WO2023092684A1 - 触控结构及触控显示面板 - Google Patents

触控结构及触控显示面板 Download PDF

Info

Publication number
WO2023092684A1
WO2023092684A1 PCT/CN2021/136935 CN2021136935W WO2023092684A1 WO 2023092684 A1 WO2023092684 A1 WO 2023092684A1 CN 2021136935 W CN2021136935 W CN 2021136935W WO 2023092684 A1 WO2023092684 A1 WO 2023092684A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
transistor
electrically connected
gate
metal block
Prior art date
Application number
PCT/CN2021/136935
Other languages
English (en)
French (fr)
Inventor
陆志涛
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Publication of WO2023092684A1 publication Critical patent/WO2023092684A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present application relates to the field of display technology, in particular to a touch structure and a touch display panel.
  • the integrated touch sensing performance of the display panel can bring more diverse and more convenient user experiences.
  • Projected capacitive touch screens are mainly used in the market today, which are divided into self-capacitive touch screens and mutual-capacitive touch screens.
  • the self-capacitance touch screen includes a plurality of touch electrodes 1, and each touch electrode 1 has a capacitance CP to the ground.
  • each touch electrode 1 has a capacitance CP to the ground.
  • the mutual capacitance touch screen includes a plurality of driving electrodes 2 and a plurality of sensing electrodes 3, there is a capacitance CM between adjacent driving electrodes 2 and sensing electrodes 3, when the human hand approaches the touch screen Among them, the corresponding sensing capacitance CF2 and sensing capacitance CF3 will be generated between the human hand and the corresponding driving electrode 2 and sensing electrode 3, and then the size of the capacitance CM will be changed, and the corresponding touch position can be determined according to the variation of the capacitance CM.
  • the touch accuracy of self-capacitive touch screens is higher than that of mutual-capacitive touch screens.
  • the reading methods of touch signals in passive self-capacitive touch screens mostly adopt the following two methods:
  • the touch electrodes distributed in the array can be divided into M rows of touch electrodes, for example, the X1-th row of touch electrodes, the X2-th row of touch electrodes, and the X3-th row of touch electrodes.
  • the touch electrodes distributed in the array respectively read the touch signals horizontally and vertically, so as to determine the horizontal and vertical coordinates of the touch points.
  • a touch event occurs simultaneously on the touch electrode 4 and the touch electrode 6, two abscissas X2, X3 and two ordinates Y2, Y3 will be read out, thus identifying 4 points, among which, touch electrode 5 (X2, Y3) and touch electrode 7 (X3, Y2) are ghost points without touch events; moreover, the reading method shown in Figure 5 requires M+ N touch signal reading lines.
  • the touch electrodes distributed in the array can be divided into M rows of touch electrodes, for example, the X1 row of touch electrodes, the X2 row of touch electrodes, the X3 row of touch electrodes, and the X3 row of touch electrodes.
  • the present application provides a touch control structure and a touch display panel to alleviate the technical problems of self-capacitance touch with ghost points and a large number of touch signal readout lines.
  • the present application provides a touch control structure, which includes a plurality of touch units, a plurality of touch row selection lines and a plurality of touch column readout lines, and the plurality of touch units are arranged in an array; a touch A row selection line is electrically connected to a row of touch units; a touch column readout line is electrically connected to a column of touch units.
  • the touch control unit includes a first transistor, a touch metal block and a second transistor, the source of the first transistor is used to access the corresponding electric drive signal; the touch metal block and the gate of the first transistor pole or the drain of the first transistor is electrically connected; the source of the second transistor is electrically connected to the drain of the first transistor, the gate of the second transistor is electrically connected to a corresponding touch row selection line, and the second The drain of the transistor is electrically connected to a corresponding readout line of the touch column.
  • the electric drive signal is a square wave touch drive signal
  • the touch metal block is electrically connected to the gate of the first transistor, and the source of the first transistor and the gate of the first transistor
  • the structure is at least partially overlapped in the thickness direction to form a first parasitic capacitance; the drain of the first transistor and the first metal block are at least partially overlapped in the thickness direction to form a second parasitic capacitance, and the first metal block and the first transistor's
  • the gate is located in the same film layer.
  • the gate of the first transistor and the first metal block are configured in the first gate layer; the touch metal block is configured in the first metal layer; the touch metal block and the first transistor The gates overlap at least partially in the thickness direction.
  • the first transistor is a photosensitive transistor
  • the gate of the first transistor is used to sense the light control signal
  • the electric drive signal is a constant voltage DC signal
  • the touch metal block is electrically connected to the source of the first transistor.
  • the gate of the first transistor and the gate of the second transistor are constructed on the second gate layer; the drain of the first transistor, the source of the first transistor, the drain of the second transistor, The source of the second transistor and the readout line of the touch column are constructed on the second metal layer; the touch metal block is constructed on the transparent electrode layer, and the projection of the touch metal block on the second gate layer is located on the first transistor between the gate of the second transistor and the gate of the second transistor.
  • the touch structure further includes a light-shielding metal layer, the light-shielding metal layer includes a plurality of mutually isolated light-shielding metal blocks, the light-shielding metal block and the second active layer overlap at least partially in the thickness direction, and the same light-shielding metal block The block is electrically connected to the drain of the first transistor or the drain of the second transistor.
  • the touch control unit further includes an integral amplifier module, the inverting input terminal of the integral amplifier module is electrically connected to the source of the second transistor, and the non-inverting input terminal of the integral amplifier module is used for accessing the reference voltage signal.
  • the output terminal of the integral amplifier module is electrically connected with a corresponding readout line of the touch column.
  • the integral amplifier module includes an amplifier, an integral capacitor, and a reset switch
  • the inverting input terminal of the amplifier is electrically connected to the source of the second transistor
  • the non-inverting input terminal of the amplifier is used to access a reference voltage signal
  • the amplifier The output end of the integrated capacitor is electrically connected to a corresponding readout line of the touch column; one end of the integrating capacitor is electrically connected to the inverting input end of the amplifier, and the other end of the integrating capacitor is electrically connected to the output end of the amplifier; one end of the reset switch It is electrically connected with one end of the integration capacitor, and the other end of the reset switch is electrically connected with the other end of the integration capacitor.
  • the present application provides a touch display panel, which includes the touch structure in at least one embodiment above.
  • the touch display panel includes alternately distributed display areas and touch areas, and the touch structure is disposed in the touch areas.
  • the touch display panel includes a display panel and a touch panel, the touch panel is disposed on the light emitting side of the display panel, and the touch panel includes a touch structure.
  • the touch control structure and touch display panel provided by this application configure one touch column readout line through one column of touch units, and only need N touch column readout lines to read out the required touch signals, reducing the The number of touch signal readout lines; at the same time, a touch row selection line is electrically connected to a row of touch units, and the required touch signal can be read out row by row, which can realize one touch row at the same time.
