WO2023090884A1 - Pharmaceutical composition comprising prrx1 inhibitor for prevention or treatment of cancer - Google Patents
Pharmaceutical composition comprising prrx1 inhibitor for prevention or treatment of cancer Download PDFInfo
- Publication number
- WO2023090884A1 WO2023090884A1 PCT/KR2022/018172 KR2022018172W WO2023090884A1 WO 2023090884 A1 WO2023090884 A1 WO 2023090884A1 KR 2022018172 W KR2022018172 W KR 2022018172W WO 2023090884 A1 WO2023090884 A1 WO 2023090884A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cancer
- prrx1
- pharmaceutical composition
- inhibitor
- fibroblasts
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- the present invention relates to a pharmaceutical composition for preventing or treating cancer comprising a PRRX1 inhibitor that attenuates or inhibits the expression or activity of PRRX1 overexpressed in cancer tissues, particularly cancer-associated fibroblasts.
- the tumor microenvironment is the environment surrounding cancer, including fibroblasts, blood and lymph vessels, immune cells, extracellular matrix (ECM), and adipocytes that exist inside or around tumors or cancer tissues. As a result, it regulates the growth or proliferation of cancer cells through various interactions, greatly affecting cancer progression or metastasis, cancer treatment response and effectiveness.
- Fibroblasts are one of the main cell types that make and maintain the stroma of cancer tissue. In particular, fibroblasts present in cancer tissue have the ability to strongly promote cancer progression through long-term interactions with cancer cells. They are separately called cancer-associated fibroblasts (CAFs).
- CAF is a key cell that helps cancer cells grow and proliferate. It is reprogrammed by various substances including cytokines secreted in the tumor microenvironment, and is a cell made from normal fibroblasts, which creates a thick and dense extracellular matrix of cancer. It is known to not only interfere with the penetration of drugs or immunotherapeutic agents into cancer tissue, but also secrete various cytokines to help the formation of blood vessels around cancer, drug resistance, and suppression of immunity.
- An object of the present invention is to provide a pharmaceutical composition for preventing or treating cancer containing a substance that attenuates or inhibits the expression or activity of PRRX1, which is overexpressed in cancer tissues, particularly cancer-associated fibroblasts.
- One aspect of the present invention provides a pharmaceutical composition for preventing or treating cancer comprising a PRRX1 inhibitor as an active ingredient.
- PRRX1 (Paired mesoderm homeobox protein 1) is a generic term for the PRRX1 gene and the PRRX1 protein encoded by the PRRX1 gene, and there are isoforms of PRRX1a and PRRX1b forms.
- PRRX1 protein plays a role as a transcription coactivator and forms various mesodermal muscles through the regulation of muscle creatine kinase. It is mainly expressed in the mesodermal layer during embryonic development and is In case of deletion of both PRRX1 and PRRX2, which are expressed in mesenchymal tissue, it is known that severe defects in differentiation of mesenchymal cells in the craniofacial region occur.
- the present inventors are colorectal cancer, lung cancer, ovarian cancer, squamous cell carcinoma.
- PRRX1 is overexpressed in cancer-associated fibroblasts constituting various cancer tissues such as gastric cancer, pancreatic cancer, esophageal cancer, and breast cancer, and acts as a master transcription factor (mTF) that determines cell gene regulation and cell specificity.
- mTF master transcription factor
- the PRRX1 inhibitor may inhibit the expression or activity of the PRRX1 gene or protein.
- the PRRX1 inhibitor may be at least one selected from the group consisting of antisense oligonucleotides, siRNA, shRNA, ribozymes, antibodies, antigen-binding fragments thereof, compounds, peptides, peptide mimetics, and aptamers.
- the expression inhibitor of the PRRX1 gene is from the group consisting of an antisense oligonucleotide, siRNA, shRNA, and ribozyme that bind complementary to the mRNA of the PRRX1 gene or the gene promoting the expression of PRRX1, respectively. It may be one or more selected species.
- the expression inhibitor of the PRRX1 gene may complementarily bind to mRNA containing the nucleotide sequence represented by SEQ ID NO: 1 or 2.
- the nucleotide sequence represented by SEQ ID NO: 1 is the mRNA sequence (GenBank Accession: NM_006902.5) of PRRX1 (transcript variant pmx-1a), and the nucleotide sequence represented by SEQ ID NO: 2 is the mRNA sequence of PRRX1 (transcript variant pmx-1b). mRNA sequence (Genbank Accession: NM_022716.4).
- the antisense oligonucleotide is a DNA or RNA sequence capable of binding to PRRX1 mRNA, and may inhibit translation, cytoplasmic translocation, maturation, or other essential activities for overall biological functions of PRRX1 mRNA.
- the length of the antisense nucleic acid is 6 to 100 bases, preferably 8 to 60 bases, more preferably 10 to 40 bases.
- Such antisense oligonucleotides may be modified at one or more bases, sugars or backbone positions to enhance efficacy.
- the siRNA small interference RNA refers to a nucleic acid molecule capable of mediating RNA interference or gene silencing, and since it can suppress the expression of a target gene, it is provided as an efficient gene knockdown method or gene therapy method.
- the siRNA molecule may have a double-stranded structure in which the sense strand and the antisense strand are located opposite to each other, or may have a single-stranded structure having self-complementary sense and antisense strands.
- the term complementary is meant to encompass incomplete complementarity as well as 100% complementarity.
- the siRNA in the present invention may have a sequence complementary to a portion of mRNA encoding the PRRX1 protein.
- the shRNA (small hairpin RNA or short hairpin RNA) represents an RNA sequence that makes a strong hairpin turn, which can be used to suppress or silence gene expression through RNA interference.
- the shRNA in the present invention may have a sequence complementary to a portion of mRNA encoding the PRRX1 protein, and preferably may include the nucleotide sequence represented by SEQ ID NO: 3 or 4.
- the shRNA represented by SEQ ID NO: 3 recognizes PRRX1a mRNA
- the shRNA represented by SEQ ID NO: 4 recognizes both PRRX1a and PRRX1b mRNAs and can block PRRX1 gene expression.
- the ribozyme refers to RNA having an enzyme function that catalyzes biochemical reactions such as RNA splicing, tRNA synthesis, and protein synthesis, and has a unique secondary structure such as a hairpin structure.
- the activity inhibitor of the PRRX1 protein is an antibody that specifically binds to the PRRX1 protein or a protein that stimulates the activation of PRRX1, an antigen-binding fragment thereof, a compound, a peptide, a peptide mimetics, and an aptase. It may be one or more selected from the group consisting of mer.
- the PRRX1 protein activity inhibitor may specifically bind to the protein expressed by the mRNA of SEQ ID NO: 1 or 2.
- the antibody refers to a specific protein molecule directed against an antigenic site.
- it means an antibody that specifically binds to PRRX1 as a target substance, and includes all of monoclonal antibodies, polyclonal antibodies and recombinant antibodies.
- the antibody includes functional fragments of antibody molecules as well as complete forms having two full-length light chains and two full-length heavy chains.
- a functional fragment of an antibody molecule means a fragment having at least an antigen-binding function, and may be Fab, F(ab'), F(ab')2, Fv, or the like.
- the peptide mimetics are small protein molecules having a chain structure designed to mimic peptides, and chemical structures are partially modified in commonly existing peptides to more advantageously control molecular properties such as stability and biological activity. it means.
- the aptamer is a nucleic acid or peptide capable of binding specifically and friendly to a target substance.
- it refers to a peptide that specifically and strongly binds to PRRX1, and has higher specificity and affinity than antibodies
- the PRRX1 inhibitor is preferably a siRNA, shRNA or miRNA (microRNA) that binds complementary to the mRNA of PRRX1, or an antibody or compound that specifically binds to the PRRX1 protein, and inhibits PRRX1 expression or activity at the gene level.
- siRNA or shRNA to block. Since siRNA or shRNA has a low degradation rate and a high turnover rate in the introduced cells, it has the advantage of being able to achieve a desired goal more effectively.
- the PRRX1 inhibitor may inhibit the proliferation or activity of cancer-associated fibroblasts (CAF).
- CAF cancer-associated fibroblasts
- SCAF36 human gastric cancer-associated fibroblasts
- the PRRX1 inhibitor may inhibit extracellular matrix contraction of cancer-associated fibroblasts.
- a pharmaceutical composition for preventing or treating cancer containing such a PRRX1 inhibitor changes the characteristics of cancer-associated fibroblasts, inhibits cell proliferation or activity, and facilitates the penetration of cancer therapeutic agents into cancer tissues, thereby promoting the death of cancer tissues. This can increase the effectiveness of cancer treatment.
- cancer refers to cells with aggressive cells that divide and grow beyond normal growth limits, invasive cells that infiltrate surrounding tissues, and metastatic cells that spread to other parts of the body. It means a general term for diseases caused by Here, cancer is also used in the same sense as malignant tumor.
- the cancer is leukemia, lymphoma, Hodgkin's disease, hematopoietic malignancy, cervical cancer, sarcoma, testicular cancer (testicular cancer), malignant melanoma, endocrine cancer, bone cancer, prostate cancer, uterus cancer, breast cancer, bladder cancer , renal cell carcinoma, central nervous system tumor, brain cancer, liver cancer, stomach cancer, pancreatic cancer, skin cancer, squamous cell carcinoma In the group consisting of squamous cell carcinoma lung cancer, larynx cancer, head and neck cancer, esophageal cancer, colorectal cancer and ovarian cancer It may be one or more selected species.
- prevention or treatment of cancer means suppressing the growth or proliferation of cancer cells or delaying the progression of cancer, and improving or ameliorating the symptoms of cancer.
- the "pharmaceutical composition for preventing or treating cancer” as used in the present invention refers to a substance used for the purpose of treating, mitigating, treating or preventing cancer in animals, including humans.
- the pharmaceutical composition may be formulated and used in various forms according to conventional methods. For example, it can be formulated into oral formulations such as powders, granules, tablets, capsules, suspensions, emulsions and syrups, and can be formulated and used in the form of external preparations, suppositories and sterile injection solutions.
- the pharmaceutical composition may further include a pharmaceutically acceptable carrier.
- the carrier is commonly used in preparation, and includes lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, and polyvinylpyrrolidone.
- composition of the present invention may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, and the like, in addition to the above components.
- the dosage of the pharmaceutical composition may vary depending on the formulation method, administration method, administration time and/or route of administration of the pharmaceutical composition, and the type and degree of response to be achieved by administration of the pharmaceutical composition, and the subject of administration
- the type of subject to be treated age, weight, general health condition, symptoms or severity of disease, sex, diet, excretion, drugs used concurrently or concurrently with the subject, and other factors of composition and other factors well known in the field of medicine. It may vary according to known similar factors, and those skilled in the art can easily determine and prescribe an effective dosage for the desired treatment. For example, it may be 0.001 to 1,000 mg/kg, 0.01 mg/kg to 100 mg/kg, or 0.1 mg/kg to 10 mg/kg per day, but is not limited thereto.
- the pharmaceutical composition may be administered to mammals such as rats, mice, livestock, and humans through various routes.
- the administration route and administration method of the pharmaceutical composition may be independent, respectively, and are not particularly limited in the method, and may follow any administration route and administration method as long as the pharmaceutical composition can reach the target site. there is.
- the pharmaceutical composition may be administered orally or parenterally.
- the parenteral administration method includes, for example, intravenous administration, intraperitoneal administration, intramuscular administration, transdermal administration or subcutaneous administration, etc., and a method of applying, spraying, or inhaling the pharmaceutical composition to the diseased area can also be used. may, but is not limited thereto.
- the pharmaceutical composition for preventing or treating cancer according to the present invention contains a PRRX1 inhibitor as an active ingredient, thereby suppressing the proliferation or activity of cancer tissues, particularly cancer-associated fibroblasts, and facilitating the penetration of cancer therapeutics into cancer tissues, resulting in cancer tissue By promoting the apoptosis of PRRX1, various cancers expressing PRRX1 can be effectively treated.
- Figure 1 shows cancer-associated fibroblast-specific mTFs identified using large-scale single cell RNA sequencing (scRNA-seq) datasets for colorectal cancer, lung cancer, ovarian cancer, squamous cell carcinoma, gastric cancer and pancreatic cancer
- A is scRNA-seq It is a flowchart of data analysis
- B is a graph comparing PRRX1 gene expression levels in normal fibroblasts and cancer-associated fibroblasts (Wilcoxon rank-sum test, *** p ⁇ 2e-16).
- Figure 2 confirms the level of PRRX1 protein expression in cancer tissues
- A is the ratio of PRRX1 protein expressed in CAFs of pancreatic cancer, ovarian cancer, lung cancer, HNSCC, gastric cancer, SCC and colorectal cancer (SMC and KUL)
- B is B cells , PRRX1 protein expression in CAFs, CD4 T cells, CD8 T cells, endothelial cells, macrophages, monocytes, neutrophils, NK cells and T cells.
- Figure 3 shows the correlation between cancer tissue and PRRX1 protein expression
- A is the PRRX1 protein expression level of colorectal cancer, gastric cancer, lung cancer, esophageal cancer and breast cancer using immunohistochemistry
- B is Kaplan-Meier (KM) survival rate analysis It is a graph of survival rate according to PRRX1 protein expression in CAFs of colorectal cancer, gastric cancer and esophageal cancer.
- Figure 4 confirms the ability of PRRX1 to reprogram normal fibroblasts.
- A is NSG in human gastric cancer cells (MKN28) alone or in combination with human gastric normal fibroblasts SNF32-FLAG, PRRX1a-overexpressing SNF32, or PRRX1b-overexpressing SNF32.
- MKN28 human gastric cancer cells
- SNF32-FLAG human gastric normal fibroblasts
- PRRX1a-overexpressing SNF32 or PRRX1b-overexpressing SNF32.
- It is a schematic diagram of subcutaneous co-implantation in a mouse
- B is a primary tumor volume graph and a tumor photograph of each group
- C is a H&E representative image of each group.
- Figure 5 confirms the promotion of cancer metastasis by PRRX1,
- A is human gastric cancer cells (MKN28) alone, or human gastric normal fibroblasts SNF32-FLAG, PRRX1a-overexpressing SNF32, or PRRX1b-overexpressing SNF32 mixed with NSG mice subcutaneously The incidence of lung metastasis in each group after co-transplantation, and B is the H&E representative image of metastasized lung cancer cells in each group.
- Figure 6 confirms the effect of PRRX1 in fibroblasts on tumorigenicity.
- A is a fibroblast-specific CAS9-expressing mouse (FSP1 cre ; CAS9 EGFP ) was created to delete PRRX1 in fibroblasts and injected LLC1-Luc-GFP.
- B is a schematic diagram of FSP1 cre ;CAS9 EGFP mice with a comparison of tumor size changes by PRRX1 deletion and tumor genetic values.
- Figure 7 is a schematic diagram of single cell RNA-seq analysis of human CAFs and CAFs classified according to the expression level of PRRX1 (high expression: H, low expression: L) using scRNA-seq data as a heatmap. show
- Figure 8 is a schematic diagram of bulk RNA-seq analysis obtained from mouse fibroblasts (mouse embryonic fibroblasts, skin wound healing fibroblasts and MMTV-CAF) and GSVA for ex vivo fibroblasts of PRRX1 WT or PRRX1 KO The analysis results are shown as a heat map.
- FIG. 11 is a schematic diagram of the construction of a transgenic mouse model in which fibroblast-specific PRRX1 depletion was induced by administering sgRNA (sgPrrx1) to PRRX1 before skin excision, and is a representative image of a wounded tissue 10 days after skin excision.
- sgRNA sgPrrx1
- FIG. 12 shows representative images of wound sites at 0, 3, 8, 10, 12, 15, and 18 days after wounding in fibroblast-specific PRRX1 knockdown (sgPrrx1) and control (sgNS) mice.
- Figure 13 is a schematic diagram of the construction of a tumor mouse model in which LLC1-Luc-GFP cancer cells were transplanted into a transgenic mouse (FSP1 cre ; CAS9 EGFP ).
- Figure 14 is a table (A) and a graph (B) showing the tumor response to each treatment drug.
- 15 is a representative image of tumor volume monitored by MRI for 10 weeks after each drug treatment.
- 16 is a representative image confirming long-term overall remission of tumors by MRI in the sgPrrx1 or sgPrrx1 and cisplatin treatment group.
- Human stomach cancer cell line MKN28 was purchased from the Korean Cell Line Bank and subcultured for less than 6 months before use.
- Lewis Lung carcinoma cell line LLC1 was purchased from ATCC. All cells were cultured in DMEM medium supplemented with 10% FBS and 1% antibiotics.
- FSP1-Cre-expressing mice (Stock No: 012641, Yeo et al., 2018) and Rosa26-LSL-Cas9 knockin mice (Stock No: 024857) were supplied by Jackson Laboratory. Mice were crossed on a C57BL/6 background, and all sexes were used with an age range of 1 to 4 months.
- adult FSP1 cre ; CAS9 EGFP transgenic mice were used .
- Excisional wounds were captured with a camera on days 0, 3, 8, 10, 12 and 18. Wound area was measured by histological analysis and wound healing and contraction analysis methods.
- sgPrrx1 was administered at an MOI of 0.01 twice a week for 32 weeks, and tumor tissues from mice were collected for follow-up studies, fixed with 10% normal buffered formalin, and embedded in paraffin. Tumor size was measured weekly using magnetic resonance imaging (MRI), and volume was calculated using Paravision software version 6.0 (Bruker-Biospin).
- a square volume coil (35 mm id) was used for excitation and signal reception.
- TR repetition time
- TE echo time
- NEX echo train length
- plane resolution 130 x 130 ⁇ m 2
- slice thickness 1 mm.
- Paravision software version 6.0 (Bruker-Biospin) was used to determine the tumor region in each slice of the image and draw regions of interest (ROIs) around the tumor volume.
- Immunostaining for PRRX1 protein was performed using an anti-PRRX1 monoclonal antibody (LS-bio LS-C336798).
- Samples used for tissue microarray (TMA) were age, sex, tumor size, depth of invasion (T), nodal status (N), metastasis (M), overall survival (OS), and disease-free survival.
- Clinical data including disease-free survival (DFS) are available. Staging according to the TNM classification was applied according to the guidelines of the 2010 American Joint Committee on Cancer staging manual.
- Immunohistochemical staining was performed according to a conventionally known method. Briefly, tissue sections were deparaffinized with xylene, dehydrated with alcohol, and finally treated with methanol containing hydrogen peroxide. Then, sections were treated with TE buffer (containing 10 mM Tris and 1 mM EDTA, pH 9.0) for antigen retrieval. To block non-specific staining, each section was treated with PBST containing 4% skim milk (PBS containing 0.1% Tween 20) for 30 minutes and then PBST containing 4% skim milk. was reacted with the primary antibody for 60 minutes at room temperature.
