WO2023092608A1 - 一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离 - Google Patents

一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离 Download PDF

Info

Publication number
WO2023092608A1
WO2023092608A1 PCT/CN2021/134169 CN2021134169W WO2023092608A1 WO 2023092608 A1 WO2023092608 A1 WO 2023092608A1 CN 2021134169 W CN2021134169 W CN 2021134169W WO 2023092608 A1 WO2023092608 A1 WO 2023092608A1
Authority
WO
WIPO (PCT)
Prior art keywords
pop
ultra
calixarene
adsorption capacity
removal rate
Prior art date
Application number
PCT/CN2021/134169
Other languages
English (en)
French (fr)
Inventor
路建美
徐庆锋
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2021/134169 priority Critical patent/WO2023092608A1/zh
Publication of WO2023092608A1 publication Critical patent/WO2023092608A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • C08G8/36Chemically modified polycondensates by etherifying

Definitions

  • the invention belongs to the environmental protection technology, and specifically relates to a calixarene-based porous polymer with superfast removal rate and superhigh adsorption capacity and its use in the selective separation of dyes.
  • adsorbents include covalent organic frameworks (COFs), metal-organic frameworks (MOFs), Porous materials such as activated carbon, but there are problems such as difficult synthesis, high cost, instability, low adsorption rate and low capacity, which severely limit the development of adsorbents. Therefore, the development of new porous adsorbents with the advantages of simple preparation, low cost, high adsorption rate and capacity, good selectivity, and reusability has become a priority research field.
  • COFs covalent organic frameworks
  • MOFs metal-organic frameworks
  • Porous materials such as activated carbon
  • the present invention uses C-phenylresorcinol as the structural unit and octafluoronaphthalene and decafluorobiphenyl as crosslinking agents to synthesize two novel calix[4]arene-based POPs (POP -8F and POP-10F); the reaction of the present invention is carried out under relatively mild conditions, and the yield is high; with porous structure, hydrophilicity, good dispersion and abundant active sites, POP-8F and POP- 10F all exhibited ultrafast adsorption rate, ultrahigh adsorption capacity and good selectivity to cationic dyes.
  • the adsorption capacity of POP-8F for rhodamine B can reach 2433 mg g -1 , which is the highest adsorption capacity for RhB so far, surpassing all previously reported adsorption materials, such as POPs, COFs, MOFs, porous Carbon materials, biomass materials, etc. All these properties make POP-8F and POP-10F very promising adsorbent materials for water treatment and deep purification fields.
  • the present invention adopts the following technical solutions.
  • a calixarene-based porous polymer with ultra-fast removal rate and ultra-high adsorption capacity comprises the following steps: mixing a fluorine-containing cross-linking agent solution with a monomer solution, heating and reacting, and obtaining an ultra-fast removal rate and an ultra-high Adsorption capacity of calixarene-based porous polymers.
  • the invention discloses the application of the above-mentioned calixarene porous polymer with ultrafast removal rate and ultrahigh adsorption capacity in absorbing dyes or preparing dye adsorbents, or in preparing dye cycle adsorbents.
  • the invention discloses a method for adsorbing dyes by using the above-mentioned calixarene-based porous polymer with ultra-fast removal rate and ultra-high adsorption capacity, comprising the following steps, adding the calixarene-based porous polymer with ultra-fast removal rate and ultra-high adsorption capacity In the dye solution, the dye adsorption is completed.
  • the monomer is prepared from resorcinol and p-hydroxybenzaldehyde; specifically, in the presence of concentrated hydrochloric acid, resorcinol and p-hydroxybenzaldehyde are used as raw materials and refluxed in a solvent to prepare the monomer ;
  • the solvent is preferably a small molecule alcohol solvent.
  • the monomer solution includes a monomer, an inorganic base and a solvent; the inorganic base is preferably an inorganic potassium salt.
  • the inorganic base is preferably an inorganic potassium salt.
  • monomer, potassium carbonate, and DMF are mixed to obtain a monomer solution.
  • the fluorine-containing crosslinking agent is decafluorobiphenyl, octafluoronaphthalene and the like.
  • the monomer, fluorine-containing crosslinking agent, and inorganic base are used in a molar ratio of (0.3-0.4):1:3, preferably 0.35:1:3.
  • the heating reaction is at 80-90° C. for 40-55 hours, for example, heating at 85° C. for 48 hours; no catalyst is needed for the heating reaction.
  • the mixture is cooled to room temperature and washed with dilute hydrochloric acid until bubbles no longer appear; the resulting mixture is filtered, the filter cake is washed with distilled water, tetrahydrofuran and dichloromethane, and then the filter cake is freeze-dried to obtain an ultrafast Calixarene-Based Porous Polymers with Removal Rate and Ultrahigh Adsorption Capacity.
  • the dye is a cationic dye or an anionic dye.
  • Porous organic polymers are a new type of porous adsorbent synthesized using only organic structural units and linked by strong covalent bonds. The richness of active sites and other characteristics have attracted more and more attention, showing unlimited potential.
  • the present invention uses octafluoronaphthalene or decafluorobiphenyl as a crosslinking agent, and synthesizes two kinds of calixarene-based porous polymers, POP-8F and POP-10F, through a simple and mild reaction without catalyst.
  • FT-IR and solid 13 C NMR spectra proved the successful construction of POPs, and the TGA curve showed that it had good thermal stability. Due to their porous structure, abundant adsorption sites, and electronegativity, POP-8F and POP-10F are effective against cationic dyes including rhodamine B (RhB), methylene blue (MB), and crystal violet (CV). All exhibited extraordinary adsorption capacity and adsorption rate.
  • RhB rhodamine B
  • MB methylene blue
  • CV crystal violet
  • the removal efficiency can reach 99% within 4 minutes, and the pseudo-second order rate constant of POP-8F is 0.04386 g mg -1 min -1 , which is higher than most recently reported POPs.
  • the maximum adsorption capacity of POP-8F for RhB was 2433 mg g -1 , surpassing all previously reported porous adsorbents, including COFs, MOFs, POPs, biomass adsorbents, activated carbon, etc.
  • POP-8F and POP-10F can selectively adsorb cationic dyes in the mixture of cationic dyes and anionic dyes.
  • the calixarene-based POPs can effectively remove cationic dyes by simple column filtration and exhibit excellent reusability.
  • the above characteristics make POP-8F and POP-10F the porous adsorption materials for water pollutant treatment and purification.
  • Figure 1 shows (a) FT-IR and (b) solid-state 13 C NMR spectra of POP-8F and POP-10F; (c) POP-8F; (d) nitrogen adsorption-desorption isotherms and corresponding Pore size distribution curve; (f) Schematic diagram of monomer preparation.
  • Figure 2 is the SEM image of (a) POP-8F, (b) POP-10F, (c) POP-8F, (d) TEM image of POP-10F.
  • Figure 3 is the PXRD pattern of POP-8F and POP-10F.
  • Figure 4 shows the water contact angles of POP-8F and POP-10F.
  • Figure 5 shows the UV-Vis spectrum of RhB solution (50 ppm) after adding (a) POP-8F and (b) Changes at different time intervals after POP-10F (both 0.5 mg/mL); (c) Pseudo-first-order and pseudo-second-order fitting of the adsorption curves of RhB solutions added with POP-8F and POP-10F.
  • MB solution 50 ppm
  • f The change of POP-10F (both 0.5 mg/mL) addition at different time intervals;
  • Fig. 6 (a) Chemical structures of organic dyes; (b) Adsorption thermodynamics of POP-8F and (c) POP-10F on RhB, CV, MB and MO dyes.
  • Figure 7 is the UV-Vis spectrum of MB-MO mixed solution with the addition of (a) POP-8F and (b) POP-10F; RhB-MO mixed solution, added (c) POP-8F and (d ) POP-10F.
  • Inset photos before and after the selective adsorption process.
  • Fig. 8(a) Image of simulated column adsorption device. Left: RhB solution, 500 ppm; Right: RhB, MB, CV mixed solution, all at 500 ppm. (b) Removal efficiency of RhB (50 ppm) by POP-8F and POP-10F after five cycles.
  • Figure 9 is the FT-IR of (a) POP-8F, (b) POP-10F before and after five cycles.
  • FT-IR Fourier transform infrared
  • FT-IR Fourier transform infrared
  • FT-IR Fourier transform infrared
  • Thermogravimetric analysis was carried out on a TA dynamic TGA 2960 instrument from 25°C to 800°C with a nitrogen flow rate of 50 mL min -1 and a heating rate of 10°C min -1 .
  • is the removal efficiency
  • Ci is the initial concentration of the dye
  • Ce is the remaining concentration of the dye after the stirring process.
  • the sorbent was soaked in a methanol-HCl mixture (1 M HCl) to achieve desorption of RhB from the sorbent.
  • the adsorbent was washed with Na2CO3 solution (1 M), distilled water and methanol, and dried under vacuum at 60 ° C for the next cycle.
  • Example 1 Synthesis of monomers: Pour resorcinol (0.55 g, 5 mmol) and absolute ethanol (25 mL) into a 200 mL flask, then add concentrated hydrochloric acid (3.5 mL , 12 M, dropwise time 10 minutes), and then p-hydroxybenzaldehyde (0.61g, 5mmol) was dissolved in 10mL of absolute ethanol, and added dropwise to the above reaction system for 5 minutes. After dropping, remove the ice bath, and heat to reflux for 12 hours while stirring conventionally.
  • POP-8F The synthesis process of POP-8F is similar to that of POP-10F, the cross-linking agent is replaced by octafluoronaphthalene, and the yield is 65%.
  • the broad peaks in the range of 2900–3000 cm ⁇ 1 and 3000–3600 cm ⁇ 1 were attributed to the stretching vibrations of aromatic CH bonds and aromatic hydroxyl groups, respectively.
  • the stretching vibrations of CF bonds and COC bonds are located at 1169 cm -1 and 1079 cm -1
  • the data of POP-8F are 1206 cm -1 and 1080 cm -1 , respectively. Therefore, the results of 13 C ss-NMR and FT-IR spectroscopy confirmed the successful construction of the polymer network.
  • thermogravimetric analysis (TGA) spectra of POP-8F and POP-10F showed that the temperatures of POP-8F and POP-10F at 10% weight loss were 321 °C and 247 °C, respectively.
  • the carbon ash rates of POP-8F and POP-10F at 600 °C were 56.8 % and 54.4 %, indicating that Both POP-8F and POP-10F are thermally stable.
  • the morphology of POP-8F and POP-10F was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM images show the irregular porous framework of POP-8F and POP-10F, and TEM images show obvious porous structure with relatively uniform pore size, see Figure 2.
  • SEM images show the irregular porous framework of POP-8F and POP-10F
  • TEM images show obvious porous structure with relatively uniform pore size, see Figure 2.
  • the powder X-ray diffraction (PXRD) curves of POP-8F and POP-10F have no peaks in the small angle range, but there are obvious strong peaks around 20 °C, see Figure 3, indicating that both POPs have no Shaped structure and strong intramolecular ⁇ - ⁇ interactions.
  • the total pore volumes of POP-8F and POP-10F calculated by nitrogen are 0.202 cm -2 g -1 and 0.165 cm -2 g -1 , respectively, indicating that both POP-8F and POP-10F have hierarchical pore structures .
  • Example 2 Adsorption kinetics: In the experiment, 15 mg of POP-8F or POP-10F was added to the dye solution (50 ppm, 30 mL), and then the mixture was stirred at room temperature at a rate of 600 rpm. At various time intervals, 3 mL of the solution was withdrawn and filtered through a 0.22 ⁇ m syringe filter to monitor the adsorption process. The UV-Vis spectrum of the filtrate was analyzed by a UV-Vis spectrophotometer, and the change of the maximum absorbance intensity was recorded to further analyze the adsorption kinetics. Adsorption kinetics were analyzed using pseudo-first-order and pseudo-second-order kinetic models.
  • q e (mg g -1 ) is the equilibrium adsorption capacity
  • q t (mg g -1 ) is the adsorption capacity in t (min)
  • k 1 (min -1 ) and k 2 (g mg -1 min - 1 ) are the constants of the pseudo-first-order and pseudo-second-order models, respectively.
  • POP-8F and POP-10F Due to the characteristics of POP-8F and POP-10F, such as porous structure, high specific surface area, good thermal stability, high hydrophilicity (see Figure 4) and electronegativity, as well as aromatic skeleton and abundant phenolic groups, it may form a strong The ⁇ - ⁇ interactions and hydrogen bonds are candidates for good adsorbents for cationic dyes.
  • RhB and MB were chosen as representative cationic dyes to study the adsorption kinetics of POP-8F and POP-10F.
  • the initial concentrations of dye and sorbent were 50 ppm and 0.5 mg/mL.
  • Record UV-Vis spectra to determine the remaining concentration at different time intervals after adding the sorbent.
  • the removal efficiencies were 76.76 % (POP-8F) and 71.40 % (POP-10F) when stirred for 1 min, and the removal rate of POP-8F could reach 98.57 % within 4 min.
  • the adsorption rate of inner POP-10F is 98.26%, and the two are almost completely adsorbed.
  • the pseudo-second-order model R of POP-8F and POP-10F are close to 1 , higher than the corresponding pseudo-first-order model, indicating that the time-dependent adsorption process of RhB is more suitable for the pseudo-second-order model, and chemical adsorption is the main factor affecting the adsorption rate. factor.
  • the pseudo-second order constant (k 2 ) of POP-8F to RhB is 0.044 g mg -1 min -1 , which is higher than that of POP-10F (0.034 g mg -1 min -1 ); the k 2 of POP-8F to MB It is 0.027 g mg -1 min -1 , almost four times that of POP-10F (0.007 g mg -1 min -1 ).
  • the k 2 of POP-8F and POP-10F is significantly improved compared with other reported adsorption materials, such as for rhodamine B, the k 2 of existing CZIF-867, POP-O and THPP is 0.00091 g mg -1 min -1 , 0.00002168 g mg -1 min -1 , 0.00018 g mg -1 min -1 ; for methylene blue, the k 2 of existing YS-MPONs is 0.00276 g mg -1 min -1 , and its adsorption capacity is 134 mg g -1 .
  • Example 3 Adsorption thermodynamics: In order to evaluate the maximum adsorption capacity of POP-8F and POP-10F for different dyes, an adsorption isotherm experiment was carried out. In the test, 5 mg of adsorbent was added to 15 mL of dye solution and stirred until adsorption equilibrium was reached. UV-Vis spectrophotometry was then performed, and the dye concentration was calculated from the change in maximum absorbance intensity. The adsorption capacity (q e , mg g ⁇ 1 ) was calculated according to the following formula.
  • C i and C e (mg L -1 ) are the initial concentration and final concentration of the target pollutant
  • m (g) is the weight of the adsorbent used in the adsorption experiment
  • V (L) is the volume of the target pollutant solution.
  • q e (mg g -1 ) is the equilibrium adsorption capacity
  • K L is a constant of the Langmuir model
  • C e (mg g -1 ) is the equilibrium concentration of dyes or phenolic organic pollutants
  • q m (mg g -1 ) is the maximum adsorption capacity under ideal conditions.
  • Adsorption thermodynamics and adsorption capacity are commonly used to determine the adsorption mechanism and adsorption capacity of adsorbent materials.
  • the maximum adsorption capacity (q max ) of POP-8F and POP-10F for three cationic dyes MB (methylene blue), RhB (rhodamine B), CV (crystal violet) and one anionic dye MO was investigated.
  • the thermodynamic parameters are summarized in Table 2 and more details are shown in Fig. 6.
  • the correlation coefficient (R 2 ) of the Langmuir model (POP-8F: 0.9930 for RhB, 0.9916 for MB, and 0.9979 for CV; POP-10F: 0.9905 for RhB, 0.9897 for MB, and 0.9958 for CV) was close to 1 , indicating that the Langmuir model can more accurately describe the adsorption properties of POP-8F and PO-10F.
  • POP-8F and POP-10F exhibited higher affinity and higher adsorption capacity for cationic dyes compared with anionic dyes.
  • the q max of POP-10F calculated by the Langmuir model reached 793.65, 1729.89, and 925.93 mg g -1 for MB, RhB, and CV, respectively.
  • the q max of POP-8F was higher, MB, RhB, and CV reached 862.07, 2433.08, and 1181.02 mg g -1 , respectively.
  • POP-8F and POP-10F have the highest adsorption capacity for RhB, so the maximum adsorption capacity of POP-8F and POP-10F was compared with some other excellent adsorbents published recently, and the results are shown in Table 3.
  • Dye selective adsorption experiment An excellent adsorbent should not only have the advantages of large adsorption capacity, high removal efficiency, fast adsorption speed, and low toxicity, but also have good selective adsorption properties for dyes.
  • POP-8F and POP-10F exhibited extremely high adsorption capacity for cationic dyes including RhB, MB and CV, but much lower adsorption capacity for anionic dyes such as MO. Therefore, POP-8F and POP-10F are promising adsorbents for the separation of charged dyes.
  • cationic dyes such as MB and RhB and anionic dye MO were selected.
  • RhB the removal efficiencies of RhB were 97.6% (POP-8F) and 96.2% (POP-10F), respectively, while those of MO were only 25.1% and 8.2%.
  • the color change of the mixture also contributes to the selective adsorption properties of the dyes.
  • MB-MO and The initial colors of the RhB-MO mixture are green and orange, respectively. However, the color changed to yellow after adsorption, indicating that the colors of MB (blue) and RhB (pink) almost completely disappeared.
  • POP-8F and POP-10F have the advantages of high removal efficiency and easy regeneration, which are ideal as adsorbents used in water treatment and purification.
  • the present invention successfully synthesized two novel porous organic polymers POP-8F from C-phenylresorcinol[4]arene and two perfluoroaromatic compounds under alkaline and relatively mild conditions and POP-10F.
  • the obtained POPs have the advantages of porous structure, abundant active sites, good thermal stability and electronegativity. These advantages endow POP-8F and POP-10F with extraordinary adsorption properties, including ultrafast adsorption rate, extremely high adsorption capacity, good cycleability and remarkable selectivity for cationic dyes.
  • the pseudo-second order rate constant of POP-8F to RhB is 0.04386 g mg -1 min -1 , which is higher than that of most POPs reported recently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离。本发明用八氟萘和十氟联苯作为交联剂,通过不使用催化剂的简单、温和的反应合成了两种杯芳烃基多孔聚合物,POP-8F 和 POP-10F,对罗丹明 B (RhB)、亚甲蓝 (MB) 和结晶紫 (CV) 在内的阳离子染料都表现出非凡的吸附能力和吸附率,超过了之前报道的所有多孔吸附剂,包括 COFs、MOFs、POPs、生物质吸附剂、活性炭等。更重要的是,基于杯芳烃的 POPs 可以通过简单的柱过滤有效去除阳离子染料,并表现出优异的可重复使用性;上述特性使得 POP-8F 和 POP-10F 成为可用于水污染物处理和净化的多孔吸附材料。

Description

一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离 技术领域
本发明属于环保技术,具体涉及一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离。
背景技术
针对有机染料,现有技术已采用光催化、膜过滤、氧化降解、生物处理和吸附等几种去除方法。其中,吸附由于具有去除效率高、成本低、简便易行等独特优势而越来越受到全世界的关注和认可,常见的吸附剂有共价有机框架(COFs)、金属有机框架(MOFs)、活性炭等多孔材料,但存在合成困难、成本高、不稳定性、低吸附率和低容量等问题,严重限制了吸附剂的发展。 因此,研发具有制备简单、成本低、吸附速率和容量高、选择性好、可重复使用等优点的新型多孔吸附剂成为优先研究的领域。
在过去的几年里,人们设计和合成了许多具有不同结构单元的POPs,但是目前用于去除有机染料的杯芳烃基POPs通常具有较高的吸附能力,但吸附率相对较低,没有选择性,甚至具有热不稳定性,这极大地限制了杯芳烃基POPs的进一步发展。 因此,研发具有超高吸附容量、超快去除速率和优异有机染料选择性的新型杯芳烃基POPs具有重要意义。
技术问题
本发明以C-苯基间苯二酚为结构单元,以八氟萘和十氟联苯作为交联剂,通过一种简便直接的策略合成了两种新型杯[4]芳烃基POPs(POP-8F和POP-10F);本发明的反应在相对温和的条件下进行,收率很高;具有多孔结构、亲水性、良好的分散性和丰富的活性位点,POP-8F 和 POP-10F 均表现出超快的吸附速率、超高的吸附容量和对阳离子染料的良好选择性。其中,POP-8F对罗丹明 B (RhB) 的吸附容量可达 2433 mg g -1,这是目前对RhB最高的吸附能力,超过了之前报道的所有吸附材料,如POPs、COFs、MOFs、多孔碳材料、生物质材料等。所有这些特性使 POP-8F 和 POP-10F 成为极具前途的吸附材料,可用于水处理和深度净化领域。
技术解决方案
本发明采用如下技术方案。
一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物,其制备方法包括以下步骤,将含氟交联剂溶液与单体溶液混合,加热反应,得到超快去除速率和超高吸附容量的杯芳烃类多孔聚合物。
本发明公开了上述超快去除速率和超高吸附容量的杯芳烃类多孔聚合物在吸附染料或者制备染料吸附剂中的应用,或者在制备染料循环吸附剂中的应用。
本发明公开了利用上述超快去除速率和超高吸附容量的杯芳烃类多孔聚合物吸附染料的方法,包括以下步骤,将超快去除速率和超高吸附容量的杯芳烃类多孔聚合物加入含有染料的溶液中,完成染料吸附。
本发明中,单体由间苯二酚、对羟基苯甲醛制备得到;具体的,在浓盐酸存在下,以间苯二酚、对羟基苯甲醛为原料,在溶剂中回流反应,制备单体;溶剂优选为小分子醇溶剂。
本发明中,单体溶液包括单体、无机碱以及溶剂;无机碱优选为无机钾盐。作为最佳示例,将单体、碳酸钾、DMF混合,得到单体溶液。
本发明中,含氟交联剂为十氟联苯、八氟萘等。
本发明中,按摩尔比,单体、含氟交联剂、无机碱的用量比例为(0.3~0.4)∶1∶3,优选为0.35∶1∶3。
本发明中,加热反应为80~90℃反应40~55小时,比如85℃下加热48小时;加热反应无需催化剂。优选的,在反应完成后,将混合物冷却至室温并用稀盐酸洗涤直至不再出现气泡;将所得混合物过滤,滤饼用蒸馏水、四氢呋喃和二氯甲烷洗涤,然后将滤饼冷冻干燥,得到超快去除速率和超高吸附容量的杯芳烃类多孔聚合物。
本发明中,染料为阳离子染料或者阴离子染料。
有益效果
多孔有机聚合物(POPs)是一种仅利用有机结构单元合成并通过强共价键连接的的新型多孔吸附剂,具有高比表面积、孔隙度可调、结构良好、稳定性优良、功能多样、活性位点丰富等特点,受到越来越多的关注,展现出无限潜力。结构单元和聚合反应的多样选择,POPs的模块化非常高,POPs的孔隙度、结构和官能团可以方便地设计和调整,因此POPs能够用于有机染料的高效去除。本发明使用八氟萘或十氟联苯作为交联剂,通过不使用催化剂的简单、温和的反应合成了两种杯芳烃基多孔聚合物,POP-8F 和 POP-10F。FT-IR、固体 13C NMR 光谱证明了POPs的成功构建,TGA曲线表明了其具有良好的热稳定性。由于其具有多孔结构、丰富的吸附位点和电负性等优点,POP-8F 和 POP-10F 对罗丹明 B (RhB)、亚甲蓝 (MB) 和结晶紫 (CV) 在内的阳离子染料都表现出非凡的吸附能力和吸附率。特别是对于RhB,去除效率可在4分钟内达到99%,POP-8F 的准二级速率常数为 0.04386 g mg -1 min -1,高于最近报道的多数 POPs。值得注意的是,POP-8F 对 RhB 的最大吸附容量为 2433 mg g -1,超过了之前报道的所有多孔吸附剂,包括 COFs、MOFs、POPs、生物质吸附剂、活性炭等。此外,POP-8F 和 POP -10F可以在阳离子染料和阴离子染料的混合物中选择性吸附阳离子染料。更重要的是,基于杯芳烃的 POPs 可以通过简单的柱过滤有效去除阳离子染料,并表现出优异的可重复使用性。上述特性使得 POP-8F 和 POP-10F 成为可用于水污染物处理和净化的多孔吸附材料。
附图说明
图1为POP-8F 和 POP-10F 的 (a) FT-IR 和 (b) 固态 13C NMR 光谱;(c) POP-8F ;(d) POP-10F 的氮气吸附-解吸等温线和相应的孔径分布曲线;(f)单体制备示意图。
图2为(a) POP-8F,(b) POP-10F的SEM图,(c) POP-8F,(d) POP-10F 的TEM图。
图3为POP-8F、POP-10F的PXRD图。
图4为POP-8F、POP-10F的水接触角。
图5为 RhB 溶液 (50 ppm) 紫外-可见光谱在加入 (a) POP-8F 和 (b) POP-10F(均为 0.5 mg/mL)后,在不同时间间隔的变化; (c) 添加 POP-8F 和 POP-10F 的 RhB 溶液吸附曲线的拟一级和拟二级拟合。 MB溶液(50 ppm)紫外-可见光谱随(e) POP-8F和(f) POP-10F(均为0.5 mg/mL)的加入在不同时间间隔的变化;(g) 添加 POP-8F 和 POP-10F 的 MB 溶液吸附曲线的拟一级和 (h) 拟二级拟合。
图6(a) 有机染料的化学结构; (b) POP-8F 和 (c) POP-10F 对RhB、CV、MB 和 MO染料的吸附热力学。
图7为MB-MO混合溶液的UV-Vis光谱随着(a) POP-8F和(b) POP-10F的加入而变化;RhB-MO混合溶液,添加了 (c) POP-8F 和 (d) POP-10F。插图:选择性吸附过程前后的照片。
图8(a) 模拟柱吸附装置的图像。左图:RhB 溶液,500 ppm;右图:RhB、MB、CV 的混合溶液,均为 500 ppm。 (b) 五个循环后 POP-8F 和 POP-10F 对 RhB (50 ppm) 的去除效率。
图9为 (a) POP-8F,(b) POP-10F在五个循环前后的FT-IR。
本发明的实施方式
合成过程中的所有材料和吸附实验中使用的有机污染物均购自TCI(上海)发展有限公司。所有试剂均购自国药集团化学试剂有限公司,按原样使用,除非另有说明,否则未经进一步纯化。
使用 Bruker-300 NMR 光谱仪记录 1H NMR 光谱,在环境温度下以 DMSO- d 6 和 CDCl 3 作为溶剂,四甲基硅烷 (TMS) 作为标准物质。在环境温度下,使用 Bruker INOVA-400 NMR 光谱仪上记录固态 13C NMR 光谱。质谱采用GCTPremer高分辨率飞行时间质谱仪,并以EI为离子源。在 X'Pert-Pro MPD 上测量交联聚合物的功率 X 射线衍射 (PXRD),以分析吸附材料的晶体结构。在 Nicolet-4700 光谱仪上测试傅里叶变换红外 (FT-IR) 光谱。热重分析 (TGA) 在 TA 动态 TGA 2960 仪器上进行,从 25 ℃ 升至 800 ℃,氮气流速为 50 mL min -1,加热速率为 10 ℃ min -1。吸附材料的 X 射线光电子能谱在 X 射线光电子能谱仪(XPS,ESCALAB MK II)上进行。通过使用外来碳污染 (C (1s) = 284.8 eV) 作为电荷参考来校准结合能。使用扫描电子显微镜(SEM,Hitachi S-4700)结合 SEM 绘图和透射电子显微镜(TEM,Hitachi H600,200 kV)观察持久性有机污染物的形态、孔径、元素分布和含量。使用配备积分球的 CARY 50 光谱仪测试 UV-vis 光谱。 zeta 电位在 Zetasizer Nano zs 激光粒度分析仪上在 25℃和 pH=7 下测试。
循环测试。在回收实验中,将 10 mg POP-8F 或 POP-10F 加入 10 mL 的 RhB 溶液(50 ppm)中,并在室温下以 600 rpm 的速度搅拌 5 分钟。将混合物离心后,用紫外-可见分光光度计根据下式计算去除效率:
Figure 788632dest_path_image001
其中 η 是去除效率,C i是染料的初始浓度,C e 是搅拌过程后染料的剩余浓度。将吸附剂浸泡在甲醇-HCl 混合物(1 M HCl)中以实现 RhB 从吸附剂中的解吸。用Na 2CO 3溶液(1M)、蒸馏水和甲醇洗涤吸附剂,并在60℃真空干燥下进行下一个循环。
实施例一:单体的合成:将间苯二酚(0.55 g, 5 mmol)和无水乙醇(25 mL)倒入200 mL烧瓶中,然后在搅拌和冰浴下滴加浓盐酸(3.5 mL, 12 M,滴加时间10分钟),再将对羟基苯甲醛(0.61g,5mmol)溶于10mL无水乙醇,5分钟滴加到上述反应体系中。滴完后,撤去冰浴,边常规搅拌边加热回流12小时。反应完成后,将混合物冷却至室温并过滤,然后将滤饼用无水甲醇、丙酮和乙醚洗涤并在60℃真空干燥,得到单体,收率为40%,结构式见图1f。 1H NMR (400 MHz, DMSO- d 6, ppm): δ 7.78 (s, 1H), 7.38 (s, 2H), 5.58 (d, J = 7.6 Hz, 2H), 5.41 (dd, J = 21.1, 13.4 Hz , 3H), 5.02 (s, 1H), 4.46 (s, 1H)。
POP-10F的合成:将单体(0.3 g,0.35 mmol)、碳酸钾(0.41 g,3 mmol)和无水 DMF(1.5 mL)加入到 50 mL Schlenk 管中,通入氮气5min。另取一个Schlenk管,将十氟联苯(0.334 g, 1 mmol)溶于10 mL无水THF中,同样通入氮气5 min,然后用注射器将十氟联苯溶液推入单体体系中,通过三个冷冻-泵-解冻循环对管进行脱气,真空密封,然后在85℃下加热48小时。反应完成后,将混合物冷却至室温并用稀盐酸(1M)洗涤直至不再出现气泡;将所得混合物过滤,滤饼用蒸馏水、四氢呋喃和二氯甲烷洗涤,然后将滤饼冷冻干燥,得到POP-10F,收率为62%。
POP-8F的合成:POP-8F的合成过程与POP-10F相似,将交联剂更换为八氟萘,收率为65%。
上述反应过程以及测试结果参见图1。所得POPs可以很好地分散在水中。在 13C ss-NMR 谱图中,交联反应是随机且复杂的,从而导致芳香醚键在 δ= 140 ppm 的中心和 δ= 100-160 nm 的范围内具有多个峰。δ= 40 ppm 和 δ= 240 ppm 附近的峰可以分别归因于单体的烷基碳和苯环中的 C-F 键。 此外,在 FT-IR 光谱中,2900-3000 cm -1 和 3000-3600 cm -1 范围内的宽峰分别归因于芳族 C-H 键和芳族羟基的伸缩振动。此外,1487 cm -1 和 1515 cm -1 处的峰是由于 POP-10F 和 POP-8F的芳香族 C=C 键的伸缩振动。对于 POP-10F,C-F 键和 C-O-C 键的伸缩振动位于 1169 cm -1 和 1079 cm -1,POP-8F的数据分别为 1206 cm -1 和 1080 cm -1。因此, 13C ss-NMR 和 FT-IR 光谱的结果证实了聚合物网络的成功构建。
此外,POP-8F 和 POP-10F 的热重分析 (TGA) 光谱表明 POP-8F 和 POP-10F 的温度在达到 10% 重量损失时分别为 321 ℃和 247 ℃。POP-8F 和 POP-10F 在 600 ℃ 的炭灰率分别为 56.8 % 和 54.4 %,表明 POP-8F 和 POP-10F 均具有热稳定性。
POP-8F 和 POP-10F 的形貌通过扫描电子显微镜 (SEM) 和透射电子显微镜 (TEM) 进行表征。SEM 图像显示了 POP-8F 和 POP-10F 的不规则多孔骨架,TEM 图像显示明显的多孔结构,孔径相对均匀,参见图2。此外,POP-8F 和 POP-10F 的粉末 X 射线衍射 (PXRD) 曲线在小角度范围内都没有出现峰,但在 20℃ 左右有明显的强峰,参见图3,表明两种POPs都具有无定形结构和强大的分子内 π-π 相互作用。
为了进一步研究POP-8F和POP-10F的Brunauer-Emmett-Teller (BET) 表面积 (S BET) 和孔径分布,在 77 K 下进行了氮吸附-解吸实验,结果如图1 (c-d)所示。计算得出 POP-8F 和 POP-10F 的 SBET 分别为 192.42 和 167.60 m 2 g -1。此外,POP-8F 的微孔和中孔尺寸分布主要集中在 1.64 nm 和 2.17 nm,POP-10F 的值为 1.72 nm 和 2.24 nm。还有一些介孔位于 4~16 nm 的范围内。此外,由氮气计算的 POP-8F 和 POP-10F 的总孔体积分别为 0.202 cm -2 g -1 和 0.165 cm -2 g -1,说明 POP-8F 和 POP-10F均具有分级结构的孔隙结构。
实施例二吸附动力学:在实验中,将15mg POP-8F或POP-10F加入染料溶液(50 ppm,30 mL),然后在室温下以600 rpm的速率搅拌混合物。在不同的时间间隔内,提取出3mL的溶液,用0.22μm的注射器过滤器进行过滤,以监测吸附过程。采用紫外-可见分光光度计分析滤液的紫外-可见光谱,并记录最大吸光度强度的变化,以进一步分析吸附动力学。采用拟一级和拟二级动力学模型分析了吸附动力学。
拟一级动力学模型:
Figure 191931dest_path_image002
拟二级动力学模型:
Figure 919716dest_path_image003
其中 q e (mg g -1) 是平衡吸附容量; q t (mg g -1) 为吸附容量,单位为 t (min); k 1 (min -1) 和 k 2 (g mg -1 min -1) 分别是拟一级和拟二级模型的常数。
由于POP-8F 和 POP-10F具有多孔结构、高比表面积、良好的热稳定性、高亲水性(参见图4)和电负性,以及芳香骨架和丰富的酚基等特点,可能形成强烈的π-π相互作用和氢键,是阳离子染料良好吸附剂的候选材料。
选择 RhB 和 MB 作为代表性阳离子染料来研究 POP-8F 和 POP-10F 的吸附动力学。 在本实验中,染料和吸附剂的初始浓度为 50 ppm 和 0.5 mg/mL。记录 UV-Vis 光谱以确定添加吸附剂后不同时间间隔的剩余浓度。如图5所示,对于 RhB,搅拌 1 min 时去除效率分别为 76.76 % (POP-8F) 和 71.40 % (POP-10F),4 min 内对 POP-8F 的去除率可达 98.57 %,5 分钟内 POP-10F 的吸附率为 98.26%,两者几乎完全吸附。此外,对于MB,搅拌1 min时去除效率分别为75.43 % (POP-8F)和48.44 % (POP-10F),当时间延长时,数据可达到POP-8F的97.89 %和POP-10F的96.66 %。为了研究 POP-8F 和 POP-10F 的吸附动力学,采用拟一级和拟二级动力学模型,详细数据汇总于表1。POP-8F 对 RhB 和 MB 的拟二级相关系数值(R 2)分别为 0.9919 和 0.9996,POP-10F 对 RhB 和 MB 的相关系数值分别为 0.9933 和 0.9939。POP-8F和POP-10F的拟二级模型R 2均接近1,高于对应的拟一级模型,表明RhB的时间依赖性吸附过程更适合拟二级模型,化学吸附是影响吸附速率的主要因素。
此外,POP-8F对RhB的准二级常数(k 2)为0.044 g mg -1 min -1,高于POP-10F(0.034 g mg -1 min -1); POP-8F 对 MB 的 k 2 为 0.027 g mg -1 min -1,几乎是 POP-10F(0.007 g mg -1 min -1)的四倍。此外,POP-8F 和 POP-10F 的 k 2 与其他报道的吸附材料的比较具有显著进步,比如针对罗丹明B,现有CZIF-867、POP-O以及THPP的k 2为0.00091 g mg -1 min -1、0.00002168 g mg -1 min -1、0.00018 g mg -1 min -1;针对亚甲基蓝,现有YS-MPONs的k 2为0.00276 g mg -1 min -1,且其吸附容量为134 mg g -1。结果表明,POP-8F 对 RhB 和 MB 的吸附率远高于 POP-10F 和大多数其他报道的吸附剂,表明 POP-8F 是一种更有前途的吸附材料,用于超快速去除含阳离子染料的废水。
Figure 408466dest_path_image004
实施例三吸附热力学:为了评估POP-8F 和 POP-10F 对不同染料的最大吸附容量,进行了吸附等温实验。 在测试中,在15mL的染料溶液中加入5mg的吸附剂,并进行搅拌,直到达到吸附平衡。 然后进行紫外-可见分光光度法,根据最大吸光度强度的变化计算染料浓度。 吸附容量(q e,mg g -1)根据下式计算。
Figure 879899dest_path_image005
其中 C i 和 C e (mg L -1) 为目标污染物的初始浓度和终浓度,m (g) 为吸附实验所用吸附剂的重量,V (L) 为目标污染物溶液的体积。
本实验采用Langmuir吸附等温模型。
Figure 137705dest_path_image006
其中 q e (mg g -1) 是平衡吸附容量;K L是Langmuir 模型的常数;;C e (mg g -1) 是染料或酚类有机污染物的平衡浓度;q m (mg g -1) 是理想条件下的最大吸附量。
吸附热力学和吸附容量通常用于确定吸附材料的吸附机制和吸附能力。在该实验中研究了 POP-8F 和 POP-10F 对三种阳离子染料MB(亚甲基蓝)、RhB(罗丹明B)、CV(结晶紫)和一种阴离子染料MO的最大吸附容量(q max)。将5mg吸附剂加入15mL不同初始浓度的染料溶液中,然后剧烈搅拌直至达到吸附平衡。然后,平衡浓度 (C e) 和吸附容量 (q e) 的数据通过 Langmuir模型拟合。热力学参数汇总在表2中,更多详细信息显示在图6。
如表2所示,Langmuir 模型的相关系数(R 2)(POP-8F:RhB 为 0.9930,MB 为 0.9916,CV 为 0.9979;POP-10F:RhB 为 0.9905,MB 为 0.9897,CV 为 0.9958) 接近1 ,表明Langmuir模型更能准确地描述 POP-8F 和 PO-10F 的吸附性能。同时,这意味着有机染料的吸附过程主要是单层均匀吸附。此外,与阴离子染料相比,POP-8F 和 POP-10F 对阳离子染料表现出更高的亲和力和更高的吸附能力。由Langmuir 模型计算的 POP-10F 的 q max 对于 MB、RhB、CV 分别达到 793.65、1729.89、925.93 mg g -1。POP-8F 的 q max 更高,MB、RhB、CV 分别达到 862.07、2433.08、1181.02 mg g -1。显然,POP-8F 和 POP-10F 对 RhB 的吸附能力最高,因此将POP-8F 和 POP-10F 的最大吸附容量与最近发表的一些其他的优秀的吸附剂相比较,结果如表3所示。值得注意的是,POP-8F 的最大吸附容量(2433.08 mg g -1)高于之前报道的所有吸附材料的值,包括 POPs、COFs、MOFs、生物质吸附剂、活性炭材料等,证明了 POP-8F 的优越性及其在超快速高效去除水中阳离子染料方面的潜在应用。
表2POP-8F和POP-10F对RhB、MB、CV和MO的吸附热力学数据
Figure 301970dest_path_image007
表3本发明吸附剂与现有吸附剂对RhB的最大吸附容量的比较
Figure 278016dest_path_image008
 应用实施例:染料选择性吸附实验。一种优良的吸附剂不仅应具有吸附容量大、去除效率高、吸附速度快、毒性低等优点,还应具有良好的染料选择性吸附性能。POP-8F 和 POP-10F 对包括 RhB、MB 和 CV 在内的阳离子染料都表现出极高的吸附能力,但对阴离子染料(如 MO)的吸附能力要低得多。因此,POP-8F 和 POP-10F是很有前途的分离带电染料的吸附剂。为了研究 POP-8F 和 POP-10F 的选择性染料吸附能力,选择了 MB、RhB等阳离子染料及阴离子染料 MO。 分别将 20 mL MB 或 RhB 水溶液 (50 ppm) 与 20 mL MO 溶液 (50 ppm) 混合。 在 MB-MO 和 RhB-MO 混合物(均为 3 mL)中加入 3 mg POP-8F 或 POP-10F,将所得混合物在室温下常规超声处理 60 秒。 然后使用 0.22 μm 注射器过滤器过滤混合物,研究 UV-Vis 光谱的变化以分析选择性染料分离性能。如图7所示,MB 的去除效率可以达到 99.9 %(POP-8F)和 99.2%(POP-10F),而 MO 的去除率分别只有 24.3% 和 19.2%。此外,RhB 的去除效率分别为 97.6%(POP-8F)和 96.2%(POP-10F),而 MO 的去除率仅为 25.1% 和 8.2%。此外,混合物的颜色变化也有助于染料的选择性吸附特性。MB-MO 和 RhB-MO 混合物的初始颜色分别为绿色和橙色。然而,吸附后颜色变为黄色,表明MB(蓝色)和RhB(粉红色)的颜色几乎完全消失。
模拟工业废水的净化。实际工业废水中通常含有多种污染物,因此多组分污染物的去除率、去除效率和选择性吸附能力是评价吸附剂吸附性能的重要因素。选择柱状吸附实验作为模拟器,选择 POP-8F作为吸附剂,研究其在真实废水净化中的潜在应用。如图8 (a)所示,20 mL RhB溶液(500 ppm)在常压的情况下通过装有50 mg POP-8F的柱子,用肉眼可以清楚地观察到溶液立即变为无色。此外,包括RhB、MB和CV在内的阳离子染料混合物(500 ppm)也可以在常压下通过色谱柱(装有50 mg POP-8F的柱子)完全吸附,紫色完全消失。这些结果表明杯芳烃基POPs在污水处理中具有实际应用。
循环测试。研究了 POP-8F 和 POP-10F 的可回收性和可重复性,这是吸附剂潜在实际应用的关键指标。考虑到POP-8F和POP-10F对RhB的吸附能力和吸附速率最高,选择其作为代表性污染物,研究吸附剂的解吸和可回收性能。将 10 mg 吸附剂加入到 10 mL RhB 溶液 (50 ppm) 搅拌 5 分钟,保证已达到吸附平衡。吸附后,将吸附剂浸泡在含有 1 M HCl 的甲醇中,并用 1 M 碳酸钠溶液、蒸馏水和甲醇连续洗涤,可以很容易地释放出 RhB。如图8(b)所示,经过 5 个循环后,POP-8F 和 POP-10F 均保持良好的去除效率,仅分别从 99.9% 略微下降至 98.7% 和 98.9%。回收过程中吸附剂的轻微失重,而且RhB分子可能没有完全解吸,这两个因素导致去除效率的轻微下降。此外,五个循环后 POP-8F 和 POP-10F 的 FT-IR 光谱如图9所示。五个循环后的光谱与原始吸附剂的光谱匹配良好,证实了 POP-8F 和 POP-10F 的良好稳定性。因此,POP-8F 和 POP-10F 具有去除效率高和易于再生的优点,是水处理和净化中使用的吸附剂的理想选择。
综上所述,本发明在碱性和相对温和的条件下,用C-苯基间苯二酚[4]芳烃和两种全氟芳香化合物成功合成了两种新型多孔有机聚合物POP-8F和POP-10F。所得POPs具有多孔结构、活性位点丰富、热稳定性良好和电负性等优点。这些优点使POP-8F和POP-10F具有非凡的吸附性能,包括超快的吸附速率、极高的吸附能力、良好的循环性和对阳离子染料的显著选择性。POP-8F 对 RhB 的拟二级速率常数为 0.04386 g mg -1 min -1,高于最近报道的多数POPs。值得注意的是,POP-8F 对 RhB 的最大吸附容量可达 2433 mg g -1,超过了之前报道的所有多孔吸附剂,包括 COFs、MOFs、POPs、生物吸附剂、活性炭等。新型杯芳烃基 POP-8F 和 POP-10F 是很有前景的吸附剂,水污染物处理和废水高效净化领域有潜在应用价值。

Claims (10)

  1. 一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物,其特征在于,所述超快去除速率和超高吸附容量的杯芳烃类多孔聚合物的制备方法包括以下步骤,将含氟交联剂溶液与单体溶液混合,加热反应,得到超快去除速率和超高吸附容量的杯芳烃类多孔聚合物。
  2. 根据权利要求1所述超快去除速率和超高吸附容量的杯芳烃类多孔聚合物,其特征在于,单体溶液包括单体、无机碱以及溶剂;单体由间苯二酚、对羟基苯甲醛制备得到。
  3. 根据权利要求1所述超快去除速率和超高吸附容量的杯芳烃类多孔聚合物,其特征在于,含氟交联剂包括十氟联苯或者八氟萘。
  4. 权利要求1所述超快去除速率和超高吸附容量的杯芳烃类多孔聚合物的制备方法,其特征在于,包括以下步骤,将含氟交联剂溶液与单体溶液混合,加热反应,得到超快去除速率和超高吸附容量的杯芳烃类多孔聚合物。
  5. 根据权利要求4所述超快去除速率和超高吸附容量的杯芳烃类多孔聚合物的制备方法,其特征在于,在浓盐酸存在下,以间苯二酚、对羟基苯甲醛为原料,在溶剂中回流反应,制备单体。
  6. 根据权利要求4所述超快去除速率和超高吸附容量的杯芳烃类多孔聚合物的制备方法,其特征在于,按摩尔比,单体、含氟交联剂、无机碱的用量比例为(0.3~0.4)∶1∶3。
  7. 根据权利要求4所述超快去除速率和超高吸附容量的杯芳烃类多孔聚合物的制备方法,其特征在于,加热反应为80~90℃反应40~55小时。
  8. 一种单体在制备权利要求1所述超快去除速率和超高吸附容量的杯芳烃类多孔聚合物中的应用,其特征在于,单体由间苯二酚、对羟基苯甲醛制备得到。
  9. 权利要求1所述超快去除速率和超高吸附容量的杯芳烃类多孔聚合物在吸附染料或者制备染料吸附剂中的应用,或者在制备染料循环吸附剂中的应用。
  10. 利用权利要求1所述超快去除速率和超高吸附容量的杯芳烃类多孔聚合物吸附染料的方法,包括以下步骤,将超快去除速率和超高吸附容量的杯芳烃类多孔聚合物加入含有染料的溶液中,完成染料吸附。
PCT/CN2021/134169 2021-11-29 2021-11-29 一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离 WO2023092608A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134169 WO2023092608A1 (zh) 2021-11-29 2021-11-29 一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134169 WO2023092608A1 (zh) 2021-11-29 2021-11-29 一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离

Publications (1)

Publication Number Publication Date
WO2023092608A1 true WO2023092608A1 (zh) 2023-06-01

Family

ID=86538799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134169 WO2023092608A1 (zh) 2021-11-29 2021-11-29 一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离

Country Status (1)

Country Link
WO (1) WO2023092608A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173625A (ja) * 2007-05-09 2009-08-06 Mitsubishi Gas Chem Co Inc 感放射線性組成物、化合物、化合物の製造方法およびレジストパターン形成方法
CN102880003A (zh) * 2012-10-29 2013-01-16 中国科学院上海光学精密机械研究所 激光直写有机热刻蚀材料及其制备方法
US20190015814A1 (en) * 2017-07-14 2019-01-17 New York University Polycalixarene materials, methods of making same, and uses thereof
CN114085345A (zh) * 2021-11-29 2022-02-25 苏州大学 一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173625A (ja) * 2007-05-09 2009-08-06 Mitsubishi Gas Chem Co Inc 感放射線性組成物、化合物、化合物の製造方法およびレジストパターン形成方法
CN102880003A (zh) * 2012-10-29 2013-01-16 中国科学院上海光学精密机械研究所 激光直写有机热刻蚀材料及其制备方法
US20190015814A1 (en) * 2017-07-14 2019-01-17 New York University Polycalixarene materials, methods of making same, and uses thereof
CN114085345A (zh) * 2021-11-29 2022-02-25 苏州大学 一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN YANLI; FANG YISHAN; YU JINGKUN; GAO WENQIANG; ZHAO HUIJUAN; ZHANG XIAOMEI: "A silsesquioxane-porphyrin-based porous organic polymer as a highly efficient and recyclable absorbent for wastewater treatment", JOURNAL OF HAZARDOUS MATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 406, 5 December 2020 (2020-12-05), AMSTERDAM, NL , XP086469503, ISSN: 0304-3894, DOI: 10.1016/j.jhazmat.2020.124769 *
DENG, WENXIU ET AL.: "Synthesis of Calixarene-Based Porous Organic Framework(CalixPOF) in situ Solvent-Assisted Friedel-Crafts Coupling and Their Dye Adsorption Properties", JOURNAL OF FUNCTIONAL POLYMERS, vol. 30, no. 01, 30 March 2017 (2017-03-30), XP009546706 *
GE, YUN ET AL.: "Alkylation and Amidation of Tetra(hydroxyphenyl)calix[4]resorcine", CHINESE JOURNAL OF ORGANIC CHEMISTRY, no. 05, 25 May 2006 (2006-05-25), XP009546707 *
SHETTY DINESH, JAHOVIĆ ILMA, SKORJANC TINA, ERKAL TURAN SELMAN, ALI LIAQAT, RAYA JESUS, ASFARI ZOUHAIR, OLSON MARK A., KIRMIZIALTI: "Rapid and Efficient Removal of Perfluorooctanoic Acid from Water with Fluorine-Rich Calixarene-Based Porous Polymers", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 12, no. 38, 23 September 2020 (2020-09-23), US , pages 43160 - 43166, XP093069250, ISSN: 1944-8244, DOI: 10.1021/acsami.0c13400 *

Similar Documents

Publication Publication Date Title
Wang et al. Bakelite-type anionic microporous organic polymers with high capacity for selective adsorption of cationic dyes from water
JP3055700B2 (ja) 固相抽出及び反応用複合膜
Ren et al. Facile and green preparation of novel adsorption materials by combining sol-gel with ion imprinting technology for selective removal of Cu (II) ions from aqueous solution
Niu et al. Synthesis of silica gel supported salicylaldehyde modified PAMAM dendrimers for the effective removal of Hg (II) from aqueous solution
Chen et al. Microwave‐Assisted Solvothermal Synthesis of Covalent Organic Frameworks (COFs) with Stable Superhydrophobicity for Oil/Water Separation
Zhou et al. Novel calixarene-based porous organic polymers with superfast removal rate and ultrahigh adsorption capacity for selective separation of cationic dyes
US9932454B2 (en) Porous polymer material
CN114085345B (zh) 一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离
Zhang et al. Effect of free carboxylic acid groups in UiO-66 analogues on the adsorption of dyes from water: Plausible mechanisms for adsorption and gate-opening behavior
Fu et al. Efficient removal of bisphenol pollutants on imine-based covalent organic frameworks: adsorption behavior and mechanism
Gong et al. Synthesis of recyclable powdered activated carbon with temperature responsive polymer for bisphenol A removal
Castaldo et al. A versatile synthetic approach toward hyper-cross-linked styrene-based polymers and nanocomposites
CN112898571B (zh) 多孔交联材料及其制备方法与应用
CN108948251B (zh) 一种改性复合孔结构吸附树脂及其制备方法
CN113522244A (zh) 一种共价有机框架复合材料及其制备方法与应用
Dong et al. Fabrication of two dual-functionalized covalent organic polymers through heterostructural mixed linkers and their use as cationic dye adsorbents
CN111363160B (zh) 一种三维共价的三嗪基杯[4]芳烃聚合物及其制备方法与应用
Li et al. Rapid extraction of trace bisphenol A in real water samples using hollow mesoporous silica surface dummy molecularly imprinted polymers
Jiang et al. Constructing an ultra-adsorbent based on the porous organic molecules of noria for the highly efficient adsorption of cationic dyes
Choe et al. Shaping and silane coating of a diamine-grafted metal-organic framework for improved CO2 capture
Liu et al. Solvent and catalyst free preparation of sulfonic acid functionalized magnetic covalent organic polymer as efficient adsorbent for malachite green removal
Xu et al. Preparation and application of monodisperse, highly cross-linked, and porous polystyrene microspheres for dye removal
Fu et al. Mixed matrix membrane for enhanced Ethanol/Water pervaporation separation by incorporation of hydrophilic Zr-MOF NU-906 in chitosan
WO2023092608A1 (zh) 一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离
Mansab et al. In situ remediation of 2, 4-dicholrophenoxyacetic acid herbicide using amine-functionalized imidazole coordination complexes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965337

Country of ref document: EP

Kind code of ref document: A1