  • the outgoing line only reads the touch signal of one touch unit in the row, which avoids the occurrence of ghost points.
  • FIG. 1 is a schematic structural diagram of self-capacitance touch.
  • FIG. 2 is a schematic structural diagram of the self-capacitance touch operation in FIG. 1 .
  • FIG. 3 is a schematic structural diagram of mutual capacitive touch.
  • FIG. 4 is a schematic structural diagram of mutual capacitance touch operation in FIG. 3 .
  • FIG. 5 is a schematic structural diagram of a touch screen in a conventional technical solution.
  • FIG. 6 is another structural schematic diagram of a touch screen in a conventional technical solution.
  • FIG. 7 is a schematic structural diagram of a touch control structure provided by an embodiment of the present application.
  • FIG. 8 is an equivalent circuit diagram of the touch control unit in FIG. 7 .
  • FIG. 9 is a schematic structural diagram of the touch control unit shown in FIG. 8 .
  • FIG. 10 is another structural schematic diagram of the touch unit shown in FIG. 8 .
  • FIG. 11 is another equivalent circuit diagram of the touch unit shown in FIG. 7 .
  • FIG. 12 is a schematic structural diagram of a touch display panel provided by an embodiment of the present application.
  • FIG. 13 is another schematic structural view of the touch display panel provided by the embodiment of the present application.
  • this embodiment provides a touch control structure 100, which includes a plurality of touch units 10, a plurality of touch row selection lines and a plurality of touch column readout A plurality of touch units 10 are distributed in an array; a touch row selection line is electrically connected to a row of touch units 10 ; a touch column readout line is electrically connected to a row of touch units 10 .
  • one touch column readout line is configured through one column of touch units 10, and only N touch column readout lines are needed to read out the required touch signals. , reducing the number of touch signal readout lines; at the same time, one touch row selection line is electrically connected to a row of touch units 10, and can select and read out the required touch signals row by row, which can realize one row at the same time.
  • the touch column readout line only reads out the touch signal of one touch unit 10 in the row, which avoids the appearance of ghost points.
  • the touch control unit 10 includes a touch control substructure 12 and a second transistor TFT2, and the drain of the second transistor TFT2 is directly read out from a corresponding touch column. electrical connection.
  • the multiple touch row selection lines may include touch row selection lines GL1 , touch row selection lines GL2 , touch row selection lines GL3 , touch row selection lines GL4 . . . ...and the touch row selection line GLM, the touch row selection line GL1 can be electrically connected to the touch units 10 in the first row, the touch row selection line GL2 can be electrically connected to the touch units 10 in the second row, and the touch row selection line GL2 can be electrically connected to the touch units 10 in the second row.
  • the control line selection line GL3 can be electrically connected to the touch unit 10 in the third row, and the touch line selection line GL4 can be electrically connected to the touch unit 10 in the fourth row...
  • the touch line selection line GLM can be connected to the Mth row selection line.
  • the touch units 10 in the row are electrically connected; the multiple touch column readout lines may include touch column readout lines SL1, touch column readout lines SL2, touch column readout lines extending vertically and arranged in the horizontal direction.
  • the readout line SL3...and the touch row readout line SLN, the touch row readout line SL1 can be electrically connected with the touch units 10 of the first row, and the touch row readout line SL2 can be connected with the touch row of the second row.
  • the control unit 10 is electrically connected, and the touch column readout line SL3 can be electrically connected to the touch unit 10 in the third column...
  • the touch column readout line SLN can be electrically connected to the touch unit 10 in the Nth column.
  • FIG. 8 shows another equivalent circuit diagram of the touch unit 10 in other embodiments of the present invention.
  • the difference between the circuit diagram of the touch unit 10 shown in FIG. 8 and the circuit diagram of the touch unit 10 shown in FIG. 7 is that compared to the drain of the second transistor TFT2 in FIG.
  • the outgoing line is electrically connected.
  • the touch unit 10 in this embodiment also includes the integral amplifier module 11 shown in FIG. electrical connection.
  • the touch substructure 12 includes a touch metal block Pad and a first transistor TFT1, and the gate of the first transistor TFT1 is electrically connected to the touch metal block Pad.
  • the source of the first transistor TFT1 is used to access the corresponding touch drive signal TX; the source of the first transistor TFT1 serves as the first plate of the first parasitic capacitance Cgs, and the gate of the first transistor TFT1 serves as the first parasitic
  • the second plate of the capacitor Cgs, the drain of the first transistor TFT1 is used as the first plate of the second parasitic capacitor Cp, as shown in Figure 9, the second plate Cp2 of the second parasitic capacitor Cp can be the first metal block
  • the source of the second transistor TFT2 is electrically connected to the drain of the first transistor TFT1, and the gate of the second transistor TFT2 is electrically connected to a corresponding touch row selection line; the inverting input terminal of the integrating amplifier module 11 is connected to the The drain of the second transistor TFT2 is
  • the integral amplifier module 11 includes an amplifier 111 and an integral capacitor Cint, the inverting input terminal of the amplifier 111 is electrically connected to the drain of the second transistor TFT2, and the non-inverting input terminal of the amplifier 111 is used to access the reference voltage signal Vref, the output end of the amplifier 111 is electrically connected to a corresponding touch column readout line; one end of the integrating capacitor Cint is electrically connected to the inverting input end of the amplifier 111, and the other end of the integrating capacitor Cint is connected to the output end of the amplifier 111 electrical connection.
  • the integrating amplifier module 11 further includes a reset switch Rst, one end of the reset switch Rst is electrically connected to one end of the integrating capacitor Cint, and the other end of the reset switch Rst is electrically connected to the other end of the integrating capacitor Cint.
  • the gate of the first transistor TFT1 is electrically connected to the touch metal block Pad, and there is a first parasitic capacitance Cgs between the gate and the source of the first transistor TFT1.
  • the sensing capacitance Cf When touching or approaching the touch glass, the sensing capacitance Cf will increase; when the finger moves away, the sensing capacitance Cf will decrease.
  • the gate potential Vgate of the first transistor TFT1 is determined by the potential of the touch driving signal TX, the first parasitic capacitance Cgs, and the sensing capacitance Cf, and affects the leakage current of the first transistor TFT1.
  • Vgate VTX *Cgs/(Cgs+Cf)
  • Vgate is the gate potential of the first transistor TFT1.
  • V TX is the potential of the touch driving signal TX.
  • Cgs is the first parasitic capacitance between the gate and the source of the first transistor TFT1.
  • Cf is the inductive capacitance between the touch metal block Pad and the finger.
  • Cp is the second parasitic capacitance, which can be used as a storage capacitor for charges at this time.
