WO2023092356A1 - Wlan感知方法、装置、设备及存储介质 - Google Patents

Wlan感知方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023092356A1
WO2023092356A1 PCT/CN2021/132916 CN2021132916W WO2023092356A1 WO 2023092356 A1 WO2023092356 A1 WO 2023092356A1 CN 2021132916 W CN2021132916 W CN 2021132916W WO 2023092356 A1 WO2023092356 A1 WO 2023092356A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
interface
sensory
site management
perception
Prior art date
Application number
PCT/CN2021/132916
Other languages
English (en)
French (fr)
Inventor
罗朝明
张顺
黄磊
韩宇
张凡
马建鹏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/132916 priority Critical patent/WO2023092356A1/zh
Priority to CN202180101599.6A priority patent/CN117898020A/zh
Publication of WO2023092356A1 publication Critical patent/WO2023092356A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of wireless communication, in particular to a wireless local area network (Wireless Local Area Networks, WLAN) sensing method, device, equipment and storage medium.
  • WLAN Wireless Local Area Networks
  • WLAN sensing refers to the technology of sensing people or objects in the environment by measuring changes in the scattering and/or reflection of WLAN signals passing through people or objects.
  • Embodiments of the present application provide a WLAN sensing method, device, device, and storage medium, which enable a base station to configure an appropriate sensing signal for a terminal device to perform air interface downlink sensing. Described technical scheme is as follows:
  • a WLAN sensing method which is applied to a terminal device, and the method includes:
  • a process of performing air interface downlink sensing based on the first sensing signal request response
  • a WLAN sensing method which is applied to an access network device, and the method includes:
  • a WLAN sensing device comprising:
  • a first sending module configured to send a first sensing signal request to the access network device, where the first sensing signal request is used to request configuration of sensing signals for the terminal device;
  • a first receiving module configured to receive a first sensing signal request response sent by the access network device
  • a sensing module configured to perform a process of air interface downlink sensing based on the first sensing signal request response.
  • a WLAN sensing device comprising:
  • the second receiving module is configured to receive a first sensing signal request sent by a terminal device, where the first sensing signal request is used to request configuration of sensing signals for the terminal device;
  • the second sending module is configured to send a first sensing signal request response to the terminal device, and the terminal device is configured to perform an air interface downlink sensing process based on the first sensing signal request response.
  • a terminal device includes: a processor and a transceiver connected to the processor; wherein,
  • the transceiver is configured to send a first sensing signal request to the access network device, where the first sensing signal request is used to request configuration of sensing signals for the terminal device;
  • the transceiver is configured to receive a first sensing signal request response sent by the access network device
  • the processor is configured to perform an air interface downlink sensing process based on the first sensing signal request response.
  • a network device includes: a processor and a transceiver connected to the processor; wherein,
  • the transceiver is configured to receive a first sensing signal request sent by a terminal device, where the first sensing signal request is used to request configuration of a sensing signal for the terminal device;
  • the transceiver is configured to send a first sensing signal request response to the terminal device, and the terminal device is configured to perform an air interface downlink sensing process based on the first sensing signal request response.
  • a terminal device includes: a processor and a memory, at least one instruction, at least one program, a code set or an instruction set are stored in the memory, and the at least one instruction , the at least one program, the code set or the instruction set is loaded and executed by the processor, so as to implement the WLAN sensing method as described in the above aspect.
  • a network device includes: a processor and a memory, at least one instruction, at least one program, a code set or an instruction set are stored in the memory, and the at least one instruction , the at least one program, the code set or the instruction set is loaded and executed by the processor, so as to implement the WLAN sensing method as described in the above aspect.
  • a computer-readable storage medium wherein executable instructions are stored in the readable storage medium, and the executable instructions are loaded and executed by a processor to implement the WLAN described in the above aspect method of perception.
  • a chip is provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip is run on a computer device, it is used to realize the WLAN awareness described in the above aspect method.
  • a computer program product When the computer program product runs on a processor of a computer device, it causes the computer device to execute the WLAN sensing method described in the above aspects.
  • the communication relationship between the site management entity and the upper-layer application is clearly defined, that is, the communication process and/or that the site management entity and the upper-layer application perform WLAN awareness. management process.
  • FIG. 1 is a schematic diagram of a WLAN system provided by an exemplary embodiment of the present application
  • FIG. 2 is a schematic diagram of a WLAN sensing process provided by an exemplary embodiment of the present application
  • FIG. 3 is a schematic diagram of a WLAN sensing process provided by an exemplary embodiment of the present application.
  • FIG. 4 is a flowchart of a WLAN sensing method provided in an exemplary embodiment of the present application.
  • FIG. 5 is a flowchart of a method for establishing perception measurement settings provided by an exemplary embodiment of the present application
  • FIG. 6 is a flowchart of a method for establishing perception measurement settings provided by an exemplary embodiment of the present application.
  • FIG. 7 is a flowchart of a method for ending perception measurement setting provided by an exemplary embodiment of the present application.
  • Fig. 8 is a flowchart of a method for ending perception measurement setting provided by an exemplary embodiment of the present application.
  • Fig. 9 is a flowchart of a method for ending perception measurement setting provided by an exemplary embodiment of the present application.
  • FIG. 10 is a flowchart of a method for suspending perception measurement settings provided by an exemplary embodiment of the present application.
  • FIG. 11 is a flow chart of a method for suspending perception measurement settings provided by an exemplary embodiment of the present application.
  • FIG. 12 is a flow chart of a method for suspending perception measurement settings provided by an exemplary embodiment of the present application.
  • FIG. 13 is a flow chart of a method for restoring perception measurement settings provided by an exemplary embodiment of the present application.
  • FIG. 14 is a flow chart of a method for restoring perception measurement settings provided by an exemplary embodiment of the present application.
  • FIG. 15 is a flow chart of a method for restoring perception measurement settings provided by an exemplary embodiment of the present application.
  • FIG. 16 is a flowchart of a method for reporting perception measurement results provided by an exemplary embodiment of the present application.
  • FIG. 17 is a flowchart of a method for reporting perception measurement results provided by an exemplary embodiment of the present application.
  • Fig. 18 is a flowchart of an exception handling method provided by an exemplary embodiment of the present application.
  • Fig. 19 is a flowchart of an exception handling method provided by an exemplary embodiment of the present application.
  • Fig. 20 is a flowchart of an exception handling method provided by an exemplary embodiment of the present application.
  • FIG. 21 is a structural block diagram of a WLAN sensing device provided in an exemplary embodiment of the present application.
  • Fig. 22 is a schematic structural diagram of a site provided by an exemplary embodiment of the present application.
  • Fig. 1 shows a block diagram of a WLAN system provided by an exemplary embodiment of the present application.
  • the WLAN system includes: an access point (AccessPoint, AP) and a station (Station, STA).
  • AccessPoint AccessPoint
  • STA station
  • an AP can be called an AP STA, that is, in a sense, an AP is also a kind of STA.
  • STA is also called non-AP STA (non-AP STA).
  • STAs may include AP STAs and non-AP STAs.
  • the communication in the communication system can be the communication between the AP and the non-AP STA, or the communication between the non-AP STA and the non-AP STA, or the communication between the STA and the peer STA, where the peer STA can refer to the communication with the STA.
  • Devices communicating with each other for example, a peer STA may be an AP or a non-AP STA.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the AP device may be a terminal device (such as a mobile phone) or a network device (such as a router) with a wireless fidelity (Wireless-Fidelity, WiFi) chip.
  • the role of the STA in the communication system is not absolute.
  • the mobile phone when the mobile phone is connected to the router, the mobile phone is a non-AP STA, and when the mobile phone is used as a hotspot for other mobile phones, the mobile phone acts as an AP. .
  • AP and non-AP STA can be devices applied in the Internet of Vehicles, IoT nodes and sensors in the Internet of Things (IoT), smart cameras in smart homes, smart remote controls, smart water meters, etc., and Sensors in smart cities, etc.
  • IoT Internet of Things
  • the non-AP STA can support the 802.11be standard.
  • the non-AP STA can also support 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a and other current and future 802.11 family Wireless Local Area Networks (WLAN) standards.
  • WLAN Wireless Local Area Networks
  • the AP may be a device supporting the 802.11be standard.
  • the AP may also be a device supporting various current and future WLAN standards of the 802.11 family, such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the STA may be a mobile phone (Mobile Phone), tablet computer (Pad), computer, virtual reality (Virtual Reality, VR) device, augmented reality (Augmented Reality, AR) device, Wireless devices in industrial control, set-top boxes, wireless devices in self driving, vehicle communication devices, wireless devices in remote medical, wireless devices in smart grid , wireless devices in transportation safety, wireless devices in smart city or wireless devices in smart home, wireless communication chips/ASIC/SOC/etc.
  • the frequency bands supported by the WLAN technology may include but not limited to: low frequency bands (2.4GHz, 5GHz, 6GHz) and high frequency bands (60GHz).
  • One or more links exist between a station and an access point.
  • the station and the access point support multi-band communication, for example, simultaneously communicate on 2.4GHz, 5GHz, 6GHz and 60GHz frequency bands, or simultaneously communicate on different channels of the same frequency band (or different frequency bands), to improve Communication throughput and/or reliability between devices.
  • a device is usually called a multi-band device, or a multi-link device (Multi-Link Device, MLD), and is sometimes called a multi-link entity or a multi-band entity.
  • MLD multi-link device
  • a multi-link device can be an access point device or a station device. If the multi-link device is an access point device, the multi-link device contains one or more APs; if the multi-link device is a station device, the multi-link device contains one or more non-AP STAs.
  • a multi-link device including one or more APs is called an AP, and a multi-link device including one or more non-AP STAs is called a Non-AP.
  • a Non-AP may be called a STA.
  • the AP can include multiple APs
  • the Non-AP can include multiple STAs.
  • Multiple links can be formed between the AP in the AP and the STAs in the Non-AP, and the AP in the AP and the STA in the Non-AP Corresponding STAs can perform data communication through corresponding links.
  • An AP is a device deployed in a WLAN to provide wireless communication functions for STAs.
  • Station 0 may include: user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication device, user agent or user device.
  • the station 10 can also be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a Wireless Local Loop (Wireless Local Loop, WLL) station, a Personal Digital Assistant (PDA), Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, and wearable devices are not limited in this embodiment of the present application.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • both the station and the access point support the IEEE 802.11 standard.
  • WLAN terminals participating in sensing include: a sensing session initiation device and a sensing session responding device.
  • the WLAN terminal participating in sensing includes: a sensing signal sending device and a sensing signal receiving device.
  • the sensory session initiating device may be referred to as a sensory initiating device for short; the sensory session responding device may be referred to as a sensory responding device for short.
  • (1) to (6) of FIG. 2 show six typical scenarios of WLAN sensing based on sensing signals provided by an exemplary embodiment of the present application.
  • (1) to (4) of FIG. 3 show four typical scenarios of WLAN sensing based on sensing signals and reflection signals provided by an exemplary embodiment of the present application.
  • the WLAN sensing session includes one or more of the following phases: a session establishment phase; a sensing measurement phase; a sensing reporting phase; and a session termination phase.
  • the same WLAN terminal may have one or more roles in a perception session.
  • a perception session initiation device can be only a perception session initiation device, or a perception signal sending device, a perception signal receiving device, or both.
  • a sensing signal sending device and a sensing signal receiving device can be only a perception session initiation device, or a perception signal sending device, a perception signal receiving device, or both.
  • Session establishment phase establish a sensing session, determine the sensing session participating devices and their roles (including sensing signal sending devices and sensing signal receiving devices), determine sensing session-related operating parameters, and optionally exchange the parameters between terminals.
  • Perception measurement stage implement perception measurement, and the perception signal sending device sends the perception signal to the perception signal receiver.
  • Sensing reporting stage Reporting measurement results, depending on the application scenario, the sensing signal receiving device may need to report the measurement results to the sensing session initiating device.
  • Session termination phase the terminal stops measuring and terminates the sensing session.
  • Fig. 4 shows a flowchart of a WLAN sensing method provided by an exemplary embodiment of the present application.
  • the method can be applied in STA, and the STA has a station management entity.
  • the method includes:
  • Step 102 the site management entity performs WLAN awareness with upper-layer applications through at least one interface
  • station management entity SME
  • media access control Medium Access Control
  • the upper-layer application may be an application installed by the user or installed by default on the device, such as an application that needs to recognize gestures of the human body.
  • the upper-layer application is a shopping program, a social networking program, a camera program, a phone program, a video player program, etc., and this embodiment does not limit the specific type of the upper-layer application.
  • the site management entity and the MAC sublayer management entity are logical units defined by the IEEE802.11 protocol, and their functions are generally implemented by drivers of WLAN chips and/or modules.
  • the site management entity is used to cooperate with upper-layer applications to implement WLAN application functions, including various operations or functions of WLAN awareness.
  • the MAC sublayer management entity is used to manage communication with other WLAN devices.
  • the interface is an interface used for WLAN awareness.
  • the at least one interface is an API interface for WLAN awareness.
  • This interface is an interface for WLAN-aware communication or management between the site management entity and upper-layer applications. Schematically, the interface includes at least one of the following interfaces:
  • the perception measurement setting may be referred to as measurement setting for short
  • the perception measurement result may be referred to as measurement result for short.
  • any two of the above six interfaces can be combined, for example, the first interface and the second interface can be combined into one interface for establishing and/or ending the perception measurement setting, and the third interface
  • the fourth interface and the fourth interface are combined into one interface for suspending and/or resuming the perception measurement setting
  • the fifth interface and the sixth interface are combined into one interface for reporting information, which is not limited in this embodiment of the present application.
  • the above-mentioned 6 interfaces can also be reduced or increased, for example, the third interface and the fourth interface are canceled; another example, the seventh interface for updating the perception measurement settings is added, which is not limited .
  • the first interface to the seventh interface above are only simplified descriptions, and there is no meaning of ranking.
  • the method provided by this embodiment clearly defines the communication relationship between the site management entity and the upper-layer application through the site management entity performing WLAN awareness through at least one interface with the upper-layer application, that is, clearly defines the site management entity Execute WLAN-aware communication procedures and/or management procedures with upper-layer applications.
  • Fig. 5 shows a flowchart of a method for establishing measurement settings provided by an exemplary embodiment of the present application.
  • the method is exemplified by being executed by a station serving as a perception initiating device, and the method includes:
  • Step 202 The site management entity receives an instruction to establish perception measurement settings from an upper-layer application through the first interface;
  • the upper layer transfers the establishment instruction (or establishment request) of the perception measurement setting to the site management entity by calling the first interface.
  • the establishment instruction is used to instruct the site management entity to establish perception measurement settings with one or more perception response devices.
  • the establishment instruction or establishment request includes at least one of the following parameters:
  • the measurement setup identifier
  • anti-DOS attack For example: anti-DOS attack, anti-replay attack, etc.
  • 2.4GHz For example, 2.4GHz, 5GHz, 45GHz and so on.
  • the perception role setting of the device participating in the perception measurement is the perception role setting of the device participating in the perception measurement
  • the sensing role includes: at least one of a sensing session initiating device, a sensing session responding device, a sensing signal sending device, and a sensing signal receiving device.
  • the type is Channel-Slate Information (CSI).
  • CSI Channel-Slate Information
  • the perceptual measurement may be referred to as measurement for short, and the perceptual measurement setting may be referred to as measurement setting for short. That is, the first interface supports the transmission of the above parameters.
  • Step 204 the site management entity establishes perception measurement settings with at least one perception response device.
  • the upper-layer application of the perception initiating device calls its internal SME interface for establishing measurement settings implemented by the driver, and instructs to establish measurement settings with one or more sensing response devices.
  • the SME returns execution success or failure to the upper layer application (option 1).
  • the SME returns immediately after the upper-layer application invokes the SME interface, and reports execution success or failure to the upper-layer application after the SME is executed (option 2).
  • the SME is executed, it returns execution success or failure to the upper-layer application, and reports the execution success or failure to the upper-layer application (option 3).
  • an exemplary establishment process of perception measurement settings is as follows:
  • the upper layer application invokes the first interface to instruct or request the establishment of measurement settings to the site management entity;
  • the site management entity transmits the establishment of the measurement setting to the upper-layer application through the first interface and returns it no matter whether the establishment of the measurement setting is completed.
  • the site management entity transmits the measurement setting establishment request primitive to the MAC sublayer management entity
  • the MAC sublayer management entity sends a measurement setting establishment request to the sensing response device through the WLAN signal;
  • the first SME instructs the first MLME to generate measurement settings by invoking the measurement setting establishment request primitive provided by the first MLME building a request frame; and sending the request to one or more sensory-response devices via the physical layer interface.
  • the above-mentioned establishing measurement setting, measurement setting establishment request primitive and measurement setting establishment request carry the above-mentioned parameters, which will not be repeated here.
  • the MAC sublayer management entity After receiving the measurement setting establishment request sent by the sensing initiating device, the MAC sublayer management entity sends a measurement setting establishment notification primitive to the site management entity;
  • the site management entity establishes the measurement settings based on the parameters in the measurement settings establishment notification primitive.
  • the site management entity sends a measurement setting establishment response primitive to the MAC sublayer management entity
  • the MAC sublayer management entity sends a measurement setting establishment response to the sensing initiating device.
  • the MAC sublayer management entity sends a measurement setting establishment confirmation primitive to the site management entity;
  • the site management entity sends the establishment measurement setting return to the upper-layer application
  • the site management entity transmits the established measurement setting to the upper layer application through the first interface and returns it.
  • the build measurement is set to return to indicate success or failure of the execution.
  • the establishment measurement setting return includes at least one of the following parameters: success or failure, measurement setting identifier, and failure reason code.