- TE buffer containing 10 mM Tris and 1 mM EDTA, pH 9.0
- Primary antibodies were: anti-PRRX1 (Origene TA803116, 1:400), anti-PRRX1 (LS-bio LS-C336798, 1:500), anti-aSMA (DAKO M0851, 1:200), anti- PCNA (Abcam ab29, 1:1000) and anti-PDGFRa (Cell signaling 3164, 1:100).
- the sections were then washed three times with PBS buffer and reacted with an anti-mouse/rabbit protein kit (Envision Plus) at room temperature. 3-amino-9-ethylcarbazole (AEC, SK-4205) was used as a coloring agent.
- Sections were counterstained with hematoxylin, and virtual slide images were generated using an Aperio® AT2 virtual slide scanner (Leica). Immunohistochemistry scores were determined semi-quantitatively.
- the intensity and percentage of staining-positive cells were determined as follows: [score 1], if less than 50% of stromal cells had weak staining or less than 20% had moderate staining; [2 points], when 50% or more is weak staining, 20 to 50% is medium staining, or less than 20% is strong staining; [3 points], if 50% or more is medium dyeing or 20% or more is strong dyeing.
- Image visualization processing steps and detailed protocols were performed according to conventional methods (Yeo, S. Y., et al. 2017 Oncotarget 8, 65265-65280). Visualization was performed by converting coregistered images to pseudo-color images using Image J Fiji software. In Image J Fiji, color deconvolution and hematoxylin staining signals for Plugin, DAB/AEC separation were processed.
- wound images were acquired on the day of wounding (day 0) and 3, 8, 10, 12, 15, and 18 days after wounding.
- Wound contraction and healing rates were quantified according to methods known in the art (Sung, C. O., et al. 2011 The American journal of pathology 179, 1827-1838; Lee, K. W., et al. 2015 Cancer research 75, 73-85 ).
- Wound contraction rate (%) (1 - (current wound area epithelialized area/original wound area)) x 100%
- Apoptosis assay was performed according to the manual of the BD Annexin V-APC Apoptosis Detection Kit (Cat. 550474, BD Biosciences). CAFs were separated, washed twice with PBS, and then resuspended in an annexin binding buffer (1xAnnexin binding Buffer). These CAFs were stained with Annexin V coupled to APC for 15-20 minutes in the dark at room temperature. After culturing, the cells were washed twice with an annexin binding buffer and resuspended in an annexin binding buffer containing propidium iodide, and the stained cells were immediately detected by flow cytometry.
- RNA-Sequencing for human colorectal cancer, lung cancer, ovarian cancer, squamous cell carcinoma, stomach cancer and pancreatic cancer
- scRNA-seq Six published single cell RNA-Sequencing (scRNA-seq) datasets were used, and the list of the datasets is shown in Table 2 below.
- scRNA-seq was performed on wound tissue from 10-day-old mice using 10X Chromium 3' v2 chemistry.
- the collected original scRNA-seq reads were aligned to the mouse ( Mus musculus ) reference genome using the cellranger v3.1.0 pipeline of 10X genomics.
- cells with less than 200 detected genes and genes expressed in less than 3 cells were removed.
- apoptotic cells in which mitochondrial transcripts were expressed at 5% or more were regarded as low-quality cells and discarded. 2,519 filtered cells were used for further analysis.
- log normalization was performed by calculating the total number of constant reads per cell and performing log transformation.
- PCA principal component analysis
- tSNE stochastic neighbor embedding
- TFs transcription factors
- DEG differentially expressed gene
- NF normal fibroblast
- CAF cancer-associated fibroblast
- PCC Pearson Correlation Coefficient
- mice Female wild type mice (Balb/c) were used for scRNA-seq. A 12 mm biopsy punch skin wound was made on the back of the mouse, and 10 days later, tissue at the wound site was incised. Tissues were finely cut and minced with a scalpel, and separated using DMEM/F-12 serum medium containing collagenase I at 37° C. for 12 hours on a shaker.
- RNA sequencing was performed using single cell A chip kit, Single Cell 3' Library and Gel Bead Kit V2, and i7 Multiplex Kit (10x Genomics) according to the manufacturer's instructions. Libraries were sequenced on the Illumina HiSeq2500 platform.
- the module score of single cell RNA seq data was calculated using Seurat's 'Add ModuleScore' function (Stuart T, etal. Cell 2019;177(7):1888-902).
- the modulus score is the average expression level of a gene associated with a particular feature in a particular single cell minus the average expression level of a randomly selected control gene.
- a high module score indicates that a gene of a particular characteristic is expressed more than expected in a particular single cell.
- the fibroblast activation score was calculated using a gene set related to fibroblast activation, and the ECM organization score was calculated using the gene of GO_EXTRACELLULAR_MATRIX in the Molecular Signatures Database (MSigDB), and the myofibroblast like score (Myofibroblast like score) was obtained using the gene of GO_REGULATION_OF_SUPRAMOLECULAR_FIBER_ORGANIZATION. ) was calculated.
- MSigDB Molecular Signatures Database
- NicheNet was used to detect activated ligands from scRNA-seq data. Ligand was predicted. To identify only activated ligands, NickeNet used a knowledge-based prior model of potential ligand-target regulatory networks. Then, the effect of each ligand on the expression of the recipient cells was predicted. To run NicheNet, we first screened the DEG between activated and inactivated cells in the receiving cell type (cancer cells isolated from various cancer tissues) using Seurat's FindMarker function with default parameters. Then, NicheNet's predict_ligand_activity function was used with the identified DEGs to predict ligand binding to recipient cells.
- SYBR Green PCR master mix (Applied Biosystems) was used together with each primer set in Table 4, and the reaction was performed using an ABI 7900 HT Fast Real PCR system (Applied Biosystems). GAPDH was used as an internal control.
- the qPCR amplification conditions were as follows: 1 step at 95°C for 10 minutes followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute.
- the fold-change (FC) in each gene expression was analyzed using the ⁇ Ct method. Three repetitions were performed each.
- Primer name Primer sequence (5'-3') sequence number Mouse PRRX1-F GAGCGTGTCTTTGAGCGGA 7 Mouse PRRX1-R CATGTGGCAGAATAAGTAGCCAT 8 Mouse GAPDH-F AATGGATTTGGACGCATTGGT 9 Mouse GAPDH-R TTTGCACTGGTACGTGTTGAT 10
- the optimal cutoff for PRRX1 expression values was determined using the rank statistic maximally selected in the 'maxstat' R package. This value was chosen as the cut-point value most significantly associated with survival for a possible cut-off point. Possible cutoff points were used ranging from the 20th to the 80th of PRRX1 expression values.
- OS Overall survival
- DFS disease-free survival
- PRRX1 was highly expressed only in CAFs of colorectal cancer, lung cancer, ovarian cancer, squamous cell carcinoma, gastric cancer and pancreatic cancer, and was functionally related to fibroblast activation.
- PRRX1 was expressed in 30 to 90% of total CAFs depending on the cancer type, and was particularly restricted in CAFs, as shown in FIG. 2A and B.
- PRRX1 expression on cancer tissues was investigated using immunohistochemistry. As a result, as shown in A and B of FIG. 3, PRRX1 protein was not significantly expressed in non-tumor fibroblasts or other cells, but in tissues of colon cancer, stomach cancer, lung cancer, esophageal cancer and breast cancer. All were highly expressed. And in colorectal, gastric, and esophageal cancers, patients expressing PRRX1 protein in CAF have a poor prognosis.
- PRRX1 is highly expressed only in CAFs and has a strong association with poor survival across various cancer types.
- PRRX1 could reprogram normal fibroblasts into CAFs.
- gastric cancer cells MKN28
- gastric normal fibroblasts SNF32
- SNF32-PRRX1a and SNF32-PRRX1b which express PRRX1a and PRRX1b isoforms, respectively, significantly increased the growth of co-implanted MKN28 tumors, and inhibited primitive stromal cells and stem cell-like cancer cells (stem cell).
- stem cell primitive stromal cells and stem cell-like cancer cells
- SNF32 overexpressing PRRX1 promotes cancer metastasis.
- SNF32-PRRX1a and SNF32-PRRX1b markedly increased lung metastasis, and in particular, metastasized cancer cells appeared surrounded by fibroblasts and formed desmoplasia.
- PRRX1 is essential for the tumorigenicity and metastasis-inducing ability of CAFs, and that only PRRX1 can reprogram tumor-suppressing normal fibroblasts into CAFs.
- mice conditionally deleting PRRX1 in fibroblasts were combined with fibroblast-specific CAS9-expressing mice (FSP1 cre ; CAS9 EGFP ) using CRISPR-CAS9 technology. model was made.
- PRRX1 was deleted in fibroblasts by injecting single guide RNA (sgRNA) for PRRX1 into FSP1 cre ;CAS9 EGFP mice, and LLC1-Luc-GFP cancer cells were subcutaneously injected.
- sgRNA single guide RNA
- the tumorigenicity of LLC1 was reduced from 10/10 (control mice) to 2/10 (fibroblast-specific PRRX1 -deficient mice), which indicates that PRRX1 expression in fibroblasts is associated with tumorigenicity. indicates that it is essential for
- PRRX1 the effect of PRRX1 on the ECM remodeling ability of normal fibroblasts and CAFs was investigated.
- FIG. 10 when the expression level of PRRX1 in SNF32 increased, ECM contractile activity was remarkably improved, whereas shRNA-mediated PRRX1 knockdown in CAF almost lost ECM contractile activity.
- PRRX1-high-expressing subpopulations sorted in SCAF showed higher ECM contraction than PRRX1-low expression subpopulations and lost the ability of ECM contraction in response to shRNA-mediated PRRX1 silencing.
- wound healing is an optimal in vivo experimental platform to evaluate the effects of PRRX1 on myofibroblasts. Therefore, to confirm that PRRX1 is the master regulator of myofibroblasts in vivo, the total thickness of excised skin wounds was determined using skin punch biopsy in conditional PRRX1 knockout and PRRX1 expressing mice. measured, and the effect of PRRX1 on the wound healing process was investigated.
- fibroblast-specific PRRX1 knockout mice were constructed by injecting sgRNA for PRRX1 into FSP1 cre ;CAS9 EGFP mice, and the skin was cut through skin excision.
- a notable abnormality observed in PRRX1-KO mice was a severe deficiency of myofibroblastic fibroblasts during wound healing, resulting in FS-PRRX1 Wound contraction was significantly reduced and wound closure was severely delayed in KO mice.
- PRRX1 as a potential therapeutic target in the design of novel anticancer agents that selectively inhibit the myofibroblast CAF subpopulation. Therefore, we further investigated whether inhibition of PRRX1 in fibroblasts exerts an in vivo anticancer effect similar to that in clinical trials.
- LLC1 Tumor cells
- FS-CAS9 fibroblast-specific CAS9 expressing mice
- sgRNA against PRRX1 sgPrrx1
- FIG. 13 As a result of comparing the untreated control group, cisplatin treatment, and cisplatin and sgPrrx1 combination treatment groups, as shown in A and B of FIG. 14, complete remission (CR) was induced in 8 out of 10 mice in the sgPrrx1 administration group.
- PRRX1 which is highly expressed in cancer-associated fibroblasts, can be presented as a new anti-cancer treatment target, and suppresses the expression of PRRX1 gene or protein to reduce cancer cell growth and proliferation and induce apoptosis to achieve effective cancer treatment. It can be expected, and cancers that are resistant to conventional anticancer drugs such as cisplatin can also be treated. Therefore, the PRRX1 inhibitor can be applied as a novel pharmaceutical composition for preventing or treating cancer.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention relates to a pharmaceutical composition for prevention or treatment of cancer, the composition comprising a PRRX1 inhibitor that attenuates or inhibits the expression or activity of PRRX1 overexpressed in cancer tissues, particularly cancer-associated fibroblasts. Containing a PRRX1 inhibitor as an active ingredient, the pharmaceutical composition for prevention or treatment of cancer according to the present invention can inhibit the proliferation or activity of cancer tissues, especially, cancer-associated fibroblasts and facilitate the penetration of a cancer therapeutic agent into cancer tissues, with the resultant apoptotic promotion of cancer tissues, whereby the composition can effectively treat various PRRX1-expressing cancers.
Description
본 발명은 암 조직, 특히 암 연관 섬유아세포에서 과발현되는 PRRX1의 발현 또는 활성을 약화시키거나 억제하는 PRRX1 억제제를 포함하는 암 예방 또는 치료용 약학 조성물에 관한 것이다.The present invention relates to a pharmaceutical composition for preventing or treating cancer comprising a PRRX1 inhibitor that attenuates or inhibits the expression or activity of PRRX1 overexpressed in cancer tissues, particularly cancer-associated fibroblasts.
종양 미세환경(Tumor microenvironment)은 종양 또는 암 조직의 내부나 주변에서 존재하는 섬유아세포(fibroblast), 혈관과 림프관, 면역세포, 세포외 기질(extracellular matrix, ECM), 지방세포 등을 포함한 암 주변 환경으로, 다양한 상호작용을 통해 암세포의 성장 또는 증식을 조절하여 암 진행 또는 전이, 암 치료 반응 및 효과에 큰 영향을 미친다. 섬유아세포는 암 조직의 기질(stroma)을 만들고 유지하는 주요 세포 유형 중 하나이며, 특히 암 조직에 존재하는 섬유아세포는 암세포와의 오랜 상호작용을 통해 암의 진행을 강력하게 촉진시키는 능력을 가지고 있어 따로 암연관 섬유아세포(cancer-associated fibroblast, CAF)라고 부른다.The tumor microenvironment is the environment surrounding cancer, including fibroblasts, blood and lymph vessels, immune cells, extracellular matrix (ECM), and adipocytes that exist inside or around tumors or cancer tissues. As a result, it regulates the growth or proliferation of cancer cells through various interactions, greatly affecting cancer progression or metastasis, cancer treatment response and effectiveness. Fibroblasts are one of the main cell types that make and maintain the stroma of cancer tissue. In particular, fibroblasts present in cancer tissue have the ability to strongly promote cancer progression through long-term interactions with cancer cells. They are separately called cancer-associated fibroblasts (CAFs).
CAF는 암세포의 성장과 증식을 도와주는 주요 세포로, 종양 미세환경에서 분비되는 사이토카인을 포함한 다양한 물질에 의해 리프로그래밍(reprogramming)되어 정상 섬유아세포로부터 만들어진 세포로서 암의 두껍고 치밀한 세포외 기질을 만들어 암 조직 내 약물이나 면역 치료제의 침투를 방해할 뿐만 아니라 다양한 사이토카인을 분비하여 암 주변의 혈관 생성, 약물 저항성, 면역 억제 등을 돕는 것으로 알려져 있다. CAF is a key cell that helps cancer cells grow and proliferate. It is reprogrammed by various substances including cytokines secreted in the tumor microenvironment, and is a cell made from normal fibroblasts, which creates a thick and dense extracellular matrix of cancer. It is known to not only interfere with the penetration of drugs or immunotherapeutic agents into cancer tissue, but also secrete various cytokines to help the formation of blood vessels around cancer, drug resistance, and suppression of immunity.
따라서 최근 암 치료에 있어서 암세포뿐만 아니라 암세포의 성장을 조절하는 종양 미세환경을 표적으로 하는 새로운 치료법이 고려되고 있다. 그러나 종양 미세환경에 관한 연구는 아직 시작 단계에 불과하며, 특히 CAF를 표적으로 하여 그 효과를 인정받아 상용화된 암 치료제가 없는 실정이다.Therefore, in recent cancer treatment, new therapies targeting not only cancer cells but also the tumor microenvironment regulating the growth of cancer cells are being considered. However, research on the tumor microenvironment is still in its infancy, and there is no commercially available cancer treatment that targets CAF and has been recognized for its effectiveness.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
한국등록특허 제10-1585947호Korean Patent Registration No. 10-1585947
한국공개특허 제10-2020-0062154호Korean Patent Publication No. 10-2020-0062154
본 발명은 암 조직, 특히 암 연관 섬유아세포에서 과발현되는 PRRX1의 발현 또는 활성을 약화시키거나 억제하는 물질을 포함하는 암 예방 또는 치료용 약학 조성물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a pharmaceutical composition for preventing or treating cancer containing a substance that attenuates or inhibits the expression or activity of PRRX1, which is overexpressed in cancer tissues, particularly cancer-associated fibroblasts.
본 발명의 일 양상은 PRRX1 억제제를 유효성분으로 포함하는 암 예방 또는 치료용 약학 조성물을 제공한다.One aspect of the present invention provides a pharmaceutical composition for preventing or treating cancer comprising a PRRX1 inhibitor as an active ingredient.
PRRX1(Paired mesoderm homeobox protein 1)는 PRRX1 유전자 및 이에 의해 암호화된 PRRX1 단백질을 총칭하는 것으로, PRRX1a와 PRRX1b 형태의 동형단백질(isoform)이 존재한다. PRRX1 단백질은 전사 보조활성자(transcription coactivator) 역할을 수행하여 근크레아틴인산화효소(muscle creatine kinase)의 조절을 통해 다양한 중배엽근(mesodermal muscle)을 형성하는데, 주로 배아 발달 동안 중배엽에서 발현되며, 마우스의 경우 중간엽 조직(mesenchymal tissue)에서 발현되는 PRRX1 및 PRRX2가 모두 결실될 경우 두개안면 부위의 중간엽세포 분화에 심각한 결함이 생기는 것으로 알려져 있다.PRRX1 (Paired mesoderm homeobox protein 1) is a generic term for the PRRX1 gene and the PRRX1 protein encoded by the PRRX1 gene, and there are isoforms of PRRX1a and PRRX1b forms. PRRX1 protein plays a role as a transcription coactivator and forms various mesodermal muscles through the regulation of muscle creatine kinase. It is mainly expressed in the mesodermal layer during embryonic development and is In case of deletion of both PRRX1 and PRRX2, which are expressed in mesenchymal tissue, it is known that severe defects in differentiation of mesenchymal cells in the craniofacial region occur.