  • the leakage current of the first transistor TFT1 is stored in the second parasitic capacitance Cp within a certain period of time, and is selected by the second transistor TFT2 as a row selection switch. , the amount of charge is read by the integral amplifier module 11 .
  • some embodiments use the integral amplifier module 11 in the process of charge detection, so that small signals can be amplified, so that the system has greater noise Compare.
  • FIG. 9 and FIG. 10 are schematic diagrams of two film layer structures corresponding to the touch metal block Pad and the first transistor TFT1 shown in the touch control unit 10 shown in FIG. 8 .
  • the first transistor TFT1 may adopt a bottom-gate structure.
  • the touch control structure 100 includes a first glass substrate 20, a first gate layer 30, a first gate insulating layer 40, a first active layer T1Z, a first source and drain layer, a second inorganic insulating layer 60, The first metal layer 70 , the optical glue layer 80 and the second glass substrate 90 .
  • the optical adhesive layer 80 is a film layer formed by optical adhesive (OCA, Optically Clear Adhesive), which is used as a special adhesive for bonding transparent optical elements (such as lenses, etc.). It has the characteristics of colorless and transparent, light transmittance above 95%, good bonding strength, can be cured at room temperature or medium temperature, and has the characteristics of small curing shrinkage.
  • OCA Optically Clear Adhesive
  • the first gate layer 30 includes the gate T1G of the first transistor TFT1 and the second plate Cp2 of the second parasitic capacitance Cp.
  • the projection of the second plate Cp2 of the second parasitic capacitor Cp on the first glass substrate 20 at least partially overlaps the projection of the source T1S of the first transistor TFT1 on the first glass substrate 20 .
  • the first metal layer 70 includes a touch metal block Pad, and the projection of the touch metal block Pad on the first glass substrate 20 at least partially overlaps with the projection of the gate T1G of the first transistor TFT1 on the first glass substrate 20 .
  • the first source-drain layer includes a source T1S and a drain T1D of the first transistor TFT1.
  • the touch metal block Pad may be electrically connected to the gate T1G of the first transistor TFT1 through the first via hole K1 .
  • the first transistor TFT1 may also adopt a top-gate structure.
  • the touch structure 100 includes a first glass substrate 20, a first active layer T1Z, a first gate insulating layer 40, a first gate layer, a second inorganic insulating layer 60, a first metal layer 70, an optical glue layer 80 and a second glass substrate 90 .
  • the touch metal block Pad may be electrically connected to the gate T1G of the first transistor TFT1 through the second via hole K2.
  • the first gate layer may include a gate T1G of the first transistor TFT1.
  • the first metal layer 70 includes a source T1S of the first transistor TFT1 , a drain T1D of the first transistor TFT1 , and a touch metal block Pad.
  • FIG. 11 shows another equivalent circuit diagram of the touch unit 10 in other embodiments of the present invention.
  • the difference between the circuit diagram of the touch unit 10 shown in FIG. 11 and the circuit diagram of the touch unit 10 shown in FIG. 8 is that the first transistor TFT1 shown in FIG. 8 is an N-channel thin film transistor, and the TFT1 shown in FIG.
  • the first transistor TFT1 is a photosensitive transistor.
  • the gate of the first transistor TFT1 is used to sense the light control signal VGG
  • the electrical driving signal is a constant voltage DC signal VDD
  • the touch metal block Pad is electrically connected to the source of the first transistor TFT1. .
  • the inductive capacitance Cf when the finger touches through the glass or approaches the touch metal block Pad, the inductive capacitance Cf will increase; when the finger moves away, the inductive capacitance Cf will decrease.
  • the gate of the first transistor TFT1 receives the light control signal VGG, the constant voltage direct current signal VDD will leak current through the first transistor TFT1, so as to realize remote light control.
  • the present invention also provides a touch display panel, and FIG. 12 shows a schematic structural view of the touch display panel.
  • the touch display panel includes a display area AA and a touch area TA
  • the touch display panel includes the above touch structure
  • the touch structure is disposed in the touch area TA.
  • the touch display panel is an in-cell touch display panel, and the touch layer and the display layer are simultaneously fabricated on corresponding film layers.
  • the touch display panel may include a substrate BP1, a light-shielding metal layer LS, an insulating layer JY1, a second active layer POLY1, a second gate insulating layer GI, a second gate layer GC1, an insulating layer JY2, and a second metal layer M2. , an organic insulating layer PV1 , a flat layer PLN, a third metal layer M3 , a transparent electrode layer ITO, an organic insulating layer PV2 and a black matrix layer BM.
  • the light-shielding metal layer LS may include mutually isolated light-shielding metal blocks LS1 , light-shielding metal blocks LS2 , and light-shielding metal blocks LS3 and so on. These light-shielding metal blocks at least partially overlap with the second active layer POLY1 in the thickness direction, and the same light-shielding metal block is only electrically connected to the drain of a corresponding transistor.
  • the second active layer POLY1 may include a channel region TZ of the third transistor, a channel region T1Z of the first transistor, and a channel region T2Z of the second transistor.
  • the second gate insulating layer GI may include a gate insulating block GI3 , a gate insulating block GI1 , and a gate insulating block GI2 .
  • the second gate layer GC1 may include a gate TG of the third transistor, a gate T1G of the first transistor, and a gate T2G of the second transistor.
  • the second metal layer M2 may include the drain TD of the third transistor, the source TS of the third transistor, the drain T1D of the first transistor, the source T1S of the first transistor, the drain T2D of the second transistor, the second transistor The source T2S of the touch column and the readout line SL of the touch column.
  • the third metal layer M3 exists only in the display area AA.
  • the third metal layer M3 may include a metal block M31 and a metal block M32.
  • the transparent electrode layer ITO may include a transparent electrode ITO1 , a transparent electrode ITO2 , a transparent electrode ITO3 , a touch metal block Pad, and the like.
  • the touch metal block Pad can be electrically connected to the source T1S of the first transistor through the transparent electrode ITO1 and the via hole in turn, and the source T1S of the first transistor is electrically connected to the source connection region of the first transistor through the hole.
  • the projection of the touch metal block Pad on the second gate layer GC1 is located between the gate T1G of the first transistor and the gate T2G of the second transistor.
  • the touch structure and the display layer of the display area AA in the above embodiments can be constructed in almost the same layer structure, which can reduce the thickness of the touch display panel.
  • the light-emitting device of the touch display panel after the light-emitting device of the touch display panel is packaged, it can be covered with a layer of silica gel or a glass cover to isolate fingers from the touch metal pad, which can protect the light-emitting device and improve the sliding feeling of touch.
  • FIG. 13 shows another schematic structural view of the touch display panel of the present invention.