  • the site management entity reports the execution status to the application at the upper layer.
  • the sensing response device reports the measurement setting to the second MLME through the physical layer interface after receiving the measurement setting establishment request frame Set up a request frame, the second MLME reports the measurement setting information to the second SME through the measurement setting establishment notification primitive, and the second SME processes the measurement setting information and instructs the second MLME to generate The measurement setting establishment response frame, and instructing the second MLME to send the measurement setting establishment response frame through the physical layer interface; after receiving the measurement setting establishment response frame, the sensing initiating device reports the measurement setting establishment response frame to the first MLME through the physical layer interface , the first MLME reports measurement setting establishment response information to the first SME through the measurement setting establishment confirmation primitive.
  • the site management entity transmits the execution status of the establishment operation to the upper layer application through the sixth interface.
  • the execution status is used to indicate execution success or execution failure.
  • the execution status includes at least one of the following parameters: type of operation (build measurement setup), status code of the operation (success or failure), measurement setup identifier, reason code for failure, error code for exception, and/or Related Information.
  • the method provided by this embodiment clearly defines the communication relationship between the site management entity and the upper-layer application through the site management entity performing WLAN awareness through at least one interface with the upper-layer application, that is, clearly defines the site management entity Execute WLAN-aware communication procedures and/or management procedures with upper-layer applications.
  • End perception measurement setup (second interface and/or sixth interface):
  • Fig. 7 shows a flowchart of a method for ending measurement setting provided by an exemplary embodiment of the present application.
  • the method is exemplified by being executed by a station serving as a perception initiating device, and the method includes:
  • Step 302 The site management entity receives an end indication of the perception measurement setting from the upper layer application through the second interface;
  • the upper layer uses the second interface to call, and transmits the end indication (or end request) of the perception measurement setting to the site management entity.
  • the end instruction is used to instruct the site management entity and one or more sensory response devices to end the sensory measurement setting.
  • the upper-layer application is switched to run in the background, so the perception measurement is ended.
  • the end indication (or end request) carries: a measurement setting identifier. That is, the second interface supports the transmission of the following parameter: measurement setup identifier.
  • Step 304 the site management entity and at least one perception response device end the perception measurement setting.
  • an exemplary end flow of perception measurement setup is as follows:
  • the upper layer application invokes the second interface, and instructs the site management entity to end the measurement setting;
  • the site management entity transmits the end of the measurement setting to the upper layer application through the second interface no matter whether the measurement setting is completed or not.
  • the site management entity transmits the measurement setting end primitive to the MAC sublayer management entity
  • the MAC sublayer management entity sends the end of measurement setting (indication) to the sensing response device through the WLAN signal;
  • the above-mentioned end measurement setting, measurement setting end primitive, and measurement setting end (indication) carry a measurement setting identifier, which will not be repeated here.
  • the MAC sublayer management entity After the MAC sublayer management entity receives the completion of the measurement setting sent by the sensing initiating device, it sends a measurement setting completion notification primitive to the site management entity.
  • the site management entity ends the measurement setup based on the parameters in the measurement setup end notification primitive.
  • the first SME of the sensing initiating device instructs the first MLME to generate a measurement setting end frame by invoking the measurement setting end primitive provided by the first MLME; and sends the measurement setting end frame to one or more sensing devices through a physical layer interface.
  • Response device After receiving the measurement setting end frame, the sensing response device reports the measurement setting end frame to the second MLME through the physical layer interface, and the second MLME reports the measurement setting end information to the second SME through the measurement setting end notification primitive. 2.
  • the SME processes the measurement setting end information and cleans up resources related to the measurement setting (such as storage resources).
  • the SME implemented by the driver program inside the sensing response device will no longer participate in sensing measurement due to internal state changes (for example, its own power is low, in order to save power; it has more buffered uplink data to send, so it will no longer participate in sensing measurement; Will start peer-to-peer communication (P2P, no longer participate in sensing measurement) and request to end one or more sensing measurement settings, the sensing initiating device will end the one or more sensing measurement settings after receiving the end request, and the SME of the sensing initiating device After the execution is completed, the one or more perception measurement settings of the perception response device have been completed to the upper layer application.
  • P2P peer-to-peer communication
  • an exemplary end flow of perception measurement setup is as follows:
  • the site management entity sends a measurement setting end request primitive to the MAC sublayer management entity;
  • the MAC sublayer management entity sends a measurement setting end request to the sensing initiating device.
  • the measurement setting end request carries: a measurement awareness identifier. Optionally, it also carries the device ID of the sensing response device.
  • the MAC sublayer management entity sends a measurement setting end request notification primitive to the site management entity;
  • the site management entity ends the measurement setup based on the measurement setup end request notification primitive.
  • the site management entity sends a measurement setting end primitive to the MAC sublayer management entity
  • the site management entity reports the completion of the measurement setting to the upper layer application through the sixth interface
  • the MAC sublayer management entity sends the measurement setting end to the sensing response device.
  • the MAC sublayer management entity sends a measurement setting end notification primitive to the station management entity.
  • the second SME of the sensing response device instructs the second MLME to generate a measurement setting end request frame by invoking the measurement setting end request primitive provided by the second MLME and send the measurement setting end request frame to the sensing initiator through the physical layer interface equipment.
  • the sensing initiating device After receiving the measurement setting end request frame, the sensing initiating device reports the measurement setting end request frame to the first MLME through the physical layer interface, and the first MLME reports the measurement setting end request message to the first SME through the measurement setting end request notification primitive , the first SME processes the information and reports to the upper layer application that the one or more measurement settings of the sensing response device have been completed, and at the same time, the first SME also instructs the first MLME to generate a measurement by calling the measurement setting end primitive provided by the first MLME Set an end frame and send the measurement set end frame through the physical layer interface.
  • the sensing response device After receiving the measurement setting end frame, the sensing response device reports the measurement setting end frame to the second MLME through the physical layer interface, and the second MLME reports the measurement setting end information to the second SME through the measurement setting end confirmation primitive.
  • the method provided by this embodiment clearly defines the communication relationship between the site management entity and the upper-layer application through the site management entity performing WLAN awareness through at least one interface with the upper-layer application, that is, clearly defines the site management entity Execute WLAN-aware communication procedures and/or management procedures with upper-layer applications.
  • Fig. 10 shows a flowchart of a method for suspending measurement settings provided by an exemplary embodiment of the present application.
  • the method is exemplified by being executed by a station serving as a perception initiating device, and the method includes:
  • Step 402 the site management entity receives the suspension instruction of the perception measurement setting by the upper layer application through the third interface
  • the upper layer uses the third interface to transfer the suspension instruction (or suspension request) for the perception measurement setting to the site management entity.
  • the suspension indication is used to instruct the site management entity and one or more perception response devices to suspend the perception measurement setting.
  • the upper layer application is switched to run in the background, so the perception measurement is suspended.
  • the suspension indication (or suspension request) carries: a measurement setting identifier. That is, the third interface supports the transmission of the following parameter: measurement setup identifier.
  • Step 404 the site management entity and at least one sensory response device suspend the sensory measurement setting.
  • the upper-layer application (such as a gesture recognition application) of the sensing initiating device (for example, suspending the sensing measurement because the upper-layer application switches to the background) calls its internal interface of the SME pause measurement setting implemented by the driver, indicating that one or more The sensory response device suspends the measurement settings for gesture recognition.
  • the SME returns execution success or failure to the upper-layer application (option 1).
  • the SME returns immediately after the upper-layer application invokes the SME interface, and reports execution success or failure to the upper-layer application after the SME is executed (option 2).
  • the SME is executed, it returns execution success or failure to the upper-layer application, and reports the execution success or failure to the upper-layer application (option 3).
  • an exemplary pause flow for perception measurement setup is as follows:
  • the upper-layer application calls the third interface, instructs or requests the site management entity to suspend the measurement setting;
  • the site management entity transmits the pause measurement setting return to the upper-layer application through the third interface no matter whether the pause of the measurement setting is executed or not.
  • the site management entity transmits the measurement setting suspension request primitive to the MAC sublayer management entity
  • the MAC sublayer management entity sends a measurement setting suspension request to the sensing response device through the WLAN signal;
  • the above pause measurement setting, measurement setting pause request primitive, and measurement setting pause request carry: a measurement setting identifier; or, a measurement setting identifier and a pause duration.
  • the first SME of the sensing initiating device instructs the first MLME to generate a measurement setting pause request frame by invoking the measurement setting pause request primitive provided by the first MLME; and sends the measurement setting pause request frame to a or multiple sense-response devices.
  • the above-mentioned establishing measurement setting, measurement setting establishment request primitive and measurement setting establishment request carry the above-mentioned parameters, which will not be repeated here.
  • the MAC sublayer management entity After receiving the measurement setting suspension request sent by the sensing initiating device, the MAC sublayer management entity sends a measurement setting suspension notification primitive to the site management entity;
  • the Site Management Entity suspends measurement settings based on parameters within the measurement settings suspension notification primitive.
  • the site management entity sends a measurement setting pause response primitive to the MAC sublayer management entity
  • the MAC sublayer management entity sends a measurement setting suspension response to the sensing initiating device.
  • the MAC sublayer management entity sends a measurement setting pause confirmation primitive to the site management entity;
  • the site management entity sends a pause measurement setting return to the upper-layer application
  • the site management entity transmits the suspended measurement setting to the upper layer application through the third interface and returns.
  • the pause measurement setting is returned to indicate execution success or execution failure.
  • the pause measurement setting return includes at least one of the following parameters: success or failure, measurement setting identifier, and failure reason code.
  • the site management entity reports the execution status to the application at the upper layer.
  • the sensing response device after receiving the measurement setting pause request frame, reports the measurement setting pause request frame to the second MLME through the physical layer interface, and the second MLME reports the measurement setting information to the second SME through the measurement setting pause notification primitive , the second SME processes the measurement setting information and instructs the second MLME to generate a measurement setting suspension response frame by invoking the measurement setting suspension response primitive provided by the second MLME, and instructs the second MLME to send the measurement setting suspension response frame through the physical layer interface
  • the sensing initiating device reports the measurement setting pause response frame to the first MLME through the physical layer interface, and the first MLME reports the measurement setting pause response information to the first SME through the measurement setting pause confirmation primitive.
  • the site management entity transmits the execution status of the suspension operation to the upper layer application through the sixth interface.
  • the execution status is used to indicate execution success or execution failure.
  • the execution state includes at least one of the following parameters: type of operation (suspended measurement setting), status code of the operation (success or failure), measurement setting identifier, reason code for failure, error code for exception, and/or Related Information.
  • the SME implemented by the driver program inside the sensing response device will no longer participate in sensing measurement due to internal state changes (for example, its own power is low, in order to save power; it has more buffered uplink data to send, so it will no longer participate in sensing measurement; It will start peer-to-peer communication (P2P, no longer participate in perception measurement) and request to suspend one or more perception measurement settings, and the perception initiating device will suspend the one or more perception measurement settings after suspending the suspension request. And after the SME of the sensing initiating device finishes executing, it reports to the upper layer application that the one or more sensing measurement settings of the sensing responding device have been suspended.
  • P2P peer-to-peer communication
  • an exemplary pause flow for perception measurement setup is as follows:
  • the site management entity sends a measurement setting suspension request primitive to the MAC sublayer management entity;
  • the MAC sublayer management entity sends a measurement setting suspension request to the sensing initiating device.
  • the measurement setting pause request carries: a measurement setting identifier; or, a measurement setting identifier and a pause duration. Optionally, it also carries the device ID of the sensing response device.
  • the MAC sublayer management entity sends a measurement setting suspension request notification primitive to the site management entity;
  • the Site Management Entity suspends the measurement setup based on the measurement setup suspension request notification primitive.
  • the site management entity sends a measurement setting pause response primitive to the MAC sublayer management entity
  • the site management entity reports the measurement setting suspension to the upper layer application through the sixth interface
  • the MAC sublayer management entity sends a measurement setting suspension response to the sensing response device.
  • the MAC sublayer management entity sends a measurement setting pause confirmation primitive to the site management entity.
  • the second SME of the sensing response device instructs the second MLME to generate a measurement setting pause request frame and send the measurement setting pause request frame to the sensing initiator through the physical layer interface by invoking the measurement setting pause request primitive provided by the second MLME. equipment.
  • the sensing initiating device After receiving the measurement setting pause request frame, the sensing initiating device reports the measurement setting pause request frame to the first MLME through the physical layer interface, and the first MLME reports the measurement setting pause request information to the first SME through the measurement setting pause request notification primitive , the first SME processes the information and reports to the upper layer application that the one or more measurement settings of the sensing response device have been suspended, and at the same time, the first SME also instructs the first MLME to generate a measurement by invoking the measurement setting suspension primitive provided by the first MLME A set-pause frame is sent and the measurement-set-pause frame is sent over the physical layer interface. After receiving the measurement setting pause frame, the sensing response device reports the measurement setting pause frame to the second MLME through the physical layer interface, and the second MLME reports the measurement setting pause information to the second SME through the measurement setting pause confirmation primitive.
  • Fig. 13 shows a flowchart of a method for restoring measurement settings provided by an exemplary embodiment of the present application.
  • the method is exemplified by being executed by a station serving as a perception initiating device, and the method includes:
  • Step 502 The site management entity receives an upper-layer application recovery instruction for perception measurement settings through the fourth interface;
  • the upper layer uses the fourth interface to transfer the recovery indication (or recovery request) for the perception measurement setting to the site management entity.
  • the restoration indication is used to instruct the site management entity and one or more sensing response devices to restore sensing measurement settings.
  • the upper-layer application switches to run in the background, so the perception measurement is resumed.
  • the recovery indication (or recovery request) carries: a measurement setting identifier. That is, the fourth interface supports the transmission of the following parameters: measurement setup identifier.
  • Step 504 the site management entity restores the perception measurement setting with at least one perception response device.
  • the upper-layer application (such as a gesture recognition application) of the perception initiating device (for example, because the upper-layer application switches back to the foreground from the background and restores the perception measurement) calls its internal SME recovery measurement setting interface implemented by the driver, indicating that it is followed by one or Multiple sensory response devices restore the measurement settings for gesture recognition.
  • the SME returns execution success or failure to the upper application (option 1).
  • the SME returns immediately after the upper-layer application invokes the SME interface, and reports execution success or failure to the upper-layer application after the SME is executed (option 2).
  • the SME after the SME is executed, it returns execution success or failure to the upper-layer application, and reports the execution success or failure to the upper-layer application (option 3).
  • an exemplary recovery process for perception measurement setup is as follows:
  • the upper layer application invokes the fourth interface to instruct or request the site management entity to restore the measurement settings
  • the site management entity transmits the restoration of the measurement settings to the upper-layer application through the fourth interface, no matter whether the restoration of the measurement settings is completed or not.
  • the site management entity transmits the measurement setting restoration request primitive to the MAC sublayer management entity
  • the MAC sublayer management entity sends a measurement setting recovery request to the sensing response device through the WLAN signal;
  • the first SME of the sensing initiating device instructs the first MLME to generate a measurement setting recovery request frame by invoking the measurement setting recovery request primitive provided by the first MLME; and sends the measurement setting recovery request frame to a or multiple sense-response devices.
  • the above-mentioned establishing measurement setting, measurement setting establishment request primitive and measurement setting establishment request carry the above-mentioned parameters, which will not be repeated here.
  • the above restore measurement setting, measurement setting restoration request primitive and measurement setting restoration request carry: measurement setting identifier.
  • the MAC sublayer management entity After receiving the measurement setting restoration request sent by the sensing initiating device, the MAC sublayer management entity sends a measurement setting restoration notification primitive to the site management entity;
  • the site management entity restores the measurement settings based on the parameters in the measurement settings recovery notification primitive.
  • the site management entity sends a measurement setting recovery response primitive to the MAC sublayer management entity
  • the MAC sublayer management entity sends a measurement setting recovery response to the sensing initiating device.
  • the MAC sublayer management entity sends a measurement setting recovery confirmation primitive to the site management entity;
  • the site management entity sends the recovery measurement setting back to the upper application
  • the site management entity transmits the restored measurement setting to the upper layer application through the fourth interface and returns it.
  • the recovery measurement setting is returned to indicate success or failure of the execution.
  • the restore measurement setup return includes at least one of the following parameters: success or failure, measurement setup identifier, and failure reason code.
  • the site management entity reports the execution status to the application at the upper layer.
  • the site management entity transmits the execution status of this restoration operation to the upper layer application through the sixth interface.
  • the execution status is used to indicate execution success or execution failure.
  • the execution status includes at least one of the following parameters: type of operation (restore measurement settings), status code of the operation (success or failure), measurement setting identifier, reason code for failure, error code for exception, and/or Related Information.
  • the sensing response device after receiving the measurement setting recovery request frame, reports the measurement setting recovery request frame to the second MLME through the physical layer interface, and the second MLME reports the measurement setting information to the second SME through the measurement setting recovery notification primitive , the second SME processes the measurement setting information and instructs the second MLME to generate a measurement setting recovery response frame by invoking the measurement setting recovery response primitive provided by the second MLME, and instructs the second MLME to send the measurement setting recovery response frame through the physical layer interface
  • the sensing initiating device reports the measurement setting recovery response frame to the first MLME through the physical layer interface, and the first MLME reports the measurement setting recovery response information to the first SME through the measurement setting recovery confirmation primitive.
  • the SME implemented by the driver program inside the sensory response device requests to restore a or Multiple perception measurement settings
  • the perception initiating device restores the one or more perception measurement settings after returning to the recovery request, and after the SME of the perception initiating device is executed, it reports to the upper layer application that the one or more of the sensing response device has been restored Perceptual measurement settings.
  • an exemplary recovery process for perception measurement setup is as follows:
  • the site management entity sends a measurement setting recovery request primitive to the MAC sublayer management entity;
  • the MAC sublayer management entity sends a measurement setting recovery request to the sensing initiating device.
  • the measurement setting recovery request carries: a measurement setting identifier. Optionally, it also carries the device ID of the sensing response device.
  • the MAC sublayer management entity sends a measurement setting recovery request notification primitive to the site management entity;
  • the Site Management Entity restores the measurement settings based on the measurement settings recovery request notification primitive.
  • the site management entity sends a measurement setting recovery response primitive to the MAC sublayer management entity
  • the site management entity reports measurement setting restoration to the upper layer application through the sixth interface
  • the MAC sublayer management entity sends a measurement setting recovery response to the sensing response device.
  • the MAC sublayer management entity sends a measurement setting recovery confirmation notification primitive to the site management entity.
  • the second SME of the sensing response device instructs the second MLME to generate a measurement setting restoration request frame by invoking the measurement setting restoration request primitive provided by the second MLME and send the measurement setting restoration request frame to the sensing initiator through the physical layer interface. equipment.
  • the sensing initiating device After receiving the measurement setting recovery request frame, the sensing initiating device reports the measurement setting recovery request frame to the first MLME through the physical layer interface, and the first MLME reports the measurement setting recovery request information to the first SME through the measurement setting recovery request notification primitive , the first SME processes the information and reports to the upper layer application that the one or more measurement settings of the sensing response device have been restored, and at the same time, the first SME also instructs the first MLME to generate a measurement by invoking the measurement setting recovery primitive provided by the first MLME Set recovery frame and send the measurement set recovery frame through the physical layer interface.
  • the sensing response device After receiving the measurement setting recovery frame, the sensing response device reports the measurement setting recovery frame to the second MLME through the physical layer interface, and the second MLME reports the measurement setting recovery information to the second SME through the measurement setting recovery confirmation primitive.
  • Fig. 16 shows a flowchart of a method for reporting a perception measurement result provided by an exemplary embodiment of the present application.
  • the method is exemplified by being executed by a station serving as a perception initiating device, and the method includes:
  • Step 602 The site management entity receives the measurement result sent by at least one sensing response device
  • the site management entity reports the sensing measurement result to the upper layer application through the fifth interface.
  • the perception measurement result includes: a measurement setting identifier and a measurement result. That is, the fifth interface supports the transmission of the following parameters: measurement setup identifier and measurement result.
  • Step 604 The site management entity reports the perception measurement result to the upper layer application through the fifth interface.
  • the sensing response device (in this example, the sensing signal receiving device) sends a measurement result reporting frame to the sensing initiating device, and the sensing initiating device reports the measurement result (such as CSI data) to the upper-layer application through the interface for reporting the measurement result after receiving the frame, and the upper-layer application Therefore, corresponding processing can be performed, such as analyzing the measurement result data, so as to obtain a perception result (such as whether the presence of a person in the target area is perceived).
  • a measurement result reporting frame to the sensing initiating device
  • the sensing initiating device reports the measurement result (such as CSI data) to the upper-layer application through the interface for reporting the measurement result after receiving the frame, and the upper-layer application Therefore, corresponding processing can be performed, such as analyzing the measurement result data, so as to obtain a perception result (such as whether the presence of a person in the target area is perceived).
  • an exemplary reporting process of the perception measurement result is as follows:
  • the MAC sublayer management entity of the sensing responding device sends the measurement result to the sensing initiating device;
  • the MAC sublayer management entity of the sensing initiating device sends the measurement result to the site management entity;
  • the site management entity sends the measurement result to the upper layer application through the fifth interface.
  • the site management entity may also send the measurement result to the upper layer application through the sixth interface.
  • the second MLME of the sensing response device generates a measurement result report frame and sends the measurement result report frame to the sensing initiating device through a physical layer interface.
  • the sensing initiating device reports the measurement result reporting frame to its own first MLME through the physical layer interface
  • the first MLME processes the measurement result reporting frame and reports the measurement result information through the measurement result reporting notification primitive ( For example, CSI data) to the first SME, and the first SME reports the measurement result information to the upper layer application through the interface for reporting the measurement result.
  • the measurement result reporting notification primitive For example, CSI data
  • the validity and accuracy of the perception results are affected by the following parameters, including but not limited to: the number of stations participating in the measurement, and/or the bandwidth used for the measurement, and/or the number of spatial streams used for the measurement (Number of Spatial Streams , NSS), and/or the number of receiving airspace streams used for measurement, and changes in these factors may cause abnormalities in perception, so these abnormalities or error situations need to be dealt with accordingly, as detailed below.
  • NSS Number of Spatial Streams
  • Step 701 the sensing initiating device and the sensing responding device start sensing measurement
  • Step 702 the perception initiating device (specifically such as its site management entity) detects an abnormal situation
  • Step 703 the site management entity reports abnormal information (or abnormal state or abnormal signal) to the upper application;
  • Step 704 the upper layer application determines whether the preset condition is met
  • step 1805 If yes, go to step 1805; if not, go to step 1806.
  • Step 705 suspend/end/update the perception measurement configuration
  • Fig. 19 shows a flowchart of an exception handling method provided by an exemplary embodiment of the present application. This embodiment is described by taking the method executed by the site management entity and the upper layer application as an example. The method includes:
  • Step 802 The sensing initiating device receives the state change information sent by the first sensing responding device
  • the first sensing response device sends state change information to the site management device when its own operation mode changes. That is, the state change information is sent by the first sensory response device when its own operation mode changes.
  • the first sensing response device is a device that reports information to the sensing initiating device during the sensing measurement process.
  • the first sensory-responsive device is a device that undergoes a state change during the sensory measurement.
  • the state change information carries at least one of the following information:
  • the maximum bandwidth that the first sensory response device can support after the change is the maximum bandwidth that the first sensory response device can support after the change
  • the maximum number of sending airspace streams that the first sensory response device can support after the change is the maximum number of sending airspace streams that the first sensory response device can support after the change
  • the operation mode notification is an operation mode notification frame, or other frames carrying operation mode notification elements;
  • the operation mode indication carries an operation mode control subfield and/or an EHT operation mode control subfield.
  • the second MLME of the sensing response device generates an operation mode notification frame and/or an operation mode indication frame and sends the frame to the sensing initiating device through a physical layer interface.
  • the sensing initiating device reports the frame to the first MLME through the physical layer interface, and the first MLME processes the frame and reports the measurement setting status information through the measurement setting status notification primitive ( One or more measurement settings and related information affected by the operation mode change) to the first SME, and the first SME reports the abnormal state to the upper-layer application through the interface for reporting the execution state.
  • the measurement setting status notification primitive One or more measurement settings and related information affected by the operation mode change
  • Step 804 The site management entity of the perception initiating device reports the abnormal state to the upper layer application through the sixth interface.
  • the abnormal state includes at least one of the following:
  • the maximum bandwidth that the first sensory response device can support after the change is the maximum bandwidth that the first sensory response device can support after the change
  • the maximum number of sending airspace streams that the first sensory response device can support after the change is the maximum number of sending airspace streams that the first sensory response device can support after the change
  • the site management entity reports the abnormal status to the upper layer application through the sixth interface.
  • the first reporting condition includes any of the following:
  • Step 806 The site management entity receives the processing instruction of the upper layer application on the abnormal state through at least one interface.
  • the processing instruction is generated by the upper-layer application itself; or, the processing instruction is generated by the upper-layer application based on the user's human-computer interaction operation.
  • the processing instructions include at least one of the following:
  • a sensory measurement setup is established with a second sensory-responsive device, the second sensory-responsive device being a device for replacing the first sensory-responsive device.
  • the site management entity handles the abnormal state by itself when the reported information does not meet the first reporting condition.
  • self-handling of the abnormal state includes at least one of the following:
  • a sensory measurement setup is established with a second sensory-responsive device, the second sensory-responsive device being a device for replacing the first sensory-responsive device.
  • the method provided in this embodiment enables the upper-layer application to perceive and process the abnormality by reporting the abnormal state to the upper-layer application when the site management entity detects that the status change information of the sensing-response device meets the first reporting condition. Status, timely pause/end/update perception measurement settings, so as to realize the processing of abnormal status.
  • Fig. 20 shows a flowchart of an exception handling method provided by an exemplary embodiment of the present application. This embodiment is described by taking the method executed by the site management entity and the upper layer application as an example. The method includes:
  • Step 902 the site management entity generates an abnormal state when the state parameter of the perception measurement meets the second reporting condition
  • the second reporting condition includes any one of the following four conditions:
  • the number of sensory response devices participating in the measurement is less than the minimum number specified by the upper layer application
  • the number of sensory-response devices participating in the measurement is less than the minimum number specified by the upper-layer application, and there is at least one second sensory-response device, and the second sensory-response device is a device used to replace the first sensory-response device;
  • the number of sensory-response devices participating in the measurement is less than the minimum number specified by the upper-layer application, and there is no at least one second sensory-response device;
  • the station When the station is damaged, or the power of the station is insufficient, or the station actively disassociates from the AP due to user operation, or the station leaves the BSS coverage and disassociates, the number of sensing and responding devices decreases, and the station management entity in the sensing initiating device detects Fewer sensory responsive devices.
  • the BSS load is indicated by at least one of the following indicators:
  • the ratio of the channel busy time to the total time measured.
  • a medium access time that can be used for explicit admission control is a medium access time that can be used for explicit admission control.
  • the ratio of the time taken for ranging to the total time for measuring is the ratio of the time taken for ranging to the total time for measuring.
  • the ratio of the time taken by perception and ranging to the total time of measurement is the ratio of the time taken by perception and ranging to the total time of measurement.
  • the above threshold is usually one threshold or a combination of multiple thresholds.
  • the above thresholds may all include at least one of the following thresholds: a channel utilization threshold, an available admission time threshold, a sensing occupancy threshold, a ranging occupancy threshold, and a sensing and ranging occupancy threshold.
  • Step 904 The site management entity reports the abnormal state to the upper layer application through the sixth interface.
  • the abnormal state includes at least one of the following:
  • Step 906 The site management entity receives the processing instruction of the upper layer application on the abnormal state through at least one interface.
  • the processing instruction is generated by the upper-layer application itself; or, the processing instruction is generated by the upper-layer application based on the user's human-computer interaction operation.
  • the processing instructions include at least one of the following:
  • a sensory measurement setup is established with a second sensory-responsive device, the second sensory-responsive device being a device for replacing the first sensory-responsive device.
  • the method provided in this embodiment reports the abnormal state to the upper-layer application when the site management entity monitors that the BSS load meets the second reporting condition, so that the upper-layer application can perceive and process the abnormal state, and suspend/stop in time End/update perception measurement settings to enable handling of abnormal states.
  • Example 1 The number of sensing and responding devices decreases
  • an upper-layer application (such as a gait recognition application) requires multiple sensory response devices to participate in sensory measurement to obtain a measurement result with sufficient accuracy, and one or some first sensory response devices may be abnormal during operation ( For example: the station is damaged, or the power of the station is insufficient, or the station actively disassociates from the AP due to user operation, or the station disassociates from the BSS coverage) and cannot continue to participate in the measurement, resulting in a decrease in the total number of stations participating in the measurement. Meet the precision requirements of the upper application.
  • the upper layer application indicates the minimum number of devices participating in the sensing measurement to the SME of the sensing initiating device through the aforementioned first interface for establishing the measurement setting.
  • the SME of the perception initiating device needs to indicate the measurement setting identifier and the error code of the abnormal state to the upper layer application through the sixth interface for reporting the execution status (specifically, the number of stations decreases):
  • the SME of the sensing initiating device can automatically use the alternative site without notifying the upper-layer application. That is, the SME instructs the sensing initiating device and the alternative station to establish corresponding sensing measurement settings through the interface for establishing measurement settings.
  • the replaced station is the first sensory response device; the replaceable station is the second sensory response device.
  • the SME of the sensing initiating device can also indicate to the upper-layer application that there are one or more alternative sites, and the upper-layer application can automatically confirm the use of An alternative site; the user can also be prompted to confirm whether to use an alternative site. If the user confirms to use, then use the alternative site; if the user confirms not to use, then instruct the sensing initiating device and all sensing responding devices involved in the sensing measurement setting to end the sensing measurement setting through the second interface of ending the measurement setting .
  • the upper-layer application can automatically confirm to continue the measurement, or automatically end the sensory measurement setting, and execute through the report
  • the sixth interface of the state indicates the measurement setting identifier and error code to the upper layer application (specifically, the measurement is automatically terminated due to the decrease in the number of stations), and it can also prompt the user to confirm whether to ignore the exception and continue the measurement. If the user confirms to continue, continue the measurement; if the user confirms not to continue, instruct the sensing initiating device and all sensing responding devices involved in the sensing measurement setting to end the sensing measurement setting through the second interface of ending the measurement setting.
  • Example 2 Sensing and responding to changes in the operating mode of the device
  • the first sensory response device When the first sensory response device has insufficient power but wants to extend the work, it will change the operating mode (OM, Operating Mode) (reduce the bandwidth and/or reduce the number of supported sending airspace streams and/or reduce the supported receiving airspace streams number) to achieve the effect of prolonging the working hours. Changes in the operating mode may have an impact on the sensing process. For example, the smaller the bandwidth, the greater the quantization error of the sensing result, and the smaller the number of spatial streams, the lower the dimension of the CSI matrix of the sensing result, resulting in a decrease in the accuracy of sensing.
  • OM Operating Mode
  • the sensing response device When the sensing response device (such as non-AP STA) changes its own operating mode, it will send an operating mode notification (OMN, Operating Mode Notification) or operating mode indication (OMI, Operating Mode Indication) to the sensing initiating device (such as AP) , after the sensing initiating device receives it, it indicates the measurement setting identifier, error code (specifically, the change of the station operation mode) and related information (including the identifier of the corresponding sensing response device, and/or the changed The maximum bandwidth that can be supported, and/or the maximum number of sending airspace streams that can be supported after the change, and/or the maximum number of receiving airspace streams that can be supported after the change).
  • the OMN may be an OMN frame, or other frames carrying OMN elements.
  • the OMI is a frame carrying an operation mode control subfield (OM Control subfield) and/or an EHT operation mode control subfield (EHTOM Control subfield).
  • the upper layer application can automatically confirm to continue using the site. Schematically, if the maximum supported bandwidth, the maximum number of sending airspace streams and the maximum number of receiving airspace streams after the change can still meet the relevant accuracy requirements indicated by the upper layer application, no more processing is required; if not, Instruct the sensing initiating device and the sensing responding device to end the corresponding sensing measurement setting through the interface for ending the measurement setting, and then instruct the sensing initiating device and the sensing responding device to establish an updated measurement setting through the interface for establishing the measurement setting.
  • the updated measurement setting can be It includes updated perception bandwidth, and/or updated number of perception sending space-time streams, and/or updated number of perception receiving space-time flows, and/or updated perception role.
  • the upper-layer application can also automatically end the measurement setting, such as instructing the sensing initiation device and all sensing response devices involved in the sensing measurement setting to end the sensing measurement setting through the interface of ending the measurement setting), and report the execution status to the upper-layer application through the interface Indicates the measurement setup identifier and the error code for automatic end of measurement due to station operating mode change.
  • the upper application can also prompt the user. Let the user confirm whether to continue the measurement; if the user confirms yes, update the measurement settings as described above; if the user confirms no, end the measurement settings as described above.
  • the AP can determine the BSS load by measuring indicators such as channel utilization and available access time.
  • the BSS load may be relatively high.
  • it is necessary to make corresponding adjustments to the perception measurement such as suspending or ending the perception measurement setting, and for example reducing the frequency of the periodic perception measurement.
  • the AP can also calculate perception occupancy rate, ranging occupancy rate, perception and ranging occupancy rate and other indicators to assist in decision-making processing of perception when the processing load is high. That is, the BSS load can also be measured by indicators such as perception occupancy, ranging occupancy, perception and ranging occupancy, and the like.
  • the SME of the sensing initiating device judges that the BSS load is high, it indicates the measurement setting identifier, error code (specifically BSS overload) and/or BSS load information (such as channel utilization, and/or or available access time, and/or sensed occupancy, and/or ranging occupancy, and/or sensed and ranging occupancy).
  • error code specifically BSS overload
  • BSS load information such as channel utilization, and/or or available access time, and/or sensed occupancy, and/or ranging occupancy, and/or sensed and ranging occupancy.
  • the upper layer application can automatically confirm to continue the perception measurement
  • the upper-layer application can automatically reduce the frequency of periodic sensing measurement, and update the measurement settings. For example, through the interface of ending the measurement setting, indicate the sensing initiation device and all sensing responses involved in the sensing measurement setting The device ends the sensing measurement setting, and then instructs the sensing initiating device to establish updated measurement setting with the sensing responding device through the interface for establishing the measurement setting.
  • the upper layer application may also prompt the user to confirm whether to reduce the frequency of the periodic perception measurement. If the user selects yes, the measurement setting is updated as described above; if the user selects no, the sensing initiation device and all sensing response devices involved in the sensing measurement setting are instructed to end the sensing measurement setting through the interface of ending the measurement setting.
  • the upper layer application can automatically confirm the suspension measurement setting, such as instructing the sensing initiation device and all sensing response devices involved in the sensing measurement setting to suspend the sensing measurement setting through the interface of suspending the measurement setting, or The user may be prompted to confirm whether to suspend the measurement setting (suspending the perception measurement setting is as described above).
  • the upper layer application can automatically confirm to restore the measurement setting.
  • the upper-layer application instructs the sensing initiating device and all sensing responding devices involved in the sensing measurement settings to restore the sensing measurement settings through the interface for restoring the measurement settings, and may also prompt the user to confirm whether to restore the measurement settings (recovering the sensing measurement settings is as follows: aforementioned).