본 발명자들은 대장암, 폐암, 난소암, 편평세포암종. 위암, 췌장암, 식도암, 유방암 등 다양한 암 조직을 구성하는 암 연관 섬유아세포에서 PRRX1가 과발현되며, 세포의 유전자 조절 및 세포 특이성을 결정하는 마스터 전사인자(master transcription factor, mTF)로 작용한다는 것을 확인함으로써 PRRX1를 암 치료를 위한 표적으로 제시하였다.The present inventors are colorectal cancer, lung cancer, ovarian cancer, squamous cell carcinoma. By confirming that PRRX1 is overexpressed in cancer-associated fibroblasts constituting various cancer tissues such as gastric cancer, pancreatic cancer, esophageal cancer, and breast cancer, and acts as a master transcription factor (mTF) that determines cell gene regulation and cell specificity. PRRX1 has been proposed as a target for cancer treatment.
본 발명의 일 구체예에 따르면, 상기 PRRX1 억제제는 PRRX1 유전자 또는 단백질의 발현 또는 활성을 억제하는 것일 수 있다.According to one embodiment of the present invention, the PRRX1 inhibitor may inhibit the expression or activity of the PRRX1 gene or protein.
보다 구체적으로, 상기 PRRX1 억제제는 안티센스 올리고뉴클레오티드, siRNA, shRNA, 리보자임, 항체, 이의 항원 결합 단편, 화합물, 펩티드, 펩티드 미메틱스 및 앱타머로 이루어진 군에서 선택된 1종 이상인 것일 수 있다. More specifically, the PRRX1 inhibitor may be at least one selected from the group consisting of antisense oligonucleotides, siRNA, shRNA, ribozymes, antibodies, antigen-binding fragments thereof, compounds, peptides, peptide mimetics, and aptamers.
본 발명의 일 구체예에 따르면, 상기 PRRX1 유전자의 발현 억제제는 PRRX1 유전자, 또는 PRRX1의 발현을 촉진하는 유전자의 mRNA에 각각 상보적으로 결합하는 안티센스 올리고뉴클레오티드, siRNA, shRNA 및 리보자임으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.According to one embodiment of the present invention, the expression inhibitor of the PRRX1 gene is from the group consisting of an antisense oligonucleotide, siRNA, shRNA, and ribozyme that bind complementary to the mRNA of the PRRX1 gene or the gene promoting the expression of PRRX1, respectively. It may be one or more selected species.
본 발명의 일 구체예에 따르면, 상기 PRRX1 유전자의 발현 억제제는 서열번호 1 또는 2로 표시되는 염기서열을 포함하는 mRNA에 상보적으로 결합하는 것일 수 있다.According to one embodiment of the present invention, the expression inhibitor of the PRRX1 gene may complementarily bind to mRNA containing the nucleotide sequence represented by SEQ ID NO: 1 or 2.
상기 서열번호 1로 표시되는 염기서열은 PRRX1 (transcript variant pmx-1a)의 mRNA 서열 (GenBank Accession: NM_006902.5)이며, 상기 서열번호 2로 표시되는 염기서열은 PRRX1 (transcript variant pmx-1b)의 mRNA 서열 (Genbank Accession: NM_022716.4)이다.The nucleotide sequence represented by SEQ ID NO: 1 is the mRNA sequence (GenBank Accession: NM_006902.5) of PRRX1 (transcript variant pmx-1a), and the nucleotide sequence represented by SEQ ID NO: 2 is the mRNA sequence of PRRX1 (transcript variant pmx-1b). mRNA sequence (Genbank Accession: NM_022716.4).
상기 안티센스 올리고뉴클레오티드는 PRRX1 mRNA에 결합할 수 있는 DNA 또는 RNA 서열로서 PRRX1 mRNA의 번역, 세포질 내로의 전위(translocation), 성숙(maturation) 또는 다른 모든 전체적인 생물학적 기능에 대한 필수적인 활성을 저해할 수 있다. 안티센스 핵산의 길이는 6 내지 100 염기이고, 바람직하게는 8 내지 60 염기이고, 보다 바람직하게는 10 내지 40 염기이다. 이러한 안티센스 올리고뉴클레오티드는 효능을 증진시키기 위하여 하나 이상의 염기, 당 또는 골격(backbone)의 위치에서 변형될 수 있다.The antisense oligonucleotide is a DNA or RNA sequence capable of binding to PRRX1 mRNA, and may inhibit translation, cytoplasmic translocation, maturation, or other essential activities for overall biological functions of PRRX1 mRNA. The length of the antisense nucleic acid is 6 to 100 bases, preferably 8 to 60 bases, more preferably 10 to 40 bases. Such antisense oligonucleotides may be modified at one or more bases, sugars or backbone positions to enhance efficacy.
상기 siRNA(small interference RNA)는 RNA 방해 또는 유전자 침묵을 매개할 수 있는 핵산분자를 의미하며, 표적 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 녹다운 방법으로 또는 유전자치료 방법으로 제공된다. siRNA 분자는 센스 가닥과 안티센스 가닥이 서로 반대쪽에 위치하여 이중쇄를 이루는 구조를 가질 수 있고, 자기-상보성(self-complementary) 센스 및 안티센스 가닥을 가지는 단일쇄 구조를 가질 수 있다. 본 명세서에서 사용되는 용어 상보적은 100% 상보적인 경우뿐만 아니라 불완전한 상보성도 포괄하는 의미이다. 본 발명에서의 siRNA는 PRRX1 단백질을 암호화하는 mRNA의 일부에 상보적인 서열을 가지는 것일 수 있다.The siRNA (small interference RNA) refers to a nucleic acid molecule capable of mediating RNA interference or gene silencing, and since it can suppress the expression of a target gene, it is provided as an efficient gene knockdown method or gene therapy method. The siRNA molecule may have a double-stranded structure in which the sense strand and the antisense strand are located opposite to each other, or may have a single-stranded structure having self-complementary sense and antisense strands. As used herein, the term complementary is meant to encompass incomplete complementarity as well as 100% complementarity. The siRNA in the present invention may have a sequence complementary to a portion of mRNA encoding the PRRX1 protein.
상기 shRNA(small hairpin RNA 또는 short hairpin RNA)는 견고한 헤어핀 턴을 만드는 RNA의 서열을 나타내며, 이는 RNA 간섭을 통해 유전자 발현을 억제 또는 침묵(silence)시키는데 이용될 수 있다. 본 발명에서의 shRNA는 PRRX1 단백질을 암호화하는 mRNA의 일부에 상보적인 서열을 가지는 것일 수 있으며, 바람직하게는 서열번호 3 또는 4로 표시되는 염기서열을 포함하는 것일 수 있다.The shRNA (small hairpin RNA or short hairpin RNA) represents an RNA sequence that makes a strong hairpin turn, which can be used to suppress or silence gene expression through RNA interference. The shRNA in the present invention may have a sequence complementary to a portion of mRNA encoding the PRRX1 protein, and preferably may include the nucleotide sequence represented by SEQ ID NO: 3 or 4.
상기 서열번호 3으로 표시되는 shRNA는 PRRX1a mRNA를 인식하고, 상기 서열번호 4로 표시되는 shRNA는 PRRX1a와 PRRX1b 모두의 mRNA를 인식하여 PRRX1 유전자 발현을 차단할 수 있다.The shRNA represented by SEQ ID NO: 3 recognizes PRRX1a mRNA, and the shRNA represented by SEQ ID NO: 4 recognizes both PRRX1a and PRRX1b mRNAs and can block PRRX1 gene expression.
상기 리보자임(ribozyme)은 RNA 스플라이싱(splicing), tRNA 합성, 단백질 합성 등의 생화학 반응을 촉매하는 효소의 기능을 가진 RNA를 의미하며, 헤어핀 구조 등 독특한 이차구조를 가진다.The ribozyme refers to RNA having an enzyme function that catalyzes biochemical reactions such as RNA splicing, tRNA synthesis, and protein synthesis, and has a unique secondary structure such as a hairpin structure.
본 발명의 일 구체예에 따르면, 상기 PRRX1 단백질의 활성 억제제는 PRRX1 단백질, 또는 PRRX1의 활성화를 자극하는 단백질에 특이적으로 결합하는 항체, 이의 항원 결합 단편, 화합물, 펩티드, 펩티드 미메틱스 및 앱타머로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.According to one embodiment of the present invention, the activity inhibitor of the PRRX1 protein is an antibody that specifically binds to the PRRX1 protein or a protein that stimulates the activation of PRRX1, an antigen-binding fragment thereof, a compound, a peptide, a peptide mimetics, and an aptase. It may be one or more selected from the group consisting of mer.
본 발명의 일 구체예에 따르면, 상기 PRRX1 단백질의 활성 억제제는 서열번호 1 또는 2의 mRNA에 의해 발현되는 단백질에 특이적으로 결합하는 것일 수 있다.According to one embodiment of the present invention, the PRRX1 protein activity inhibitor may specifically bind to the protein expressed by the mRNA of SEQ ID NO: 1 or 2.
본 발명에서 사용된 "특이적으로 결합하는"이란 다른 물질에 비해 표절 물질에 대한 결합력이 뛰어남을 의미한다.As used in the present invention, "specifically binding" means that the binding ability to plagiarism material is superior to other materials.
상기 항체는 항원성 부위에 대해서 지시되는 특이적인 단백질 분자를 의미한다. 본 발명에서는 PRRX1를 표적 물질로 하여 특이적으로 결합하는 항체를 의미하며, 단클론 항체, 다클론 항체 및 재조합 항체를 모두 포함한다. 또한, 상기 항체는 2개의 전체 길이의 경쇄(light chain) 및 2개의 전체 길이의 중쇄(heavy chain)를 가지는 완전한 형태뿐만 아니라 항체 분자의 기능적인 단편을 포함한다. 항체 분자의 기능적인 단편이란 적어도 항원 결합 기능을 보유하고 있는 단편을 의미하며, Fab, F(ab'), F(ab')2, Fv 등일 수 있다.The antibody refers to a specific protein molecule directed against an antigenic site. In the present invention, it means an antibody that specifically binds to PRRX1 as a target substance, and includes all of monoclonal antibodies, polyclonal antibodies and recombinant antibodies. In addition, the antibody includes functional fragments of antibody molecules as well as complete forms having two full-length light chains and two full-length heavy chains. A functional fragment of an antibody molecule means a fragment having at least an antigen-binding function, and may be Fab, F(ab'), F(ab')2, Fv, or the like.
상기 펩티드 미메틱스(peptide mimetics)는 펩티드를 모방하여 설계된 체인 구조를 가지는 작은 단백질 분자로, 일반적으로 존재하는 펩티드에 화학적 구조가 일부 변형되어 안정성이나 생물학적 활성 등 분자 특성이 보다 유리하게 조절된 것을 의미한다.The peptide mimetics are small protein molecules having a chain structure designed to mimic peptides, and chemical structures are partially modified in commonly existing peptides to more advantageously control molecular properties such as stability and biological activity. it means.
상기 앱타머(aptamer)는 표적물질에 친화적, 특이적 결합을 할 수 있는 핵산 또는 펩티드인 것으로, 본 발명에서는 PRRX1에 특이적으로 강하게 결합하는 펩티드를 의미하며, 항체에 비해 높은 특이성과 친화성을 가지는 장점이 있다.The aptamer is a nucleic acid or peptide capable of binding specifically and friendly to a target substance. In the present invention, it refers to a peptide that specifically and strongly binds to PRRX1, and has higher specificity and affinity than antibodies There are advantages to having
본 발명에서는 PRRX1 억제제로서 PRRX1의 mRNA에 상보적으로 결합하는 siRNA, shRNA 또는 miRNA(microRNA)이거나, 또는 PRRX1 단백질에 특이적으로 결합하는 항체 또는 화합물인 것이 바람직하며, 유전자 수준에서 PRRX1 발현 또는 활성을 차단하기 위해 siRNA 또는 shRNA인 것이 가장 바람직하다. siRNA 또는 shRNA는 도입된 세포 내에서 분해 속도가 낮고, 회전율이 높기 때문에 목적하는 바를 더 효과적으로 이룰 수 있다는 이점이 있다.In the present invention, the PRRX1 inhibitor is preferably a siRNA, shRNA or miRNA (microRNA) that binds complementary to the mRNA of PRRX1, or an antibody or compound that specifically binds to the PRRX1 protein, and inhibits PRRX1 expression or activity at the gene level. Most preferably, it is siRNA or shRNA to block. Since siRNA or shRNA has a low degradation rate and a high turnover rate in the introduced cells, it has the advantage of being able to achieve a desired goal more effectively.
본 발명의 일 구체예에 따르면, 상기 PRRX1 억제제는 암 연관 섬유아세포(CAF)의 증식 또는 활성을 억제하는 것일 수 있다.According to one embodiment of the present invention, the PRRX1 inhibitor may inhibit the proliferation or activity of cancer-associated fibroblasts (CAF).
본 발명의 일 실시예에서는 인간 위암 연관 섬유아세포 (SCAF36)에서 발현된 PRRX1가 CAF의 생존에 미치는 영향을 조사한 결과, PRRX1에 대한 shRNA (shPRRX1)가 처리된 SCAF36에서는 shPRRX1가 처리되지 않은 경우에 비해 약 2배 정도 아포토시스(apoptosis)가 현저히 증가한 것을 확인하였다. In one embodiment of the present invention, as a result of examining the effect of PRRX1 expressed in human gastric cancer-associated fibroblasts (SCAF36) on CAF survival, SCAF36 treated with shRNA (shPRRX1) for PRRX1 was compared to the case where shPRRX1 was not treated. It was confirmed that apoptosis significantly increased by about 2 times.
또한, 본 발명의 일 구체예에 따르면, 상기 PRRX1 억제제는 암 연관 섬유아세포의 세포외 기질 수축을 억제하는 것일 수 있다.Further, according to one embodiment of the present invention, the PRRX1 inhibitor may inhibit extracellular matrix contraction of cancer-associated fibroblasts.
본 발명의 일 실시예에서는 PRRX1이 인간 위 정상 섬유아세포 (SNF32)와 인간 대장암 연관 섬유아세포(colon CAF)의 세포외 기질(ECM) 리모델링에 미치는 영향을 조사한 결과, SNF32에서 PRRX1이 발현되면 CAF에서와 같이 ECM 수축 활성도가 현저히 증가하여 ECM이 리모델링되는 반면, CAF에 shPRRX1를 처리하면 CAF의 ECM 수축 능력을 상실하는 것을 확인하였다.In one embodiment of the present invention, as a result of examining the effect of PRRX1 on extracellular matrix (ECM) remodeling of human gastric normal fibroblasts (SNF32) and human colorectal cancer-associated fibroblasts (colon CAF), when PRRX1 is expressed in SNF32, CAF As shown in , it was confirmed that the ECM contractile activity was significantly increased and the ECM was remodeled, whereas when CAF was treated with shPRRX1, the ECM contractile ability of CAF was lost.
이러한 PRRX1 억제제를 포함하는 암 예방 또는 치료용 약학 조성물은 암 연관 섬유아세포의 특성을 변화시켜 세포의 증식 또는 활성을 억제하고 암 치료제의 암 조직 내 침투를 용이하게 하여 결과적으로 암 조직의 사멸을 촉진함으로써 암 치료 효과를 높일 수 있다.A pharmaceutical composition for preventing or treating cancer containing such a PRRX1 inhibitor changes the characteristics of cancer-associated fibroblasts, inhibits cell proliferation or activity, and facilitates the penetration of cancer therapeutic agents into cancer tissues, thereby promoting the death of cancer tissues. This can increase the effectiveness of cancer treatment.
본 발명에서 사용된 "암"은 세포가 정상적인 성장 한계를 무시하고 분열 및 성장하는 공격성(aggressive), 주위 조직에 침투하는 침투성(invasive) 및 체내의 다른 부위로 퍼지는 전이성(metastatic)을 가지는 세포에 의한 질병을 총칭하는 의미이다. 여기서 암은 악성 종양(malignant tumor)과 동일한 의미로도 사용된다.As used herein, “cancer” refers to cells with aggressive cells that divide and grow beyond normal growth limits, invasive cells that infiltrate surrounding tissues, and metastatic cells that spread to other parts of the body. It means a general term for diseases caused by Here, cancer is also used in the same sense as malignant tumor.
본 발명의 일 구체예에 따르면, 상기 암은 백혈병(leukemia), 림프종(lymphoma), 호지킨병(Hodgkin's disease), 혈액종양(hematopoietic malignancy), 자궁경부암(cervical cancer), 육종(sarcoma), 고환암(testicular cancer), 악성 흑색종(malignant melanoma), 내분비암(endocrine cancer), 골암(bone cancer), 전립선암(prostate cancer), 자궁암(uterus cancer), 유방암(breast cancer), 방광암(bladder cancer), 신장암(renal cell carcinoma), 중추신경계 종양(central nervous system tumor), 뇌암(brain cancer), 간암(liver cancer), 위암(stomach cancer), 췌장암(pancreatic cancer), 피부암(skin cancer), 편평세포암종(squamous cell carcinoma) 폐암(lung cancer), 후두암(larynx cancer), 두경부암(head andneck cancer), 식도암(esophageal cancer), 대장암(colorectal cancer) 및 난소암(ovarian cancer)으로 이루어진 군에서 선택된 1종 이상인 것일 수 있다.According to one embodiment of the present invention, the cancer is leukemia, lymphoma, Hodgkin's disease, hematopoietic malignancy, cervical cancer, sarcoma, testicular cancer (testicular cancer), malignant melanoma, endocrine cancer, bone cancer, prostate cancer, uterus cancer, breast cancer, bladder cancer , renal cell carcinoma, central nervous system tumor, brain cancer, liver cancer, stomach cancer, pancreatic cancer, skin cancer, squamous cell carcinoma In the group consisting of squamous cell carcinoma lung cancer, larynx cancer, head and neck cancer, esophageal cancer, colorectal cancer and ovarian cancer It may be one or more selected species.
본 발명에서 사용된 "암 예방 또는 치료"는 암세포의 성장 또는 증식을 억제시키거나 암 진행을 지연시키는 행위를 포함하며 암의 증상을 호전 또는 개선시키는 것을 의미한다. As used herein, “prevention or treatment of cancer” means suppressing the growth or proliferation of cancer cells or delaying the progression of cancer, and improving or ameliorating the symptoms of cancer.
본 발명에서 사용된 "암 예방 또는 치료용 약학 조성물"은 인간을 포함한 동물의 암을 치료, 경감, 처치 또는 예방을 목적으로 사용하는 물질을 의미한다.The "pharmaceutical composition for preventing or treating cancer" as used in the present invention refers to a substance used for the purpose of treating, mitigating, treating or preventing cancer in animals, including humans.