  • the touch display panel includes a display panel 200 and a touch panel, the touch panel is arranged on the light-emitting side of the display panel 200, and the touch panel includes the above-mentioned The touch structure 100 in any embodiment. It can be understood that, in the touch display panel provided in this embodiment, one touch column readout line is configured through one column of touch units 10, and only N touch column readout lines are needed to read out the required touch signals.
  • one touch row selection line is electrically connected to a row of touch units 10, and can select and read out the required touch signals row by row, which can realize one row at the same time.
  • the touch column readout line only reads out the touch signal of one touch unit 10 in the row, which avoids the appearance of ghost points.
  • the display panel 200 in the above-mentioned embodiment may be a required structure for realizing the display function, please refer to the above-mentioned description for details.
  • the touch control structure 100 implements an active matrix charge detection touch technology, which can be used for on-cell or in-cell touch.
  • the above-mentioned display panel 200 may be, but not limited to, a VA (vertical alignment, vertical alignment) display panel, an IPS (In-Plane Switching, in-plane switching) display panel, an OLED (Organic Electroluminescence Display, organic light-emitting semiconductor) display panel, and a mini-LED display panel. Either of the display panels.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本申请公开了一种触控结构及触控显示面板,该触控结构包括多个触控单元、多条触控行选择线以及多条触控列读出线,通过一列触控单元配置一条触控列读出线,仅需要N条触控列读出线即可读出所需的触控信号;同时,一条触控行选择线与一行触控单元电性连接,可以选择一行一行地读出所需的触控信号,避免了鬼点的出现。

Description

触控结构及触控显示面板 技术领域
本申请涉及显示技术领域,具体涉及一种触控结构及触控显示面板。
背景技术
显示面板集成触控感应性能可带来更多样、更便捷的用户体验,当今市场主要采用的是投射式电容触控屏,其分为自电容触控屏和互电容触控屏。
其中,如图1和图2所示,自电容触控屏包括多个触控电极1,每个触控电极1对地存在电容CP,当人手在靠近对应的触控电极1的过程中,人手与触控电极1之间的感应电容CF会产生变化,以此可以确定触摸位置。
如图3和图4所示,互电容触控屏包括多个驱动电极2和多个感应电极3,相邻的驱动电极2与感应电极3之间存在电容CM,当人手在靠近触摸屏的过程中,人手与对应的驱动电极2、感应电极3之间会生成对应的感应电容CF2、感应电容CF3,进而改变电容CM的大小,根据电容CM的变化量可以确定对应的触摸位置。
通常情况下,自电容触控屏的触控精度高于互电容触控屏,其中,被动式自电容触控屏中触控信号的读取方式大多采用以下两种:
如图5所示的第一种读取方式:阵列分布的触控电极按行可以分为M行触控电极,例如,第X1行触控电极、第X2行触控电极、第X3行触控电极、第X4行触控电极……第XM行触控电极;同理,按列可以分为N列触控电极,例如,第Y1列触控电极、第Y2列触控电极、第Y3列触控电极、第Y4列触控电极……第YN列触控电极。
该阵列分布的触控电极分别横向、纵向读取触控信号,以此确定触控点的横、纵坐标。但是,当有多点触控时,例如,触控电极4、触控电极6同时发生触控事件时,会读出两个横坐标X2、X3和两个纵坐标Y2、Y3,因而会识别出4个点,其中,触控电极5(X2,Y3)、触控电极7(X3,Y2)均为没有触控事件的鬼点;而且,如图5所示的读取方式需要M+N条触控信号读取线。
如图6所示的第二种读取方式:阵列分布的触控电极按行可以分为M行 触控电极,例如,第X1行触控电极、第X2行触控电极、第X3行触控电极、第X4行触控电极……第XM行触控电极;同理,按列可以分为N列触控电极,例如,第Y1列触控电极、第Y2列触控电极、第Y3列触控电极、第Y4列触控电极……第YN列触控电极。
与图5不同的是,图6中每个触控单元的触控信号读出线均单独拉线引出,这样感测精度高,不会有鬼点问题。但是,这种方法走线很多,需要M*N条触控信号读出线,特别是对于大尺寸的屏幕,其集成方法与信号读取的难度都十分大。
因此,尽管自电容触控的精度高且可以湿手操作,但鬼点导致的不能多点触控、以及需要较多的触控信号读出线,严重制约了自电容触控技术的进一步发展和应用。
需要注意的是,上述关于背景技术的介绍仅仅是为了便于清楚、完整地理解本申请的技术方案。因此,不能仅仅由于其出现在本申请的背景技术中,而认为上述所涉及到的技术方案为本领域所属技术人员所公知。
技术问题
本申请提供一种触控结构及触控显示面板,以缓解自电容触控存在鬼点且需要较多数量的触控信号读出线的技术问题。
技术解决方案
第一方面,本申请提供一种触控结构,其包括多个触控单元、多条触控行选择线以及多条触控列读出线,多个触控单元呈阵列分布;一触控行选择线与一行的触控单元电性连接;一触控列读出线与一列的触控单元电性连接。
在其中一些实施方式中,触控单元包括第一晶体管、触控金属块以及第二晶体管,第一晶体管的源极用于接入对应的电驱动信号;触控金属块与第一晶体管的栅极或者第一晶体管的漏极电性连接;第二晶体管的源极与第一晶体管的漏极电性连接,第二晶体管的栅极与对应的一触控行选择线电性连接,第二晶体管的漏极与对应的一触控列读出线电性连接。
在其中一些实施方式中,电驱动信号为方波的触控驱动信号,触控金属块与第一晶体管的栅极电性连接,第一晶体管的源极与第一晶体管的栅极在触控 结构的厚度方向上至少部分重叠以形成第一寄生电容;第一晶体管的漏极与第一金属块在厚度方向上至少部分重叠以形成第二寄生电容,且第一金属块与第一晶体管的栅极位于同一膜层中。
在其中一些实施方式中,第一晶体管的栅极、第一金属块被构造于第一栅极层中;触控金属块被构造于第一金属层中;触控金属块与第一晶体管的栅极在厚度方向上至少部分重叠。
在其中一些实施方式中,第一晶体管为光敏晶体管,第一晶体管的栅极用于感应光控信号,电驱动信号为恒压直流信号,触控金属块与第一晶体管的源极电性连接。
在其中一些实施方式中,第一晶体管的栅极、第二晶体管的栅极被构造于第二栅极层;第一晶体管的漏极、第一晶体管的源极、第二晶体管的漏极、第二晶体管的源极以及触控列读出线被构造于第二金属层;触控金属块被构造于透明电极层,且触控金属块在第二栅极层上的投影位于第一晶体管的栅极与第二晶体管的栅极之间。
在其中一些实施方式中,触控结构还包括遮光金属层,遮光金属层包括多个相互隔离的遮光金属块,遮光金属块与第二有源层在厚度方向上至少部分重叠,且同一遮光金属块与第一晶体管的漏极或者第二晶体管的漏极电性连接。
在其中一些实施方式中,触控单元还包括积分放大模块,积分放大模块的反相输入端与第二晶体管的源极电性连接,积分放大模块的同相输入端用于接入参考电压信号,积分放大模块的输出端与对应的一触控列读出线电性连接。
在其中一些实施方式中,积分放大模块包括放大器、积分电容以及复位开关,放大器的反相输入端与第二晶体管的源极电性连接,放大器的同相输入端用于接入参考电压信号,放大器的输出端与对应的一触控列读出线电性连接;积分电容的一端与放大器的反相输入端电性连接,积分电容的另一端与放大器的输出端电性连接;复位开关的一端与积分电容的一端电性连接,复位开关的另一端与积分电容的另一端电性连接。
第二方面,本申请提供一种触控显示面板,其包括上述至少一实施方式中的触控结构。
在其中一些实施方式中,触控显示面板包括交替分布的显示区和触控区, 触控结构设于触控区。
在其中一些实施方式中,触控显示面板包括显示面板和触控面板,触控面板设于显示面板的出光侧,触控面板包括触控结构。
有益效果
本申请提供的触控结构及触控显示面板,通过一列触控单元配置一条触控列读出线,仅需要N条触控列读出线即可读出所需的触控信号,减少了触控信号读出线的数量;同时,一条触控行选择线与一行触控单元电性连接,可以选择一行一行地读出所需的触控信号,能够实现同一时刻一根触控列读出线仅读出该行中一个触控单元的触控信号,避免了鬼点的出现。
附图说明
图1为自电容触控的结构示意图。
图2为图1中自电容触控工作的结构示意图。
图3为互电容触控的结构示意图。
图4为图3中互电容触控工作的结构示意图。
图5为传统技术方案中触控屏的一种结构示意图。
图6为传统技术方案中触控屏的另一种结构示意图。
图7为本申请实施例提供的触控结构的结构示意图。
图8为图7中触控单元的一种等效电路图。
图9为图8中所示触控单元的一种结构示意图。
图10为图8中所示触控单元的另一种结构示意图。
图11为图7中所示触控单元的另一种等效电路图。
图12为本申请实施例提供的触控显示面板的一种结构示意图。
图13为本申请实施例提供的触控显示面板的另一种结构示意图。
本发明的实施方式
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
请参阅图7至图13,如图7所示,本实施例提供了一种触控结构100,其 包括多个触控单元10、多条触控行选择线以及多条触控列读出线,多个触控单元10呈阵列分布;一触控行选择线与一行的触控单元10电性连接;一触控列读出线与一列的触控单元10电性连接。
可以理解的是,本实施例提供的触控结构100,通过一列触控单元10配置一条触控列读出线,仅需要N条触控列读出线即可读出所需的触控信号,减少了触控信号读出线的数量;同时,一条触控行选择线与一行触控单元10电性连接,可以选择一行一行地读出所需的触控信号,能够实现同一时刻一根触控列读出线仅读出该行中一个触控单元10的触控信号,避免了鬼点的出现。
需要进行说明的是,在本实施例中,所述触控单元10包括触控子结构12和第二晶体管TFT2,且所述第二晶体管TFT2的漏极直接与对应的一触控列读出线电性连接。
其中,多条触控行选择线可以包括沿水平方向延伸且沿竖直方向排列的触控行选择线GL1、触控行选择线GL2、触控行选择线GL3、触控行选择线GL4……以及触控行选择线GLM,触控行选择线GL1可以与第一行的触控单元10电性连接,触控行选择线GL2可以与第二行的触控单元10电性连接,触控行选择线GL3可以与第三行的触控单元10电性连接,触控行选择线GL4可以与第四行的触控单元10电性连接……触控行选择线GLM可以与第M行的触控单元10电性连接;多条触控列读出线可以包括沿竖直方向延伸且沿水平方向排列的触控列读出线SL1、触控列读出线SL2、触控列读出线SL3……以及触控列读出线SLN,触控列读出线SL1可以与第一列的触控单元10电性连接,触控列读出线SL2可以与第二列的触控单元10电性连接,触控列读出线SL3可以与第三列的触控单元10电性连接……触控列读出线SLN可以与第N列的触控单元10电性连接。
图8示出了本发明中所述触控单元10在其它实施例中的另一种等效电路图。图8中所示触控单元10的电路图与图7中所示触控单元10的电路图的区别在于:相较于图7中的第二晶体管TFT2的漏极直接与对应的一触控列读出线电性连接,本实施例中的触控单元10还包括图8中所示的积分放大模块11,第二晶体管TFT2的漏极通过积分放大模块11与对应的一触控列读出线电性连接。
具体地,如图8所示,在该触控单元10中,触控子结构12包括触控金属块Pad和第一晶体管TFT1,第一晶体管TFT1的栅极与触控金属块Pad电性连接,第一晶体管TFT1的源极用于接入对应的触控驱动信号TX;第一晶体管TFT1的源极作为第一寄生电容Cgs的第一极板,第一晶体管TFT1的栅极作为第一寄生电容Cgs的第二极板,第一晶体管TFT1的漏极作为第二寄生电容Cp的第一极板,如图9所示,第二寄生电容Cp的第二极板Cp2可以为第一金属块;第二晶体管TFT2的源极与第一晶体管TFT1的漏极电性连接,第二晶体管TFT2的栅极与对应的一触控行选择线电性连接;积分放大模块11的反相输入端与第二晶体管TFT2的漏极电性连接,积分放大模块11的同相输入端用于接入参考电压信号Vref,积分放大模块11的输出端与对应的一触控列读出线电性连接。
在一些实施例中,积分放大模块11包括放大器111和积分电容Cint,放大器111的反相输入端与第二晶体管TFT2的漏极电性连接,放大器111的同相输入端用于接入参考电压信号Vref,放大器111的输出端与对应的一触控列读出线电性连接;积分电容Cint的一端与放大器111的反相输入端电性连接,积分电容Cint的另一端与放大器111的输出端电性连接。
在一些实施例中,积分放大模块11还包括复位开关Rst,复位开关Rst的一端与积分电容Cint的一端电性连接,复位开关Rst的另一端与积分电容Cint的另一端电性连接。
