WO2023092761A1 - 降噪耳机音频处理方法、降噪耳机、装置及可读存储介质 - Google Patents

降噪耳机音频处理方法、降噪耳机、装置及可读存储介质 Download PDF

Info

Publication number
WO2023092761A1
WO2023092761A1 PCT/CN2021/139379 CN2021139379W WO2023092761A1 WO 2023092761 A1 WO2023092761 A1 WO 2023092761A1 CN 2021139379 W CN2021139379 W CN 2021139379W WO 2023092761 A1 WO2023092761 A1 WO 2023092761A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound signal
noise
audio processing
transfer function
noise reduction
Prior art date
Application number
PCT/CN2021/139379
Other languages
English (en)
French (fr)
Inventor
于锴
矫珊珊
华洋
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Publication of WO2023092761A1 publication Critical patent/WO2023092761A1/zh
Priority to US18/635,314 priority Critical patent/US20240257796A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17815Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the reference signals and the error signals, i.e. primary path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3026Feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3027Feedforward
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3028Filtering, e.g. Kalman filters or special analogue or digital filters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3055Transfer function of the acoustic system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/01Hearing devices using active noise cancellation

Definitions

  • the present application relates to the technical field of earphones, and in particular to an audio processing method for noise-cancelling earphones, a noise-cancelling earphone, a device, and a readable storage medium.
  • the main purpose of the present application is to provide an audio processing method for a noise-canceling earphone, a noise-canceling earphone, a device, and a readable storage medium, aiming at solving the technical problem of how to improve the noise-canceling effect of the earphone.
  • the audio processing method for noise-cancelling earphones includes the following steps:
  • the eustachian tube sound signal corresponding to the filtered sound signal is determined, and ear blockage removal processing is performed on the eustachian tube sound signal to obtain a target sound signal, and the target sound signal is output.
  • the step of obtaining the first sound signal collected by the feedback microphone and determining the first transfer function corresponding to the first sound signal it includes:
  • Compensating the second sound signal according to the preset compensation value to obtain a compensated sound signal outputting the compensated sound signal, and controlling a feedback microphone to collect a first sound signal having the compensated sound signal.
  • the step of determining the preset compensation value corresponding to the second sound signal includes:
  • the background noise is calculated according to the first sound signal and the second sound signal, and a preset compensation value interval is obtained, a matching compensation value matching the background noise in the compensation value interval is determined, and the matching compensation is determined.
  • the value is used as the preset compensation value corresponding to the second sound signal.
  • the step of determining the first transfer function corresponding to the first sound signal includes:
  • a transfer function from the second sound signal to the first sound signal is determined, and the transfer function is used as the first transfer function.
  • the step of constructing a filtered sound signal according to the first transfer function and the second sound signal includes:
  • the amplitude and phase of the first transfer function are determined, and the second sound signal is filtered according to the amplitude and phase of the first transfer function to obtain a filtered sound signal.
  • the step of determining the Eustachian tube sound signal corresponding to the filtered sound signal includes:
  • the first sound signal and the filtered sound signal are superimposed to obtain the Eustachian tube sound signal.
  • the noise reduction earphone includes a feedforward microphone, a wind noise elimination module, a feedback microphone, an ear blocking elimination module and a speaker, and the output end of the feedforward microphone is connected to the The input end of the wind noise elimination module is connected, the output end of the feedback microphone and the output end of the wind noise elimination module are connected to the input end of the ear blocking elimination module, and the output end of the ear blocking elimination module is connected to the speaker connection.
  • the noise reduction earphone further includes a transparent transmission module, the output end of the feedforward microphone is connected to the input end of the transparent transmission module, and the output end of the transparent transmission module is connected to the speaker.
  • the present application also provides an audio processing device for noise-cancelling earphones.
  • the audio processing device for noise-cancelling earphones includes a memory, a processor, and a noise-cancelling earphone audio processing program that is stored in the memory and can run on the processor.
  • the noise-cancelling earphone audio processing program is executed by the processor, the steps of the above-mentioned noise-cancelling earphone audio processing method are implemented.
  • the present application also provides a computer-readable storage medium, on which a noise-canceling earphone audio processing program is stored.
  • a noise-canceling earphone audio processing program is executed by a processor, the above-mentioned reduction The steps of the audio processing method for noisy earphones.
  • the first transfer function is determined according to the first sound signal collected by the feedback microphone, and the filtered sound signal is determined according to the second sound signal collected by the feedforward microphone, the eustachian tube sound signal corresponding to the filtered sound signal is determined, and ear plugging is carried out. Eliminate the processing to obtain and output the target sound signal.
  • the target sound signal can be directly obtained without increasing the low-frequency gain and improving Noise-canceling effect of headphones.
  • Fig. 1 is a schematic diagram of the terminal/device structure of the hardware operating environment involved in the solution of the embodiment of the present application;
  • Fig. 2 is the schematic diagram of the device of the noise reduction earphone of the present application
  • FIG. 3 is a schematic flow chart of the first embodiment of the audio processing method for noise-canceling earphones of the present application
  • FIG. 4 is a spectrum diagram in the audio processing method for noise-cancelling earphones of the present application.
  • FIG. 1 is a schematic diagram of a terminal structure of a hardware operating environment involved in the solution of the embodiment of the present application.
  • the terminal in this embodiment of the present application is a noise-canceling earphone.
  • the terminal may include: a processor 1001 , such as a CPU, a network interface 1004 , a user interface 1003 , a memory 1005 , and a communication bus 1002 .
  • the communication bus 1002 is used to realize connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 can be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • the terminal may also include a camera, an RF (Radio Frequency, radio frequency) circuit, a sensor, an audio circuit, a WiFi module, and the like.
  • sensors such as light sensors, motion sensors and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display screen according to the brightness of the ambient light, and the proximity sensor may turn off the display screen and/or backlight.
  • the terminal device may also be configured with other sensors such as a gyroscope, a barometer, a hygrometer, a thermometer, and an infrared sensor, which will not be repeated here.
  • terminal structure shown in FIG. 1 does not constitute a limitation on the terminal, and may include more or less components than those shown in the figure, or combine some components, or arrange different components.
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a noise-canceling earphone audio processing program.
  • the network interface 1004 is mainly used to connect to the background server and perform data communication with the background server;
  • the user interface 1003 is mainly used to connect to the client (client) and perform data communication with the client;
  • the processor 1001 can be used to call the noise reduction earphone audio processing program stored in the memory 1005, and perform the following operations:
  • the eustachian tube sound signal corresponding to the filtered sound signal is determined, and ear blockage removal processing is performed on the eustachian tube sound signal to obtain a target sound signal, and the target sound signal is output.
  • the noise reduction earphone includes a feedforward microphone 10 , a transparent transmission module 20 , a speaker 30 , a wind noise cancellation module 40 , an ear blocking cancellation module 50 and a feedback microphone 60 .
  • the output end of the feed-forward microphone 10 is connected with the input end of the wind noise cancellation module 40, and the output end of the feed-forward microphone 10 is connected with the input end of the transparent transmission module 20, and the output end of the transparent transmission module 20 is connected with the loudspeaker.
  • the output end of the noise elimination module 40 is connected to the input end of the ear blocking elimination module 50
  • the output end of the feedback microphone 60 is connected to the input end of the ear blocking elimination module 50
  • the output end of the ear blocking elimination module 50 is connected to the speaker 30 .
  • the feed-forward microphone 10 collects the sound signal, it will first pass through the transparent transmission module 20 for compensation processing, and then play it through the speaker 30 .