상기 약학 조성물은 통상의 방법에 따라 다양한 형태로 제형화하여 사용될 수 있다. 예컨대, 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽 등의 경구형 제형으로 제형화할 수 있고, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 또한, 상기 약학 조성물은 약학적으로 허용 가능한 담체를 더 포함할 수 있다. 상기 담체는 제제 시에 통상적으로 이용되는 것으로, 락토오스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약학 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. The pharmaceutical composition may be formulated and used in various forms according to conventional methods. For example, it can be formulated into oral formulations such as powders, granules, tablets, capsules, suspensions, emulsions and syrups, and can be formulated and used in the form of external preparations, suppositories and sterile injection solutions. In addition, the pharmaceutical composition may further include a pharmaceutically acceptable carrier. The carrier is commonly used in preparation, and includes lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, and polyvinylpyrrolidone. , cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil, but are not limited thereto. The pharmaceutical composition of the present invention may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, and the like, in addition to the above components.
상기 약학 조성물의 투여량은 상기 약학적 조성물의 제제화 방법, 투여 방식, 투여 시간 및/또는 투여 경로 등에 의해 다양해질 수 있으며, 상기 약학 조성물의 투여로 달성하고자 하는 반응의 종류와 정도, 투여 대상이 되는 개체의 종류, 연령, 체중, 일반적인 건강 상태, 질병의 증세나 정도, 성별, 식이, 배설, 해당 개체에 동시 또는 이시에 함께 사용되는 약물 기타 조성물의 성분 등을 비롯한 여러 인자 및 의약 분야에서 잘 알려진 유사 인자에 따라 다양해질 수 있으며, 당해 기술 분야에서 통상의 지식을 가진 자는 목적하는 치료에 효과적인 투여량을 용이하게 결정하고 처방할 수 있다. 예를 들면, 1일 0.001 내지 1,000 mg/kg, 0.01 mg/kg 내지 100 mg/kg, 또는 0.1 mg/kg 내지 10 mg/kg일 수 있으나, 이에 한정되는 것은 아니다.The dosage of the pharmaceutical composition may vary depending on the formulation method, administration method, administration time and/or route of administration of the pharmaceutical composition, and the type and degree of response to be achieved by administration of the pharmaceutical composition, and the subject of administration The type of subject to be treated, age, weight, general health condition, symptoms or severity of disease, sex, diet, excretion, drugs used concurrently or concurrently with the subject, and other factors of composition and other factors well known in the field of medicine. It may vary according to known similar factors, and those skilled in the art can easily determine and prescribe an effective dosage for the desired treatment. For example, it may be 0.001 to 1,000 mg/kg, 0.01 mg/kg to 100 mg/kg, or 0.1 mg/kg to 10 mg/kg per day, but is not limited thereto.
또한, 상기 약학 조성물은 쥐, 마우스, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 상기 약학 조성물의 투여 경로 및 투여 방식은 각각 독립적일 수 있으며, 그 방식에 있어 특별히 제한되지 않고, 목적하는 해당 부위에 상기 약학적 조성물이 도달할 수 있는 한 임의의 투여 경로 및 투여 방식에 따를 수 있다. 상기 약학적 조성물은 경구 투여 또는 비경구 투여 방식으로 투여할 수 있다. 상기 비경구 투여 방식으로는 예를 들면, 정맥 내 투여, 복강 내 투여, 근육 내 투여, 경피 투여 또는 피하 투여 등이 포함되며, 상기 약학적 조성물을 질환 부위에 도포하거나 분무, 흡입하는 방법 또한 이용할 수 있으나 이에 제한되지 않는다.In addition, the pharmaceutical composition may be administered to mammals such as rats, mice, livestock, and humans through various routes. The administration route and administration method of the pharmaceutical composition may be independent, respectively, and are not particularly limited in the method, and may follow any administration route and administration method as long as the pharmaceutical composition can reach the target site. there is. The pharmaceutical composition may be administered orally or parenterally. The parenteral administration method includes, for example, intravenous administration, intraperitoneal administration, intramuscular administration, transdermal administration or subcutaneous administration, etc., and a method of applying, spraying, or inhaling the pharmaceutical composition to the diseased area can also be used. may, but is not limited thereto.
본 발명에 따른 암 예방 또는 치료용 약학 조성물은 PRRX1 억제제를 유효성분으로 포함함으로써 암 조직, 특히 암 연관 섬유아세포의 증식 또는 활성을 억제하고 암 치료제의 암 조직 내 침투를 용이하게 하여 결과적으로 암 조직의 사멸을 촉진함으로써 PRRX1을 발현하는 다양한 암을 효과적으로 치료할 수 있다.The pharmaceutical composition for preventing or treating cancer according to the present invention contains a PRRX1 inhibitor as an active ingredient, thereby suppressing the proliferation or activity of cancer tissues, particularly cancer-associated fibroblasts, and facilitating the penetration of cancer therapeutics into cancer tissues, resulting in cancer tissue By promoting the apoptosis of PRRX1, various cancers expressing PRRX1 can be effectively treated.
도 1은 대장암, 폐암, 난소암, 편평세포암종, 위암 및 췌장암에 대한 대규모 단일 세포 RNA 서열분석(scRNA-seq) 데이터세트를 사용하여 암 연관 섬유아세포 특이 mTF 확인한 것으로, A는 scRNA-seq 데이터 분석의 흐름도이며, B는 정상 섬유아세포와 암 연관 섬유아세포의 PRRX1 유전자 발현 수준을 비교한 그래프이다 (Wilcoxon rank-sum test, *** p < 2e-16).Figure 1 shows cancer-associated fibroblast-specific mTFs identified using large-scale single cell RNA sequencing (scRNA-seq) datasets for colorectal cancer, lung cancer, ovarian cancer, squamous cell carcinoma, gastric cancer and pancreatic cancer, A is scRNA-seq It is a flowchart of data analysis, and B is a graph comparing PRRX1 gene expression levels in normal fibroblasts and cancer-associated fibroblasts (Wilcoxon rank-sum test, *** p < 2e-16).
도 2는 암 조직 내 PRRX1 단백질 발현 수준을 확인한 것으로, A는 췌장암, 난소암, 폐암, HNSCC, 위암, SCC 및 대장암 (SMC 및 KUL)의 CAF에서 발현되는 PRRX1 단백질 비율이며, B는 B 세포, CAF, CD4 T 세포, CD8 T 세포, 내피세포, 대식세포, 단핵구, 호중구, NK 세포 및 T 세포에서의 PRRX1 단백질 발현량이다.Figure 2 confirms the level of PRRX1 protein expression in cancer tissues, A is the ratio of PRRX1 protein expressed in CAFs of pancreatic cancer, ovarian cancer, lung cancer, HNSCC, gastric cancer, SCC and colorectal cancer (SMC and KUL), and B is B cells , PRRX1 protein expression in CAFs, CD4 T cells, CD8 T cells, endothelial cells, macrophages, monocytes, neutrophils, NK cells and T cells.
도 3은 암 조직과 PRRX1 단백질 발현의 연관성을 보여주는 것으로, A는 면역조직화학을 이용한 대장암, 위암, 폐암, 식도암 및 유방암의 PRRX1 단백질 발현 수준이며, B는 Kaplan-Meier (KM) 생존율 분석을 이용한 대장암, 위암 및 식도암의 CAF 내 PRRX1 단백질 발현에 따른 생존율 그래프이다.Figure 3 shows the correlation between cancer tissue and PRRX1 protein expression, A is the PRRX1 protein expression level of colorectal cancer, gastric cancer, lung cancer, esophageal cancer and breast cancer using immunohistochemistry, and B is Kaplan-Meier (KM) survival rate analysis It is a graph of survival rate according to PRRX1 protein expression in CAFs of colorectal cancer, gastric cancer and esophageal cancer.
도 4는 PRRX1의 정상 섬유아세포 리프로그래밍 능력을 확인한 것으로, A는 인간 위암세포 (MKN28) 단독이거나, 또는 인간 위 정상 섬유아세포 SNF32-FLAG, PRRX1a-과발현 SNF32, 또는 PRRX1b-과발현 SNF32와 혼합하여 NSG 마우스에 피하 공동 이식하는 개략도이며, B는 각 그룹의 1차 종양 부피 그래프 및 종양 사진이고, C는 각 그룹의 H&E 대표 이미지이다.Figure 4 confirms the ability of PRRX1 to reprogram normal fibroblasts. A is NSG in human gastric cancer cells (MKN28) alone or in combination with human gastric normal fibroblasts SNF32-FLAG, PRRX1a-overexpressing SNF32, or PRRX1b-overexpressing SNF32. It is a schematic diagram of subcutaneous co-implantation in a mouse, B is a primary tumor volume graph and a tumor photograph of each group, and C is a H&E representative image of each group.
도 5는 PRRX1의 암 전이 촉진을 확인한 것으로, A는 인간 위암세포 (MKN28) 단독이거나, 또는 인간 위 정상 섬유아세포 SNF32-FLAG, PRRX1a-과발현 SNF32, 또는 PRRX1b-과발현 SNF32와 혼합하여 NSG 마우스에 피하 공동 이식한 후 각 그룹의 폐 전이 발생률이며, B는 각 그룹의 전이된 폐 암세포의 H&E 대표 이미지이다.Figure 5 confirms the promotion of cancer metastasis by PRRX1, A is human gastric cancer cells (MKN28) alone, or human gastric normal fibroblasts SNF32-FLAG, PRRX1a-overexpressing SNF32, or PRRX1b-overexpressing SNF32 mixed with NSG mice subcutaneously The incidence of lung metastasis in each group after co-transplantation, and B is the H&E representative image of metastasized lung cancer cells in each group.
도 6은 섬유아세포의 PRRX1가 종양유전성에 미치는 영향을 확인한 것으로, A는 섬유아세포 특이 CAS9-발현 마우스 (FSP1cre;CAS9EGFP)를 제작하여 섬유아세포의 PRRX1을 삭제하고 LLC1-Luc-GFP를 주입하는 개략도이며, B는 FSP1cre;CAS9EGFP 마우스의 PRRX1 삭제에 의한 종양 크기 변화를 비교한 사진 및 종양유전성 수치이다.Figure 6 confirms the effect of PRRX1 in fibroblasts on tumorigenicity. A is a fibroblast-specific CAS9-expressing mouse (FSP1 cre ; CAS9 EGFP ) was created to delete PRRX1 in fibroblasts and injected LLC1-Luc-GFP. B is a schematic diagram of FSP1 cre ;CAS9 EGFP mice with a comparison of tumor size changes by PRRX1 deletion and tumor genetic values.
도 7은 인간 CAF의 단일 세포 RNA-seq 분석에 대한 개략도 및 scRNA-seq 데이터를 사용하여 PRRX1의 발현 정도 (고발현: H, 저발현: L)에 따라 분류된 CAF를 히트맵(heatmap)으로 보여준다.Figure 7 is a schematic diagram of single cell RNA-seq analysis of human CAFs and CAFs classified according to the expression level of PRRX1 (high expression: H, low expression: L) using scRNA-seq data as a heatmap. show
도 8은 마우스 섬유아세포 (마우스 배아 섬유아세포, 피부 상처 치유 섬유아세포 및 MMTV-CAF)에서 얻은 대량 RNA-seq 분석에 대한 개략도 및 PRRX1 WT 또는 PRRX1 KO의 생체외(ex vivo) 섬유아세포에 대한 GSVA 분석 결과를 히트맵으로 보여준다.Figure 8 is a schematic diagram of bulk RNA-seq analysis obtained from mouse fibroblasts (mouse embryonic fibroblasts, skin wound healing fibroblasts and MMTV-CAF) and GSVA for ex vivo fibroblasts of PRRX1 WT or PRRX1 KO The analysis results are shown as a heat map.
도 9는 PRRX1의 발현에 의존적인 섬유아세포의 아포토시스를 보여준다.9 shows apoptosis of fibroblasts dependent on the expression of PRRX1.
도 10은 PRRX1의 발현에 의존적인 섬유아세포의 ECM 수축 활성도를 보여준다.10 shows the ECM contractile activity of fibroblasts dependent on the expression of PRRX1.
도 11은 피부 절제 전 PRRX1에 대한 sgRNA (sgPrrx1)를 투여하여 섬유아세포 특이 PRRX1 고갈이 유도된 형질전환 마우스 모델의 제작에 대한 개략도로서 절제한 지 10일 후 상처난 조직의 대표 이미지이다.11 is a schematic diagram of the construction of a transgenic mouse model in which fibroblast-specific PRRX1 depletion was induced by administering sgRNA (sgPrrx1) to PRRX1 before skin excision, and is a representative image of a wounded tissue 10 days after skin excision.
도 12는 섬유아세포 특이 PRRX1 녹다운 (sgPrrx1) 및 대조군 (sgNS) 마우스에 상처 낸 후 0, 3, 8, 10, 12, 15 및 18일째 상처 부위의 대표 이미지이다.12 shows representative images of wound sites at 0, 3, 8, 10, 12, 15, and 18 days after wounding in fibroblast-specific PRRX1 knockdown (sgPrrx1) and control (sgNS) mice.
도 13은 형질전환 마우스 (FSP1cre;CAS9EGFP)에 LLC1-Luc-GFP 암세포를 이식한 종양 마우스 모델의 제작에 대한 개략도이다. Figure 13 is a schematic diagram of the construction of a tumor mouse model in which LLC1-Luc-GFP cancer cells were transplanted into a transgenic mouse (FSP1 cre ; CAS9 EGFP ).
도 14는 각 처리 약물에 대한 종양 반응을 나타낸 표 (A) 및 그래프 (B)이다.Figure 14 is a table (A) and a graph (B) showing the tumor response to each treatment drug.
도 15는 각 약물 처리 후 10주간 MRI로 종양 부피를 모니터링한 대표 이미지이다.15 is a representative image of tumor volume monitored by MRI for 10 weeks after each drug treatment.
도 16은 sgPrrx1 또는 sgPrrx1 및 시스플라틴 처리군에서 종양의 장기간 전체 완화를 MRI로 확인한 대표 이미지이다.16 is a representative image confirming long-term overall remission of tumors by MRI in the sgPrrx1 or sgPrrx1 and cisplatin treatment group.
이하, 본 발명을 보다 상세하게 설명한다. 그러나, 이러한 설명은 본 발명의 이해를 돕기 위하여 예시적으로 제시된 것일 뿐, 본 발명의 범위가 이러한 예시적인 설명에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail. However, these descriptions are merely presented as examples to aid understanding of the present invention, and the scope of the present invention is not limited by these exemplary descriptions.
1. 재료 및 방법1. Materials and Methods
1-1. 세포주 및 시약1-1. Cell lines and reagents
인간 위암 세포주(Human stomach cancer cell line) MKN28는 한국세포주은행(Korean Cell Line Bank)에서 구입하여 6개월 미만으로 계대배양하여 사용하였다. 루이스폐암종 세포주(Lewis Lung carcinoma cell line) LLC1은 ATCC에서 구입하였다. 모든 세포는 10% FBS와 1% 항생제가 보충된 DMEM 배지에서 배양되었다. Human stomach cancer cell line MKN28 was purchased from the Korean Cell Line Bank and subcultured for less than 6 months before use. Lewis Lung carcinoma cell line LLC1 was purchased from ATCC. All cells were cultured in DMEM medium supplemented with 10% FBS and 1% antibiotics.
실험에서 사용된 shRNA 및 gRNA 염기서열은 하기 표 1과 같다.The base sequences of shRNA and gRNA used in the experiment are shown in Table 1 below.
명칭 designation | 염기서열 (5'-3')Base sequence (5'-3') | 서열번호sequence number | |
shRNA targeting PRRX1-1shRNA targeting PRRX1-1 |
CCGGGTCCCTCCCAAGATGTTGTTTCTCGAGAAACAACATCTTGGGAGGGACTTTTTG |
33 | |
shRNA targeting PRRX1-2shRNA targeting PRRX1-2 |
CCGGGCAGGCTTTGGAGCGTGTCTTCTCGAGAAGACACGCTCCAAAGCCTGCTTTTTG |
44 | |
shScrbl control for PRRX1shScrbl control for | CCGGCAACAAGATGAAGAGCACCAACTC | GAGTTGGTGCTCTTCATCTTGTTGTTTTTGCCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTTTTG | 55 |
gRNA scaffold for shRNAgRNA scaffold for | GAGCGGCAACCGGCGCTGGGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTAT | CAACTTGAAAAAGTGGCACCGAGTCGGTGCGAGCGGCAACCGGCGCTGGGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGC | 66 |
1-2. 마우스 모델1-2. mouse model
동물과 관련된 모든 연구와 절차는 삼성생명공학연구소 실험동물연구센터 동물실험관리위원회에서 승인을 받았다.All studies and procedures involving animals were approved by the Animal Experiment Management Committee of the Laboratory Animal Research Center of the Samsung Biotechnology Research Institute.
1-2-1. 공동 주입 모델 제작1-2-1. Co-injection model fabrication
도 4의 A를 참고하면, 인간 위암 세포 MKN28 1x106를 각 NSG(NOD/SCID/IL-2Rnnull) 마우스의 양쪽 옆구리에 피하 주사하였다 (n = 6 마우스/그룹). 그리고 표시된 바에 따라, MKN28 1x106 세포는 주입 전에 1차 인간 위 정상 섬유아세포(primary human stomach normal fibroblast) SNF32 과발현-FLAG (대조군), SNF32 과발현-PRRX1a 또는 SNF32 과발현-PRRX1b와 혼합되었다. 종양 성장은 캘리퍼(caliper)로 측정하였고, 종양 부피는 다음과 같은 식으로 계산하였다: 종양 부피 = 길이 x 너비 x 폭 x 1/2.Referring to FIG. 4A , human gastric cancer cells MKN28 1x10 6 were subcutaneously injected into both flanks of each NSG (NOD/SCID/IL-2Rnnull) mouse (n = 6 mice/group). And as indicated, MKN28 1x10 6 cells were mixed with primary human stomach normal fibroblasts SNF32 overexpression-FLAG (control), SNF32 overexpression-PRRX1a or SNF32 overexpression-PRRX1b prior to injection. Tumor growth was measured with a caliper, and tumor volume was calculated with the following formula: Tumor volume = length x width x width x 1/2.
1-2-2. FSP1cre;CAS9EGFP 형질전환 마우스 제작1-2-2. Construction of FSP1 cre ;CAS9 EGFP transgenic mice
FSP1-Cre-발현 마우스 (Stock No: 012641, Yeo et al., 2018) 및 Rosa26-LSL-Cas9 녹인(knockin) 마우스 (Stock No: 024857)는 Jackson Laboratory에서 공급받았다. 마우스는 C57BL/6 배경으로 교잡되었으며, 모든 성별을 1 ~ 4개월의 연령 범위로 사용하였다. FSP1-Cre-expressing mice (Stock No: 012641, Yeo et al., 2018) and Rosa26-LSL-Cas9 knockin mice (Stock No: 024857) were supplied by Jackson Laboratory. Mice were crossed on a C57BL/6 background, and all sexes were used with an age range of 1 to 4 months.
