationally used; and two nozzles are set The shower head sprays at the air inlet of the external circulation and the air outlet of the external circulation to improve the spray cooling effect.
  • Fig. 1 is a schematic structural view of an indirect evaporative cooling unit in an embodiment provided by the present application
  • Fig. 2 is a schematic structural diagram of a data center in an embodiment provided by the present application.
  • the exemplary term “below” can encompass both an orientation of above and below.
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or two devices, components or Internal connectivity between components.
  • the current data center refrigeration equipment has a single mode, and cannot use seasonal and day-night temperature changes to reduce energy consumption. It has low utilization of natural cold sources and cannot reasonably adjust and control the temperature of the data room.
  • the spray cooling of traditional evaporative cooling units does not match the load on the cooling side. , excessive water consumption, unreasonable investment timing of mechanical refrigeration, long running time, high energy consumption and other reasons, resulting in the power consumption of cooling accounting for more than 35% of the energy consumption of the computer room, and the cooling effect needs to be improved, which has great impact on the data
  • the daily management of the center brings certain difficulties. Therefore, it is urgent to design an indirect evaporative cooling unit with variable speed adjustment to complete the precise cooling adjustment of the data center computer room throughout the year, thereby solving the problems of low utilization rate of cooling natural cold source and high energy consumption in the data center.
  • the indirect evaporative cooling unit includes a heat exchange core 1, a spray assembly 2, and a mechanical refrigeration assembly 3;
  • the heat exchange core 1 has an internal circulation air inlet 11 , the inner circulation air outlet 12, the outer circulation air inlet 13 and the outer circulation air outlet 14;
  • the heat exchange core 1 is common knowledge in the field, and its principle adopts that two sets of mutual intersections are arranged on a heat exchange body and are not Unicom air passage, the gas in the two air passages exchanges heat when passing through the heat exchange body;
  • the spray assembly 2 is for the air and the heat exchange core 1 (and Ensure that the sprayed refrigerant does not enter the internal circulation air inlet 11 and the internal circulation air outlet 12) for spraying, the water mist evaporates after spraying, absorbs the heat in the outdoor air, and cools it down to make it low
  • the wet bulb temperature of the outdoor air reaches close to the dew point temperature to achieve cooling, and the incompletely evaporated water flows into the liquid storage tank 21 to form
  • an internal circulation fan assembly 4 is provided at the internal circulation air outlet 12
  • an external circulation fan assembly 5 is provided at the external circulation air outlet 14 to ensure that the internal circulation fan assembly 4 and the rotating speed of the external circulation fan assembly 5 can be adjusted;
  • the mechanical refrigeration assembly 3 it specifically includes a compressor 31, a condenser 32, an electronic expansion valve, and an evaporator 34;
  • the expansion valve is used to adjust the flow rate of the refrigerant in the circulation loop; its operating principle is that the refrigerant enters the condenser 32 to condense after being compressed and discharged by the compressor 31, and then enters the evaporator 34 to evaporate and absorb under the flow limitation of the electronic expansion valve.
  • the internal circulation air outlet 12 discharges the heat in the air to perform circular mechanical refrigeration; this application uses the flow rate of the electronic expansion valve to adjust to control the cooling capacity of mechanical refrigeration.
  • the frequency conversion compressor 31 can also be used to adjust the frequency. Cooling capacity of mechanical refrigeration.
  • the first electronic expansion valve 331 and the second electronic expansion valve 332 there are two electronic expansion valves in the embodiment of the present application, namely the first electronic expansion valve 331 and the second electronic expansion valve 332; and, the first electronic expansion valve 331 and the second electronic expansion valve
  • the expansion valve 332 is connected in series between the condenser 32 and the evaporator 34
  • a dry filter 333 is connected in series between the second electronic expansion valve 332 and the condenser 32
  • the second electronic expansion valve 332 and the dry filter 333 are connected with the first electronic
  • the expansion valves 331 are connected in parallel; through the on-off selection of the first electronic expansion valve 331 and the second electronic expansion valve 332, two circulation loops are realized; one circulation loop passes through the first electronic expansion valve 331 and does not have a dehumidification function; Another circulation loop, passing through the dry filter 333 and the second electronic expansion valve 332, has the function of dehumidification.
  • the condenser 32 is located between the outer circulation air outlet 14 and the outer circulation fan assembly 5; the condenser can be cooled while the external cooling cycle is running, and the outer circulation fan assembly is reasonably used; the evaporator 34 is located at the inner circulation outlet Between the air port 12 and the internal circulation fan assembly 4, cooling of the air from the internal circulation air outlet 12 is realized.
  • the spray assembly 2 includes a liquid storage tank 21, a spray part and a water pump 23; the water outlet of the liquid storage tank 21 is connected with a water pump 23 and a spray part through another pipeline, and the water pump 23 is used for
  • the refrigerant liquid is extracted from the tank 21, so that the refrigerant liquid is sprayed from the spray part to the heat exchange core 1; the flow rate of the water pump 23 is adjustable, so that it can be adjusted in real time according to the change of the temperature sensor 61;
  • the flow adjustment of the water pump 23 can adopt many ways, 1. Variable speed adjustment: changing the speed of the water pump can change the performance of the water pump, thereby changing the working point of the water pump. This method is called variable speed adjustment; 2. , Variable diameter adjustment: After the impeller is turned, the performance of the water pump will change according to certain rules, so that the working point of the water pump will change.
  • Throttling adjustment For the water pump device with a gate valve installed in the outlet pipeline, if the gate valve is closed for a small time, the local resistance in the pipeline will be increased, and the characteristic curve of the pipeline will become steeper, and its operating point will follow the Q-H curve of the pump Move up and to the left. The smaller the gate valve is closed, the greater the increased resistance, and the smaller the flow rate.
  • This method of changing the working point of the pump by closing the gate valve is called throttling adjustment or variable valve adjustment; in this application, for To realize the effect of saving energy, it is preferable to adopt variable speed adjustment to the water pump 23, thereby reducing energy consumption.
  • the spraying part includes a first shower head 221 and a second shower head 222;
  • the two shower heads 222 are arranged correspondingly.
  • the present application also provides a data center, including the area to be cooled 6 and the above-mentioned indirect evaporative cooling unit; the indirect evaporative cooling unit is connected to the side of the area to be cooled 6; in this application
  • the area 6 to be cooled can be the machine room area or the power distribution room.
  • the external circulation air inlet 13 and the external circulation air outlet 14 of the indirect evaporative cooling unit communicate with the external air of the data center, thereby forming an external cooling cycle.
  • the path of the external cooling cycle please refer to the sequence passing through the external circulation air inlet 13 in Fig. 2 , the heat exchange core 1, the outer circulation air outlet 14, the condenser 32 and the arrow direction of the outer circulation fan assembly 5, so that the external air flows in and flows out into the external air;
  • the internal circulation air inlet 11 and the internal circulation air outlet 12 of the indirect evaporative cooling unit communicate with the area to be cooled 6 to form an internal cooling cycle.
  • the heat exchange core 1, the internal circulation air outlet 12, the evaporator 34 and the arrow direction of the internal circulation fan assembly 4 flow in from the area to be cooled 6, and flow out to the area to be cooled 6;
  • temperature sensor 61 and humidity sensor 62 in area 6 to be cooled, temperature sensor 61 is used for detecting the temperature in area 6 to be cooled, humidity sensor 62 is used for detecting the humidity in area 6 to be cooled, corresponding also needs
  • a control terminal is set to receive the signals of the temperature sensor 61 and the humidity sensor 62, and coordinate the opening and closing of the heat exchange core 1, the spray assembly 2 and the mechanical refrigeration assembly 3 in a unified manner.
  • the present application also provides a cooling control method for data centers, including: dividing the cooling control mode of the indirect evaporative cooling unit into four cooling modes, namely mode 1, mode 2, mode 3 and mode Four;
  • mode 1 it is suitable for the case where the external air temperature is low, the outer circulation fan assembly 5 and the inner circulation fan assembly 4 operate, and the external cooling cycle and the internal cooling cycle perform heat exchange at the heat exchange core 1, and the external The air directly exchanges heat with the internal cooling circulating air to cool down the area 6 to be cooled;
  • mode 2 it is suitable for the case where the external air temperature is high, the outer circulation fan assembly 5, the inner circulation fan assembly 4 and the spray assembly 2 operate at the same time to spray the air flowing through the external cooling cycle, after spraying
  • the evaporative heat absorption and the external cooling cycle exchange heat with the internal cooling cycle through the heat exchange core 1 to improve the cooling effect of the area 6 to be cooled;
  • Mode 3 it is suitable for the case where the external air temperature is higher, the outer circulation fan assembly 5, the inner circulation fan assembly 4, the spray assembly 2 and the mechanical refrigeration assembly 3 operate simultaneously, at this time, the first electronic expansion valve 331 Open, the second electronic expansion valve 332 is closed, and mechanically refrigerate the air outlet 12 of the internal circulation.
  • the evaporation and heat absorption after spraying plus the external cooling cycle exchange heat with the internal cooling cycle through the heat exchange core 1 Afterwards, the temperature is lowered through the evaporator 34 to further improve the cooling effect of the area 6 to be cooled;
  • Mode 4 When Mode 4 is activated: It is suitable for the case where the outside air temperature is higher and the humidity is too high. Based on Mode 3, the first electronic expansion valve 331 is closed and the second electronic expansion valve 332 is opened. At this time, the mechanical refrigeration The circulation circuit of the component 3 flows through the dry filter 333, so that the air outlet 12 of the internal circulation outlet 12 is mechanically refrigerated and dehumidified at the same time, that is, it has the cooling effect of mode 3 and has the dehumidification function at the same time.
  • the present application selects one of the start mode 1, mode 2, mode 3 and mode 4 based on different seasons and the judgment of the humidity sensor 62;
  • mode one when it is winter, mode one is started; when it is spring or autumn, mode two is started; when it is summer, mode three is started; after mode three is started, it is judged whether to start mode four based on the detection result of humidity sensor 62; , when the detection result is greater than the threshold, mode four is started, where the threshold refers to the preset allowable humidity value in the area 6 to be cooled.
  • the external air can be reasonably used to effectively reduce energy consumption and ensure the cooling effect of the area 6 to be cooled.
  • the air inlet temperature of the area 6 to be cooled can be adjusted according to the temperature
  • the detection value of the sensor 61 and the size of the preset target temperature value are adjusted in real time.
  • the preset target temperature value here refers to the temperature value that can meet the working conditions in the area to be cooled 6, which is The staff make settings in the program in advance.
  • the specific real-time adjustment method is as follows: In the case of mode one startup: when the detection value is less than the target temperature value, reduce the speed of the outer circulation fan assembly 5 and/or the inner circulation fan assembly 4; when the detection value is greater than the target temperature value, increase The rotational speed of the outer circulation fan assembly 5 and/or the inner circulation fan assembly 4 .
