WO2023092358A1 - 接收设备和发射设备 - Google Patents

接收设备和发射设备 Download PDF

Info

Publication number
WO2023092358A1
WO2023092358A1 PCT/CN2021/132921 CN2021132921W WO2023092358A1 WO 2023092358 A1 WO2023092358 A1 WO 2023092358A1 CN 2021132921 W CN2021132921 W CN 2021132921W WO 2023092358 A1 WO2023092358 A1 WO 2023092358A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitting device
receiving device
information
present disclosure
transmitting
Prior art date
Application number
PCT/CN2021/132921
Other languages
English (en)
French (fr)
Inventor
李翔
侯晓林
王新
陈岚
须山聡
奥山达树
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to PCT/CN2021/132921 priority Critical patent/WO2023092358A1/zh
Publication of WO2023092358A1 publication Critical patent/WO2023092358A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present disclosure relates to the field of wireless communication, and more particularly relates to a method used in a line of sight (light of sight, LOS) scene and a corresponding receiving device and transmitting device.
  • LOS line of sight
  • a scenario in which a network side device such as a base station communicates with a terminal device may generally include a LOS scenario and a non-LOS scenario.
  • the strength of the signal propagated through the LOS path is strong, while in the non-LOS scene, there is no LOS path or the signal strength propagated through the LOS path is weak.
  • the LOS channel can only transmit 1-stream signal. Even if the number of antenna elements in the antenna array is increased, it is difficult to support the multi-stream transmission required by MIMO technology. For example, in order to improve spectral efficiency, it can be improved based on the digital-analog hybrid beamforming (hybrid beamforming, HBF) architecture in the 5G NR system. Specifically, the number of transceiver units (TxRU), antennas, etc. under the HBF architecture of the 5G NR system can be increased. However, increasing the number of TxRUs or antennas will lead to increased hardware costs and increased complexity, and due to the large channel condition number and transmission power limitations, increasing the number of TxRUs or antennas has limited performance improvement in LOS scenarios.
  • HBF digital-analog hybrid beamforming
  • a receiving device including: a control unit configured to determine information about the strength of a line-of-sight (LOS) channel component in a communication channel; and a sending unit configured to send the received Confirmed information.
  • LOS line-of-sight
  • the receiving device further includes: a receiving unit configured to receive a first reference signal from the transmitting device, wherein the control unit performs channel state estimation according to the first reference signal , and according to the result of the channel state estimation, determining the information about the strength of the LOS channel component in the communication channel.
  • the sending unit is further configured to send at least one of position information and posture information of the receiving device to the transmitting device.
  • a transmitting device comprising: a transceiving unit including: a first antenna array; a control unit configured to obtain information about the strength of a line of sight (LOS) channel component in a communication channel, and Determine the configuration manner of the first antenna array according to the information.
  • a transceiving unit including: a first antenna array; a control unit configured to obtain information about the strength of a line of sight (LOS) channel component in a communication channel, and Determine the configuration manner of the first antenna array according to the information.
  • LOS line of sight
  • the first antenna array includes a plurality of first sub-arrays
  • the control unit When determining that the communication channel satisfies a predetermined channel condition based on the information on the strength of a line-of-sight (LOS) channel component in the communication channel, the control unit, based on at least one of position information and attitude information of the receiving device,
  • the first antenna array is configured.
  • the transceiver unit further includes a feed module, the feed module includes a plurality of feed sub-modules respectively corresponding to the plurality of first sub-arrays, when according to the line of sight (LOS) channel component strength information determines that the communication channel satisfies a predetermined channel condition, the control unit sends the first signal to the first channel through the feeding module according to at least one of the position information and attitude information of the receiving device.
  • the antenna array is configured.
  • control unit determines whether the distance between the receiving device and the transmitting device satisfies a predetermined distance condition according to the location information of the receiving device, and configures the plurality of first subarrays emission sub-array.
  • control unit configures the transmitting sub-arrays in the plurality of first sub-arrays at least partly according to the position information and attitude information of the receiving device.
  • control unit configures the beams emitted by the transmitting sub-arrays in the plurality of first sub-arrays according to the position information and attitude information of the receiving device.
  • control unit is further configured to perform beam shaping on beams emitted by the first antenna array.
  • a receiving device including: a transceiver unit configured to receive a plurality of unprecoded data streams transmitted through a plurality of antenna ports in the transmitting device; a control unit configured to Determining an equivalent digital baseband channel matrix for each of the plurality of antenna ports based on strength information of line of sight (LOS) channel components, and performing processing on the plurality of data streams according to the equivalent digital baseband channel matrix demodulation.
  • a transceiver unit configured to receive a plurality of unprecoded data streams transmitted through a plurality of antenna ports in the transmitting device
  • a control unit configured to Determining an equivalent digital baseband channel matrix for each of the plurality of antenna ports based on strength information of line of sight (LOS) channel components, and performing processing on the plurality of data streams according to the equivalent digital baseband channel matrix demodulation.
  • LOS line of sight
  • the transceiving unit is configured to send at least one of a channel state information reference signal resource indicator, a rank indicator, and a channel quality indicator to the transmitting device.
  • control unit determines an equivalent digital baseband channel matrix for each antenna port in the plurality of antenna ports according to a channel estimation result.
  • control unit determines information about An equivalent digital baseband channel matrix of each antenna port in the plurality of antenna ports.
  • control unit performs minimum mean square error demodulation or matched filter demodulation on the data stream.
  • a transmitting device including: a control unit configured to determine a plurality of unprecoded data streams for a receiving device; a transceiver unit including: a plurality of antenna ports, the plurality of Each of the antenna ports is configured to transmit the plurality of data streams.
  • the plurality of antenna ports transmit data streams using the same modulation and coding strategy, and use the same transmit power.
  • a method performed by a receiving device including: receiving a plurality of unprecoded data streams transmitted through a plurality of antenna ports in a transmitting device, and determining information about the plurality of antenna ports The equivalent digital baseband channel matrix of each antenna port in the array, and demodulate the multiple data streams according to the equivalent digital baseband channel matrix.
  • the method further includes sending at least one of a channel state information reference signal resource indicator, a rank indicator, and a channel quality indicator to the transmitting device.
  • a method performed by a transmitting device including a plurality of antenna ports comprising: determining a plurality of unprecoded data streams for a receiving device; using the Each antenna port in the plurality of antenna ports sends the plurality of data streams.
  • a receiving device comprising: a control unit configured to determine a precoding indicator for a first antenna port among a plurality of antenna ports of a transmitting device or the receiving device; and A transceiving unit configured to send the precoding indicator to the transmitting device.
  • the precoding indicator includes phase offset information associated with the first antenna port.
  • the transceiving unit is further configured to send at least one of channel state information reference signal resource indicator (CRI), resource indicator (RI) and channel quality information (CQI) to the transmitting device.
  • CCI channel state information reference signal resource indicator
  • RI resource indicator
  • CQI channel quality information
  • the transceiver unit is configured to receive a plurality of data streams sent by each antenna port in the plurality of antenna ports, wherein the control unit is further configured to receive a plurality of data streams sent by each antenna port Data streams are independently demodulated.
  • a transmitting device including: a transceiving unit configured to receive a precoding indicator from a receiving device, wherein the precoding indicator is related to a multiple of the transmitting device or the receiving device The first antenna port in the antenna ports corresponds to; the control unit is configured to determine the precoder information associated with the plurality of antenna ports of the transmitting device according to the precoding indicator.
  • control unit is configured to determine precoder information associated with a plurality of antenna ports of the transmitting device according to the precoding indicator and the DFT vector.
  • each antenna port of the transmitting device sends to the receiving device a plurality of data streams that are precoded according to precoding information corresponding to the antenna port.
  • each antenna port of the transmitting device transmits the plurality of data streams at the same power and using the same modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • a method performed by a receiving device including: determining a precoding indicator for a first antenna port among a plurality of antenna ports of a transmitting device; and sending the precoding indicator to the transmitting device. precoding indicator.
  • a method performed by a transmitting device including: receiving a precoding indicator from a receiving device, wherein the precoding indicator is related to a plurality of antenna ports of the transmitting device or the receiving device corresponding to the first antenna port in ; and determining precoder information associated with the plurality of antenna ports of the transmitting device according to the precoding indicator.
  • the transceiver unit of the sending device may be flexibly adjusted.
  • FIG. 1 is a schematic diagram illustrating an example situation of transmission using a high-frequency band.
  • Fig. 2 is a schematic diagram illustrating an example scenario of transmission by a large spacing array antenna.
  • Fig. 3 is a schematic block diagram illustrating a transmitting device according to an embodiment of the present disclosure.
  • 4A-4D are schematic diagrams illustrating a transceiver unit of a transmitting device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing the configured transmitting sub-arrays in the transceiver unit shown in FIG. 4A when the control unit determines that the distance between the receiving device and the transmitting device is less than or equal to a predetermined distance condition.
  • FIG. 6 is a schematic diagram showing that in the transceiver unit shown in FIG. 4A , the control unit configures the transmitting sub-arrays among the plurality of first sub-arrays according to the position information and posture information of the receiving device.
  • FIG. 7 is a schematic block diagram illustrating a receiving device according to an embodiment of the present disclosure.
  • Fig. 8 shows an exemplary schematic diagram of information transmission according to an embodiment of the present disclosure.
  • Fig. 9 shows a schematic diagram of transmission when the distance between a transmitting device and a receiving device satisfies an optimal distance according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic block diagram illustrating a transmitting device according to one embodiment of the present disclosure.
  • FIG. 11 is a schematic block diagram illustrating a receiving device according to one embodiment of the present disclosure.
  • FIG. 12 is a schematic block diagram illustrating a receiving device according to another embodiment of the present disclosure.
  • FIG. 13 is a schematic block diagram illustrating a transmitting device according to another embodiment of the present disclosure.
  • Fig. 14 shows a schematic diagram of an example of information transmission according to an embodiment of the present disclosure.
  • Fig. 15 shows another schematic transmission diagram when the distance between the transmitting device and the receiving device satisfies an optimal distance according to an embodiment of the present disclosure.
  • FIG. 16 is a flowchart of a configuration method according to one embodiment of the present disclosure.
  • FIG. 17 is a flowchart of a method performed by a receiving device according to one embodiment of the present disclosure.
  • FIG. 18 is a flowchart of a method performed by a receiving device according to one embodiment of the present disclosure.
  • FIG. 19 is a flowchart of a method performed by a transmitting device according to one embodiment of the present disclosure.
  • FIG. 20 is a flowchart of a method performed by a receiving device according to one embodiment of the present disclosure.
  • FIG. 21 is a flowchart of a method performed by a transmitting device according to one embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram of a hardware structure of a related device 2200 (electronic device) according to an embodiment of the present disclosure.
  • the transmitting device described in this disclosure may be a base station or the transmitting device may include a base station and a relay device for forwarding signals sent by the base station.
  • the receiving device described in this disclosure may be a terminal or the receiving device may include a terminal and a relay device. For relay devices that forward signals to terminals and vice versa.
  • description will be mainly made by taking an example in which the transmitting device includes a base station and the receiving device includes a terminal. However, it should be understood that these examples may apply to other variations of transmitting and receiving devices.
  • the terminals described in the present disclosure may include various types of terminals, such as vehicle terminals, user equipment (User Equipment, UE), mobile terminals (or called mobile stations), or fixed terminals.
  • the base station (BS: Base Station) described in this disclosure includes various types of base stations, for example, wireless base station, fixed station (fixed station), NodeB, eNodeB (eNB), gNodeB (gNB), access point (access point) , Sending point (TP: transmission point), receiving point (RP: reception point), sending and receiving point (TRP: transmission/reception point), etc.
  • FIG. 1 is a schematic diagram illustrating an example scenario of LOS transmission using a high frequency band. As shown in Figure 1, when a high frequency band is used for LOS transmission, there are strong LOS paths and strong ground reflection paths, while other reflection paths or scattering paths are weak.
  • Fig. 2 is a schematic diagram illustrating an example scenario of transmission by a large spacing array antenna.
  • the array antenna arrangement of the receiving device is used as an example for description. It should be understood that an array antenna arrangement similar to that of the receiving device also needs to be arranged at the sending device.
  • the gray area 210 is the area where multiple array antennas of the receiving device are located, and each white square in the gray area 210 is a receiving array antenna.
  • the optimal distance between each adjacent transceiver antenna can be determined according to the following formula 1:
  • d T is the distance between adjacent receiving array antennas in the sending device
  • d R is the distance between adjacent receiving array antennas in the receiving device
  • is the wavelength of the carrier used in the communication system
  • D is the distance between the sending device and the receiving device.
  • the distance between devices, N is the number of transceiver antenna pairs.
  • the optimal distance between transmitting or receiving array antennas is related to the distance between the transmitting device and the receiving device.
  • the optimal distance between the transmitting or receiving array antennas shown in Formula 1 cannot be satisfied, the performance drops significantly, and it is difficult to achieve the expected gain.
  • the antennas are pre-arranged in the traditional way in the sending device or configured in an improved way for the LOS scenario.
  • the sending device cannot flexibly adjust the sending device according to whether the current scene is an LOS scene.
  • Fig. 3 is a schematic block diagram illustrating a transmitting device according to an embodiment of the present disclosure.
  • the transmitting device 300 may include a transceiver unit 310 and a control unit 320 .
  • the transceiver unit 310 may include a first antenna array 311 .
  • the first antenna array may be a reconfigurable intelligent surface (Reconfigurable Intelligent Surface, RIS).
  • the first antenna array may be a phased array antenna (phased array antenna, PAA).
  • the first antenna array may be a lens array antenna.
  • the first antenna array may be divided into a plurality of first sub-arrays. Each first sub-array may include one or more array elements.
  • the transmitting device 300 may be a base station, and the first antenna array 311 may be a component included in the base station. Alternatively, the first antenna array 311 may be set independently of the base station.
  • the transmitting device 300 may be a terminal device, and the first antenna array 311 may be a component included in the terminal. Alternatively, the first antenna array 311 may be set independently of the terminal device.
  • the transmitting device 300 may also include other components, however, since these components are irrelevant to the content of the embodiments of the present disclosure, illustration and description thereof are omitted here.
  • the transmitting device can flexibly adjust the first antenna array in the transceiver unit according to the current communication scenario, so as to improve the performance of the communication system.
  • the control unit 320 may obtain information on the strength of a Line of Sight (LOS) channel component in a communication channel.
  • the information about the strength of the LOS channel component may be a Rician K-fator representing the ratio of the strength of the LOS channel component to the strength of the non-line-of-sight (LOS) channel component, hereinafter referred to as "K factor".
  • K factor the information about the strength of the LOS channel component
  • the information about the strength of the LOS channel component may also be other information indicating whether the LOS path exists or its relative strength.
  • the intensity of the LOS channel component in the communication channel may be estimated by the transmitting device 300 to obtain information on the intensity of the LOS channel component. It is also possible to estimate the strength of the LOS channel component in the communication channel by the receiving device to communicate with the transmitting device 300 and transmit information on the strength of the LOS channel component to the transmitting device 300 .
  • the transmitting device 300 may receive a reference signal from the receiving device through the transceiver unit 310, and the control unit 320 may estimate the intensity of the LOS channel component in the communication channel according to the uplink reference signal.
  • the transmitting device 300 may transmit the reference signal to the UE through the transceiver unit 310 .
  • the receiving device can estimate the strength of the LOS channel component in the communication channel according to the downlink reference signal, and send information about the estimated strength of the LOS channel component to the transmitting device 300, so as to reduce the operations required by the transmitting device.
  • the control unit 320 may determine the configuration manner of the first antenna array 311 according to the information.
  • the control unit 320 may determine that the current communication scene is a LOS scene, and configure the first antenna array 311 is suitable for communication in LOS scenarios.
  • the control unit 320 may determine that the current communication scenario is an LOS scenario. In this case, the control unit 320 can configure the first antenna array 311 to be suitable for communication in a LOS scenario. Therefore, the transmitting device according to the embodiment of the present disclosure can determine whether the current scene is a LOS scene according to the information about the strength of the LOS channel component in the communication channel, and then flexibly adjust the first antenna array in the transceiver unit.
  • the control unit 320 may, according to at least one of the position information and attitude information of the receiving device,
  • the first antenna array 311 is configured.
  • the first antenna array 311 may include a plurality of first sub-arrays.
  • the control unit 320 may configure a plurality of first A transmit subarray within a subarray.
  • control unit 320 may configure the distance between adjacent transmitting sub-arrays according to at least one of the position information and attitude information of the receiving device.
  • control unit 320 may configure the beams emitted by the transmitting subarray according to at least one of the position information and attitude information of the receiving device.
  • the transceiving unit 310 may further include a feeding module (shown by a dotted line in FIG. 3 ) for feeding the first antenna array 311 .
  • the feeding module may include a plurality of feeding sub-modules respectively corresponding to the plurality of first sub-arrays.
  • the control unit 320 may send the first signal to the first channel through the feeding module according to at least one of the position information and the posture information of the receiving device.
  • An antenna array is configured.
  • the feeding module may feed the first antenna array in a wireless manner or a wired manner.
  • the feeding module may include a driving component and a second antenna array, and the driving component drives the second antenna array to transmit beams to the first antenna array, thereby feeding the first antenna array.
  • the feeding module may include a driving component, and feed power directly to the first antenna array through the driving component.
  • FIGS. 4A-4D are schematic diagrams illustrating a transceiver unit of a transmitting device according to an embodiment of the present disclosure.
  • Fig. 4A is a schematic diagram showing a transceiver unit of a transmitting device according to an embodiment of the present disclosure.
  • the transceiver unit 410A of the transmitting device includes a feed module 420A and a first antenna array 430A, wherein the feed module 420A includes a driving component (as shown by a triangle in the feed module 420A of FIG. 4A ). ) and a second antenna array (shown as a square in the feed module 420A of FIG. 4A ).
  • the second antenna array may be a phased array antenna (phased array antenna, PAA) or a lens array antenna.
  • the first antenna array 430A is a RIS device or a lens array antenna corresponding to the feeding module 420A. As shown in FIG. 4A, the first antenna array 430A is divided into four first sub-arrays, and the second antenna array includes second sub-arrays respectively corresponding to the four first sub-arrays, and the driving components are respectively connected to the second sub-arrays. array connected.
  • the second subarray connected to the driving component is driven by the driving component to emit the second beam projected on the corresponding first subarray.
  • the black area in the first antenna array 430A in FIG. 4A schematically shows the light spot formed on the first sub-array by the main lobe of the second beam.
  • the position where the second beam is projected on the corresponding first subarray may be adjusted by performing beamforming on the second beam emitted by the second subarray.