1-2-3. FSP1cre;CAS9EGFP 형질전환 마우스에 대한 LCC1 피하 주사1-2-3. LCC1 subcutaneous injection into FSP1 cre ;CAS9 EGFP transgenic mice
도 6의 A를 참고하면, FSP1cre;CAS9EGFP 형질전환 마우스에 암세포를 주입하기 전에, 섬유아세포에서 PRRX1을 고갈시키기 위해 PRRX1에 대한 sgRNA를 사용하였다. sgNS는 대조군으로 사용하였다. 5x104 LLC1-Luc-GFP 암세포를 각 마우스 옆구리에 피하 주사하였다. LLC1 1차 종양 성장은 LLC1 Luc-GFP 주입 후 7, 14, 21 및 35일째 각 마우스 그룹에서 생물발광 영상으로 모니터링되었다. 생체내(in vivo) 생물발광 영상을 위해 마우스에 D-루시페린 (potassium salt, Biosynth L-8820) 75 mg/kg을 주입하였다.Referring to Figure 6A, before injecting cancer cells into FSP1 cre ;CAS9 EGFP transgenic mice, sgRNA against PRRX1 was used to deplete PRRX1 in fibroblasts. sgNS was used as a control. 5x10 4 LLC1-Luc-GFP cancer cells were subcutaneously injected into the flank of each mouse. LLC1 primary tumor growth was monitored by bioluminescence imaging in each group of mice at 7, 14, 21 and 35 days after injection of LLC1 Luc-GFP. For in vivo bioluminescence imaging, mice were injected with 75 mg/kg of D-luciferin (potassium salt, Biosynth L-8820).
1-2-4. FSP1cre;CAS9EGFP 형질전환 마우스의 피부 상처 치유1-2-4. Skin wound healing in FSP1 cre ;CAS9 EGFP transgenic mice
도 11의 A를 참고하면, 성체 FSP1cre;CAS9EGFP 형질전환 마우스를 사용하였다. 마우스의 등에는 4개의 12 mm 생검 펀치로 낸 피부 상처가 있으며, 상처는 건조를 방지하기 위해 투명한 반폐쇄 드레싱 (Tegaderm, 3M)으로 덮어놨고, 실험이 종결되거나 마우스가 죽을 때까지 상처를 관찰하였다. 0, 3, 8, 10, 12 및 18일째 카메라로 절제 상처를 포착하였다. 상처 영역(wound area)은 조직학적 분석과 상처 치유 및 수축 분석 방법으로 측정되었다.Referring to FIG. 11A, adult FSP1 cre ; CAS9 EGFP transgenic mice were used . There are skin wounds on the back of the mouse with four 12 mm biopsy punches, and the wounds are covered with a transparent semi-occlusive dressing (Tegaderm, 3M) to prevent drying, and the wounds are observed until the experiment is terminated or the mouse dies. . Excisional wounds were captured with a camera on days 0, 3, 8, 10, 12 and 18. Wound area was measured by histological analysis and wound healing and contraction analysis methods.
1-2-5. 치료 평가를 위한 생체내 실험 전략1-2-5. In vivo experimental strategies for therapeutic evaluation
도 13을 참고하면, 8주령 FSP1cre;CAS9EGFP 마우스에 LLC1-Luc-GFP 세포 1x106를 이식하였다. 시스플라틴(Cisplatin)은 항암제의 일종으로, 시스플라틴 투여는 종양의 부피가 약 30 mm3에 이르렀을 때 주 2회 10.5 mg/kg i.p의 용량에서 시작하였다. sgPrrx1을 32주 동안 주 2회 MOI 0.01 용량으로 투여하였으며, 후속 연구를 위해 마우스의 종양 조직을 회수하고 10% 노르말 완충 포르말린(normal buffered formalin)으로 고정시켜 파라핀으로 포매하였다. 종양의 크기는 MRI(magnetic resonance imaging)를 이용하여 매주 측정하였고, Paravision software version 6.0 (Bruker-Biospin)을 사용하여 부피를 계산하였다. Referring to FIG. 13, 8-week-old FSP1 cre ;CAS9 EGFP mice were transplanted with 1x10 6 LLC1-Luc-GFP cells. Cisplatin is a type of anticancer drug, and administration of cisplatin was started at a dose of 10.5 mg/kg ip twice a week when the tumor volume reached about 30 mm 3 . sgPrrx1 was administered at an MOI of 0.01 twice a week for 32 weeks, and tumor tissues from mice were collected for follow-up studies, fixed with 10% normal buffered formalin, and embedded in paraffin. Tumor size was measured weekly using magnetic resonance imaging (MRI), and volume was calculated using Paravision software version 6.0 (Bruker-Biospin).
1-2-6. MR 영상 및 데이터 분석1-2-6. MR imaging and data analysis
모든 생체내(in vivo) MR 영상은 100 μs 상승 시간에 최대 400 mT/m까지 공급할 수 있는 20 cm 구배 세트(gradient set)를 장착한 7T/20 MR 시스템 (Bruker-Biospin, Ettlingen)으로 수행되었다.All in vivo MR imaging was performed with a 7T/20 MR system (Bruker-Biospin, Ettlingen) equipped with a 20 cm gradient set capable of supplying up to 400 mT/m with a 100 μs rise time. .
여기 및 신호 수신을 위해 사각형 볼륨 코일(volume coil) (35 mm i.d.)을 사용하였다. 각 마우스로부터 MR 영상을 얻기 위해 호흡기 게이팅(respiratory gating)과 함께 다음과 같은 조건으로 신속 에코 T2-가중 MRI 시퀀스(fast spin-echo T2-weighted MRI sequence)를 사용하였다: 반복 시간(repetition time, TR)/반사 시간(echo time, TE) = 2500/45 ms; 실험 수(number of experiment, NEX) = 3; 에코열 길이(echo train length) = 6; 평면 해상도(plane resolution) = 130 x 130 μm2; 슬라이드 두께(slice thickness) = 1 mm.A square volume coil (35 mm id) was used for excitation and signal reception. To acquire MR images from each mouse, a fast spin-echo T2-weighted MRI sequence was used with respiratory gating and the following conditions: repetition time (TR). )/echo time (TE) = 2500/45 ms; number of experiments (NEX) = 3; echo train length = 6; plane resolution = 130 x 130 μm 2 ; slice thickness = 1 mm.
MR 영상에서 종양 부피를 정량화하기 위해 Paravision software version 6.0 (Bruker-Biospin)을 사용하여 영상의 각 슬라이스에서 종양 영역을 정하고 종양 부피 주변에서 관심 영역(regions of interest, ROI)을 그렸다.To quantify the tumor volume in the MR image, Paravision software version 6.0 (Bruker-Biospin) was used to determine the tumor region in each slice of the image and draw regions of interest (ROIs) around the tumor volume.
1-4. 조직 시료 및 면역조직화학1-4. Tissue samples and immunohistochemistry
조직 시료는 삼성서울병원 (대한민국, 서울)의 기관생명윤리위원회(institutional review board)에 의해 승인 (승인번호 SMC 2021-02-048)을 거쳐 대장암 (n=185), 위암 (n=178), 폐암 (n=80), 식도암 (n=168) 및 유방암 (n=80)에 대한 5개의 암 조직을 환자로부터 수득하였다. PRRX1 단백질에 대한 면역염색은 항-PRRX1 단일클론항체 (LS-bio LS-C336798)를 사용하여 수행되었다. 조직 마이크로어레이(Tissue Microarray, TMA)에 사용된 시료는 연령, 성별, 종양 크기, 침습 깊이(T), 결절 상태(N), 전이(M), 전체 생존율(overall survival, OS) 및 무질병 생존(disease-free survival, DFS)을 포함하는 임상 데이터가 존재한다. TNM 분류에 따른 단계구분은 2010년 미국암공동위원회 단계구분 매뉴얼(American Joint Committee on Cancer staging manual) 지침에 따라 적용되었다. Tissue samples were approved by the institutional review board of Samsung Seoul Hospital (Seoul, Korea) (approval number SMC 2021-02-048) for colorectal cancer (n=185) and gastric cancer (n=178). , 5 cancer tissues for lung cancer (n=80), esophageal cancer (n=168) and breast cancer (n=80) were obtained from patients. Immunostaining for PRRX1 protein was performed using an anti-PRRX1 monoclonal antibody (LS-bio LS-C336798). Samples used for tissue microarray (TMA) were age, sex, tumor size, depth of invasion (T), nodal status (N), metastasis (M), overall survival (OS), and disease-free survival. Clinical data including disease-free survival (DFS) are available. Staging according to the TNM classification was applied according to the guidelines of the 2010 American Joint Committee on Cancer staging manual.
면역조직화학 염색은 종래에 알려진 방법에 따라 수행하였다. 간략하게 설명하면, 조직의 절편(section)을 자이렌으로 탈파라핀한 다음 알코올로 탈수하고 마지막으로 과산화수소가 포함된 메탄올을 처리하였다. 그런 다음, 항원 회수(antigen retrieval)를 위해 절편에 TE 완충액 (Tris 10 mM 및 EDTA 1 mM 함유, pH 9.0)을 처리하였다. 비특이적인 염색을 차단하기 위해 각 절편을 4% 스킴 밀크(skim milk)를 함유한 PBST (0.1% Tween 20을 함유한 PBS)로 30분간 처리한 후 4% 스킴 밀크(skim milk)를 함유한 PBST에서 1차 항체와 60분간 실온에서 반응시켰다. 1차 항체는 다음과 같다: 항-PRRX1 (Origene TA803116, 1:400), 항-PRRX1 (LS-bio LS-C336798, 1:500), 항-aSMA (DAKO M0851, 1:200), 항-PCNA (Abcam ab29, 1:1000) 및 항-PDGFRa (Cell signaling 3164, 1:100). 이후 절편을 PBS 완충액으로 3회 세척한 후 실온에서 항-마우스/토끼 전용 단백질 키트 (Envision Plus)와 반응시켰다. 발색제로는 3-amino-9-ethylcarbazole (AEC, SK-4205)를 사용하였다. 헤마톡실린(hematoxylin)으로 절편을 대비염색하였고, Aperio® AT2 virtual slide scanner (Leica)를 사용하여 가상 슬라이드 이미지를 생성하였다. 반정량적으로(semi-quantitatively) 면역조직화학 점수를 측정하였다. 요약하면, 염색 양성 세포의 강도와 비율은 다음과 같이 측정하였다: [1점], 기질 세포(stromal cell)의 50% 미만이 약한 염색이거나 20% 미만이 중간 염색인 경우; [2점], 50% 이상이 약한 염색이거나 20 내지 50%가 중간 염색, 또는 20% 미만이 강한 염색인 경우; [3점], 50% 이상이 중간 염색이거나 20% 이상이 강한 염색인 경우.Immunohistochemical staining was performed according to a conventionally known method. Briefly, tissue sections were deparaffinized with xylene, dehydrated with alcohol, and finally treated with methanol containing hydrogen peroxide. Then, sections were treated with TE buffer (containing 10 mM Tris and 1 mM EDTA, pH 9.0) for antigen retrieval. To block non-specific staining, each section was treated with PBST containing 4% skim milk (PBS containing 0.1% Tween 20) for 30 minutes and then PBST containing 4% skim milk. was reacted with the primary antibody for 60 minutes at room temperature. Primary antibodies were: anti-PRRX1 (Origene TA803116, 1:400), anti-PRRX1 (LS-bio LS-C336798, 1:500), anti-aSMA (DAKO M0851, 1:200), anti- PCNA (Abcam ab29, 1:1000) and anti-PDGFRa (Cell signaling 3164, 1:100). The sections were then washed three times with PBS buffer and reacted with an anti-mouse/rabbit protein kit (Envision Plus) at room temperature. 3-amino-9-ethylcarbazole (AEC, SK-4205) was used as a coloring agent. Sections were counterstained with hematoxylin, and virtual slide images were generated using an Aperio® AT2 virtual slide scanner (Leica). Immunohistochemistry scores were determined semi-quantitatively. In summary, the intensity and percentage of staining-positive cells were determined as follows: [score 1], if less than 50% of stromal cells had weak staining or less than 20% had moderate staining; [2 points], when 50% or more is weak staining, 20 to 50% is medium staining, or less than 20% is strong staining; [3 points], if 50% or more is medium dyeing or 20% or more is strong dyeing.
영상 시각화 처리 단계 및 세부 프로토콜은 통상의 방법에 따라 수행되었다 (Yeo, S. Y., et al. 2017 Oncotarget 8, 65265-65280). 시각화는 Image J Fiji 소프트웨어를 사용하여 공동 음역 영상(coregistered image)을 의색 영상(pseudo-color image)으로 변환하여 수행되었다. Image J Fiji에서는 Plugin, DAB/AEC분리를 위한 색상 디콘볼루션(color deconvolution) 및 헤마톡실린(hematoxylin) 염색 신호를 처리하였다.Image visualization processing steps and detailed protocols were performed according to conventional methods (Yeo, S. Y., et al. 2017 Oncotarget 8, 65265-65280). Visualization was performed by converting coregistered images to pseudo-color images using Image J Fiji software. In Image J Fiji, color deconvolution and hematoxylin staining signals for Plugin, DAB/AEC separation were processed.
1-5. 상처 치유 및 수축 분석1-5. Wound healing and contraction assay
상처 치유율 및 수축률 (%)을 추정하기 위해 상처 이미지를 상처 입은 당일 (day 0)과 상처 후 3, 8, 10, 12, 15 및 18일에 획득하였다. 상처 수축 및 치유율은 당업계에 공지된 방법에 따라 정량화되었다 (Sung, C. O., et al. 2011 The American journal of pathology 179, 1827-1838; Lee, K. W., et al. 2015 Cancer research 75, 73-85).To estimate the wound healing rate and contraction rate (%), wound images were acquired on the day of wounding (day 0) and 3, 8, 10, 12, 15, and 18 days after wounding. Wound contraction and healing rates were quantified according to methods known in the art (Sung, C. O., et al. 2011 The American journal of pathology 179, 1827-1838; Lee, K. W., et al. 2015 Cancer research 75, 73-85 ).
상처 치유율 (%) = (1 - (현재 상처 부위/원래 상처 부위)) x 100%Wound Healing Rate (%) = (1 - (Current Wound Area/Original Wound Area)) x 100%
상처 수축률 (%) = (1 - (현재 상처 부위 상피화 부위/원래 상처 부위)) x 100%Wound contraction rate (%) = (1 - (current wound area epithelialized area/original wound area)) x 100%
1-6. 아포토시스(Apoptosis) 분석1-6. Apoptosis assay
아포토시스 분석은 BD Annexin V-APC 아포토시스 검출 키트 (Cat. 550474, BD Biosciences)의 매뉴얼에 따라 수행되었다. CAF를 분리하여 PBS로 2회 세척한 후 아넥신 결합 완충액(1xAnnexin binding Buffer)으로 재현탁하였다. 이들 CAF는 실온의 암실에서 15 ~ 20분 동안 APC와 결합된 아넥신 V로 염색되었다. 배양 후, 아넥신 결합 완충액으로 세포를 2회 세척하고 프로피디움 요오드화물(propidium iodide)을 함유한 아넥신 결합 완충액으로 재현탁하였고, 유세포 분석기(flow cytometry)를 통해 즉시 염색된 세포를 검출하였다.Apoptosis assay was performed according to the manual of the BD Annexin V-APC Apoptosis Detection Kit (Cat. 550474, BD Biosciences). CAFs were separated, washed twice with PBS, and then resuspended in an annexin binding buffer (1xAnnexin binding Buffer). These CAFs were stained with Annexin V coupled to APC for 15-20 minutes in the dark at room temperature. After culturing, the cells were washed twice with an annexin binding buffer and resuspended in an annexin binding buffer containing propidium iodide, and the stained cells were immediately detected by flow cytometry.
1-7. 겔 수축 분석1-7. Gel shrinkage assay
겔 수축(Gel contraction) 분석은 세포외 기질 수축 분석을 위해 수행되었으며, 제조사의 지침에 따라 세포 수축 분석 키트 (Cat: CBA-201, Cell Biolabs)를 사용하였다. CAF는 트립신 처리하여 수득하고 PBS로 2회 세척한 후 콜라겐과 5xDMEM을 혼합한 완전 배지 (10 μl)로 재현탁하여 총 부피 500 μl를 맞추었다. 이러한 세포-콜라겐 혼합물 500 μl를 24-웰 플레이트에 분주하고 (콜라겐 중합을 위해) 37℃에서 2시간 동안 배양하였다. 젤 수축은 웰 측면에서 겔이 떨어지면서 시작되었고, 콜라겐 겔 크기의 변화가 관찰되었다. 완전 배지는 이틀에 한 번씩 교체하였다.Gel contraction analysis was performed for extracellular matrix contraction analysis, using a cell contraction assay kit (Cat: CBA-201, Cell Biolabs) according to the manufacturer's instructions. CAFs were obtained by trypsinization, washed twice with PBS, and then resuspended in a complete medium (10 μl) containing collagen and 5xDMEM to make a total volume of 500 μl. 500 μl of this cell-collagen mixture was dispensed into a 24-well plate (for collagen polymerization) and incubated at 37° C. for 2 hours. Gel shrinkage was initiated as the gel fell off the side of the well, and a change in the size of the collagen gel was observed. The complete medium was replaced every other day.
1-8. 단일 세포 RNA 시퀀싱 데이터 분석1-8. Analysis of single cell RNA sequencing data
1-8-1. scRNA-seq 데이터 수집1-8-1. scRNA-seq data collection
도 1의 A를 참고하면, 인간 대장암(colorectal cancer), 폐암(lung cancer), 난소암(ovarian cancer), 편평상피암(squamous cell carcinoma), 위암(stomach cancer) 및 췌장암(pancreatic cancer)에 대해 공개된 6개의 단일 세포 RNA 시퀀싱(Single cell RNA-Sequencing, scRNA-seq) 데이터세트를 사용하였고, 그 데이터세트의 목록은 하기 표 2와 같다.Referring to A of FIG. 1, for human colorectal cancer, lung cancer, ovarian cancer, squamous cell carcinoma, stomach cancer and pancreatic cancer Six published single cell RNA-Sequencing (scRNA-seq) datasets were used, and the list of the datasets is shown in Table 2 below.