  • the upper-layer application can automatically confirm the end of the measurement setting, for example, the upper-layer application instructs the sensing initiation device and all sensing response devices involved in the sensing measurement setting to end the sensing measurement setting through the interface of ending the measurement setting , the user may also be prompted to ask the user to confirm whether to end the measurement setting (terminating the perception measurement setting is as described above).
  • Fig. 21 shows a block diagram of a WLAN sensing device according to an exemplary embodiment of the present application.
  • the apparatus includes a site management module 2120;
  • the site management module 2120 is configured to perform the WLAN awareness through at least one interface and an upper layer application;
  • the interface is an interface used for the WLAN awareness.
  • the interface includes at least one of the following interfaces:
  • the sixth interface for reporting execution status.
  • the interface includes the first interface
  • the site management module 2120 is configured to receive, through the first interface, an instruction to establish perception measurement settings from the upper-layer application;
  • the site management module 2120 is configured to establish the perception measurement setting with at least one perception response device.
  • the establishment instruction includes at least one of the following parameters:
  • the device also includes:
  • the site management module 2120 is configured to return the execution result of the establishment instruction to the upper layer application through the first interface.
  • the interface includes the second interface
  • the site management module 2120 is configured to perform the WLAN awareness through at least one interface and an upper-layer application, including:
  • the site management module 2120 is configured to receive, through the second interface, an indication of the completion of the perception measurement setting by the upper layer application;
  • the site management module 2120 is configured to end the perception measurement setting with at least one perception response device.
  • the end indication includes: a measurement setting identifier.
  • the device also includes:
  • the site management module 2120 is configured to return the execution result of the end instruction to the upper layer application through the second interface.
  • the interface includes the third interface
  • the site management module 2120 is configured to receive, through the third interface, an instruction to suspend the perception measurement setting by the upper-layer application;
  • the site management module 2120 is configured to suspend the perception measurement setting with at least one perception response device.
  • the pause indication includes: a measurement setting identifier; or, a measurement setting identifier and a pause duration.
  • the site management module 2120 is configured to return the execution result of the suspension instruction to the upper-layer application through the third interface.
  • the interface includes the fourth interface
  • the site management module 2120 is configured to receive, through the fourth interface, a recovery instruction of the upper-layer application on the perception measurement setting;
  • the site management module 2120 is configured to restore the perception measurement setting with at least one perception response device.
  • the recovery indication includes: a measurement setting identifier.
  • the site management module 2120 is configured to return the execution result of the restoration instruction to the upper layer application through the fourth interface.
  • the interface includes the fifth interface
  • the site management module 2120 is configured to receive measurement results sent by at least one sensory response device
  • the site management module 2120 is configured to report the perception measurement result to the upper layer application through the fifth interface.
  • the perception measurement result includes: a measurement setting identifier and the measurement result.
  • the interface includes the sixth interface
  • the site management module 2120 is configured to perform the WLAN awareness through at least one interface and an upper-layer application, including:
  • the station management module 2120 is configured to report the execution status of each operation in the WLAN awareness to the upper layer application through the sixth interface.
  • the execution state carries at least one of the following information:
  • the interface includes the sixth interface
  • the site management module 2120 is configured to report an abnormal state to the upper-layer application through the sixth interface.
  • the abnormal state includes at least one of the following:
  • the maximum bandwidth that the first sensing response device can support after the change is the maximum bandwidth that the first sensing response device can support after the change
  • the maximum number of sending airspace streams that the first sensory response device can support after the change is the maximum number of sending airspace streams that the first sensory response device can support after the change
  • the maximum number of received airspace streams that the first sensory response device can support after the change is the maximum number of received airspace streams that the first sensory response device can support after the change
  • the station management module 2120 is configured to detect information about changes in the number of stations in the BSS.
  • the site management module 2120 is configured to receive status change information sent by the first sensory response device.
  • the state change information is sent by the first sensory response device when its own operation mode changes.
  • the state change information carries at least one of the following information:
  • the operation mode indication carries an operation mode control subfield and/or an EHT operation mode control subfield.
  • the site management module 2120 is configured to report the WLAN-aware abnormal state to the upper-layer application through the sixth interface, including:
  • the site management module 2120 is configured to report the abnormal state to the upper-layer application through the sixth interface when the state change information meets the first reporting condition.
  • the first reporting condition includes any of the following:
  • the device also includes:
  • the site management module 2120 is configured to process the reported information by itself when the reported information does not meet the first reporting condition.
  • the self-processing of the reported information includes at least one of the following:
  • a sensory measurement setup is established with a second sensory-responsive device, the second sensory-responsive device being a device for replacing the first sensory-responsive device.
  • the device also includes:
  • the site management module 2120 is configured to generate the abnormal state when the state parameter of the sensory measurement satisfies the second reporting condition.
  • the second reporting condition includes at least one of the following conditions:
  • the number of sensory response devices participating in the measurement is less than the minimum number specified by the upper-layer application
  • the number of sensory-response devices participating in the measurement is less than the minimum number specified by the upper-layer application, and there is at least one second sensory-response device, and the second sensory-response device is a device used to replace the first sensory-response device;
  • the number of sensory-response devices participating in the measurement is less than the minimum number specified by the upper-layer application, and there is no at least one second sensory-response device;
  • the BSS load reaches a threshold; wherein, the BSS load is indicated by at least one of the following indicators:
  • the device also includes:
  • the site management module 2120 is configured to receive, through the at least one interface, a processing instruction of the upper-layer application on the abnormal state.
  • processing instruction includes at least one of the following:
  • a sensory measurement setup is established with a second sensory-responsive device, the second sensory-responsive device being a device replacing the first sensory-responsive device.
  • the processing instruction is generated by the upper-layer application itself; or, the processing instruction is generated by the upper-layer application based on a user's human-computer interaction operation.
  • FIG. 22 shows a schematic structural diagram of a communication device (site) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 and a bus 105 .
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 can be implemented as a communication component, which can be a communication chip, and the communication component can be called a transceiver.
  • the memory 104 is connected to the processor 101 through the bus 105 .
  • the memory 104 may be used to store at least one instruction, and the processor 101 is used to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • the memory 104 can be implemented by any type of volatile or non-volatile storage device or their combination.
  • the volatile or non-volatile storage device includes but not limited to: magnetic disk or optical disk, electrically erasable and programmable Electrically-Erasable Programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read-Only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • the processor and the transceiver in the communication device involved in the embodiment of the present application can perform the steps performed by the station in the methods shown in the above-mentioned embodiments, which will not be repeated here. .
  • a computer-readable storage medium stores at least one instruction, at least one program, a code set or an instruction set, the at least one instruction, the At least one section of program, the code set or instruction set is loaded and executed by the processor to implement the WLAN sensing method performed by the communication device provided in the above method embodiments.
  • a chip is also provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip is run on a computer device, it is used to implement the WLAN sensing method described in the above aspects .
  • a computer program product which, when running on a processor of a computer device, causes the computer device to execute the WLAN awareness method described in the above aspect.
  • the program can be stored in a computer-readable storage medium.
  • the above-mentioned The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种WLAN感知方法、装置、设备及存储介质,属于无线通信领域,所述方法包括:站点中的站点管理实体给上层应用提供如下接口中的至少一个:用于建立和/或结束感知测量设置的接口,用于暂停和/或恢复感知测量设置的接口,用于上报感知测量结果的接口,用于上报执行状态的接口;所述上层应用基于上述接口管理WLAN感知过程。在WLAN感知过程中发生错误的情况下,上层应用基于站点管理实体提供的接口进行错误管理。

Description

WLAN感知方法、装置、设备及存储介质 技术领域
本申请涉及无线通信领域,特别涉及一种无线局域网(Wireless Local Area Networks,WLAN)感知方法、装置、设备及存储介质。
背景技术
WLAN感知是指通过测量WLAN信号经过人或物的散射和/或反射的变化来感知环境中的人或物的技术。
发明内容
本申请实施例提供了一种WLAN感知方法、装置、设备及存储介质,可以使基站为终端设备配置合适的感知信号执行空口下行感知。所述技术方案如下:
根据本申请的一个方面,提供了一种WLAN感知方法,应用于终端设备中,所述方法包括:
向接入网设备发送第一感知信号请求,所述第一感知信号请求用于请求为所述终端设备配置感知信号;
接收所述接入网设备发送的第一感知信号请求响应;
基于所述第一感知信号请求响应执行空口下行感知的流程。
根据本申请的一个方面,提供了一种WLAN感知方法,应用于接入网设备中,所述方法包括:
接收终端设备发送的第一感知信号请求,所述第一感知信号请求用于请求为所述终端设备配置感知信号;
向所述终端设备发送第一感知信号请求响应,所述终端设备用于基于所述第一感知信号请求响应执行空口下行感知的流程。
根据本申请的一个方面,提供了一种WLAN感知装置,所述装置包括:
第一发送模块,用于向接入网设备发送第一感知信号请求,所述第一感知信号请求用于请求为所述终端设备配置感知信号;
第一接收模块,用于接收所述接入网设备发送的第一感知信号请求响应;
感知模块,用于基于所述第一感知信号请求响应执行空口下行感知的流程。
根据本申请的一个方面,提供了一种WLAN感知装置,所述装置包括:
第二接收模块,用于接收终端设备发送的第一感知信号请求,所述第一感知信号请求用于请求为所述终端设备配置感知信号;
第二发送模块,用于向所述终端设备发送第一感知信号请求响应,所述终端设备用于基于所述第一感知信号请求响应执行空口下行感知的流程。
根据本申请的一个方面,提供了一种终端设备,所述终端设备包括:处理器和与所述处理器相连的收发器;其中,
所述收发器,用于向接入网设备发送第一感知信号请求,所述第一感知信号请求用于请求为所述终端设备配置感知信号;
所述收发器,用于接收所述接入网设备发送的第一感知信号请求响应;
所述处理器,用于基于所述第一感知信号请求响应执行空口下行感知的流程。
根据本申请的一个方面,提供了一种网络设备,所述网络设备包括:处理器和与所述处理器相连的收发器;其中,
所述收发器,用于接收终端设备发送的第一感知信号请求,所述第一感知信号请求用于请求为所述终端设备配置感知信号;
所述收发器,用于向所述终端设备发送第一感知信号请求响应,所述终端设备用于基于所述第一感知信号请求响应执行空口下行感知的流程。
根据本申请的一个方面,提供了一种终端设备,所述终端设备包括:处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行,以实现如上述方面所述的WLAN感知方法。
根据本申请的一个方面,提供了一种网络设备,所述网络设备包括:处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行,以实现如上述方面所述的WLAN感知方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以实现如上述方面所述的WLAN感知方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所 述芯片在计算机设备上运行时,用于实现上述方面所述的WLAN感知方法。
根据本申请的一个方面,提供了一种计算机程序产品,该计算机程序产品在计算机设备的处理器上运行时,使得计算机设备执行上述方面所述的WLAN感知方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过由站点管理实体通过至少一个接口与上层应用执行WLAN感知,明确定义了站点管理实体和上层应用之间的通信关系,也即明确了站点管理实体和上层应用执行WLAN感知的通信流程和/或管理流程。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的WLAN系统的示意图;
图2是本申请一个示例性实施例提供的WLAN感知过程的示意图;
图3是本申请一个示例性实施例提供的WLAN感知过程的示意图;
图4是本申请一个示例性实施例提供的WLAN感知方法的流程图;
图5是本申请一个示例性实施例提供的感知测量设置的建立方法的流程图;
图6是本申请一个示例性实施例提供的感知测量设置的建立方法的流程图;
图7是本申请一个示例性实施例提供的感知测量设置的结束方法的流程图;
图8是本申请一个示例性实施例提供的感知测量设置的结束方法的流程图;
图9是本申请一个示例性实施例提供的感知测量设置的结束方法的流程图;
图10是本申请一个示例性实施例提供的感知测量设置的暂停方法的流程图;
图11是本申请一个示例性实施例提供的感知测量设置的暂停方法的流程图;
图12是本申请一个示例性实施例提供的感知测量设置的暂停方法的流程图;
图13是本申请一个示例性实施例提供的感知测量设置的恢复方法的流程图;
图14是本申请一个示例性实施例提供的感知测量设置的恢复方法的流程图;
图15是本申请一个示例性实施例提供的感知测量设置的恢复方法的流程图;
图16是本申请一个示例性实施例提供的感知测量结果的上报方法的流程图;
图17是本申请一个示例性实施例提供的感知测量结果的上报方法的流程图;
图18是本申请一个示例性实施例提供的异常处理方法的流程图;
图19是本申请一个示例性实施例提供的异常处理方法的流程图;
图20是本申请一个示例性实施例提供的异常处理方法的流程图;
图21是本申请一个示例性实施例提供的WLAN感知装置的结构框图;
图22是本申请一个示例性实施例提供的站点的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1示出了本申请一个示例性实施例提供的WLAN系统的框图。该WLAN系统包括:接入点(AccessPoint,AP)和站点(Station,STA)。
在一些场景中,AP可以或称AP STA,即在某种意义上来说,AP也是一种STA。在一些场景中,STA或称非AP STA(non-AP STA)。
在一些实施例中,STA可以包括AP STA和non-AP STA。
通信系统中的通信可以是AP与non-AP STA之间通信,也可以是non-AP STA与non-AP STA之前通信,或者STA和peer STA之间通信,其中,peer STA可以指与STA对端通信的设备,例如,peer STA可能为AP,也可能为non-AP STA。
AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP设备可以是带有无线保真(Wireless-Fidelity,WiFi)芯片的终端设备(如手机)或者网络设备(如路由器)。
应理解,STA在通信系统中的角色不是绝对的,例如,在一些场景中,手机连接路由的时候,手机是non-AP STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
AP和non-AP STA可以是应用于车联网中的设备,物联网(Internet ofThings,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,non-AP STA可以支持802.11be制式。non-AP STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的无线局域网(Wireless Local Area  Networks,WLAN)制式。
在一些实施例中,AP可以为支持802.11be制式的设备。AP也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式的设备。
在本申请实施例中,STA可以是支持WLAN/WiFi技术的手机(Mobile Phone)、平板电脑(Pad)、电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线设备、机顶盒、无人驾驶(self driving)中的无线设备、车载通信设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备或智慧家庭(smart home)中的无线设备、无线通信芯片/ASIC/SOC/等。
WLAN技术可支持频段可以包括但不限于:低频段(2.4GHz、5GHz、6GHz)、高频段(60GHz)。
站点和接入点之间存在一个或多个链路。
在一些实施例中,站点和接入点支持多频段通信,例如,同时在2.4GHz,5GHz,6GHz以及60GHz频段上进行通信,或者同时在同一频段(或不同频段)的不同信道上通信,提高设备之间的通信吞吐量和/或可靠性。这种设备通常称为多频段设备,或称为多链路设备(Multi-Link Device,MLD),有时也称为多链路实体或多频段实体。多链路设备可以是接入点设备,也可以是站点设备。如果多链路设备是接入点设备,则多链路设备中包含一个或多个AP;如果多链路设备是站点设备,则多链路设备中包含一个或多个non-AP STA。
包括一个或多个AP的多链路设备或称AP,包括一个或多个non-AP STA的多链路设备或称Non-AP,在申请实施例中,Non-AP可以称为STA。
在本申请实施例中,AP可以包括多个AP,Non-AP包括多个STA,AP中的AP和Non-AP中的STA之间可以形成多条链路,AP中的AP和Non-AP中的对应STA之间可以通过对应的链路进行数据通信。
AP是一种部署在无线局域网中用以为STA提供无线通信功能的设备。站点0可以包括:用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、用户代理或用户装置。可选地,站点10还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digita1Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,本申请实施例对此并不限定。
在本申请实施例中,站点和接入点均支持IEEE 802.11标准。
在WLAN感知场景下,参与感知的WLAN终端包括:感知会话发起设备和感知会话响应设备。或者,参与感知的WLAN终端包括:感知信号发送设备和感知信号接收设备。其中,感知会话发起设备可简称为感知发起设备;感知会话响应设备可简称为感知响应设备。
图2的(1)至(6)示出了本申请一个示例性实施例提供的6种基于感知信号进行WLAN感知的典型场景。
图3的(1)至(4)示出了本申请一个示例性实施例提供的4种基于感知信号以及反射信号进行WLAN感知的典型场景。
WLAN感知会话包括以下一个或多个阶段:会话建立阶段;感知测量阶段;感知上报阶段;以及会话终止阶段。同一个WLAN终端在一个感知会话中可能有一个或多个角色,例如感知会话发起设备可以仅仅是感知会话发起设备,也可以成为感知信号发送设备,也可以成为感知信号接收设备,还可以同时是感知信号发送设备和感知信号接收设备。
会话建立阶段:建立感知会话,确定感知会话参与设备及其角色(包括感知信号发送设备和感知信号接收设备),决定感知会话相关的操作参数,并且可选的在终端之间交互该参数。
感知测量阶段:实施感知测量,感知信号发送设备发送感知信号给感知信号接收者。
感知上报阶段:上报测量结果,由应用场景决定,感知信号接收设备可能需要给感知会话发起设备上报测量结果。
会话终止阶段:终端停止测量,终止感知会话。
图4示出了本申请一个示例性实施例提供的WLAN感知方法的流程图。该方法可以应用于STA中,该STA内具有站点管理实体。该方法包括:
步骤102:站点管理实体通过至少一个接口与上层应用执行WLAN感知;
STA内运行有上层应用、站点管理实体(StationManagement Entity,SME)和媒体接入控制(Medium Access Control,MAC)子层管理实体。
上层应用可以是用户自行安装或设备默认安装的应用程序,比如需要进行人体的手势识别的应用程序。在一个示例中,该上层应用是购物程序、社交程序、拍照程序、电话程序、视频播放程序等等,本实施例 对上层应用的具体类型不加以限定。
示意性的,站点管理实体和MAC子层管理实体是IEEE802.11协议所定义的逻辑单元,其功能一般由WLAN芯片和/或模组的驱动程序实现。站点管理实体用于与上层应用协同来实现WLAN的应用功能,包括WLAN感知的各个操作或功能。MAC子层管理实体用于管理与其它WLAN设备的通信。
其中,接口是用于WLAN感知的接口。该至少一个接口是用于WLAN感知的API接口。该接口是站点管理实体和上层应用之间进行有关WLAN感知通信或管理的接口。示意性的,接口包括如下接口中的至少一个:
·用于建立感知测量设置的第一接口;
·用于结束感知测量设置的第二接口;
·用于暂停感知测量设置的第三接口;
·用于恢复感知测量设置的第四接口;
·用于上报感知测量结果的第五接口;
·用于上报执行状态的第六接口。
其中,感知测量设置可简称为测量设置,感知测量结果可简称为测量结果。在不同的实施例中,上述六个接口中的任意两个接口均可以进行合并,比如,第一接口和第二接口合并为用于建立和/或结束感知测量设置的一个接口,第三接口和第四接口合并为用于暂停和/或恢复感知测量设置的一个接口,第五接口和第六接口合并为用于上报信息的一个接口,本申请实施例对此不加以限定。
在不同的实施例中,上述6个接口还可以变少或变多,比如,取消第三接口和第四接口;又比如,增加用于更新感知测量设置的第七接口,对此不加以限定。上述第一接口至第七接口仅为简化描述,并无排名先后的含义。
综上所述,本实施例提供的方法,通过由站点管理实体通过至少一个接口与上层应用执行WLAN感知,明确定义了站点管理实体和上层应用之间的通信关系,也即明确了站点管理实体和上层应用执行WLAN感知的通信流程和/或管理流程。
建立感知测量设置(第一接口和/或第六接口):
图5示出了本申请一个示例性实施例提供的测量设置的建立方法的流程图。所述方法以由作为感知发起设备的站点执行来举例说明,该方法包括:
步骤202:站点管理实体通过第一接口,接收上层应用对感知测量设置的建立指示;
上层使用调用第一接口,向站点管理实体传递对感知测量设置的建立指示(或建立请求)。该建立指示用于指示站点管理实体与一个或多个感知响应设备建立感知测量设置。
示例性的,该建立指示或建立请求包括如下参数中的至少一种:
·测量设置标识符;
·感知测量的最大距离;
·感知测量的距离精度;
·感知测量的最大速度;
·感知测量的速度精度;
·感知测量的角度精度;
·感知测量的安全级别;
例如:防DOS攻击,防重放攻击等。
·感知测量的频段;
例如,2.4GHz,5GHz,45GHz等等。
·参与感知测量的设备的最小数量;
·参与感知测量的设备的感知角色设置;
感知角色包括:感知会话发起设备、感知会话响应设备、感知信号发送设备和感知信号接收设备中的至少一种。
·感知测量的周期设置;
·感知测量的总持续时间;
·感知测量结果的类型;
比如,该类型为信道状态信息(Channel-Slate Information,CSI)。
·感知测量的最小带宽;
·感知测量的最小发送空域流数;
·感知测量的最小接收空域流数。
其中,感知测量可简称为测量,感知测量设置可简称为测量设置。也即,第一接口支持上述参数的传 输。
步骤204:站点管理实体与至少一个感知响应设备建立感知测量设置。
感知发起设备的上层应用(例如用于手势识别的应用程序)调用其内部的由驱动程序所实现的SME的建立测量设置的接口,指示跟一个或多个感知响应设备建立测量设置,执行完毕后,SME给上层应用返回执行成功或失败(选项1)。或者上层应用调用SME接口后SME立即返回,SME执行完毕后给上层应用上报执行成功或失败(选项2)。或者SME执行完毕后给上层应用返回执行成功或失败,并且给上层应用上报执行成功或失败(选项3)。
结合参考图6,感知测量设置的示例性建立流程如下:
感知发起设备侧:
S1.上层应用调用第一接口,向站点管理实体指示或请求建立测量设置;
可选地,站点管理实体在接收到该调用后,无论是否执行完毕测量设置的建立,通过第一接口向上层应用传递建立测量设置返回。
S2.站点管理实体向MAC子层管理实体传递测量设置建立请求原语;
S3.MAC子层管理实体通过WLAN信号向感知响应设备发送测量设置建立请求;
以感知发起设备中的站点管理实体为第一SME,MAC子层管理实体为第一MLME为例,第一SME通过调用第一MLME提供的测量设置建立请求原语,指示第一MLME生成测量设置建立请求帧;以及通过物理层接口发送该请求给一个或多个感知响应设备。
上述建立测量设置、测量设置建立请求原语和测量设置建立请求携带有上述各个参数,不再赘述。
感知响应设备侧:
S4.MAC子层管理实体在接收感知发起设备发送的测量设置建立请求后,向站点管理实体发送测量设置建立通知原语;
站点管理实体基于测量设置建立通知原语内的参数,建立测量设置。
S5.站点管理实体向MAC子层管理实体发送测量设置建立响应原语;
S6.MAC子层管理实体向感知发起设备发送测量设置建立响应。
感知发起设备侧:
S7.MAC子层管理实体向站点管理实体发送测量设置建立确认原语;
S8.站点管理实体向上层应用发送建立测量设置返回;
可选地,站点管理实体在测量设置建立完毕后,通过第一接口向上层应用传递建立测量设置返回。该建立测量设置返回用于指示执行成功或执行失败。
该建立测量设置返回包括如下参数中的至少一种:成功或失败,测量设置标识符,失败的原因代码。
S9.站点管理实体向上层应用上报执行状态。
以感知响应设备中的站点管理实体为第二SME,MAC子层管理实体为第二MLME为例,感知响应设备收到该测量设置建立请求帧后通过物理层接口给第二MLME上报该测量设置建立请求帧,第二MLME通过测量设置建立通知原语上报测量设置信息给第二SME,第二SME处理该测量设置信息并通过调用第二MLME提供的测量设置建立响应原语指示第二MLME生成测量设置建立响应帧,以及指示第二MLME通过物理层接口发送该测量设置建立响应帧;感知发起设备收到该测量设置建立响应帧后通过物理层接口给第一MLME上报该测量设置建立响应帧,第一MLME通过测量设置建立确认原语上报测量设置建立响应信息给第一SME。
可选地,站点管理实体在测量设置建立完毕后,通过第六接口向上层应用传递本次建立操作的执行状态。该执行状态用于指示执行成功或执行失败。
该执行状态包括如下参数中的至少一种:操作类型(建立测量设置),操作的状态代码(成功或失败),测量设置标识符,失败的原因代码,异常的错误代码,和/或异常的相关信息。
综上所述,本实施例提供的方法,通过由站点管理实体通过至少一个接口与上层应用执行WLAN感知,明确定义了站点管理实体和上层应用之间的通信关系,也即明确了站点管理实体和上层应用执行WLAN感知的通信流程和/或管理流程。