  • the first sub-array may reflect or transmit the second beam projected on the sub-array to transmit the first beam.
  • the array formed by the array elements used to transmit the first beam in the first sub-array may be referred to as a transmitting sub-array.
  • a transmitting sub-array the array elements in the area indicated by the black square form a transmitting sub-array.
  • Each transmit subarray can transmit a first beam.
  • the second antenna array may be, for example, a PAA or a lens array antenna and an antenna array capable of beamforming is described as an example.
  • the second antenna array may be a directional antenna.
  • Fig. 4B is a schematic diagram showing a transceiver unit of a transmitting device according to another embodiment of the present disclosure.
  • the transceiver unit 410B of the transmitting device includes a feed module 420B and a first antenna array 430B, wherein the feed module 420B includes a driving component (as shown by a triangle in the feed module 420B of FIG.
  • the second antenna array may be a directional antenna array.
  • the first antenna array 430B may be a RIS device or a lens array antenna corresponding to the feeding module 420B. Since it is difficult for a directional antenna to change the direction of its transmitted beam through beamforming, compared with the case where the second antenna array is an antenna array capable of beamforming, for the second antenna array composed of directional antennas The number of the second sub-array is larger.
  • the first antenna array 430B may be divided into more first sub-arrays so as to correspond to the second sub-arrays. As shown in FIG.
  • the second antenna array includes second sub-arrays respectively corresponding to a plurality of first sub-arrays, and the driving components are respectively connected to each second sub-array.
  • each horn-shaped mark represents a second subarray, and each second subarray may include one or more directional antennas.
  • the second subarray connected to the driving component is driven by the driving component to emit the second beam projected on the corresponding first subarray.
  • the black area in the first antenna array 430B of FIG. 4B schematically shows the first sub-array on which the main lobe of the second beam is located.
  • a corresponding first sub-array can be selected by driving a different second sub-array.
  • the first sub-array corresponding to the second sub-array for transmitting the second beam is referred to as a transmitting sub-array.
  • Each transmit subarray can transmit a first beam.
  • FIG. 4C is a schematic diagram showing a transceiver unit of a transmitting device according to another embodiment of the present disclosure.
  • the transceiver unit 410C of the transmitting device includes a feeding module 420C, wherein the feeding module 420C includes a driving component (shown by a triangle in the feeding module 420C of FIG. 4C ).
  • the first antenna array 430C is an antenna array corresponding to the feeding module 420C, such as a PAA.
  • the first antenna array 430C is divided into more first sub-arrays. As shown in FIG. 4C , the driving components are respectively connected to each first sub-array to directly control which first sub-array is fed with power.
  • the first sub-array driven by the driving component (shown as the black area in the first antenna array 430C of FIG. 4C ) may be referred to as a transmitting sub-array. Each transmit subarray can transmit a first beam.
  • FIG. 4D is a schematic diagram showing physical isolation between the first sub-arrays according to an example of the present disclosure.
  • the isolation can be increased between the first sub-arrays to further suppress interference.
  • filter materials such as frequency selective surfaces (FSS) may be used.
  • the first antenna array instead of physically isolating the first sub-arrays, the first antenna array may be logically divided to obtain multiple first sub-arrays. For example, physical separation may not be used when interference is better suppressed by beamforming.
  • the control unit 320 may determine whether the distance between the receiving device and the transmitting device 300 satisfies a predetermined distance condition according to the location information of the receiving device, and configure the transmitting sub-arrays in the plurality of first sub-arrays. For example, when the control unit 320 determines according to the position information of the receiving device that the distance between the receiving device and the transmitting device 300 is less than or equal to the predetermined distance condition, a predetermined sub-array or a predetermined part of the plurality of first sub-arrays can be used as the transmitting sub-array. array. Therefore, even without using detailed position information or attitude information about the receiving device, the transmitting sub-array can be easily configured at the transmitting device to be suitable for LOS communication scenarios.
  • FIG. 5 is a schematic diagram showing the configured transmitting sub-arrays in the transceiver unit shown in FIG. 4A when the control unit determines that the distance between the receiving device and the transmitting device is less than or equal to a predetermined distance condition.
  • the corners of the first sub-arrays that are close to the adjacent sub-arrays are called inner corners, and the corners far from the adjacent sub-arrays are called outer corners.
  • each second sub-array may be driven by a driving component to transmit a signal towards the first sub-array corresponding to the second sub-array.
  • each first sub-array the array elements in the area indicated by the black square form a transmitting sub-array to transmit the first beam. Therefore, it is ensured that the distance between the multiple transmitting sub-arrays is large.
  • control unit 320 may configure the transmitting sub-arrays in the plurality of first sub-arrays at least in part according to the position information and attitude information of the receiving device. For example, the control unit 320 may determine which parts or which subarrays in the multiple first subarrays are used as the transmitting subarrays based at least in part on the position information and attitude information of the receiving device. Therefore, at the transmitting device, the transmitting sub-array can be accurately configured according to a specific terminal to be applicable to a LOS communication scenario, thereby improving system performance.
  • the location information of the receiving device may be the three-dimensional coordinates of the receiving device relative to a reference point in the transmitting device.
  • the location information of the receiving device may include one or more of the distance between the receiving device and the sending device, information about downlink angle of departure (DL-AoD), and information about uplink angle of arrival (UL-AoD).
  • the attitude information of the receiving device may be a deflection angle of the receiving device relative to coordinate axes in the horizontal, vertical, and depth directions.
  • the attitude information of the receiving device may include one or more of information about a downlink angle of arrival (DL-AoA), information about a receiving tilt angle of the receiving device.
  • DL-AoA downlink angle of arrival
  • FIG. 6 is a schematic diagram showing that in the transceiver unit shown in FIG. 4A , the control unit configures the transmitting sub-arrays among the plurality of first sub-arrays according to the position information and posture information of the receiving device.
  • the transceiver unit of the transmitting device includes a feeding module and a first antenna array, wherein the feeding module includes a driving component (not shown in FIG. 6 ) and a second antenna array .
  • the second antenna array includes second sub-arrays 610-640
  • the first antenna array includes first sub-arrays 651-654.
  • each second array transmits a second beam to the corresponding first sub-array.
  • the main spots formed by the second beam projected on the first sub-arrays are shown on the first sub-arrays 651 to 654 with black parts in FIG. 6 .
  • the control unit 320 can set the distance between the main light spots on adjacent first sub-arrays according to the position information and attitude information of the receiving device that needs to communicate with it, that is, the distance between the transmitting sub-arrays in each first sub-array array to set.
  • the transmitting sub-array located in the black area can respectively reflect or transmit the second beam projected on the sub-array to transmit the first beam, as shown by the elliptical part in FIG. 6 . Therefore, even if the receiving device is not located at the predetermined position, or the position of the receiving device changes, the rank of the LOS channel can be effectively increased, so as to perform multi-stream transmission among multiple transceiver antenna array pairs.
  • formula 1 can be transformed to obtain the following formula 2, and the distance d T between adjacent transmitting sub-arrays can be configured according to formula 2:
  • is the communication wavelength
  • D is the distance between the receiving device and the transmitting device
  • N is the number of transceiver sub-array pairs, for example, N can be determined according to the number of receiving sub-arrays of the receiving device
  • d R is the phase of the receiving device
  • the distance between adjacent receiving sub-arrays ⁇ R is the angle of arrival (AoA) of the receiving device
  • ⁇ T is the angle of departure (AoD) of the transmitting device.
  • the receiving device may send one or more of information about the distance between adjacent receiving sub-arrays, information about the number of receiving sub-arrays to the sending device. Alternatively, a default distance between adjacent receiving sub-arrays may also be used.
  • the transceiver unit shown in FIG. 4A is used as an example for description, however, it should be understood that the same method can also be used in the transceiver unit shown in FIG. 4B and FIG. 4C to configure multiple The transmitting sub-array in the first sub-array.
  • the second sub-arrays driven by the driving sub-arrays may be determined among the plurality of second sub-arrays based at least in part on the position information and attitude information of the receiving device, so as to provide information to the corresponding first sub-arrays.
  • a subarray emits a second beam.
  • the corresponding first sub-array can serve as a transmitting sub-array, and emit the first beam according to the main spot of the second beam thereon.
  • the control unit may configure the beams emitted by the transmitting sub-arrays in the plurality of first sub-arrays according to the position information and attitude information of the receiving device. For example, when the distance between the receiving device and the transmitting device 300 is less than or equal to a predetermined value, it may be determined that the receiving device is in the near field of the transceiver unit 310 . In this case, the first beam may be configured such that it converges on the receiving device. For example, the control unit may configure one or more of the direction, pattern, and initial phase of each first beam according to the position information and attitude information of the receiving device, so that each first beam converges on the receiving device.
  • each first sub-array can transmit the same first beam.
  • the first beam may also be configured to converge on the receiving device.
  • each first subarray can send the same first beam.
  • a receiving device that needs to communicate with the transmitting device 300 may report to the transmitting device 300 information about the number of receiving sub-arrays and the spacing between receiving sub-arrays of the receiving device.
  • the distance between the receiving device and the transmitting device 300 may be measured by a receiving device that needs to communicate with the transmitting device 300 .
  • the transmitting device 300 may also measure the distance between the receiving device and the transmitting device.
  • the distance between the receiving device and the transmitting device can be measured by positioning reference signal (positioning reference signal, PRS), channel sounding reference signal (Sounding Reference Signal) and other reference signals, or position sensors such as GPS, or other ranging methods .
  • positioning reference signal positioning reference signal
  • PRS positioning reference signal
  • Sounding Reference Signal channel sounding reference signal
  • position sensors such as GPS, or other ranging methods .
  • the above information can be obtained periodically or aperiodically as needed.
  • all the information about the angle can be measured by the receiving device and sent to the transmitting device.
  • information about AOA, AOD, and reception tilt angle may be transmitted by the receiving device.
  • the AOD may be measured by the transmitting device, and information about the AOA, as well as the reception tilt angle, may be sent by the receiving device.
  • AOD can be measured through beam index, SRS, UE location coordinates, etc.
  • the AOA may be measured through a downlink positioning reference signal such as a PRS, or through a sensor such as a gyroscope.
  • AOA and AOD may refer to AOA and AOD with respect to a downlink signal. Similar to the information about the distance, the above-mentioned information about the angle can be obtained periodically or aperiodically as required.
  • the transmitting device can configure the transceiver unit to ensure signal gain based on information about the receiving devices it needs to communicate with, thereby obtaining good signal gain even for mobile devices in LOS scenarios. performance.
  • control unit 320 may also perform beam shaping on the first beam emitted by the transmitting subarray as required. For example, side lobes may be generated around the main spot of the second beam projected onto the first antenna array, causing interference.
  • the power of the array elements in the first antenna array can be adjusted. For example, larger power can be configured for the array elements in the transmitting sub-array, and smaller power can be configured for other array elements.
  • positions in the first sub-array of the first antenna array other than the transmitting sub-array may be set to random phases, or set to an off state.
  • a window function may be used to shape the first beam emitted by the transmitting subarray into a flat-hat beam.
  • the second beam may be shaped so that it illuminates a larger area on the first antenna array to obtain a higher gain of the first beam.
  • the transceiver unit in order to adapt to communication in a LOS scenario, is generally configured to have a larger distance between transmit sub-arrays.
  • factors such as the large transmit sub-array spacing and the non-ideal characteristics of PAA may lead to larger grating lobes of the transmitted beam at the transmitting end, or generate grating lobes at the receiving end, which can be suppressed through appropriate improvements.
  • the number of antennas in a receiver can be increased to produce narrow beam suppression, thereby preventing grating lobes at the receiving end.
  • the low side lobe characteristic of the RIS beam can be used to suppress the grating lobe generated at the transmitting end.
  • FIG. 7 is a schematic block diagram illustrating a receiving device according to an embodiment of the present disclosure.
  • the receiving device 700 may include a control unit 710 and a sending unit 720 .
  • the receiving device 700 may also include other components, however, since these components are irrelevant to the content of the embodiments of the present disclosure, illustration and description thereof are omitted here.
  • the operation of the receiving device 700 corresponds to that of the transmitting device described above with reference to FIGS. 3-6 , a detailed description of the same content is omitted here for simplicity.
  • the control unit 710 determines information about the strength of a line of sight (LOS) channel component in the communication channel.
  • the control unit 710 may perform channel state estimation according to the first reference signal, and determine the information about the strength of the LOS channel component in the communication channel according to the result of the channel state estimation.
  • the control unit 710 may perform channel state estimation according to the downlink reference signal sent by the transmitting device.
  • the receiving device 700 may further include a receiving unit to receive the first reference signal from the transmitting device.
  • the first reference signal may include one or more of PRS, SRS, channel state reference signal (CSI-RS), and tracking reference signal (Tracking Refernece Signal, TRS).
  • the control unit 710 may perform channel state estimation according to the first reference signal, and determine information on the strength of the LOS channel component in the communication channel according to the result of the channel state estimation.
  • the sending unit 720 may send the determined information to the transmitting device. Therefore, the transmitting device can determine whether the current LOS scene is based on the information about the intensity of the LOS channel component, so as to determine the configuration mode of its transceiver unit for the transmitting device.
  • the sending unit 720 further sends at least one of position information and posture information about the receiving device 700 to the transmitting device.
  • the location information of the receiving device may be the three-dimensional coordinates of the receiving device relative to a reference point in the transmitting device.
  • the location information of the receiving device may include one or more of the distance between the receiving device and the sending device, information about the downlink angle of departure (DL-AoD), and information about the uplink angle of bottom (UL-AoD).
  • the attitude information of the receiving device may be a deflection angle of the receiving device relative to coordinate axes in the horizontal, vertical, and depth directions.
  • the attitude information of the receiving device may include one or more of information about a downlink angle of arrival (DL-AoA), information about a receiving tilt angle of the receiving device.
  • the sending unit 720 may also send other attribute information about the receiving device 700 to the transmitting device.
  • the sending unit 720 may also send information about the number and spacing of receiving sub-arrays. Therefore, the transmitting device can further adjust the configuration of its transceiver unit according to the above information.
  • the above has described an example situation of how to flexibly adjust the transceiver unit of the transmitting device by determining whether the current scene is a LOS scene according to the information about the intensity of the LOS channel component.
  • the configured transceiver unit may be further used for data transmission.
  • the transmitting device according to the embodiments of the present disclosure, multiple mutually independent data streams can be efficiently transmitted even in a LOS scenario.
  • multiple data streams may be transmitted without precoding by taking advantage of the channel characteristics of the LOS channel.
  • each data stream may be precoded, and the precoded data stream may be transmitted.
  • FIG. 8 shows an example of information transmission according to one embodiment of the present disclosure.
  • N antenna ports N greater than or equal to 1 in the antenna array
  • the N antenna ports are respectively the first antenna port, the second antenna port . . . and the Nth antenna port.
  • the N antenna ports respectively send data streams to the receiving device.
  • an antenna port refers to a logical concept
  • an antenna port may correspond to one or more transmitting sub-arrays in the above-mentioned first antenna array, or a transmission sub-array in the first antenna array.
  • a transmit sub-array may also correspond to one antenna port or multiple antenna ports.
  • the present disclosure does not limit the corresponding relationship between antenna ports and transmitting sub-arrays.
  • the logical antenna ports are not shown in FIG. 8 .
  • the term "data stream" is, for example, information or a reference signal that has not been precoded.
  • the aforementioned data streams may be indicated through unprecoded antenna ports.
  • the transmitting device may use the same modulation and coding strategy (MCS), and use the same transmit power to send data streams through the N antenna ports.
  • MCS modulation and coding strategy
  • each of the N antenna ports of the antenna array may respectively send a data stream for the receiving device.
  • the data streams sent by the N antenna ports may be independent data streams or reference signals that have not been precoded.
  • the receiving device may receive the aforementioned multiple data streams, and demodulate each received data stream based on channel state information, including strength information of line of sight (LOS) channel components.
  • LOS line of sight
  • the equivalent digital baseband channel matrix H can be expressed as:
  • H LOS represents a LOS channel component
  • H NLOS represents a non-LOS channel component.
  • the intensity of the LOS channel component is strong, while the intensity of the rest of the non-LOS channel components (including reflection path and scattering path) are weak.
  • the LOS channel component H LOS is related to the relative position between the transmitting device (such as a base station) and the receiving device (such as a terminal device).
  • the LOS channel component [H LOS ] i,j between the i-th antenna port of the receiving device and the j-th antenna port of the transmitting device can be expressed as:
  • is the path loss
  • the receiving subarray corresponding to the i-th antenna port of the receiving device corresponds to the j-th antenna port of the transmitting device
  • the distance between the transmitting subarrays is the distance between the receiving subarray corresponding to the i-th antenna port of the receiving device and the transmitting sub-array corresponding to the j-th antenna port of the transmitting device.
  • the i-th antenna port of the receiving device corresponds to one receiving sub-array and the j-th antenna port of the transmitting device corresponds to two transmitting sub-arrays
  • the average distance from the receiving sub-array corresponding to the i-th antenna port of the receiving device to the two transmitting sub-arrays corresponding to the j-th antenna port of the transmitting device is the average distance from the receiving sub-array corresponding to the i-th antenna port of the receiving device to the two transmitting sub-arrays corresponding to the j-th antenna port of the transmitting device.
  • the present disclosure is not limited thereto.
  • I is the identity matrix
  • the LOS channel component H LOS and approximately satisfy the orthogonal relationship.
  • the equivalent digital baseband channel matrix H also approximately satisfies the orthogonal relationship. It can be seen from the above that the control unit of the receiving device can use the estimated value of the equivalent digital baseband channel matrix H
  • the multiple data streams transmitted without precoding by each antenna port are demodulated.
  • the control unit of the receiving device can perform channel estimation based on a reference signal sent by the transmitting device, such as a channel state information reference signal (CSI-RS) or a demodulation reference signal (DM-RS), to determine the equivalent digital baseband channel matrix Estimated value of H Subsequently, the receiving device may, based on the estimated value Demodulate the received data stream.
  • the received data stream can be demodulated using any MIMO detection algorithm. For example, when the transmitting sub-array spacing of the transmitting device and the receiving sub-array spacing of the receiving device meet the optimal spacing expressed by Formula 1 or Formula 2, the receiving device can use matched filtering (MF) to demodulate the received data stream. Matched filtering (MF) performance is near optimal with low complexity.
  • the receiving device may use other MIMO detection methods to demodulate the received data stream. For example, a receiving device may demodulate a received data stream using a minimum mean square error (MMSE) estimate.
  • MMSE minimum mean square error
  • control unit of the receiving device may also determine information about the multiple The equivalent digital baseband channel matrix for each of the antenna ports.
  • the LOS channel component H LOS can be approximately calculated directly according to the state information of the transmitting device, at least one of the position information and attitude information of the receiving device, and the strength information of the line-of-sight (LOS) channel component.
  • estimated value Estimated value of LOS based on LOS channel component H LOS The receiving device can demodulate each data stream it receives by using the matched filtering method using Equation 5.
  • Fig. 9 shows a schematic diagram of transmission of beams between a transmitting subarray and a receiving device according to an embodiment of the present disclosure.
  • beams emitted by the transmitting device through each transmitting sub-array are focused at the receiving device. Therefore, according to the above description, at the transmitting device, the data stream can be sent through the LOS channel.
  • each antenna port can be used to transmit multiple data streams without precoding, and channel estimation can be used at the receiving device to obtain an estimate of the equivalent digital baseband channel matrix H of each antenna port among the multiple antenna ports value And demodulate the data stream received through the LOS channel according to the estimated value of the equivalent digital baseband channel matrix.
  • demodulation of the data stream can be realized without feeding back precoding information, thereby saving system resources occupied by signaling transmission, reducing computational complexity, and improving information transmission efficiency.
  • information about the plurality of antennas may also be obtained through state information of the transmitting device, at least one of position information and attitude information of the receiving device, and strength information of the line-of-sight (LOS) channel component.
  • the estimated value of the LOS channel component H LOS in the equivalent digital baseband channel matrix H of each antenna port in the port And demodulate the data stream received through the LOS channel according to the estimated value. Therefore, the equivalent digital baseband channel matrix of each antenna port can be obtained directly without channel estimation, thereby further reducing the computational complexity and making information transmission more convenient and rapid.
  • FIG. 10 is a schematic block diagram illustrating a transmitting device 1000 according to an embodiment of the present disclosure.
  • a transmitting device 1000 may include a control unit 1020 and a transceiver unit 1010 .
  • the transmitting device 1000 may also include other components, however, since these components are irrelevant to the content of the embodiments of the present disclosure, illustration and description thereof are omitted here.
  • the transceiving unit 1010 of the transmitting device 1000 may include a first antenna array.
  • the transceiver unit 1010 may also include a power feeding unit.
  • the current communication scene is determined to be a LOS scene according to the example shown in FIG. 10 , that is, the transmitting device has known the strength information of the line-of-sight (LOS) channel component.
  • LOS line-of-sight
  • the control unit 1020 of the transmitting device 1000 may be configured to determine a plurality of data streams of the data streams for the receiving device. Then, each of the plurality of antenna ports in the transceiving unit 1020 is used to transmit one data stream of the data streams to the receiving device.
  • each data stream transmitted with the same modulation and coding strategy (MCS) and the same transmit power can be transmitted through multiple antenna ports in the transceiver unit 1010, so as to reduce the complexity of information transmission.
  • the data streams sent by the transceiver unit 1010 of the transmitting device 1000 using multiple antenna ports and through the multiple antenna ports may be the same or different multiple data streams.
  • the transmitting device 1000 may determine the number of different data streams to be sent according to at least one of the rank indicator, the distance between the antenna port and the receiving device, and the range of the signal-to-noise ratio (SNR).
  • the rank indicator is fed back by a receiving device.
  • the transceiver unit 1010 may transmit a relatively large number of different data streams.
  • the transceiver unit 1010 may reduce the number of different data streams sent.
  • the mapping relationship between the antenna ports and the transmitting subarrays may be further adjusted, for example, two transmitting subarrays are mapped to the same antenna port, so as to reduce the number of different data streams to be sent.
  • the transmitting device 1000 may not precode the data streams, that is, the data streams transmitted through each antenna port of the transceiver unit 1020 may be unprecoded data streams or reference signals. Therefore, in the example shown in FIG. 10 , in the channel state report acquisition stage, the information about the channel state acquired by the transmitting device from the receiving device may not include a precoding matrix indicator (PMI). In this case, the transmitting device 1000 may receive at least one of a channel state information reference signal resource indicator, a rank indicator, and a channel quality indicator sent by the receiving device.
  • PMI precoding matrix indicator
  • FIG. 11 is a schematic block diagram illustrating a receiving device 1100 according to one embodiment of the present disclosure.
  • a receiving device 1100 according to an embodiment of the present disclosure may include a transceiving unit 1110 and a control unit 1120 .
  • the receiving device 1100 may also include other components, however, since these components are irrelevant to the content of the embodiments of the present disclosure, illustration and description thereof are omitted here.
  • the transceiver unit 1110 of the receiving device 1100 may be configured to receive the data stream sent by the transceiver unit including a plurality of antenna ports in the transmitting device, wherein each antenna port sends a data stream for the receiving device .
  • control unit 1120 can perform channel estimation to obtain an estimated value of the equivalent digital baseband channel matrix of each of the plurality of antenna ports, and according to the equivalent digital The estimated value of the baseband channel matrix is used to demodulate the data stream.
  • control unit 1120 may obtain an estimated equivalent digital baseband channel matrix according to the channel estimation result, and demodulate the data stream according to the equivalent digital baseband channel matrix.
  • the received data stream can be demodulated using any MIMO detection algorithm.
  • the control unit 1120 may perform Minimum Mean Square Error (MMSE) demodulation or Matched Filter (MF) demodulation on the data stream.
  • MMSE Minimum Mean Square Error
  • MF Matched Filter
  • control unit 1120 may determine the information about the An equivalent digital baseband channel matrix for each antenna port in the plurality of antenna ports, and demodulate the multiple data streams according to the equivalent digital baseband channel matrix.
  • the receiving device 1100 may not send a precoding matrix indicator (PMI) to the transmitting device.
  • the transceiving unit 1110 may send at least one of a channel state information reference signal resource indicator, a rank indicator, and a channel quality indicator to the transmitting device to report the channel state. Therefore, by only feeding back information related to the channel state including the channel state information reference signal resource indicator, rank indicator, and channel quality indicator to the transmitting device, information transmission can be realized without feeding back precoding information, thereby saving Reduce the system resources occupied by signaling transmission, reduce the computational complexity, and improve the efficiency of information transmission
  • the data streams received by it and sent through the plurality of antenna ports may be unprecoded data streams or reference signals, so that the transmitting device can transmit without relying on CSIT (Channel state information at the transmitter)
  • CSIT Channel state information at the transmitter
  • the data stream to be transmitted by each antenna port can be determined.
  • the complexity of the transceiver of the transmitting device is reduced, channel estimation and feedback overhead are reduced, and channel utilization is improved.
  • the operational complexity of MIMO detection at the receiving device is correspondingly reduced.
  • the precoding vector focused to the reference focus can be based on discrete Fourier transform (DFT) vectors are deflected to obtain precoded vectors focused to other foci.
  • DFT discrete Fourier transform
  • the deflected focus precoder vectors are orthogonal to each other, that is, the focal point obtained after deflection is at the zero point of other focus precoder vectors.
  • PMI Precoding Matrix Indicator
  • FIG. 12 is a schematic block diagram illustrating a receiving device according to another embodiment of the present disclosure.
  • FIG. 13 is a schematic block diagram illustrating a transmitting device according to another embodiment of the present disclosure.
  • a receiving device 1200 may include a control unit 1210 and a transceiving unit 1220 .
  • a transmitting device may include a transceiver unit 1310 and a control unit 1320 .
  • the receiving device 1200 and the transmitting device 1300 may also include other components. However, since these components are irrelevant to the content of the embodiments of the present disclosure, illustration and description thereof are omitted here.
  • the control unit 1210 of the receiving device 1200 may be configured to determine the Or the PMI of the first antenna port among the multiple antenna ports of the receiving device, where the PMI corresponds to the first antenna port among the multiple antenna ports of the transmitting device. Or, the PMI corresponds to the first antenna port among the multiple antenna ports of the receiving device.
  • the PMI includes information of a precoder associated with the first antenna port.
  • the information of the precoder associated with the first antenna port may be phase deflection information associated with the first antenna port.
  • the first antenna port may be predetermined by the transmitting device and the receiving device.
  • the receiving device may determine the first antenna port, and notify the transmitting device of the determination result. For example, the receiving device may send the identifier of the first antenna port to the transmitting device in advance, or send the identifier of the first antenna port to the transmitting device together with the PMI.
  • the identifier of the first antenna port may be identified by using an identifier related to the antenna port.
  • the above-mentioned identifier may be a channel state information resource indicator (CRI).
  • the information of the precoder of the first antenna port may be indicated by a set of phase offset sequences.
  • the above-mentioned phase offset sequence may be a sequence after quantizing the phase between [0, 2 ⁇ ] with b bits.
  • the phase deflection sequence may include N-1 values, N being equal to the number of data streams transmitted to said receiving device.
  • control unit of the receiving device 1200 may determine the foregoing PMI through channel estimation.
  • the transmitting device 1300 may send a channel state information reference signal (CSI-RS) to the receiving device 1100, and then the receiving device 1100 may estimate the CSI and determine the PMI based on the estimated CSI.
  • CSI-RS channel state information reference signal
  • the present disclosure is not limited thereto.
  • the transceiving unit 1220 may send the PMI to the transmitting device.
  • the transceiver unit 1220 may include an antenna array for receiving and transmitting data streams.
  • the transceiving unit 1220 may also be configured to send at least one of channel state information reference signal resource indicator (CRI), rank indicator (RI) and channel quality information (CQI) to the transmitting device.
  • CRI channel state information reference signal resource indicator
  • CQI channel quality information
  • the transceiving unit 1310 of the transmitting device 1300 includes a first antenna array.
  • the transceiver unit 1310 of the transmitting device 1300 may include a power feeding unit. Interaction schemes and configuration schemes between components in the transceiver unit 1310 of the transmitting device 1300 have been described in detail with reference to FIG. 4A to FIG. 7 , and will not be repeated in this disclosure.
  • the transceiving unit 1310 may be configured to receive a precoding indicator from the receiving device 1200 , wherein the precoding indicator corresponds to a first antenna port among the plurality of antenna ports of the transmitting device 1300 or the receiving device 1200 .
  • the control unit 1320 determines precoder information associated with multiple antenna ports of the transmitting device according to the PMI.
  • the control unit 1320 may be configured to determine the precoder information of the transmitting device according to the PMI and the DFT vector.
  • each antenna port of the transmitting device respectively transmits a data stream that is precoded according to precoder information corresponding to the antenna port.
  • the data streams include demodulation reference signals (DM-RS) or downlink data or uplink data.
  • the LOS channel component is related to the relative position of the transmitting device and the receiving device.
  • the transmitting sub-array spacing of the transmitting device and the receiving sub-array spacing of the receiving device meet the optimal spacing related to the transceiver distance expressed in formula 1 or formula 2, all the eigenvalues of the LOS channel components are approximately equal and in multi-stream transmission When the gain of each stream is approximately equal, the transmission rate is maximized.
  • the above-mentioned transmission rate optimization can be realized by using matched filtering (MF) for precoding. Therefore, in the following examples of this disclosure, each antenna port transmits a data stream at the same power and using the same modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • N is greater than or equal to 1
  • the N antenna ports are respectively the first antenna port, the second antenna port... and the Nth antenna port.
  • the N antenna ports will send the precoded data stream to the receiving device 1200 .
  • an antenna port refers to a logical concept
  • an antenna port may correspond to one or more transmitting sub-arrays in the above-mentioned first antenna array, or a transmission sub-array in the first antenna array.
  • a transmit sub-array may also correspond to one antenna port or multiple antenna ports. The present disclosure does not limit the corresponding relationship between antenna ports and transmitting sub-arrays.
  • the logical antenna ports are not shown in FIG. 14 .
  • the term "data stream" is, for example, information or a reference signal that has not been precoded.
  • the aforementioned data streams may be indicated through unprecoded antenna ports.
  • the N antenna ports in FIG. 14 all send precoded data streams to the receiving device 1200 .
  • the transmitting device 1300 has received the PMI for the first antenna port, which includes the information of the precoder used for the first antenna port.
  • the transmitting device 1300 knows the identifier of the first antenna port.
  • the transmitting device 1300 will determine the precoder used for precoding the data stream transmitted by each antenna port based on the information of the precoder used for the first antenna port. For example, the information about the precoder of the first antenna port of the transmitting device 1300 may indicate that the first digital precoder
  • the phase of can be identified by b bits, which indicates the quantized relative to the phase range of [0, 2 ⁇ ] phase shift information.
  • the transmitting device may use w (1) to precode the N data streams, and send the data streams to the receiving device through the first antenna port.
  • the transmitting device 1300 may also use a DFT vector to deflect the first precoder to determine a precoder for precoding data streams transmitted through other antenna ports.
  • the DFT vector may be pre-stored in the transmitting device. More specifically, the transmitting device may select a DFT vector from a pre-stored set of DFT vectors according to the N value.
  • the precoding matrix W composed of N digital precoders can be calculated as follows:
  • the nth row of the precoding matrix W represents a precoder for precoding the data stream transmitted through the nth antenna port.
  • the receiving device 1200 may independently decode data streams that are precoded by the above-mentioned precoder W and transmitted and received by each antenna port thereof.
  • the first antenna port is used as an antenna port in the transmitting device as an example for description, it should be understood that a similar method is also applicable to the case where the first antenna port is an antenna port in the receiving device. Condition.
  • a solid line shows a data stream sent after being precoded by the above precoder
  • a dotted line shows another data stream sent after being precoded by the above precoder.
  • the precoding vectors for precoding the above two data streams are obtained by using Equation 7 through DFT vector deflection. Therefore, the above precoding vectors satisfy an orthogonal relationship and do not interfere with each other. Therefore, the receiving device 1200 can independently decode the data streams received by its respective antenna ports without performing additional MIMO detection.
  • the receiving device 1200 may also use the MMSE receiving scheme to decode the above data stream, which is not limited in the present disclosure.
  • the transmitting device 1300 and the receiving device 1200 can eliminate the inter-stream interference of the LOS channel only by using a simple precoding scheme, thereby realizing multi-stream transmission of the LOS channel and expanding the capacity of the LOS MIMO channel. Furthermore, as mentioned above, in the case of obtaining the associated PMI, the transmitting device can calculate the precoding matrix without relying on CSIT (Channel state information at the transmitter). Therefore, the complexity of the transceiver of the transmitting device is reduced, channel estimation and feedback overhead are reduced, and channel utilization is improved.
  • the receiving device can independently demodulate the data stream sent by each antenna port without performing MIMO detection, which reduces the complexity of the transceiver of the receiving device and improves the receiving performance of the receiving device.
  • FIG. 16 is a flowchart of a configuration method 1600 according to one embodiment of the disclosure. Since the steps of the configuration method 1600 correspond to the operations of the transmitting device 300 described above with reference to FIGS. 3-6 , a detailed description of the same content is omitted here for simplicity.
  • the configuration method 1600 may be applied to, for example, the transmitting device shown in FIG. 3 .
  • the transmitting device to which the configuration method 1600 is applied may include a transceiver unit and a control unit, where the transceiver unit may include a first antenna array.
  • the first antenna array may be RIS.
  • the first antenna array may be a PAA or a lens array antenna.
  • the first antenna array may be divided into a plurality of first sub-arrays. Each first sub-array may include one or more array elements.
  • step S1601 information on the strength of line-of-sight (LOS) channel components in a communication channel is obtained.
  • the information on the strength of the LOS channel component may be a K factor representing the ratio of the strength of the LOS channel component to the strength of the non-line-of-sight (LOS) channel component.
  • the information about the strength of the LOS channel component may also be other information indicating whether the LOS path exists or its relative strength.
  • the strength of the LOS channel component in the communication channel may be estimated in step S1601 to obtain information on the strength of the LOS channel component.
  • the strength of the LOS channel component in the communication channel can also be estimated by the receiving device with which the transmitting device is to communicate, and information about the strength of the LOS channel component can be sent to the transmitting device.
  • Information on the strength of the LOS channel component may be received from the receiving device in step S1601.
  • the configuration mode of the first antenna array is determined according to the information about the intensity of the LOS channel component in the communication channel.
  • the information about the strength of line-of-sight (LOS) channel components in the communication channel determines that the communication channel satisfies a predetermined channel condition
  • the first The antenna array 311 is suitable for communication in LOS scenarios.
  • the K factor is greater than or equal to a predetermined value
  • it may be determined that the current communication scenario is an LOS scenario.
  • the first antenna array may be configured to be suitable for communication in a LOS scenario. Therefore, the transmitting device according to the embodiment of the present disclosure can determine whether the current scene is a LOS scene according to the information about the strength of the LOS channel component in the communication channel, and then flexibly adjust the first antenna array in the transceiver unit.
  • the first antenna array may include a plurality of first sub-arrays.
  • a plurality of first sub-channels may be configured according to at least one of the position information and attitude information of the receiving device The emission sub-array in the array.
  • the distance between adjacent transmitting sub-arrays may be configured according to at least one of position information and attitude information of the receiving device.
  • the beams transmitted by the transmitting subarray may be configured according to at least one of the position information and attitude information of the receiving device.
  • the transceiving unit in the sending device may further include a feeding module for feeding the first antenna array.
  • the feeding module may include a plurality of feeding sub-modules respectively corresponding to the plurality of first sub-arrays.
  • the feeding module may send a signal to the receiving device. Configure the first antenna array.
  • step S1602 it may be determined according to the location information of the receiving device whether the distance between the receiving device and the transmitting device satisfies a predetermined distance condition, and the transmitting sub-arrays in the plurality of first sub-arrays are configured. For example, when it is determined according to the location information of the receiving device that the distance between the receiving device and the transmitting device is less than or equal to the predetermined distance condition, in step S1602, the predetermined sub-array or a predetermined part of the plurality of first sub-arrays can be used as the transmitting sub-array. array. Therefore, the transmitting sub-array can be easily configured at the transmitting device to be applicable to the LOS communication scenario.
  • the transmitting sub-arrays in the plurality of first sub-arrays may be configured at least in part according to the position information and attitude information of the receiving device.
  • which parts or which sub-arrays in the plurality of first sub-arrays are used as transmitting sub-arrays may be determined at least partly according to the position information and attitude information of the receiving device.
  • which parts or which sub-arrays in the plurality of first sub-arrays are used as transmitting sub-arrays may be determined based on the position information and attitude information of the receiving device according to the above formula 2. Therefore, at the transmitting device, the transmitting sub-array can be accurately configured according to a specific terminal to be applicable to a LOS communication scenario, thereby improving system performance.
  • the beams emitted by the transmitting sub-arrays in the plurality of first sub-arrays may be configured according to the position information and attitude information of the receiving device. For example, when the distance between the receiving device and the transmitting device is less than or equal to a predetermined value, it may be determined that the receiving device is in the near field of the transceiver unit. In this case, in step S1602, the first beam may be configured to converge on the receiving device. For example, in step S1602, one or more of the direction, pattern, and initial phase of each first beam may be configured according to the position information and attitude information of the receiving device, so that each first beam converges on the receiving device.
  • each first sub-array can transmit the same first beam.
  • the first beam may also be configured to converge on the receiving device.
  • each first subarray may send the same first beam.
  • the transmitting device can configure the transceiver unit to ensure signal gain according to the information about the receiving device with which it needs to communicate, so that good performance can be obtained even for mobile devices in LOS scenarios .
  • Fig. 17 is a flow chart describing an information sending method 1700 performed by a receiving device according to an embodiment of the present disclosure. Since the steps of the information transmitting method 1700 correspond to the operations of the receiving device 700 described above with reference to FIG. 7 , detailed descriptions of the same are omitted here for simplicity.
  • step S1701 information on the strength of a line of sight (LOS) channel component in a communication channel is determined in step S1701.
  • the channel state estimation may be performed according to the first reference signal, and the information about the strength of the LOS channel component in the communication channel may be determined according to the result of the channel state estimation.
  • channel state estimation may be performed according to the downlink reference signal sent by the transmitting device.
  • the method 1700 may further include receiving a first reference signal from the transmitting device.
  • the first reference signal may include one or more of PRS, SRS, channel state reference signal (CSI-RS), and tracking reference signal (Tracking Refernece Signal, TRS).
  • step S1701 channel state estimation may be performed according to the first reference signal, and information about the strength of the LOS channel component in the communication channel may be determined according to the result of the channel state estimation. Therefore, the transmitting device can determine whether the current LOS scene is based on the information about the strength of the LOS channel component, so as to determine the configuration mode of its transceiver unit for the transmitting device. Then in step S1702, the determined information on the intensity of the LOS channel component is sent to the transmitting device. Therefore, the transmitting device can determine whether the current LOS scene is based on the information about the strength of the LOS channel component, so as to determine the configuration mode of its transceiver unit for the transmitting device.
  • the information sending method 1700 may further include sending at least one of position information and attitude information about the receiving device to the transmitting device.
  • the location information of the receiving device may be the three-dimensional coordinates of the receiving device relative to a reference point in the transmitting device.
  • the location information of the receiving device may include one or more of the distance between the receiving device and the sending device, information about the downlink angle of departure (DL-AoD), and information about the uplink angle of bottom (UL-AoD).
  • the attitude information of the receiving device may be a deflection angle of the receiving device relative to coordinate axes in the horizontal, vertical, and depth directions.
  • the attitude information of the receiving device may include one or more of information about a downlink angle of arrival (DL-AoA), information about a receiving tilt angle of the receiving device.
  • the information sending method 1700 may also include sending other attribute information about the receiving device to the transmitting device.
  • the information sending method 1700 may also include sending information about the number and spacing of receiving sub-arrays. Therefore, the transmitting device can further adjust the configuration of its transceiver unit according to the above information.
  • FIG. 18 is a flowchart of a method 1800 performed by a receiving device according to one embodiment of the present disclosure.
  • FIG. 19 is a flowchart of a method 1900 performed by a transmitting device according to one embodiment of the present disclosure. Since the steps of the method 1800 correspond to the operations of the receiving device 1100 described above with reference to FIGS. 8-11 , and the steps of the method 1900 correspond to the operations of the transmitting device 1000 described above with reference to FIGS. A detailed description of the same is omitted.
  • the method 1800 may be executed by, for example, the receiving device shown in FIG. 11 .
  • the method 1900 may be executed by, for example, the transmitting device shown in FIG. 10 .
  • step S1801 the receiving device 1100 receives multiple data streams that are not precoded and sent through multiple antenna ports in the transmitting device.
  • an equivalent digital baseband channel matrix for each of the plurality of antenna ports is determined based on strength information of line of sight (LOS) channel components.
  • the information on the strength of the LOS channel component may be a K factor representing the ratio of the strength of the LOS channel component to the strength of the non-line-of-sight (LOS) channel component.
  • the information about the strength of the LOS channel component may also be other information indicating whether the LOS path exists or its relative strength.
  • an equivalent digital baseband channel matrix for each of the plurality of antenna ports may be determined according to the channel estimation result.
  • the information about the multiple The equivalent digital baseband channel matrix for each of the antenna ports may be determined according to the channel estimation result.
  • step S1803 the multiple data streams are demodulated according to the equivalent digital baseband channel matrix. For example, minimum mean square error demodulation or matched filter demodulation can be performed on these data streams.
  • the receiving device since the transmitting device corresponding to the receiving device does not precode the data stream, the receiving device may not send a precoding matrix indicator (PMI) to the transmitting device.
  • the transceiving unit may send at least one of channel state information reference signal resource indicator, rank indicator and channel quality indicator to the transmitting device to report the channel state.
  • the transmitting device 1000 determines a plurality of unprecoded data streams for the receiving device.
  • the transmitting device includes a plurality of antenna ports.
  • step S1902 the transmitting device 1000 uses each antenna port of the multiple antenna ports to transmit the multiple data streams.
  • the plurality of antenna ports transmit data streams using the same modulation and coding scheme and using the same transmit power.
  • the data streams received by it and sent through the plurality of antenna ports may be unprecoded data streams or reference signals, so that the transmitting device can transmit without relying on CSIT (Channel state information at the transmitter)
  • CSIT Channel state information at the transmitter
  • the data stream to be transmitted by each antenna port can be determined.
  • the complexity of the transceiver of the transmitting device is reduced, channel estimation and feedback overhead are reduced, and channel utilization is improved.
  • the operational complexity of MIMO detection at the receiving device is correspondingly reduced.
  • FIG. 20 is a flowchart of a method 2000 performed by a receiving device according to an embodiment of the present disclosure.
  • FIG. 21 is a flowchart of a method 2100 performed by a transmitting device according to an embodiment of the present disclosure. Since the steps of the method 2000 correspond to the operations of the receiving device 1200 described above with reference to FIGS. 12-15 , and the steps of the method 2100 correspond to the operations of the transmitting device 1300 described above with reference to FIGS. A detailed description of the same is omitted.
  • the method 2000 may be executed by, for example, the receiving device shown in FIG. 12 .
  • the method 2100 may be executed by, for example, the transmitting device shown in FIG. 13 .
  • the receiving device 1200 is used to transmit a precoding indicator of a first antenna port among multiple antenna ports of the receiving device or the receiving device.
  • the precoding indicator includes phase shift information associated with the first antenna port.
  • step S2002 send the precoding indicator to the transmitting device.
  • the receiving device 1200 may also send at least one of channel state information reference signal resource indicator (CRI), rank indicator (RI) and channel quality information (CQI) to the transmitting device.
  • CCI channel state information reference signal resource indicator
  • RI rank indicator
  • CQI channel quality information
  • the receiving device 1200 may also receive multiple data streams sent by each antenna port in the multiple antenna ports, wherein the control unit is further configured to, for the multiple data streams sent by each antenna port demodulation independently.
  • step S2101 the transmitting device 1300 receives a precoding indicator from the receiving device, wherein the precoding indicator is related to the first antenna among the plurality of antenna ports of the transmitting device or the receiving device port correspondence.
  • the transmitting device 1300 includes multiple antenna ports.
  • the transmitting device 1300 determines precoder information associated with multiple antenna ports of the transmitting device according to the precoding indicator.
  • the transmitting device 1300 may also determine precoder information associated with multiple antenna ports of the transmitting device according to the precoding indicator and the DFT vector.
  • the method 2100 may further include using each antenna port of the transmitting device to respectively transmit the data streams precoded according to the precoder information corresponding to the antenna ports.
  • each of the plurality of antenna ports of the transmitting device may transmit the plurality of data streams at the same power and using the same modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • the transmitting device 1300 and the receiving device 1200 can eliminate the inter-stream interference of the LOS channel only by using a simple precoding scheme, thereby realizing multi-stream transmission of the LOS channel and expanding the capacity of the LOS MIMO channel. Furthermore, as mentioned above, in the case of obtaining the associated PMI, the transmitting device can calculate the precoding matrix without relying on CSIT (Channel state information at the transmitter). Therefore, the complexity of the transceiver of the transmitting device is reduced, channel estimation and feedback overhead are reduced, and channel utilization is improved.
  • the receiving device can independently demodulate the data stream sent by each antenna port without performing MIMO detection, which reduces the complexity of the transceiver of the receiving device and improves the receiving performance of the receiving device.
  • each functional block is not particularly limited. That is, each functional block may be realized by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated may be directly and/or indirectly (e.g. By wired and/or wireless) connections and thus by the various means described above.
  • an electronic device can function as a computer that executes the processing of the information transmission method of the present disclosure.
  • Fig. 22 is a schematic diagram of a hardware structure of a related device 2200 (electronic device) according to an embodiment of the present disclosure.
  • the above-mentioned device 2200 may physically include a processor 2210, a memory 2220, a storage 2230, a communication device 2240, an input device 2250, an output device 2260, and a bus 2270 and other computer devices.
  • the word “device” may be replaced with a circuit, a device, a unit, or the like.
  • the hardware structure of the electronic device may include one or more of the devices shown in the figure, or may not include part of the devices.
  • processor 2210 For example, only one processor 2210 is shown, but there may be multiple processors. In addition, processing may be performed by one processor, or may be performed by more than one processor simultaneously, sequentially, or in other ways. In addition, the processor 2210 may be implemented by more than one chip.
  • Each function of the device 2200 is realized, for example, by reading predetermined software (program) into hardware such as the processor 2210 and the memory 2220, thereby causing the processor 2210 to perform calculations and controlling communication performed by the communication device 2240. , and control the reading and/or writing of data in the memory 2220 and the storage 2230 .
  • the processor 2210 controls the entire computer by operating an operating system, for example.
  • the processor 2210 may be composed of a central processing unit (CPU, Central Processing Unit) including an interface with peripheral devices, a control device, a computing device, registers, and the like.
  • CPU Central Processing Unit
  • control unit and the like may be implemented by the processor 2210 .
  • the processor 2210 reads out programs (program codes), software modules, data, etc. from the memory 2230 and/or the communication device 2240 to the memory 2220, and executes various processes based on them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above-mentioned embodiments can be used.
  • the processing unit of the first network element can be implemented by a control program stored in the memory 2220 and operated by the processor 2210, and other functional blocks can also be implemented in the same way.
  • the memory 2220 is a computer-readable recording medium, such as a read-only memory (ROM, Read Only Memory), a programmable read-only memory (EPROM, Erasable Programmable ROM), an electrically programmable read-only memory (EEPROM, Electrically EPROM), At least one of random access memory (RAM, Random Access Memory) and other appropriate storage media.
  • the memory 2220 may also be called a register, a cache, a main memory (main storage), or the like.
  • the memory 2220 can store executable programs (program codes), software modules, and the like for implementing the method according to an embodiment of the present disclosure.
  • the memory 2230 is a computer-readable recording medium, and can be composed of, for example, a flexible disk (flexible disk), a floppy (registered trademark) disk (floppy disk), a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM), etc.), Digital Versatile Disc, Blu-ray (registered trademark) Disc), removable disk, hard drive, smart card, flash memory device (e.g., card, stick, key driver), magnetic stripe, database , a server, and at least one of other appropriate storage media.
  • the memory 2230 may also be called an auxiliary storage device.
  • the communication device 2240 is hardware (a transmitting and receiving device) for performing communication between computers via a wired and/or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, and the like.
  • the communication device 2240 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like.
  • the above-mentioned transceiving unit, transmitting unit or receiving unit, etc. may be realized by the communication device 2240 .
  • the input device 2250 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 2260 is an output device (for example, a display, a speaker, a light emitting diode (LED, Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 2250 and the output device 2260 may also have an integrated structure (such as a touch panel).
  • bus 2270 for communicating information.
  • the bus 2270 may be composed of a single bus, or may be composed of different buses among devices.
  • electronic equipment can include microprocessors, digital signal processors (DSP, Digital Signal Processor), application specific integrated circuits (ASIC, Application Specific Integrated Circuit), programmable logic devices (PLD, Programmable Logic Device), field programmable gates Array (FPGA, Field Programmable Gate Array) and other hardware can be used to realize part or all of each function block.
  • DSP digital signal processors
  • ASIC Application Specific Integrated Circuit
  • PLD programmable logic devices
  • FPGA Field Programmable Gate Array
  • FPGA Field Programmable Gate Array
  • a channel and/or a symbol may also be a signal (signaling).
  • a signal can also be a message.
  • the reference signal can also be referred to as RS (Reference Signal) for short, and it can also be called Pilot (Pilot), pilot signal, etc. according to the applicable standard.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • information, parameters, and the like described in this specification may be expressed by absolute values, relative values to predetermined values, or other corresponding information.
  • radio resources may be indicated by a specified index.
  • formulas and the like using these parameters may also be different from those explicitly disclosed in this specification.
  • the information, signals, etc. described in this specification may be represented using any of a variety of different technologies.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. may be transmitted through voltage, current, electromagnetic wave, magnetic field or magnetic particles, light field or photons, or any of them. combination to represent.
  • information, signals, etc. may be output from upper layers to lower layers, and/or from lower layers to upper layers.
  • Information, signals, etc. may be input or output via a plurality of network nodes.
  • Input or output information, signals, etc. can be stored in a specific location (such as memory), or can be managed through a management table. Imported or exported information, signals, etc. may be overwritten, updated or supplemented. Outputted information, signals, etc. can be deleted. Inputted information, signals, etc. may be sent to other devices.
  • Notification of information is not limited to the modes/embodiments described in this specification, and may be performed by other methods.
  • the notification of information may be through physical layer signaling (for example, downlink control information (DCI, Downlink Control Information), uplink control information (UCI, Uplink Control Information)), upper layer signaling (for example, radio resource control (RRC, Radio Resource Control) signaling, broadcast information (MIB, Master Information Block, System Information Block (SIB, System Information Block), etc.), media access control (MAC, Medium Access Control) signaling ), other signals, or a combination of them.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may also be called an RRC message, such as an RRC Connection Setup (RRC Connection Setup) message, an RRC Connection Reconfiguration (RRC Connection Reconfiguration) message, and the like.
  • the MAC signaling can be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of prescribed information is not limited to being performed explicitly, but may be performed implicitly (eg, by not notifying the prescribed information or by notifying other information).
  • judgment it can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (Boolean value) represented by true (true) or false (false), or by comparison of numerical values (such as a comparison with a specified value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise, shall be construed broadly to mean commands, command sets, code, code segments, program code, programs, Program, software module, application, software application, software package, routine, subroutine, object, executable, thread of execution, step, function, etc.
  • software, commands, information, etc. may be sent or received via transmission media.
  • transmission media For example, when sending from a website, server, or other remote source using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.) and/or wireless technology (infrared, microwave, etc.)
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” used in this specification are used interchangeably.
  • base station BS, Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group femtocell
  • carrier femtocell
  • a base station may house one or more (eg three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also be connected by a base station subsystem (for example, a small base station for indoor use (Remote Radio Head (RRH, RRH, Remote Radio Head)) to provide communication services.
  • a base station subsystem for example, a small base station for indoor use (Remote Radio Head (RRH, RRH, Remote Radio Head)
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of a base station and/or a base station subsystem that provides communication services in the coverage.
  • a mobile station is also sometimes referred to by those skilled in the art as subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate term.
  • the wireless base station in this specification may also be replaced by a terminal device.
  • each mode/embodiment of the present disclosure may be applied to a configuration in which communication between a wireless base station and a terminal device is replaced with communication between multiple terminal devices (D2D, Device-to-Device).
  • D2D Device-to-Device
  • the above-mentioned functions of the electronic device may be regarded as functions of the terminal device.
  • words like "up” and “down” can be replaced with "side”.
  • uplink channels can also be replaced by side channels.
  • the terminal equipment in this specification can also be replaced by a wireless base station.
  • the above functions of the terminal device may be regarded as functions of the first communication device or the second communication device.
  • a specific operation performed by a base station may also be performed by an upper node (upper node) in some cases.
  • various actions for communication with the terminal can be performed through the base station or one or more networks other than the base station.
  • Nodes such as Mobility Management Entity (MME, Mobility Management Entity), Serving-Gateway (S-GW, Serving-Gateway) can be considered, but not limited to this), or their combination.
  • LTE Long-term evolution
  • LTE-A Long-term evolution
  • LTE-B Long-term evolution
  • LTE-Beyond Super 3rd generation mobile communication system
  • IMT-Advanced 4th generation mobile communication system
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FAA Future Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM Global System for Mobile Communications
  • CDMA3000 Code Division Multiple Access 3000
  • UMB Ultra Mobile Broadband
  • IEEE 920.11 Wi-Fi (registered trademark)
  • IEEE 920.16 WiMA
  • any reference to an element using designations such as “first”, “second”, etc. used in this specification does not limit the quantity or order of these elements comprehensively. These designations may be used in this specification as a convenient method of distinguishing between two or more units. Thus, a reference to a first unit and a second unit does not mean that only two units may be used or that the first unit must precede the second unit in some fashion.
  • determination (determining) used in this specification may include various actions. For example, regarding “judgment (determination)”, calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up) (such as tables, databases, or other Searching in the data structure), ascertaining (ascertaining) and the like are regarded as performing "judgment (determination)”. In addition, regarding “judgment (determination)”, receiving (receiving) (such as receiving information), transmitting (transmitting) (such as sending information), input (input), output (output), accessing (accessing) (such as access to data in the internal memory), etc., are deemed to be “judgment (determination)”.
  • judgment (determination) resolving (resolving), selecting (selecting), selecting (choosing), establishing (establishing), comparing (comparing), etc. can also be regarded as performing "judgment (determination)”. That is, regarding "judgment (determination)", several actions can be regarded as making "judgment (determination)”.
  • connection refers to any direct or indirect connection or combination between two or more units, which can be Including the following cases: between two units that are “connected” or “combined” with each other, there is one or more intermediate units.
  • the combination or connection between units may be physical or logical, or a combination of both. For example, "connect” could also be replaced with "access”.
  • two units may be considered to be connected by the use of one or more wires, cables, and/or printed electrical connections, and, as several non-limiting and non-exhaustive examples, by the use of , the microwave region, and/or the electromagnetic energy of the wavelength of the light (both visible light and invisible light) region, etc., are “connected” or “combined” with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开的实施例提供一种接收设备和发射设备。根据本公开的实施例的接收设备包括:控制单元,被配置为确定用于发射设备或所述接收设备的多个天线端口中的第一天线端口的预编码指示符;以及收发单元,被配置为向所述发射设备发送所述预编码指示符。根据本公开的实施例的发射设备,包括:收发单元,被配置为从接收设备接收预编码指示符,其中所述预编码指示符与所述发射设备或所述接收设备的多个天线端口中的第一天线端口对应;控制单元,被配置为根据所述预编码指示符确定与所述发射设备的多个天线端口相关联的预编码器信息。

Description

接收设备和发射设备 技术领域
本公开涉及无线通信领域,并且更具体地涉及一种在视线(light of sight,LOS)场景中使用的方法以及相应的接收设备和发射设备。
背景技术
在无线通信系统中,例如基站的网络侧设备与终端设备进行通信的场景通常可包括LOS场景和非LOS场景。在LOS场景中经由LOS径传播的信号强度较强,而在非LOS场景中不存在LOS径或经由LOS径传播的信号强度较弱。
为了满足未来的无线通信系统中对于大吞吐的需求,需要考虑使用高频系统提供的大带宽,并充分利用多输入多输出(Multiple-inputmultiple-output,MIMO)技术的空间复用增益来提升频谱效率(SE)。高频系统往往需要依赖LOS径以保证信号强度。
在高频LOS场景中,如果天线阵列尺寸较小,则LOS信道仅能传输1流信号。即便增加天线阵列中的天线单元数量,也很难支持MIMO技术所要求的多流传输。例如,为了提高频谱效率,可基于5G NR系统中的数模混合波束赋形(hybrid beamforming,HBF)架构进行改进。具体地,可增加5G NR系统的HBF架构下收发器单元(TxRU)、天线等的数量。然而,增加TxRU或天线的数量将导致硬件成本增加并且复杂度提高,并且由于信道条件数(condition number)大以及发射功率限制,导致增加TxRU或天线的数量对于LOS场景中性能的改进有限。
发明内容
根据本公开的一个方面,提供了一种接收设备,包括:控制单元,被配置为确定关于通信信道中视线(LOS)信道分量的强度的信息;以及发送单元,被配置为向发射设备发送所确定的信息。
根据本公开的另一方面,所述的接收设备还包括:接收单元,被配置来 接收来自所述发射设备的第一参考信号,其中所述控制单元根据所述第一参考信号进行信道状态估计,以及根据信道状态估计的结果,确定所述关于通信信道中LOS信道分量的强度的信息。
根据本公开的另一方面,所述发送单元还被配置为向所述发射设备发送所述接收设备的位置信息和姿态信息中的至少一个。
根据本公开的另一方面,提供了一种发射设备,包括:收发单元,包括:第一天线阵列;控制单元,被配置为获得关于通信信道中视线(LOS)信道分量的强度的信息,以及根据所述信息确定所述第一天线阵列的配置方式。
根据本公开的另一方面,所述第一天线阵列包括多个第一子阵,
当根据关于通信信道中视线(LOS)信道分量的强度的信息确定所述通信信道满足预定信道条件时,所述控制单元根据所述接收设备的位置信息和姿态信息中的至少一个,对所述第一天线阵列进行配置。
根据本公开的另一方面,所述收发单元还包括馈电模块,所述馈电模块包括分别与所述多个第一子阵对应的多个馈电子模块,当根据关于通信信道中视线(LOS)信道分量的强度的信息确定所述通信信道满足预定信道条件时,所述控制单元根据所述接收设备的位置信息和姿态信息中的至少一个,通过所述馈电模块对所述第一天线阵列进行配置。
根据本公开的另一方面,所述控制单元根据所述接收设备的位置信息确定所述接收设备与所述发射设备之间的距离是否满足预定距离条件,配置所述多个第一子阵中的发射子阵。
根据本公开的另一方面,所述控制单元至少部分地根据所述接收设备的位置信息和姿态信息配置所述多个第一子阵中的发射子阵。
根据本公开的另一方面,所述控制单元根据所述接收设备的位置信息和姿态信息配置所述多个第一子阵中的发射子阵发射的波束。
根据本公开的另一方面,所述控制单元还配置为对所述第一天线阵列发射的波束进行波束整形。
根据本公开的一个方面,提供了一种接收设备,包括:收发单元,被配置为接收通过发射设备中的多个天线端口发送的未经预编码的多个数据流;控制单元,被配置为基于视线(LOS)信道分量的强度信息,确定关于所述多个天线端口中各个天线端口的等效数字基带信道矩阵,以及根据所述等效数 字基带信道矩阵,对所述多个数据流进行解调。
根据本公开的另一方面,所述收发单元被配置为向发射设备发送信道状态信息参考信号资源指示符、秩指示符、信道质量指示符中的至少一个。
根据本公开的另一方面,所述控制单元,根据信道估计的结果,确定关于所述多个天线端口中各个天线端口的等效数字基带信道矩阵。
根据本公开的另一方面,所述控制单元,根据发射设备的状态信息、所述接收设备的位置信息和姿态信息中的至少一个、以及所述视线(LOS)信道分量的强度信息,确定关于所述多个天线端口中各个天线端口的等效数字基带信道矩阵。
根据本公开的另一方面,所述控制单元,对数据流进行最小均方误差解调或者匹配滤波解调。
根据本公开的一个方面,提供了一种发射设备,包括:控制单元,被配置为确定对于接收设备的未经预编码的多个数据流;收发单元,包括:多个天线端口,所述多个天线端口中的各个天线端口被配置为发送所述多个数据流。
根据本公开的另一方面,所述多个天线端口发送数据流使用的相同调制与编码策略,并且使用相同的发射功率。
根据本公开的一个方面,提供了一种由接收设备执行的方法,包括:接收通过发射设备中的多个天线端口发送的未经预编码的多个数据流,确定关于所述多个天线端口中各个天线端口的等效数字基带信道矩阵,以及根据所述等效数字基带信道矩阵,对所述多个数据流进行解调。
根据本公开的另一方面,该方法还包括向发射设备发送信道状态信息参考信号资源指示符、秩指示符、信道质量指示符中的至少一个。
根据本公开的一个方面,提供了一种由发射设备执行的方法,所述发射设备包括多个天线端口,所述方法包括:确定对于接收设备的未经预编码的多个数据流;利用所述多个天线端口中的各个天线端口发送所述多个数据流。
根据本公开的一个方面,提供了一种接收设备,包括:控制单元,被配置为确定用于发射设备或所述接收设备的多个天线端口中的第一天线端口的预编码指示符;以及收发单元,被配置为向所述发射设备发送所述预编码指示符。
根据本公开的另一方面,所述预编码指示符包括与所述第一天线端口相关联的相位偏转信息。
根据本公开的另一方面,所述收发单元还被配置为向发射设备发送信道状态信息参考信号资源指示符(CRI)、资源指示符(RI)、信道质量信息(CQI)中的至少一个。
根据本公开的另一方面,收发单元,被配置为接收所述多个天线端口中各个天线端口发送的多个数据流,其中,所述控制单元还被配置为对于各个天线端口发送的多个数据流独立地进行解调。
根据本公开的一个方面,提供了一种发射设备,包括:收发单元,被配置为从接收设备接收预编码指示符,其中所述预编码指示符与所述发射设备或所述接收设备的多个天线端口中的第一天线端口对应;控制单元,被配置为根据所述预编码指示符确定与所述发射设备的多个天线端口相关联的预编码器信息。
根据本公开的另一方面,所述控制单元被配置为根据所述预编码指示符和DFT向量确定与所述发射设备的多个天线端口相关联的预编码器信息。
根据本公开的另一方面,所述发射设备的各个天线端口向所述接收设备分别发送根据与所述天线端口对应的预编码信息进行了预编码的多个数据流。
根据本公开的另一方面,所述发射设备的各个天线端口以相同的功率并使用相同的调制和编码方案(MCS)发送所述多个数据流。
根据本公开的一个方面,提供了一种接收设备执行的方法,包括:确定用于发射设备的多个天线端口中的第一天线端口的预编码指示符;以及向所述发射设备发送所述预编码指示符。
根据本公开的一个方面,提供了一种发射设备执行的方法,包括:从接收设备接收预编码指示符,其中所述预编码指示符与所述发射设备或所述接收设备的多个天线端口中的第一天线端口对应;以及根据所述预编码指示符确定与所述发射设备的多个天线端口相关联的预编码器信。
在根据本公开的示例中,可根据关于通信信道中LOS信道分量的强度的信息确定根据当前场景是否为LOS场景,进而对发送设备的收发单元进行灵活调整。
附图说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1是示出使用高频频段进行传输的示例情形的示意图。
图2是示出了大间距阵列天线进行传输的示例情形的示意图。
图3是示出了根据本公开一个实施例的发射设备的示意性框图。
图4A-图4D是示出了根据本公开的实施例,发射设备的收发单元的示意图。
图5是示出了在图4A所示的收发单元中,当控制单元确定接收设备与发射设备之间的距离小于或等于预定距离条件时,配置的发射子阵的示意图。
图6是示出了在图4A所示的收发单元中,控制单元根据接收设备的位置信息和姿态信息配置多个第一子阵中的发射子阵的示意图。
图7是示出了根据本公开一个实施例的接收设备的示意性框图。
图8示出了根据本公开一个实施例的信息传输的示例示意图。
图9示出了根据本公开一个实施例,在发射设备和接收设备之间的间距满足最优间距时的传输示意图。
图10是示出根据本公开一个实施例的发射设备的示意性框图。
图11是示出根据本公开一个实施例的接收设备的示意性框图。
图12是示出根据本公开另一实施例的接收设备的示意性框图。
图13是示出根据本公开另一实施例的发射设备的示意性框图。
图14示出了根据本公开一个实施例的信息传输的示例的示意图。
图15示出了根据本公开一个实施例,在发射设备和接收设备之间的间距满足最优间距时的又一传输示意图。
图16是根据本公开的一个实施例的配置方法的流程图。
图17是根据本公开的一个实施例的由接收设备执行的方法的流程图。
图18是根据本公开的一个实施例的由接收设备执行的方法的流程图。
图19是根据本公开的一个实施例的由发射设备执行的方法的流程图。
图20是根据本公开的一个实施例的由接收设备执行的方法的流程图。
图21是根据本公开的一个实施例的由发射设备执行的方法的流程图。
图22是根据本公开的实施例的所涉及的设备2200(电子设备)的硬件结构的示意图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。在附图中,相同的参考标号自始至终表示相同的元件。应当理解,这里所描述的实施例仅仅是说明性的,而不应被解释为限制本公开的范围。
本公开所述的发射设备可以是基站或者发射设备可以包括基站和用于转发基站所发送的信号的中继设备,此外,本公开所述的接收设备可以是终端或者接收设备可以包括终端和用于向终端转发信号的中继设备,反之亦然。在本公开的以下实施例中,将主要以发射设备包括基站并且接收设备包括终端为例进行描述。然而,应理解这些示例可以应用于发射设备和接收设备的其他变形。
本公开所述的终端可以包括各种类型的终端,例如车辆终端、用户终端(User Equipment,UE)、移动终端(或称为移动台)或者固定终端等。本公开所述的基站(BS:Base Station)包含各种类型的基站,例如,无线基站、固定台(fixed station)、NodeB、eNodeB(eNB)、gNodeB(gNB)、接入点(access point)、发送点(TP:transmission point)、接收点(RP:reception point)、发送接收点(TRP:transmission/reception point)等。
为了满足未来的通信系统中对于大吞吐的需求,需要考虑使用高频段提供的大带宽。例如,需要考虑使用100GHz以上的亚太赫兹频谱。而高频系统往往依赖LOS传输以保障接收信号强度。图1是示出使用高频段进行LOS传输的示例情形的示意图。如图1所示,当使用高频段进行LOS传输时,存在较强的LOS径和较强的地面反射径,而其它反射径或散射径都较弱。
另一方面,为了满足未来的通信系统中对于大吞吐的需求,还希望充分利用MIMO空间复用增益提升SE。如图1所示,由于高频段仅存在较强的 LOS径和较强的地面反射径,信道条件数大,很难支持多流传输。
因此,提出了通过改进天线的排布对信道条件进行改善。例如,可通过增加接收和发送设备的多个阵列天线中各个阵列天线之间的距离,来增加LOS信道的秩,从而在多个收发天线阵对之间进行多流传输。图2是示出了大间距阵列天线进行传输的示例情形的示意图。在图2所示的示例中,为了简明以接收设备的阵列天线排布为例进行了描述,应理解,在发送设备处也需进行与接收设备类似的阵列天线排布。如图2所示,灰色区域210为接收设备的多个阵列天线所在的区域,并且灰色区域210中每个白色方块为一个接收阵列天线。增加各个白色方块之间的距离使其远大于通信系统所使用的波束的半波长,从而增加LOS信道的秩或者减少LOS信道的条件数,以便在多个收发天线阵对间进行多流传输。
具体地,以均匀线阵为例,可根据以下公式1来确定各个相邻收发天线之间的最优距离:
Figure PCTCN2021132921-appb-000001
其中d T为发送设备中相邻接收阵列天线之间的距离,d R为接收设备中相邻接收阵列天线之间的距离,λ为通信系统所使用的载波的波长,D为发送设备和接收设备之间的距离,N为收发天线对的数量。对于均匀平面阵,可根据公式1分别确定各维度上相邻收发天线间的最优距离。
如公式1所示,发射或者接收阵列天线之间的最优距离与发送设备和接收设备之间的距离有关。而当不能满足公式1所示的发射或者接收阵列天线之间的最优距离时,性能下降显著,难以达到预期增益。
另一方面,在目前的通信系统中,在发送设备中预先以传统的方式对天线进行排布或者以对于LOS场景改进的方式对天线进行配置。发送设备无法根据当前场景是否为LOS场景对发送设备进行灵活调整。
首先,参照图3-图6来描述可在其中应用本公开实施例的发射设备。图3是示出了根据本公开一个实施例的发射设备的示意性框图。如图3所示,发射设备300可包括收发单元310和控制单元320。具体地,收发单元310可包括第一天线阵列311。例如,第一天线阵列可以是可重构智能表面(Reconfigurable Intelligent Surface,RIS)。又例如,第一天线阵列可以是相控 阵列天线(phased array antenna,PAA)。又例如,第一天线阵列可以是透镜阵列天线。可选择地,第一天线阵列可被分为多个第一子阵。每个第一子阵可包括一个或多个阵元。如上所述,根据本公开的一个示例,发射设备300可以是基站,并且第一天线阵列311可以是包括在基站中的部件。可替换地,第一天线阵列311可独立于基站设置。此外,发射设备300可以是终端设备,并且第一天线阵列311可以是包括在终端中的部件。可替换地,第一天线阵列311可独立于终端设备设置。
发射设备300还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
在根据本公开实施例的中,发射设备可根据当前的通信的场景对收发单元中的第一天线阵列进行灵活调整,以改善通信系统的性能。具体地,控制单元320可获得关于通信信道中视线(LOS)信道分量的强度的信息。例如,关于LOS信道分量的强度的信息可以是表示LOS信道分量强度与非视线(LOS)信道分量强度的比值的莱斯K因子(Rician K-fator),以下简称为“K因子”。此外,关于LOS信道分量的强度的信息还可以是其它表示LOS径是否存在或相对强弱的信息。
在根据本公开的示例中,可通过发射设备300估计通信信道中LOS信道分量的强度,以获得关于LOS信道分量的强度的信息。也可以通过要与发射设备300通信的接收设备估计通信信道中LOS信道分量的强度,并且将关于LOS信道分量的强度的信息发送给发射设备300。例如,发射设备300可通过收发单元310接收来自接收设备的参考信号,控制单元320可根据该上行参考信号估计在通信信道中LOS信道分量的强度。可替换地,发射设备300可通过收发单元310向UE发送参考信号。接收设备可根据该下行参考信号估计在通信信道中LOS信道分量的强度,并将关于所估计的LOS信道分量强度的信息发送给发射设备300,以减少发射设备所需进行的操作。
然后,控制单元320可根据所述信息确定第一天线阵列311的配置方式。根据本公开的一个示例,当关于通信信道中视线(LOS)信道分量的强度的信息确定通信信道满足预定信道条件时,控制单元320可确定当前的通信场景为LOS场景,并且配置第一天线阵列311以适用于LOS场景的通信。例如,当K因子大于或等于预定值时,控制单元320可确定当前的通信场景为LOS 场景。在此情况下,控制单元320可配置第一天线阵列311以适用于LOS场景的通信。因此根据本公开实施例的发射设备可根据关于通信信道中LOS信道分量的强度的信息确定根据当前场景是否为LOS场景,进而对收发单元中的第一天线阵列进行灵活调整。
根据本公开的一个示例,当根据关于通信信道中LOS信道分量的强度的信息确定通信信道满足预定信道条件时,控制单元320可根据所述接收设备的位置信息和姿态信息中的至少一个,对第一天线阵列311进行配置。如上所述,作为示例,第一天线阵列311可包括多个第一子阵。当根据关于通信信道中视线(LOS)信道分量的强度的信息确定通信信道满足预定信道条件时,控制单元320可根据所述接收设备的位置信息和姿态信息中的至少一个,配置多个第一子阵中的发射子阵。例如,控制单元320可根据所述接收设备的位置信息和姿态信息中的至少一个,对相邻发射子阵之间的距离进行配置。又例如,控制单元320可根据所述接收设备的位置信息和姿态信息中的至少一个,对发射子阵发射的波束进行配置。
此外,在本公开的另一示例中,收发单元310还可包括用于给第一天线阵列311馈电的馈电模块(如图3中的虚线部分所示)。馈电模块可包括分别与多个第一子阵对应的多个馈电子模块。当根据关于通信信道中LOS信道分量的强度的信息确定通信信道满足预定信道条件时,控制单元320可根据所述接收设备的位置信息和姿态信息中的至少一个,通过馈电模块对所述第一天线阵列进行配置。
在根据本公开的示例中,馈电模块可以无线方式或者有线方式给第一天线阵列馈电。例如,馈电模块可包括驱动部件和第二天线阵列,并通过驱动部件驱动第二天线阵列以向第一天线阵列发射波束,从而向第一天线阵列进行馈电。又例如,馈电模块可包括驱动部件,并通过驱动部件直接向第一天线阵列馈电。
图4A-图4D是示出了根据本公开的实施例,发射设备的收发单元的示意图。图4A是示出了根据本公开的一个实施例,发射设备的收发单元的示意图。在图4A所示的示例中,发射设备的收发单元410A包括馈电模块420A和第一天线阵列430A,其中,馈电模块420A包括驱动部件(如图4A的馈电模块420A中的三角形所示)和第二天线阵列(如图4A的馈电模块420A 中的方形所示)。例如,第二天线阵列可以是相控阵列天线(phased array antenna,PAA)或者透镜阵列天线。第一天线阵列430A是与馈电模块420A对应的RIS装置或者透镜阵列天线。如图4A所示,第一天线阵列430A被分为4个第一子阵,并且第二天线阵列包括分别与4个第一子阵对应的第二子阵,驱动部件分别与各个第二子阵相连接。
在图4A所示的示例中,通过驱动部件驱动与该驱动部件连接的第二子阵,以发射投射至相应的第一子阵上的第二波束。图4A的第一天线阵列430A中的黑色区域示意性地示出了第二波束主瓣在第一子阵上形成的光斑。例如,可通过对第二子阵发射的第二波束进行波束赋形,调整第二波束投射在相应的第一子阵上的位置。第一子阵可反射或透射投射到该子阵上的第二波束,以发射第一波束。
在根据本公开的实施例中,可将第一子阵中用于发射第一波束的阵元所构成的阵列称为发射子阵。例如,在图4A所示的示例中,在每个第一子阵中,黑色方块所示的区域中的阵元构成一个发射子阵。每个发射子阵可发射一个第一波束。
在图4A所示的示例中,以第二天线阵列可以是例如PAA或者透镜阵列天线的可进行波束赋形的天线阵列为例进行了描述。可替换地,第二天线阵列可以是定向天线。图4B是示出了根据本公开的另一实施例,发射设备的收发单元的示意图。在图4B所示的示例中,发射设备的收发单元410B包括馈电模块420B和第一天线阵列430B,其中,馈电模块420B包括驱动部件(如图4B的馈电模块420B中的三角形所示)和第二天线阵列(如图4B的馈电模块420B中的喇叭形所示)。在图4B,第二天线阵列可以是定向天线阵列。第一天线阵列430B可以是与馈电模块420B对应的RIS装置或者透镜阵列天线。由于定向天线难以通过波束赋形来改变其发射的波束的方向,因此与第二天线阵列为可进行波束赋形的天线阵列的情况相比,对于由定向天线构成的第二天线阵列中包含的第二子阵数量更多。此外,可将第一天线阵列430B分为更多第一子阵以便于与第二子阵对应。如图4B所示,第二天线阵列包括分别与多个第一子阵对应的第二子阵,驱动部件分别与各个第二子阵相连接。在图4B中,每个喇叭形标识代表一个第二子阵,每个第二子阵可包括一个或多个定向天线。
与图4A类似,在图4B所示的示例中,通过驱动部件驱动与该驱动部件连接的第二子阵,以发射投射到相应的第一子阵上的第二波束。图4B的第一天线阵列430B中的黑色区域示意性地示出了第二波束的主瓣位于其上的第一子阵上。可通过驱动不同的第二子阵来选择相应的第一子阵。在图4B所示的示例中,将与发射第二波束的第二子阵对应的第一子阵称为发射子阵。每个发射子阵可发射一个第一波束。
以上,结合图4A和图4B对以无线馈电方式驱动第一天线阵列的情形进行了示例性描述。可替换地,也可以有线馈电方式对第一天线阵列进行驱动。图4C是示出了根据本公开的另一实施例,发射设备的收发单元的示意图。在图4C所示的示例中,发射设备的收发单元410C包括馈电模块420C,其中,馈电模块420C包括驱动部件(如图4C的馈电模块420C中的三角形所示)。第一天线阵列430C是与馈电模块420C对应的天线阵列,例如PAA。由于有线馈电无法通过波束赋形来改变其发射的波束的方向,因此与收发单元包括可进行波束赋形的天线阵列的第二天线阵列的情况相比,对于有线馈电的情形,可将第一天线阵列430C分为更多第一子阵。如图4C所示,驱动部件分别与各个第一子阵相连接,以直接控制向哪个第一子阵馈电。被驱动部件驱动的第一子阵(如图4C的第一天线阵列430C中的黑色区域所示)可称为发射子阵。每个发射子阵可发射一个第一波束。
此外,在以上示例中,可以以物理方式在第一子阵之间进行隔离。图4D是示出了根据本公开的一个示例,以物理方式在第一子阵之间进行隔离的示意图。如图4D所示,可在第一子阵之间增加隔离度,进一步抑制干扰。例如,可使用例如频率选择表面(FSS)的滤波材料。可替换地,可以不使用物理方式在第一子阵之间进行隔离,而是在逻辑上对第一天线阵列进行划分,以得到多个第一子阵。例如,当可以通过波束赋形较好抑制干扰时,可不使用物理隔离。
根据本公开的一个示例,控制单元320可根据接收设备的位置信息确定接收设备与发射设备300之间的距离是否满足预定距离条件,配置多个第一子阵中的发射子阵。例如,当控制单元320根据接收设备的位置信息确定接收设备与发射设备300之间的距离小于或等于预定距离条件时,可将多个第一子阵中的预定子阵或者预定部分作为发射子阵。因此,即使不使用关于接 收设备的详细的位置信息或者姿态信息,也可在发射设备处可以简便地配置发射子阵以适用于LOS通信场景。
图5是示出了在图4A所示的收发单元中,当控制单元确定接收设备与发射设备之间的距离小于或等于预定距离条件时,配置的发射子阵的示意图。在图5所示的示例中,将各个第一子阵中靠近相邻的子阵的角称为内角,将远离相邻的子阵的角称为外角。如图5所示,当控制单元确定接收设备与发射设备300之间的距离大于或等于预定距离条件时,可通过驱动部件驱动各个第二子阵来发射朝向与该第二子阵对应的第一子阵的外角的波束,以在各个第一子阵的外角处形成光斑(如图5的各个第一子阵中的黑色区域所示)。在每个第一子阵中,黑色方块所示的区域中的阵元构成一个发射子阵,发射第一波束。从而保证了多个发射子阵之间的距离较大。
根据本公开的另一示例,控制单元320可至少部分地根据接收设备的位置信息和姿态信息配置多个第一子阵中的发射子阵。例如,控制单元320可至少部分地根据接收设备的位置信息和姿态信息确定多个第一子阵中哪些部分或者哪些子阵作为发射子阵。因此,在发射设备处可以根据特定的终端准确地配置发射子阵以适用于LOS通信场景,改善系统性能。
例如,接收设备的位置信息可以是接收设备相对发射设备中的参考点的三维坐标。接收设备的位置信息可包括接收设备与发送设备之间的距离、关于下行出发角度(DL-AoD)的信息、关于上行到达角度(UL-AoD)的信息中的一个或多个。又例如,接收设备的姿态信息可以是接收设备相对于水平、垂直、纵深方向的坐标轴的偏转角度。接收设备的姿态信息可包括关于下行到达角度(DL-AoA)的信息、关于所述接收设备的接收倾斜角的信息中的一个或多个。
图6是示出了在图4A所示的收发单元中,控制单元根据接收设备的位置信息和姿态信息配置多个第一子阵中的发射子阵的示意图。如上所述,在图4A所示的示例中,发射设备的收发单元包括馈电模块和第一天线阵列,其中,馈电模块包括驱动部件(在图6中未示出)和第二天线阵列。如图6所示,第二天线阵列包括第二子阵610-640,并且第一天线阵列包括第一子阵651-654。如图6中虚线部分所示,每个第二阵列发射第二波束至相应的第一子阵。在图6中以黑色部分在第一子阵651至654上示出的了第二波束投射 在第一子阵上所形成的主光斑。控制单元320可根据关于需要与其进行通信的接收设备的位置信息和姿态信息来对相邻第一子阵上的主光斑之间的距离进行设置,即,对各个第一子阵中的发射子阵进行设置。位于黑色区域的发射子阵可分别反射或透射投射到该子阵上的第二波束,以发射第一波束,如图6中的椭圆形部分所示。从而即使接收设备不位于预定位置,或者接收设备的位置发生改变,也可有效地增加LOS信道的秩,以便在多个收发天线阵对间进行多流传输。
例如,可对公式1进行变形,以获得以下公式2,并根据公式2来配置相邻发射子阵之间的距离d T
Figure PCTCN2021132921-appb-000002
其中,λ为通信波长,D为接收设备与发射设备之间的距离,N为收发子阵对的数量,例如,可根据接收设备的接收子阵的数量确定N,d R为接收设备的相邻接收子阵之间的距离,θ R为接收设备的到达角度(AoA),θ T为发射设备的出发角度(AoD)。根据公式2可以看出,当接收设备与发射设备之间的距离越近时,相邻发射子阵之间的距离越小,反之距离越大。接收设备可向发送设备发送关于相邻接收子阵之间的距离的信息、关于接收子阵数量的信息中的一个或多个。可替换地,也可使用默认的相邻接收子阵之间的距离。
虽然在图6所示的示例中,以图4A所示的收发单元为例进行了描述,然而,应理解,在图4B和图4C所示的收发单元中也可使用同样的方法来配置多个第一子阵中的发射子阵。例如,在图4B所示的示例中,可至少部分地根据接收设备的位置信息和姿态信息,在多个第二子阵中确定通过驱动子阵驱动的第二子阵,以向相应的第一子阵发射第二波束。相应的第一子阵可作为发射子阵,并且根据其上的第二波束的主光斑发射第一波束。
此外,根据本公开的另一示例,控制单元可根据接收设备的位置信息和姿态信息配置多个第一子阵中的发射子阵发射的波束。例如,当接收设备与发射设备300的距离小于或等于预定值时,可确定接收设备处于收发单元310的近场。在此情况下,可将第一波束配置为使其汇聚于接收设备。例如,控制单元可根据接收设备的位置信息和姿态信息,对各个第一波束的方向、方向 图、初始相位中的一个多个进行配置,以使各个第一波束汇聚于接收设备。反之,各个第一子阵可发送相同的第一波束。此外,当第一波束较窄时,也可将第一波束配置为使其汇聚于接收设备。反之,当第一波束较宽时,各个第一子阵可发送相同的第一波束。
根据本公开的一个示例,需要与发射设备300通信的接收设备可向发射设备300报告关于该接收设备的接收子阵的数量和接收子阵之间的间距的信息。此外,可以由需要与发射设备300通信的接收设备测量该接收设备与发射设备之间的距离。可替换地,也可由发射设备300对接收设备与发射设备之间的距离进行测量。例如,可通过定位参考信号(positioning reference signal,PRS)、信道探测参考信号(Sounding Reference Signal)等参考信号,或GPS等位置传感器,或其他测距方法来测量接收设备与发射设备之间的距离。可根据需要周期或非周期地获得上述信息。
在关于角度的信息方面,可由接收设备测量全部的关于角度的信息并发送给发射设备。例如,可由接收设备发送关于AOA、AOD、以及接收倾斜角的信息。可替换地,可由发射设备对AOD进行测量,并由接收设备发送关于AOA、以及接收倾斜角的信息。例如,可通过波束索引、SRS、UE位置坐标等对AOD进行测量。又例如,可通过PRS等下行定位参考信号,或通过陀螺仪等传感器对AOA进行测量。此外,可通过PRS等下行定位参考信号,或通过陀螺仪等传感器对接收设备的接收倾斜角等姿态进行测量。在根据本公开的实施例中,AOA和AOD可以指关于下行链路信号的AOA和AOD。与关于距离的信息类似,可根据需要周期或非周期地获得上述关于角度的信息。
在结合图5和图6描述的示例中,发射设备可根据关于需要与其进行通信的接收设备的信息来对收发单元进行配置以确保信号增益,从而即使对于LOS场景中的移动设备也能获得良好的性能。
此外,根据本公开的另一方面,控制单元320还可根据需要对发射子阵发射的第一波束进行波束整形。例如,在投射到第一天线阵列的第二波束的主光斑周围会产生旁瓣,造成干扰。鉴于此,可调整第一天线阵列中阵元的功率。例如,可对于发射子阵中的阵元配置较大的功率,对其他阵元配置较 小的功率。又例如,可将第一天线阵列的第一子阵中除了发射子阵以外的位置设置为随机相位,或者设置为关闭状态。从而,对发射子阵发射的第一波束进行波束整形,避免了波束所投射的旁瓣的干扰。又例如,当进行波束扫描时,可利用窗函数,将发射子阵发射的第一波束整形为平顶波束。此外,当信噪比(SNR)未达到预定值时,可对第二波束进行整形,以使其在第一天线阵列上照亮更大区域,获取更高第一波束增益。
根据本公开的另一方面,在根据本公开的示例中,为了适应LOS场景中的通信,通常将收发单元配置为具有较大发射子阵间距。然而,较大的发射子阵间距以及PAA非理想特性等因素可能导致发射端发射的波束的栅瓣较大,或者在接收端产生栅瓣等问题,可以通过适当的改进来对其进行抑制。例如,可增加接收机中的天线的数量,以产生窄波束抑制,从而防止接收端产生栅瓣。又例如,可利用RIS波束低旁瓣的特性来抑制发送端所产生的栅瓣。
下面将参照图7对对根据本公开实施例的接收设备进行描述。图7是示出了根据本公开一个实施例的接收设备的示意性框图。如图7所示,接收设备700可包括控制单元710和发送单元720。接收设备700还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。此外,由于接收设备700与上文参照图3-6描述的发射设备的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。
如图7所示,控制单元710确定关于通信信道中视线(LOS)信道分量的强度的信息。根据本公开的一个示例,控制单元710可根据第一参考信号进行信道状态估计,以及根据信道状态估计的结果,确定所述关于通信信道中LOS信道分量的强度的信息。例如,控制单元710可根据发射设备发送的下行参考信号来进行信道状态估计。具体地,接收设备700还可包括接收单元,以接收来自所述发射设备的第一参考信号。第一参考信号可包括PRS、SRS、信道状态参考信号(CSI-RS)、追踪参考信号(Tracking Refernece Signal,TRS)中的一个或多个。控制单元710可根据第一参考信号进行信道状态估计,以及根据信道状态估计的结果,确定关于通信信道中LOS信道分量的强 度的信息。发送单元720可向发射设备发送所确定的信息。从而发射设备能够根据关于LOS信道分量的强度的信息确定当前是否为LOS场景,以便对发射设备确定其收发单元的配置模式。
根据本公开的另一示例,发送单元720还向发射设备发送关于接收设备700的位置信息和姿态信息中的至少一个。例如,接收设备的位置信息可以是接收设备相对发射设备中的参考点的三维坐标。接收设备的位置信息可包括接收设备与发送设备之间的距离、关于下行出发角度(DL-AoD)的信息、关于上行到底角度(UL-AoD)的信息中的一个或多个。又例如,接收设备的姿态信息可以是接收设备相对于水平、垂直、纵深方向的坐标轴的偏转角度。接收设备的姿态信息可包括关于下行到达角度(DL-AoA)的信息、关于所述接收设备的接收倾斜角的信息中的一个或多个。此外,发送单元720还可向发射设备发送关于接收设备700的其他属性信息。例如,发送单元720还可发送关于接收子阵的数量、间距的信息。从而发射设备能够根据上述信息对其收发单元的配置进行进一步调整。
以上已经描述了如何对于根据关于LOS信道分量的强度的信息确定当前场景是否为LOS场景,进而对发射设备的收发单元进行灵活调整的示例情形。
在根据本公开的实施例中,在发射设备的收发单元根据关于LOS信道分量的强度的信息调整收发单元之后,可进一步使用配置后的收发单元进行数据传输。利用根据本公开的实施例的发射设备,即使在LOS场景下,也可有效地传输多个相互独立的数据流。例如,在一些示例中,可利用LOS信道的信道特性,而在不经预编码的情形下,对多个数据流进行传输。又例如,在又一些示例中,可对各个数据流进行预编码,并传输经过预编码的数据流。
以下,将结合图8-11进一步描述对使用LOS信道的信道特性而不经预编码来传输多个相互独立的数据流的情形。
图8示出了根据本公开一个实施例的信息传输的示例。如图8所示,天线阵列中可以具有N个天线端口(N大于等于1),这N个天线端口分别为第一天线端口、第二天线端口…和第N天线端口。这N个天线端口分别向接收设备发送数据流。本领域技术人员应当理解,术语“天线端口”是指一个逻辑 概念,一个天线端口可以对应于上述的第一天线阵列中的一个发射子阵或多个发射子阵,或者第一天线阵列中的一个发射子阵也可以对应于一个天线端口或多个天线端口。本公开在此不限定天线端口和发射子阵之间的对应关系。在图8中未示出逻辑上的天线端口。此外,本领域技术人员应当理解,在根据本公开的实施例中,术语“数据流”例如是未经过预编码的信息或者参考信号。例如,可以通过未经预编码的天线端口来指示上述数据流。
可选地,发射设备可以使用相同的调制与编码策略(MCS),并且使用相同的发射功率通过该N个天线端口发送数据流。可选地,天线阵列的N个天线端口中的每个天线端口可以分别发送对于所述接收设备的一个数据流。在一个示例中,该N个天线端口发送的数据流可以是各自独立的未经过预编码的数据流或参考信号。相应地,接收设备可以接收上述的多个数据流,并基于信道状态信息,包括视线(LOS)信道分量的强度信息,解调其接收的各个数据流。
在LOS场景中,可以将等效数字基带信道矩阵H表示为:
H=H LOS+H NLOS          (3)
其中,H LOS表示LOS信道分量,H NLOS表示非LOS信道分量。例如,在图1所示的使用高频段进行LOS传输的场景中,LOS信道分量的强度较强,而其余的非LOS信道分量(包括反射径、散射径)的强度均较弱。而且,LOS信道分量H LOS与发射设备(如基站)和接收设备(如终端设备)之间的相对位置有关。在本公开的一些实施例中,可以将接收设备第i个天线端口和发射设备第j个天线端口间LOS信道分量[H LOS] i,j表示为:
Figure PCTCN2021132921-appb-000003
其中,β为路损,
Figure PCTCN2021132921-appb-000004
为根据本公开一个实施例,在发射设备中的第一天线阵列为RIS,接收设备为UE的情况下,接收设备第i个天线端口对应的接收子阵和发射设备的第j个天线端口对应的发射子阵之间的距离。作为一个示例,在接收设备第i个天线端口对应于一个接收子阵并且发射设备的第j个天线端口对应于一个发射子阵的情况下,
Figure PCTCN2021132921-appb-000005
为接收设备第i个天线端口对应的接收子阵到发射设备的第j个天线端口对应的发射子阵之间的距离。作为另一个示例,在接收设备第i个天线端口对应于一个接收子阵而发射设备的第j个天线端口对应于两个发射子阵的情况下,
Figure PCTCN2021132921-appb-000006
为接收设 备第i个天线端口对应的接收子阵到发射设备的第j个天线端口对应的两个发射子阵的平均距离。本公开并不以此为限。
在此,当发射设备的发射子阵间距和接收设备的接收子阵间距满足公式1或公式2所表达的最优间距时,可以得到
Figure PCTCN2021132921-appb-000007
其中I为单位矩阵,
Figure PCTCN2021132921-appb-000008
表示H LOS的共轭转置矩阵。此时LOS信道分量H LOS
Figure PCTCN2021132921-appb-000009
近似满足正交关系。在图1所示的使用高频段进行传输的场景中,由于非LOS信道分量的强度相对LOS信道分量的强度较弱,等效数字基带信道矩阵H也近似满足正交关系。由上可知,接收设备的控制单元可以根据等效数字基带信道矩阵H的估计值
Figure PCTCN2021132921-appb-000010
对各个天线端口发送的不经预编码的多个数据流进行解调。
例如,接收设备的控制单元可以基于发射设备发送的参考信号,如信道状态信息参考信号(CSI-RS)或者解调参考信号(DM-RS),进行信道估计,以确定等效数字基带信道矩阵H的估计值
Figure PCTCN2021132921-appb-000011
随后,接收设备可以根据所述估计值
Figure PCTCN2021132921-appb-000012
对接收的数据流进行解调。可使用任何MIMO检测算法对接收的数据流进行解调。例如,当发射设备的发射子阵间距和接收设备的接收子阵间距满足公式1或者公式2所表达的最优间距时,接收设备可以使用匹配滤波(MF)对接收的数据流进行解调。匹配滤波(MF)性能接近最优,而且复杂度很低。可替换的,接收设备可以利用其它MIMO检测方法对接收的数据流进行解调。例如,接收设备可以使用最小均方误差(MMSE)估计对接收的数据流进行解调。本公开并不以此为限。
又例如,接收设备的控制单元还可以根据发射设备的状态信息、所述接收设备的位置信息和姿态信息中的至少一个、以及所述视线(LOS)信道分量的强度信息,确定关于所述多个天线端口中各个天线端口的等效数字基带信道矩阵。在一些示例中,可以直接根据发射设备的状态信息、所述接收设备的位置信息和姿态信息中的至少一个、以及所述视线(LOS)信道分量的强度信息近似地计算LOS信道分量H LOS的估计值
Figure PCTCN2021132921-appb-000013
基于LOS信道分量H LOS的估计值
Figure PCTCN2021132921-appb-000014
接收设备可以使用匹配滤波的方法利用公式5解调其接收的各个数据流。
图9示出了根据本公开一个实施例,在发射子阵和接收设备之间的波束 的传输示意图。如图9所示,发射设备通过各个发射子阵发出的波束,在接收设备处是聚焦的。从而,根据如上描述,可以在发射设备处,通过LOS信道发送数据流。其中,可以使用各个天线端口发送不经预编码的多个数据流,而在接收设备处可以通过信道估计来获得关于所述多个天线端口中各个天线端口的等效数字基带信道矩阵H的估计值
Figure PCTCN2021132921-appb-000015
并根据该等效数字基带信道矩阵的估计值解调通过LOS信道接收的数据流。由此,可以在无需反馈预编码信息的情况下实现数据流的解调,从而节省了信令传输所占用的系统资源,减少了计算复杂度,提高了信息传输效率。或者,还可以在接收设备处通过发射设备的状态信息、所述接收设备的位置信息和姿态信息中的至少一个、以及所述视线(LOS)信道分量的强度信息来获得关于所述多个天线端口中各个天线端口的等效数字基带信道矩阵H中LOS信道分量H LOS的估计值
Figure PCTCN2021132921-appb-000016
并根据该估计值解调通过LOS信道接收的数据流。从而,可以在无需信道估计的情况下直接获取各个天线端口的等效数字基带信道矩阵,从而进一步减少了计算复杂度,使得信息传输更加方便迅速。
图10和图11示出了根据本公开的一个示例,在数据传输时,使用LOS信道的信道特性来传输多个数据流而不需要进行预编码的发射设备以及相应的接收设备的示例性框图。具体地,图10是示出根据本公开一个实施例的发射设备1000的示意性框图。如图10所示,根据本公开一个实施例的发射设备1000可包括控制单元1020和收发单元1010。除了控制单元和收发单元,发射设备1000还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
与图3-6所示的发射设备类似,在图10所示的示例中,具体地,发射设备1000的收发单元1010可以包括第一天线阵列。可选地,收发单元1010还可以包括馈电单元。此外,在图10所述的示例中,假设已根据图10所示的示例,确定当前的通信场景为LOS场景,也即发射设备已知视线(LOS)信道分量的强度信息。
发射设备1000的控制单元1020可以被配置为确定对于接收设备的数据流的多个数据流。然后,使用收发单元1020中的多个天线端口中的每个天线端口发送对于接收设备的数据流的一个数据流。
根据本公开的一个示例,可通过收发单元1010中多个天线端口发送以相 同调制与编码策略(MCS),以及相同的发射功率所发送的各个数据流,以减少信息发送的复杂度。根据本公开的另一示例,发射设备1000的收发单元1010利用多个天线端口并通过多个天线端口发送的数据流可以是相同或不同的多个数据流。例如,发射设备1000可以根据秩指示符,天线端口和接收设备之间的距离,以及信噪比SNR的范围中的至少一个,来确定所发送的不同数据流的数量。例如,所述秩指示符是由接收设备反馈的。例如,当发射设备1000和接收设备之间的距离范围相对较近,而SNR相对较高时,收发单元1010可以发送相对较多的不同数量的数据流。又例如,当发射设备1000和接收设备之间的距离相对较远,而SNR相对不高时,收发单元1010可以减少所发送的不同数据流的数量。例如,可以进一步调整天线端口和发射子阵间的映射关系,例如将两个发射子阵映射到相同的天线端口,以减少所发送的不同数据流的数量。
在图10所示的示例中,发射设备1000可不对数据流进行预编码,也就是说,通过收发单元1020的各个天线端口发射的数据流可以是未经过预编码的数据流或参考信号。因此,在图10所示的示例中,在信道状态报告获取阶段,发射设备从接收设备获取的关于信道状态的信息可不包括预编码矩阵指示符(PMI)。在此情况下,发射设备1000可接收由接收设备发送的信道状态信息参考信号资源指示符、秩指示符、信道质量指示符中的至少一个。
以下,参考图11来说明根据本公开的一个实施例的与图10中所示的发射设备对应的接收设备。图11是示出根据本公开一个实施例的接收设备1100的示意性框图。如图11所示,根据本公开一个实施例的接收设备1100可包括收发单元1110和控制单元1120。除了收发单元和控制单元,接收设备1100还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
如图11所示,接收设备1100的收发单元1110可以被配置为接收通过发射设备中包括多个天线端口的收发单元发送的数据流,其中每个天线端口发送对于所述接收设备的一个数据流。
如以上结合图8至图11所描述的,控制单元1120可以进行信道估计以获得关于所述多个天线端口中各个天线端口的等效数字基带信道矩阵的估计值,以及根据所述等效数字基带信道矩阵的估计值,对所述数据流进行解调。
根据本公开的一个示例,控制单元1120可以根据所述信道估计的结果,得到估计的等效数字基带信道矩阵,根据该等效数字基带信道矩阵解调数据流。可使用任何MIMO检测算法对接收的数据流进行解调。例如,控制单元1120可以对数据流进行最小均方误差(MMSE)解调或者匹配滤波(MF)解调。
根据本公开的一个示例,控制单元1120可以根据发射设备的状态信息、所述接收设备的位置信息和姿态信息中的至少一个、以及所述视线(LOS)信道分量的强度信息,确定关于所述多个天线端口中各个天线端口的等效数字基带信道矩阵,以及根据所述等效数字基带信道矩阵,对所述多个数据流进行解调。
在图11所示的示例中,由于与接收设备1100对应的发射设备不对数据流进行预编码,因此接收设备1100可不向发射设备发送预编码矩阵指示符(PMI)。在此情况下,收发单元1110可向发射设备发送信道状态信息参考信号资源指示符、秩指示符、信道质量指示符中的至少一个,以报告信道状态。由此,通过仅向发射设备反馈包括信道状态信息参考信号资源指示符、秩指示符、信道质量指示符等信道状态的相关信息,能够在无需反馈预编码信息的情况下实现信息传输,从而节省了信令传输所占用的系统资源,减少了计算复杂度,提高了信息传输效率
在本示例中,发射设备和接收设备之间无需进行预编码即可实现信息传输,并且有效消除了LOS信道的流间干扰,改进了LOS信道多流传输的性能,扩大了LOS MIMO信道容量。根据上述接收设备,其所接收的通过其中多个天线端口所发送的数据流可以是未经过预编码的数据流或参考信号,从而使得发射设备可以不依赖CSIT(Channel state information at the transmitter)就能够确定各个天线端口要发送的数据流。由此,发射设备的收发机的复杂度被降低,减少了信道估计和反馈开销,提升了信道利用率。同时,也相应降低了在接收设备处MIMO检测的操作复杂度。
以下,将结合图12-14对于对各个数据流进行预编码,并传输经过预编码的数据流的情形进行描述。当发射设备的发射子阵间距和接收设备的接收子阵间距满足公式1或者公式2所表达的与收发机距离有关的最优间距时, 可以通过对聚焦到参考焦点的预编码向量进行基于离散傅里叶变换(DFT)向量的偏转来获得聚焦到其他焦点的预编码向量。此外,经过偏转后的聚焦预编码器向量互相正交,即偏转后得到的焦点处于其它聚焦预编码向量的零点处。鉴于此,根据本公开的另一实施例提出了一种简化的预编码指示符(Precoding Matrix Indicator,PMI)反馈方式。
以下,参考图12和图13来分别说明根据本公开的另一实施例的接收设备和发射设备。图12是示出根据本公开另一实施例的接收设备的示意性框图。图13是示出根据本公开另一实施例的发射设备的示意性框图。如图12所示,根据本公开另一实施例的接收设备1200可包括控制单元1210和收发单元1220。如图13所示,根据本公开另一实施例的发射设备可包括收发单元1310和控制单元1320。除图示的各个组件外,接收设备1200和发射设备1300还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
在根据本公开的实施例中,当根据关于LOS信道分量的强度的信息确定当前通信场景为LOS场景时,如图12所示,接收设备1200的控制单元1210可被配置为确定用于发射设备或所述接收设备的多个天线端口中的第一天线端口的PMI,其中所述PMI与所述发射设备多个天线端口中的第一天线端口对应。或者,所述PMI与所述接收设备的多个天线端口中的第一天线端口对应。
根据本公开的一个示例,所述PMI包括与所述第一天线端口相关联的预编码器的信息。例如,与所述第一天线端口相关联的预编码器的信息可以是与所述第一天线端口相关联的相位偏转信息。根据本公开的一个示例,第一天线端口可以是发射设备和接收设备预先确定的。根据本公开的另一个示例,可通过接收设备来确定第一天线端口,并向发射设备通知确定的结果。例如,接收设备可以事先向发射设备发送第一天线端口的标识符,或者随着所述PMI一起向发射设备发送该第一天线端口的标识符。
例如,所述第一天线端口的标识符可以使用天线端口相关的标识符来进行标识。作为一个示例,上述的标识符可以是信道状态信息资源指示符(CRI)。又例如,所述第一天线端口的预编码器的信息可以用一组相位偏移序列来指示。作为一个示例,上述的相位偏移序列可以是用b个比特对[0,2π]之间的相 位进行量化后的序列。可选地,该相位偏转序列可以包括N-1个值,N等于向所述接收设备传输的数据流的数量。
可选地,接收设备1200的控制单元可以通过信道估计来确定上述PMI。例如,发射设备1300可以向接收设备1100发送信道状态信息参考信号(CSI-RS),然后接收设备1100可以通过估计CSI,并基于估计的CSI来确定PMI。本公开并不以此为限。
例如,在控制单元1210已经确定了PMI的情况下,收发单元1220可向发射设备发送PMI。如图12所示,收发单元1220可以包括用于接收和发送数据流的天线阵列。可选地,收发单元1220还可以被配置为向发射设备发送信道状态信息参考信号资源指示符(CRI)、秩指示符(RI)、信道质量信息(CQI)中的至少一个。
另一方面,如图13所示,根据本公开的另一实施例,发射设备1300的收发单元1310包括第一天线阵列。可选地,发射设备1300的收发单元1310可以包括馈电单元。发射设备1300的收发单元1310中各个组件之间的交互方案和配置方案已经参照图4A至图7进行了详细描述,本公开在此不再赘述。
收发单元1310可以被配置为从接收设备1200接收预编码指示符,其中所述预编码指示符与所述发射设备1300或所述接收设备1200的多个天线端口中的第一天线端口对应。
接着,控制单元1320根据所述PMI确定与所述发射设备的多个天线端口相关联的预编码器信息。根据本公开的一个示例,控制单元1320可以被配置为根据所述PMI和DFT向量确定所述发射设备的预编码器信息。在本公开的一个示例中,所述发射设备的各个天线端口分别发送根据与该天线端口对应的预编码器信息进行了预编码的数据流。所述数据流包括解调参考信号(DM-RS)或者下行链路数据或者上行链路数据。
如上所述,LOS信道分量与发送设备和接收设备的相对位置有关。当发射设备的发射子阵间距和接收设备的接收子阵间距满足公式1或者公式2所表达的与收发机距离有关的最优间距时,LOS信道分量的全部特征值近似相等并且在多流传输时各个流的增益近似相等,从而实现传输速率最大化。可以利用匹配滤波(MF)进行预编码来实现上述的传输速率优化。因此,在本 公开的以下示例中,各个天线端口以相同的功率并使用相同的调制和编码方案(MCS)发送数据流。
具体地,参见图14,假设有N个天线端口(N大于等于1),这N个天线端口分别为第一天线端口、第二天线端口…和第N天线端口。这N个天线端口将向接收设备1200发送经过预编码的数据流。本领域技术人员应当理解,术语“天线端口”是指一个逻辑概念,一个天线端口可以对应于上述的第一天线阵列中的一个发射子阵或多个发射子阵,或者第一天线阵列中的一个发射子阵也可以对应于一个天线端口或多个天线端口。本公开在此不限定天线端口和发射子阵之间的对应关系。在图14中未示出逻辑上的天线端口。此外,本领域技术人员应当理解,在根据本公开的实施例中,术语“数据流”例如是未经过预编码的信息或者参考信号。例如,可以通过未经预编码的天线端口来指示上述数据流。
例如,假设图14中的N个天线端口均向接收设备1200发送经过预编码的数据流。并且假设发射设备1300已经接收到了针对第一天线端口的PMI,其包括用于所述第一天线端口的预编码器的信息。并假设发射设备1300已知第一天线端口的标识符。
发射设备1300将基于所述用于第一天线端口的预编码器的信息确定用于对各个天线端口发射的数据流进行预编码的预编码器。例如,关于发射设备1300的第一天线端口的预编码器的信息可指示第一数字预编码器
Figure PCTCN2021132921-appb-000017
其中,
Figure PCTCN2021132921-appb-000018
的相位均可以以b个比特来进行标识,其指示在[0,2π]的相位范围内的量化后的相对于
Figure PCTCN2021132921-appb-000019
的相位偏转信息。由此,发射设备可以利用w (1)来对N个数据流进行预编码,并通过第一天线端口向接收设备发送。
此外,根据本公开的另一示例,发射设备1300还可以通过DFT向量对第一预编码器进行偏转以确定用于对经其它天线端口发射的数据流进行预编码的预编码器。根据本公开的一个示例,该DFT向量可以被预先存储在发射设备内。更具体地,发射设备可以从预先存储的DFT向量集合中根据N值来选择DFT向量。
具体的,N个数字预编码器构成的预编码矩阵W可以被计算如下:
Figure PCTCN2021132921-appb-000020
其中,预编码矩阵W的第n行表示用于对经第n个天线端口发射的数据流进行预编码的预编码器。
在本公开的一个示例中,接收设备1200可以独立地解码经上述预编码器W预编码后发射并且被其各天线端口接收的数据流。
虽然在图14所示的示例中,以第一天线端口为发射装置中的天线端口为例进行了描述,但是应理解,类似的方法也适用于第一天线端口为接收装置中的天线端口的情况。
参见图15,其以实线示出一个经上述预编码器预编码后发出的数据流,以虚线示出利用另一个经上述预编码器预编码后发出的数据流。对上述两个数据流进行预编码的预编码向量由公式7通过DFT向量偏转得到。因此,上述预编码向量满足正交关系,不会互相产生干扰。因此,接收设备1200可以独立地解码其各个天线端口接收的数据流,而不需要进行额外的MIMO检测。
在本公开的另一示例中,接收设备1200也可以使用MMSE接收方案来解码上述的数据流,本公开对此不进行限制。
由此,在本公开的示例中,发射设备1300和接收设备1200仅使用简单的预编码方案即可消除LOS信道的流间干扰,从而实现LOS信道的多流传输,扩大了LOS MIMO信道容量。更进一步地,如上所述,在获取所属PMI的情况下,发射设备不依赖CSIT(Channel state information at the transmitter)就能够计算预编码矩阵。由此,发射设备的收发机的复杂度被降低,减少了信道估计和反馈开销,提升信道利用率。接收设备也不需进行MIMO检测就能够独立解调各个天线端口发送的数据流,降低了接收设备的收发机的复杂度,提高了接收设备的接收性能。
以上结合图3-图15对根据本公开实施例的发射设备和接收设备进行了描述。下面,将对本公开实施例的配置方法以及信息发送方法进行描述。图16是根据本公开的一个实施例的配置方法1600的流程图。由于配置方法1600的步骤与上文参照图3-6描述的发射设备300的操作对应,因此在这里为了 简单起见,省略对相同内容的详细描述。配置方法1600可应用于例如,图3所示的发射设备。具体地,配置方法1600所应用的发射设备可包括收发单元和控制单元,其中收发单元可包括第一天线阵列。例如,第一天线阵列可以是RIS。又例如,第一天线阵列可以是PAA或者透镜阵列天线。可选择地,第一天线阵列可被分为多个第一子阵。每个第一子阵可包括一个或多个阵元。
如图16所示,在步骤S1601中,获得关于通信信道中视距(LOS)信道分量的强度的信息。例如,关于LOS信道分量的强度的信息可以是表示LOS信道分量强度与非视线(LOS)信道分量强度的比值的K因子。此外,关于LOS信道分量的强度的信息还可以是其它表示LOS径是否存在或相对强弱的信息。
在根据本公开的示例中,在步骤S1601中可估计通信信道中LOS信道分量的强度,以获得关于LOS信道分量的强度的信息。可替换地,也可以通过要与发射设备通信的接收设备估计通信信道中LOS信道分量的强度,并且将关于LOS信道分量的强度的信息发送给发射设备。在步骤S1601中可接收来自接收设备的关于LOS信道分量的强度的信息。
在步骤S1602中,根据关于通信信道中LOS信道分量的强度的信息确定第一天线阵列的配置方式。根据本公开的一个示例,当关于通信信道中视线(LOS)信道分量的强度的信息确定通信信道满足预定信道条件时,在步骤S1602中,可确定当前的通信场景为LOS场景,并且配置第一天线阵列311以适用于LOS场景的通信。例如,当K因子大于或等于预定值时,可确定当前的通信场景为LOS场景。在此情况下,在步骤S1602中,可配置第一天线阵列以适用于LOS场景的通信。因此根据本公开实施例的发射设备可根据关于通信信道中LOS信道分量的强度的信息确定根据当前场景是否为LOS场景,进而对收发单元中的第一天线阵列进行灵活调整。
根据本公开的一个示例,当根据关于通信信道中LOS信道分量的强度的信息确定通信信道满足预定信道条件时,在步骤S1602中,可根据所述接收设备的位置信息和姿态信息中的至少一个,对第一天线阵列进行配置。如上所述,作为示例,第一天线阵列可包括多个第一子阵。当根据关于通信信道中LOS信道分量的强度的信息确定通信信道满足预定信道条件时,在步骤S1602中,可根据所述接收设备的位置信息和姿态信息中的至少一个,配置多 个第一子阵中的发射子阵。例如,在步骤S1602中,可根据所述接收设备的位置信息和姿态信息中的至少一个,对相邻发射子阵之间的距离进行配置。又例如,在步骤S1602中,可根据所述接收设备的位置信息和姿态信息中的至少一个,对发射子阵发射的波束进行配置。
此外,在本公开的另一示例中,发送设备中的收发单元还可包括用于给第一天线阵列馈电的馈电模块。馈电模块可包括分别与多个第一子阵对应的多个馈电子模块。当根据关于通信信道中LOS信道分量的强度的信息确定通信信道满足预定信道条件时,在步骤S1602中,可根据所述接收设备的位置信息和姿态信息中的至少一个,通过馈电模块对所述第一天线阵列进行配置。
根据本公开的一个示例,在步骤S1602中,可根据接收设备的位置信息确定接收设备与发射设备之间的距离是否满足预定距离条件,配置多个第一子阵中的发射子阵。例如,当根据接收设备的位置信息确定接收设备与发射设备之间的距离小于或等于预定距离条件时,在步骤S1602中可将多个第一子阵中的预定子阵或者预定部分作为发射子阵。因此,在发射设备处可以简便地配置发射子阵以适用于LOS通信场景。
根据本公开的另一示例,在步骤S1602中,可至少部分地根据接收设备的位置信息和姿态信息配置多个第一子阵中的发射子阵。例如,在步骤S1602中,可至少部分地根据接收设备的位置信息和姿态信息确定多个第一子阵中哪些部分或者哪些子阵作为发射子阵。作为示例,在步骤S1602中,可根据上述公式2,基于接收设备的位置信息和姿态信息确定多个第一子阵中哪些部分或者哪些子阵作为发射子阵。因此,在发射设备处可以根据特定的终端准确地配置发射子阵以适用于LOS通信场景,改善系统性能。
此外,根据本公开的另一示例,在步骤S1602中,可根据接收设备的位置信息和姿态信息配置多个第一子阵中的发射子阵发射的波束。例如,当接收设备与发射设备的距离小于或等于预定值时,可确定接收设备处于收发单元的近场。在此情况下,在步骤S1602中可将第一波束配置为使其汇聚于接收设备。例如,在步骤S1602中可根据接收设备的位置信息和姿态信息,对各个第一波束的方向、方向图、初始相位中的一个多个进行配置,以使各个第一波束汇聚于接收设备。反之,各个第一子阵可发送相同的第一波束。此外,当第一波束较窄时,也可将第一波束配置为使其汇聚于接收设备。反之, 当第一波束较宽时,各个第一子阵可发送相同的第一波束。
通过根据本公开实施例的配置方法,发射设备可根据关于需要与其进行通信的接收设备的信息来对收发单元进行配置以确保信号增益,从而即使对于LOS场景中的移动设备也能获得良好的性能。
图17是根据本公开的一个实施例的由接收设备执行的信息发送方法1700进行描述的流程图。由于信息发送方法1700的步骤与上文参照图7描述的接收设备700的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。
如图17所示,在步骤S1701中确定关于通信信道中视线(LOS)信道分量的强度的信息。根据本公开的一个示例,在步骤S1701中可根据第一参考信号进行信道状态估计,以及根据信道状态估计的结果,确定所述关于通信信道中LOS信道分量的强度的信息。例如,在步骤S1701中可根据发射设备发送的下行参考信号来进行信道状态估计。具体地,方法1700还可包括接收来自所述发射设备的第一参考信号。第一参考信号可包括PRS、SRS、信道状态参考信号(CSI-RS)、追踪参考信号(Tracking Refernece Signal,TRS)中的一个或多个。在步骤S1701中可根据第一参考信号进行信道状态估计,以及根据信道状态估计的结果,确定关于通信信道中LOS信道分量的强度的信息。从而发射设备能够根据关于LOS信道分量的强度的信息确定当前是否为LOS场景,以便对发射设备确定其收发单元的配置模式。然后在步骤S1702中,向发射设备发送所确定的于LOS信道分量的强度的信息。从而发射设备能够根据关于LOS信道分量的强度的信息确定当前是否为LOS场景,以便对发射设备确定其收发单元的配置模式。
根据本公开的另一示例,信息发送方法1700还可包括向发射设备发送关于接收设备的位置信息和姿态信息中的至少一个。例如,接收设备的位置信息可以是接收设备相对发射设备中的参考点的三维坐标。接收设备的位置信息可包括接收设备与发送设备之间的距离、关于下行出发角度(DL-AoD)的信息、关于上行到底角度(UL-AoD)的信息中的一个或多个。又例如,接收设备的姿态信息可以是接收设备相对于水平、垂直、纵深方向的坐标轴的偏转角度。接收设备的姿态信息可包括关于下行到达角度(DL-AoA)的信息、 关于所述接收设备的接收倾斜角的信息中的一个或多个。此外,信息发送方法1700还可包括向发射设备发送关于接收设备的其他属性信息。例如,信息发送方法1700还可包括发送关于接收子阵的数量、间距的信息。从而发射设备能够根据上述信息对其收发单元的配置进行进一步调整。
下面,将对本公开实施例的又一由接收设备或发射设备执行的方法进行描述。图18是根据本公开的一个实施例的由接收设备执行的方法1800的流程图。图19是根据本公开的一个实施例的由发射设备执行的方法1900的流程图。由于方法1800的步骤与上文参照图8-11描述的接收设备1100的操作对应,方法1900的步骤与上文参照图8-11描述的发射设备1000的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。方法1800可由例如图11所示的接收设备执行。方法1900可由例如图10所示的发射设备执行。
如图18所示,在步骤S1801中,接收设备1100接收通过发射设备中的多个天线端口发送的未经预编码的多个数据流。
在步骤S1802中,基于视线(LOS)信道分量的强度信息,确定关于所述多个天线端口中各个天线端口的等效数字基带信道矩阵。例如,关于LOS信道分量的强度的信息可以是表示LOS信道分量强度与非视线(LOS)信道分量强度的比值的K因子。此外,关于LOS信道分量的强度的信息还可以是其它表示LOS径是否存在或相对强弱的信息。
根据本公开的一个示例,在步骤S1802中,可以根据信道估计的结果,确定关于所述多个天线端口中各个天线端口的等效数字基带信道矩阵。根据本公开的又一个示例,可以根据发射设备的状态信息、所述接收设备的位置信息和姿态信息中的至少一个、以及所述视线(LOS)信道分量的强度信息,确定关于所述多个天线端口中各个天线端口的等效数字基带信道矩阵。
在步骤S1803中,根据所述等效数字基带信道矩阵,对所述多个数据流进行解调。例如,可以对这些数据流进行最小均方误差解调或者匹配滤波解调。根据本公开的一个示例,由于与接收设备对应的发射设备不对数据流进行预编码,因此接收设备可不向发射设备发送预编码矩阵指示符(PMI)。在此情况下,收发单元可向发射设备发送信道状态信息参考信号资源指示符、秩指示符、信道质量指示符中的至少一个,以报告信道状态。
如图19所示,在步骤S1901中,发射设备1000确定对于接收设备的未经预编码的多个数据流。例如,所述发射设备包括多个天线端口。
在步骤S1902中,发射设备1000利用所述多个天线端口中的各个天线端口发送所述多个数据流。在一些示例中,所述多个天线端口发送数据流使用的相同调制与编码策略,并且使用相同的发射功率。
在本示例中,发射设备和接收设备之间无需进行预编码即可实现信息传输,并且有效消除了LOS信道的流间干扰,改进了LOS信道多流传输的性能,扩大了LOS MIMO信道容量。根据上述接收设备,其所接收的通过其中多个天线端口所发送的数据流可以是未经过预编码的数据流或参考信号,从而使得发射设备可以不依赖CSIT(Channel state information at the transmitter)就能够确定各个天线端口要发送的数据流。由此,发射设备的收发机的复杂度被降低,减少了信道估计和反馈开销,提升了信道利用率。同时,也相应降低了在接收设备处MIMO检测的操作复杂度。
下面,将对本公开实施例的又一由接收设备或发射设备执行的方法进行描述。图20是根据本公开的一个实施例的由接收设备执行的方法2000的流程图。图21是根据本公开的一个实施例的由发射设备执行的方法2100的流程图。由于方法2000的步骤与上文参照图12-15描述的接收设备1200的操作对应,方法2100的步骤与上文参照图12-15描述的发射设备1300的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。方法2000可由例如图12所示的接收设备执行。方法2100可由例如图13所示的发射设备执行。
如图20所示,在步骤S2001中,接收设备1200用于发射设备或所述接收设备的多个天线端口中的第一天线端口的预编码指示符。例如,所述预编码指示符包括与所述第一天线端口相关联的相位偏转信息。
在步骤S2002中,向所述发射设备发送所述预编码指示符。
根据本公开的一个示例,接收设备1200还可以向发射设备发送信道状态信息参考信号资源指示符(CRI)、秩指示符(RI)、信道质量信息(CQI)中的至少一个。
根据本公开的一个示例,接收设备1200还可以接收所述多个天线端口中各个天线端口发送的多个数据流,其中,所述控制单元还被配置为对于各个 天线端口发送的多个数据流独立地进行解调。
如图21所示,在步骤S2101中,发射设备1300从接收设备接收预编码指示符,其中所述预编码指示符与所述发射设备或所述接收设备的多个天线端口中的第一天线端口对应。例如,所述发射设备1300包括多个天线端口。
在步骤S2102中,发射设备1300根据所述预编码指示符确定与所述发射设备的多个天线端口相关联的预编码器信息。可选地,发射设备1300还可以根据所述预编码指示符和DFT向量确定与所述发射设备的多个天线端口相关联的预编码器信息。
根据本公开的一个示例,方法2100还可以进一步包括使用发射设备的各个天线端口分别发送根据与所述天线端口对应的预编码器信息进行了预编码的数据流。例如,所述发射设备的多个天线端口中的各个天线端口可以以相同的功率并使用相同的调制和编码方案(MCS)发送所述多个数据流。
由此,在本公开的示例中,发射设备1300和接收设备1200仅使用简单的预编码方案即可消除LOS信道的流间干扰,从而实现LOS信道的多流传输,扩大了LOS MIMO信道容量。更进一步地,如上所述,在获取所属PMI的情况下,发射设备不依赖CSIT(Channel state information at the transmitter)就能够计算预编码矩阵。由此,发射设备的收发机的复杂度被降低,减少了信道估计和反馈开销,提升信道利用率。接收设备也不需进行MIMO检测就能够独立解调各个天线端口发送的数据流,降低了接收设备的收发机的复杂度,提高了接收设备的接收性能。
<硬件结构>
另外,上述实施方式的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本公开的一个实施例的电子设备可以作为执行本公开的信息发送方法的处理的计算机来发挥功能。图22是根据本公开的实施例的所涉及的设 备2200(电子设备)的硬件结构的示意图。上述的设备2200(例如,根据本发明实施例中的发射设备或接收设备)可以作为在物理上包括处理器2210、内存2220、存储器2230、通信装置2240、输入装置2250、输出装置2260、总线2270等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。电子设备的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器2210仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器2210可以通过一个以上的芯片来安装。
设备2200的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器2210、内存2220等硬件上,从而使处理器2210进行运算,对由通信装置2240进行的通信进行控制,并对内存2220和存储器2230中的数据的读出和/或写入进行控制。
处理器2210例如使操作系统进行工作从而对计算机整体进行控制。处理器2210可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的控制单元等可以通过处理器2210实现。
此外,处理器2210将程序(程序代码)、软件模块、数据等从存储器2230和/或通信装置2240读出到内存2220,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,第一网络元件的处理单元可以通过保存在内存2220中并通过处理器2210来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。
内存2220是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存2220也可以称为寄存器、高速缓存、主存储器(主存储装置) 等。内存2220可以保存用于实施本公开的一实施方式所涉及的方法的可执行程序(程序代码)、软件模块等。
存储器2230是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器2230也可以称为辅助存储装置。
通信装置2240是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收装置),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置2240为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的收发单元,发射单元或接收单元等可以通过通信装置2240来实现。
输入装置2250是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置2260是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置2250和输出装置2260也可以为一体的结构(例如触控面板)。
此外,处理器2210、内存2220等各装置通过用于对信息进行通信的总线2270连接。总线2270可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,电子设备可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器2210可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、系统信息块 (SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重设定(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH, Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“终端设备(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用终端设备来替换。例如,对于将无线基站和终端设备间的通信替换为多个终端设备间(D2D,Device-to-Device)的通信的结构,也可以应用本公开的各方式/实施方式。此时,可以将上述的电子设备所具有的功能当作终端设备所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的终端设备也可以用无线基站来替换。此时,可以将上述的终端设备所具有的功能当作第一通信设备或第二通信设备所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高 级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入3000(CDMA3000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 920.11(Wi-Fi(注册商标))、IEEE 920.16(WiMAX(注册商标))、IEEE 920.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本公开进行了详细说明,但对于本领域技术人员而言,显然,本公开并非限定于本说明书中说明的实施方式。本公开在不脱离由权利要求书的记载所确定的本公开的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本公开而言并非具有任何限制性的意义。

Claims (10)

  1. 一种接收设备,包括:
    控制单元,被配置为确定用于发射设备或所述接收设备的多个天线端口中的第一天线端口的预编码指示符;以及
    收发单元,被配置为向所述发射设备发送所述预编码指示符。
  2. 如权利要求1所述的接收设备,其中,
    所述预编码指示符包括与所述第一天线端口相关联的相位偏转信息。
  3. 如权利要求1所述的接收设备,其中
    所述收发单元还被配置为向发射设备发送信道状态信息参考信号资源指示符(CRI)、秩指示符(RI)、信道质量信息(CQI)中的至少一个。
  4. 如权利要求1所述的接收设备,还包括:
    收发单元,被配置为接收所述发射设备的多个天线端口中各个天线端口发送的多个数据流,
    其中,所述控制单元还被配置为对于所述发射设备的各个天线端口发送的多个数据流独立地进行解调。
  5. 一种发射设备,包括:
    收发单元,被配置为从接收设备接收预编码指示符,其中所述预编码指示符与所述发射设备或所述接收设备的多个天线端口中的第一天线端口对应;
    控制单元,被配置为根据所述预编码指示符确定与所述发射设备的多个天线端口相关联的预编码器信息。
  6. 如权利要求5所述的发射设备,其中,
    所述控制单元被配置为根据所述预编码指示符和DFT向量确定与所述发射设备的多个天线端口相关联的预编码器信息。
  7. 如权利要求6所述的发射设备,其中,所述发射设备的各个天线端口分别发送根据与所述天线端口对应的预编码器信息进行了预编码的数据流。
  8. 如权利要求7所述的发射设备,其中,所述发射设备的多个天线端口中的各个天线端口以相同的功率并使用相同的调制和编码方案(MCS)发送所述多个数据流。
  9. 一种接收设备执行的方法,包括:
    确定用于发射设备或所述接收设备的多个天线端口中的第一天线端口的预编码指示符;以及
    向所述发射设备发送所述预编码指示符。
  10. 一种发射设备执行的方法,包括:
    从接收设备接收预编码指示符,其中所述预编码指示符与所述发射设备或所述接收设备的多个天线端口中的第一天线端口对应;以及
    根据所述预编码指示符确定与所述发射设备的多个天线端口相关联的预编码器信息。
PCT/CN2021/132921 2021-11-24 2021-11-24 接收设备和发射设备 WO2023092358A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/132921 WO2023092358A1 (zh) 2021-11-24 2021-11-24 接收设备和发射设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/132921 WO2023092358A1 (zh) 2021-11-24 2021-11-24 接收设备和发射设备

Publications (1)

Publication Number Publication Date
WO2023092358A1 true WO2023092358A1 (zh) 2023-06-01

Family

ID=86538432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132921 WO2023092358A1 (zh) 2021-11-24 2021-11-24 接收设备和发射设备

Country Status (1)

Country Link
WO (1) WO2023092358A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317614A (zh) * 2013-12-31 2017-11-03 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN109150256A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、通信装置和系统
US20190334591A1 (en) * 2017-01-07 2019-10-31 Huawei Technologies Co., Ltd. Transmit Diversity Method, Terminal, and Base Station
US20210105724A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated User equipment (ue) capability signaling for maximum power support
CN113037347A (zh) * 2014-11-17 2021-06-25 三星电子株式会社 用于带有极化有源天线阵列的mimo无线通信系统的csi反馈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317614A (zh) * 2013-12-31 2017-11-03 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN113037347A (zh) * 2014-11-17 2021-06-25 三星电子株式会社 用于带有极化有源天线阵列的mimo无线通信系统的csi反馈
US20190334591A1 (en) * 2017-01-07 2019-10-31 Huawei Technologies Co., Ltd. Transmit Diversity Method, Terminal, and Base Station
CN109150256A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、通信装置和系统
US20210105724A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated User equipment (ue) capability signaling for maximum power support

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3 Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 36.212, vol. RAN WG1, no. V15.14.0, 30 June 2021 (2021-06-30), pages 1 - 250, XP052029944 *

Similar Documents

Publication Publication Date Title
US11962535B2 (en) Method and apparatus for configuring reference signal channel characteristics, and communication device
US11290159B2 (en) Electronic device and communication method
US11929802B2 (en) Unmanned aerial vehicle communication
EP3593507B1 (en) System and method for beam management in high frequency multi-carrier operations with spatial quasi co-locations
US10230440B2 (en) Communication method and apparatus using beamforming in a wireless communication system
KR102345352B1 (ko) 무선 통신 시스템에서 빔포밍을 위한 가중치 결정 방법 및 이를 위한 장치
US9414371B2 (en) Hierarchical channel sounding and channel state information feedback in massive MIMO systems
US20210167837A1 (en) Beam correspondence indication and bitmap for beam reporting for wireless communications
KR101125999B1 (ko) Mimo 시스템들에서 코드북들에 기반한 멀티-레졸루션 빔형성을 이용하는 통신 방법 및 장치
WO2013133742A1 (en) Configuring channel-state feedback resources
US10868599B2 (en) Radio node and method therein for determining precoders
KR20150140268A (ko) 빔 제약적 서브프레임에 기반한 하향링크 데이터 전송 방법 및 장치
CN113228525A (zh) 用于在无线通信系统中估计方向的装置及方法
JP6634982B2 (ja) 端末装置、基地局、方法及び記録媒体
CN116601886A (zh) 用于在下一代无线通信系统中执行改进的波束跟踪的方法和设备
US20180041260A1 (en) Adaptive user-specific beam forming
WO2023092357A1 (zh) 接收设备和发射设备
WO2023092361A1 (zh) 通信系统中的终端以及发送设备
WO2023092358A1 (zh) 接收设备和发射设备
WO2023092359A1 (zh) 接收设备和发射设备
WO2023000260A1 (zh) 可重构表面装置
JP2024500395A (ja) より高いランクの送信をサポートするためのタイプiiポート選択コードブックを拡張する方法
CN118160233A (zh) 接收设备和发射设备
CN118160234A (zh) 接收设备和发射设备
RU2783388C2 (ru) Способ подстройки луча, устройство, система, устройство обработки, машиночитаемый носитель информации и компьютерный программный продукт

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965096

Country of ref document: EP

Kind code of ref document: A1