암cancer | 데이터베이스database | 승인번호Approval number | 출처source | |
ⅠI | 대장암colorectal cancer | Gene Expression OmnibusGene Expression Omnibus |
GSE132465, GSE144735GSE132465; GSE144735 |
Lee et. al. 2020Lee et. al. 2020 |
ⅡⅡ | 폐암lung cancer | ArrayExpressArrayExpress |
E-MTAB-6149, E-MTAB-6653E-MTAB-6149; E-MTAB-6653 |
Lambrechts et. al. 2018Lambrechts et. al. 2018 |
ⅢIII | 난소암ovarian cancer | ArrayExpressArrayExpress | E-MTAB-8107E-MTAB-8107 | Qian et. al. 2020Qian et. al. 2020 |
ⅣIV | 편평상피암squamous cell carcinoma | Gene Expression OmnibusGene Expression Omnibus | GSE144240GSE144240 | Ji et. al. 2020Ji et. al. 2020 |
ⅤV | 위암stomach cancer | database of Genotypes and Phenotypesdatabase of Genotypes and Phenotypes | phs001818.v1.p.1phs001818.v1.p.1 | Sathe et. al. 2020Sathe et. al. 2020 |
ⅥVI | 췌장암pancreatic cancer | Genome Sequence ArchiveGenome Sequence Archive | CRA001160CRA001160 | Peng et. al. 2019Peng et. al. 2019 |
1-8-2. scRNA-seq 데이터 사전처리1-8-2. scRNA-seq data preprocessing
scRNA-seq은 10X Chromium 3' v2 chemistry를 사용하여 상처 난 지 10일된 마우스의 상처 조직에서 수행되었다. 수집한 원래의 scRNA-seq 리드(read)는 10X genomics의 cellranger v3.1.0 pipeline를 사용하여 생쥐(Mus musculus) 기준 유전체(reference genome)에 대해 정렬되었다. 초기 품질관리를 위해 200개 미만의 검출 유전자를 가진 세포와 3개 미만의 세포에서 발현되는 유전자를 제거하였다. 또한, 미토콘드리아 전사체가 5% 이상 발현되는 아포토시스 세포(apoptotic cell)를 저품질 세포로 간주하여 폐기하였다. 필터링을 거친 2,519개의 세포가 추가 분석에 사용되었다. 각 세포에 대해서는 (100,000개) 세포당 정수(constant)의 총 리드 수를 계산하고 로그 변환을 수행하여 로그 정규화를 수행하였다. 시각화를 위해서는 초기 규모 감소(dimensionality reduction)를 위해 2,000개의 고도로 가변적인 유전자를 이용한 주성분 분석(principal component analysis, PCA)을 수행하였고, PCA 규모를 2D 공간으로 줄이기 위해 tSNE(T-distributed stochastic neighbor embedding)과 UMAP(Uniform Manifold Approximation and Projection)를 수행하였다. 모든 분석은 R (v 3.6.3)의 Seurat v4.0.0 package를 사용하여 수행되었다.scRNA-seq was performed on wound tissue from 10-day-old mice using 10X Chromium 3' v2 chemistry. The collected original scRNA-seq reads were aligned to the mouse ( Mus musculus ) reference genome using the cellranger v3.1.0 pipeline of 10X genomics. For initial quality control, cells with less than 200 detected genes and genes expressed in less than 3 cells were removed. In addition, apoptotic cells in which mitochondrial transcripts were expressed at 5% or more were regarded as low-quality cells and discarded. 2,519 filtered cells were used for further analysis. For each cell (100,000), log normalization was performed by calculating the total number of constant reads per cell and performing log transformation. For visualization, principal component analysis (PCA) was performed using 2,000 highly variable genes for dimensionality reduction, and T-distributed stochastic neighbor embedding (tSNE) was performed to reduce the PCA scale to 2D space. and UMAP (Uniform Manifold Approximation and Projection) were performed. All analyzes were performed using the Seurat v4.0.0 package in R (v 3.6.3).
1-8-3. 확률적 단일 세포 어노테이션(annotation) 1-8-3. Stochastic single cell annotation
종래 연구 (Costa, A., et al. 2018 Cancer cell 33, 463-479)에서 사용된 마커를 사용하여 계층 통계 프레임워크 CellAssign (version 0.99.16)을 통해 각 세포가 세포 유형에 속할 확률을 계산하였다. 단일 세포 어노테이션에 사용된 유전자의 목록은 하기 표 3과 같다. 그 다음, R 패키지의 세포별 크기 계수는 scarn 패키지 (version 1.12.1)에서 찾은 함수의 식에 의해 계산되었다. Using the markers used in previous studies (Costa, A., et al. 2018 Cancer cell 33, 463-479), the probability that each cell belongs to a cell type is calculated through the hierarchical statistical framework CellAssign (version 0.99.16) did A list of genes used for single cell annotation is shown in Table 3 below. Then, the size factor for each cell in the R package was calculated by the expression of the function found in the scarn package (version 1.12.1).
세포 유형cell type | 마커marker | |
1One | B 세포B cells | BANK1, CD79A, CD79B, FCER2, FCRL2, FCRL5, MS4A1, PAX5, POU2AF1, STAP1 TCL1ABANK1, CD79A, CD79B, FCER2, FCRL2, FCRL5, MS4A1, PAX5, POU2AF1, STAP1 TCL1A |
22 | 암 연관 섬유아세포cancer-associated fibroblasts | Twist1, PDGFRA, TNC, ACTA2Twist1, PDGFRA, TNC, ACTA2 |
33 | 섬유아세포fibroblasts | ADAM33, CLDN11, COL1A1, COL3A1 ,COL14A1 ,CRISPLD2, CXCL14, DPT, F3, FBLN1, ISLR, LUM, MEG3, MFAP5, PRELP, PTGIS, SFRP2, SFRP4, SYNPO2, TMEM119ADAM33, CLDN11, COL1A1, COL3A1 ,COL14A1 ,CRISPLD2, CXCL14, DPT, F3, FBLN1, ISLR, LUM, MEG3, MFAP5, PRELP, PTGIS, SFRP2, SFRP4, SYNPO2, TMEM119 |
44 | CD4 T 세포CD4 T cells | ANKRD55, DGKA, FOXP3, NT4, IL2RA, MDS2, RCAN3, TBC1D4, TRAT1ANKRD55, DGKA, FOXP3, NT4, IL2RA, MDS2, RCAN3, TBC1D4, TRAT1 |
55 | CD8 T 세포CD8 T cells | CD8B, HAUS3, JAKMIP1, NAA16, TSPYL1CD8B, HAUS3, JAKMIP1, NAA16, TSPYL1 |
66 | 내피세포endothelial cells | CDH5, CLDN5, CLEC14A, CXorf36, ECSCR, F2RL3, FLT1, FLT4, GPR4, GPR182, KDR, MMRN1, MMRN2, MYCT1, PTPRB, RHOJ, SLCO2A1, SOX18, STAB2, VWFCDH5, CLDN5, CLEC14A, CXorf36, ECSCR, F2RL3, FLT1, FLT4, GPR4, GPR182, KDR, MMRN1, MMRN2, MYCT1, PTPRB, RHOJ, SLCO2A1, SOX18, STAB2, VWF |
77 | 대식세포macrophage | APOC1, C1QC, CD14, CD163, CD300C, CD300E, CSF1R, F13A1, FPR3, HAMP, IL1B, LILRB4, MS4A6A, MSR1, SIGLEC1, VSIG4APOC1, C1QC, CD14, CD163, CD300C, CD300E, CSF1R, F13A1, FPR3, HAMP, IL1B, LILRB4, MS4A6A, MSR1, SIGLEC1, VSIG4 |
88 | 단핵구monocyte | CD33, CD300C, CD300E, CECR1, CLEC6A, CPVL, EGR2, EREG, MS4A6A, NAGA, SLC37A2CD33, CD300C, CD300E, CECR1, CLEC6A, CPVL, EGR2, EREG, MS4A6A, NAGA, SLC37A2 |
99 | 호중구neutrophil | CEACAM3, CNTNAP3, CXCR1, CYP4F3, FFAR2, HIST1H2BC, HIST1H3D, KY, MMP25, PGLYRP1, SLC12A1, TAS2R40CEACAM3, CNTNAP3, CXCR1, CYP4F3, FFAR2, HIST1H2BC, HIST1H3D, KY, MMP25, PGLYRP1, SLC12A1, TAS2R40 |
1010 | NK세포NK cells | CD160, CLIC3, FGFBP2, GNLY, GNPTAB, KLRF1, NCR1, NMUR1, S1PR5, SH2D1BCD160, CLIC3, FGFBP2, GNLY, GNPTAB, KLRF1, NCR1, NMUR1, S1PR5, SH2D1B |
1111 | T세포T cell | BCL11B, CD5, CD28, IL7R, ITK, THEMIS, UBASH3ABCL11B, CD5, CD28, IL7R, ITK, THEMIS, UBASH3A |
1-8-4. 활성화된 CAF의 전사인자1-8-4. Transcription factors of activated CAF
활성화된 CAF와 고도로 상관관계가 있는 전사인자(TF)를 찾기 위해 scRNA-seq의 어노테이션 결과를 사용하였다. 먼저, 기본 파라미터를 가진 'FindAllMarkers' 기능을 사용하여 정상 섬유아세포(normal fibroblast, NF)와 암 연관 섬유아세포(cancer-associated fibroblast, CAF) 간의 차등 발현 유전자(differentially expressed gene, DEG)를 확인하였다. 그리고서 DEG 중 6개의 TF만을 선정하였다. 그 다음, 6개의 TF에 대한 발현 수준과 활성화된 섬유아세포 점수 간의 피어슨 상관계수(Pearson Correlation Coefficient, PCC)를 계산하였다. 마지막으로, 가장 높은 PCC의 TF를 선정하였다.The annotation results of scRNA-seq were used to find transcription factors (TFs) highly correlated with activated CAFs. First, a differentially expressed gene (DEG) between normal fibroblast (NF) and cancer-associated fibroblast (CAF) was identified using the 'FindAllMarkers' function with default parameters. Then, only 6 TFs among the DEGs were selected. Then, the Pearson Correlation Coefficient (PCC) between the expression levels of the six TFs and the activated fibroblast score was calculated. Finally, the TF with the highest PCC was selected.
1-8-5. 마우스 상처 조직에서 분리된 scRNA-seq의 준비1-8-5. Preparation of scRNA-seq isolated from mouse wound tissue
성체 야생형 마우스 (Balb/c)는 scRNA-seq을 위해 사용되었다. 마우스의 등에 12 mm 생검 펀치 피부 상처를 내고, 10일 후 상처 부위의 조직을 절개하였다. 조직을 잘게 잘라 메스로 다지고, 37℃에서 콜라게나아제(collagenase) I을 함유한 DMEM/F-12 혈청 배지와 12시간 진탕기(shaker)를 이용하여 분리시켰다.Adult wild type mice (Balb/c) were used for scRNA-seq. A 12 mm biopsy punch skin wound was made on the back of the mouse, and 10 days later, tissue at the wound site was incised. Tissues were finely cut and minced with a scalpel, and separated using DMEM/F-12 serum medium containing collagenase I at 37° C. for 12 hours on a shaker.
상처 조직의 세포는 50 ml 튜브로 옮겨졌고 죽은 세포는 피콜 분리(ficoll seperation)를 통해 제거되었다. scRNA 시퀀싱 및 프로세싱을 위해, 제조사 지침에 따라 single cell A chip kit, Single Cell 3' Library and Gel Bead Kit V2 및 i7 Multiplex Kit (10x Genomics)를 사용하여 3' 단일 세포 RNA 시퀀싱을 수행하였다. 라이브러리는 Illumina HiSeq2500 플랫폼(platform)에서 서열분석되었다.Cells from the wound tissue were transferred to a 50 ml tube and dead cells were removed via ficoll separation. For scRNA sequencing and processing, 3' single cell RNA sequencing was performed using single cell A chip kit, Single Cell 3' Library and Gel Bead Kit V2, and i7 Multiplex Kit (10x Genomics) according to the manufacturer's instructions. Libraries were sequenced on the Illumina HiSeq2500 platform.
1-8-6. Seurat의 addmodulescore 함수를 사용한 scRNA-seq 데이터의 모듈 점수 계산1-8-6. Calculating module scores for scRNA-seq data using Seurat's addmodulescore function
Seurat의 'Add ModuleScore' 함수를 사용하여 단일 세포 RNA seq 데이터의 모듈 점수를 계산하였다 (Stuart T, etal. Cell 2019;177(7):1888-902). 모듈 점수는 특정 단일 세포의 특정 특징(feature)과 관련된 유전자의 평균 발현 수준에서 무작위로 선택된 대조군의 유전자의 평균 발현 수준을 뺀 값이다. 모듈 점수가 높으면 특정 특징의 유전자가 예상보다 특정 단일 세포에서 더 많이 발현된다는 것을 알 수 있다. 섬유아세포 활성화와 관련된 유전자 세트를 이용하여 섬유아세포 활성화 점수를 계산하였고, Molecular Signatures Database (MSigDB) 중 GO_EXTRACELLULAR_MATRIX의 유전자를 사용하여 ECM 조직화 점수를, GO_REGULATION_OF_SUPRAMOLECULAR_FIBER_ORGANIZATION의 유전자를 사용하여 근섬유아세포 유사 점수(Myofibroblast like score)를 계산하였다.The module score of single cell RNA seq data was calculated using Seurat's 'Add ModuleScore' function (Stuart T, etal. Cell 2019;177(7):1888-902). The modulus score is the average expression level of a gene associated with a particular feature in a particular single cell minus the average expression level of a randomly selected control gene. A high module score indicates that a gene of a particular characteristic is expressed more than expected in a particular single cell. The fibroblast activation score was calculated using a gene set related to fibroblast activation, and the ECM organization score was calculated using the gene of GO_EXTRACELLULAR_MATRIX in the Molecular Signatures Database (MSigDB), and the myofibroblast like score (Myofibroblast like score) was obtained using the gene of GO_REGULATION_OF_SUPRAMOLECULAR_FIBER_ORGANIZATION. ) was calculated.
1-8-7. 암 조직에서 분리된 CAF와 암세포 간의 세포-세포 상호작용 네트워크 구축1-8-7. Establishment of a cell-cell interaction network between CAFs isolated from cancer tissues and cancer cells
송신 세포(sender cell) (PRRX1-고발현 및 PRRX1-저발현 CAF)와 수신 세포(receiver cell) (다양한 암세포) 사이에서 활성화된 리간드를 확인하기 위해, NicheNet을 사용하여 scRNA-seq 데이터에서 활성화된 리간드를 예측하였다. 활성화된 리간드만을 식별하기 위해, NickeNet은 잠재적 리간드-표적 조절 네트워크의 지식 기반 이전 모델을 사용하였다. 그런 다음, 각 리간드가 수신 세포의 발현에 미치는 영향을 예측하였다. NicheNet을 실행하기 위해, 먼저 기본 파라미터로 Seurat의 FindMarker 함수를 사용하여 수신 세포 유형 (다양한 암조직에서 분리된 암세포)에서 활성화된 세포와 불활성화된 세포 간의 DEG를 스크리닝하였다. 그런 다음, NicheNet의 예측_리간드_활성화(predict_ligand_activity) 함수를 확인된 DEG와 함께 사용하여 수신 세포에 결합하는 리간드를 예측하였다.To identify ligands activated between sender cells (PRRX1-high- and PRRX1-low-expressing CAFs) and receiver cells (various cancer cells), NicheNet was used to detect activated ligands from scRNA-seq data. Ligand was predicted. To identify only activated ligands, NickeNet used a knowledge-based prior model of potential ligand-target regulatory networks. Then, the effect of each ligand on the expression of the recipient cells was predicted. To run NicheNet, we first screened the DEG between activated and inactivated cells in the receiving cell type (cancer cells isolated from various cancer tissues) using Seurat's FindMarker function with default parameters. Then, NicheNet's predict_ligand_activity function was used with the identified DEGs to predict ligand binding to recipient cells.
1-9. qPCR1-9. qPCR
총 RNA는 RNeasy 키트 (#74104, Qiagen)를 사용하여 추출하였으며, 고용량 cDNA 역전사 키트 (#4368813, Applied Biosystems)를 사용하여 총 RNA 2 g에서 cDNA를 합성하였다. PCR 반응에서는 하기 표 4의 각 프라이머 세트와 함께 SYBR Green PCR master mix (Applied Biosystems)를 사용하고, ABI 7900 HT Fast Real PCR 시스템 (Applied Biosystems)을 사용하여 반응을 수행하였다. GAPDH는 내부 대조군(internal control)로 사용되었다. qPCR 증폭 조건은 다음과 같다: 95℃에서 10분간 1단계 후 95℃에서 15초 및 60℃에서 1분 동안 40회 반복. ΔΔ Ct 방법을 사용하여 각 유전자 발현에서의 배수 변화(fold-change, FC)를 분석하였다. 각 3회 반복 수행되었다.Total RNA was extracted using the RNeasy kit (#74104, Qiagen) and cDNA was synthesized from 2 g of total RNA using the High Capacity cDNA Reverse Transcription Kit (#4368813, Applied Biosystems). In the PCR reaction, SYBR Green PCR master mix (Applied Biosystems) was used together with each primer set in Table 4, and the reaction was performed using an ABI 7900 HT Fast Real PCR system (Applied Biosystems). GAPDH was used as an internal control. The qPCR amplification conditions were as follows: 1 step at 95°C for 10 minutes followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. The fold-change (FC) in each gene expression was analyzed using the ΔΔ Ct method. Three repetitions were performed each.