  • mode two startup when the detected value is less than the target temperature value, at least one of the speed of the outer circulation fan assembly 5, the speed of the inner circulation fan assembly 4 and the flow rate of the water pump 23 (that is, the speed of the water pump 23) is reduced; When the detected value is greater than the target temperature value, at least one of the rotation speed of the outer circulation fan assembly 5 , the rotation speed of the inner circulation fan assembly 4 and the flow rate of the water pump 23 is increased.
  • mode three startup when the detected value is less than the target temperature value, at least reduce the speed of the outer circulation fan assembly 5, the speed of the inner circulation fan assembly 4, the flow of the water pump 23, the flow of the first electronic expansion valve 331 and the compressor One of the frequencies of 31; when the detection value is greater than the target temperature value, at least increase the speed of the outer circulation fan assembly 5, the speed of the inner circulation fan assembly 4, the flow of the water pump 23, the flow of the first electronic expansion valve 331 and the compressor One of 31 frequencies.
  • mode four startup when the detection value is less than the target temperature value, at least reduce the speed of the external circulation fan assembly 5, the speed of the internal circulation fan assembly 4, the flow of the water pump 23, the flow of the second electronic expansion valve 332 and the compressor One of the frequencies of 31; when the detection value is greater than the target temperature value, at least increase the speed of the outer circulation fan assembly 5, the speed of the inner circulation fan assembly 4, the flow of the water pump 23, the flow of the second electronic expansion valve 332 and the compressor One of 31 frequencies.
  • the energy consumption of the external circulation is reduced; further, the condenser is set between the outlet of the external circulation and the external circulation fan assembly, the condenser can be cooled while the external cooling cycle is running, and the external circulation fan assembly is rationally used; and two nozzles are set The shower head sprays at the air inlet of the external circulation and the air outlet of the external circulation to improve the spray cooling effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请公开了一种间接蒸发冷却机组,包括换热芯体(1)、喷淋组件(2)和机械制冷组件(3);换热芯体(1)具备内循环进气口(11)、内循环出气口(12)、外循环进气口和外循环出气口;内循环出气口(12)处设有内循环风机组件,外循环出气口处设有外循环风机组件,内循环风机组件和外循环风机组件的转速可调节;机械制冷组件包括压缩机、冷凝器、电子膨胀阀和蒸发器;压缩机、冷凝器、电子膨胀阀和蒸发器通过管路串联构成一循环回路,且电子膨胀阀用于调节循环回路中的冷媒的流量。本申请可以根据实时温度变化和季节情况进行制冷调节,降低能耗。

Description

间接蒸发冷却机组、数据中心及其制冷控制方法 技术领域
本申请涉及数据中心制冷调节领域,特别涉及一种间接蒸发冷却机组、数据中心及其制冷控制方法。
背景技术
随着数据中心规模和集成度的发展,服务器设备功率密度与日俱增,热密度增长,就带来了两方面的问题:一方面,机房内消耗的电量大幅度的增长;另一方面,服务器散热问题变得越来越严重,消耗大量能源,还会因为冷却调节不够合理,还会因为设备发热而导致设备停机。
目前的数据中心制冷设备,模式单一,无法利用季节和昼夜温差变化减少能源消耗,对自然冷源利用低,不能合理调节控制数据机房温度,传统蒸发冷却机组喷淋冷却与冷却侧的负荷不匹配,水消耗过多,机械制冷投入时机不尽合理、运行时间长、耗能多等等原因,导致制冷消耗的电能占到机房能耗的35%以上,而且制冷效果还有待提高,这对数据中心的日常管理工作带来一定的困难。
因此亟需设计可变速调节的间接蒸发冷却机组,完成数据中心机房全年运行的精准制冷调节,从而解决了数据中心的制冷自然冷源利用率低,能耗多等问题。
发明内容
本申请的目的在于提供一种间接蒸发冷却机组、数据中心及其制冷控制方法,可以根据实时温度进行制冷调节,降低能耗。
为实现上述目的,本申请一方面提供一种间接蒸发冷却机组,包括换热芯体、喷淋组件和机械制冷组件;所述换热芯体具备内循环进气口、内循环出气口、外循环进气口和外循环出气口;所述内循环出气口处设有内循环风机组件,所述外循环出气口处设有外循环风机组件,所述内循环风机组件和所述外循环风机组件的转速可调节;所述机械制冷组件包括压缩机、冷凝器、电子膨胀阀 和蒸发器;所述压缩机、冷凝器、电子膨胀阀和蒸发器通过管路串联构成一循环回路,且所述电子膨胀阀用于调节所述循环回路中的冷媒的流量。
作为上述技术方案的进一步改进:所述电子膨胀阀具体有两个,分别为第一电子膨胀阀和第二电子膨胀阀;所述第一电子膨胀阀和所述第二电子膨胀阀串联在所述所述冷凝器和所述蒸发器之间,所述第二电子膨胀阀与所述冷凝器之间串联有干燥过滤器,且所述第二电子膨胀阀和所述干燥过滤器与所述第一电子膨胀阀并联。
作为上述技术方案的进一步改进:所述冷凝器位于所述外循环出气口和所述外循环风机组件之间;所述蒸发器位于所述内循环出气口和所述内循环风机组件之间。
作为上述技术方案的进一步改进:所述喷淋组件包括蓄液槽、喷淋部和水泵;所述蓄液槽的出水口通过另一管路连接有水泵和喷淋部,所述水泵用于从所述蓄液槽内抽取制冷液,以使制冷液从所述喷淋部喷出至所述换热芯体上;所述水泵的流量可调;所述喷淋部包括第一喷淋头和第二喷淋头;所述第一喷淋头与所述外循环进气口对应设置,所述外循环出气口与所述第二喷淋头对应设置。
为实现上述目的,本申请另一方面还提供一种数据中心,包括待冷却区域和上述的间接蒸发冷却机组;所述间接蒸发冷却机组连接在所述待冷却区域一侧;所述间接蒸发冷却机组的外循环进气口和外循环出气口与所述数据中心的外部空气连通,从而形成外部冷却循环;所述间接蒸发冷却机组的内循环进气口和内循环出气口与所述待冷却区域内部连通,从而形成内部冷却循环。
作为上述技术方案的进一步改进:所述待冷却区域内设有温度传感器和湿度传感器。
为实现上述目的,本申请另一方面还提供一种数据中心的制冷控制方法,包括:将制冷控制模式分为四个制冷模式,分别为模式一、模式二、模式三和模式四;
当所述模式一启动时:所述外循环风机组件和所述内循环风机组件动作,所述外部冷却循环和所述内部冷却循环在所述换热芯体处进行热交换;
当所述模式二启动时:所述外循环风机组件、所述内循环风机组件和所述 喷淋组件同时动作,对流经所述外部冷却循环的空气进行喷淋,喷淋后的蒸发吸热加上所述外部冷却循环通过所述换热芯体与所述内部冷却循环换热;
当所述模式三启动时:所述外循环风机组件、所述内循环风机组件、所述喷淋组件和所述机械制冷组件同时动作,此时,所述第一电子膨胀阀打开,所述第二电子膨胀阀关闭,对所述内循环出气口的出风进行机械制冷;
当所述模式四启动时:在所述模式三的基础上,所述第一电子膨胀阀关闭,所述第二电子膨胀阀打开,此时,所述机械制冷组件的循环回路流经所述干燥过滤器,从而在对所述内循环出气口的出风进行机械制冷的同时进行除湿处理。
作为上述技术方案的进一步改进:基于不同季节和湿度传感器判断,选择启动所述模式一、模式二、模式三和模式四中的一个;
当处于冬季时,所述模式一启动;当处于春季或秋季时,所述模式二启动;当处于夏季时,所述模式三启动;所述模式三启动后,基于所述湿度传感器检测结果判断是否启动所述模式四;其中,当所述检测结果大于阈值时,所述模式四启动;在任何一种模式下,所述待冷却区域的进风口温度可根据所述温度传感器的检测值与预设的目标温度值的大小情况,进行实时调节。
由此可见,本申请提供的技术方案,通过不同季节和湿度情况选择不同运行模式,合理利用不同季节的外部空气温度进行散热,降低能耗;同时,根据每天的昼夜温差变化,利用温度传感器检测并通过调节外循环风机组件的转速、内循环风机组件的转速、水泵的流量和电子膨胀阀的流量进行精准调节,满足服务器散热的及时需求,最大限度地利用自然冷源,还满足数据机房空调的能耗降低;进一步的,将冷凝器设置在外循环出气口和外循环风机组件之间,可在外部冷却循环运行的同时对冷凝器进行降温,合理利用外循环风机组件;并设置两个喷淋头对外循环进气口和外循环出气口处喷淋,提高喷淋降温效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的一种实施方式中间接蒸发冷却机组的结构示意图;
图2是本申请提供的一种实施方式中数据中心的结构示意图;
图中:1、换热芯体;11、内循环进气口;12、内循环出气口;13、外循环进气口;14、外循环出气口;2、喷淋组件;21、蓄液槽;221、第一喷淋头;222、第二喷淋头;23、水泵;3、机械制冷组件;31、压缩机;32、冷凝器;331、第一电子膨胀阀;332、第二电子膨胀阀;333、干燥过滤器;34、蒸发器;4、内循环风机组件;5、外循环风机组件;6、待冷却区域;61、温度传感器;62、湿度传感器。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。本申请使用的例如“上”、“上方”、“下”、“下方”、“第一端”、“第二端”、“一端”、“另一端”等表示空间相对位置的术语是出于便于说明的目的来描述如附图中所示的一个单元或特征相对于另一个单元或特征的关系。空间相对位置的术语可以旨在包括设备在使用或工作中除了图中所示方位以外的不同方位。例如,如果将图中的设备翻转,则被描述为位于其他单元或特征“下方”或“之下”的单元将位于其他单元或特征“上方”。因此,示例性术语“下方”可以囊括上方和下方这两种方位。设备可以以其他方式被定向(旋转90度或其他朝向),并相应地解释本文使用的与空间相关的描述语。
此外,术语“安装”、“设置”、“设有”、“连接”、“滑动连接”、“固定”、“套接”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
目前的数据中心制冷设备,模式单一,无法利用季节和昼夜温差变化减少能源消耗,对自然冷源利用低,不能合理调节控制数据机房温度,传统蒸发冷却机组喷淋冷却与冷却侧的负荷不匹配,水消耗过多,机械制冷投入时机不尽合理、运行时间长、耗能多等等原因,导致制冷消耗的电能占到机房能耗的35%以上,而且制冷效果还有待提高,这对数据中心的日常管理工作带来一定的困难。因此亟需设计可变速调节的间接蒸发冷却机组,完成数据中心机房全年运行的精准制冷调节,从而解决了数据中心的制冷自然冷源利用率低,能耗多等 问题。
下面将结合附图,对本申请实施方式中的技术方案进行清楚、完整地描述。显然,本申请所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
如图1所示,在一种可实现的实施方式中,间接蒸发冷却机组,包括换热芯体1、喷淋组件2和机械制冷组件3;换热芯体1具备内循环进气口11、内循环出气口12、外循环进气口13和外循环出气口14;其中,换热芯体1为本领域的公知常识,其原理采用一个换热体上设有两组相互交差且不联通的通风道,两个通风道的气体在经过换热体时进行交换热量;喷淋组件2则是对于外循环进气口13和外循环出气口14的空气和换热芯体1(并保证喷淋的制冷液不进入至内循环进气口11和内循环出气口12内)进行喷淋,喷淋后的水雾蒸发,吸收室外空气中的热量,对其进行降温,使其低于室外空气湿球温度,达到接近于露点温度,实现降温,未完全蒸发的水流入蓄液槽21内,形成再次循环;机械制冷组件3则是采用机械制冷的方式对内循环出风口12的出风进行降温,提高制冷效果。
为了实现空气外循环和空气内循环进行交互换热,在内循环出气口12处设有内循环风机组件4,外循环出气口14处设有外循环风机组件5,并确保内循环风机组件4和外循环风机组件5的转速可调节;
对于机械制冷组件3,具体包括压缩机31、冷凝器32、电子膨胀阀和蒸发器34;压缩机31、冷凝器32、电子膨胀阀和蒸发器34通过管路串联构成一循环回路,且电子膨胀阀用于调节循环回路中的冷媒的流量;其运行原理为,冷媒在压缩机31的压缩排出后,进入冷凝器32冷凝,然后经过电子膨胀阀的限流下,冷媒进入蒸发器34蒸发吸收内循环出气口12排出空气中的热量,进行循环机械制冷;本申请采用电子膨胀阀的流量进行调节,进行控制机械制冷的制冷量,当然也可采用变频式压缩机31,通过频率调节,调节机械制冷的制冷量。
进一步的,为了实现去湿功能,本申请实施例的电子膨胀阀具体有两个,分别为第一电子膨胀阀331和第二电子膨胀阀332;并且,第一电子膨胀阀331和第二电子膨胀阀332串联在冷凝器32和蒸发器34之间,第二电子膨胀阀332与冷凝器32之间串联有干燥过滤器333,且第二电子膨胀阀332和干燥过滤器 333与第一电子膨胀阀331并联;通过第一电子膨胀阀331和第二电子膨胀阀332的通断选择,从而实现两种循环回路;一种循环回路,经过第一电子膨胀阀331,不具备去湿功能;另一种循环回路,经过干燥过滤器333和第二电子膨胀阀332,具备去湿功能。
作为优选的,冷凝器32位于外循环出气口14和外循环风机组件5之间;可在外部冷却循环运行的同时对冷凝器进行降温,合理利用外循环风机组件;蒸发器34位于内循环出气口12和内循环风机组件4之间,实现对内循环出气口12的出风进行降温。
在实际应用中,喷淋组件2包括蓄液槽21、喷淋部和水泵23;蓄液槽21的出水口通过另一管路连接有水泵23和喷淋部,水泵23用于从蓄液槽21内抽取制冷液,以使制冷液从喷淋部喷出至换热芯体1上;水泵23的流量可调,从而根据温度传感器61的变化,进行实时调节;
其中,水泵23的流量调节可采用多种方式,一、变速调节:改变水泵的转速,可以使水泵的性能发生变化,从而使水泵的工况点发生变化,这种方法称为变速调解;二、变径调节:叶轮经过车削以后,水泵的性能将按照一定的规律发生变化,从而使水泵的工况点发生改变,我们把车削叶轮改变水泵工况点的方法,称为变径调节;三、节流调节:对于出水管路安装闸阀的水泵装置来说,把闸阀关小时,在管路中增加了局部阻力,则管路特性曲线变陡,其工况点就沿着水泵的Q-H曲线向左上方移动。闸阀关得越小,增加的阻力越大,流量就变得越小,这种通过关小闸阀来改变水泵工况点的方法,称为节流调节或变阀调节;在本申请中,为了实现节能的效果,优选采用对水泵23采用变速调节,从而降低能耗。
进一步的,为了提高喷淋效果,喷淋部包括第一喷淋头221和第二喷淋头222;第一喷淋头221与外循环进气口13对应设置,外循环出气口14与第二喷淋头222对应设置。
具体参见图2,基于相同的发明构思,本申请还提供了一种数据中心,包括待冷却区域6和上述的间接蒸发冷却机组;间接蒸发冷却机组连接在待冷却区域6一侧;本申请中的待冷却区域6可为机房区域,也可为配电室。
间接蒸发冷却机组的外循环进气口13和外循环出气口14与数据中心的外部空气连通,从而形成外部冷却循环,外部冷却循环的路径具体参见图2中的 依次经过外循环进气口13、换热芯体1、外循环出气口14、冷凝器32和外循环风机组件5的箭头方向,从而外部空气流入,并流出至外部空气中;
间接蒸发冷却机组的内循环进气口11和内循环出气口12与待冷却区域6内部连通,从而形成内部冷却循环,内部冷却循环的路径具体参见图2中的一次经过内循环进气口11、换热芯体1、内循环出气口12、蒸发器34和内循环风机组件4的箭头方向,从待冷却区域6流入,并流出至待冷却区域6内;
并且,在待冷却区域6内设有温度传感器61和湿度传感器62,温度传感器61用于检测待冷却区域6内的温度,湿度传感器62用于检测待冷却区域6内的湿度,对应的还需要设置一控制终端,接收温度传感器61和湿度传感器62的信号,并统一协调换热芯体1、喷淋组件2和机械制冷组件3的开闭情况。
基于相同的发明构思,本申请还提供了一种数据中心的制冷控制方法,包括:将间接蒸发冷却机组的制冷控制模式分为四个制冷模式,分别为模式一、模式二、模式三和模式四;
当模式一启动时:适用于外部空气温度较低的情况下,外循环风机组件5和内循环风机组件4动作,外部冷却循环和内部冷却循环在换热芯体1处进行热交换,由外部空气直接与内部冷却循环空气进行换热,对待冷却区域6进行降温;
当模式二启动时:适用于外部空气温度较高的情况下,外循环风机组件5、内循环风机组件4和喷淋组件2同时动作,对流经外部冷却循环的空气进行喷淋,喷淋后的蒸发吸热加上外部冷却循环通过换热芯体1与内部冷却循环换热,提高对待冷却区域6的降温效果;
当模式三启动时:适用于外部空气温度更高的情况下,外循环风机组件5、内循环风机组件4、喷淋组件2和机械制冷组件3同时动作,此时,第一电子膨胀阀331打开,第二电子膨胀阀332关闭,对内循环出气口12的出风进行机械制冷,此时,喷淋后的蒸发吸热加上外部冷却循环通过换热芯体1与内部冷却循环换热后,再经过蒸发器34进行降温,进一步提高对待冷却区域6的降温效果;
当模式四启动时:适用于外部空气温度更高且湿气过高的情况下,在模式三的基础上,第一电子膨胀阀331关闭,第二电子膨胀阀332打开,此时,机械制冷组件3的循环回路流经干燥过滤器333,从而在对内循环出气口12的出 风进行机械制冷的同时进行除湿处理,即具备模式三的降温效果,同时具备除湿功能。
进一步的,本申请基于不同季节和湿度传感器62判断,选择启动模式一、模式二、模式三和模式四中的一个;
具体的,当处于冬季时,模式一启动;当处于春季或秋季时,模式二启动;当处于夏季时,模式三启动;模式三启动后,基于湿度传感器62检测结果判断是否启动模式四;其中,当检测结果大于阈值时,模式四启动,此处的阈值指的是预先设定的待冷却区域6内允许的湿度值。
更进一步的,考虑到昼夜温差变化,合理利用外部空气,有效的降低能耗和保证待冷却区域6的制冷效果,本申请在任何一种模式下,待冷却区域6的进风口温度可根据温度传感器61的检测值与预设的目标温度值的大小情况,进行实时调节,需要解释的是,此处的预设的目标温度值是指待冷却区域6内能够满足工作情况的温度值,为工作人员提前在程序内进行设定。
具体的实时调节方式如下:在模式一启动情况下:当检测值小于目标温度值时,降低外循环风机组件5和/或内循环风机组件4的转速;当检测值大于目标温度值时,提高外循环风机组件5和/或内循环风机组件4的转速。
在模式二启动情况下:当检测值小于目标温度值时,至少降低外循环风机组件5的转速、内循环风机组件4的转速和水泵23的流量(即讲点水泵23的转速)中一个;当检测值大于目标温度值时,至少提高外循环风机组件5的转速、内循环风机组件4的转速和水泵23的流量中一个。
在模式三启动情况下:当检测值小于目标温度值时,至少降低外循环风机组件5的转速、内循环风机组件4的转速、水泵23的流量、第一电子膨胀阀331的流量和压缩机31的频率中的一个;当检测值大于目标温度值时,至少提高外循环风机组件5的转速、内循环风机组件4的转速、水泵23的流量、第一电子膨胀阀331的流量和压缩机31的频率中的一个。
在模式四启动情况下:当检测值小于目标温度值时,至少降低外循环风机组件5的转速、内循环风机组件4的转速、水泵23的流量、第二电子膨胀阀332的流量和压缩机31的频率中的一个;当检测值大于目标温度值时,至少提高外循环风机组件5的转速、内循环风机组件4的转速、水泵23的流量、第二电子膨胀阀332的流量和压缩机31的频率中的一个。
由此可见,本申请提供的技术方案,通过不同季节和湿度情况选择不同运 行模式,合理利用不同季节的外部空气温度进行散热,降低能耗;同时,根据每天的昼夜温差变化,利用温度传感器检测并通过调节外循环风机组件的转速、内循环风机组件的转速、水泵的流量和电子膨胀阀的流量进行精准调节,满足服务器散热的及时需求,最大限度地利用自然冷源,还满足数据机房空调的能耗降低;进一步的,将冷凝器设置在外循环出气口和外循环风机组件之间,可在外部冷却循环运行的同时对冷凝器进行降温,合理利用外循环风机组件;并设置两个喷淋头对外循环进气口和外循环出气口处喷淋,提高喷淋降温效果。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种间接蒸发冷却机组,包括换热芯体(1)、喷淋组件(2)和机械制冷组件(3);所述换热芯体(1)具备内循环进气口(11)、内循环出气口(12)、外循环进气口(13)和外循环出气口(14);其特征在于,
    所述内循环出气口(12)处设有内循环风机组件(4),所述外循环出气口(14)处设有外循环风机组件(5),所述内循环风机组件(4)和所述外循环风机组件(5)的转速可调节;
    所述机械制冷组件(3)包括压缩机(31)、冷凝器(32)、电子膨胀阀和蒸发器(34);所述压缩机(31)、冷凝器(32)、电子膨胀阀和蒸发器(34)通过管路串联构成一循环回路,且所述电子膨胀阀用于调节所述循环回路中的冷媒的流量。
  2. 根据权利要求1所述的间接蒸发冷却机组,其特征在于,所述电子膨胀阀具体有两个,分别为第一电子膨胀阀(331)和第二电子膨胀阀(332);
    所述第一电子膨胀阀(331)和所述第二电子膨胀阀(332)串联在所述冷凝器(32)和所述蒸发器(34)之间,所述第二电子膨胀阀(332)与所述冷凝器(32)之间串联有干燥过滤器(333),且所述第二电子膨胀阀(332)和所述干燥过滤器(333)与所述第一电子膨胀阀(331)并联。
  3. 根据权利要求2所述的间接蒸发冷却机组,其特征在于,所述冷凝器(32)位于所述外循环出气口(14)和所述外循环风机组件(5)之间;所述蒸发器(34)位于所述内循环出气口(12)和所述内循环风机组件(4)之间。
  4. 根据权利要求1至3任意一项所述的间接蒸发冷却机组,其特征在于,所述喷淋组件(2)包括蓄液槽(21)、喷淋部和水泵(23);
    所述蓄液槽(21)的出水口通过另一管路连接有水泵(23)和喷淋部,所述水泵(23)用于从所述蓄液槽(21)内抽取制冷液,以使制冷液从所述喷淋部喷出至所述换热芯体(1)上;所述水泵(23)的流量可调。
  5. 根据权利要求4所述的间接蒸发冷却机组,其特征在于,所述喷淋部包 括第一喷淋头(221)和第二喷淋头(222);所述第一喷淋头(221)与所述外循环进气口(13)对应设置,所述外循环出气口(14)与所述第二喷淋头(222)对应设置。
  6. 一种数据中心,其特征在于,包括待冷却区域(6)和权利要求4或5所述的间接蒸发冷却机组;所述间接蒸发冷却机组连接在所述待冷却区域(6)一侧;
    所述间接蒸发冷却机组的外循环进气口(13)和外循环出气口(14)与所述数据中心的外部空气连通,从而形成外部冷却循环;所述间接蒸发冷却机组的内循环进气口(11)和内循环出气口(12)与所述待冷却区域(6)内部连通,从而形成内部冷却循环。
  7. 根据权利要求6所述的数据中心,其特征在于,所述待冷却区域(6)内设有温度传感器(61)和湿度传感器(62)。
  8. 一种基于权利要求7所述的数据中心的制冷控制方法,其特征在于,包括:将制冷控制模式分为四个制冷模式,分别为模式一、模式二、模式三和模式四;
    当所述模式一启动时:所述外循环风机组件(5)和所述内循环风机组件(4)动作,所述外部冷却循环和所述内部冷却循环在所述换热芯体(1)处进行热交换;
    当所述模式二启动时:所述外循环风机组件(5)、所述内循环风机组件(4)和所述喷淋组件(2)同时动作,对流经所述外部冷却循环的空气进行喷淋,喷淋后的蒸发吸热加上所述外部冷却循环通过所述换热芯体(1)与所述内部冷却循环换热;
    当所述模式三启动时:所述外循环风机组件(5)、所述内循环风机组件(4)、所述喷淋组件(2)和所述机械制冷组件(3)同时动作,此时,所述第一电子膨胀阀(331)打开,所述第二电子膨胀阀(332)关闭,对所述内循环出气口(12)的出风进行机械制冷;
    当所述模式四启动时:在所述模式三的基础上,所述第一电子膨胀阀(331)关闭,所述第二电子膨胀阀(332)打开,此时,所述机械制冷组件(3)的循 环回路流经所述干燥过滤器(333),从而在对所述内循环出气口(12)的出风进行机械制冷的同时进行除湿处理。
  9. 根据权利要求8所述的制冷控制方法,其特征在于,基于不同季节和湿度传感器(62)判断,选择启动所述模式一、模式二、模式三和模式四中的一个;
    当处于冬季时,所述模式一启动;当处于春季或秋季时,所述模式二启动;当处于夏季时,所述模式三启动;所述模式三启动后,基于所述湿度传感器(62)检测结果判断是否启动所述模式四;其中,当所述检测结果大于阈值时,所述模式四启动。
  10. 根据权利要求9所述的制冷控制方法,其特征在于,在任何一种模式下,所述待冷却区域(6)的进风口温度可根据所述温度传感器(61)的检测值与预设的目标温度值的大小情况,进行实时调节。
  11. 根据权利要求10所述的制冷控制方法,其特征在于,在模式一启动情况下:当所述检测值小于所述目标温度值时,降低所述外循环风机组件(5)和/或所述内循环风机组件(4)的转速;
    当所述检测值大于所述目标温度值时,提高所述外循环风机组件(5)和/或所述内循环风机组件(4)的转速。
  12. 根据权利要求11所述的制冷控制方法,其特征在于,在模式二启动情况下:当所述检测值小于所述目标温度值时,至少降低所述外循环风机组件(5)的转速、所述内循环风机组件(4)的转速和所述水泵(23)的流量中一个;
    当所述检测值大于所述目标温度值时,至少提高所述外循环风机组件(5)的转速、所述内循环风机组件(4)的转速和所述水泵(23)的流量中一个。
  13. 根据权利要求12所述的制冷控制方法,其特征在于,在模式三启动情况下:当所述检测值小于所述目标温度值时,至少降低所述外循环风机组件(5)的转速、所述内循环风机组件(4)的转速、所述水泵(23)的流量和所述第一电子膨胀阀(331)的流量中的一个;
    当所述检测值大于所述目标温度值时,至少提高所述外循环风机组件(5)的转速、所述内循环风机组件(4)的转速、所述水泵(23)的流量和所述第一电子膨胀阀(331)的流量中的一个。
  14. 根据权利要求13所述的制冷控制方法,其特征在于,在模式四启动情况下:当所述检测值小于所述目标温度值时,至少降低所述外循环风机组件(5)的转速、所述内循环风机组件(4)的转速、所述水泵(23)的流量和所述第二电子膨胀阀(332)的流量中的一个;
    当所述检测值大于所述目标温度值时,至少提高所述外循环风机组件(5)的转速、所述内循环风机组件(4)的转速、所述水泵(23)的流量和所述第二电子膨胀阀(332)的流量中的一个。
PCT/CN2022/077165 2021-11-24 2022-02-22 间接蒸发冷却机组、数据中心及其制冷控制方法 WO2023092873A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111408665.2A CN116170994A (zh) 2021-11-24 2021-11-24 间接蒸发冷却机组、数据中心及其制冷控制方法
CN202111408665.2 2021-11-24

Publications (1)

Publication Number Publication Date
WO2023092873A1 true WO2023092873A1 (zh) 2023-06-01

Family

ID=86416900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077165 WO2023092873A1 (zh) 2021-11-24 2022-02-22 间接蒸发冷却机组、数据中心及其制冷控制方法

Country Status (2)

Country Link
CN (1) CN116170994A (zh)
WO (1) WO2023092873A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080293A (ja) * 2014-10-20 2016-05-16 三菱重工業株式会社 空気冷却器、冷却装置および原子力設備
CN106979572A (zh) * 2017-05-09 2017-07-25 合肥天鹅制冷科技有限公司 双工况空调机
CN107270581A (zh) * 2017-06-29 2017-10-20 北京京仪自动化装备技术有限公司 一种桥式双向控温系统
CN213395667U (zh) * 2020-08-12 2021-06-08 深圳易信科技股份有限公司 一种采用间接蒸发冷却方式的集装箱数据中心
CN214592518U (zh) * 2020-11-30 2021-11-02 南京佳力图机房环境技术股份有限公司 一种防反向热传导间接蒸发冷机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080293A (ja) * 2014-10-20 2016-05-16 三菱重工業株式会社 空気冷却器、冷却装置および原子力設備
CN106979572A (zh) * 2017-05-09 2017-07-25 合肥天鹅制冷科技有限公司 双工况空调机
CN107270581A (zh) * 2017-06-29 2017-10-20 北京京仪自动化装备技术有限公司 一种桥式双向控温系统
CN213395667U (zh) * 2020-08-12 2021-06-08 深圳易信科技股份有限公司 一种采用间接蒸发冷却方式的集装箱数据中心
CN214592518U (zh) * 2020-11-30 2021-11-02 南京佳力图机房环境技术股份有限公司 一种防反向热传导间接蒸发冷机组

Also Published As

Publication number Publication date
CN116170994A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
CN208253826U (zh) 一种新风间接自然冷却与机械制冷联合装置
CN203068706U (zh) 用于机房、基站冷却及节能的水帘新风系统
CN108561986B (zh) 一种间接蒸发冷却与机械制冷相结合的冷源模块及其控制方法
CN110748970B (zh) 空调系统以及空调系统的控制方法
CN106369718A (zh) 用于数据中心的模块化节能制冷装置
CN108036657B (zh) 一种复合式节水密闭型冷却塔及其控制方法
CN102353112B (zh) 填料式再循环紧凑型蒸发冷却空调机组
CN108278738A (zh) 一种多模式机房空调系统的控制方法
CN206410283U (zh) 一种数据中心的节能空调系统
CN111295084A (zh) 一种使用冷凝器及蒸发器的间接蒸发冷却空调机组
CN208620479U (zh) 一种间接蒸发冷却与机械制冷相结合的冷源模块
CN112728695A (zh) 一种可精确控制送风温湿度的节能型空调装置
WO2023092873A1 (zh) 间接蒸发冷却机组、数据中心及其制冷控制方法
CN107806675B (zh) 一种四季型风冷式除湿系统及其控制方法
CN108120313B (zh) 集成式循环水冷却系统及方法
CN206771590U (zh) 盘管‑露点间接与直接蒸发冷却联合机械制冷型空调机组
CN217957560U (zh) 间接蒸发冷却机组及数据中心
CN112268326B (zh) 一种间接蒸发冷却器及控制方法
CN213810941U (zh) 一种间接蒸发冷却器
CN112268327B (zh) 一种预冷热管间接蒸发冷却器的控制方法
CN210463393U (zh) 适用数据中心的间接蒸发冷却与机械制冷复合空调机组
CN114562761A (zh) 一种空调器控制方法及空调器
CN210951653U (zh) 复合蒸发制冷和机械制冷的冷水机组一体机
CN208887160U (zh) 一种自然冷源节能制冷系统
CN107246679B (zh) 蒸发冷却与机械制冷复合式空调机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896975

Country of ref document: EP

Kind code of ref document: A1