  • the feedback microphone 60 will collect the sound signal sent by the feedforward microphone 10 through the transparent transmission module 20 and then through the speaker 30 , and will also collect the external sound signal transmitted through the passive sound insulation of the noise reduction earphone.
  • a first transfer function is constructed according to all sound signals collected by the feedback microphone 60 .
  • the feed-forward microphone 10 will transmit the collected sound signal to the wind noise elimination module 40 for filtering processing, and then perform signal superposition processing, to remove the external sound signal (i.e. environmental noise) collected by the feedback microphone, and only retain the sound signal from the pharynx.
  • the signal transmitted from the drum tube to the feedback microphone is finally transmitted to the ear blocking elimination module 50 for processing, and is played through the loudspeaker 30 after the processing is completed.
  • the wind noise elimination module 40 is added to the noise reduction earphone to avoid the impact of the ear blocking elimination module 50 on the outside world.
  • the elimination of ambient sound can also meet the need to increase the low-frequency gain in the transparent transmission module 20 when the ear blocking elimination module is turned on, so as to avoid the amplification of wind noise.
  • the wind noise elimination module 40 After the wind noise elimination module 40 is added in the noise reduction earphone, because the low-frequency gain in the transparent transmission module 20 is relatively low, generally below 0 dB, the part of the energy emitted by the speaker 30 after being processed by the transparent transmission module 20 can be ignored. Considering part of the energy passing through the earphones to passively isolate sound, the complexity of the system can be reduced, and the suppression of wind noise has little effect. Therefore, the wind noise cancellation module 40 only needs to perform filter processing on the external sound signal collected by the feedforward microphone, so that it matches the signal of the feedback microphone (such as equal in amplitude and opposite in phase).
  • the housing of the noise reduction earphone is provided with a sound chamber, and the feedback microphone 60 and the speaker 30 are installed in the sound chamber. It is integrated on the main control circuit board and electrically connected with the processor on the main control circuit board. connect.
  • the earphone type of the noise reduction earphone can be a wired earphone or a wireless earphone. When it is a wired earphone, the music signal is obtained from the sound source device through the earphone cable; Get the music signal on the device.
  • the feedback microphone 60 located in the earphone sound cavity picks up the external ambient sound (i.e. ambient noise) attenuated by the shell and the sound signal transmitted to the speaker by the feedforward microphone and converts it into an electrical signal, and the electrical signal is passed through the wind noise elimination
  • the electrical signals corresponding to the sound signals in the module 40 are merged and processed, and then processed by the ear blocking removal module, and then input into the speaker 10 together with the music signal received from the sound source device, and the music and the external environment sound are played by the speaker 10, so that the user can easily While listening to music, you can clearly hear the ambient sound of the outside world.
  • a noise reduction earphone including a feedforward microphone, a wind noise cancellation module, a feedback microphone, an ear blocking elimination module and a loudspeaker, and establishing a feedforward microphone, a wind noise cancellation module, a feedback microphone, an ear blocking Eliminate the connection relationship between the module and the speaker, so as to avoid the phenomenon that the noise-cancelling earphones are easy to amplify the wind noise or even break the sound when the low-frequency band is high-gain, and the elimination of the external environment sound is avoided through the wind noise elimination module.
  • the ear blocking elimination module is turned on, there is no need to increase the low-frequency gain, which improves the noise reduction effect of the earphone.
  • the present application provides an audio processing method for noise-canceling earphones.
  • the audio processing method for noise-canceling earphones includes the following steps:
  • Step S10 acquiring a first sound signal collected by a feedback microphone, and determining a first transfer function corresponding to the first sound signal;
  • Noise-cancelling headphones reduce external noise energy by combining passive sound isolation and active noise reduction.
  • a transparent transmission mode is added to the noise-canceling headphones, that is, the external environment sound is picked up by the feed-forward microphone, and after being processed by the transparent transmission module, it is played by the speaker to supplement the passive sound insulation effect.
  • the isolation of external sound allows the user to hear the external sound.
  • the wearer's voice when the user wears noise-cancelling headphones, the wearer's voice will be transmitted to the ear canal through the eustachian tube, mainly the low-to-medium frequency sound of 1.5KHz, which will produce an ear blocking effect. Therefore, a feedback path can be added on the basis of the transparent transmission mode, and the wearer's voice transmitted to the ear canal can be picked up through the feedback path, and then processed by the ear blocking elimination module, and then emitted by the speaker for cancellation. And adding an ear blocking elimination module can effectively reduce the low-frequency lift of the wearer's speaking voice. However, the occlusion elimination module will also reduce the external noise, that is, the low frequency will be reduced by 10-20dB in the transparent transmission mode. Therefore, in order to make the low frequency as close as possible to the external environment in the transparent transmission mode, in the transparent transmission mode, an additional compensation is performed through the transparent transmission module.
  • the noise reduction earphone in this embodiment may include a feedforward microphone, a transparent transmission module, and an ear blocking elimination module , wind noise cancellation module, horn and feedback microphone.
  • the feedback microphone can receive the external sound coming in through the passive sound insulation of the earphone, and can also receive the sound emitted by the feedforward microphone through the transparent transmission module and then through the speaker.
  • the low-frequency gain in the transparent transmission module is low, generally below 0dB, superimposed with the incoming part through passive sound insulation, and the sound pressure level increases by less than 3dB, which has little effect on the overall.
  • the wind noise cancellation module in this embodiment only needs to filter the external sound signal collected by the feed-forward microphone, and the filtering process is performed based on the passive sound isolation of the noise-canceling earphone.
  • the feedback microphone located near the speaker will collect the sound signal, and use the collected sound signal as the first A sound signal, and determine the first transfer function P according to the first sound signal.
  • Step S20 acquiring a second sound signal collected by a feed-forward microphone, and constructing a filtered sound signal according to the first transfer function and the second sound signal;
  • the wind noise cancellation module needs to filter the second sound signal collected by the feedforward microphone so that its amplitude is equal to P and its phase is opposite. Therefore, after determining the second sound signal collected by the feed-forward microphone, the second sound signal collected by the feed-forward microphone can be obtained through the wind noise cancellation module, and the second sound signal is processed according to the amplitude and phase of the first transfer function to obtain The sound signal of is the filtered sound signal.
  • the amplitude of the filtered sound signal is the same as that of the first sound signal, but the phase is opposite.
  • Step S30 determining the Eustachian tube sound signal corresponding to the filtered sound signal, and performing ear blockage removal processing on the Eustachian tube sound signal to obtain a target sound signal, and outputting the target sound signal.
  • the filtered sound signal and the first sound signal collected by the feedback microphone can be superimposed, since the two have equal amplitudes and opposite phases. Therefore, after superposition processing, the environmental noise received by the feedback microphone can be removed, and only the sound signal of the Eustachian tube transmitted to the feedback microphone, that is, the sound signal of the Eustachian tube, can be retained, and then the sound signal of the Eustachian tube can be input to the ear plug.
  • the ear blocking removal processing is performed in the elimination module, and after the processing is completed, the obtained target sound signal is output through the speaker. That is, the first sound signal collected by the feedback microphone can be subtracted from the sound signal of the Eustachian tube to obtain the target sound signal, and then the target sound signal can be output through the speaker.
  • the Eustachian tube sound signal corresponding to the filtered sound signal is determined, And carry out ear blockage elimination processing, obtain and output the target sound signal.
  • the target sound signal can be directly obtained without increasing the low-frequency gain and improving Noise-canceling effect of headphones.
  • step S20 of the above-mentioned embodiment obtains the first sound signal collected by the feedback microphone, Before the step of determining the first transfer function corresponding to the first sound signal, it includes:
  • Step a determining the second sound signal collected by the feedforward microphone, and determining the preset compensation value corresponding to the second sound signal;
  • the transparent transmission module is set in the noise-canceling headset, the operation of the transparent transmission mode of the noise-canceling headset can be realized according to the transparent transmission module, that is, the second sound signal, such as the external environment sound signal, is collected by the feed-forward microphone. After being compensated by the transparent transmission module, it is played by the speaker to supplement the isolation of external sound by passive sound insulation. Therefore, after acquiring the second sound signal collected by the feedforward microphone, it is necessary to determine the preset compensation value corresponding to the second sound signal in the transparent transmission module.
  • the transparent transmission module that is, the second sound signal, such as the external environment sound signal
  • the transparent transmission module After being compensated by the transparent transmission module, it is played by the speaker to supplement the isolation of external sound by passive sound insulation. Therefore, after acquiring the second sound signal collected by the feedforward microphone, it is necessary to determine the preset compensation value corresponding to the second sound signal in the transparent transmission module.
  • Step b Compensating the second sound signal according to the preset compensation value to obtain a compensated sound signal, outputting the compensated sound signal, and controlling a feedback microphone to collect a first sound signal having the compensated sound signal.
  • the second sound signal sent by the feedforward microphone can be directly compensated in the transparent transmission module according to the preset compensation value to obtain a compensated sound signal, and then the compensated sound signal is output through the speaker.
  • the speaker when the speaker outputs the compensation sound signal, it will also output the sound signal delivered by the ear blocking removal module.
  • the feedback microphone is set near the speaker, when the feedback microphone collects the sound signal, in addition to collecting the external sound introduced through the passive sound insulation of the noise-canceling earphone, it will also collect the compensation sound signal, so the feedback microphone can be collected
  • the external sound received through the passive sound insulation of the noise-canceling earphone and the compensation sound signal together serve as the first sound signal.
  • the compensated sound signal is obtained and output, and then controlled
  • the feedback microphone collects the first sound signal with the compensated sound signal, thereby ensuring the accuracy and validity of the acquired first sound signal.
  • the step of determining the preset compensation value corresponding to the second sound signal includes:
  • Step c calculating the background noise according to the first sound signal and the second sound signal, and obtaining a preset compensation value interval, determining a matching compensation value matching the background noise in the compensation value interval, and calculating the The matching compensation value is used as the preset compensation value corresponding to the second sound signal.
  • the size of the preset compensation value can be calculated and determined according to the difference between the spectrum received by the human ear and the background noise when the user wears the earphone.
  • Figure 4 is the spectrum diagram received by the human ear in different system architectures, including background noise, ear occlusion removal module, ear occlusion removal + wind noise removal module, and only when there is occlusion removal module , the low-frequency energy received by the human ear is low, and to achieve consistency with the background noise, the maximum compensation value of the transparent transmission module needs to be set to 15dB.
  • the low-frequency energy received by the human ear is higher than the background noise, and the compensation value of the transparent transmission module is a negative value. That is to say, the difference between the compensation value of the transparent transmission module and the wind noise cancellation module in the noise-cancelling earphones can reach 20dB. Therefore, when the wind blows to the feed-forward microphone, the noise-canceling headphones with the wind noise cancellation module are 20dB lower than the noise-canceling headphones without the wind noise cancellation module, which greatly reduces the influence of wind noise and improves the transparent transmission mode. wind noise experience.
  • the wind noise elimination module i.e., the ear blocking elimination module + the wind noise elimination module
  • the compensation value in the transparent transmission module is also affected by the sensitivity of the microphone, the sensitivity of the speaker, the frequency response, and the passive sound insulation of the earphone. That is, the lower the sensitivity of the microphone or the sensitivity of the speaker, the higher the compensation value.
  • the background noise can be directly calculated according to the first sound signal and the second sound signal, and then determined to match the background noise in the compensation value interval (such as 10-20dB) set in advance
  • the compensation value corresponding to the matching noise is used as the matching compensation value
  • the matching compensation value is used as the preset compensation value.
  • the background noise is calculated according to the first sound signal and the second sound signal, and then the matching compensation value matching the background noise is determined in the compensation value interval and used as the preset compensation value, thus ensuring the acquisition of Accurate effectiveness of the preset compensation value obtained.
  • the step of determining the first transfer function corresponding to the first sound signal includes:
  • Step d determining a transfer function from the second sound signal to the first sound signal, and using the transfer function as the first transfer function.
  • the volume change from the feedforward microphone to the feedback microphone is reflected, and the obtained first transfer function is ensured. Accurate and effective.
  • the step of constructing a filtered sound signal according to the first transfer function and the second sound signal includes:
  • Step e determining the magnitude and phase of the first transfer function, and filtering the second sound signal according to the magnitude and phase of the first transfer function to obtain a filtered sound signal.
  • the second sound signal collected in the feedforward microphone needs to be filtered by the wind noise elimination module.
  • the wind noise cancellation module performs filtering processing, it is necessary to first determine the amplitude and phase of the first transfer function, and then adjust the second sound signal so that the amplitude is equal to the amplitude of the first transfer function, and the phase is opposite to the first transfer function.
  • the sound signal that is, the filtered sound signal.
  • the filtered sound signal is obtained by filtering the second sound signal according to the amplitude and phase of the first transfer function, so that the subsequent cleaning of environmental noise according to the filtered sound signal can be realized, and the obtained filtered sound signal can be guaranteed. accurate effectiveness.
  • the step of determining the target sound signal of the filtered sound signal includes:
  • Step f superimposing the first sound signal and the filtered sound signal to obtain a sound signal of the Eustachian tube.
  • the superposition of the signals can be directly performed at this time, and the feedback microphone can be removed at this time
  • the received ambient noise is used to obtain the sound signal of the Eustachian tube, that is, the sound signal transmitted from the Eustachian tube to the feedback microphone.
  • the ambient noise may be the sound generated in the ear canal when the ambient sound amplified by the feed-forward microphone through transparent transmission is played by the speaker, and the ambient sound received by the feedback microphone after passive noise reduction.
  • the sound signal of the Eustachian tube can be obtained, which ensures the accuracy and validity of the acquired sound signal of the Eustachian tube.
  • the present application also provides a noise-cancelling earphone audio processing device
  • the noise-cancelling earphone audio processing device includes: a memory, a processor, and a noise-cancelling earphone audio processing program stored in the memory; the processor is used to execute The noise-cancelling earphone audio processing program is used to realize the steps of the above embodiments of the noise-cancelling earphone audio processing method.
  • the specific implementation manners of the audio processing device for noise-cancelling earphones of the present application are basically the same as the embodiments of the audio processing method for noise-cancelling earphones described above, and will not be repeated here.
  • the present application also provides a readable storage medium, the readable storage medium may be a computer-readable storage medium, the computer-readable storage medium stores one or more programs, and the one or more programs can also Executed by one or more processors to implement the steps in the embodiments of the audio processing method for noise-cancelling earphones described above.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM) as described above. , magnetic disk, optical disk), including several instructions to make a terminal device (which may be a mobile phone, computer, server, air conditioner, or network device, etc.) execute the methods described in various embodiments of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

一种降噪耳机音频处理方法、降噪耳机、装置及可读存储介质,降噪耳机音频处理方法包括获取反馈麦克风(60)采集的第一声音信号,确定第一声音信号对应的第一传递函数(S10);获取前馈麦克风(10)采集的第二声音信号,根据第一传递函数和第二声音信号构建滤波声音信号(S20);确定滤波声音信号对应的咽鼓管声音信号,并对咽鼓管生声音信号进行堵耳消除处理,得到目标声音信号,输出目标声音信号(S30)。提高了耳机的降噪效果。

Description

降噪耳机音频处理方法、降噪耳机、装置及可读存储介质
本申请要求于2021年11月29日提交中国专利局、申请号202111438107.0、申请名称为“降噪耳机音频处理方法、降噪耳机、装置及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及耳机技术领域,尤其涉及一种降噪耳机音频处理方法、降噪耳机、装置及可读存储介质。
背景技术
目前市面上存在的大多数耳机采用单一的降噪模式,不管用户所处的环境是安静还是嘈杂,当主动降噪开启时,都会采用同样的模式在低频段对噪声进行抵消。这种耳机降噪模式,在安静的环境中,如果再对低频噪声降低,使得用户会产生负压感,导致不舒服的佩戴体验。另外,由于不同的用户对不同频率的声音敏感程度不同,且左右耳之间还可能存在差异。现有产品在设计时并没有兼容用户的不同特点,因此很难达到用户都满意的降噪效果和体验。
发明内容
本申请的主要目的在于提供一种降噪耳机音频处理方法、降噪耳机、装置及可读存储介质,旨在解决如何提高耳机的降噪效果的技术问题。
为实现上述目的,本申请提供一种降噪耳机音频处理方法,所述降噪耳机音频处理方法包括以下步骤:
获取反馈麦克风采集的第一声音信号,确定所述第一声音信号对应的第一传递函数;
获取前馈麦克风采集的第二声音信号,根据所述第一传递函数和所述第二声音信号构建滤波声音信号;
确定所述滤波声音信号对应的咽鼓管声音信号,并对所述咽鼓管声音信号进行堵耳消除处理,得到目标声音信号,输出所述目标声音信号。
可选地,所述获取反馈麦克风采集的第一声音信号,确定所述第一声音信号对应的第一传递函数的步骤之前,包括:
确定前馈麦克风采集的第二声音信号,并确定所述第二声音信号对应的预设补偿值;
根据所述预设补偿值对所述第二声音信号进行补偿,得到补偿声音信号,输出所述补偿声音信号,并控制反馈麦克风采集具有所述补偿声音信号的第一声音信号。
可选地,所述确定所述第二声音信号对应的预设补偿值的步骤,包括:
根据所述第一声音信号和所述第二声音信号计算背景噪声,并获取预设的补偿值区间,确定所述补偿值区间中和所述背景噪声匹配的匹配补偿值,将所述匹配补偿值作为所述第二声音信号对应的预设补偿值。
可选地,所述确定所述第一声音信号对应的第一传递函数的步骤,包括:
确定从所述第二声音信号到第一声音信号之间的传递函数,并将所述传递函数作为第一传递函数。
可选地,所述根据所述第一传递函数和所述第二声音信号构建滤波声音信号的步骤,包括:
确定所述第一传递函数的幅度和相位,根据所述第一传递函数的幅度和相位对所述第二声音信号进行滤波处理,得到滤波声音信号。
可选地,所述确定所述滤波声音信号对应的咽鼓管声音信号的步骤,包括:
将所述第一声音信号和所述滤波声音信号进行叠加,得到咽鼓管声音信号。
此外,为实现上述目的,本申请提供一种降噪耳机,所述降噪耳机包括前馈麦克风、风噪消除模块、反馈麦克风、堵耳消除模块和喇叭,所述前馈麦克风的输出端与风噪消除模块的输入端连接,所述反馈麦克风的输出端和所述风噪消除模块的输出端均与所述堵耳消除模块的输入端连接,所述堵耳消除模块的输出端与所述喇叭连接。
可选地,降噪耳机还包括透传模块,所述前馈麦克风的输出端与透传模块的输入端连接,所述透传模块的输出端和所述喇叭连接。
此外,为实现上述目的,本申请还提供一种降噪耳机音频处理装置,降噪耳机音频处理装置包括存储器、处理器及存储在存储器上并可在处理器上运行的降噪耳机音频处理程序,降噪耳机音频处理程序被处理器执行时实现如上述的降噪耳机音频处理方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,计算机可读存储介质上存储有降噪耳机音频处理程序,降噪耳机音频处理程序被处理器执行时实现如上述的降噪耳机音频处理方法的步骤。
本申请通过根据反馈麦克风采集的第一声音信号确定第一传递函数,并根据前馈麦克风采集的第二声音信号确定滤波声音信号,确定滤波声音信号对应的咽鼓管声音信号,并进行堵耳消除处理,得到并输出目标声音信号。从而避免降噪耳机在低频段较高增益时容易将风噪声放大甚至破音的现象发生,并且通过构建第一传递函数进行环境噪声的去除,直接得到目标声音信号,无需增大低频增益,提高了耳机的降噪效果。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的终端\装置结构示意图;
图2为本申请降噪耳机的装置示意图;
图3为本申请降噪耳机音频处理方法第一实施例的流程示意图;
图4为本申请降噪耳机音频处理方法中的频谱图。
附图标号说明:
标号 名称 标号 名称
10 前馈麦克风 20 透传模块
30 喇叭 40 风噪消除模块
50 堵耳消除模块 60 反馈麦克风
本申请目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的终端结构示意图。
本申请实施例终端为降噪耳机。
如图1所示,该终端可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
可选地,终端还可以包括摄像头、RF(Radio Frequency,射频)电路,传感器、音频电路、WiFi模块等等。其中,传感器比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示屏的亮度,接近传感器可在终端设备移动到耳边时,关闭显示屏和/或背光。当然,终端设备还可配置陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及降噪耳机音频处理程序。
在图1所示的终端中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而处理器1001可以用于调用存储器1005中存储的降噪耳机音频处理程序,并执行以下操作:
获取反馈麦克风采集的第一声音信号,确定所述第一声音信号对应的第一传递函数;
获取前馈麦克风采集的第二声音信号,根据所述第一传递函数和所述第二声音信号构建滤波声音信号;