프라이머 명칭Primer name | 프라이머 서열 (5'-3')Primer sequence (5'-3') | 서열번호sequence number | |
Mouse PRRX1-FMouse PRRX1- | GAGCGTGTCTTTGAGCGGAGAGCGTGTCTTTGAGCGGA | 77 | |
Mouse PRRX1-RMouse PRRX1- | CATGTGGCAGAATAAGTAGCCATCATGTGGCAGAATAAGTAGCCAT | 88 | |
Mouse GAPDH-FMouse GAPDH- | AATGGATTTGGACGCATTGGTAATGGATTTGGACGCATTGGT | 99 | |
Mouse GAPDH-RMouse GAPDH- | TTTGCACTGGTACGTGTTGATTTTGCACTGGTACGTGTTGAT | 1010 |
1-9. 전체 생존율 분석을 위한 PRRX1 발현 값의 최적의 컷오프1-9. Optimal Cutoff of PRRX1 Expression Values for Overall Survival Analysis
'maxstat' R 패키지에서 최대로 선택된 순위 통계를 사용하여 PRRX1 발현 값에 대한 최적의 컷오프(cutoff)를 결정하였다. 이 값은 가능한 컷오프 포인트(possible cut-off point)에 대한 생존과 가장 유의적인 연관성이 있는 컷포인트 값으로 선택되었다. 가능한 컷오프 포인트는 PRRX1 발현 값의 20번째 내지 80번째의 범위에서 사용되었다. The optimal cutoff for PRRX1 expression values was determined using the rank statistic maximally selected in the 'maxstat' R package. This value was chosen as the cut-point value most significantly associated with survival for a possible cut-off point. Possible cutoff points were used ranging from the 20th to the 80th of PRRX1 expression values.
1-10. 통계 분석1-10. statistical analysis
연속형 변수에 대한 그룹 간의 차이를 평가하기 위해 Wilcoxon rank sum test 또는 t-test가 사용되었다. 범주형 변수에 대한 그룹 간의 연관성을 평가하기 위해 Chi-sqaure test 또는 Fisher exact test가 사용되었다. 전체 생존(OS)은 치료 수술 날짜와 사망 날짜 간의 시간 간격으로 정의되었고, 무질병 생존(DFS)은 치료 수술 날짜와 종양 재발 또는 사망 날짜 간의 시간 간격으로 정의되었다. OS 및 DFS 비율은 Kaplan-Meier 방법을 사용하여 추정되고 log-rank test를 사용하여 두 그룹 간의 생존 분포를 비교하였다. 모든 검정은 양측검정이었으며, 0.05 미만의 P 값은 통계적으로 유의한 것으로 간주되었다. 통계 분석은 SPSS 통계 소프트웨어 (SPSS Inc)를 사용하여 수행되었다.The Wilcoxon rank sum test or t-test was used to evaluate differences between groups for continuous variables. Chi-square test or Fisher exact test was used to evaluate the association between groups for categorical variables. Overall survival (OS) was defined as the time interval between the date of curative surgery and the date of death, and disease-free survival (DFS) was defined as the time interval between the date of curative surgery and the date of tumor recurrence or death. OS and DFS rates were estimated using the Kaplan-Meier method and survival distributions between the two groups were compared using the log-rank test. All tests were two-tailed, and P-values less than 0.05 were considered statistically significant. Statistical analysis was performed using SPSS statistical software (SPSS Inc).
2. 결과2. Results
2-1. 암 연관 섬유아세포 특이 TF 확인 2-1. Identification of cancer-associated fibroblast-specific TFs
정상 섬유아세포에 비해 더 높게 발현되고 암 연관 섬유아세포(CAF)에 특이적이고 기능적으로 중요한 mTF를 확인하기 위해, 다양한 암 유형의 데이터세트를 포함하는 대규모 scRNA-seq 데이터를 사용하여 CellAssign 확률론적 모델 (Peng, J., et al. 2019 Cell Res 29, 777)을 통해 분석하였다. 그 결과, 도 1의 A 및 B에 나타낸 바와 같이, PRRX1은 대장암, 폐암, 난소암, 편평세포암종, 위암 및 췌장암의 CAF에서만 높게 발현되며, 섬유아세포 활성화와 기능적으로 관련이 있는 것으로 나타났다. 또한, 다중 scRNA-seq 데이터의 추가 분석에 따르면, 도 2의 A 및 B에 나타낸 바와 같이, PRRX1은 암 유형에 따라 총 CAF의 30 ~ 90%에서 발현되며 특히 CAF에서 제한적으로 발현되는 것으로 나타났다.To identify mTFs that are highly expressed compared to normal fibroblasts and that are specific and functionally important for cancer-associated fibroblasts (CAFs), large-scale scRNA-seq data containing datasets from various cancer types were used in the CellAssign stochastic model ( Peng, J., et al. 2019 Cell Res 29, 777). As a result, as shown in A and B of FIG. 1 , PRRX1 was highly expressed only in CAFs of colorectal cancer, lung cancer, ovarian cancer, squamous cell carcinoma, gastric cancer and pancreatic cancer, and was functionally related to fibroblast activation. In addition, further analysis of multiple scRNA-seq data showed that PRRX1 was expressed in 30 to 90% of total CAFs depending on the cancer type, and was particularly restricted in CAFs, as shown in FIG. 2A and B.
면역조직화학을 이용하여 암 조직에 대한 PRRX1 발현을 조사하였다. 그 결과, 도 3의 A 및 B에 나타낸 바와 같이, PRRX1 단백질은 비종양(non-tumor) 섬유아세포나 다른 세포에서 유의미한 발현이 확인되지 않았으나, 대장암, 위암, 폐암, 식도암 및 유방암의 조직에서 모두 높게 발현되었다. 그리고 대장암, 위암 및 식도암에서는 CAF에서 PRRX1 단백질을 발현하는 환자의 예후가 좋지 않은 것으로 나타났다.PRRX1 expression on cancer tissues was investigated using immunohistochemistry. As a result, as shown in A and B of FIG. 3, PRRX1 protein was not significantly expressed in non-tumor fibroblasts or other cells, but in tissues of colon cancer, stomach cancer, lung cancer, esophageal cancer and breast cancer. All were highly expressed. And in colorectal, gastric, and esophageal cancers, patients expressing PRRX1 protein in CAF have a poor prognosis.
이러한 결과는 PRRX1이 CAF에서만 높게 발현되며, 다양한 암 유형에 걸쳐 낮은 생존율과 강한 연관성을 가진다는 것을 시사한다.These results suggest that PRRX1 is highly expressed only in CAFs and has a strong association with poor survival across various cancer types.
2-2. 생체내 PRRX1의 역할 확인2-2. Confirmation of the role of PRRX1 in vivo
생체내(in vivo) CAF의 종양 촉진 능력에 대한 PRRX1의 역할을 조사하기 위해, PRRX1이 정상 섬유아세포를 CAF로 리프로그래밍할 수 있는지 확인하였다.To investigate the role of PRRX1 on the tumor promoting ability of CAFs in vivo , it was confirmed that PRRX1 could reprogram normal fibroblasts into CAFs.
먼저, 위암세포 (MKN28)와 위 정상 섬유아세포 (SNF32)를 공동 이식(co-graft)하여 NSG 마우스에 도입하였다. 그 결과, 도 4의 B 및 C에 나타낸 바와 같이, 예상한대로 SNF32는 정상 섬유아세포로서 MKN28 세포의 종양 성장을 억제하였다. 반면, 각각 PRRX1a 및 PRRX1b 동형단백질(isoform)을 발현하는 SNF32-PRRX1a 및 SNF32-PRRX1b는 공동 이식된 MKN28 종양의 성장을 현저히 증가시켰으며, 원시 기질 세포(primitive stromal cell)와 줄기세포 유사 암세포(stem cell-like cancer cell)가 혼합된 것을 특징으로 하는 미세유두상 패턴(micropapillary pattern)의 형성을 촉진시켰다. First, gastric cancer cells (MKN28) and gastric normal fibroblasts (SNF32) were co-grafted and introduced into NSG mice. As a result, as shown in B and C of FIG. 4 , as expected, SNF32 suppressed tumor growth of MKN28 cells as normal fibroblasts. On the other hand, SNF32-PRRX1a and SNF32-PRRX1b, which express PRRX1a and PRRX1b isoforms, respectively, significantly increased the growth of co-implanted MKN28 tumors, and inhibited primitive stromal cells and stem cell-like cancer cells (stem cell). The formation of a micropapillary pattern characterized by a mixture of cell-like cancer cells was promoted.
미세유두상 패턴은 암 전이 증가와 관련이 있게 때문에 PRRX1를 과발현하는 SNF32 가 암 전이를 촉진하는지 확인하였다. 그 결과, 도 5의 A 및 B에 나타낸 바와 같이, SNF32-PRRX1a 및 SNF32-PRRX1b는 폐 전이를 현저히 증가시켰으며, 특히 전이된 암세포는 섬유아세포에 둘러싸여 섬유조직형성(desmoplasia)한 것으로 보였다.Since micropapillary patterns are associated with increased cancer metastasis, it was confirmed whether SNF32 overexpressing PRRX1 promotes cancer metastasis. As a result, as shown in A and B of FIG. 5 , SNF32-PRRX1a and SNF32-PRRX1b markedly increased lung metastasis, and in particular, metastasized cancer cells appeared surrounded by fibroblasts and formed desmoplasia.
이러한 결과는 PRRX1이 CAF의 종양유전성(tumorigenicity) 및 전이 유도능에 필수적이며 PRRX1만으로도 종양을 억제하는 정상 섬유아세포를 CAF로 리프로그래밍할 수 있다는 것을 시사한다.These results suggest that PRRX1 is essential for the tumorigenicity and metastasis-inducing ability of CAFs, and that only PRRX1 can reprogram tumor-suppressing normal fibroblasts into CAFs.
2-3. PRRX1가 섬유아세포의 종양유전성에 미치는 영향 확인2-3. Confirmation of the effect of PRRX1 on the tumorigenicity of fibroblasts
섬유아세포의 PRRX1 결손이 종양유전성에 미치는 영향을 조사하기 위해, CRISPR-CAS9 기술을 이용하여 섬유아세포 특이 CAS9-발현 마우스 (FSP1cre;CAS9EGFP)를 조합하여 섬유아세포에서 PRRX1을 조건부로 결실하는 마우스 모델을 제작하였다.To investigate the effect of PRRX1 deletion in fibroblasts on oncogenetic properties, mice conditionally deleting PRRX1 in fibroblasts were combined with fibroblast-specific CAS9-expressing mice (FSP1 cre ; CAS9 EGFP ) using CRISPR-CAS9 technology. model was made.
먼저, FSP1cre;CAS9EGFP 마우스에 PRRX1에 대한 단일 가이드 RNA(single guide RNA, sgRNA)를 주입하여 섬유아세포에서 PRRX1을 결실한 후 LLC1-Luc-GFP 암세포를 피하 주사하였다. 그 결과, 도 6의 B에 나타낸 바와 같이, LLC1의 종양유전성은 10/10 (대조군 마우스)에서 2/10 (섬유아세포 특이 PRRX1-결손 마우스)로 감소하였으며, 이는 섬유아세포의 PRRX1 발현이 종양유전성에 필수적임을 나타낸다.First, PRRX1 was deleted in fibroblasts by injecting single guide RNA (sgRNA) for PRRX1 into FSP1 cre ;CAS9 EGFP mice, and LLC1-Luc-GFP cancer cells were subcutaneously injected. As a result, as shown in B of FIG. 6, the tumorigenicity of LLC1 was reduced from 10/10 (control mice) to 2/10 (fibroblast-specific PRRX1 -deficient mice), which indicates that PRRX1 expression in fibroblasts is associated with tumorigenicity. indicates that it is essential for
3-4. PRRX1에 의한 CAF의 근섬유아세포 유사 기능 확인3-4. Confirmation of myofibroblast-like functions of CAFs by PRRX1
PRRX1이 CAF의 종양 촉진 활성을 어떻게 유도하는지 조사하기 위해, 섬유아세포에서 PRRX1의 기능을 체계적으로 이해할 수 있도록 다양한 암에 대한 8개의 데이터세트를 사용하여 대규모 scRNA-seq 데이터를 분석하였다. 그 결과, 도 7에 나타낸 바와 같이, scRNA-seq 데이터로부터 PRRX1을 높거나 낮게 발현하는 CAF와 관련된 mRNA 데이터를 얻어 Seurat의 AddModuleScore 함수를 사용하여 구분되는 생물학적 표현형을 확인하였다. 이러한 결과는 다른 독립적인 데이터세트에서 검증되었고, mRNA 수준은 마우스 배아 섬유아세포(mouse embryonic fibroblasts, MEF), 피부 상처 치유 섬유아세포(skin wound-healing fibroblasts) 및 MMTV-CAF의 마우스 섬유아세포 각각에 대해 PRRX1 녹다운(knockdown) 전후로 비교되었다. 마우스에서는 CAS9 기술을 사용하여 PRRX1을 결실한 후 RNA-seq와 유전자 세트 변동 분석(gene set variation analysis, GSVA)을 수행하였다. 그 결과, 도 8에 나타낸 바와 같이, 모든 암 유형에 걸쳐 CAF에서는 ECM의 생산 및 조직, 수축성 강도, 혈관신생, 세포 성장 및 상처 치유와 같은 근섬유아세포(myofibroblast)와 관련된 기능이 PRRX1의 가장 잘 보존된 기능인 것으로 확인되었다.To investigate how PRRX1 induces the tumor-promoting activity of CAFs, we analyzed large-scale scRNA-seq data using eight datasets from various cancers to systematically understand the function of PRRX1 in fibroblasts. As a result, as shown in FIG. 7, mRNA data related to CAFs expressing high or low PRRX1 were obtained from scRNA-seq data, and biological phenotypes were identified using Seurat's AddModuleScore function. These results were validated in another independent dataset, and mRNA levels were measured for mouse embryonic fibroblasts (MEF), skin wound-healing fibroblasts, and mouse fibroblasts from MMTV-CAF, respectively. Comparisons were made before and after PRRX1 knockdown. In mice, RNA-seq and gene set variation analysis (GSVA) were performed after PRRX1 was deleted using CAS9 technology. As a result, as shown in FIG. 8, in CAFs across all cancer types, myofibroblast-related functions such as ECM production and organization, contractile strength, angiogenesis, cell growth, and wound healing are best preserved of PRRX1 . It has been confirmed that this function has been
또한, CAF에서 PRRX1의 이러한 잠재적 기능의 유효성을 실험적으로 확인하였다. 먼저, 인간 위 CAF(stomach CAF, SCAF)에 PRRX1에 대한 shRNA (shPRRX1)를 처리하여 PRRX1가 CAF의 생존에 미치는 영향을 확인하였다. 그 결과, 도 9에 나타낸 바와 같이, shPRRX1는 CAF의 아포토시스(apoptosis)를 현저히 증가시켰다. 또한, 아포토시스는 PRRX1를 낮게 발현하는 섬유세포에서 더 빈번하게 발생하였다. PRRX1 프로모터-GFP 리포터를 포함한 SCAF에서 분류된 PRRX1-고발현 하위 모집단은 PRRX1-저발현 하위집단에 비해 아포토시스가 적고 혈청 부족(serum starvation)에 의한 세포사멸에 강한 저항성을 가지는 것으로 나타났다. In addition, the validity of this potential function of PRRX1 in CAF was confirmed experimentally. First, human gastric CAF (stomach CAF, SCAF) was treated with shRNA (shPRRX1) against PRRX1 to confirm the effect of PRRX1 on CAF survival. As a result, as shown in FIG. 9, shPRRX1 significantly increased CAF apoptosis. Also, apoptosis occurred more frequently in fibroblasts expressing low levels of PRRX1. The PRRX1-high-expressing subpopulation sorted in SCAF containing the PRRX1 promoter-GFP reporter showed less apoptosis and stronger resistance to serum starvation-induced apoptosis than the PRRX1-low-expression subpopulation.
또한, 정상 섬유아세포와 CAF의 ECM 리모델링 능력에 대한 PRRX1의 영향을 조사하였다. 그 결과, 도 10에 나타낸 바와 같이, SNF32의 PRRX1 발현 수준이 증가하면 ECM 수축 활성도가 현저히 향상되는 반면 CAF에서 shRNA-매개 PRRX1 녹다운은 ECM 수축 활성을 거의 상실하였다. 이러한 결과와 일관되게, SCAF에서 분류된 PRRX1-고발현 하위집단은 PRRX1-저발현 하위집단에 비해 높은 ECM 수축을 보였으며 shRNA-매개 PRRX1 침묵(silencing)에 반응하여 ECM 수축 능력을 상실하였다.In addition, the effect of PRRX1 on the ECM remodeling ability of normal fibroblasts and CAFs was investigated. As a result, as shown in FIG. 10 , when the expression level of PRRX1 in SNF32 increased, ECM contractile activity was remarkably improved, whereas shRNA-mediated PRRX1 knockdown in CAF almost lost ECM contractile activity. Consistent with these results, PRRX1-high-expressing subpopulations sorted in SCAF showed higher ECM contraction than PRRX1-low expression subpopulations and lost the ability of ECM contraction in response to shRNA-mediated PRRX1 silencing.
3-5. 생체내 상처 치유 동안 PRRX1의 근섬유아세포 활성화 조절 확인3-5. Confirmation of regulation of myofibroblast activation of PRRX1 during wound healing in vivo
근섬유아세포는 상처 치유 조직에서 가장 먼저 발견되며 상처 치유 과정에 관여하는 것으로 잘 알려져 있기 때문에, 상처 치유는 근섬유아세포에서 PRRX1의 영향을 평가하기 위한 최적의 생체내 실험 플랫폼이다. 따라서 PRRX1이 생체내 근섬유아세포의 마스터 조절자(master regulator)인지를 확인하기 위해, 조건부 PRRX1 녹아웃(knockout) 및 PRRX1 발현 마우스에서 피부 펀치 생검(skin punch biopsy)을 이용하여 절제 피부 상처의 총 두께를 측정하였고, 상처 치유 과정에서 PRRX1가 미치는 영향을 조사하였다. Because myofibroblasts are the first to be found in wound healing tissues and are well known to be involved in the wound healing process, wound healing is an optimal in vivo experimental platform to evaluate the effects of PRRX1 on myofibroblasts. Therefore, to confirm that PRRX1 is the master regulator of myofibroblasts in vivo, the total thickness of excised skin wounds was determined using skin punch biopsy in conditional PRRX1 knockout and PRRX1 expressing mice. measured, and the effect of PRRX1 on the wound healing process was investigated.
먼저, FSP1cre;CAS9EGFP 마우스에 PRRX1에 대한 sgRNA를 주입하여 섬유아세포 특이 PRRX1 녹아웃 (FS-PRRX1-KO) 마우스를 제작하였고, 피부 절제를 통해 피부에 상처를 냈다. 그 결과, 도 11의 B에 나타낸 바와 같이, PRRX1-KO 마우스에서 관찰된 주목할만한 이상(abnormality)으로는 상처 치유 동안 근섬유아세포성 섬유아세포(myofibroblastic fibroblast)의 심각한 결핍이 나타나, 이로 인해 FS-PRRX1 KO 마우스에서 상처 수축이 현저히 감소하고 상처 봉합(wound closure)이 심각하게 지연되었다. First, fibroblast-specific PRRX1 knockout (FS-PRRX1-KO) mice were constructed by injecting sgRNA for PRRX1 into FSP1 cre ;CAS9 EGFP mice, and the skin was cut through skin excision. As a result, as shown in B of FIG. 11, a notable abnormality observed in PRRX1-KO mice was a severe deficiency of myofibroblastic fibroblasts during wound healing, resulting in FS-PRRX1 Wound contraction was significantly reduced and wound closure was severely delayed in KO mice.
또한, 도 12에 나타낸 바와 같이, 절제한지 12일 후 FS-PRRX1-KO 마우스의 상처난 조직을 현미경으로 검사한 결과, 상피층과 진피층의 두께가 현저하게 감소하였으며 대조군 마우스에 비해 섬유아세포의 총 수가 현저히 감소하였다. 특히 FS-PRRX1-KO 마우스에서 근섬유아세포 표현형 (SMA+/TNC+/PDGFRa+)을 가진 섬유아세포의 수가 현저히 감소하였고, 세포 증식/생존을 나타내는 PCNA+ 섬유아세포의 수가 눈에 띄게 감소하였다.In addition, as shown in FIG. 12, as a result of microscopic examination of the wounded tissues of FS-PRRX1-KO mice 12 days after resection, the thickness of the epithelial layer and the dermal layer was significantly reduced, and the total number of fibroblasts compared to the control mice significantly decreased. In particular, the number of fibroblasts with myofibroblast phenotype (SMA + / TNC + / PDGFRa + ) was significantly reduced in FS-PRRX1-KO mice, and the number of PCNA + fibroblasts showing cell proliferation / survival was significantly reduced.
이러한 결과는 섬유아세포에서 PRRX1을 제거하면 생체내 상처 치유 과정의 핵심 구성 요소인 근섬유아세포 하위집단의 감소로 이어진다는 것을 나타낸다.These results indicate that depletion of PRRX1 in fibroblasts leads to a reduction of the myofibroblast subpopulation, which is a key component of the wound healing process in vivo.
3-6. 섬유아세포의 PRRX1 결손에 의한 암 치료 효과 확인3-6. Confirmation of cancer treatment effect by PRRX1 deficiency in fibroblasts
이전 실험에서는 근섬유아세포 CAF 하위집단을 선택적으로 억제하는 신규 항암제를 설계하는데 있어서 PRRX1이 잠재적 치료 대상으로 부각되었다. 따라서 섬유아세포 내 PRRX1의 억제가 임상 시험과 유사한 생체내 항암 효과를 발휘하는지를 추가로 조사하였다.Previous experiments have highlighted PRRX1 as a potential therapeutic target in the design of novel anticancer agents that selectively inhibit the myofibroblast CAF subpopulation. Therefore, we further investigated whether inhibition of PRRX1 in fibroblasts exerts an in vivo anticancer effect similar to that in clinical trials.
종양 세포 (LLC1)를 섬유아세포 특이 CAS9 발현 (FS-CAS9) 마우스에 주입하고 MRI 스캔을 사용하여 종양 성장을 모니터링하였다 (n = 10). 종양 부피가 30 mm3에 도달하였을 때, FS-CAS9 마우스에 PRRX1에 대한 sgRNA (sgPrrx1)를 투여하여 섬유아세포에서 PRRX1의 치료적인 고갈이 시작되었다 (도 13). 미처리된 대조군, 시스플라틴 처리 및 시스플라틴과 sgPrrx1의 조합 처리 그룹을 비교한 결과, 도 14의 A 및 B에 나타낸 바와 같이, sgPrrx1 투여 그룹에서는 마우스 10 중 8마리에서 전체 완화(complete remission, CR)가 유도되었고, 나머지 2마리에서 부분 완화(partial remission, PR)가 관찰되었다. 대조군 (sgNS 처리)에서는 마우스 10마리 모두에서 지속적인 종양 진행 (progressive disease, PD)이 관찰되었다. 시스플라틴은 종래 연구에서 LLC1에 대해 부분적으로 치료 효과가 있는 것으로 보고되었지만 (Fournel, L., et al. 2019 Cancer Lett 464, 5-14; Kang, M. J., et al. 2019 Lab Anim Res 35, 17), 본 연구에서는 마우스 10마리 중 2마리에서만 부분적으로 암 진행을 억제하는 효과가 있었을 뿐, 나머지 8마리에서는 시스플라틴의 치료 효과가 없었다. 이러한 마우스의 종양은 시스플라틴에 내성이 있는 것임을 알 수 있었다. 특히 전체 완화는 sgPrrx1 및 시스플라틴 복합 치료군의 마우스 10마리 모두에서 유도되었다. Tumor cells (LLC1) were injected into fibroblast-specific CAS9 expressing (FS-CAS9) mice and tumor growth was monitored using MRI scans (n = 10). When the tumor volume reached 30 mm 3 , therapeutic depletion of PRRX1 in fibroblasts was initiated by administering sgRNA against PRRX1 (sgPrrx1) to FS-CAS9 mice ( FIG. 13 ). As a result of comparing the untreated control group, cisplatin treatment, and cisplatin and sgPrrx1 combination treatment groups, as shown in A and B of FIG. 14, complete remission (CR) was induced in 8 out of 10 mice in the sgPrrx1 administration group. and partial remission (PR) was observed in the remaining two animals. In the control group (sgNS treatment), continuous progressive disease (PD) was observed in all 10 mice. Cisplatin has been reported to have a partial therapeutic effect on LLC1 in previous studies (Fournel, L., et al. 2019 Cancer Lett 464, 5-14; Kang, MJ, et al. 2019 Lab Anim Res 35, 17). , In this study, only 2 out of 10 mice had an effect of partially suppressing cancer progression, while cisplatin had no therapeutic effect in the remaining 8 mice. It was found that the tumors of these mice were resistant to cisplatin. In particular, total remission was induced in all 10 mice in the sgPrrx1 and cisplatin combination treatment group.
전체 완화가 유도된 마우스 모두에서 종양 부위를 현미경으로 검사한 결과, 도 14에 나타낸 바와 같이, 종양 세포가 남아있지 않았다. 그리고 전체 완화가 유도된 마우스를 32주까지 추적 관찰한 결과, 도 15에 나타낸 바와 같이, 전 기간 동안 전체 완화가 유지되는 것을 확인하였다.As a result of microscopic examination of tumor sites in all mice in which total remission was induced, as shown in FIG. 14 , no tumor cells remained. And as a result of follow-up observation of the mice in which total relief was induced up to 32 weeks, as shown in FIG. 15, it was confirmed that total relief was maintained during the entire period.
이러한 결과는 섬유아세포 특이 PRRX1의 고갈이 시스플라틴 내성암의 전체 완화를 장기간 유지시킬 수 있다는 것을 나타낸다.These results indicate that depletion of fibroblast-specific PRRX1 can maintain long-term overall remission of cisplatin-resistant cancer.
종합하면, 암 연관 섬유아세포에서 높게 발현되는 PRRX1는 새로운 항암 치료 표적으로 제시될 수 있으며, PRRX1 유전자 또는 단백질의 발현 억제를 통해 암세포의 성장 및 증식을 감소시키고 세포 사멸을 유도하여 효과적인 암 치료 효과를 기대할 수 있고, 시스플라틴과 같은 기존 항암제에 내성을 가지는 암 또한 치료할 수 있다. 따라서 PRRX1 억제제는 신규한 암 예방 또는 치료용 약학 조성물로 적용될 수 있다.Taken together, PRRX1, which is highly expressed in cancer-associated fibroblasts, can be presented as a new anti-cancer treatment target, and suppresses the expression of PRRX1 gene or protein to reduce cancer cell growth and proliferation and induce apoptosis to achieve effective cancer treatment. It can be expected, and cancers that are resistant to conventional anticancer drugs such as cisplatin can also be treated. Therefore, the PRRX1 inhibitor can be applied as a novel pharmaceutical composition for preventing or treating cancer.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been looked at with respect to its preferred embodiments. Those skilled in the art to which the present invention pertains will be able to understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a limiting point of view. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the equivalent scope will be construed as being included in the present invention.
Claims (8)
- PRRX1 억제제를 유효성분으로 포함하는 암 예방 또는 치료용 약학 조성물.A pharmaceutical composition for preventing or treating cancer comprising a PRRX1 inhibitor as an active ingredient.
- 청구항 1에 있어서,The method of claim 1,상기 PRRX1 억제제는 PRRX1 유전자 또는 단백질의 발현 또는 활성을 억제하는 것인 약학 조성물.The pharmaceutical composition wherein the PRRX1 inhibitor inhibits the expression or activity of the PRRX1 gene or protein.
- 청구항 1에 있어서,The method of claim 1,상기 PRRX1 억제제는 안티센스 올리고뉴클레오티드, siRNA, shRNA, 리보자임, 항체, 이의 항원 결합 단편, 화합물, 펩티드, 펩티드 미메틱스 및 앱타머로 이루어진 군에서 선택된 1종 이상인 것인 약학 조성물.Wherein the PRRX1 inhibitor is at least one selected from the group consisting of antisense oligonucleotides, siRNA, shRNA, ribozymes, antibodies, antigen-binding fragments thereof, compounds, peptides, peptide mimetics, and aptamers.
- 청구항 1에 있어서,The method of claim 1,상기 PRRX1 억제제는 서열번호 1 또는 2로 표시되는 염기서열을 포함하는 mRNA에 상보적으로 결합하거나, 또는 이로부터 발현되는 단백질에 특이적으로 결합하는 것인 약학 조성물.The pharmaceutical composition wherein the PRRX1 inhibitor complementarily binds to mRNA containing the nucleotide sequence represented by SEQ ID NO: 1 or 2, or specifically binds to a protein expressed therefrom.
- 청구항 1에 있어서,The method of claim 1,상기 PRRX1 억제제는 서열번호 3 또는 4로 표시되는 염기서열을 포함하는 shRNA인 것인 약학 조성물.The pharmaceutical composition wherein the PRRX1 inhibitor is shRNA comprising the nucleotide sequence represented by SEQ ID NO: 3 or 4.
- 청구항 1에 있어서,The method of claim 1,상기 PRRX1 억제제는 암 연관 섬유아세포의 증식 또는 활성을 억제하는 것인 약학 조성물.The pharmaceutical composition wherein the PRRX1 inhibitor inhibits the proliferation or activity of cancer-associated fibroblasts.
- 청구항 1에 있어서,The method of claim 1,상기 PRRX1 억제제는 암 연관 섬유아세포의 세포외 기질 수축을 억제하는 것인 약학 조성물.The pharmaceutical composition wherein the PRRX1 inhibitor inhibits extracellular matrix contraction of cancer-associated fibroblasts.
- 청구항 1에 있어서,The method of claim 1,상기 암은 백혈병(leukemia), 림프종(lymphoma), 호지킨병(Hodgkin's disease), 혈액종양(hematopoietic malignancy), 자궁경부암(cervical cancer), 육종(sarcoma), 고환암(testicular cancer), 악성 흑색종(malignant melanoma), 내분비암(endocrine cancer), 골암(bone cancer), 전립선암(prostate cancer), 자궁암(uterus cancer), 유방암(breast cancer), 방광암(bladder cancer), 신장암(renal cell carcinoma), 중추신경계 종양(central nervous system tumor), 뇌암(brain cancer), 간암(liver cancer), 위암(stomach cancer), 췌장암(pancreatic cancer), 피부암(skin cancer), 편평세포암종(squamous cell carcinoma) 폐암(lung cancer), 후두암(larynx cancer), 두경부암(head andneck cancer), 식도암(esophageal cancer), 대장암(colorectal cancer) 및 난소암(ovarian cancer)으로 이루어진 군에서 선택된 1종 이상인 것인 약학 조성물.The cancer is leukemia, lymphoma, Hodgkin's disease, hematopoietic malignancy, cervical cancer, sarcoma, testicular cancer, malignant melanoma ( malignant melanoma, endocrine cancer, bone cancer, prostate cancer, uterus cancer, breast cancer, bladder cancer, renal cell carcinoma, Central nervous system tumor, brain cancer, liver cancer, stomach cancer, pancreatic cancer, skin cancer, squamous cell carcinoma, lung cancer ( lung cancer), larynx cancer, head and neck cancer, esophageal cancer, colorectal cancer and ovarian cancer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0158817 | 2021-11-17 | ||
KR1020210158817A KR20230072259A (en) | 2021-11-17 | 2021-11-17 | Pharmaceutical composition for preventing or treating for cancer comprising PRRX1 inhibitor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023090884A1 true WO2023090884A1 (en) | 2023-05-25 |
Family
ID=86397409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/018172 WO2023090884A1 (en) | 2021-11-17 | 2022-11-17 | Pharmaceutical composition comprising prrx1 inhibitor for prevention or treatment of cancer |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20230072259A (en) |
WO (1) | WO2023090884A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013134649A1 (en) * | 2012-03-09 | 2013-09-12 | Verastem, Inc. | Biomarkers for cancer stem cells and related methods of use |
EP3461837A1 (en) * | 2017-09-28 | 2019-04-03 | Secarna Pharmaceuticals GmbH & Co. KG | Inhibitor inhibiting the expression of pprx1 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI407971B (en) | 2007-03-30 | 2013-09-11 | Nitto Denko Corp | Cancer cells and tumor-related fibroblasts |
KR20180125906A (en) | 2017-05-16 | 2018-11-26 | 아주대학교산학협력단 | Pharmaceutical composition for enhancing effect of anti-cancer treating |
-
2021
- 2021-11-17 KR KR1020210158817A patent/KR20230072259A/en not_active Application Discontinuation
-
2022
- 2022-11-17 WO PCT/KR2022/018172 patent/WO2023090884A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013134649A1 (en) * | 2012-03-09 | 2013-09-12 | Verastem, Inc. | Biomarkers for cancer stem cells and related methods of use |
EP3461837A1 (en) * | 2017-09-28 | 2019-04-03 | Secarna Pharmaceuticals GmbH & Co. KG | Inhibitor inhibiting the expression of pprx1 |
Non-Patent Citations (3)
Title |
---|
DATABASE Nucleotide 26 October 2021 (2021-10-26), ANONYMOUS : "Homo sapiens paired related homeobox 1 (PRRX1), transcript variant pmx ", XP093068535, retrieved from NCBI Database accession no. NM_006902.5 * |
JOKO RYOJI, YAMADA DAISUKE, NAKAMURA MASAHIRO, YOSHIDA AKI, TAKIHIRA SHOTA, TAKAO TOMOKA, LU MING, SATO KOHEI, ITO TATSUO, KUNISAD: "PRRX1 promotes malignant properties in human osteosarcoma", TRANSLATIONAL ONCOLOGY, NEOPLASIA PRESS, UNITED STATES, vol. 14, no. 1, 1 January 2021 (2021-01-01), United States , pages 100960, XP093068527, ISSN: 1936-5233, DOI: 10.1016/j.tranon.2020.100960 * |
LEE KEUN-WOO, YEO SO-YOUNG, GONG JEONG-RYEOL, KOO OK-JAE, SOHN INSUK, LEE WOO YONG, KIM HEE CHEOL, YUN SEONG HYEON, CHO YONG BEOM,: "PRRX1 is a master transcription factor of stromal fibroblasts for myofibroblastic lineage progression", NATURE COMMUNICATIONS, vol. 13, no. 1, XP093068540, DOI: 10.1038/s41467-022-30484-4 * |
Also Published As
Publication number | Publication date |
---|---|
KR20230072259A (en) | 2023-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jin et al. | Neutrophil extracellular DNA traps promote pancreatic cancer cells migration and invasion by activating EGFR/ERK pathway | |
Spurgeon et al. | Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen | |
Bitler et al. | Wnt5a suppresses epithelial ovarian cancer by promoting cellular senescence | |
Cai et al. | The Wnt–β-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion | |
KUMAR‐SINGH et al. | WT1 mutation in malignant mesothelioma and WT1 immunoreactivity in relation to p53 and growth factor receptor expression, cell‐type transition, and prognosis | |
Mo et al. | Tumor-secreted exosomal miR-141 activates tumor-stroma interactions and controls premetastatic niche formation in ovarian cancer metastasis | |
Xu et al. | NOS1 inhibits the interferon response of cancer cells by S-nitrosylation of HDAC2 | |
CA2912389A1 (en) | Methods and compositions for reducing immunosupression by tumor cells | |
Hirukawa et al. | Reduction of global H3K27me3 enhances HER2/ErbB2 targeted therapy | |
WO2012005550A2 (en) | Pharmaceutical composition for treating gallbladder carcinoma, and method for inhibiting growth and metastasis of gallbladder carcinoma and treating gallbladder carcinoma, using same | |
García-Cosío et al. | Analysis of transcription factor OCT. 1, OCT. 2 and BOB. 1 expression using tissue arrays in classical Hodgkin's lymphoma | |
Zhu et al. | LINC00968 can inhibit the progression of lung adenocarcinoma through the miR-21-5p/SMAD7 signal axis | |
CN111073979B (en) | Gastric cancer treatment method for blocking CCL28 chemotactic pathway | |
Feng et al. | Genetic aberrations and interaction of NEK2 and TP53 accelerate aggressiveness of multiple myeloma | |
WO2020080861A1 (en) | Gastric cancer treatment composition comprising syt11 inhibitor as active ingredient | |
Chen et al. | Melatonin attenuates hypoxia-induced epithelial-mesenchymal transition and cell aggressive via Smad7/CCL20 in glioma | |
JP2010178650A (en) | Test method for predicting recurrence of solid cancer and recurrence prophylactic | |
Li et al. | MicroRNA-144-3p inhibits tumorigenesis of oral squamous cell carcinoma by downregulating ERO1L | |
Wang et al. | Evading immune surveillance via tyrosine phosphorylation of nuclear PCNA | |
WO2023090884A1 (en) | Pharmaceutical composition comprising prrx1 inhibitor for prevention or treatment of cancer | |
WO2018004240A1 (en) | Use of nupr1 in diagnosis and treatment of brain tumor | |
US20170298360A1 (en) | Lats and breast cancer | |
WO2021137506A1 (en) | Composition for inhibiting growth of cancer stem cells, containing wdr34 inhibitor, and use thereof | |
KR102612000B1 (en) | Pharmaceutical composition for inhibiting ovarian cancer metastasis comprising expression or activity inhibitors of GLIS1 | |
WO2017061828A1 (en) | Pharmaceutical composition for preventing or treating cancer comprising inhibitor of plrg1 (pleiotropic regulator 1) as active ingredient |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22896086 Country of ref document: EP Kind code of ref document: A1 |