上述实施例中触控单元10的工作原理:第一晶体管TFT1的栅极与触控金属块Pad电性连接,第一晶体管TFT1的栅极与源极之间具有第一寄生电容Cgs,当手指接触或靠近触控的玻璃时,感应电容Cf会增加;当手指远离时,感应电容Cf会减小。由此可知,第一晶体管TFT1的栅极电位Vgate由触控驱动信号TX的电位和第一寄生电容Cgs、感应电容Cf决定,并影响了第一晶体管TFT1的漏电流。
Vgate=V TX*Cgs/(Cgs+Cf)
其中,Vgate为第一晶体管TFT1的栅极电位。V TX为触控驱动信号TX的电位。Cgs为第一晶体管TFT1的栅极与源极之间的第一寄生电容。Cf为触控金属块Pad与手指之间的感应电容。Cp为第二寄生电容,此时可以作为电荷 的储存电容,第一晶体管TFT1的漏电流在一定时间内被储存至第二寄生电容Cp中,并由作为选行开关的第二晶体管TFT2选行,由积分放大模块11读取电荷量。
可以理解的是,相较于图7所示的实施例,一些实施例通过在电荷侦测的过程中使用积分放大模块11,如此可以将小的信号进行放大,使系统具有更大的性噪比。
图9和图10示出了图8中所示触控单元10中所示触控金属块Pad和第一晶体管TFT1对应的两种膜层结构示意图。
如图9所示,在一些实施例中,第一晶体管TFT1可以采用底栅结构。具体地,触控结构100包括第一玻璃基板20、第一栅极层30、第一栅极绝缘层40、第一有源层T1Z、第一源漏极层、第二无机绝缘层60、第一金属层70、光学胶层80以及第二玻璃基板90。
其中,光学胶层80为光学胶(OCA,Optically Clear Adhesive)形成的一膜层,该光学胶用于胶结透明光学元件(如镜头等)的特种粘胶剂。具有无色透明、光透过率在95%以上、胶结强度良好,可在室温或中温下固化,且有固化收缩小等特点。
其中,第一栅极层30包括第一晶体管TFT1的栅极T1G和第二寄生电容Cp的第二极板Cp2。其中,第二寄生电容Cp的第二极板Cp2在第一玻璃基板20上的投影与第一晶体管TFT1的源极T1S在第一玻璃基板20上的投影至少部分重叠。第一金属层70包括触控金属块Pad,触控金属块Pad在第一玻璃基板20上的投影与第一晶体管TFT1的栅极T1G在第一玻璃基板20的投影至少部分重叠。
所述第一源漏极层包括所述第一晶体管TFT1的源极T1S和漏极T1D。
在本实施例中,触控金属块Pad可以通过第一过孔K1与第一晶体管TFT1的栅极T1G电性连接。
如图10所示,在一些实施例中,第一晶体管TFT1也可以采用顶栅结构。具体地,触控结构100包括第一玻璃基板20、第一有源层T1Z、第一栅极绝缘层40、第一栅极层、第二无机绝缘层60、第一金属层70、光学胶层80以及第二玻璃基板90。
在本实施例中,触控金属块Pad可以通过第二过孔K2与第一晶体管TFT1的栅极T1G电性连接。
其中,第一栅极层可以包括第一晶体管TFT1的栅极T1G。第一金属层70包括第一晶体管TFT1的源极T1S、第一晶体管TFT1的漏极T1D以及触控金属块Pad。
图11示出了本发明中所述触控单元10在其它实施例中的另一种等效电路图。图11中所示触控单元10的电路图与图8中所示触控单元10的电路图的区别在于,图8中所示第一晶体管TFT1为N沟道型薄膜晶体管,而图11所示的第一晶体管TFT1为光敏晶体管。具体地,如图11所示,第一晶体管TFT1的栅极用于感应光控信号VGG,电驱动信号为恒压直流信号VDD,触控金属块Pad与第一晶体管TFT1的源极电性连接。
需要进行说明的是,当手指通过玻璃接触或靠近触控金属块Pad时,感应电容Cf会增加;当手指远离时,感应电容Cf会减小。或者,当第一晶体管TFT1的栅极接收到光控信号VGG时,恒压直流信号VDD将通过第一晶体管TFT1漏电流,可以以此来实现远程光控。
本发明还提供一种触控显示面板,图12示出了所述触控显示面板的其中一种结构示意图。在本实施例中,所述触控显示面板包括显示区AA和触控区TA,所述触控显示面板包括上述触控结构,所述触控结构设于所述触控区TA。
如图12所示,在所述触控显示面板中,显示区AA与触控区TA交替分布。其中,显示区AA中构造有显示用的第三晶体管;触控区TA中构造有触控和/或光控用的第一晶体管、第二晶体管。在本实施例中,该触控显示面板为内嵌式(In-cell)触控显示面板,其将触控层和显示层同时制作于对应的膜层。该触控显示面板可以包括基板BP1、遮光金属层LS、绝缘层JY1、第二有源层POLY1、第二栅极绝缘层GI、第二栅极层GC1、绝缘层JY2、第二金属层M2、有机绝缘层PV1、平坦层PLN、第三金属层M3、透明电极层ITO、有机绝缘层PV2以及黑色矩阵层BM。
其中,遮光金属层LS可以包括相互隔离的遮光金属块LS1、遮光金属块LS2以及遮光金属块LS3等等。这些遮光金属块与第二有源层POLY1在厚度方向上至少部分重叠,且同一遮光金属块仅与一个对应晶体管的漏极电性连 接。
第二有源层POLY1可以包括第三晶体管的沟道区TZ、第一晶体管的沟道区T1Z以及第二晶体管的沟道区T2Z。
第二栅极绝缘层GI可以包括栅极绝缘块GI3、栅极绝缘块GI1以及栅极绝缘块GI2。
第二栅极层GC1可以包括第三晶体管的栅极TG、第一晶体管的栅极T1G以及第二晶体管的栅极T2G。
第二金属层M2可以包括第三晶体管的漏极TD、第三晶体管的源极TS、第一晶体管的漏极T1D、第一晶体管的源极T1S、第二晶体管的漏极T2D、第二晶体管的源极T2S以及触控列读出线SL。
第三金属层M3仅存在于显示区AA中。第三金属层M3可以包括金属块M31和金属块M32。
透明电极层ITO可以包括透明电极ITO1、透明电极ITO2、透明电极ITO3以及触控金属块Pad等等。触控金属块Pad可以依次通过透明电极ITO1、过孔与第一晶体管的源极T1S电性连接,第一晶体管的源极T1S经过孔与第一晶体管的源极连接区电性连接。其中,触控金属块Pad在第二栅极层GC1上的投影位于第一晶体管的栅极T1G与第二晶体管的栅极T2G之间。
可以理解的是,在本实施例中,上述实施例中的触控结构、显示区AA的显示膜层这两者可以构造在几乎相同的膜层结构中,能够减少触控显示面板的厚度。
其中,该触控显示面板的发光器件封装之后,可以在其上覆盖一层硅胶或者玻璃盖板,以隔离手指与触控金属块Pad,可以保护发光器件和改善触控的滑动感。
图13示出了本发明的所述触控显示面板的另外一种结构示意图。如图13所示,在一些实施例中,所述触控显示面板包括显示面板200和触控面板,所述触控面板设于所述显示面板200的出光侧,所述触控面板包括上述任一实施例中的触控结构100。可以理解的是,本实施例提供的触控显示面板,通过一列触控单元10配置一条触控列读出线,仅需要N条触控列读出线即可读出所需的触控信号,减少了触控信号读出线的数量;同时,一条触控行选择线与一 行触控单元10电性连接,可以选择一行一行地读出所需的触控信号,能够实现同一时刻一根触控列读出线仅读出该行中一个触控单元10的触控信号,避免了鬼点的出现。
需要进行说明的是,上述实施例中的显示面板200可以为实现显示功能所需要的构成结构,具体请参照上述说明。
综上所述,上述触控结构100实现了一种有源矩阵式电荷侦测型的触控技术,可以用于外挂式触控(On-cell)或者内嵌式触控(In-cell)。上述的显示面板200可以但不限于为VA(vertical alignment,垂直配向)显示面板、IPS(In-Plane Switching,平面转换)显示面板、OLED(Organic Electroluminescence Display,有机发光半导体)显示面板以及mini-LED显示面板中的任一种。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种触控结构,包括:
    多个触控单元,所述多个触控单元呈阵列分布;
    多条触控行选择线,一所述触控行选择线与一行的所述触控单元电性连接;以及
    多条触控列读出线,一所述触控列读出线与一列的所述触控单元电性连接。
  2. 根据权利要求1所述的触控结构,其中,所述触控单元包括:
    第一晶体管,所述第一晶体管的源极用于接入对应的电驱动信号;
    触控金属块,所述触控金属块与所述第一晶体管的栅极或者所述第一晶体管的漏极电性连接;以及
    第二晶体管,所述第二晶体管的源极与所述第一晶体管的漏极电性连接,所述第二晶体管的栅极与对应的一所述触控行选择线电性连接,所述第二晶体管的漏极与对应的一所述触控列读出线电性连接。
  3. 根据权利要求2所述的触控结构,其中,所述电驱动信号为方波的触控驱动信号,所述触控金属块与所述第一晶体管的栅极电性连接,所述第一晶体管的源极与所述第一晶体管的栅极在所述触控结构的厚度方向上至少部分重叠以形成第一寄生电容;
    所述第一晶体管的漏极与第一金属块在所述触控结构的厚度方向上至少部分重叠以形成第二寄生电容,且所述第一金属块与所述第一晶体管的栅极位于同一膜层中。
  4. 根据权利要求3所述的触控结构,其中,所述第一晶体管的栅极、所述第一金属块被构造于第一栅极层中;所述触控金属块被构造于第一金属层中;所述触控金属块与所述第一晶体管的栅极在所述厚度方向上至少部分重叠。
  5. 根据权利要求2所述的触控结构,其中,所述第一晶体管为光敏晶体管,所述第一晶体管的栅极用于感应光控信号,所述电驱动信号为恒压直流信号,所述触控金属块与所述第一晶体管的源极电性连接。
  6. 根据权利要求5所述的触控结构,其中,所述第一晶体管的栅极、所 述第二晶体管的栅极被构造于第二栅极层;
    所述第一晶体管的漏极、所述第一晶体管的源极、所述第二晶体管的漏极、所述第二晶体管的源极以及所述触控列读出线被构造于第二金属层;
    所述触控金属块被构造于透明电极层;且所述触控金属块在所述第二栅极层上的投影位于所述第一晶体管的栅极与所述第二晶体管的栅极之间。
  7. 根据权利要求6所述的触控结构,其中,所述触控结构还包括:
    遮光金属层,所述遮光金属层包括多个相互隔离的遮光金属块,所述遮光金属块与所述第二有源层在所述触控结构的厚度方向上至少部分重叠,且同一所述遮光金属块与所述第一晶体管的漏极或者所述第二晶体管的漏极电性连接。
  8. 根据权利要求2所述的触控结构,其中,所述触控单元还包括:
    积分放大模块,所述积分放大模块的反相输入端与所述第二晶体管的源极电性连接,所述积分放大模块的同相输入端用于接入参考电压信号,所述积分放大模块的输出端与对应的一所述触控列读出线电性连接。
  9. 根据权利要求8所述的触控结构,其中,所述积分放大模块包括:
    放大器,所述放大器的反相输入端与所述第二晶体管的源极电性连接,所述放大器的同相输入端用于接入所述参考电压信号,所述放大器的输出端与对应的一所述触控列读出线电性连接;
    积分电容,所述积分电容的一端与所述放大器的反相输入端电性连接,所述积分电容的另一端与所述放大器的输出端电性连接;以及
    复位开关,所述复位开关的一端与所述积分电容的一端电性连接,所述复位开关的另一端与所述积分电容的另一端电性连接。
  10. 一种触控显示面板,包括如权利要求1所述的触控结构。
  11. 根据权利要求10所述的触控显示面板,其中,所述触控显示面板包括交替分布的显示区和触控区,所述触控结构设于所述触控区。
  12. 根据权利要求10所述的触控显示面板,其中,所述触控显示面板包括显示面板和触控面板,所述触控面板设于所述显示面板的出光侧,所述触控面板包括所述触控结构。
  13. 根据权利要求12所述的触控显示面板,其中,所述触控单元包括:
    第一晶体管,所述第一晶体管的源极用于接入对应的电驱动信号;
    触控金属块,所述触控金属块与所述第一晶体管的栅极或者所述第一晶体管的漏极电性连接;以及
    第二晶体管,所述第二晶体管的源极与所述第一晶体管的漏极电性连接,所述第二晶体管的栅极与对应的一所述触控行选择线电性连接,所述第二晶体管的漏极与对应的一所述触控列读出线电性连接。
  14. 根据权利要求13所述的触控显示面板,其中,所述电驱动信号为方波的触控驱动信号,所述触控金属块与所述第一晶体管的栅极电性连接,所述第一晶体管的源极与所述第一晶体管的栅极在所述触控结构的厚度方向上至少部分重叠以形成第一寄生电容;
    所述第一晶体管的漏极与第一金属块在所述触控结构的厚度方向上至少部分重叠以形成第二寄生电容,且所述第一金属块与所述第一晶体管的栅极位于同一膜层中。
  15. 根据权利要求14所述的触控显示面板,其中,所述第一晶体管的栅极、所述第一金属块被构造于第一栅极层中;所述触控金属块被构造于第一金属层中;所述触控金属块与所述第一晶体管的栅极在所述厚度方向上至少部分重叠。
  16. 根据权利要求13所述的触控显示面板,其中,所述第一晶体管为光敏晶体管,所述第一晶体管的栅极用于感应光控信号,所述电驱动信号为恒压直流信号,所述触控金属块与所述第一晶体管的源极电性连接。
  17. 根据权利要求16所述的触控显示面板,其中,所述第一晶体管的栅极、所述第二晶体管的栅极被构造于第二栅极层;
    所述第一晶体管的漏极、所述第一晶体管的源极、所述第二晶体管的漏极、所述第二晶体管的源极以及所述触控列读出线被构造于第二金属层;
    所述触控金属块被构造于透明电极层;且所述触控金属块在所述第二栅极层上的投影位于所述第一晶体管的栅极与所述第二晶体管的栅极之间。
  18. 根据权利要求17所述的触控显示面板,其中,所述触控结构还包括:
    遮光金属层,所述遮光金属层包括多个相互隔离的遮光金属块,所述遮光金属块与所述第二有源层在所述触控结构的厚度方向上至少部分重叠,且同一 所述遮光金属块与所述第一晶体管的漏极或者所述第二晶体管的漏极电性连接。
  19. 根据权利要求13所述的触控显示面板,其中,所述触控单元还包括:
    积分放大模块,所述积分放大模块的反相输入端与所述第二晶体管的源极电性连接,所述积分放大模块的同相输入端用于接入参考电压信号,所述积分放大模块的输出端与对应的一所述触控列读出线电性连接。
  20. 根据权利要求19所述的触控显示面板,其中,所述积分放大模块包括:
    放大器,所述放大器的反相输入端与所述第二晶体管的源极电性连接,所述放大器的同相输入端用于接入所述参考电压信号,所述放大器的输出端与对应的一所述触控列读出线电性连接;
    积分电容,所述积分电容的一端与所述放大器的反相输入端电性连接,所述积分电容的另一端与所述放大器的输出端电性连接;以及
    复位开关,所述复位开关的一端与所述积分电容的一端电性连接,所述复位开关的另一端与所述积分电容的另一端电性连接。
PCT/CN2021/136935 2021-11-24 2021-12-10 触控结构及触控显示面板 WO2023092684A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111401202.3 2021-11-24
CN202111401202.3A CN114115561B (zh) 2021-11-24 2021-11-24 触控结构及触控显示面板

Publications (1)

Publication Number Publication Date
WO2023092684A1 true WO2023092684A1 (zh) 2023-06-01

Family

ID=80440856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136935 WO2023092684A1 (zh) 2021-11-24 2021-12-10 触控结构及触控显示面板

Country Status (2)

Country Link
CN (1) CN114115561B (zh)
WO (1) WO2023092684A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104182099A (zh) * 2013-05-21 2014-12-03 友达光电股份有限公司 电容式触控面板
CN104808867A (zh) * 2015-05-25 2015-07-29 京东方科技集团股份有限公司 一种内嵌触摸显示屏及触摸显示系统
CN105677112A (zh) * 2016-02-24 2016-06-15 上海天马微电子有限公司 触控显示面板和触控显示装置
US20190346944A1 (en) * 2018-05-10 2019-11-14 Sharp Kabushiki Kaisha Integrated active matrix touch panel with amplification
CN111355901A (zh) * 2020-03-14 2020-06-30 北京大学深圳研究生院 光电传感器、像素电路、图像传感器及光电感测方法
CN112882609A (zh) * 2021-03-11 2021-06-01 深圳市华星光电半导体显示技术有限公司 自电容触控屏及显示面板、显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106454166B (zh) * 2016-10-21 2019-12-06 奕瑞影像科技(太仓)有限公司 降低探测器图像串扰的方法
US11587917B2 (en) * 2020-05-06 2023-02-21 Tcl China Star Optoelectronics Technology Co., Ltd. Backlight module, display panel and electronic device
CN112650416B (zh) * 2021-01-06 2022-09-27 深圳市华星光电半导体显示技术有限公司 光控触控集成电路及显示器
CN113157136B (zh) * 2021-04-14 2022-10-04 深圳市华星光电半导体显示技术有限公司 触控基板及显示装置
CN113655919B (zh) * 2021-08-18 2023-06-30 深圳市华星光电半导体显示技术有限公司 内嵌式的oled触控显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104182099A (zh) * 2013-05-21 2014-12-03 友达光电股份有限公司 电容式触控面板
CN104808867A (zh) * 2015-05-25 2015-07-29 京东方科技集团股份有限公司 一种内嵌触摸显示屏及触摸显示系统
CN105677112A (zh) * 2016-02-24 2016-06-15 上海天马微电子有限公司 触控显示面板和触控显示装置
US20190346944A1 (en) * 2018-05-10 2019-11-14 Sharp Kabushiki Kaisha Integrated active matrix touch panel with amplification
CN111355901A (zh) * 2020-03-14 2020-06-30 北京大学深圳研究生院 光电传感器、像素电路、图像传感器及光电感测方法
CN112882609A (zh) * 2021-03-11 2021-06-01 深圳市华星光电半导体显示技术有限公司 自电容触控屏及显示面板、显示装置

Also Published As

Publication number Publication date
CN114115561A (zh) 2022-03-01
CN114115561B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
US10101838B2 (en) In-cell touch display panel and electronic device
TWI612451B (zh) 觸控顯示裝置
EP2985682B1 (en) Touch sensor integrated type display device
KR101681806B1 (ko) 터치센서 일체형 표시장치
KR101544641B1 (ko) 인셀 터치 패널
US8279361B2 (en) Touch-sensitive liquid crystal display device
KR101546049B1 (ko) 터치 디스플레이 패널 및 그 구동 방법
WO2015176459A1 (zh) 触控显示面板及其制作方法、触控显示装置
US10203825B2 (en) Array substrate having an embedded touch structure and display panel
KR101906971B1 (ko) 하이브리드 터치 패널, 하이브리드 터치 스크린 장치 및 이의 구동 방법
CN103577008A (zh) 具有触摸屏的显示装置及其驱动方法
US10423255B2 (en) Touch control display panel
TWI410702B (zh) 觸控顯示面板
US9213441B2 (en) In-cell touch panel and liquid crystal device
CN106445261A (zh) 触控显示设备
CN106681045A (zh) 一种液晶显示装置和液晶显示装置的驱动方法
TW201346662A (zh) 觸控顯示裝置及其驅動方法
CN103699283B (zh) 触控屏及其驱动方法和显示装置
CN104503647B (zh) 一种触摸显示屏的基板及其制造方法、触摸屏及显示装置
KR101970578B1 (ko) 고경도 절연막을 이용한 터치 센서 장치 및 그 제조 방법
WO2023092684A1 (zh) 触控结构及触控显示面板
US8334848B2 (en) Resistance type touch display panel
CN104597672A (zh) 一种显示面板、显示面板形成方法及显示装置
CN113655914A (zh) 阵列基板、触控显示面板及触控显示装置
TW201310312A (zh) 觸控面板和電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE