WO2023092725A1 - 一种导管鞘及成像装置 - Google Patents

一种导管鞘及成像装置 Download PDF

Info

Publication number
WO2023092725A1
WO2023092725A1 PCT/CN2021/138041 CN2021138041W WO2023092725A1 WO 2023092725 A1 WO2023092725 A1 WO 2023092725A1 CN 2021138041 W CN2021138041 W CN 2021138041W WO 2023092725 A1 WO2023092725 A1 WO 2023092725A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic
catheter sheath
artificial structure
acoustic artificial
focusing
Prior art date
Application number
PCT/CN2021/138041
Other languages
English (en)
French (fr)
Inventor
马腾
张琪
宋宇霆
高磊
孔瑞明
李安然
郑海荣
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023092725A1 publication Critical patent/WO2023092725A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements

Definitions

  • the invention relates to the technical field of medical equipment design, and more specifically, relates to a catheter sheath and an imaging device.
  • Atherosclerosis is currently a disease that can cause death. It is basically a disease of the arterial vessel wall caused by atherosclerotic plaque.
  • biomedical imaging techniques such as angiography, CT angiography (CTA), and enhanced magnetic resonance angiography (CE-MRA) have been rapidly developed.
  • angiography and CTA are invasive x-ray-based techniques that require the injection of contrast agents into blood vessels; these contrast agents can cause severe allergic reactions that can be harmful in patients with kidney disease.
  • CE-MRA is safer because it does not have ionizing radiation and the contrast agent is less toxic; however, the main disadvantages of CE-MRA are higher cost and longer processing time.
  • IVUS Intravenous Ultrasound
  • IVUS is a catheter-based technology, which has been increasingly used in the detection and diagnosis of clinical atherosclerosis to overcome the shortcomings of imaging methods such as angiography
  • IVUS has the advantages of low cost, no need for radiotherapy and contrast agents, etc.
  • IVUS allows doctors to obtain detailed and accurate images of diseased blood vessels from inside the artery and evaluate their size at the same time.
  • IVUS IVUS
  • image resolution which depends on the wavelength of the sound beam
  • the preparation process is complicated, and its accuracy cannot be well guaranteed.
  • the ultrasonic transducer is easily damaged, resulting in a significant drop in the production yield of the ultrasonic transducer.
  • the present invention provides a catheter sheath and imaging device, the technical solution is as follows:
  • a kind of introducer sheath, described introducer sheath comprises:
  • the acoustic artificial structure portion has a hollow area and a sidewall structure surrounding the hollow area;
  • the side wall structure sequentially includes an acoustic artificial structure imitating a focusing lens and an acoustic artificial structure imitating a superstructure groove;
  • the first direction is a direction from the central region to the sidewall structure
  • the pseudo-focus lens acoustic artificial structure is used for sound beam focusing
  • the acoustic artificial structure of the imitation superstructure groove is used for adjusting and controlling the focus of the sound beam.
  • the introducer sheath body is a hollow cylindrical introducer sheath.
  • the ultrasonic array element in the catheter sheath is located in the area where the acoustic artificial structure part is located.
  • the maximum width of the ultrasonic array element is 2a;
  • the inner diameter of the acoustic artificial structure part is r 0 ;
  • r 0 is greater than a.
  • the refractive index of the pseudo-focusing lens acoustic artificial structure on any cross section of the acoustic artificial structure part is equal.
  • the acoustic artificial structure part in a cross section perpendicular to the axial direction of the catheter sheath, has different refractive indices of the pseudo-focusing lens acoustic artificial structure on cross sections at different heights, and the refractive index distribution is Based on central symmetry.
  • the refractive index gradually increases from the center to both sides.
  • the pseudo-focusing lens acoustic artificial structure is formed by a combination of solid aluminum spheres and polymer materials.
  • the pseudo-superstructure groove acoustic artificial structure is formed by a combination of solid aluminum spheres and polymer materials.
  • An imaging device comprising the catheter sheath described in any one of the above.
  • a catheter sheath provided by the present invention includes: a catheter sheath body, the catheter sheath body has an acoustic artificial structure part; the acoustic artificial structure part has a hollow area and a side wall structure surrounding the hollow area; , the sidewall structure sequentially includes a pseudo-focusing lens acoustic artificial structure and a pseudo-metastructure groove acoustic artificial structure; wherein, the first direction is a direction from the central region to the sidewall structure; the pseudo-focusing The acoustic artificial structure of the lens is used for focusing the sound beam; the acoustic artificial structure of the simulated superstructure groove is used for improving the focusing degree of the sound beam focusing.
  • the catheter sheath uses related theories to design a multi-layer acoustic artificial structure on the catheter sheath, and combines the metasurface to focus and control the sound beam of the ultrasonic transducer, so that the propagating sound beam can produce a focusing effect at a specific position, thereby improving its sound wave. Energy transmission efficiency, and improve its lateral resolution and signal-to-noise ratio in the depth direction.
  • the practical catheter sheath material parameters and thickness parameters are calculated; through research Metasurface and acoustic artificial focusing structure control the high-frequency ultrasonic transducer mechanism, rationally optimize and design the corresponding acoustic artificial focusing structure parameters, and improve the imaging signal-to-noise ratio and lateral resolution by adjusting the focusing of the ultrasonic transducer sound beam Effect.
  • FIG. 1 is a schematic structural view of an introducer sheath provided by an embodiment of the present invention
  • Fig. 2 is a schematic cross-sectional view along the vertical axis of an introducer sheath provided by an embodiment of the present invention
  • Fig. 3 is a schematic diagram of relative positions of an ultrasonic array element and an catheter sheath provided by an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an equivalent structure of a cross-section of an introducer sheath provided by an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of an equivalent structure of another catheter sheath cross-sectional view provided by an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view along the vertical axis of another catheter sheath provided by an embodiment of the present invention.
  • Fig. 7 is a schematic axial cross-sectional view of an introducer sheath provided by an embodiment of the present invention.
  • the inventor found that, compared with traditional ultrasonic endoscopic catheters, the high-frequency ultrasonic transducer is small in size and has a multi-layered complex structure, so its The design and manufacturing process is a major bottleneck restricting the development of high-frequency imaging technology.
  • ultrasonic transducers use planar non-focusing piezoelectric array elements, and their low lateral resolution and poor signal-to-noise ratio in the depth direction are another major bottleneck restricting the quality of high-frequency ultrasonic images.
  • the method of focusing on the transducer pressure or changing the acoustic artificial structure of the transducer surface is generally used.
  • the size and focal length of the focal spot can be changed, the preparation process is complicated and its accuracy is not high.
  • the transducer by pressing metal balls with different radii on the transducer for a long time, a concave surface is formed on the surface of the transducer, and the radius of the metal ball used is the focal length of the current focusing transducer; As far as the transducer is concerned, due to its small size, if it is press-focused, it will generally cause its ceramic pieces to break.
  • the ceramic chip is used as a component of the transducer to generate ultrasonic waves, and its damage will greatly affect the quality of the received ultrasonic echo, which will greatly reduce the imaging effect of the transducer; if the ceramic chip is severely damaged, it can be considered that the transducer will not be able to use, the transducer survival rate cannot be guaranteed.
  • relevant theories are used to design a multi-layer acoustic artificial structure on the catheter sheath, and combined with metasurfaces to focus and control the sound beam of the ultrasonic transducer, so that the propagating sound beam produces a focusing effect at a specific position, thereby Improve the transmission efficiency of its acoustic energy, and improve its lateral resolution and signal-to-noise ratio in the depth direction.
  • the practical catheter sheath material parameters and thickness parameters are calculated; through research Metasurface and acoustic artificial focusing structure control the high-frequency ultrasonic transducer mechanism, rationally optimize and design the corresponding acoustic artificial focusing structure parameters, and improve the imaging signal-to-noise ratio and lateral resolution by adjusting the focusing of the ultrasonic transducer sound beam Effect.
  • FIG. 1 is a schematic structural diagram of an introducer sheath provided by an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of an introducer sheath provided by an embodiment of the present invention along a vertical axis.
  • the introducer sheath includes:
  • An introducer sheath body having an acoustic artificial structure portion having an acoustic artificial structure portion.
  • the acoustic artificial structure portion has a hollow area and a side wall structure surrounding the hollow area.
  • the side wall structure sequentially includes a pseudo-focusing lens acoustic artificial structure and a pseudo-metagroove acoustic artificial structure.
  • the first direction is a direction from the central region to the sidewall structure.
  • the pseudo-focusing lens acoustic artificial structure is used for sound beam focusing.
  • the acoustic artificial structure of the imitation superstructure groove is used for adjusting and controlling the focus of the sound beam.
  • the introducer sheath body is a hollow cylindrical introducer sheath; as shown in Figure 1, an acoustic artificial structure part is set in a certain area of the introducer sheath body, and other areas are conventional introducer sheaths That is, as shown in Figure 2, the acoustic artificial structure part has a hollow area and a side wall structure surrounding the hollow area, and the side wall structure has a certain thickness. In this application, the side wall structure is mainly improved. specific:
  • the side wall structure includes an acoustic artificial structure of an imitation focusing lens and an acoustic artificial structure of an imitation superstructure groove, and the acoustic artificial structure of the imitation focusing lens is used for sound beam focusing; the imitation superstructure groove Acoustic artificial structures are used to control the focus of the sound beam.
  • the pseudo-focusing lens acoustic artificial structure is no longer limited to the focusing of the acoustic beam on a certain plane, and the effect mainly lies in the focusing of the rotating torus.
  • FIG. 3 is a schematic diagram of relative positions of an ultrasonic array element and an introducer sheath provided by an embodiment of the present invention.
  • the ultrasonic array element in the catheter sheath is located in the area where the acoustic artificial structure part is located.
  • the ultrasonic array element in the catheter sheath rotates at any angle, it can achieve focusing and collimation.
  • the configuration of the catheter sheath is easy to use in combination with other devices and can produce new technical effects. A new way of thinking.
  • the ultrasonic array element is generally set on the probe, and its position on the probe is fixed.
  • One end of the probe is connected to a torsion spring, and the torsion spring is connected to an external drive motor, and the external drive motor drives the torsion spring to rotate. , so as to drive the ultrasonic array element on the base to rotate clockwise or counterclockwise; as shown in Figure 3, the coaxial cable is connected to the ultrasonic array element through the hollow area of the torsion spring.
  • the catheter sheath uses related theories to design a multi-layer acoustic artificial structure on the catheter sheath, and combines the metasurface to focus and control the sound field of the ultrasonic transducer (ultrasonic array element), so that the propagating sound field can be focused at a specific position , thereby improving the transmission efficiency of its acoustic energy, and improving its lateral resolution and signal-to-noise ratio in the depth direction.
  • FIG. 4 is a schematic diagram of an equivalent structure of a cross-section of an introducer sheath provided by an embodiment of the present invention; refer to FIG. Schematic diagram of the equivalent structure of another introducer sheath section view.
  • the maximum width of the ultrasonic array element is 2a.
  • the inner diameter of the acoustic artificial structure part is r 0 .
  • r 0 is greater than a.
  • the inventor simplified the design in this application, setting the maximum width of the ultrasonic array element to 2a, and the inner diameter of the catheter sheath with the acoustic artificial structure part to r 0 , the thickness of the catheter sheath with the acoustic artificial structure part in the first direction is d, and the height along the axial direction of the acoustic artificial structure part is h.
  • the lateral focus of the catheter sheath with the acoustic artificial structure is realized by means of a ring structure, and it is only necessary to ensure that the inner diameter r0 is slightly greater than a, and the measurement standard can be determined according to the actual situation, and is not limited in the embodiment of the present invention.
  • the thickness d of the catheter sheath with the acoustic artificial structure part in the first direction is designed to change from a/10 to a/2, its focal depth f changes from 8a to 1a, and the focal spot radius ⁇ is smaller than a/5.
  • the axial focusing of the catheter sheath with the acoustic artificial structure part is realized by gradient refractive index, and the vertical plane through which the sound beam passes can be equivalent to a plano-concave sound lens.
  • the refractive index of the pseudo-focusing lens acoustic artificial structure on any cross section of the acoustic artificial structure part is equal.
  • the acoustic artificial structure part has different refractive indices of the pseudo-focusing lens acoustic artificial structure on cross sections at different heights z, and the refractive index distribution is center-symmetric.
  • the refractive index gradually increases from the center to both sides.
  • the refractive index at the center of the catheter sheath with the acoustic artificial structure part is the lowest, and the refractive index at the edge surfaces on both sides is the highest.
  • FIG. 6, which is a schematic cross-sectional view of another catheter sheath provided by an embodiment of the present invention along the vertical axis; refer to FIG. 7, which is an axial cross-section of a catheter sheath provided by an embodiment of the present invention schematic diagram.
  • the pseudo-focusing lens acoustic artificial structure is formed by a combination of solid aluminum spheres and polymer materials; the pseudo-superstructured groove acoustic artificial structure is formed by a combination of solid aluminum spheres and polymer materials.
  • the design of the gradient refractive index is realized by changing the filling rate of the solid aluminum spheres and the polymer material.
  • the solid aluminum ball is only an optimal choice, which has a better effect than other metal balls or metals of other shapes.
  • the propagation area of the sound wave in the pseudo-focusing lens acoustic artificial structure is circular in the lateral direction and rectangular in the axial direction.
  • the propagation length of the main lobe in the transverse direction is relatively short, and the propagation length of the side lobe is relatively long in the transverse direction.
  • the range of propagation distance s of the sound beam in the artificial focusing lens acoustic structure is
  • the appropriate refractive index n 0 and thickness d are obtained through simulation, so that the main lobe and side lobes are refracted by the inner surface of the acoustic artificial structure of the pseudo-focusing lens and coincide as much as possible, and the side lobes reach the desired focus.
  • formula (3) It can be 60° or 45°, indicating the incident angle of the side lobe when it is refracted on the inner surface of the acoustic artificial structure of the pseudo-focusing lens;
  • n the refractive index of the current catheter-sheath interface
  • represents the incident angle when refracted on the outer surface of the acoustic artificial structure of the pseudo-focusing lens
  • represents the opening angle when refracted on the outer surface of the pseudo-focusing lens acoustic artificial structure
  • represents the refraction angle when refracted on the outer surface of the acoustic artificial structure of the pseudo-focus lens.
  • a 1 (n), a 2 (n), and a 3 (n) are coefficients related to the refractive index n.
  • the radius of the focal zone can be estimated from the opening angle ⁇ .
  • n 0 0.75 is generally taken.
  • the refractive index n(z) in the axial direction is then determined.
  • the depth of focus of the horizontal focus and the depth of focus of the longitudinal focus should be equal, a rectangular area with a width of s is equivalent to a plano-concave lens with a focal length of f, and the thickness of the edge relative to the center is:
  • the refractive index of the bottom surface and the top surface is:
  • the refractive index of the remaining areas is solved according to the 90 spherical surface, and k is an undetermined coefficient:
  • n(z) n 0 cosh(kz)+ ⁇ n(z) (8)
  • an annular groove that is, an acoustic artificial structure imitating a superstructure groove
  • All The grooves are distributed periodically in the axial direction, which is equivalent to a binary periodic function of the refractive index ⁇ n(z).
  • the specially designed catheter sheath of this application utilizes relevant theories to design a multi-layer acoustic artificial structure on the catheter sheath, and combines metasurfaces to focus and control the sound beam of the ultrasonic transducer, so that the sound beam propagating can be generated at a specific position.
  • the effect of focusing thereby improving the transmission efficiency of its acoustic energy, and improving its lateral resolution and signal-to-noise ratio in the depth direction.
  • the practical catheter sheath material parameters and thickness parameters are calculated; through research Metasurface and acoustic artificial focusing structure control the high-frequency ultrasonic transducer mechanism, rationally optimize and design the corresponding acoustic artificial focusing structure parameters, and improve the imaging signal-to-noise ratio and lateral resolution by adjusting the focusing of the ultrasonic transducer sound beam Effect.
  • an imaging device is provided in another embodiment of the present invention, and the imaging device includes the catheter sheath described in the above-mentioned embodiments.
  • the imaging device has at least the same technical effect as the introducer sheath.
  • each embodiment in this specification is described in a progressive manner, and each embodiment focuses on the differences from other embodiments.
  • the description is relatively simple, and for relevant details, please refer to the description of the method part.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种导管鞘及成像装置,该导管鞘利用相关理论在导管鞘上设计多层声学人工结构,并结合超表面对超声换能器声束进行聚焦调控,使其传播的声束在特定位置产生聚焦的效果,从而改善其声波能量的传输效率,并提高其横向分辨率以及深度方向的信噪比。也就是说,应用不同声速分布的颗粒增强聚合物基复合材料,基于超表面的异常声学效应并借鉴已有的声学微纳结构设计范式,计算出实用的导管鞘材料参数和厚度参数;通过研究超表面和声学人工聚焦结构对高频超声换能器调控机制,合理优化设计相应的声学人工聚焦结构参数,并通过对超声换能器声束的聚焦调控来改善成像信噪比和横向分辨率的效果。

Description

一种导管鞘及成像装置 技术领域
本发明涉及医疗设备设计技术领域,更具体地说,涉及一种导管鞘及成像装置。
背景技术
动脉粥样硬化是目前一个可以致人死亡的疾病,基本上是由动脉粥样斑块引起的动脉血管壁病变。
为了评估动脉粥样硬化病变的形态和严重程度,生物医学成像技术如血管造影、CT血管造影(CTA)以及增强磁共振血管造影(CE-MRA)已经得到快速发展。
然而,血管造影和CTA是一种基于x射线的侵入性技术,需要在血管中注射造影剂;这些造影剂可能会导致严重的过敏反应,对肾病患者有害。
相比之下,由于CE-MRA没有电离辐射,且造影剂的毒性更小,使CE-MRA技术更安全;但是,CE-MRA的主要缺点是成本较高,加工时间较长。
进一步的,血管内超声(Intravenous Ultrasound,简称IVUS)是一种以导管为基础的技术,已经越来越多地用于临床动脉粥样硬化的检测和诊断,以克服血管造影等成像方式的缺点;具体的,IVUS具有成本低、不需要放疗和造影剂等优点,IVUS允许医生从动脉内部获得详细、准确的病变血管图像,并同时评估其大小。
但是,IVUS的缺点之一是其有限的图像分辨率,这取决于声束的波长;与其它成像相比较,这是诊断斑块的一个主要缺点;通过使用高频超声换能器可以获得更高分辨率的IVUS图像,但这是以有限的穿透深度为代价的。
近年来,美国南加州大学、北卡州立大学、加拿大多伦多大学等高校先后研发了多种用于心血管内窥成像的超声换能器;其中,高频超声换能器用于高分辨率成像,但其成像深度却很浅;低频超声换能器虽然能提高大深度成像,但同时也牺牲了分辨率;也就是说这些都导致超声在深层部位成像的 信噪比较低,图像质量较差;并且,在这些研究中高频超声换能器全部采用平面式结构,受其焦斑大小的影响,成像横向分辨率依旧较低。
此外,通过采用对换能器压聚焦或改变换能器表面声学人工结构的方式,虽然能够改变焦斑大小和焦距,但制备工艺复杂,其精度得不到很好的保证,且在制作超声换能器的过程中,容易损坏超声换能器,导致超声换能器的生产良率大大下降。
发明内容
有鉴于此,为解决上述问题,本发明提供一种导管鞘及成像装置,技术方案如下:
一种导管鞘,所述导管鞘包括:
导管鞘本体,所述导管鞘本体具有声学人工结构部分;
所述声学人工结构部分具有中空区域以及围绕所述中空区域的侧壁结构;
在第一方向上,所述侧壁结构依次包括仿聚焦透镜声学人工结构和仿超构凹槽声学人工结构;
其中,所述第一方向为由所述中心区域指向所述侧壁结构的方向;
所述仿聚焦透镜声学人工结构用于声束聚焦;
所述仿超构凹槽声学人工结构用于进行声束聚焦调控。
优选的,在上述导管鞘中,所述导管鞘本体为中空的圆柱形导管鞘。
优选的,在上述导管鞘中,所述导管鞘内的超声阵元处于所述声学人工结构部分所在区域。
优选的,在上述导管鞘中,所述超声阵元的最大宽度为2a;
所述声学人工结构部分的内径为r 0
其中,r 0大于a。
优选的,在上述导管鞘中,在垂直于导管鞘轴向的横截面内,所述声学人工结构部分的任意一个横截面上的仿聚焦透镜声学人工结构的折射率相等。
优选的,在上述导管鞘中,在垂直于导管鞘轴向的横截面内,所述声学人工结构部分在不同高度的横截面上的仿聚焦透镜声学人工结构的折射率不同,且折射率分布基于中心对称。
优选的,在上述导管鞘中,所述折射率从中心到两侧逐渐增加。
优选的,在上述导管鞘中,所述仿聚焦透镜声学人工结构由实心铝球和高分子材料组合形成。
优选的,在上述导管鞘中,所述仿超构凹槽声学人工结构由实心铝球和高分子材料组合形成。
一种成像装置,所述成像装置包括上述任一项所述的导管鞘。
相较于现有技术,本发明实现的有益效果为:
本发明提供的一种导管鞘包括:导管鞘本体,所述导管鞘本体具有声学人工结构部分;所述声学人工结构部分具有中空区域以及围绕所述中空区域的侧壁结构;在第一方向上,所述侧壁结构依次包括仿聚焦透镜声学人工结构和仿超构凹槽声学人工结构;其中,所述第一方向为由所述中心区域指向所述侧壁结构的方向;所述仿聚焦透镜声学人工结构用于声束聚焦;所述仿超构凹槽声学人工结构用于提高声束聚焦的聚焦程度。
该导管鞘利用相关理论在导管鞘上设计多层声学人工结构,并结合超表面对超声换能器声束进行聚焦调控,使其传播的声束在特定位置产生聚焦的效果,从而改善其声波能量的传输效率,并提高其横向分辨率以及深度方向的信噪比。
也就是说,应用不同声速分布的颗粒增强聚合物基复合材料,基于超表面的异常声学效应并借鉴已有的声学微纳结构设计范式,计算出实用的导管鞘材料参数和厚度参数;通过研究超表面和声学人工聚焦结构对高频超声换能器调控机制,合理优化设计相应的声学人工聚焦结构参数,并通过对超声换能器声束的聚焦调控来改善成像信噪比和横向分辨率的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种导管鞘的结构示意图;
图2为本发明实施例提供的一种导管鞘沿垂直轴向的截面示意图;
图3为本发明实施例提供的一种超声阵元和导管鞘的相对位置示意图;
图4为本发明实施例提供的一种导管鞘横截面的等效结构示意图;
图5为本发明实施例提供的另一种导管鞘截面图的等效结构示意图;
图6为本发明实施例提供的另一种导管鞘沿垂直轴向的截面示意图;
图7为本发明实施例提供的一种导管鞘轴向截面示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
基于本申请背景技术记载的内容而言,在本申请的发明创造过程中,发明人发现,与传统超声内窥导管相比,高频超声换能器体积小,具有多层复杂结构,故其设计制造工艺是制约高频成像技术发展的一大瓶颈。
此外,超声换能器大多采用平面式的非聚焦压电阵元,其横向分辨率低及深度方向信噪比差是制约高频超声图像质量的另一大瓶颈。
为了提高高频超声换能器的聚焦效果,一般采用对换能器压聚焦或改变换能器表面声学人工结构的方式,虽然能够改变焦斑大小和焦距,但制备工艺复杂,其精度得不到很好的保证,且在制作超声换能器的过程中,容易损坏超声换能器,导致超声换能器的生产良率大大下降。
具体的,通过对不同半径的金属球对换能器的长时间按压,使换能器表面形成一个凹面,所用金属球的半径即为现聚焦换能器的焦距;对于高频单阵元超声换能器而言,由于其尺寸较小,如果对其进行压聚焦操作,一般会导致其陶瓷片碎裂。
陶瓷片作为换能器产生超声波的元件,其损坏会大大影响接收到的超声回波质量,这也就大大降低换能器的成像效果;若陶瓷片损坏严重,可认为该换能器将无法使用,换能器存活率无法保证。
基于此,本申请中利用相关理论在导管鞘上设计多层声学人工结构,并结合超表面对超声换能器声束进行聚焦调控,使其传播的声束在特定位置产生聚焦的效果,从而改善其声波能量的传输效率,并提高其横向分辨率以及深度方向的信噪比。
也就是说,应用不同声速分布的颗粒增强聚合物基复合材料,基于超表面的异常声学效应并借鉴已有的声学微纳结构设计范式,计算出实用的导管鞘材料参数和厚度参数;通过研究超表面和声学人工聚焦结构对高频超声换能器调控机制,合理优化设计相应的声学人工聚焦结构参数,并通过对超声换能器声束的聚焦调控来改善成像信噪比和横向分辨率的效果。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参考图1,图1为本发明实施例提供的一种导管鞘的结构示意图;参考图2,图2为本发明实施例提供的一种导管鞘沿垂直轴向的截面示意图。
所述导管鞘包括:
导管鞘本体,所述导管鞘本体具有声学人工结构部分。
所述声学人工结构部分具有中空区域以及围绕所述中空区域的侧壁结构。
在第一方向上,所述侧壁结构依次包括仿聚焦透镜声学人工结构和仿超构凹槽声学人工结构。
其中,所述第一方向为由所述中心区域指向所述侧壁结构的方向。
所述仿聚焦透镜声学人工结构用于声束聚焦。
所述仿超构凹槽声学人工结构用于进行声束聚焦调控。
在该实施例中,可选的,所述导管鞘本体为中空的圆柱形导管鞘;如图1所示,在导管鞘本体的某一区域设置声学人工结构部分,其它区域为常规的导管鞘即可;如图2所示,该声学人工结构部分具有中空区域以及围绕所述中空区域的侧壁结构,该侧壁结构具有一定的厚度,本申请中主要是对该侧壁结构进行改进,具体的:
如图2所示,所述侧壁结构依次包括仿聚焦透镜声学人工结构和仿超构凹槽声学人工结构,所述仿聚焦透镜声学人工结构用于声束聚焦;所述仿超构凹槽声学人工结构用于进行声束聚焦调控。
由此可知,该仿聚焦透镜声学人工结构不再局限于某个平面上的声束聚焦,效果主要在于旋转圆环面的聚焦。
参考图3,图3为本发明实施例提供的一种超声阵元和导管鞘的相对位置示意图。
所述导管鞘内的超声阵元处于所述声学人工结构部分所在区域。
也就是说,当导管鞘内的超声阵元旋转任意角度时,都能实现聚焦和准直,该导管鞘的设置易于其它器件组合使用且可以产生新的技术效果,为三维超声成像提供了一种新的思路。
如图3所示,该超声阵元一般设置在探头上,其在探头上的位置固定,探头的一端与扭矩弹簧连接,该扭矩弹簧与外部驱动电机连接,通过外部驱动电机带动扭矩弹簧进行旋转,以此带动底座上的超声阵元进行顺时针或逆时针旋转;如图3中同轴电缆通过扭矩弹簧的中空区域与超声阵元连接。
由此可知,该导管鞘利用相关理论在导管鞘上设计多层声学人工结构,并结合超表面对超声换能器(超声阵元)声场进行聚焦调控,使其传播的声场在特定位置产生聚焦的效果,从而改善其声波能量的传输效率,并提高其横向分辨率以及深度方向的信噪比。
可选的,在本发明另一实施例中,参考图4,图4为本发明实施例提供的一种导管鞘横截面的等效结构示意图;参考图5,图5为本发明实施例提供的另一种导管鞘截面图的等效结构示意图。
其中,所述超声阵元的最大宽度为2a。
所述声学人工结构部分的内径为r 0
其中,r 0大于a。
在该实施例中,发明人考虑到超材料实际加工上的困难,在本申请中进行了简化设计,设定超声阵元的最大宽度为2a,具有声学人工结构部分的导管鞘的内径为r 0,具有声学人工结构部分的的导管鞘在第一方向上的厚度为d,具有声学人工结构部分的沿轴向的高度为h。
该具有声学人工结构部分的导管鞘横向的聚焦借助圆环结构实现,需保证内径r 0略大于a即可,其衡量标准可根据实际情况而定,在本发明实施例中并不进行限定。
当具有声学人工结构部分的的导管鞘在第一方向上的厚度d设计从a/10变化到a/2时,其聚焦深度f从8a变化到1a,焦斑半径δ小于a/5。
该具有声学人工结构部分的的导管鞘轴向的聚焦借助梯度折射率实现,能够把声束经过的竖直平面等效为平凹形的声透镜。
具体的,在垂直于导管鞘轴向的横截面内,所述声学人工结构部分的任意一个横截面上的仿聚焦透镜声学人工结构的折射率相等。
具体的,在垂直于导管鞘轴向的横截面内,所述声学人工结构部分在不同高度z的横截面上的仿聚焦透镜声学人工结构的折射率不同,且折射率分布基于中心对称。
并且,所述折射率从中心到两侧逐渐增加。
也就是说,具有声学人工结构部分的导管鞘中心的折射率最低,两侧边缘面的折射率最高。
可选的,参考图6,图6为本发明实施例提供的另一种导管鞘沿垂直轴向的截面示意图;参考图7,图7为本发明实施例提供的一种导管鞘轴向截面示意图。
如图6和图7所示,所述仿聚焦透镜声学人工结构由实心铝球和高分子材料组合形成;所述仿超构凹槽声学人工结构由实心铝球和高分子材料组合形成。
需要说明的是,在本发明实施例中,梯度折射率的设计是通过改变实心铝球和高分子材料的填充率来实现的。
需要说明的是,在本发明实施例中,实心铝球仅仅是一种最优的选择,相比较其他金属球或其它形状的金属具有比较好的效果。
通过上述描述可知,基于本申请实施例提供的导管鞘,声波在仿聚焦透镜声学人工结构里的传播区域在横向上为环形,轴向上为矩形。
经过声学仿真可知,主瓣在横向上的传播长度较短,旁瓣在横向上的传播长度较长,声束在仿聚焦透镜声学人工结构中的传播距离s范围为:
Figure PCTCN2021138041-appb-000001
首先确定轴向上的中心点所在横截面的折射率n 0和厚度d;当声波入射到仿聚焦透镜声学人工结构的内侧时,主瓣的入射角较小,旁瓣的入射角较大;根据全反射条件可知:
n≥n 0≥sin45°      (2)
通过仿真得到合适的折射率n 0和厚度d,使主瓣和旁瓣经过仿聚焦透镜声学人工结构的内侧表面折射后尽可能重合,并且旁瓣达到期望的焦点附近。
Figure PCTCN2021138041-appb-000002
其中,公式(3)中
Figure PCTCN2021138041-appb-000003
可以取60°或45°,表示旁瓣在仿聚焦透镜声学人工结构内侧表面折射时的入射角;
n表示当前导管鞘界面的折射率;
α表示在仿聚焦透镜声学人工结构外侧表面折射时的入射角;
β表示在仿聚焦透镜声学人工结构外侧表面折射时的张角;
γ表示在仿聚焦透镜声学人工结构外侧表面折射时的折射角。
通过计算表明聚焦深度与厚度近似满足:
Figure PCTCN2021138041-appb-000004
其中,a 1(n),a 2(n),a 3(n)是与折射率n有关的系数。
可以通过张角β估算焦区半径。
为了增加轴向上梯度折射率的变化范围,一般取n 0=0.75。
之后确定轴向上的折射率n(z)。
已知轴向上的中心点所在横截面的折射率:
n(z=0)=n 0        (5)
横向聚焦的聚焦深度和纵向聚焦的聚焦深度应该相等,宽度为s的矩形区域等效于一个焦距为f的平凹透镜,边缘相对于中心的厚度为:
Figure PCTCN2021138041-appb-000005
由此可知,底面和顶面(也就是声学人工结构部分的两个最边缘的侧横截面)的折射率为:
Figure PCTCN2021138041-appb-000006
其余区域的折射率根据卯球面进行求解,k为待定系数,:
n(z)=n 0cosh(kz)+Δn(z)        (8)
由于不同高度z的折射率不同,因此横向上的聚焦深度存在差异,为了改善准直特性,在仿聚焦透镜声学人工结构的外侧形成环形凹槽(即仿超构凹 槽声学人工结构),所有凹槽在轴向上周期分布,等效于折射率为Δn(z)的二元周期函数。
环形凹槽的深度h和几何形状(周期d,环形凹槽的宽度为Α)接近声波波长时,会发生声反常透射现象;工作频率是由声通道的深度h决定的,满足驻波条件:
Figure PCTCN2021138041-appb-000007
由此可知,本申请特殊设计的导管鞘利用相关理论在导管鞘上设计多层声学人工结构,并结合超表面对超声换能器声束进行聚焦调控,使其传播的声束在特定位置产生聚焦的效果,从而改善其声波能量的传输效率,并提高其横向分辨率以及深度方向的信噪比。
也就是说,应用不同声速分布的颗粒增强聚合物基复合材料,基于超表面的异常声学效应并借鉴已有的声学微纳结构设计范式,计算出实用的导管鞘材料参数和厚度参数;通过研究超表面和声学人工聚焦结构对高频超声换能器调控机制,合理优化设计相应的声学人工聚焦结构参数,并通过对超声换能器声束的聚焦调控来改善成像信噪比和横向分辨率的效果。
可选的,基于本发明上述全部实施例,在本发明另一实施例中还提供了一种成像装置,该成像装置包括上述实施例所述的导管鞘。
该成像装置至少具有与该导管鞘相同的技术效果。
以上对本发明所提供的一种导管鞘及成像装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个 实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备所固有的要素,或者是还包括为这些过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种导管鞘,其特征在于,所述导管鞘包括:
    导管鞘本体,所述导管鞘本体具有声学人工结构部分;
    所述声学人工结构部分具有中空区域以及围绕所述中空区域的侧壁结构;
    在第一方向上,所述侧壁结构依次包括仿聚焦透镜声学人工结构和仿超构凹槽声学人工结构;
    其中,所述第一方向为由所述中心区域指向所述侧壁结构的方向;
    所述仿聚焦透镜声学人工结构用于声束聚焦;
    所述仿超构凹槽声学人工结构用于进行声束聚焦调控。
  2. 根据权利要求1所述的导管鞘,其特征在于,所述导管鞘本体为中空的圆柱形导管鞘。
  3. 根据权利要求2所述的导管鞘,其特征在于,所述导管鞘内的超声阵元处于所述声学人工结构部分所在区域。
  4. 根据权利要求3所述的导管鞘,其特征在于,所述超声阵元的最大宽度为2a;
    所述声学人工结构部分的内径为r 0
    其中,r 0大于a。
  5. 根据权利要求1所述的导管鞘,其特征在于,在垂直于导管鞘轴向的横截面内,所述声学人工结构部分的任意一个横截面上的仿聚焦透镜声学人工结构的折射率相等。
  6. 根据权利要求1所述的导管鞘,其特征在于,在垂直于导管鞘轴向的横截面内,所述声学人工结构部分在不同高度的横截面上的仿聚焦透镜声学人工结构的折射率不同,且折射率分布基于中心对称。
  7. 根据权利要求6所述的导管鞘,其特征在于,所述折射率从中心到两侧逐渐增加。
  8. 根据权利要求1所述的导管鞘,其特征在于,所述仿聚焦透镜声学人工结构由实心铝球和高分子材料组合形成。
  9. 根据权利要求1所述的导管鞘,其特征在于,所述仿超构凹槽声学人工结构由实心铝球和高分子材料组合形成。
  10. 一种成像装置,其特征在于,所述成像装置包括权利要求1-9任一项所述的导管鞘。
PCT/CN2021/138041 2021-11-26 2021-12-14 一种导管鞘及成像装置 WO2023092725A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111424530 2021-11-26
CN202111424530.5 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023092725A1 true WO2023092725A1 (zh) 2023-06-01

Family

ID=81811149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138041 WO2023092725A1 (zh) 2021-11-26 2021-12-14 一种导管鞘及成像装置

Country Status (2)

Country Link
CN (1) CN114587417B (zh)
WO (1) WO2023092725A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023092725A1 (zh) * 2021-11-26 2023-06-01 深圳先进技术研究院 一种导管鞘及成像装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130303920A1 (en) * 2012-05-11 2013-11-14 Volcano Corporation Ultrasound Catheter For Imaging And Blood Flow Measurement
CN104605892A (zh) * 2015-01-21 2015-05-13 上海爱声生物医疗科技有限公司 具有双频率的单、多阵元ivus换能器及其成型方法
CN106267592A (zh) * 2016-08-18 2017-01-04 浙江大学创新技术研究院有限公司 一种具有超构表面的凹面聚焦换能器设计方法
CN107550519A (zh) * 2017-08-22 2018-01-09 深圳先进技术研究院 一种多功能血管内超声成像装置
CN109431543A (zh) * 2018-12-20 2019-03-08 深圳先进技术研究院 声波聚焦透镜、超声成像装置及方法
CN111065342A (zh) * 2017-08-15 2020-04-24 皇家飞利浦有限公司 用于诊断成像和治疗的腔内超声设备
CN112826536A (zh) * 2021-02-09 2021-05-25 深圳市赛禾医疗技术有限公司 一种血管内超声成像导管及系统
CN113477495A (zh) * 2021-06-26 2021-10-08 西北工业大学 一种基于堆栈排列的双频长焦深超声换能器
CN114587417A (zh) * 2021-11-26 2022-06-07 深圳先进技术研究院 一种导管鞘及成像装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556582B2 (ja) * 2000-08-02 2004-08-18 松下電器産業株式会社 超音波診断装置
US20020087081A1 (en) * 2001-01-04 2002-07-04 Manuel Serrano Method of mounting a transducer to a driveshaft
US8702609B2 (en) * 2007-07-27 2014-04-22 Meridian Cardiovascular Systems, Inc. Image-guided intravascular therapy catheters
CN101664322A (zh) * 2009-09-29 2010-03-10 绵阳索尼克电子有限责任公司 一种相控制结构的超声治疗换能器装置
CN101690677B (zh) * 2009-10-13 2011-09-21 西安交通大学 聚焦超声治疗组合阵元相控阵及多焦点剪切波成像系统
US9907534B2 (en) * 2009-12-15 2018-03-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Self-aiming directable acoustic transducer assembly for invasive medical device applications
EP2455133A1 (en) * 2010-11-18 2012-05-23 Koninklijke Philips Electronics N.V. Catheter comprising capacitive micromachined ultrasonic transducers with an adjustable focus
CN102247164B (zh) * 2011-04-18 2012-12-19 华中科技大学 一种高频声学自聚焦球面探头的制备方法
US20140221842A1 (en) * 2013-02-01 2014-08-07 Robin F. Castelino System and Method for Frequency Domain Photoacoustic Intravascular Imaging
US9883848B2 (en) * 2013-09-13 2018-02-06 Maui Imaging, Inc. Ultrasound imaging using apparent point-source transmit transducer
CN107580474B (zh) * 2015-05-11 2021-11-05 皇家飞利浦有限公司 可变形超声阵列和系统
CN105790634B (zh) * 2016-01-26 2017-09-15 上海工程技术大学 一种宽频声能回收装置
US10128439B1 (en) * 2017-06-30 2018-11-13 California Institute Of Technology Reprogrammable phononic metasurfaces
CN107492370B (zh) * 2017-07-31 2020-11-17 北京交通大学 一种可调节声波聚焦的超表面结构
CN108593783B (zh) * 2017-11-16 2021-01-01 浙江大学 一种双频共焦超声换能器
CN110772288A (zh) * 2019-12-10 2020-02-11 深圳先进技术研究院 超声波内窥镜系统和超声换能器
CN111840829A (zh) * 2020-07-21 2020-10-30 无锡迈普科技有限公司 一种多层透镜聚焦超声探头
CN112214926B (zh) * 2020-09-21 2024-06-18 南京大学 具有超构表面声透镜的环形超声换能器及优化设计方法
CN113533527A (zh) * 2021-06-26 2021-10-22 西北工业大学 一种非球面聚焦的深景超声探测器及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130303920A1 (en) * 2012-05-11 2013-11-14 Volcano Corporation Ultrasound Catheter For Imaging And Blood Flow Measurement
CN104605892A (zh) * 2015-01-21 2015-05-13 上海爱声生物医疗科技有限公司 具有双频率的单、多阵元ivus换能器及其成型方法
CN106267592A (zh) * 2016-08-18 2017-01-04 浙江大学创新技术研究院有限公司 一种具有超构表面的凹面聚焦换能器设计方法
CN111065342A (zh) * 2017-08-15 2020-04-24 皇家飞利浦有限公司 用于诊断成像和治疗的腔内超声设备
CN107550519A (zh) * 2017-08-22 2018-01-09 深圳先进技术研究院 一种多功能血管内超声成像装置
CN109431543A (zh) * 2018-12-20 2019-03-08 深圳先进技术研究院 声波聚焦透镜、超声成像装置及方法
CN112826536A (zh) * 2021-02-09 2021-05-25 深圳市赛禾医疗技术有限公司 一种血管内超声成像导管及系统
CN113477495A (zh) * 2021-06-26 2021-10-08 西北工业大学 一种基于堆栈排列的双频长焦深超声换能器
CN114587417A (zh) * 2021-11-26 2022-06-07 深圳先进技术研究院 一种导管鞘及成像装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIU, YONGQIANG ET AL.: "Ultrasound Capsule Endoscopy With a Mechanically Scanning Micro-ultrasound: A Porcine Study", ULTRASOUND IN MEDICINE & BIOLOGY, vol. 46, no. 3, 31 January 2020 (2020-01-31), XP085999042, ISSN: 0301-5629, DOI: 10.1016/j.ultrasmedbio.2019.12.003 *
ZHENG, HAIRONG ET AL.: "Advances and Trends in Ultrasound Imaging and Therapeutic Technology", SCIENCE CHINA(LIFE SCIENCES), vol. 50, no. 11, 27 May 2020 (2020-05-27), ISSN: 1674-7232 *

Also Published As

Publication number Publication date
CN114587417B (zh) 2022-11-25
CN114587417A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
US11998389B2 (en) Focused rotational IVUS transducer using single crystal composite material
RU2428120C2 (ru) Резонансный ультразвуковой датчик и ультразвуковое устройство диагностики, терапии и индикации
US8764666B2 (en) Ultrasound guided optical coherence tomography, photoacoustic probe for biomedical imaging
US5640961A (en) Device with aspherical compensation for focusing ultrasound
CN105595964B (zh) 双聚焦超声探头和稀疏阵列光声断层成像系统
JPH11503928A (ja) 腔内エコグラフィー映像カテーテル
CN106037663B (zh) 一种连续变焦超声探头及其变焦方法
WO2023092725A1 (zh) 一种导管鞘及成像装置
CN108577810B (zh) 解决声速不均匀问题的血管内光声图像重建方法及系统
Yang et al. Volumetric photoacoustic endoscopy of upper gastrointestinal tract: ultrasonic transducer technology development
WO2021196455A1 (zh) 一种超声换能器和超声成像装置
Bhargava Principles and practice of ultrasonography
Sung et al. Mechanically rotating intravascular ultrasound (IVUS) transducer: a review
Vignon et al. The stripe artifact in transcranial ultrasound imaging
US6287261B1 (en) Focused ultrasound transducers and systems
CN113080869B (zh) 超声成像探头
Jang et al. Design and fabrication of a miniaturized convex array for combined ultrasound and photoacoustic imaging of the prostate
US7909766B2 (en) Systems and methods for improving the imaging resolution of an imaging transducer
Hasegawa et al. Preliminary investigation of magnetic resonance imaging guided beamforming in flexible type ultrasonic array transducers
JPS63234951A (ja) 超音波探触子
Gopalakrishnan et al. Extending the Capability of Linear Array Ultrasound Probe to Concave Array Using Low-Cost Acoustic Lens for High Frame Rate Focused Imaging
Wu Design, Fabrication and Characterization of Ultrasound Transducers and Arrays for Biomedical Imaging and Therapy
Tang et al. Actuated reflector-based three-dimensional ultrasound imaging with adaptive-delay synthetic aperture focusing
Su Novel intravascular ultrasound transducers
Vignon et al. P3B-6 implications of mode conversion on transcranial ultrasound imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965446

Country of ref document: EP

Kind code of ref document: A1