结束感知测量设置(第二接口和/或第六接口):
图7示出了本申请一个示例性实施例提供的测量设置的结束方法的流程图。所述方法以由作为感知发起设备的站点执行来举例说明,该方法包括:
步骤302:站点管理实体通过第二接口,接收上层应用对感知测量设置的结束指示;
上层使用调用第二接口,向站点管理实体传递对感知测量设置的结束指示(或结束请求)。该结束指示用于指示站点管理实体与一个或多个感知响应设备结束感知测量设置。
比如,上层应用切换到后台运行,所以结束感知测量。
示意性的,该结束指示(或结束请求)携带有:测量设置标识符。也即,第二接口支持如下参数的传输:测量设置标识符。
步骤304:站点管理实体与至少一个感知响应设备结束感知测量设置。
针对上层应用发起结束感知测量设置:
结合参考图8,感知测量设置的示例性结束流程如下:
感知发起设备侧:
S1.上层应用调用第二接口,向站点管理实体指示结束测量设置;
可选地,站点管理实体在接收到该调用后,无论是否执行完毕测量设置的结束,通过第二接口向上层应用传递结束测量设置返回。
S2.站点管理实体向MAC子层管理实体传递测量设置结束原语;
S3.MAC子层管理实体通过WLAN信号向感知响应设备发送测量设置结束(指示);
示意性的,上述结束测量设置、测量设置结束原语和测量设置结束(指示)携带有测量设置标识符,不再赘述。
感知响应设备侧:
S4.MAC子层管理实体在接收感知发起设备发送的测量设置结束后,向站点管理实体发送测量设置结束通知原语。
站点管理实体基于测量设置结束通知原语内的参数,结束测量设置。
示例性的,感知发起设备的第一SME通过调用第一MLME提供的测量设置结束原语指示第一MLME生成测量设置结束帧;以及通过物理层接口发送该测量设置结束帧给一个或多个感知响应设备;感知响应设备收到该测量设置结束帧后通过物理层接口给第二MLME上报该测量设置结束帧,第二MLME通过测量设置结束通知原语上报测量设置结束信息给第二SME,第二SME处理该测量设置结束信息并清理该测量设置相关资源(例如存储资源)。
针对感知响应设备发起结束感知测量设置:
感知响应设备内部的由驱动程序所实现的SME因内部状态变化(例如自身电量较低,为了省电不再参与感知测量;自身有较多缓存的上行数据要发送,不再参与感知测量;自身将开启点对点通信(P2P),不再参与感知测量)而请求结束一个或多个感知测量设置,感知发起设备接收到该结束请求后结束该一个或多个感知测量设置,并且感知发起设备的SME执行完毕后给上层应用上报已结束该感知响应设备的该一个或多个感知测量设置。
结合参考图9,感知测量设置的示例性结束流程如下:
感知响应设备侧:
S1.站点管理实体向MAC子层管理实体发送测量设置结束请求原语;
S2.MAC子层管理实体向感知发起设备发送测量设置结束请求。
该测量设置结束请求携带有:测量感知标识符。可选地,还携带有感知响应设备的设备ID。
感知发起设备侧:
S3.MAC子层管理实体向站点管理实体发送测量设置结束请求通知原语;
站点管理实体基于测量设置结束请求通知原语,结束测量设置。
S4.站点管理实体向MAC子层管理实体发送测量设置结束原语;
S5.站点管理实体通过第六接口,向上层应用上报测量设置结束;
S6.MAC子层管理实体向感知响应设备发送测量设置结束。
感知响应设备侧:
S7.MAC子层管理实体向站点管理实体发送测量设置结束通知原语。
示意性的,感知响应设备的第二SME通过调用第二MLME提供的测量设置结束请求原语,指示第二MLME生成测量设置结束请求帧并通过物理层接口发送该测量设置结束请求帧给感知发起设备。感知发起设备收到该测量设置结束请求帧后,通过物理层接口给第一MLME上报该测量设置结束请求帧,第一MLME通过测量设置结束请求通知原语上报测量设置结束请求信息给第一SME,第一SME处理该信息并给上层应用上报已结束该感知响应设备的该一个或多个测量设置,同时第一SME还通过调用第一MLME提供的测量设置结束原语指示第一MLME生成测量设置结束帧并通过物理层接口发送该测量设置结束帧。感知响应设备收到该测量设置结束帧后通过物理层接口给第二MLME上报该测量设置结束帧,第二MLME通过测量设置结束确认原语上报测量设置结束信息给第二SME。
综上所述,本实施例提供的方法,通过由站点管理实体通过至少一个接口与上层应用执行WLAN感知,明确定义了站点管理实体和上层应用之间的通信关系,也即明确了站点管理实体和上层应用执行WLAN感知的通信流程和/或管理流程。
暂停感知测量设置(第三接口或第六接口):
图10示出了本申请一个示例性实施例提供的测量设置的暂停方法的流程图。所述方法以由作为感知发起设备的站点执行来举例说明,该方法包括:
步骤402:站点管理实体通过第三接口,接收上层应用对感知测量设置的暂停指示;
上层使用调用第三接口,向站点管理实体传递对感知测量设置的暂停指示(或暂停请求)。该暂停指示用于指示站点管理实体与一个或多个感知响应设备暂停感知测量设置。
比如,上层应用切换到后台运行,所以暂停感知测量。
示意性的,该暂停指示(或暂停请求)携带有:测量设置标识符。也即,第三接口支持如下参数的传输:测量设置标识符。
步骤404:站点管理实体与至少一个感知响应设备暂停感知测量设置。
针对上层应用发起暂停感知测量设置:
感知发起设备的上层应用(例如手势识别应用程序)(例如因为上层应用切换到后台而暂停感知测量)调用其内部的由驱动程序所实现的SME的暂停测量设置的接口,指示跟一个或多个感知响应设备暂停用于手势识别的测量设置,执行完毕后,SME给上层应用返回执行成功或失败(选项1)。或者上层应用调用SME接口后SME立即返回,SME执行完毕后给上层应用上报执行成功或失败(选项2)。或者SME执行完毕后给上层应用返回执行成功或失败,并且给上层应用上报执行成功或失败(选项3)。
结合参考图11,感知测量设置的示例性暂停流程如下:
感知发起设备侧:
S1.上层应用调用第三接口,向站点管理实体指示或请求暂停测量设置;
可选地,站点管理实体在接收到该调用后,无论是否执行完毕测量设置的暂停,通过第三接口向上层应用传递暂停测量设置返回。
S2.站点管理实体向MAC子层管理实体传递测量设置暂停请求原语;
S3.MAC子层管理实体通过WLAN信号向感知响应设备发送测量设置暂停请求;
上述暂停测量设置、测量设置暂停请求原语和测量设置暂停请求携带有:测量设置标识符;或,测量设置标识符和暂停时长。
示意性的,感知发起设备的第一SME通过调用第一MLME提供的测量设置暂停请求原语,指示第一MLME生成测量设置暂停请求帧;以及通过物理层接口发送该测量设置暂停请求帧给一个或多个感知响应设备。
上述建立测量设置、测量设置建立请求原语和测量设置建立请求携带有上述各个参数,不再赘述。
感知响应设备侧:
S4.MAC子层管理实体在接收感知发起设备发送的测量设置暂停请求后,向站点管理实体发送测量设置暂停通知原语;
站点管理实体基于测量设置暂停通知原语内的参数,暂停测量设置。
S5.站点管理实体向MAC子层管理实体发送测量设置暂停响应原语;
S6.MAC子层管理实体向感知发起设备发送测量设置暂停响应。
感知发起设备侧:
S7.MAC子层管理实体向站点管理实体发送测量设置暂停确认原语;
S8.站点管理实体向上层应用发送暂停测量设置返回;
可选地,站点管理实体在测量设置暂停完毕后,通过第三接口向上层应用传递暂停测量设置返回。该暂停测量设置返回用于指示执行成功或执行失败。
该暂停测量设置返回包括如下参数中的至少一种:成功或失败,测量设置标识符,失败的原因代码。
S9.站点管理实体向上层应用上报执行状态。
示意性的,感知响应设备收到该测量设置暂停请求帧后通过物理层接口给第二MLME上报该测量设置暂停请求帧,第二MLME通过测量设置暂停通知原语上报测量设置信息给第二SME,第二SME处理该测量设置信息并通过调用第二MLME提供的测量设置暂停响应原语指示第二MLME生成测量设置暂停响应帧,以及指示第二MLME通过物理层接口发送该测量设置暂停响应帧;感知发起设备收到该测量设置暂停响应帧后通过物理层接口给第一MLME上报该测量设置暂停响应帧,第一MLME通过测量设置暂停确认原语上报测量设置暂停响应信息给第一SME。
可选地,站点管理实体在测量设置暂停完毕后,通过第六接口向上层应用传递本次暂停操作的执行状态。该执行状态用于指示执行成功或执行失败。
该执行状态包括如下参数中的至少一种:操作类型(暂停测量设置),操作的状态代码(成功或失败),测量设置标识符,失败的原因代码,异常的错误代码,和/或异常的相关信息。
针对感知响应设备发起暂停感知测量设置:
感知响应设备内部的由驱动程序所实现的SME因内部状态变化(例如自身电量较低,为了省电不再参与感知测量;自身有较多缓存的上行数据要发送,不再参与感知测量;自身将开启点对点通信(P2P),不再参与感知测量)而请求暂停一个或多个感知测量设置,感知发起设备暂停到该暂停请求后暂停该一个或多个感知测量设置。并且感知发起设备的SME执行完毕后给上层应用上报已暂停该感知响应设备的该一个或多个感知测量设置。
结合参考图12,感知测量设置的示例性暂停流程如下:
感知响应设备侧:
S1.站点管理实体向MAC子层管理实体发送测量设置暂停请求原语;
S2.MAC子层管理实体向感知发起设备发送测量设置暂停请求。
该测量设置暂停请求携带有:测量设置标识符;或,测量设置标识符和暂停时长。可选地,还携带有感知响应设备的设备ID。
感知发起设备侧:
S3.MAC子层管理实体向站点管理实体发送测量设置暂停请求通知原语;
站点管理实体基于测量设置暂停请求通知原语,暂停测量设置。
S4.站点管理实体向MAC子层管理实体发送测量设置暂停响应原语;
S5.站点管理实体通过第六接口,向上层应用上报测量设置暂停;
S6.MAC子层管理实体向感知响应设备发送测量设置暂停响应。
感知响应设备侧:
S7.MAC子层管理实体向站点管理实体发送测量设置暂停确认原语。
示意性的,感知响应设备的第二SME通过调用第二MLME提供的测量设置暂停请求原语,指示第二MLME生成测量设置暂停请求帧并通过物理层接口发送该测量设置暂停请求帧给感知发起设备。感知发起设备收到该测量设置暂停请求帧后,通过物理层接口给第一MLME上报该测量设置暂停请求帧,第一MLME通过测量设置暂停请求通知原语上报测量设置暂停请求信息给第一SME,第一SME处理该信息并给上层应用上报已暂停该感知响应设备的该一个或多个测量设置,同时第一SME还通过调用第一MLME提供的测量设置暂停原语指示第一MLME生成测量设置暂停帧并通过物理层接口发送该测量设置暂停帧。感知响应设备收到该测量设置暂停帧后通过物理层接口给第二MLME上报该测量设置暂停帧,第二MLME通过测量设置暂停确认原语上报测量设置暂停信息给第二SME。
恢复感知测量设置(第四接口或第六接口):
图13示出了本申请一个示例性实施例提供的测量设置的恢复方法的流程图。所述方法以由作为感知发起设备的站点执行来举例说明,该方法包括:
步骤502:站点管理实体通过第四接口,接收上层应用对感知测量设置的恢复指示;
上层使用调用第四接口,向站点管理实体传递对感知测量设置的恢复指示(或恢复请求)。该恢复指示用于指示站点管理实体与一个或多个感知响应设备恢复感知测量设置。
比如,上层应用切换到后台运行,所以恢复感知测量。
示意性的,该恢复指示(或恢复请求)携带有:测量设置标识符。也即,第四接口支持如下参数的传输:测量设置标识符。
步骤504:站点管理实体与至少一个感知响应设备恢复感知测量设置。
针对上层应用发起恢复感知测量设置:
感知发起设备的上层应用(例如手势识别应用程序)(例如因为上层应用从后台切换回前台而恢复感知测量)调用其内部的由驱动程序所实现的SME的恢复测量设置的接口,指示跟一个或多个感知响应设备恢复用于手势识别的测量设置,执行完毕后,SME给上层应用返回执行成功或失败(选项1)。或者上层应用调用SME接口后SME立即返回,SME执行完毕后给上层应用上报执行成功或失败(选项2)。或者SME执行完毕后给上层应用返回执行成功或失败,并且给上层应用上报执行成功或失败(选项3)。
结合参考图14,感知测量设置的示例性恢复流程如下:
感知发起设备侧:
S1.上层应用调用第四接口,向站点管理实体指示或请求恢复测量设置;
可选地,站点管理实体在接收到该调用后,无论是否执行完毕测量设置的恢复,通过第四接口向上层应用传递恢复测量设置返回。
S2.站点管理实体向MAC子层管理实体传递测量设置恢复请求原语;
S3.MAC子层管理实体通过WLAN信号向感知响应设备发送测量设置恢复请求;
示意性的,感知发起设备的第一SME通过调用第一MLME提供的测量设置恢复请求原语,指示第一 MLME生成测量设置恢复请求帧;以及通过物理层接口发送该测量设置恢复请求帧给一个或多个感知响应设备。
上述建立测量设置、测量设置建立请求原语和测量设置建立请求携带有上述各个参数,不再赘述。
上述恢复测量设置、测量设置恢复请求原语和测量设置恢复请求携带有:测量设置标识符。
感知响应设备侧:
S4.MAC子层管理实体在接收感知发起设备发送的测量设置恢复请求后,向站点管理实体发送测量设置恢复通知原语;
站点管理实体基于测量设置恢复通知原语内的参数,恢复测量设置。
S5.站点管理实体向MAC子层管理实体发送测量设置恢复响应原语;
S6.MAC子层管理实体向感知发起设备发送测量设置恢复响应。
感知发起设备侧:
S7.MAC子层管理实体向站点管理实体发送测量设置恢复确认原语;
S8.站点管理实体向上层应用发送恢复测量设置返回;
可选地,站点管理实体在测量设置恢复完毕后,通过第四接口向上层应用传递恢复测量设置返回。该恢复测量设置返回用于指示执行成功或执行失败。
该恢复测量设置返回包括如下参数中的至少一种:成功或失败,测量设置标识符,失败的原因代码。
S9.站点管理实体向上层应用上报执行状态。
可选地,站点管理实体在测量设置恢复完毕后,通过第六接口向上层应用传递本次恢复操作的执行状态。该执行状态用于指示执行成功或执行失败。
该执行状态包括如下参数中的至少一种:操作类型(恢复测量设置),操作的状态代码(成功或失败),测量设置标识符,失败的原因代码,异常的错误代码,和/或异常的相关信息。
示意性的,感知响应设备收到该测量设置恢复请求帧后通过物理层接口给第二MLME上报该测量设置恢复请求帧,第二MLME通过测量设置恢复通知原语上报测量设置信息给第二SME,第二SME处理该测量设置信息并通过调用第二MLME提供的测量设置恢复响应原语指示第二MLME生成测量设置恢复响应帧,以及指示第二MLME通过物理层接口发送该测量设置恢复响应帧;感知发起设备收到该测量设置恢复响应帧后通过物理层接口给第一MLME上报该测量设置恢复响应帧,第一MLME通过测量设置恢复确认原语上报测量设置恢复响应信息给第一SME。
针对感知响应设备发起恢复感知测量设置:
感知响应设备内部的由驱动程序所实现的SME因内部状态变化(例如自身电量从较低水平恢复到较高水平;自身积压的上行数据发送完毕;自身的点对点通信已结束)而请求恢复一个或多个感知测量设置,感知发起设备恢复到该恢复请求后恢复该一个或多个感知测量设置,并且感知发起设备的SME执行完毕后给上层应用上报已恢复该感知响应设备的该一个或多个感知测量设置。
结合参考图15,感知测量设置的示例性恢复流程如下:
感知响应设备侧:
S1.站点管理实体向MAC子层管理实体发送测量设置恢复请求原语;
S2.MAC子层管理实体向感知发起设备发送测量设置恢复请求。
该测量设置恢复请求携带有:测量设置标识符。可选地,还携带有感知响应设备的设备ID。
感知发起设备侧:
S3.MAC子层管理实体向站点管理实体发送测量设置恢复请求通知原语;
站点管理实体基于测量设置恢复请求通知原语,恢复测量设置。
S4.站点管理实体向MAC子层管理实体发送测量设置恢复响应原语;
S5.站点管理实体通过第六接口,向上层应用上报测量设置恢复;
S6.MAC子层管理实体向感知响应设备发送测量设置恢复响应。
感知响应设备侧:
S7.MAC子层管理实体向站点管理实体发送测量设置恢复确认通知原语。
示意性的,感知响应设备的第二SME通过调用第二MLME提供的测量设置恢复请求原语,指示第二MLME生成测量设置恢复请求帧并通过物理层接口发送该测量设置恢复请求帧给感知发起设备。感知发起设备收到该测量设置恢复请求帧后,通过物理层接口给第一MLME上报该测量设置恢复请求帧,第一MLME通过测量设置恢复请求通知原语上报测量设置恢复请求信息给第一SME,第一SME处理该信息并给上层应用上报已恢复该感知响应设备的该一个或多个测量设置,同时第一SME还通过调用第一MLME提供的测量设置恢复原语指示第一MLME生成测量设置恢复帧并通过物理层接口发送该测量设置恢复帧。感知响应设备收到该测量设置恢复帧后通过物理层接口给第二MLME上报该测量设置恢复帧,第二MLME 通过测量设置恢复确认原语上报测量设置恢复信息给第二SME。
上报感知测量结果(第五接口):
图16示出了本申请一个示例性实施例提供的上报感知测量结果方法的流程图。所述方法以由作为感知发起设备的站点执行来举例说明,该方法包括:
步骤602:站点管理实体接收至少一个感知响应设备发送的测量结果;
站点管理实体通过第五接口,向上层应用上报感知测量结果。
示意性的,感知测量结果包括:测量设置标识符和测量结果。也即,第五接口支持如下参数的传输:测量设置标识符和测量结果。
步骤604:站点管理实体通过第五接口,向上层应用上报感知测量结果。
感知响应设备(此例中是感知信号接收设备)给感知发起设备发送测量结果上报帧,感知发起设备收到后通过上报测量结果的接口给上层应用上报该测量结果(例如CSI数据),上层应用因而可以进行相应处理,例如分析该测量结果数据,从而得到感知结果(例如是否感知到目标区域中人的存在)。
结合参考图17,感知测量结果的示例性上报流程如下:
S1.感知响应设备的MAC子层管理实体向感知发起设备发送测量结果;
S2.感知发起设备的MAC子层管理实体向站点管理实体发送测量结果;
S3.站点管理实体通过第五接口,向上层应用发送测量结果。
在一些实施例中,站点管理实体也可以通过第六接口向上层应用发送测量结果。
示意性的,感知响应设备的第二MLME生成测量结果上报帧并通过物理层接口发送该测量结果上报帧给感知发起设备。感知发起设备收到该测量结果上报帧后通过物理层接口给自身的第一MLME上报该测量结果上报帧,第一MLME处理该测量结果上报帧并通过测量结果上报通知原语上报测量结果信息(例如CSI数据)给第一SME,第一SME通过上报测量结果的接口给上层应用上报该测量结果信息。
感知过程的异常处理:
由于感知结果的有效性和准确性受到下列参数的影响,包括但不限于:参与测量的站点的数量,和/或测量使用的带宽,和/或测量使用的发送空域流数目(Number of Spatial Streams,NSS),和/或测量使用的接收空域流数目,导致这些因素发生变化的情况都有可能造成感知中发生异常,所以需要对这些异常情况或错误情况进行相应处理,详情如下。
又由于感知和通信在整个WLAN系统中可能同时存在,需要考虑它们互相影响可能导致的用户体验下降,例如视频数据负载较高时如果进行感知测量则可能导致视频卡顿,所以也需要进行相应处理。如图18所示:
步骤701,感知发起设备和感知响应设备开始感知测量;
步骤702,感知发起设备(具体例如其站点管理实体)检测到异常情况;
步骤703,站点管理实体向上层应用上报异常信息(或异常状态或异常信号);
步骤704,上层应用确定是否满足预设条件;
如果是,则执行步骤1805;如果否,则执行步骤1806。
步骤705,暂停/结束/更新感知测量配置;
步骤706,结束感知测量。
图19示出了本申请一个示例性实施例提供的异常处理方法的流程图。本实施例以该方法由站点管理实体和上层应用执行来举例说明。该方法包括:
步骤802:感知发起设备接收第一感知响应设备发送的状态变化信息;
第一感知响应设备在自身操作模式发生变化时,向站点管理设备发送状态变化信息。也即,状态变化信息是第一感知响应设备在自身操作模式发生变化时发送的。
其中,第一感知响应设备是在感知测量过程中向感知发起设备上报信息的设备。或者,第一感知响应设备是在感知测量过程中发生状态变化的设备。
示意性的,状态变化信息携带在如下信息中的至少一种:
·操作模式通知;
·操作模式指示;
·第一感知响应设备在变化后能支持的最大带宽;
·第一感知响应设备在变化后能支持的最大发送空域流数目;
·第一感知响应设备在变化后能支持的最大接收空域流数目。
其中,操作模式通知是操作模式通知帧,或携带操作模式通知元素的其他帧;操作模式指示携带有操作模式控制子字段和/或EHT操作模式控制子字段。
示意性的,感知响应设备的第二MLME生成操作模式通知帧和/或操作模式指示帧并通过物理层接口 发送该帧给感知发起设备。感知发起设备收到该操作模式通知帧和/或操作模式指示帧后通过物理层接口给第一MLME上报该帧,第一MLME处理该帧并通过测量设置状态通知原语上报测量设置状态信息(操作模式变化影响到的一个或多个测量设置及相关信息)给第一SME,第一SME通过上报执行状态的接口给上层应用上报该异常状态。
步骤804:感知发起设备的站点管理实体通过第六接口,向上层应用上报异常状态。
示意性的,异常状态包括如下至少一种:
·异常状态的错误代码;
·异常状态的相关信息;
·不再参与感知测量的第一感知响应设备的标识符;
·第一感知响应设备在变化后能支持的最大带宽;
·第一感知响应设备在变化后能支持的最大发送空域流数目;
·第一感知响应设备在变化后能支持的最大接收空域流数目。
在一些实施例中,站点管理实体在状态变化信息满足第一上报条件的情况下,通过第六接口向上层应用上报异常状态。示意性的,第一上报条件包括如下任意一种:
参与测量的感知响应设备支持的发送空域流数目变少;
参与测量的感知响应设备支持的接收空域流数目变少;
参与测量的感知响应设备支持的带宽变少。
步骤806:站点管理实体通过至少一个接口,接收上层应用对异常状态的处理指示。
其中,处理指示是上层应用自行生成的;或,处理指示是上层应用基于用户的人机交互操作生成的。
其中,处理指示包括如下至少一种:
忽略异常状态;
继续WLAN感知;
结束WLAN感知;
更新感知测量配置;
继续使用第一感知响应设备;
暂停第一感知响应设备的感知测量设置;
恢复第一感知响应设备的感知测量设置;
结束第一感知响应设备的感知测量设置;
与第二感知响应设备建立感知测量设置,第二感知响应设备是用于替换第一感知响应设备的设备。
在一些实施例中,站点管理实体在上报信息不满足第一上报条件的情况下,自行处理异常状态。其中,自行处理异常状态包括如下至少一种:
继续WLAN感知;
结束WLAN感知;
更新感知测量配置;
继续使用第一感知响应设备;
暂停第一感知响应设备的感知测量设置;
恢复第一感知响应设备的感知测量设置;
结束第一感知响应设备的感知测量设置;
与第二感知响应设备建立感知测量设置,第二感知响应设备是用于替换第一感知响应设备的设备。
综上所述,本实施例提供的方法,通过在站点管理实体监测到感知响应设备的状态变化信息满足第一上报条件的情况下,向上层应用上报异常状态,使得上层应用能够感知和处理异常状态,及时暂停/结束/更新感知测量设置,从而实现对异常状态的处理。
图20示出了本申请一个示例性实施例提供的异常处理方法的流程图。本实施例以该方法由站点管理实体和上层应用执行来举例说明。该方法包括:
步骤902:站点管理实体在感知测量的状态参数满足第二上报条件的情况下,生成异常状态;
示意性的,第二上报条件包括如下四种条件中的任意一种:
·参与测量的感知响应设备的数量小于所述上层应用指定的最小数量;
·参与测量的感知响应设备的数量小于所述上层应用指定的最小数量,且存在至少一个第二感知响应设备,第二感知响应设备是用于替换第一感知响应设备的设备;
·参与测量的感知响应设备的数量小于所述上层应用指定的最小数量,且不存在至少一个所述第二感知响应设备;
·BSS负载达到阈值。
在站点损坏,或站点电量不足,或站点因用户操作而主动跟AP解除关联,或站点离开BSS覆盖范围而解除关联的情况下,感知响应设备变少,感知发起设备中的站点管理实体检测出感知响应设备变少。
其中,BSS负载采用如下指标中的至少一种指示:
·信道利用率(Channel Utilization);
信道繁忙时间在测算总时间中的比率。
·可用的准入时间((Available Admission Capacity);
可用于显式准入控制的媒介访问时间。
·感知占用率;
感知占用的时间在测算总时间中的比率。
·测距占用率;
测距占用的时间在测算总时间中的比率。
·感知和测距占用率。
感知和测距占用的时间在测算总时间中的比率。
相应的,上述阈值通常是一个阈值或多个阈值的组合。比如,上述阈值可能都包括以下阈值中的至少一个:信道利用率阈值、可用的准入时间阈值、感知占用率阈值、测距占用率阈值、感知和测距占用率阈值。
步骤904:站点管理实体通过第六接口,向上层应用上报异常状态。
示意性的,异常状态包括如下至少一种:
·异常状态的错误代码;
·异常状态的相关信息;
·BSS负载。
步骤906:站点管理实体通过至少一个接口,接收上层应用对异常状态的处理指示。
其中,处理指示是上层应用自行生成的;或,处理指示是上层应用基于用户的人机交互操作生成的。
其中,处理指示包括如下至少一种:
忽略异常状态;
继续WLAN感知;
结束WLAN感知;
更新感知测量配置;
继续使用第一感知响应设备;
暂停第一感知响应设备的感知测量设置;
恢复第一感知响应设备的感知测量设置;
结束第一感知响应设备的感知测量设置;
与第二感知响应设备建立感知测量设置,第二感知响应设备是用于替换第一感知响应设备的设备。
综上所述,本实施例提供的方法,通过在站点管理实体监测到BSS负载满足第二上报条件的情况下,向上层应用上报异常状态,使得上层应用能够感知和处理异常状态,及时暂停/结束/更新感知测量设置,从而实现对异常状态的处理。
示例一:感知响应设备数目变少;
在一些实施例中,上层应用(例如步态识别应用)需要多个感知响应设备参与感知测量才能得到精度足够的测量结果,而在运行中某个或某些第一感知响应设备可能出现异常(例如:站点损坏,或站点电量不足,或站点因用户操作而主动跟AP解除关联,或站点离开BSS覆盖范围而解除关联)而不能继续参与测量,导致参与测量的总站点数目变少,以致无法满足上层应用的精度要求。
因此,上层应用通过前述用于建立测量设置的第一接口给感知发起设备的SME指示参与感知测量的设备的最小数目。在参与测量的总站点数目变少时,感知发起设备的SME需要通过前述上报执行状态的第六接口给上层应用指示测量设置标识符和异常状态的错误代码(具体为发生站点数目减少):
如果上层应用没有指定参与测量的具体站点,且如果有一个或多个可替换的站点,感知发起设备的SME可以不用通知上层应用,而自动使用可替换的站点。也即,SME通过建立测量设置的接口指示感知发起设备与可替换的站点建立相应的感知测量设置。其中,被替换的站点即为第一感知响应设备;可替换的站点即为第二感知响应设备。
如果上层应用指定了参与测量的具体站点,且如果有一个或多个可替换的站点,感知发起设备的SME还可以给上层应用指示有一个或多个可替换的站点,上层应用可以自动确认使用可替换的站点;也可以提示用户,让用户确认是否使用可替换的站点。如果用户确认使用,则使用所述可替换的站点;如果用户确认不使用,则通过结束测量设置的第二接口指示感知发起设备与该感知测量设置所涉及的所有感知响应设 备结束该感知测量设置。
如果上层应用没有指定参与测量的具体站点,或者,如果上层应用指定参与测量的具体站点且没有可替换的站点,上层应用可以自动确认继续进行测量,或者自动结束该感知测量设置,并通过上报执行状态的第六接口给上层应用指示测量设置标识符和错误代码(具体为因站点数目减少导致自动结束测量),也可以提示用户,让用户确认是否忽略该异常而继续进行测量。如果用户确认继续,则继续测量;如果用户确认不继续,则通过结束测量设置的第二接口指示感知发起设备与该感知测量设置所涉及的所有感知响应设备结束该感知测量设置。
示例二:感知响应设备操作模式变化;
当第一感知响应设备出现电量不足但想延长工作时,会进行操作模式(OM,Operating Mode)变化(降低带宽和/或减少能支持的发送空域流数目和/或减少能支持的接收空域流数目)来达到延长工作时长的效果。操作模式变化后可能会对感知过程产生影响,例如带宽越小感知结果的量化误差越大,空域流数目越小感知结果的CSI矩阵维度降低,导致感知的准确性降低。
感知响应设备(例如non-AP STA)在其自身操作模式发生变化时,会给感知发起设备(例如AP)发送操作模式通知(OMN,Operating Mode Notification)或者操作模式指示(OMI,Operating Mode Indication),感知发起设备收到后通过上报执行状态的接口给上层应用指示测量设置标识符、错误代码(具体为站点操作模式变化)和相关信息(包括相应感知响应设备的标识符,和/或变化后能支持的最大带宽,和/或变化后能支持的最大发送空域流数目,和/或变化后能支持的最大接收空域流数目)。其中,OMN可以是OMN帧,也可以是携带OMN元素的其他帧。其中,OMI是携带有操作模式控制子字段(OM Control subfield)和/或EHT操作模式控制子字段(EHTOM Control subfield)的帧。
上层应用可以自动确认继续使用该站点。示意性的,若变化后能支持的最大带宽和能支持的最大发送空域流数目和能支持的最大接收空域流数目仍能满足上层应用指示的相关精度需求则无需更多处理;若不能满足,则通过结束测量设置的接口指示感知发起设备与该感知响应设备结束相应的感知测量设置,然后通过建立测量设置的接口指示感知发起设备与该感知响应设备建立更新的测量设置,更新的测量设置可以包括更新的感知带宽,和/或更新的感知发送空时流数目,和/或更新的感知接收空时流数目,和/或更新的感知角色。
上层应用也可以自动结束该测量设置,比如通过结束测量设置的接口指示感知发起设备与该感知测量设置所涉及的所有感知响应设备结束该感知测量设置),并通过上报执行状态的接口给上层应用指示测量设置标识符和错误代码,该错误的代码为因站点操作模式变化导致自动结束测量。
上层应用也可以提示用户。让用户确认是否继续该测量;如果用户确认是,则更新测量设置如前述;如果用户确认否,则结束测量设置如前述。
示例三:BSS负载太高;
在一个示例中,AP通过测算信道利用率、可用的准入时间等指标能够判断BSS负载情况,在写字楼、商场、体育场、展览馆等区域可能容易出现BSS负载比较高的情况。为了优先保证通信的用户体验,当BSS负载比较高时需要对感知测量进行相应的调整,例如暂停或结束感知测量设置,又例如降低周期性感知测量的频次。
AP还可以计算感知占用率、测距占用率、感知和测距占用率等指标来辅助决策处理负载较高时对感知的处理。也即,BSS负载还可以采用感知占用率、测距占用率、感知和测距占用率等指标来衡量。
感知发起设备的SME在判断BSS负载较高时,通过上报执行状态的接口给上层应用指示测量设置标识符、错误代码(具体为BSS过载)和/或BSS负载信息(例如信道利用率,和/或可用的准入时间,和/或感知占用率,和/或测距占用率,和/或感知和测距占用率)。
当BSS负载低于第一预设阈值时,上层应用可以自动确认继续进行感知测量;
当BSS负载高于第一预设阈值时,上层应用可以自动降低周期性感知测量的频次,更新测量设置比如,通过结束测量设置的接口指示感知发起设备与该感知测量设置所涉及的所有感知响应设备结束该感知测量设置,然后通过建立测量设置的接口指示感知发起设备与该感知响应设备建立更新的测量设置。上层应用也可以提示用户让用户确认是否降低周期性感知测量的频次。如果用户选择是,则更新测量设置如前述;如果用户选择否,则通过结束测量设置的接口指示感知发起设备与该感知测量设置所涉及的所有感知响应设备结束该感知测量设置。
当负载高于第二预设阈值时,上层应用可以自动确认暂停测量设置,比如通过暂停测量设置的接口指示感知发起设备与该感知测量设置所涉及的所有感知响应设备暂停该感知测量设置,也可以提示用户让用户确认是否暂停测量设置(暂停该感知测量设置如前述)。
若一段时间之后,BSS负载降低,即当负载低于第三预设阈值时,上层应用可以自动确认恢复测量设置。比如,上层应用通过恢复测量设置的接口指示感知发起设备与该感知测量设置所涉及的所有感知响应 设备恢复该感知测量设置,也可以提示用户让用户确认是否恢复测量设置(恢复该感知测量设置如前述)。
当负载高于第四预设阈值时,上层应用可以自动确认结束测量设置,比如上层应用通过结束测量设置的接口指示感知发起设备与该感知测量设置所涉及的所有感知响应设备结束该感知测量设置,也可以提示用户让用户确认是否结束测量设置(结束该感知测量设置如前述)。
图21示出了本申请一个示例性实施例示出的一种WLAN感知装置的框图。所述装置包括站点管理模块2120;
所述站点管理模块2120,用于通过至少一个接口与上层应用执行所述WLAN感知;
其中,所述接口是用于所述WLAN感知的接口。
在一个可选的实施例中,所述接口包括如下接口中的至少一个:
用于建立感知测量设置的第一接口;
用于结束感知测量设置的第二接口;
用于暂停感知测量设置的第三接口;
用于恢复感知测量设置的第四接口;
用于上报感知测量结果的第五接口;
用于上报执行状态的第六接口。
在一个可选的实施例中,所述接口包括所述第一接口;
所述站点管理模块2120,用于通过所述第一接口,接收所述上层应用对感知测量设置的建立指示;
所述站点管理模块2120,用于与至少一个感知响应设备建立所述感知测量设置。
在一个可选的实施例中,所述建立指示包括如下参数中的至少一种:
感知测量的最大距离;
感知测量的距离精度;
感知测量的最大速度;
感知测量的速度精度;
感知测量的角度精度;
感知测量的安全级别;
感知测量的频段;
参与感知测量的设备的最小数量;
参与感知测量的设备的感知角色设置;
感知测量的周期设置;
感知测量的总持续时间;
感知测量结果的类型;
感知测量的最小带宽;
感知测量的最小发送空域流数;
感知测量的最小接收空域流数。
在一个可选的实施例中,所述装置还包括:
所述站点管理模块2120,用于通过所述第一接口,向所述上层应用返回所述建立指示的执行结果。
在一个可选的实施例中,所述接口包括所述第二接口;
所述站点管理模块2120,用于通过至少一个接口与上层应用执行所述WLAN感知,包括:
所述站点管理模块2120,用于通过所述第二接口,接收所述上层应用对感知测量设置的结束指示;
所述站点管理模块2120,用于与至少一个感知响应设备结束所述感知测量设置。
在一个可选的实施例中,所述结束指示包括:测量设置标识符。
在一个可选的实施例中,所述装置还包括:
所述站点管理模块2120,用于通过所述第二接口,向所述上层应用返回所述结束指示的执行结果。
在一个可选的实施例中,所述接口包括所述第三接口;
所述站点管理模块2120,用于通过所述第三接口,接收所述上层应用对感知测量设置的暂停指示;
所述站点管理模块2120,用于与至少一个感知响应设备暂停所述感知测量设置。
在一个可选的实施例中,所述暂停指示包括:测量设置标识符;或,测量设置标识符和暂停时长。
在一个可选的实施例中,所述站点管理模块2120,用于通过所述第三接口,向所述上层应用返回所述暂停指示的执行结果。
在一个可选的实施例中,所述接口包括所述第四接口;
所述站点管理模块2120,用于通过所述第四接口,接收所述上层应用对感知测量设置的恢复指示;
所述站点管理模块2120,用于与至少一个感知响应设备恢复所述感知测量设置。
在一个可选的实施例中,所述恢复指示包括:测量设置标识符。
在一个可选的实施例中,所述站点管理模块2120,用于通过所述第四接口,向所述上层应用返回所述恢复指示的执行结果。
在一个可选的实施例中,所述接口包括所述第五接口;
所述站点管理模块2120,用于接收至少一个感知响应设备发送的测量结果;
所述站点管理模块2120,用于通过所述第五接口,向所述上层应用上报感知测量结果。
在一个可选的实施例中,所述感知测量结果包括:测量设置标识符和所述测量结果。
在一个可选的实施例中,所述接口包括所述第六接口;
所述站点管理模块2120,用于通过至少一个接口与上层应用执行所述WLAN感知,包括:
所述站点管理模块2120,用于通过所述第六接口,向所述上层应用上报所述WLAN感知中各个操作的执行状态。
在一个可选的实施例中,所述执行状态携带如下至少一种信息:
所述操作的操作类型;
所述操作的状态代码;
测量设置标识符;
执行失败的原因代码。
在一个可选的实施例中,所述接口包括所述第六接口;
所述站点管理模块2120,用于通过所述第六接口,向所述上层应用上报异常状态。
在一个可选的实施例中,所述异常状态包括如下至少一种:
所述异常状态的错误代码;
所述异常状态的相关信息;
第一感知响应设备在变化后能支持的最大带宽;
所述第一感知响应设备在变化后能支持的最大发送空域流数目;
所述第一感知响应设备在变化后能支持的最大接收空域流数目;
BSS负载。
在一个可选的实施例中,所述站点管理模块2120,用于检测BSS中站点数目变化信息。
在一个可选的实施例中,所述站点管理模块2120,用于接收第一感知响应设备发送的状态变化信息。
在一个可选的实施例中,所述状态变化信息是所述第一感知响应设备在自身操作模式发生变化时发送的。
在一个可选的实施例中,所述状态变化信息携带在如下信息中的至少一种:
操作模式通知;
操作模式指示;
其中,所述操作模式指示携带有操作模式控制子字段和/或EHT操作模式控制子字段。
在一个可选的实施例中,所述站点管理模块2120,用于通过所述第六接口,向所述上层应用上报所述WLAN感知的异常状态,包括:
所述站点管理模块2120,用于在所述状态变化信息满足第一上报条件的情况下,通过所述第六接口向所述上层应用上报所述异常状态。
在一个可选的实施例中,所述第一上报条件包括如下任意一种:
参与测量的感知响应设备支持的发送空域流数目变少;
参与测量的感知响应设备支持的接收空域流数目变少;
参与测量的感知响应设备支持的带宽变少。
在一个可选的实施例中,所述装置还包括:
所述站点管理模块2120,用于在所述上报信息不满足所述第一上报条件的情况下,自行处理所述上报信息。
在一个可选的实施例中,所述自行处理所述上报信息,包括如下至少一种:
继续所述WLAN感知;
结束所述WLAN感知;
更新感知测量配置;
继续使用所述第一感知响应设备;
与第二感知响应设备建立感知测量设置,所述第二感知响应设备是用于替换第一感知响应设备的设备。
在一个可选的实施例中,所述装置还包括:
所述站点管理模块2120,用于在感知测量的状态参数满足第二上报条件的情况下,生成所述异常状态。
在一个可选的实施例中,所述第二上报条件包括如下条件中的至少一种:
参与测量的感知响应设备数量小于所述上层应用指定的最小数量;
参与测量的感知响应设备数量小于所述上层应用指定的最小数量,且存在至少一个第二感知响应设备,所述第二感知响应设备是用于替换第一感知响应设备的设备;
参与测量的感知响应设备数量小于所述上层应用指定的最小数量,且不存在至少一个所述第二感知响应设备;
BSS负载达到阈值;其中,所述BSS负载采用如下指标中的至少一种指示:
信道利用率;
可用的准入时间;
感知占用率;
测距占用率;
感知和测距占用率。
在一个可选的实施例中,所述装置还包括:
所述站点管理模块2120,用于通过所述至少一个接口,接收所述上层应用对所述异常状态的处理指示。
在一个可选的实施例中,所述处理指示包括如下至少一种:
忽略所述异常状态;
继续所述WLAN感知;
结束所述WLAN感知;
更新感知测量配置;
继续使用第一感知响应设备;
暂停第一感知响应设备的感知测量设置;
恢复第一感知响应设备的感知测量设置;
结束第一感知响应设备的感知测量设置;
与第二感知响应设备建立感知测量设置,所述第二感知响应设备是用于替换所述第一感知响应设备的设备。
在一个可选的实施例中,所述处理指示是所述上层应用自行生成的;或,所述处理指示是所述上层应用基于用户的人机交互操作生成的。
图22示出了本申请一个示例性实施例提供的通信设备(站点)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片,该通信组件可以称为收发器。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
其中,当通信设备实现为终端设备时,本申请实施例涉及的通信设备中的处理器和收发器,可以执行上述各个实施例所示的方法中,由站点执行的步骤,此处不再赘述。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的WLAN感知方法。
在示例性实施例中,还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在计算机设备上运行时,用于实现上述方面所述的WLAN感知方法。
在示例性实施例中,还提供了一种计算机程序产品,该计算机程序产品在计算机设备的处理器上运行时,使得计算机设备执行上述方面所述的WLAN感知方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以 是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (67)

  1. 一种WLAN感知方法,其特征在于,应用于站点中,所述站点中运行有站点管理实体,所述方法包括:
    所述站点管理实体通过至少一个接口与上层应用执行所述WLAN感知;
    其中,所述接口是用于所述WLAN感知的接口。
  2. 根据权利要求1所述的方法,其特征在于,所述接口包括如下接口中的至少一个:
    用于建立感知测量设置的第一接口;
    用于结束感知测量设置的第二接口;
    用于暂停感知测量设置的第三接口;
    用于恢复感知测量设置的第四接口;
    用于上报感知测量结果的第五接口;
    用于上报执行状态的第六接口。
  3. 根据权利要求2所述的方法,其特征在于,所述接口包括所述第一接口;
    所述站点管理实体通过至少一个接口与上层应用执行所述WLAN感知,包括:
    所述站点管理实体通过所述第一接口,接收所述上层应用对感知测量设置的建立指示;
    所述站点管理实体与至少一个感知响应设备建立所述感知测量设置。
  4. 根据权利要求3所述的方法,其特征在于,所述建立指示包括如下参数中的至少一种:
    感知测量的最大距离;
    感知测量的距离精度;
    感知测量的最大速度;
    感知测量的速度精度;
    感知测量的角度精度;
    感知测量的安全级别;
    感知测量的频段;
    参与感知测量的设备的最小数量;
    参与感知测量的设备的感知角色设置;
    感知测量的周期设置;
    感知测量的总持续时间;
    感知测量结果的类型;
    感知测量的最小带宽;
    感知测量的最小发送空域流数;
    感知测量的最小接收空域流数。
  5. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述站点管理实体通过所述第一接口,向所述上层应用返回所述建立指示的执行结果。
  6. 根据权利要求2所述的方法,其特征在于,所述接口包括所述第二接口;
    所述站点管理实体通过至少一个接口与上层应用执行所述WLAN感知,包括:
    所述站点管理实体通过所述第二接口,接收所述上层应用对感知测量设置的结束指示;
    所述站点管理实体与至少一个感知响应设备结束所述感知测量设置。
  7. 根据权利要求6所述的方法,其特征在于,所述结束指示包括:
    测量设置标识符。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述站点管理实体通过所述第二接口,向所述上层应用返回所述结束指示的执行结果。
  9. 根据权利要求2所述的方法,其特征在于,所述接口包括所述第三接口;
    所述站点管理实体通过至少一个接口与上层应用执行所述WLAN感知,包括:
    所述站点管理实体通过所述第三接口,接收所述上层应用对感知测量设置的暂停指示;
    所述站点管理实体与至少一个感知响应设备暂停所述感知测量设置。
  10. 根据权利要求9所述的方法,其特征在于,所述暂停指示包括:
    测量设置标识符;或,测量设置标识符和暂停时长。
  11. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述站点管理实体通过所述第三接口,向所述上层应用返回所述暂停指示的执行结果。
  12. 根据权利要求2所述的方法,其特征在于,所述接口包括所述第四接口;
    所述站点管理实体通过至少一个接口与上层应用执行所述WLAN感知,包括:
    所述站点管理实体通过所述第四接口,接收所述上层应用对感知测量设置的恢复指示;
    所述站点管理实体与至少一个感知响应设备恢复所述感知测量设置。
  13. 根据权利要求12所述的方法,其特征在于,所述恢复指示包括:
    测量设置标识符。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述站点管理实体通过所述第四接口,向所述上层应用返回所述恢复指示的执行结果。
  15. 根据权利要求2所述的方法,其特征在于,所述接口包括所述第五接口;
    所述站点管理实体通过至少一个接口与上层应用执行所述WLAN感知,包括:
    所述站点管理实体接收至少一个感知响应设备发送的测量结果;
    所述站点管理实体通过所述第五接口,向所述上层应用上报感知测量结果。
  16. 根据权利要求11所述的方法,其特征在于,所述感知测量结果包括:
    测量设置标识符和所述测量结果。
  17. 根据权利要求2所述的方法,其特征在于,所述接口包括所述第六接口;
    所述站点管理实体通过至少一个接口与上层应用执行所述WLAN感知,包括:
    所述站点管理实体通过所述第六接口,向所述上层应用上报所述WLAN感知中各个操作的执行状态。
  18. 根据权利要求17所述的方法,其特征在于,所述执行状态携带如下至少一种信息:
    所述操作的操作类型;
    所述操作的状态代码;
    测量设置标识符;
    执行失败的原因代码。
  19. 根据权利要求1至18任一所述的方法,其特征在于,所述接口包括所述第六接口;所述方法还包括:
    所述站点管理实体通过所述第六接口,向所述上层应用上报异常状态。
  20. 根据权利要求19所述的方法,其特征在于,所述异常状态包括如下至少一种:
    所述异常状态的错误代码;
    所述异常状态的相关信息;
    不再参与感知测量的一个或多个第一感知响应设备的标识符;
    所述第一感知响应设备在操作模式变化后能支持的最大带宽;
    所述第一感知响应设备在操作模式变化后能支持的最大发送空域流数目;
    所述第一感知响应设备在操作模式变化后能支持的最大接收空域流数目;
    基本服务集BSS负载。
  21. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述站点管理实体接收第一感知响应设备发送的状态变化信息。
  22. 根据权利要求21所述的方法,其特征在于,所述状态变化信息是所述第一感知响应设备在自身操作模式发生变化时发送的。
  23. 根据权利要求21所述的方法,其特征在于,所述状态变化信息携带在如下信息中的至少一种:
    操作模式通知;
    操作模式指示;
    其中,所述操作模式通知是操作模式通知帧,或携带操作模式通知元素的其他帧;所述操作模式指示携带有操作模式控制子字段和/或EHT操作模式控制子字段。
  24. 根据权利要求21所述的方法,其特征在于,所述站点管理实体通过所述第六接口,向所述上层应用上报所述WLAN感知的异常状态,包括:
    所述站点管理实体在所述状态变化信息满足第一上报条件的情况下,通过所述第六接口向所述上层应用上报所述异常状态。
  25. 根据权利要求24所述的方法,其特征在于,所述第一上报条件包括如下任意一种:
    参与测量的感知响应设备支持的发送空域流数目变少;
    参与测量的感知响应设备支持的接收空域流数目变少;
    参与测量的感知响应设备支持的带宽变少。
  26. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    所述站点管理实体在所述上报信息不满足所述第一上报条件的情况下,自行处理所述上报信息。
  27. 根据权利要求26所述的方法,其特征在于,所述自行处理所述上报信息,包括如下至少一种:
    继续所述WLAN感知;
    结束所述WLAN感知;
    更新感知测量配置;
    继续使用所述第一感知响应设备;
    与第二感知响应设备建立感知测量设置,所述第二感知响应设备是用于替换第一感知响应设备的设备。
  28. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述站点管理实体在感知测量的状态参数满足第二上报条件的情况下,生成所述异常状态。
  29. 根据权利要求28所述的方法,其特征在于,所述第二上报条件包括如下四种条件的任意一种:
    参与测量的感知响应设备的数量小于所述上层应用指定的最小数量;
    参与测量的感知响应设备的数量小于所述上层应用指定的最小数量,且存在至少一个第二感知响应设备,所述第二感知响应设备是用于替换第一感知响应设备的设备;
    参与测量的感知响应设备的数量小于所述上层应用指定的最小数量,且不存在至少一个所述第二感知响应设备;
    BSS负载达到阈值;
    其中,所述BSS负载采用如下指标中的至少一种指示:信道利用率;可用的准入时间;感知占用率;测距占用率;感知和测距占用率。
  30. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述站点管理实体通过所述至少一个接口,接收所述上层应用对所述异常状态的处理指示。
  31. 根据权利要求30所述的方法,其特征在于,所述处理指示包括如下至少一种:
    忽略所述异常状态;
    继续所述WLAN感知;
    结束所述WLAN感知;
    更新感知测量配置;
    继续使用第一感知响应设备;
    暂停所述第一感知响应设备的感知测量设置;
    恢复所述第一感知响应设备的感知测量设置;
    结束所述第一感知响应设备的感知测量设置;
    与第二感知响应设备建立感知测量设置,所述第二感知响应设备是用于替换所述第一感知响应设备的设备。
  32. 根据权利要求28所述的方法,其特征在于,
    所述处理指示是所述上层应用自行生成的;
    或,
    所述处理指示是所述上层应用基于用户的人机交互操作生成的。
  33. 一种WLAN感知装置,其特征在于,所述装置包括站点管理模块:
    所述站点管理模块,用于通过至少一个接口与上层应用执行所述WLAN感知;其中,所述接口是用于所述WLAN感知的接口。
  34. 根据权利要求33所述的装置,其特征在于,所述接口包括如下接口中的至少一个:
    用于建立感知测量设置的第一接口;
    用于结束感知测量设置的第二接口;
    用于暂停感知测量设置的第三接口;
    用于恢复感知测量设置的第四接口;
    用于上报感知测量结果的第五接口;
    用于上报执行状态的第六接口。
  35. 根据权利要求34所述的装置,其特征在于,所述接口包括所述第一接口;
    所述站点管理模块,用于通过所述第一接口,接收所述上层应用对感知测量设置的建立指示;
    所述站点管理模块,用于与至少一个感知响应设备建立所述感知测量设置。
  36. 根据权利要求35所述的装置,其特征在于,所述建立指示包括如下参数中的至少一种:
    感知测量的最大距离;
    感知测量的距离精度;
    感知测量的最大速度;
    感知测量的速度精度;
    感知测量的角度精度;
    感知测量的安全级别;
    感知测量的频段;
    参与感知测量的设备的最小数量;
    参与感知测量的设备的感知角色设置;
    感知测量的周期设置;
    感知测量的总持续时间;
    感知测量结果的类型;
    感知测量的最小带宽;
    感知测量的最小发送空域流数;
    感知测量的最小接收空域流数。
  37. 根据权利要求35所述的装置,其特征在于,所述装置还包括:
    所述站点管理模块,用于通过所述第一接口,向所述上层应用返回所述建立指示的执行结果。
  38. 根据权利要求34所述的装置,其特征在于,所述接口包括所述第二接口;
    所述站点管理模块,用于通过至少一个接口与上层应用执行所述WLAN感知,包括:
    所述站点管理模块,用于通过所述第二接口,接收所述上层应用对感知测量设置的结束指示;
    所述站点管理模块,用于与至少一个感知响应设备结束所述感知测量设置。
  39. 根据权利要求38所述的装置,其特征在于,所述结束指示包括:
    测量设置标识符。
  40. 根据权利要求38所述的装置,其特征在于,所述装置还包括:
    所述站点管理模块,用于通过所述第二接口,向所述上层应用返回所述结束指示的执行结果。
  41. 根据权利要求34所述的装置,其特征在于,所述接口包括所述第三接口;
    所述站点管理模块,用于通过所述第三接口,接收所述上层应用对感知测量设置的暂停指示;
    所述站点管理模块,用于与至少一个感知响应设备暂停所述感知测量设置。
  42. 根据权利要求41所述的装置,其特征在于,所述暂停指示包括:
    测量设置标识符;或,测量设置标识符和暂停时长。
  43. 根据权利要求41所述的装置,其特征在于,
    所述站点管理模块,用于通过所述第三接口,向所述上层应用返回所述暂停指示的执行结果。
  44. 根据权利要求34所述的装置,其特征在于,所述接口包括所述第四接口;
    所述站点管理模块,用于通过所述第四接口,接收所述上层应用对感知测量设置的恢复指示;
    所述站点管理模块,用于与至少一个感知响应设备恢复所述感知测量设置。
  45. 根据权利要求42所述的装置,其特征在于,所述恢复指示包括:
    测量设置标识符。
  46. 根据权利要求42所述的装置,其特征在于,
    所述站点管理模块,用于通过所述第四接口,向所述上层应用返回所述恢复指示的执行结果。
  47. 根据权利要求34所述的装置,其特征在于,所述接口包括所述第五接口;
    所述站点管理模块,用于接收至少一个感知响应设备发送的测量结果;
    所述站点管理模块,用于通过所述第五接口,向所述上层应用上报感知测量结果。
  48. 根据权利要求43所述的装置,其特征在于,所述感知测量结果包括:
    测量设置标识符和所述测量结果。
  49. 根据权利要求34所述的装置,其特征在于,所述接口包括所述第六接口;
    所述站点管理模块,用于通过至少一个接口与上层应用执行所述WLAN感知,包括:
    所述站点管理模块,用于通过所述第六接口,向所述上层应用上报所述WLAN感知中各个操作的执行状态。
  50. 根据权利要求49所述的装置,其特征在于,所述执行状态携带如下至少一种信息:
    所述操作的操作类型;
    所述操作的状态代码;
    测量设置标识符;
    执行失败的原因代码。
  51. 根据权利要求33至40任一所述的装置,其特征在于,所述接口包括所述第六接口;
    所述站点管理模块,用于通过所述第六接口,向所述上层应用上报异常状态。
  52. 根据权利要求51所述的装置,其特征在于,所述异常状态包括如下至少一种:
    所述异常状态的错误代码;
    所述异常状态的相关信息;
    不再参与感知测量的一个或多个第一感知响应设备的标识符;
    所述第一感知响应设备在变化后能支持的最大带宽;
    所述第一感知响应设备在变化后能支持的最大发送空域流数目;
    所述第一感知响应设备在变化后能支持的最大接收空域流数目;
    BSS负载。
  53. 根据权利要求51所述的装置,其特征在于,
    所述站点管理模块,用于接收第一感知响应设备发送的状态变化信息。
  54. 根据权利要求53所述的装置,其特征在于,所述状态变化信息是所述第一感知响应设备在自身操作模式发生变化时发送的。
  55. 根据权利要求53所述的装置,其特征在于,所述状态变化信息携带在如下信息中的至少一种:
    操作模式通知;
    操作模式指示;
    其中,所述操作模式通知是操作模式通知帧,或携带操作模式通知元素的其他帧;所述操作模式指示携带有操作模式控制子字段和/或EHT操作模式控制子字段。
  56. 根据权利要求53所述的装置,其特征在于,所述站点管理模块,用于通过所述第六接口,向所述上层应用上报所述WLAN感知的异常状态,包括:
    所述站点管理模块,用于在所述状态变化信息满足第一上报条件的情况下,通过所述第六接口向所述上层应用上报所述异常状态。
  57. 根据权利要求56所述的装置,其特征在于,所述第一上报条件包括如下任意一种:
    参与测量的感知响应设备支持的发送空域流数目变少;
    参与测量的感知响应设备支持的接收空域流数目变少;
    参与测量的感知响应设备支持的带宽变少。
  58. 根据权利要求56所述的装置,其特征在于,所述装置还包括:
    所述站点管理模块,用于在所述上报信息不满足所述第一上报条件的情况下,自行处理所述上报信息。
  59. 根据权利要求58所述的装置,其特征在于,所述自行处理所述上报信息,包括如下至少一种:
    继续所述WLAN感知;
    结束所述WLAN感知;
    更新感知测量配置;
    继续使用所述第一感知响应设备;
    与第二感知响应设备建立感知测量设置,所述第二感知响应设备是用于替换第一感知响应设备的设备。
  60. 根据权利要求51所述的装置,其特征在于,所述装置还包括:
    所述站点管理模块,用于在感知测量的状态参数满足第二上报条件的情况下,生成所述异常状态。
  61. 根据权利要求60所述的装置,其特征在于,所述第二上报条件包括:
    参与测量的感知响应设备的数量小于所述上层应用指定的最小数量;
    参与测量的感知响应设备的数量小于所述上层应用指定的最小数量,且存在至少一个第二感知响应设备,所述第二感知响应设备是用于替换第一感知响应设备的设备;
    参与测量的感知响应设备的数量小于所述上层应用指定的最小数量,且不存在至少一个所述第二感知响应设备;
    BSS负载达到阈值;其中,所述BSS负载采用如下指标中的至少一种指示:信道利用率;可用的准入时间;感知占用率;测距占用率;感知和测距占用率。
  62. 根据权利要求51所述的装置,其特征在于,所述装置还包括:
    所述站点管理模块,用于通过所述至少一个接口,接收所述上层应用对所述异常状态的处理指示。
  63. 根据权利要求62所述的装置,其特征在于,所述处理指示包括如下至少一种:
    忽略所述异常状态;
    继续所述WLAN感知;
    结束所述WLAN感知;
    更新感知测量配置;
    继续使用第一感知响应设备;
    暂停所述第一感知响应设备的感知测量设置;
    恢复所述第一感知响应设备的感知测量设置;
    结束所述第一感知响应设备的感知测量设置;
    与第二感知响应设备建立感知测量设置,所述第二感知响应设备是用于替换所述第一感知响应设备的设备。
  64. 根据权利要求60所述的装置,其特征在于,所述处理指示是所述上层应用自行生成的;或,所述处理指示是所述上层应用基于用户的人机交互操作生成的。
  65. 一种站点,其特征在于,所述站点包括:处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行,以实现如权利要求1至32任一所述的WLAN感知方法。
  66. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以实现如权利要求1至32任一所述的WLAN感知方法。
  67. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路或程序,所述芯片用于实现如权利要求1至32中任一所述的WLAN感知方法。
PCT/CN2021/132916 2021-11-24 2021-11-24 Wlan感知方法、装置、设备及存储介质 WO2023092356A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/132916 WO2023092356A1 (zh) 2021-11-24 2021-11-24 Wlan感知方法、装置、设备及存储介质
CN202180101599.6A CN117898020A (zh) 2021-11-24 2021-11-24 Wlan感知方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/132916 WO2023092356A1 (zh) 2021-11-24 2021-11-24 Wlan感知方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023092356A1 true WO2023092356A1 (zh) 2023-06-01

Family

ID=86538425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132916 WO2023092356A1 (zh) 2021-11-24 2021-11-24 Wlan感知方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN117898020A (zh)
WO (1) WO2023092356A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080304521A1 (en) * 2007-06-05 2008-12-11 Koninklijke Philips Electronics, N.V. Internal signaling method to support clock synchronization of nodes connected via a wireless local area network
CN103648098A (zh) * 2013-12-28 2014-03-19 山东闻远通信技术有限公司 蜂窝网小基站和无线局域网路由器间协同的方法和系统
CN105265002A (zh) * 2013-05-02 2016-01-20 Lg电子株式会社 在无线lan系统中动态地感测信道的方法及其设备
CN112738758A (zh) * 2021-04-02 2021-04-30 成都极米科技股份有限公司 感知业务管理方法、装置、系统及可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080304521A1 (en) * 2007-06-05 2008-12-11 Koninklijke Philips Electronics, N.V. Internal signaling method to support clock synchronization of nodes connected via a wireless local area network
CN105265002A (zh) * 2013-05-02 2016-01-20 Lg电子株式会社 在无线lan系统中动态地感测信道的方法及其设备
CN103648098A (zh) * 2013-12-28 2014-03-19 山东闻远通信技术有限公司 蜂窝网小基站和无线局域网路由器间协同的方法和系统
CN112738758A (zh) * 2021-04-02 2021-04-30 成都极米科技股份有限公司 感知业务管理方法、装置、系统及可读存储介质

Also Published As

Publication number Publication date
CN117898020A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
CN106793170B (zh) 用户终端及数据的传输方法
US9107149B2 (en) Wireless portable computer capable of autonomously adjusting load of wireless base station
EP3437380B1 (en) Load control from control plane ciot eps optimisation
US10952116B2 (en) Communication system
JP2018514139A (ja) D2d中継ノードの確定方法、使用方法及び装置
US10251084B2 (en) Method for multi-rat scheduling and apparatus therefor in system in which heterogeneous wireless communication technologies are utilized
WO2017215275A1 (zh) 实现业务连续性的通信方法及装置
CN107005366B (zh) 在蓝牙会话之后重新启用数据帧聚合的方法、设备和介质
WO2012046391A1 (ja) 無線通信装置、無線通信方法、及び処理回路
CN108282819B (zh) 一种减少中断时延的方法、装置及用户设备
US20230143942A1 (en) Managing a ue preferred configuration
TWI489901B (zh) 實現用戶設備與外部網路之間通訊之方法及系統
WO2018126462A1 (zh) 一种通信方法、相关设备及系统
WO2011095002A1 (zh) 一种通信系统中的数据传输方法和系统
CN113747478A (zh) 通信方法及装置
CN110892753B (zh) 用于执行无线接入网络到wifi网络的切换的方法和设备
JP2023542679A (ja) 拡張ディスカバリ手順のための方法および端末デバイス
WO2015192578A1 (zh) 小区资源状态信息处理方法、装置及基站
WO2018177298A1 (zh) 一种负载均衡的方法及装置
WO2023092356A1 (zh) Wlan感知方法、装置、设备及存储介质
CN105592494B (zh) 一种均衡移动性管理设备池容量的方法
JP7157626B2 (ja) 通信装置、通信装置の制御方法、およびプログラム
WO2023092350A1 (zh) 通信方法和设备
WO2023130383A1 (zh) 感知方法和设备
EP4131824A1 (en) Data transmission method and apparatus, communication device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965094

Country of ref document: EP

Kind code of ref document: A1