确定所述滤波声音信号对应的咽鼓管声音信号,并对所述咽鼓管声音信号进行堵耳消除处理,得到目标声音信号,输出所述目标声音信号。
在本申请实施例中,如图2所示,降噪耳机包括前馈麦克风10、透传模块20、喇叭30、风噪消除模块40、堵耳消除模块50和反馈麦克风60。其中,前馈麦克风10的输出端与风噪消除模块40的输入端连接,并且前馈麦克风10的输出端与透传模块20的输入端连接,透传模块20的输出端与喇叭连接,风噪消除模块40的输出端与堵耳消除模块50的输入端连接,反馈麦克风60的输出端与堵耳消除模块50的输入端连接,堵耳消除模块50的输出端与喇叭30连接。并且前馈麦克风10在采集到声音信号后,会先经过透传模块20进行补偿处理,然后再通过喇叭30进行播放。而反馈麦克风60会采集前馈麦克风10经过透传模块20再经过喇叭30发出的声音信号,还会采集通过降噪耳机的被动隔声传入的外界声音信号。根据反馈麦克风60采集的所有声音信号构建第一传递函数。并且前馈麦克风10会将采集的声音信号传递至风噪消除模块40进行滤波处理,再进行信号叠加处理,即可去除反馈麦克风采集到的外界声音信号(即环境噪声),仅保留了从咽鼓管传入到反馈麦克风的信号,最终传入到堵耳消除模块50进行处理,并在处理完成后通过喇叭30进行播放。
并且为避免透传模块20在低频段较高增益时,容易将风噪声放大甚至出现破音的现象,通过在降噪耳机中增加风噪消除模块40,以实现避免堵耳消除模块50对外界环境音的消除,同时也能满足在开启堵耳消除模块时,无需在透传模块20中增大低频增益,避免对风噪的放大。
在降噪耳机中增加风噪消除模块40后,由于透传模块20中低频增益较低,一般在0dB以下,因此经透传模块20处理后再由喇叭30发出的部分能量可以忽略不计,仅考虑通过耳机被动隔声出入的部分能量,从而可以实现降低系统的复杂度,且对风噪的抑制影响不大。因此风噪消除模块40仅需将前馈麦克风收集到的外界声音信号进行滤波器处理,使其与反 馈麦克风的信号匹配(如幅度相等,相位相反)。
此外,在本申请实施例中,降噪耳机的壳体上设置发声腔,反馈麦克风60和喇叭30均安装于发声腔内,风噪消除模块40、堵耳消除模块50和透传模块20可以集成在主控电路板上,并与主控电路板上的处理器电连接,主控电路板安装于壳体内部,主控电路板通过导线与前馈麦克风10、喇叭30和反馈麦克风60电连接。并且在本申请实施例中,降噪耳机的耳机类型可以为有线耳机或无线耳机,当为有线耳机时,通过耳机线从音源设备上获取音乐信号,当为无线耳机时,通过蓝牙模块从音源设备上获取音乐信号。
由位于耳机发声腔内的反馈麦克风60拾取经过壳体衰减后的外界环境声(即环境噪声)和前馈麦克风传递到喇叭的声音信号并转化为电信号,将该电信号通过与风噪消除模块40中声音信号对应的电信号进行合并处理,再通过堵耳消除模块处理后,与从音源设备接收的音乐信号一同输入喇叭10,由喇叭10播放出音乐和外界环境声,如此,用户便能在听到音乐的同时,清楚地听到外界的环境声。
在本实施例中,通过设计一种降噪耳机,包括前馈麦克风、风噪消除模块、反馈麦克风、堵耳消除模块和喇叭,并建立前馈麦克风、风噪消除模块、反馈麦克风、堵耳消除模块和喇叭之间的连接关系,从而可以避免降噪耳机在低频段较高增益时容易将风噪声放大甚至出现破音的现象,并且通过风噪消除模块避免了对外界环境音的消除,同时在开启堵耳消除模块时,无需增大低频增益,提高了耳机的降噪效果。
基于上述硬件结构,请参照图3,本申请提供一种降噪耳机音频处理方法,在降噪耳机音频处理方法的第一实施例中,降噪耳机音频处理方法包括以下步骤:
步骤S10,获取反馈麦克风采集的第一声音信号,确定所述第一声音信号对应的第一传递函数;
降噪耳机通过被动隔声和主动降噪相结合,将外界噪声能量降低。为了让使用者可以听到外界的声音,在降噪耳机中增加了透传模式,即通过前馈麦克风拾取外界环境声音,经透传模块处理后,由喇叭播放出来,以补充被动隔声对外界声音的隔绝,使使用者可以听到外界的声音。
此外,当使用者佩戴降噪耳机时,佩戴者的声音会通过咽鼓管传到耳道,主要是1.5KHz的中低频声音,即会产生堵耳效应。因此可以在透传模式的基础上增加反馈通路,并通过反馈通路拾取传到耳道内的佩戴者的声音,再经过堵耳消除模块处理后由喇叭发出进行抵 消。并且增加堵耳消除模块,可以有效的降低佩戴者说话声音的低频抬升。但是堵耳消除模块会对外界噪声也进行降低,即透传模式下低频会有10-20dB的降低。因此为使透传模式下低频与外界环境尽量接近,在透传模式下,通过透传模块额外进行补偿。
在本实施例中,还可以是在具有堵耳消除模块的基础上再增加风噪消除模块,即在本实施例中的降噪耳机,可以包括前馈麦克风、透传模块、堵耳消除模块、风噪消除模块、喇叭和反馈麦克风。并且反馈麦克风能接收到通过耳机的被动隔声传入的外界声音,还能接收到前馈麦克风经过透传模块再经喇叭发出的声音。并且由于在增加风噪消除模块后,透传模块中低频增益较低,一般在0dB以下,与经过被动隔声传入的部分叠加,声压级增加小于3dB,对整体影响不大。因此在风噪消除模块进行工作时,可以将经透传模块处理后由喇叭发出的部分能量忽略,仅考虑主要通过降噪耳机被动隔声传入的部分能量,这样对风噪的抑制影响并不大,且会降低系统的复杂度。因此,在本实施例中的风噪消除模块仅仅需要将前馈麦克风收集到的外界声音信号进行滤波处理,并且滤波处理是基于降噪耳机的被动隔声情况进行的。
因此,在本实施例中,在前馈麦克风将采集的声音信号经过透传模块处理后,再经喇叭播放后,位于喇叭附近的反馈麦克风会进行声音信号采集,并将采集的声音信号作为第一声音信号,并根据此第一声音信号来确定第一传递函数P。其中确定前馈麦克风到反馈麦克风之间的第一传递函数的方式可以通过测试获得,当测试环境的音频设备播放声音时,前馈麦克风收到的声音信号为Sf,反馈麦克风接收到的声音信号为Sb,则第一传递函数P=Sb/Sf。
步骤S20,获取前馈麦克风采集的第二声音信号,根据所述第一传递函数和所述第二声音信号构建滤波声音信号;
当确定第一传递函数后,风噪消除模块需要对前馈麦克风采集到的第二声音信号进行滤波处理,使其幅度与P相等,相位相反。因此在确定前馈麦克风采集的第二声音信号后,可以通过风噪消除模块获取前馈麦克风采集的第二声音信号,并根据第一传递函数的幅度和相位对第二声音信号进行处理,得到的声音信号即滤波声音信号。其中滤波声音信号的幅度与第一声音信号的幅度相同,相位相反。
并且在本实施例中,由于第一传递函数P=Sb/Sf,风噪消除模块中对前馈mic接收到的信号进行滤波处理。若此时前馈麦克风接收到的信号A,那么该信号传到反馈麦克风,被反馈麦克风接收到的信号是B,前馈麦克风中的信号A经第一传递函数滤波后,得到与反馈麦 克风等值相反的信号-B,即A*P=-B。再将信号B与信号-B叠加,即可去除反馈麦克风接收到的环境噪声,仅保留咽鼓管传入到反馈麦克风的信号,最终传入堵耳消除模块进行处理。
步骤S30,确定所述滤波声音信号对应的咽鼓管声音信号,并对所述咽鼓管声音信号进行堵耳消除处理,得到目标声音信号,输出所述目标声音信号。
在本实施例中,当确定风噪消除模块中的滤波声音信号后,可以将滤波声音信号与反馈麦克风采集的第一声音信号进行叠加处理,由于两者之间幅度相等,相位相反。因此在经过叠加处理后,即可去除反馈麦克风接收到的环境噪声,仅保留咽鼓管传入到反馈麦克风的声音信号,即咽鼓管声音信号,再将咽鼓管声音信号输入到堵耳消除模块中进行堵耳消除处理,并在处理完成后,将得到的目标声音信号通过喇叭进行输出。即可以将反馈麦克采集的第一声音信号减去咽鼓管声音信号,得到目标声音信号,再通过喇叭输出目标声音信号。
在本实施例中,通过根据反馈麦克风采集的第一声音信号确定第一传递函数,并根据前馈麦克风采集的第二声音信号确定滤波声音信号,确定滤波声音信号对应的咽鼓管声音信号,并进行堵耳消除处理,得到并输出目标声音信号。从而避免降噪耳机在低频段较高增益时容易将风噪声放大甚至破音的现象发生,并且通过构建第一传递函数进行环境噪声的去除,直接得到目标声音信号,无需增大低频增益,提高了耳机的降噪效果。
进一步地,基于上述本申请的第一实施例,提出本申请降噪耳机音频处理方法的第二实施例,在本实施例中,上述实施例步骤S20,获取反馈麦克风采集的第一声音信号,确定所述第一声音信号对应的第一传递函数的步骤之前,包括:
步骤a,确定前馈麦克风采集的第二声音信号,并确定所述第二声音信号对应的预设补偿值;
在本实施例中,在确定前馈麦克风到反馈麦克风的第一传递函数的步骤之前,需要先获取前馈麦克风从音源处采集的声音信号,并将其作为第二声音信号。
并且由于在降噪耳机中设置有透传模块,根据透传模块可以实现降噪耳机的透传模式的运行,即在前馈麦克风采集到第二声音信号,如外界环境声音信号。经透传模块进行补偿处理后,由喇叭播放处理,以补充被动隔声对外界声音的隔绝。因此在获取到前馈麦克风采集的第二声音信号后,需要在透传模块中确定第二声音信号对应的预设补偿值。
步骤b,根据所述预设补偿值对所述第二声音信号进行补偿,得到补偿声音信号,输出 所述补偿声音信号,并控制反馈麦克风采集具有所述补偿声音信号的第一声音信号。
当确定预设补偿值后,就可以直接在透传模块中根据预设补偿值对前馈麦克风发送的第二声音信号进行补偿,得到补偿声音信号,然后再通过喇叭输出补偿声音信号。需要说明的是,在喇叭输出补偿声音信号的同时,也会输出堵耳消除模块传递过来的声音信号。并且由于反馈麦克风设置在喇叭的附近,因此在反馈麦克风进行声音信号采集时,除了采集通过降噪耳机的被动隔声传入的外界声音外,还会采集补偿声音信号,因此可以将反馈麦克风采集到的通过降噪耳机的被动隔声传入的外界声音和补偿声音信号一起作为第一声音信号。
在本实施例中,通过确定前馈麦克风采集的第二声音信号及其对应的预设补偿值,再根据预设补偿值对第二声音信号进行补偿,得到补偿声音信号并进行输出,再控制反馈麦克风采集具有补偿声音信号的第一声音信号,从而保障了获取到的第一声音信号的准确有效性。
具体地,确定所述第二声音信号对应的预设补偿值的步骤,包括:
步骤c,根据所述第一声音信号和所述第二声音信号计算背景噪声,并获取预设的补偿值区间,确定所述补偿值区间中和所述背景噪声匹配的匹配补偿值,将所述匹配补偿值作为所述第二声音信号对应的预设补偿值。
在本实施例中,由于降噪耳机中的透传模块是通过补偿前馈麦克风接收到的环境声音,使其余背景噪声一致或接近。因此预设补偿值的大小可以根据用户佩戴耳机时人耳接收的频谱与背景噪声的差值来计算确定的。例如,如图4所示,图4为不同系统架构人耳处接收到的频谱图,包括背景噪声、有堵耳消除模块、堵耳消除+风噪消除模块,并且仅仅在有堵耳消除模块时,人耳处接收到的低频能量较低,要实现与背景噪声一致,透传模块的最大补偿值就需要设置15dB。而在本实施例中的另一场景中,在增加风噪消除模块(即堵耳消除模块+风噪消除模块)后,人耳接收到的低频能量高于背景噪声,透传模块的补偿值是负值。也就是在降噪耳机中有无风噪消除模块,透传模块中的补偿值之间的差异可达到20dB。因此,当有风吹到前馈麦克风时,有风噪消除模块的降噪耳机比无风噪消除模块的降噪耳机要低20dB,极大的降低了风噪的影响,提高了透传模式下的风噪体验。
并且在本实施例中,透传模块中的补偿值的大小还会受到麦克风的灵敏度、喇叭的灵敏度、频率响应以及耳机的被动隔声影响。即若麦克风的灵敏度或喇叭的灵敏度越低,其补偿值就越高。
因此在确定第一声音信号和第二声音信号后,可以直接根据第一声音信号和第二声音信号计算背景噪声,然后在提前设置的补偿值区间(如10-20dB)中确定和背景噪声匹配的匹配噪声,将匹配噪声对应的补偿值作为匹配补偿值,并将匹配补偿值作为预设补偿值。
在本实施例中,通过根据第一声音信号和第二声音信号计算背景噪声,然后在补偿值区间中确定和背景噪声匹配的匹配补偿值,并将其作为预设补偿值,从而保障了获取到的预设补偿值的准确有效性。
具体地,确定所述第一声音信号对应的第一传递函数的步骤,包括:
步骤d,确定从所述第二声音信号到第一声音信号之间的传递函数,并将所述传递函数作为第一传递函数。
在本实施例中,确定前馈麦克风到反馈麦克风的第一传递函数时,则可以确定从第一声音信号到第二声音信号之间的传递函数,并将传递函数作为第一传递函数。例如若第一声音信号为Sb,第二声音信号为Sf,则确定第一传递函数P=Sb/Sf。其中,第一传递函数的方向是从第一声音信号到第二声音信号。
在本实施例中,通过将从第一声音信号到第二声音信号的传递函数作为第一传递函数,从而体现了前馈麦克风到反馈麦克风音量的变化,保障了获取到的第一传递函数的准确有效性。
进一步地,根据所述第一传递函数和所述第二声音信号构建滤波声音信号的步骤,包括:
步骤e,确定所述第一传递函数的幅度和相位,根据所述第一传递函数的幅度和相位对所述第二声音信号进行滤波处理,得到滤波声音信号。
在本实施例中,在确定第一传递函数后,需要通过风噪消除模块对前馈麦克风中采集的第二声音信号进行滤波处理。而在风噪消除模块进行滤波处理时,需要先确定第一传递函数的幅度和相位,然后再将第二声音信号调整为幅度和第一传递函数的幅度相等,相位和第一传递函数相反的声音信号,即滤波声音信号。
在本实施例中,通过根据第一传递函数的幅度和相位对第二声音信号进行滤波处理,得到滤波声音信号,从而可以实现后续根据滤波声音信号清除环境噪声,保障了获取到的滤波声音信号的准确有效性。
具体地,确定所述滤波声音信号目标声音信号的步骤,包括:
步骤f,将所述第一声音信号和所述滤波声音信号进行叠加,得到咽鼓管声音信号。
在本实施例中,当确定第一声音信号和滤波声音信号后,由于滤波声音信号和第一声音信号的幅度相同,相位相反,此时可以直接进行信号的叠加,此时就可以去除反馈麦克风接收到的环境噪声,得到咽鼓管声音信号,即咽鼓管传入到反馈麦克风的声音信号。其中,环境噪声可以是前馈麦克经透传放大的环境音在喇叭播放时在耳道内产生的声音,以及反馈麦克风接收到被动降噪后的环境音。
在本实施例中,通过将第一声音信号和滤波声音信号进行叠加,从而可以得到咽鼓管声音信号,保障了获取到的咽鼓管声音信号的准确有效性。
此外,本申请还提供一种降噪耳机音频处理装置,所述降噪耳机音频处理装置包括:存储器、处理器及存储在所述存储器上的降噪耳机音频处理程序;所述处理器用于执行所述降噪耳机音频处理程序,以实现上述降噪耳机音频处理方法各实施例的步骤。
本申请降噪耳机音频处理装置具体实施方式与上述降噪耳机音频处理方法各实施例基本相同,在此不再赘述。
本申请还提供了一种可读存储介质,所述可读存储介质可以为计算机可读存储介质,所述计算机可读存储介质存储有一个或者一个以上程序,所述一个或者一个以上程序还可被一个或者一个以上的处理器执行以用于实现上述降噪耳机音频处理方法各实施例的步骤。
本申请计算机可读存储介质具体实施方式与上述降噪耳机音频处理方法各实施例基本相同,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计 算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种降噪耳机音频处理方法,其特征在于,所述降噪耳机音频处理方法包括以下步骤:
    获取反馈麦克风采集的第一声音信号,确定所述第一声音信号对应的第一传递函数;
    获取前馈麦克风采集的第二声音信号,根据所述第一传递函数和所述第二声音信号构建滤波声音信号;
    确定所述滤波声音信号对应的咽鼓管声音信号,并对所述咽鼓管声音信号进行堵耳消除处理,得到目标声音信号,输出所述目标声音信号。
  2. 如权利要求1所述的降噪耳机音频处理方法,其特征在于,所述获取反馈麦克风采集的第一声音信号,确定所述第一声音信号对应的第一传递函数的步骤之前,包括:
    确定前馈麦克风采集的第二声音信号,并确定所述第二声音信号对应的预设补偿值;
    根据所述预设补偿值对所述第二声音信号进行补偿,得到补偿声音信号,输出所述补偿声音信号,并控制反馈麦克风采集具有所述补偿声音信号的第一声音信号。
  3. 如权利要求2所述的降噪耳机音频处理方法,其特征在于,所述确定所述第二声音信号对应的预设补偿值的步骤,包括:
    根据所述第一声音信号和所述第二声音信号计算背景噪声,并获取预设的补偿值区间,确定所述补偿值区间中和所述背景噪声匹配的匹配补偿值,将所述匹配补偿值作为所述第二声音信号对应的预设补偿值。
  4. 如权利要求1-3任一项所述的降噪耳机音频处理方法,其特征在于,所述确定所述第一声音信号对应的第一传递函数的步骤,包括:
    确定从所述第二声音信号到第一声音信号之间的传递函数,并将所述传递函数作为第一传递函数。
  5. 如权利要求1所述的降噪耳机音频处理方法,其特征在于,所述根据所述第一传递函数和所述第二声音信号构建滤波声音信号的步骤,包括:
    确定所述第一传递函数的幅度和相位,根据所述第一传递函数的幅度和相位对所述第二声音信号进行滤波处理,得到滤波声音信号。
  6. 如权利要求1所述的降噪耳机音频处理方法,其特征在于,所述确定所述滤波声音信号对应的咽鼓管声音信号的步骤,包括:
    将所述第一声音信号和所述滤波声音信号进行叠加,得到咽鼓管声音信号。
  7. 一种降噪耳机,其特征在于,所述降噪耳机包括前馈麦克风、风噪消除模块、反馈麦克风、堵耳消除模块和喇叭,所述前馈麦克风的输出端与所述风噪消除模块的输入端连接,所述反馈麦克风的输出端和所述风噪消除模块的输出端均与所述堵耳消除模块的输入端连接,所述堵耳消除模块的输出端与所述喇叭连接。
  8. 如权利要求7所述的降噪耳机,其特征在于,所述降噪耳机还包括透传模块,所述前馈麦克风的输出端与所述透传模块的输入端连接,所述透传模块的输出端和所述喇叭连接。
  9. 一种降噪耳机音频处理装置,其特征在于,所述降噪耳机音频处理装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的降噪耳机音频处理程序,所述降噪耳机音频处理程序被所述处理器执行时实现如权利要求1至6中任一项所述的降噪耳机音频处理方法的步骤。
  10. 一种可读存储介质,其特征在于,所述可读存储介质上存储有降噪耳机音频处理程序,所述降噪耳机音频处理程序被处理器执行时实现如权利要求1至6中任一项所述的降噪耳机音频处理方法的步骤。
PCT/CN2021/139379 2021-11-29 2021-12-18 降噪耳机音频处理方法、降噪耳机、装置及可读存储介质 WO2023092761A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/635,314 US20240257796A1 (en) 2021-11-29 2024-04-15 Audio processing method for noise-reduction earphone, noise-reduction earphone, device and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111438107.0A CN114071306B (zh) 2021-11-29 2021-11-29 降噪耳机音频处理方法、降噪耳机、装置及可读存储介质
CN202111438107.0 2021-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/635,314 Continuation US20240257796A1 (en) 2021-11-29 2024-04-15 Audio processing method for noise-reduction earphone, noise-reduction earphone, device and readable storage medium

Publications (1)

Publication Number Publication Date
WO2023092761A1 true WO2023092761A1 (zh) 2023-06-01

Family

ID=80277215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139379 WO2023092761A1 (zh) 2021-11-29 2021-12-18 降噪耳机音频处理方法、降噪耳机、装置及可读存储介质

Country Status (3)

Country Link
US (1) US20240257796A1 (zh)
CN (1) CN114071306B (zh)
WO (1) WO2023092761A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148177B (zh) * 2022-05-31 2024-10-08 歌尔股份有限公司 降低风噪的方法、装置、智能头戴设备及介质
CN116801156B (zh) * 2023-08-03 2024-06-07 荣耀终端有限公司 一种啸叫检测方法、装置、耳机、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052170A (zh) * 2012-11-02 2015-11-11 伯斯有限公司 减小在anr耳机中的闭塞效应
CN105247885A (zh) * 2012-11-02 2016-01-13 伯斯有限公司 在anr耳机中提供环境自然度
CN106888414A (zh) * 2015-12-15 2017-06-23 索尼移动通讯有限公司 具有闭塞耳朵的说话者的自身语音体验的控制
US20200020313A1 (en) * 2018-07-16 2020-01-16 Apple Inc. Headphone transparency, occlusion effect mitigation and wind noise detection
WO2020248113A1 (zh) * 2019-06-11 2020-12-17 深圳市汇顶科技股份有限公司 一种骨传声信号处理方法、装置、芯片、耳机及存储介质
WO2021135329A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 降低耳机闭塞效应的方法及相关装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418233A (zh) * 2019-07-26 2019-11-05 歌尔股份有限公司 一种耳机降噪方法、装置、耳机及可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052170A (zh) * 2012-11-02 2015-11-11 伯斯有限公司 减小在anr耳机中的闭塞效应
CN105247885A (zh) * 2012-11-02 2016-01-13 伯斯有限公司 在anr耳机中提供环境自然度
CN106888414A (zh) * 2015-12-15 2017-06-23 索尼移动通讯有限公司 具有闭塞耳朵的说话者的自身语音体验的控制
US20200020313A1 (en) * 2018-07-16 2020-01-16 Apple Inc. Headphone transparency, occlusion effect mitigation and wind noise detection
WO2020248113A1 (zh) * 2019-06-11 2020-12-17 深圳市汇顶科技股份有限公司 一种骨传声信号处理方法、装置、芯片、耳机及存储介质
WO2021135329A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 降低耳机闭塞效应的方法及相关装置

Also Published As

Publication number Publication date
US20240257796A1 (en) 2024-08-01
CN114071306B (zh) 2023-02-28
CN114071306A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
US10657950B2 (en) Headphone transparency, occlusion effect mitigation and wind noise detection
US11297443B2 (en) Hearing assistance using active noise reduction
CN106937196B (zh) 头戴式听力设备
US9949048B2 (en) Controlling own-voice experience of talker with occluded ear
CN107787589B (zh) 噪声消除系统、耳机和电子装置
JP5400166B2 (ja) 受話器およびステレオとモノラル信号を再生する方法
WO2023092761A1 (zh) 降噪耳机音频处理方法、降噪耳机、装置及可读存储介质
CN109218882B (zh) 耳机的环境声音监听方法及耳机
CN102300140A (zh) 一种通信耳机的语音增强方法、装置及降噪通信耳机
US20210345047A1 (en) Hearing assist device employing dynamic processing of voice signals
CN112637724A (zh) 耳机降噪方法、系统及存储介质
US10748522B2 (en) In-ear microphone with active noise control
US10529358B2 (en) Method and system for reducing background sounds in a noisy environment
WO2023098401A1 (zh) 具有主动降噪功能的耳机及主动降噪方法
WO2022252781A1 (zh) 降噪控制方法、电子设备及计算机可读存储装置
CN113676815A (zh) 降噪方法、装置、耳机设备及存储介质
CN113784256A (zh) 一种耳机系统和耳堵效应的控制方法
CN109716786B (zh) 耳机的有源噪声消除系统
CA2245788A1 (en) Noise-reducing stethoscope
CN113015052B (zh) 低频噪声降低的方法和可穿戴电子设备及信号处理模块
CN109151632B (zh) 头戴式耳机
US20220284878A1 (en) Hearing device comprising an active emission canceller
US11540043B1 (en) Active noise reduction earbud
WO2023283285A1 (en) Wearable audio device with enhanced voice pick-up
US20230421971A1 (en) Hearing aid comprising an active occlusion cancellation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE